WO2020061791A1 - 基于波带交换的wdm光网络优化方法 - Google Patents

基于波带交换的wdm光网络优化方法 Download PDF

Info

Publication number
WO2020061791A1
WO2020061791A1 PCT/CN2018/107496 CN2018107496W WO2020061791A1 WO 2020061791 A1 WO2020061791 A1 WO 2020061791A1 CN 2018107496 W CN2018107496 W CN 2018107496W WO 2020061791 A1 WO2020061791 A1 WO 2020061791A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
optical network
path
given
given request
Prior art date
Application number
PCT/CN2018/107496
Other languages
English (en)
French (fr)
Inventor
陈彬
英杰
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2018/107496 priority Critical patent/WO2020061791A1/zh
Publication of WO2020061791A1 publication Critical patent/WO2020061791A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the technical problem to be solved by the present invention is to provide a method for optimizing a WDM optical network based on a band switching based on the above-mentioned shortcomings of the prior art to provide a minimum number of established waveband paths that can satisfy the wavelength service request. As few network ports as possible.
  • the technical solution adopted by the present invention to solve its technical problems is to construct a WDM optical network optimization method based on band switching, including:
  • the step S1 further includes:
  • the step S2 further includes:
  • step S33 The used waveband path is deleted from the first waveband path set B and added to the second waveband path set B ', and step S5 is performed.
  • the band exchange is performed in the band.
  • the first optical band path set B of the entire network of the elastic optical network it searches for the most requested band paths of the given request.
  • step S31 the first band path of the entire network of the band switching elastic optical network is In the set B, it searches for a maximum number of the band paths of the given request.
  • step S41 Allocate a corresponding wavelength resource to the adapted given request according to the uniqueness and wavelength resource constraints of the adapted request, and determine whether the allocation is successful. If the allocation fails, perform step S42, otherwise Go to step S43;
  • step S43 Mark the flag bit of the given request as successfully allocated, delete the successfully allocated wavelength resource from the first band path set B, and add it to the second band path set B ′. And execute step S5.
  • Another technical solution adopted by the present invention to solve its technical problem is to construct a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the WDM optical network based on the band switching is implemented Optimization.
  • FIG. 1 is a principle block diagram of a first embodiment of a method for optimizing a WDM optical network based on a band switching of the present invention
  • Figure 2 shows a logical schematic diagram of a preferred band-switched elastic optical network
  • Figure 3 shows a 6-node network topology
  • Figure 4 shows an 11-node network topology
  • FIG. 1 is a principle block diagram of a first embodiment of a method for optimizing a WDM optical network based on band switching according to the present invention.
  • a band switching elastic optical network is constructed in step S1.
  • the step S1 further includes: S11. Setting up a series-structured hierarchical optical cross-connection in each of a plurality of network nodes; S12. Constructing a series-based hierarchical optical cross-connection based on the multiple network nodes Cross-connected band-switched elastic optical network.
  • Fig. 2 shows a logical schematic diagram of a layered optical cross-connect of a series structure.
  • the optical path from the incoming fiber first reaches the 1 ⁇ 2WSS. If any service connection arrives at the destination node, it can be stripped from the band optical path and dropped to the local optical receiver. The remaining waveband optical paths will be sent to a Waveband Cross-Connect (WBXC) for band exchange. Finally, in the direction of the output fiber, the new service link on the road needs to be carried through WSS. This separates the uplink and downlink functions of the service link from the cross-band connection, which is more suitable for band switching. It can be noted that in this preferred band-switching elastic optical network, a single optical channel cannot be switched from one band to another. This means that the connection request can only be routed by selecting one band path. Therefore, if the path PA is a sub-path of the path PB, all nodes on the path PA will be included in the path PB. Therefore, choosing the optimal waveband path becomes critical.
  • step S2 a flag bit that marks a given request for which resources have not been successfully allocated is unsuccessfully allocated.
  • all the given requests are stored in the set Q, and it is assumed that the flag bits of all the given requests are unsuccessfully allocated.
  • the set Q is used to represent a set of static given requests that need to be processed.
  • the first consideration is the routing resource allocation of the static network. For all given requests, they are stored in the set Q. Assume that the flags of all given requests are 1. This indicates that the given request has not been successfully allocated resources.
  • step S3 for each network node in the band-switching elastic optical network, a maximum number of band paths for the given request that it can adapt to are found.
  • the step S3 may include S31.
  • the first band path set B of the entire network of the band-switched elastic optical network is used to find the maximum number of band paths for the given request that it can adapt; S32.
  • S33 Based on the most number of waves for the given request, The number of hops in the band path and the number of optical fiber links passed select the band path; S33.
  • the first wave band B represents the entire set of paths based on a path band wavelength band WDM optical network exchanged (s i, d i, k i); the first The two-band path set B ′ represents the set of stored band paths that have been used; G represents the set of requests that the band paths can adapt to.
  • the band path of the entire network node is considered to adapt the known request (denoted by the BP-WN algorithm), and the set G is marked (of course, the band paths between known requests can also be used to communicate with each other Adaptation (ie, BP-BR algorithm).
  • step S4 a corresponding wavelength resource is allocated for the given request that is adapted, and a flag bit of the given request is modified according to the allocation result.
  • the step S4 further includes S41, according to the uniqueness and wavelength resource constraint of the given request adapted, Allocate the corresponding wavelength resource to the given request that is adapted, and determine whether the allocation is successful. If the allocation fails, step S42 is performed, otherwise step S43 is performed. In step S42, the flag bit of the given request is marked as unsuccessfully allocated, and step S5 is performed.
  • step S43 the flag bit of the given request is marked as successfully allocated, and the wavelength resource that was successfully allocated is deleted from the first waveband path set B and added to the second waveband path set B ', and step S5 is performed.
  • a FIRST-FIT algorithm is used to allocate a corresponding wavelength resource to the given request that is adapted.
  • step S5 the steps S1-S4 are repeatedly performed until all the flag bits of the given request are marked as successfully allocated. For example, the processes S1-S are repeatedly performed until the flag bits of all requests are 1, and the number of switching ports required for all requests to be successfully allocated resources is calculated in B '.
  • the implementation of the WDM optical network optimization method based on the band switching of the present invention can satisfy the minimum number of established waveband paths for the wavelength service request, so that the number of network ports for the optical network service switching is as small as possible.
  • the 6-node network topology shown in FIG. 3 and the 11-node network topology shown in FIG. 4 uses the 6-node network topology shown in FIG. 3 and the 11-node network topology shown in FIG. 4 to analyze the simulation results of the WDM optical network optimization method based on the band switching of the present invention.
  • the 6-node network has 8 connections with an average node degree of 2.67.
  • the 11-node network has 26 connections and the average node degree is 3.09.
  • the physical distance between nodes is in km.
  • the two nodes associated with each connection are called a pair of adjacent nodes. Each pair of adjacent nodes is connected by two links with different transmission directions. Assume that each fiber has W wavelengths, and the bandwidth of each wavelength is 10Gbps.
  • the network traffic matrix is randomly generated.
  • the present invention can be implemented by hardware, software, or a combination of software and hardware.
  • the invention may be implemented in a centralized manner in at least one computer system or in a decentralized manner by different parts distributed among several interconnected computer systems. Any computer system or other device that can implement the method of the present invention is applicable.
  • the combination of commonly used software and hardware can be a general-purpose computer system with a computer program installed, and the computer system can be controlled to run according to the method of the present invention by installing and executing the program.
  • the present invention can also be implemented by a computer program product.
  • the program includes all the features capable of implementing the method of the present invention. When installed in a computer system, the method of the present invention can be implemented.
  • the computer program in this document refers to: any expression that can use a set of instructions written in any programming language, code, or symbol, which enables the system to have information processing capabilities to directly implement specific functions, or to perform A specific function is achieved after describing one or two steps: a) conversion to other languages, codes or symbols; b) reproduction in different formats.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

一种基于波带交换的WDM光网络优化方法,包括:S1、构建波带交换弹性光网络;S2、标记未被成功分配资源的给定请求的标志位为未成功分配;S3、为所述波带交换弹性光网络中的每个网络节点寻找其所能适配的最多个所述给定请求的波带路径;S4、为所适配的所述给定请求分配对应的波长资源,并根据分配结果修改所述给定请求的标志位;S5、重复执行所述步骤S1-S4直至所有所述给定请求的标志位标记为成功分配。实施本发明的基于波带交换的WDM光网络优化方法,能满足波长业务请求的最小建立波带路径数,使得光网络业务交换的网络端口数尽可能少。

Description

基于波带交换的WDM光网络优化方法 技术领域
本发明涉及通信技术领域,更具体地说,涉及一种基于波带交换的WDM光网络优化方法。
背景技术
WDM技术是在光纤上进行信道复用的技术,一根光纤的带宽可达25000GHz,而通常一路光信号的带宽只有几吉赫。波分多路复用的原理是整个波长频带被划分为若干个波长范围,每路信号占用一个波长范围来进行传输。实质上是在光信道上采用的一种频分多路复用的变种,即光的频分复用,只不过光复用采用的技术与设备不同于电复用,由于光波处于频谐的高频段,有很高的带宽,因而可以实现很多路的被分复用。
WDM技术在不断发展的同时,也带来了很多的问题。核心骨干网络中的交换能力受限就是其中一个重要的问题。例如:假设一个OXC节点包含有15个节点度(即输入输出端口数),每个光纤可容纳160个波长光信号,那么在不考虑上/下路端口的情况下,OXC业务交换矩阵内部需要的端口数将达到2400*2400个。随着波长数的不断提高,网络中的OXCs端口数将急剧增加。而这对于目前的技术来说还不是成熟地能够实现。它不但使得整个交换节点结构的复杂度增加,而且也提高了网络节点成本和管理控制的相关费用,成为阻碍其发展应用的关键性瓶颈之一。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种能满足波长业务请求的最小建立波带路径数的基于波带交换的WDM光网络优化方法,使得光网络业务交换的网络端口数尽可能少。
本发明解决其技术问题所采用的技术方案是:构造一种基于波带交换的WDM光网络优化方法,包括:
S1、构建波带交换弹性光网络;
S2、标记未被成功分配资源的给定请求的标志位为未成功分配;
S3、为所述波带交换弹性光网络中的每个网络节点寻找其所能适配的最多个所述给定请求的波带路径;
S4、为所适配的所述给定请求分配对应的波长资源,并根据分配结果修改所述给定请求的标志位;
S5、重复执行所述步骤S1-S4直至所有所述给定请求的标志位标记为成功分配。
在本发明所述的基于波带交换的WDM光网络优化方法中,所述步骤S1进一步包括:
S11、在多个网络节点中分别设置串联结构分层光交叉连接;
S12、基于所述多个网络节点构造基于串联结构分层光交叉连接的波带交换弹性光网络。
在本发明所述的基于波带交换的WDM光网络优化方法中,所述步骤S2进一步包括:
S21、将所有所述给定请求存储在集合Q中,并且假定所有所述给定请求的标志位均为未成功分配。
在本发明所述的基于波带交换的WDM光网络优化方法中,所述步骤S3进一步包括:
S31、针对所述波带交换弹性光网络中的每个网络节点,在所述波带交换弹性光网络的整个网络的第一波带路径集合B中寻找其所能适配的最多个所述给定请求的波带路径;
S32、基于最多个所述给定请求的波带路径中的跳数和经过的光纤链路数量选择波带路径;
S33、将使用过的波带路径在所述第一波带路径集合B中删除并将其加入到第二波带路径集合B’中,并执行步骤S5。
在本发明所述的基于波带交换的WDM光网络优化方法中,在所述步骤S31中,根据已知的所述给定请求之间的波带路径相互适配算法在所述波带交换弹性光网络的整个网络的第一波带路径集合B中寻找其所能适配的最多个所述给定请求的波带路径。
在本发明所述的基于波带交换的WDM光网络优化方法中,在所述步骤S31中,根据K条路径最短算法,在所述波带交换弹性光网络的整个网络的第一波带路径集合B中寻找其所能适配的最多个所述给定请求的波带路径。
在本发明所述的基于波带交换的WDM光网络优化方法中,所述步骤S4进一步包括:
S41、根据所适配的所述给定请求的唯一性和波长资源约束,为所适配的所述给定请求分配对应的波长资源,并判定是否分配成功,如果分配失败执行步骤S42,否则执行步骤S43;
S42、标记所述给定请求的标志位为未成功分配,并执行步骤S5;
S43、标记所述给定请求的标志位为成功分配,并在所述第一波带路径集合B中删除成功分配的所述波长资源,并将其加入到第二波带路径集合B’中,并执行步骤S5。
在本发明所述的基于波带交换的WDM光网络优化方法中,在步骤S41中,采用FIRST-FIT算法为所适配的所述给定请求分配对应的波长资源。
本发明解决其技术问题采用的另一技术方案是,构造一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现所述的基于波带交换的WDM光网络优化方法。
实施本发明的基于波带交换的WDM光网络优化方法,能满足波长业务请求的最小建立波带路径数,使得光网络业务交换的网络端口数尽可能少。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明的基于波带交换的WDM光网络优化方法的第一实施例的原理框图;
图2示出了优选的波带交换弹性光网络的逻辑示意图;
图3示出了6-节点网络拓扑;
图4示出了11-节点网络拓扑;
图5示出了根据给定请求设置波长资源W=32时使用本发明的基于波带交换的WDM光网络优化方法和传统的WDM方法的基于ILP模型的仿真结果图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明涉及一种基于波带交换的WDM光网络优化方法,包括:S1、构建波带交换弹性光网络;S2、标记未被成功分配资源的给定请求的标志位为未成功分配;S3、为所述波带交换弹性光网络中的每个网络节点寻找其所能适配的最多个所述给定请求的波带路径;S4、为所适配的所述给定请求分配对应的波长资源,并根据分配结果修改所述给定请求的标志位;S5、重复执行所述步骤S1-S4直至所有所述给定请求的标志位标记为成功分配。实施本发明的基于波带交换的WDM光网络优化方法,能满足波长业务请求的最小建立波带路径数,使得光网络业务交换的网络端口数尽可能少。
图1是本发明的基于波带交换的WDM光网络优化方法的第一实施例的原理框图。如图1所示,在步骤S1中,构建波带交换弹性光网络。在本发明的优选实施例中,所述步骤S1进一步包括:S11、在多个网络节点中分别设置串联结构分层光交叉连接;S12、基于所述多个网络节点构造基于串联结构分层光交叉连接的波带交换弹性光网络。
图2示出了串联结构分层光交叉连接的逻辑示意图。如图2所示,来自入路光纤的光路首先到达1×2WSS。如果任何业务连接到达目的节点,可以将其从波带光路中剥离并且下路到本地光接收器。剩余的波带光路将送到波带交叉连接(Waveband Cross-Connect,WBXC)进行波带交换。最后在输出光纤方向 上通过WSS携带上需要上路的新的业务链接。这将业务链接的上路和下路功能从波带交叉连接中分离出来,更适合用于波带交换。可以注意到,在该优选的波带交换弹性光网络中,单个光通道不能从一个波带切换到另一个波带。这意味着连接请求只能选择一条波带路径进行路由。因此,如果路径PA是路径PB的子路径,那么路径PA在的全部节点都将包括在路径PB中。因此,选择最佳波带路径变得至关重要。
在步骤S2中,标记未被成功分配资源的给定请求的标志位为未成功分配。优选地,在本发明的一个优选实施例中,将所有所述给定请求存储在集合Q中,并且假定所有所述给定请求的标志位均为未成功分配。
具体的,采用集合Q表示需要处理的静态的给定请求的集合。在该步骤中,首先考虑的是静态网络的路由资源分配。对于所有给定请求,存储进集合Q当中,假设所有给定请求的标志位flag都是1,表示该给定请求未被成功分配资源。
在步骤S3中,为所述波带交换弹性光网络中的每个网络节点寻找其所能适配的最多个所述给定请求的波带路径。在本发明所述的基于波带交换的WDM光网络优化方法的进一步的优选实施例中,所述步骤S3可以包括S31、针对所述波带交换弹性光网络中的每个网络节点,在所述波带交换弹性光网络的整个网络的第一波带路径集合B中寻找其所能适配的最多个所述给定请求的波带路径;S32、基于最多个所述给定请求的波带路径中的跳数和经过的光纤链路数量选择波带路径;S33、将使用过的波带路径在所述第一波带路径集合B中删除并将其加入到第二波带路径集合B’中,并执行步骤S5。在本发明的优选实施例中,可以根据已知的所述给定请求之间的波带路径相互适配算法在所述波带交换弹性光网络的整个网络的第一波带路径集合B中寻找其所能适配的最多个所述给定请求的波带路径。在本发明的进一步的优选实施例中,在所述步骤S31中,根据K条路径最短算法,在所述波带交换弹性光网络的整个网络的第一波带路径集合B中寻找其所能适配的最多个所述给定请求的波带路径。
具体的,Q’表示已经成功分配资源的给定请求的集合,第一波带路径集 合B表示整个基于波带交换的WDM光网络的波带路径(s i,d i,k i);第二波带路径集合B’表示存储已被使用的波带路径的集合;G表示波带路径所能适配的请求的集合。在本实施例中,考虑的是整个网络节点的波带路径来适配已知请求(记为BP-WN算法),标记集合G(当然,也可以用已知请求之间的波带路径互相适配,即BP-BR算法),针对每一个网络节点,根据K条最短路径算法,在集合B中找出每条路径所能适配的最多个请求的波带路径(s i,d i,k i),若对应的跳数hop是一样,则挑选经过光纤链路link较小的,因为这使得在同等条件下所使用的端口数尽可能的小。使用过的波带路径则从集合B中删除,B’中添加该元素。
在步骤S4中,为所适配的所述给定请求分配对应的波长资源,并根据分配结果修改所述给定请求的标志位。在本发明所述的基于波带交换的WDM光网络优化方法的进一步的优选实施例中,所述步骤S4进一步包括S41、根据所适配的所述给定请求的唯一性和波长资源约束,为所适配的所述给定请求分配对应的波长资源,并判定是否分配成功,如果分配失败执行步骤S42,否则执行步骤S43。在步骤S42中,标记所述给定请求的标志位为未成功分配,并执行步骤S5。在步骤S43中,标记所述给定请求的标志位为成功分配,并在所述第一波带路径集合B中删除成功分配的所述波长资源,并将其加入到第二波带路径集合B’中,并执行步骤S5。优选地,在步骤S41中,采用FIRST-FIT算法为所适配的所述给定请求分配对应的波长资源。
例如,根据所适配的给定请求在唯一性和波长资源的约束下,采用First-Fit算法为所适配的每个给定请求分配对应的波长资源,若成功分配,则标识该适配中的这个给定请求已完成资源分配,将其从Q中标识为1,并添加到Q’中,若分配失败,则给定请求在当前不能得到资源,标识该给定请求未被处理,等待下一次其它网络节点的其它最短路径的适配。在这里,对于所适配的给定请求,只要有一个给定请求被成功分配了资源,则选择该对应的波带路径从波带路径集合B中删除,加入到波带路径集合B’中。
在步骤S5中,重复执行所述步骤S1-S4直至所有所述给定请求的标志位标记为成功分配。例如,重复执行该流程S1-S,直至所有请求的标志位都是1,在B’中计算所有请求被成功分配资源所需要的交换端口数。
实施本发明的基于波带交换的WDM光网络优化方法,能满足波长业务请求的最小建立波带路径数,使得光网络业务交换的网络端口数尽可能少。
下面采用图3所示的6-节点网络拓扑和图4所示的11-节点网络拓扑对本发明的基于波带交换的WDM光网络优化方法进行仿真结果分析。如图3所示,6-节点网络有8个连接,平均节点度为2.67。如图4所示,11-节点网络,有26个连接,平均节点度为3.09。节点之间物理距离单位为km。在网络中,由每个连接所关联的两端节点被称为一对相邻节点对。每对相邻节点由两根不同传输方向的链路连接。假设每根光纤有W个波长,每个波长的带宽为10Gbps。为使仿真结果具有一般性,网络业务量矩阵采用随机生成方式。业务矩阵用随机方式来产生业务,每个业务的带宽为10Gbps。采用K条最短路径算法预先计算出每个节点对之间的K条最短路径。K越小则计算复杂度也越低。这里假设,6个节点的为K=5,11个节点的为K=10。不考虑信号的再生及波长的转换性。所有的光路具有相同的带宽。仿真使用的处理器是Intel(r)Xeon(R)CPU E5-2640 v3@2.60GHz和64.0GB的RAM的HP个人计算机,在VS2010环境下使用IBM公司的ILOGCPLEX TM12.6线性规划软件产品对所提出的算法进行求解。
图5示出了根据给定请求设置波长资源W=32时使用本发明的基于波带交换的WDM光网络优化方法和传统的WDM方法的基于ILP模型的仿真结果图。如图5所示,当节点对间的业务请求个数CRs=1时,基于路径包含的波带交换使用的端口数为10,而传统的WDM方法使用了22个,节省了端口数大约54.5%。随着节点对间业务请求个数CRs的增加,两个算法所需要的端口数也不断增加。但是对本发明的基于波带交换的WDM光网络优化方法,其端口数其增加是缓慢的,而传统的WDM方法的增加接近于线性增长。究其原因,是网络会首先去选择那些具有包含关系的业务连接请求,然后把他们适配进同一个波带路径并使用一个波带进行端口交换,这就减少了路由多个业务请 求时网络所占用的端口数。对于T-WDM算法,每个连接请求使用一个OXC端口进行交换,导致随着业务请求的增加,其占用端口数急剧增长。当CRs=8时,使用本发明的基于波带交换的WDM光网络优化方法,其端口数的减少可高达93.2%。由此可见,采用本发明的基于波带交换的WDM光网络优化方法,随着业务连接请求数目的增加,在降低网络端口数OXCs具有明显的优势,从而控制了光交换端口设备的成本。
本发明的另一个实施例提供一种可机读存储器和/或存储介质,其内存储的机器代码和/或计算机程序包括至少一个代码段,由机器和/或计算机执行而使得该机器和/或计算机执行本申请中描述的所述的基于波带交换的WDM光网络优化方法的各个步骤。
因此,本发明可以通过硬件、软件或者软、硬件结合来实现。本发明可以在至少一个计算机系统中以集中方式实现,或者由分布在几个互连的计算机系统中的不同部分以分散方式实现。任何可以实现本发明方法的计算机系统或其它设备都是可适用的。常用软硬件的结合可以是安装有计算机程序的通用计算机系统,通过安装和执行程序控制计算机系统,使其按本发明方法运行。
本发明还可以通过计算机程序产品进行实施,程序包含能够实现本发明方法的全部特征,当其安装到计算机系统中时,可以实现本发明的方法。本文件中的计算机程序所指的是:可以采用任何程序语言、代码或符号编写的一组指令的任何表达式,该指令组使系统具有信息处理能力,以直接实现特定功能,或在进行下述一个或两个步骤之后实现特定功能:a)转换成其它语言、编码或符号;b)以不同的格式再现。
虽然本发明是通过具体实施例进行说明的,本领域技术人员应当明白,在不脱离本发明范围的情况下,还可以对本发明进行各种变换及等同替代。另外,针对特定情形或材料,可以对本发明做各种修改,而不脱离本发明的范围。因此,本发明不局限于所公开的具体实施例,而应当包括落入本发明权利要求范围内的全部实施方式。

Claims (9)

  1. 一种基于波带交换的WDM光网络优化方法,其特征在于,包括:
    S1、构建波带交换弹性光网络;
    S2、标记未被成功分配资源的给定请求的标志位为未成功分配;
    S3、为所述波带交换弹性光网络中的每个网络节点寻找其所能适配的最多个所述给定请求的波带路径;
    S4、为所适配的所述给定请求分配对应的波长资源,并根据分配结果修改所述给定请求的标志位;
    S5、重复执行所述步骤S1-S4直至所有所述给定请求的标志位标记为成功分配。
  2. 根据权利要求1所述的基于波带交换的WDM光网络优化方法,其特征在于,所述步骤S1进一步包括:
    S11、在多个网络节点中分别设置串联结构分层光交叉连接;
    S12、基于所述多个网络节点构造基于串联结构分层光交叉连接的波带交换弹性光网络。
  3. 根据权利要求1所述的基于波带交换的WDM光网络优化方法,其特征在于,所述步骤S2进一步包括:
    S21、将所有所述给定请求存储在集合Q中,并且假定所有所述给定请求的标志位均为未成功分配。
  4. 根据权利要求1所述的基于波带交换的WDM光网络优化方法,其特征在于,所述步骤S3进一步包括:
    S31、针对所述波带交换弹性光网络中的每个网络节点,在所述波带交换弹性光网络的整个网络的第一波带路径集合B中寻找其所能适配的最多个所述给定请求的波带路径;
    S32、基于最多个所述给定请求的波带路径中的跳数和经过的光纤链路数量选择波带路径;
    S33、将使用过的波带路径在所述第一波带路径集合B中删除并将其加入 到第二波带路径集合B’中,并执行步骤S5。
  5. 根据权利要求4所述的基于波带交换的WDM光网络优化方法,其特征在于,在所述步骤S31中,根据已知的所述给定请求之间的波带路径相互适配算法在所述波带交换弹性光网络的整个网络的第一波带路径集合B中寻找其所能适配的最多个所述给定请求的波带路径。
  6. 根据权利要求4所述的基于波带交换的WDM光网络优化方法,其特征在于,在所述步骤S31中,根据K条路径最短算法,在所述波带交换弹性光网络的整个网络的第一波带路径集合B中寻找其所能适配的最多个所述给定请求的波带路径。
  7. 根据权利要求1所述的基于波带交换的WDM光网络优化方法,其特征在于,所述步骤S4进一步包括:
    S41、根据所适配的所述给定请求的唯一性和波长资源约束,为所适配的所述给定请求分配对应的波长资源,并判定是否分配成功,如果分配失败执行步骤S42,否则执行步骤S43;
    S42、标记所述给定请求的标志位为未成功分配,并执行步骤S5;
    S43、标记所述给定请求的标志位为成功分配,并在所述第一波带路径集合B中删除成功分配的所述波长资源,并将其加入到第二波带路径集合B’中,并执行步骤S5。
  8. 根据权利要求7所述的基于波带交换的WDM光网络优化方法,其特征在于,在步骤S41中,采用FIRST-FIT算法为所适配的所述给定请求分配对应的波长资源。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现根据权利要求1-8中任意一项权利要求所述的基于波带交换的WDM光网络优化方法。
PCT/CN2018/107496 2018-09-26 2018-09-26 基于波带交换的wdm光网络优化方法 WO2020061791A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107496 WO2020061791A1 (zh) 2018-09-26 2018-09-26 基于波带交换的wdm光网络优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107496 WO2020061791A1 (zh) 2018-09-26 2018-09-26 基于波带交换的wdm光网络优化方法

Publications (1)

Publication Number Publication Date
WO2020061791A1 true WO2020061791A1 (zh) 2020-04-02

Family

ID=69950198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107496 WO2020061791A1 (zh) 2018-09-26 2018-09-26 基于波带交换的wdm光网络优化方法

Country Status (1)

Country Link
WO (1) WO2020061791A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155137A (zh) * 2006-09-25 2008-04-02 华为技术有限公司 一种确定路由路径的方法和路由路径确定单元
CN102611633A (zh) * 2012-04-20 2012-07-25 北京联合大学 一种波分复用光网络的资源配置方法及装置
CN104272620A (zh) * 2012-04-09 2015-01-07 瑞典爱立信有限公司 用于路由和频谱指配的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155137A (zh) * 2006-09-25 2008-04-02 华为技术有限公司 一种确定路由路径的方法和路由路径确定单元
CN104272620A (zh) * 2012-04-09 2015-01-07 瑞典爱立信有限公司 用于路由和频谱指配的方法
CN102611633A (zh) * 2012-04-20 2012-07-25 北京联合大学 一种波分复用光网络的资源配置方法及装置

Similar Documents

Publication Publication Date Title
US7113481B2 (en) Informed dynamic path protection for optical networks
US20210058157A1 (en) Multi-layer network system and path setting method in multi-layer network
Fadini et al. A subcarrier-slot partition scheme for wavelength assignment in elastic optical networks
US8264967B2 (en) Bit-field-encoded resource record for determining a transmission path in a communications network
US10411824B2 (en) Method for quasi-coarse wavelength division multiplexing optical network
US20040208547A1 (en) QoS based protection of mesh-based intelligent optical networks
CN101640817A (zh) 一种光网络中寻找路由和波长分配的方法和装置
JP7127541B2 (ja) 光ネットワーク制御装置、光ノード装置、および光パス設定方法
Yuan et al. A constrained-lower-indexed-block spectrum assignment policy in elastic optical networks
US7218851B1 (en) Communication network design with wavelength converters
US20160255428A1 (en) Method and systems for logical topology optimization of free space optical networks
WO2023108715A1 (zh) 数据中心的空分复用光网络专用保护频谱分配方法及系统
US9941992B2 (en) Method and apparatus for efficient network utilization using superchannels
Thangaraj Multi-path provisioning in elastic optical network with dynamic on-request optimal defragmentation strategy
US6600583B1 (en) Optical internet router
WO2015182070A1 (ja) 光ネットワーク管理装置および光ネットワーク管理方法
WO2020061791A1 (zh) 基于波带交换的wdm光网络优化方法
JP3232825B2 (ja) 光パス収容方法および光通信網
JP5759636B2 (ja) 光ネットワークにおいて帯域幅を割り当てる方法
Yu et al. Spectrum engineering in flexible grid data center optical networks
WO2020061790A1 (zh) 基于距离自适应的波带交换方法
Bandyopadhyay et al. Fault-tolerant routing scheme for all-optical networks
US10623837B2 (en) Connection establishment method and system, and node device
Yu et al. Migration-aware dynamic connection provisioning in optical networks evolving from fixed grid to flexible grid
Sharma et al. Adaptive Weights-based Dynamic Resource Provisioning in Space Division Multiplexed-Elastic Optical Networks (SDM-EONs)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18935834

Country of ref document: EP

Kind code of ref document: A1