WO2020060265A1 - Multi-layer printed circuit board, method for manufacturing same, and semiconductor device using same - Google Patents

Multi-layer printed circuit board, method for manufacturing same, and semiconductor device using same Download PDF

Info

Publication number
WO2020060265A1
WO2020060265A1 PCT/KR2019/012204 KR2019012204W WO2020060265A1 WO 2020060265 A1 WO2020060265 A1 WO 2020060265A1 KR 2019012204 W KR2019012204 W KR 2019012204W WO 2020060265 A1 WO2020060265 A1 WO 2020060265A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
layer
printed circuit
circuit board
Prior art date
Application number
PCT/KR2019/012204
Other languages
French (fr)
Korean (ko)
Inventor
김승락
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190115354A external-priority patent/KR102257926B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980010655.8A priority Critical patent/CN111656874B/en
Priority to EP19862372.0A priority patent/EP3726944A4/en
Priority to JP2020539785A priority patent/JP7463644B2/en
Priority to US16/968,384 priority patent/US11848263B2/en
Publication of WO2020060265A1 publication Critical patent/WO2020060265A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a multilayer printed circuit board having a thin thickness and excellent durability, a method for manufacturing the same, and a semiconductor device using the same.
  • PCBs build-up printed circuit boards
  • Multi-layered printed circuit boards are capable of three-dimensional wiring from planar wiring.
  • the integration of functional devices such as integrated circuit (IC) and large scale integration (LSI) is improved, and the size, weight, high functionality, and structure of electronic devices are improved. It is a product that is advantageous for electrical function integration, assembly time reduction, and cost reduction.
  • prepreg is mainly used as an insulating material used in the coreless multilayer printed circuit board.
  • the present invention relates to a multilayer printed circuit board having a thin thickness and excellent durability.
  • the present invention is to provide a method for manufacturing the above multilayer printed circuit board.
  • the present invention is to provide a semiconductor device including the multi-layer printed circuit board.
  • a resin laminate including a plurality of build-up layers including an insulating pattern and a metal pattern; And a resist pattern layer formed on upper and lower surfaces of the resin laminate, wherein the thickness of the insulating pattern included in the build-up layer is 15 ⁇ m or less.
  • a first step of laminating a metal layer on both sides of a carrier film and forming a pattern A second step of stacking an insulating layer on the metal layer and forming a pattern; A third step of laminating a metal layer on the insulating layer and forming a pattern; A fourth step of forming a resist layer on the metal layer; The fifth step of peeling the carrier film and the metal layer of the first step, laminating a resist layer on the surface of the peeled metal layer and forming a pattern; including, the insulating layer is a resin coating metal thin film having a thickness of 15 ⁇ m or less Provided is a multi-layer printed circuit board manufacturing method in which the second and third steps are repeated one or more times after the third step.
  • Also provided herein is a semiconductor device, comprising a multi-layer printed circuit board.
  • a resin laminate including a plurality of build-up layers including an insulating pattern and a metal pattern; And a resist pattern layer formed on upper and lower surfaces of the resin laminate, and the thickness of the insulating pattern included in the build-up layer is 15 ⁇ m or less, and a multilayer printed circuit board may be provided.
  • the thickness of the insulating pattern included in each build-up layer included in the resin laminate is reduced to 15 ⁇ m or less, a total of 5 build-up layers are stacked.
  • the thickness of the multi-layer printed circuit board was 75 ⁇ m or less, and the thickness of the multi-layer printed circuit board on which a total of seven build-up layers were stacked was reduced to 105 ⁇ m or less through experiments, and the invention was completed.
  • the resist layer is formed on the upper and lower surfaces of the resin laminate, even when manufacturing an ultra-thin multilayer printed circuit board, product damage such as tearing can be prevented and excellent durability can be realized.
  • a multilayer printed circuit board has been mainly produced by using a prepreg impregnated with woven glass fiber as an insulating layer, but the thickness of the insulating pattern included in each build-up layer included in the resin laminate is 16.
  • the limit of increasing the thickness of the multi-layer printed circuit board with a total of 5 layers of build-up layers to 80 ⁇ m or more and increasing the thickness of the multi-layer printed circuit board with a total of 7 layers of build-up layers to 112 ⁇ m or more have.
  • the multilayer printed circuit board may include a resin laminate including a plurality of build-up layers including an insulating pattern and a metal pattern.
  • the resin laminate has a form in which 2 or more, and 2 to 20 to 20 build-up layers are stacked, and may be referred to as a panel.
  • the build-up layer may include an insulating pattern and a metal pattern.
  • each of the build-up layers may include an insulating pattern and a metal pattern, and metal patterns included in adjacent build-up layers may contact each other to transmit electrical signals.
  • the metal pattern refers to a metal block obtained through partial etching of a metal layer in a method of manufacturing a multilayer printed circuit board, which will be described later.
  • metals included in the metal pattern include metals such as gold, silver, copper, tin, nickel aluminum, and titanium, or alloys containing a mixture of two or more thereof, and the thickness of the metal pattern is 1 ⁇ m to It may be 20 ⁇ m, or 5 ⁇ m to 15 ⁇ m, or 9 ⁇ m to 11 ⁇ m.
  • the thickness of the metal pattern is excessively increased, as an excessive amount of metal is required to form the metal pattern, the cost of raw materials may increase, resulting in reduced efficiency in economical efficiency, thinning and highly integrated semiconductor devices. Can be difficult to apply.
  • the insulating pattern refers to a polymer resin block obtained through partial etching of the insulating layer in the method of manufacturing a multilayer printed circuit board described later. More specifically, when using a resin coated metal thin film as an insulating layer in the method of manufacturing the multilayer printed circuit board, the insulating pattern means a resin coated layer included in the resin coated metal thin film.
  • the thickness of the insulating pattern may be 15 ⁇ m or less, or 10 ⁇ m or less, or 1 ⁇ m to 15 ⁇ m, or 1 ⁇ m to 10 ⁇ m, or 5 ⁇ m to 10 ⁇ m, or 6 ⁇ m to 8 ⁇ m.
  • the thickness of the insulating pattern is excessively increased, as an excessive amount of insulating material is required to form the insulating pattern, the cost of raw materials may increase, resulting in reduced efficiency in economical aspects, thinning, and highly integrated semiconductor device. It can be difficult to apply to.
  • the insulating pattern includes: 1) carbon atoms having 1 to 20 carbon atoms substituted or unsubstituted with sulfone groups, carbonyl groups, halogen groups, nitro groups, cyano groups or halogen groups; An alkyl group, ii) an aryl group having 6 to 20 carbon atoms unsubstituted or substituted with a nitro group, a cyano group or a halogen group, iii) a heteroaryl group having 2 to 30 carbon atoms unsubstituted or substituted with a nitro group, a cyano group or a halogen group, and iv) an amine compound containing at least one functional group selected from the group consisting of an alkylene group having 1 to 20 carbon atoms unsubstituted or substituted with a nitro group, a cyano group or a halogen group; Thermosetting resins;
  • the insulating pattern i) a sulfone group, a carbonyl group, a halogen group, a nitro group, a cyano group or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, ii) a nitro group, a cyano group or a halogen group A substituted or unsubstituted aryl group having 6 to 20 carbon atoms, iii) a substituted or unsubstituted heteroaryl group having 2 to 30 carbon atoms, or iv) a nitro group, a cyano group, or a halogen group, or An amine compound containing at least one functional group selected from the group consisting of an unsubstituted alkylene group having 1 to 20 carbon atoms; Thermosetting resins; Thermoplastic resins; And an inorganic filler, containing 40 parts by weight to 90 parts by weight of the thermoplastic resin with respect to
  • a resin system composed of an epoxy and an amine curing agent and a certain amount of a thermoplastic resin are introduced to optimize the resin type and mixing ratio to secure the flowability of the resin.
  • the curing reaction of the resin can be easily controlled by using a specific amine curing agent. More specifically, the modulus can be lowered by adjusting the functional group of the amine curing agent to control the number of bonds generated during the curing reaction of the resin. Through this, crack resistance is increased and it is possible to have more stability against the same tensile force or impact.
  • the tensile elongation may be 1% or more, or 1% to 10%, or 2% to 5%, or 3% to 4%, or 3.6% to 3.8%.
  • the present invention is excellent in crack resistance when compared at the same thickness compared to a resin-coated copper foil made of a conventional single-molecule series, thereby contributing to improving the performance of a semiconductor device.
  • the rheometer minimum viscosity window is widened, which is advantageous for flowability and pattern fillability.
  • the window window
  • thermosetting resin composition for coating a metal thin film a temperature range satisfying the viscosity condition is very wide from 120 ° C to 180 ° C. . That is, the flow resistance in the lamination process section is high and the pattern filling property is excellent, so that the crack resistance of the metal thin film coated with the thermosetting resin composition can be improved.
  • thermosetting resin composition for coating a metal thin film may include an amine compound, a thermosetting resin, a thermoplastic resin, and an inorganic filler.
  • the content of the component is not limited significantly, but may include the above-mentioned components in consideration of physical properties of the final product prepared from the thermosetting resin composition for coating a metal thin film, and the content ratio between these components is as described below. .
  • thermosetting resin composition i) a sulfone group, a carbonyl group, a halogen group, a nitro group, a cyano group or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, ii) a nitro group, a cyano group or a halogen group Or an unsubstituted aryl group having 6 to 20 carbon atoms, iii) a substituted or unsubstituted heteroaryl group having 2 to 30 carbon atoms, or iv) a nitro group, a cyano group or a halogen group, and iv) a nitro group, a cyano group or a halogen group.
  • It may include an amine compound containing at least one functional group selected from the group consisting of alkylene groups having 1 to 20 carbon atoms.
  • the amine compound can be used as an amine curing agent.
  • the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 20 carbon atoms, the heteroaryl group having 2 to 30 carbon atoms, and the alkylene group having 1 to 20 carbon atoms included in the amine compound are each independently a nitro group, a cyano group, and a halogen. It may be substituted with one or more functional groups selected from the group consisting of groups.
  • a sulfone group a carbonyl group, a halogen group, a nitro group, a cyano group or an alkyl group having 1 to 20 carbon atoms unsubstituted or substituted with a halogen group, ii) substituted or unsubstituted with a nitro group, a cyano group or a halogen group
  • At least one functional group selected from the group consisting of alkylene groups having 1 to 20 carbon atoms is a strong electron withdrawing group (EW), and the amine compound containing the electron withdrawing functional group is compared to an
  • the circuit pattern filling property can be improved.
  • the amine compound is i) an alkyl group having 1 to 20 carbon atoms unsubstituted or substituted with a sulfone group, carbonyl group, halogen group, nitro group, cyano group or halogen group, ii) substituted or unsubstituted with a nitro group, cyano group or halogen group
  • It may be an aromatic amine compound containing at least one functional group selected from the group consisting of alkylene groups of 20 to 1, and containing 2 to 5 amine groups.
  • the amine compound may include one or more compounds selected from the group consisting of the following Chemical Formulas 1 to 3.
  • A is a sulfone group, a carbonyl group, or an alkylene group having 1 to 10 carbon atoms
  • X 1 to X 8 are each independently a nitro group, a cyano group, a hydrogen atom, a halogen group, or an alkyl group having 1 to 6 carbon atoms.
  • R 1, R 1 ′ , R 2 and R 2 ′ are each independently a hydrogen atom, a halogen group, or an alkyl group having 1 to 6 carbon atoms, An aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms, and n may be an integer of 1 to 10 carbon atoms.
  • the alkylene group having 1 to 10 carbon atoms, the alkyl group having 1 to 6 carbon atoms, the aryl group having 6 to 15 carbon atoms, and the heteroaryl group having 2 to 20 carbon atoms are each independently selected from the group consisting of a nitro group, a cyano group, and a halogen group. It may be substituted with the above functional groups.
  • Y 1 to Y 8 are each independently a nitro group, a cyano group, a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms.
  • R 3, R 3 ′ , R 4 and R 4 ′ are each independently a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms.
  • m is an integer of 1 to 10
  • the alkyl group having 1 to 6 carbon atoms, aryl group having 6 to 15 carbon atoms, and heteroaryl group having 2 to 20 carbon atoms are each independently selected from the group consisting of a nitro group, a cyano group and a halogen group It may be substituted with one or more functional groups.
  • Z 1 to Z 4 are each independently a nitro group, a cyano group, a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms.
  • R 5, R 5 ′ , R 6 and R 6 ′ are each independently a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms, the aryl group having 6 to 15 carbon atoms, and the heteroaryl group having 2 to 20 carbon atoms may be independently substituted with one or more functional groups selected from the group consisting of a nitro group, a cyano group, and a halogen group. .
  • the alkyl group is a monovalent functional group derived from alkane, for example, as straight, branched or cyclic, methyl, ethyl, propyl, isobutyl, sec-butyl, tert-butyl, pentyl, Hexyl, and the like.
  • Each of the one or more hydrogen atoms contained in the alkyl group may be substituted with a substituent.
  • the alkylene group is a divalent functional group derived from alkane, for example, as a straight chain, branched or cyclic, methylene group, ethylene group, propylene group, isobutylene group, sec-butylene group, tert-butylene group, pentylene group, hexylene group, and the like.
  • One or more hydrogen atoms contained in the alkylene group may be substituted with substituents similar to those of the alkyl group.
  • the aryl group is a monovalent functional group derived from arene, and may be, for example, monocyclic or polycyclic.
  • the monocyclic aryl group may be a phenyl group, a biphenyl group, a terphenyl group, a stilbenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthryl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • One or more hydrogen atoms among these aryl groups may be substituted with substituents similar to those of the alkyl group.
  • the heteroaryl group is a heteroatom, a heterocyclic group containing O, N, or S, and the number of carbon atoms is not particularly limited, but may be 2 to 30 carbon atoms.
  • the heterocyclic group include thiophene group, furan group, pyrrol group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, triazine group, acridil group, pyridazine group , Quinolinyl group, isoquinoline group, indole group, carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group and dibenzofuran Flags, etc., but are not limited to these.
  • substitution means that other functional groups are bonded instead of the hydrogen atom in the compound, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where the substituent is substitutable.
  • the substituents can be the same or different from each other.
  • Chemical Formula 1 may include a compound represented by Chemical Formula 1-1.
  • the contents of A, X 1 to X 8 , R 1, R 1 ′ , R 2 and R 2 ′, n include the contents described in Formula 1 above.
  • a specific example of the above formula 1-1 is 4,4'-diaminodiphenyl sulfone (A in formula 1-1 is a sulfone group, X 1 to X 8, R 1, R 1 ' , R 2 and R 2 ' are each independently A hydrogen atom, n is 1), bis (4-aminophenyl) methanone (A in Formula 1-1 is a carbonyl group, X 1 , X 2, R 1, R 1 ' , R 2 and R 2 ' are each Independently, it is a hydrogen atom, n is 1), 4,4 '-(perfluoropropane-2,2-diyl) dianiline (A in formula 1-1 is perfluoropropane-2,2-diyl, X 1 to X 8, R 1, R 1 ′ , R 2 and R 2 ′ are each independently a hydrogen atom, n is 1), 4,4 '-(2,2,2-trifluoroethane-1,1-diyl
  • Formula 2 may include a compound represented by Formula 2-1.
  • the contents of Y 1 to Y 8 , R 3, R 3 ′ , R 4 and R 4 ′, m include the contents described in Formula 2 above.
  • a specific example of the above Chemical Formula 2-1 is 2,2 ', 3,3', 5,5 ', 6,6'-octafluorobiphenyl-4,4'-diamine
  • Y 1 to Y 8 are halogen As fluorine group
  • R 3, R 3 ' , R 4 and R 4 ' are each independently a hydrogen atom, m is 1.
  • 2,2'-bis (trifluoromethyl) biphenyl-4,4'-diamine (Y 2 and Y 7 are each a trifluoromethyl group, Y 1 , Y 3 , Y 4 , Y 5 , Y 6 , Y 8 are hydrogen atoms
  • R 3, R 3 ' , R 4 and R 4 ' are each independently As a hydrogen atom, m is 1.) and the like.
  • Chemical Formula 3 may include a compound represented by Chemical Formula 3-1.
  • contents of Z 1 to Z 4 , R 5, R 5 ′ , R 6 and R 6 ′ include the contents described in Chemical Formula 3 above.
  • Chemical Formula 3-1 are 2,3,5,6-tetrafluorobenzene-1,4-diamine (In Formula 3-1, Z 1 to Z 4 are halogen groups , R 5, R 5 ' , R 6 And R 6 ′ are each independently a hydrogen atom.).
  • the content of the amine compound with respect to the total weight of the amine compound and the resin component may be 5% to 50% by weight, or 10% to 20% by weight.
  • the content of the amine compound is excessively reduced to less than 5% by weight, uncuring may occur, and when the content of the amine compound is excessively increased to more than 50 parts by weight, the curing rate is increased to decrease the fluidity of the thermosetting resin composition.
  • the mechanical properties of a metal thin film using a thermosetting resin composition may be deteriorated by an unreacted amine compound.
  • thermosetting resin composition for coating a metal thin film may include a thermosetting resin.
  • the thermosetting resin may include dicyclopentadiene-based epoxy resin and biphenyl-based epoxy resin. Specifically, the content of the biphenyl-based epoxy resin compared to 100 parts by weight of the dicyclopentadiene-based epoxy resin is less than 100 parts by weight, or 1 part to 90 parts by weight, or 5 parts to 80 parts by weight, or 10 parts by weight Parts to 70 parts by weight, or 20 parts to 50 parts by weight.
  • the biphenyl-based epoxy resin may be an epoxy resin represented by Formula 11 below
  • the dicyclopentadiene-based epoxy resin may be an epoxy resin represented by Formula 12 below.
  • n is 0 or an integer from 1 to 50.
  • n is 0 or an integer from 1 to 50.
  • Nippon kayaku company XD-1000 may be mentioned, and a specific example of the biphenyl-based epoxy resin may include Nippon kayaku company NC-3000H.
  • thermosetting resin may further include at least one resin selected from the group consisting of bismaleimide resin, cyanate ester resin, and bismaleimide-triazine resin.
  • the bismaleimide resin may be used without limitation, which is usually used in a thermosetting resin composition for coating a metal thin film, and the type is not limited.
  • the bismaleimide resin is a diphenylmethane type bismaleimide resin represented by the following Chemical Formula 13, a phenylene type bismaleimide resin represented by the following Chemical Formula 14, and a bisphenol A type diphenyl represented by the following Chemical Formula 15 It may be at least one selected from the group consisting of an ether bismaleimide resin, and a bismaleimide resin composed of oligomers of diphenylmethane type bismaleimide and phenylmethane type maleimide resin represented by Chemical Formula 16 below.
  • R 1 and R 2 are each independently H, CH 3 or C 2 H 5 .
  • n is 0 or an integer from 1 to 50.
  • cyanate-based resin may include a cyanate ester resin, it can be used without limitation, usually used in the thermosetting resin composition for metal thin film coating, the type is not limited.
  • the cyanate ester resin is a novolak-type cyanate resin represented by the following formula 17, a dicyclopentadiene-type cyanate resin represented by the following formula 18, a bisphenol-type cyanate resin represented by the following formula 19 And some of these triazine prepolymers, which may be used alone or in combination of two or more.
  • n is 0 or an integer from 1 to 50.
  • n is 0 or an integer from 1 to 50.
  • R is or to be.
  • the cyanate resin of Chemical Formula 19 may be a bisphenol A cyanate resin, a bisphenol E cyanate resin, a bisphenol F type cyanate resin, or a bisphenol M type cyanate resin, depending on the type of R, respectively. .
  • the bismaleimide resin includes bismaleimide-triazine resin, and the like, and the bismaleimide-triazine resin can be used without limitation, which is usually used in a thermosetting resin composition for metal thin film coating.
  • the type is not limited.
  • Preferred examples of the bismaleimide resin include DAIWA KASEI BMI-2300.
  • the resin composition for coating a metal thin film contains the content of the thermosetting resin in an amount of 400 parts by weight or less based on 100 parts by weight of the amine compound, and prevents a change in physical properties of the thermosetting resin due to the filler injected at a high content, and the influence of the filler Without inducing the thermosetting resin to be uniformly curable to a more sufficient level, the reliability of the final product can be improved, mechanical properties such as toughness can also be increased, and the glass transition temperature can be sufficiently lowered.
  • thermosetting resin As the content of the thermosetting resin is contained in an amount of 400 parts by weight or less based on 100 parts by weight of the amine curing agent, there is a limit that the flowability and moldability decrease due to excessive curing of the thermosetting resin when a relatively large amount of the amine curing agent is added. there was. However, even if a specific amine curing agent having a reduced reactivity, including an electron withdrawing group (EWG), as described above, is added in excess, the curing rate of the thermosetting resin is suppressed from rapidly increasing due to a decrease in reactivity of the curing agent. It can exhibit a high flowability even during long-term storage in a metal thin film coating resin composition or a metal thin film obtained therefrom can have excellent fluidity.
  • EWG electron withdrawing group
  • thermosetting resin composition for coating a metal thin film has a content of the thermosetting resin of 400 parts by weight or less, or 150 parts by weight to 400 parts by weight, or 180 parts by weight to 300 parts by weight, or 180 parts by weight of the amine curing agent It may be parts by weight to 290 parts by weight, or 190 parts by weight to 290 parts by weight, or 240 parts by weight to 260 parts by weight.
  • the content of the thermosetting resin mixture with respect to 100 parts by weight of the amine curing agent mixture is also 400 parts by weight or less, or 150 parts by weight to 400 parts by weight, or 180 parts by weight to 300 parts by weight, Or it may be 180 parts by weight to 290 parts by weight, or 190 parts by weight to 290 parts by weight, or 240 parts by weight to 260 parts by weight.
  • thermosetting resin When the content of the thermosetting resin is excessively increased to more than 400 parts by weight based on 100 parts by weight of the amine curing agent, it is difficult to uniformly cure the thermosetting resin to a more sufficient level under the influence of the filler injected at a high content, and the reliability of the final manufactured product This can be reduced, and mechanical properties such as toughness can also be reduced.
  • the content of the epoxy resin is 30% by weight to 80% by weight
  • the content of bismaleimide resin is 1% by weight to 20% by weight based on the total weight of the amine compound and the resin component (specifically, the total of the thermosetting resin and the thermoplastic resin). It may be weight percent.
  • the content of the epoxy resin may be 35% to 70% by weight with respect to the sum of the amine compound and the resin component (specifically, the total of the thermosetting resin and the thermoplastic resin).
  • the content of the bismaleimide resin may be 1% to 10% by weight relative to the sum of the amine compound and the resin component (specifically, the total of the thermosetting resin and the thermoplastic resin).
  • the amount of the epoxy resin used is less than 30% by weight, there is a problem in that high Tg is difficult to implement, and when it exceeds 80% by weight, there is a problem in that flowability deteriorates.
  • the use amount of the bismaleimide resin is less than 1% by weight, there is a problem that desired physical properties are not realized, and if it exceeds 20% by weight, there are many unreacted groups, which may adversely affect properties such as chemical resistance.
  • the resin composition for coating a metal thin film has an equivalent ratio of 1.4 or more, or 1.4 to 2.5, or 1.45 to 2.5, or 1.45 to 2.1, or 1.45 to 1.8, or 1.49 to 1.75, or 1.6 to 1.7.
  • the total active hydrogen equivalent contained in the amine curing agent is the total weight (unit: g) of the amine curing agent divided by the active hydrogen unit equivalent (g / eq) of the amine curing agent Means
  • the weight (unit: g) for each compound is determined by dividing it by the unit equivalent of active hydrogen (g / eq), and the sum thereof is included in the amine curing agent of Equation (1).
  • the total amount of active hydrogen equivalent can be determined.
  • the active hydrogen contained in the amine curing agent means a hydrogen atom contained in the amino group (-NH 2 ) present in the amine curing agent, and the active hydrogen can form a curing structure through reaction with the curable functional group of the thermosetting resin. have.
  • the total curable functional group equivalent contained in the thermosetting resin means a value obtained by dividing the total weight of the thermosetting resin (unit: g) by the equivalent of the curable functional group of the thermosetting resin (g / eq) do.
  • thermosetting resin is a mixture of two or more types
  • a value obtained by dividing the weight (unit: g) for each compound by the unit equivalent weight of the curable functional group (g / eq) is obtained, and the sum thereof is included in the thermosetting resin of Equation (1).
  • the total equivalent curable functional group equivalent can be obtained.
  • the curable functional group contained in the thermosetting resin means a functional group that forms a cured structure through reaction with the active hydrogen of the amine curing agent, and the type of the curable functional group may also vary depending on the type of the thermosetting resin.
  • the curable functional group contained in the epoxy resin may be an epoxy group
  • the curability contained in the bismaleimide resin can be a maleimide group
  • the equivalent ratio of the resin composition for coating a thin metal film calculated by Equation 1 satisfies 1.4 or more.
  • the amine curing agent is contained in a sufficient level so that the curable functional groups contained in all thermosetting resins can cause a curing reaction. It means there is. Therefore, when the equivalent ratio calculated by Equation 1 in the resin composition for coating a metal thin film decreases to less than 1.4, it is difficult for the thermosetting resin to be uniformly cured to a more sufficient level under the influence of the filler injected at a high content, resulting in final production There is a disadvantage that the reliability of the product can be reduced and the mechanical properties can also be reduced.
  • thermosetting resin composition for coating a metal thin film may include a thermoplastic resin.
  • thermoplastic resin After curing, the thermoplastic resin has an effect of increasing toughness, and may lower the thermal expansion coefficient and elastic modulus to alleviate warpage of the metal thin film.
  • specific examples of the thermoplastic resin include (meth) acrylate-based polymers.
  • Examples of the (meth) acrylate-based polymer are not particularly limited, and include, for example, an acrylic ester copolymer containing a repeating unit derived from a (meth) acrylate monomer and a repeating unit derived from (meth) acrylonitrile; Or it may be an acrylic acid ester copolymer containing a repeating unit derived from butadiene.
  • the (meth) acrylate-based polymer is a monomer such as butyl acrylate, ethyl acrylate, acrylonitrile, methyl methacrylate, glycidyl methacrylate, respectively, in the range of 1% by weight to 40% by weight It may be a copolymer that is used in (in comparison to the total weight of the whole monomer) copolymerized.
  • the (meth) acrylate-based polymer may have a weight average molecular weight of 500,000 to 1,000,000. If the weight-average molecular weight of the (meth) acrylate-based polymer is too small, the effect may be technically disadvantageous due to an increase in toughness after curing or a decrease in thermal expansion and elastic modulus. In addition, if the weight average molecular weight of the (meth) acrylate-based polymer is too large, fluidity may be reduced.
  • the weight average molecular weight means the weight average molecular weight of polystyrene conversion measured by GPC method.
  • detectors and analytical columns such as a commonly known analytical device and a differential index detector, can be used, and the temperature is usually applied.
  • Conditions, solvents and flow rates can be applied.
  • the evaluation temperature is 160 ° C. and 1,2,4-trichlorobenzene is used as a solvent.
  • the flow rate was 1 mL / min, the sample was prepared at a concentration of 10 mg / 10 mL, and then supplied in an amount of 200 ⁇ L, and the value of Mw can be obtained by using an assay curve formed using a polystyrene standard.
  • the molecular weight of the polystyrene standard was 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000.
  • thermoplastic resin examples include Negami chemical industrial Co., LTD. PARACRON KG-3015P.
  • the thermoplastic resin may include 40 parts by weight to 90 parts by weight.
  • the thermoplastic resin may include 41 parts by weight to 80 parts by weight, or 42 parts by weight to 70 parts by weight, or 42.7 parts by weight to 67 parts by weight based on 100 parts by weight of the total of the amine compound and the thermosetting resin.
  • the content of the thermoplastic resin is less than 40 parts by weight, there is a problem in that the flowability of the resin is too large, resulting in an increase in thickness variation.
  • thermosetting resin composition for coating a metal thin film may include an inorganic filler.
  • the inorganic filler may be used without limitation that is usually used in a thermosetting resin composition for metal thin film coating, and specific examples include silica, aluminum trihydroxide, magnesium hydroxide, molybdenum oxide, zinc molybdate, and zinc Borate, zinc stannate, alumina, clay, kaolin, talc, calcined kaolin, calcined talc, mica, short glass fibers, glass fine powder and hollow glass may be one or more selected from the group consisting of these.
  • the thermosetting resin composition for coating a metal thin film has an inorganic filler content of 200 parts by weight to 500 parts by weight, or 205 parts by weight to 450 parts by weight, or 210 parts by weight to 400 parts by weight based on a total of 100 parts by weight of the amine compound and the thermosetting resin It may include parts by weight. If the content of the inorganic filler is too small, the thermal expansion coefficient increases, which increases the warpage during the reflow process, and there is a problem that the rigidity of the printed circuit board decreases.
  • the packing density can be increased by using a small size of the nanoparticle size and a large size of the microparticle size to increase the packing density.
  • the inorganic filler may include two or more inorganic fillers having different average particle diameters. Specifically, at least one of the two or more inorganic fillers may be an inorganic filler having an average particle diameter of 0.1 ⁇ m to 100 ⁇ m, and another one may be an inorganic filler having an average particle diameter of 1 nm to 90 nm.
  • the inorganic filler content of the average particle diameter of 1 nm to 90 nm with respect to 100 parts by weight of the inorganic filler having an average particle diameter of 0.1 ⁇ m to 100 ⁇ m may be 1 part by weight to 30 parts by weight.
  • the inorganic filler may use silica surface-treated with a silane coupling agent from the viewpoint of improving moisture resistance and dispersibility.
  • a method of treating silica particles by dry or wet using a silane coupling agent as a surface treatment agent may be used.
  • silica may be surface-treated by a wet method using 0.01 to 1 part by weight of a silane coupling agent based on 100 parts by weight of silica particles.
  • silane coupling agent 3-aminopropyl triethoxysilane, N-phenyl-3-aminopropyl trimethoxysilane and N-2- (aminoethyl) -3-aminopropyl trimethoxysilane.
  • Aminosilane coupling agents epoxy silane coupling agents such as 3-glycidoxypropyl trimethoxysilane, vinyl silane coupling agents such as 3-methacryloxypropyl trimethoxysilane, N-2- (N-vinylbenzylaminoethyl ) -3-aminopropyltrimethoxysilane hydrochloride, and cationic silane coupling agents such as phenyl silane coupling agents, and silane coupling agents may be used alone, or at least two silane coupling agents may be combined as necessary. Can be used.
  • the silane compound may include an aromatic amino silane or (meth) acrylic silane, and as the inorganic filler having an average particle diameter of 0.1 ⁇ m to 100 ⁇ m, silica treated with an aromatic amino silane may be used.
  • silica treated with an aromatic amino silane may be used as the inorganic filler having an average particle diameter of 1 nm to 90 nm.
  • (meth) acrylic silane-treated silica may be used.
  • Specific examples of the aromatic amino silane-treated silica include SC2050MTO (Admantechs), and specific examples of the (meth) acrylsilane-treated silica include AC4130Y (Nissan chemical).
  • the (meth) acrylic was used to mean both acrylic or methacrylic.
  • thermosetting resin composition for coating a metal thin film may be used as a solution by adding a solvent if necessary.
  • the solvent is not particularly limited as long as it exhibits good solubility with respect to the resin component, and alcohols, ethers, ketones, amides, aromatic hydrocarbons, esters, nitriles, etc. can be used.
  • a mixed solvent used in combination of two or more kinds can also be used.
  • thermosetting resin composition for coating a thin metal film may further include various polymer compounds such as other thermosetting resins, thermoplastic resins, and oligomers and elastomers, and other flame retardant compounds or additives, as long as the properties of the resin composition are not impaired. have. These are not particularly limited as long as they are selected from those commonly used.
  • additives include ultraviolet absorbers, antioxidants, photopolymerization initiators, fluorescent brighteners, photosensitizers, pigments, dyes, thickeners, lubricants, antifoaming agents, dispersants, There are leveling agents, varnishes, etc., and it is also possible to mix and use them to meet the purpose.
  • thermosetting resins examples include epoxy resins, and the epoxy resins are not limited in their types, but bisphenol A type epoxy resins, phenol novolac epoxy resins, phenyl aralkyl epoxy resins, and tetraphenyl ethane epoxy resins. , Naphthalene-based epoxy resins, or mixtures thereof.
  • the epoxy resin is a bisphenol-type epoxy resin represented by the following formula (5), a novolac-type epoxy resin represented by the following formula (6), a phenyl aralkyl epoxy resin represented by the following formula (7), tetraphenyl represented by the following formula (8)
  • Ethane type epoxy resin one or more selected from the group consisting of naphthalene type epoxy resins represented by the following formulas 9 and 10 may be used.
  • n is 0 or an integer from 1 to 50.
  • the epoxy resin of Formula 5 may be a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol M type epoxy resin, or a bisphenol S type epoxy resin, depending on the type of R.
  • R is H or CH 3 ,
  • n is 0 or an integer from 1 to 50.
  • the novolac-type epoxy resin of Chemical Formula 3 may be a phenol novolac-type epoxy resin or a cresol novolac-type epoxy resin, depending on the type of R, respectively.
  • thermosetting resin composition for coating a metal thin film may include the amine compound described above, and may further include an additional curing agent other than the amine compound.
  • a resin coating metal thin film can be produced by a simple method through curing and drying.
  • thermosetting resin composition for coating a metal thin film having such a configuration may satisfy a complex viscosity condition of 2000 Pa ⁇ s or less in a range of 120 ° C. to 180 ° C. for a rheometer minimum viscosity section.
  • the temperature range satisfying the viscosity condition is very wide from 120 ° C. to 180 ° C. That is, since the flowability in the lamination process section is high, no empty space is generated after lamination of the resin, so that the pattern filling property is excellent.
  • thermosetting resin composition for coating a metal thin film has excellent resin flow properties as described above, it is possible to make a metal thin film and a metal laminated plate using the same or secure flowability in a build-up process to easily fill a fine pattern. Also, the crack resistance of the thin film can be improved.
  • the thickness of the cured product used as the insulating pattern may be 15 ⁇ m or less, or 10 ⁇ m or less, or 1 ⁇ m to 15 ⁇ m, or 1 ⁇ m to 10 ⁇ m, or 5 ⁇ m to 10 ⁇ m, or 6 ⁇ m to 8 ⁇ m.
  • the multilayer printed circuit board may include a resist pattern layer formed on upper and lower surfaces of the resin laminate.
  • the resist pattern layer may include a resist pattern having an opening pattern.
  • the resist pattern refers to a resist block obtained through partial etching of the resist layer in the method of manufacturing a multilayer printed circuit board described later.
  • the resist pattern layer is formed on the upper and lower surfaces of the resin laminate to prevent product damage such as tearing and to realize excellent durability even when manufacturing an ultra-thin multilayer printed circuit board.
  • Examples of the resist included in the resist pattern layer include an alkali-soluble or non-thermosetting photosensitive dry film resist (DFR).
  • the thickness of the resist pattern layer may be 1 ⁇ m to 20 ⁇ m, or 5 ⁇ m to 15 ⁇ m, or 9 ⁇ m to 10 ⁇ m.
  • a first step of laminating a metal layer on both sides of a carrier film and forming a pattern A second step of stacking an insulating layer on the metal layer and forming a pattern; A third step of laminating a metal layer on the insulating layer and forming a pattern; A fourth step of forming a resist layer on the metal layer;
  • the fifth step of peeling the carrier film and the metal layer of the first step, laminating a resist layer on the surface of the peeled metal layer and forming a pattern; including, the insulating layer is a resin coating metal thin film having a thickness of 15 ⁇ m or less Provides a method for manufacturing a multilayer printed circuit board in which the second and third steps are repeated one or more times after the third step.
  • the multilayer printed circuit board of the one embodiment can be obtained by the method of manufacturing the multilayer printed circuit board of the other embodiment.
  • a resin laminate (panel) can be formed.
  • the resin-coated metal thin film includes a metal thin film on the surface of the resin layer together with a resin layer having insulating properties, and thus, the metal layer can be easily stacked without introducing a separate seed layer in the process of forming the metal layer after forming the insulating layer. You can.
  • a resist layer is formed on the top of the resin laminate prior to the removal of the carrier film, and after removing the carrier film, the remaining top of the resin laminate is removed.
  • the durability of the resin laminate can be improved through two coatings of the resist layer, which further forms a resist layer.
  • the first step is a step of laminating a metal layer on both sides of the carrier film and forming a pattern.
  • the carrier film is a base film that serves as a support for lamination of a metal layer and an insulating layer, and a metal layer may be laminated on each side of the carrier film and opposite sides facing the carrier film.
  • metals included in the metal layer include metals such as gold, silver, copper, tin, nickel aluminum, and titanium, or alloys containing two or more mixtures thereof, and the thickness of the metal layer is 1 ⁇ m to 20 ⁇ m. , Or 5 ⁇ m to 15 ⁇ m, or 7 ⁇ m to 9 ⁇ m.
  • the thickness of the metal layer is excessively increased to more than 20 ⁇ m, as an excessive amount of metal is required to form the metal layer, the cost of raw materials may increase, resulting in reduced efficiency in terms of economy, thinning, and highly integrated semiconductor Application to the device can be difficult.
  • the specific example of the carrier film is not particularly limited, and various organic and inorganic materials such as polymer, metal, and rubber may be applied.
  • plastic films such as polyethylene terephthalate (PET), polyester film, polyimide film, polyamideimide film, polypropylene film, and polystyrene film can be used.
  • the thickness of the carrier film may be 10 ⁇ m to 100 ⁇ m.
  • Examples of a method of laminating a metal layer on both sides of the carrier film include forming a metal thin film on both sides of the carrier film; And depositing metal on the metal thin film.
  • metal such as gold, silver, copper, tin, nickel aluminum, titanium, or an alloy containing a mixture of two or more thereof, is deposited on the surface of the carrier film. And a method.
  • Examples of the deposition method include a dry deposition process or a wet deposition process, and specific examples of the dry deposition process include vacuum deposition, ion plating, sputtering, and the like.
  • specific examples of the wet deposition process include electroless plating of various metals, and more specifically electroless copper plating.
  • a roughening treatment process may be further included before or after the deposition.
  • the above-described deposition method may be applied in the same way.
  • An example of a method of forming a pattern on the metal layer is not particularly limited, for example, forming a patterned photosensitive resin layer on the metal layer; And removing the metal layer exposed by the patterned photosensitive resin layer.
  • the photosensitive resin layer may be laminated on the metal layer in a state in which a pattern is formed, or a pattern may be formed after being laminated, more preferably on the metal layer. After being stacked on, a pattern may be formed.
  • the photosensitive resin layer include an alkali-soluble or non-thermosetting photosensitive dry film resist (DFR).
  • the method of forming the photosensitive resin layer on the metal layer is not particularly limited, for example, a method of laminating a photosensitive resin in the form of a film such as a photosensitive dry film resist on a carrier film, or spraying or dipping the photosensitive resin composition. A method of coating on a carrier film and pressing it can be used.
  • the step of forming a patterned photosensitive resin layer on the metal layer may include exposing and alkali developing the photosensitive resin layer formed on the metal layer.
  • the photosensitive resin layer may be used as a protective layer or patterning mask for the metal layer.
  • the thickness of the photosensitive resin layer formed on the metal layer may be 3 ⁇ m to 60 ⁇ m, or 5 ⁇ m to 30 ⁇ m.
  • the thickness of the photosensitive resin layer is excessively increased to more than 60 ⁇ m, resolution may decrease.
  • An example of a method of exposing the photosensitive resin layer is not particularly limited.
  • a photomask formed of a predetermined pattern is contacted with the photosensitive resin layer and irradiated with ultraviolet rays, or a predetermined pattern included in the mask is projected. It can be selectively exposed through a method such as irradiating ultraviolet rays after imaging through a lens, or directly using a laser diode as a light source, and then irradiating ultraviolet rays.
  • examples of the ultraviolet irradiation conditions include irradiation with a light amount of 5 mJ / cm 2 to 600 mJ / cm 2.
  • an example of a method of developing the photosensitive resin layer may include a method of treating an alkali developer.
  • the alkali developer are not particularly limited.
  • an aqueous alkali solution such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, tetramethylammonium hydroxide, and amines can be used.
  • Preferably, 30 ° C 1% sodium carbonate developer may be used.
  • the specific amount of the alkali developer is not particularly limited.
  • the photosensitive resin pattern is used as a resist for forming a pattern in the metal layer. Therefore, the metal layer exposed by the photosensitive resin layer pattern means a portion of the metal layer that is not in contact with the photosensitive resin layer on the surface.
  • the step of removing the metal layer exposed by the photosensitive resin layer pattern may include a step in which the etching solution passes through the photosensitive resin layer on which the pattern is formed and contacts the metal layer.
  • the etchant may be selected according to the type of metal layer, and it is preferable to use a material that does not affect the photosensitive resin layer.
  • the second step is a step of laminating an insulating layer on the metal layer and forming a pattern.
  • the metal layer in the second step refers to a metal layer on which a pattern is formed after the first step.
  • the insulating layer formed on the metal layer may include a resin-coated metal thin film having a thickness of 15 ⁇ m or less.
  • the thickness of the resin-coated metal thin film may be 15 ⁇ m or less, or 10 ⁇ m or less, or 1 ⁇ m to 15 ⁇ m, or 1 ⁇ m to 10 ⁇ m, or 5 ⁇ m to 10 ⁇ m, or 8 ⁇ m to 10 ⁇ m.
  • the thickness of the resin-coated metal thin film is excessively increased, as an excessive amount of insulating material is required to form the insulating layer, the cost of raw materials may increase, resulting in reduced efficiency in economical efficiency, thinning and high integration. Applications to semiconductor devices can be difficult.
  • the resin-coated metal thin film includes a metal foil, a resin cured product formed on at least one surface of the metal foil, and an inorganic filler dispersed between the resin cured products, wherein the cured resin product is i) sulfone group, carbonyl group, halogen group , An alkyl group having 1 to 20 carbon atoms unsubstituted or substituted with a nitro group, a cyano group or a halogen group, ii) a nitro group, an aryl group having 6 to 20 carbon atoms unsubstituted or substituted with a cyano group or a halogen group, iii) a nitro group, a cyano group Heteroaryl group having 2 to 30 carbon atoms unsubstituted or substituted with no or halogen group, and iv) at least one functional group selected from the group consisting of a alkylene group having 1 to 20 carbon atoms unsubstituted or substitute
  • the resin-coated metal thin film includes a metal foil and a cured resin formed on at least one surface of the metal foil, and the cured resin is i) substituted with a sulfone group, a carbonyl group, a halogen group, a nitro group, a cyano group, or a halogen group.
  • an unsubstituted alkyl group having 1 to 20 carbon atoms ii) an aryl group having 6 to 20 carbon atoms substituted or unsubstituted with a nitro group, a cyano group or a halogen group, iii) a carbon number substituted or unsubstituted with a nitro group, a cyano group or a halogen group 2 to 30 heteroaryl groups, and iv) an amine compound containing at least one functional group selected from the group consisting of an alkylene group having 1 to 20 carbon atoms unsubstituted or substituted with a nitro group, a cyano group, or a halogen group; Thermosetting resins; Thermoplastic resins; And an inorganic filler, containing 40 parts by weight to 90 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the total of the amine compound and the thermosetting resin, and complexing up to 2000 Pa ⁇ s in the
  • the metal foil is copper foil; Aluminum foil; A composite foil of a three-layer structure comprising nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead or lead-tin alloy as an intermediate layer, and including copper layers of different thicknesses on both sides; Or it includes a composite foil of a two-layer structure in which aluminum and copper foil are combined.
  • the metal foil used in the present invention is a copper foil or an aluminum foil is used, it can be used having a thickness of about 2 ⁇ m to 200 ⁇ m, the thickness is preferably about 2 ⁇ m to 35 ⁇ m.
  • copper foil is used as the metal foil.
  • copper layers having a thickness of 0.5 ⁇ m to 15 ⁇ m on both sides thereof and 10 It is also possible to use a three-layer structured composite foil provided with a copper layer of ⁇ m to 300 ⁇ m or a two-layer structure composite foil obtained by combining aluminum and copper foil.
  • the cured resin may have a thickness of 15 ⁇ m or less, or 10 ⁇ m or less, or 1 ⁇ m to 15 ⁇ m, or 1 ⁇ m to 10 ⁇ m, or 5 ⁇ m to 10 ⁇ m, or 6 ⁇ m to 8 ⁇ m. Even if the cured product has a thin thickness on the metal foil, it is possible to exhibit excellent thermal and mechanical properties with respect to the metal foil. When the thickness of the cured product increases or decreases by a specific value, physical properties measured in the resin-coated metal thin film may also change by a certain value.
  • the contents of the cured resin include all the contents described above in one embodiment.
  • thermosetting resin composition for metal thin film coating on a metal thin film
  • thermosetting resin composition for metal thin film coating are mixed to prepare a coating varnish, and after coating it on a metal foil, curing and drying the resin coating metal thin film by a simple method. can do.
  • the curing reaction of the resin is adjusted to lengthen the section at which the minimum viscosity is maintained in the lamination process temperature section.
  • the curing conditions may be performed for 1 hour to 4 hours at a temperature of 180 ° C to 250 ° C.
  • the method of coating the metal thin film coating thermosetting resin composition on the metal foil is not particularly limited, and a coating method well known in the art may be used.
  • a method of coating a metal foil with a thermosetting resin composition for coating a thin film in a coater device and coating it with a predetermined thickness may be used.
  • the coater device may use a comma coater, blade coater, lip coater, rod coater, squeeze coater, reverse coater, transfer roll coater, gravure coater or spray coater.
  • a carrier film may be used for evaluation of flowability, and the carrier film may include plastic films such as polyethylene terephthalate (PET), polyester film, polyimide film, polyamideimide film, polypropylene film, and polystyrene film. Can be used.
  • PET polyethylene terephthalate
  • polyester film polyimide film
  • polyamideimide film polyamideimide film
  • polypropylene film polystyrene film.
  • the varnish used for the coating may be in a state in which a solvent is added to the thermosetting resin composition.
  • the solvent for the resin varnish is not particularly limited as long as it can be mixed with the resin component and has good solubility. Specific examples of these include ketones such as acetone, methyl ethyl ketone, methylisobutyl ketone and cyclohexanone, aromatic hydrocarbons such as benzene, toluene and xylene, and amides such as dimethylformamide and dimethylacetamide, methylcello And alcohol alcohols such as sorb and butyl cellosolve.
  • ketones such as acetone, methyl ethyl ketone, methylisobutyl ketone and cyclohexanone
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • amides such as dimethylformamide and dimethylacetamide
  • methylcello And alcohol alcohols such as sorb and but
  • an example of a method of forming a pattern on the insulating layer is not particularly limited.
  • a CO 2 or YAG laser drill may be used as a processing method using a laser.
  • the third step is a step of laminating a metal layer on the insulating layer and forming a pattern.
  • the insulating layer means an insulating layer having a pattern formed after the second step.
  • the specific method of forming a metal layer and forming a pattern on the insulating layer is the same as in the first step.
  • the second and third steps may be repeated one or more times. That is, after the third step is performed, the second step may be performed again, and then one repeating process of the third step may be performed. As the second and third steps are repeated a plurality of times, a multi-layer build-up film may be laminated in the resin laminate.
  • the fourth step is a step of forming a resist layer on the metal layer.
  • a resist layer is formed on the top of the resin laminate in the fourth step prior to the removal of the carrier film to improve the durability of the resin laminate. Can be improved.
  • the resist layer examples include alkali-soluble or non-thermosetting photosensitive dry film resist (DFR).
  • DFR photosensitive dry film resist
  • the resist layer may have a thickness of 1 ⁇ m to 20 ⁇ m, or 5 ⁇ m to 15 ⁇ m, or 9 ⁇ m to 10 ⁇ m.
  • the fifth step is a step of peeling the carrier film and the metal layer of the first step, laminating a resist layer on the surface of the peeled metal layer and forming a pattern.
  • the bonding force between the carrier film and the metal layer in the first step is smaller than the bonding force between the metal layer and the insulating layer in the second step, and even after the metal layer is adhered to one surface of the carrier film, physical separation between them is possible, thereby making the carrier film. It can be easily removed. This seems to be because the adhesion to the metal of the insulating layer was improved by the characteristic of the components of the insulating material used in the insulating layer.
  • a resist layer may be stacked on the surface of the peeled metal layer, and examples of the resist layer include an alkali-soluble or non-thermosetting photosensitive dry film resist (DFR).
  • the resist layer may have a thickness of 1 ⁇ m to 20 ⁇ m, or 5 ⁇ m to 15 ⁇ m, or 9 ⁇ m to 10 ⁇ m.
  • a pattern can be formed on the resist layer.
  • the resist layer forming the pattern may be all of the resist layers included in the upper and lower surfaces of the resin laminate or at least one of them.
  • Examples of a method of forming a pattern on the resist layer include exposure and alkali development.
  • An example of a method of exposing the resist layer is not particularly limited.
  • a photo mask formed of a predetermined pattern is contacted with the resist layer and irradiated with ultraviolet rays, or a predetermined objective included in the mask is projected. It can be selectively exposed through imaging such as irradiating ultraviolet rays after imaging, or directly using a laser diode as a light source and then irradiating ultraviolet rays.
  • examples of the ultraviolet irradiation conditions include irradiation with a light amount of 5 mJ / cm 2 to 600 mJ / cm 2.
  • an example of a method for developing the resist layer is a method for treating an alkali developer.
  • the alkali developer are not particularly limited.
  • an aqueous alkali solution such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, tetramethylammonium hydroxide, and amines can be used.
  • Preferably, 30 ° C 1% sodium carbonate developer may be used.
  • the specific amount of the alkali developer is not particularly limited.
  • a semiconductor device including the multilayer printed circuit board of the one embodiment.
  • the contents of the multilayer printed circuit board included in the semiconductor device include all of the contents described above in one embodiment.
  • the multi-layer printed circuit board can be introduced into a semiconductor device by a known method, and since the multi-layer printed circuit board has ultra-thin and strong durability, it can be applied to a thinned and highly integrated semiconductor device.
  • a multilayer printed circuit board having a thin thickness and excellent durability, a method for manufacturing the same, and a semiconductor device using the same can be provided.
  • Example 1 schematically shows a manufacturing process of a multilayer printed circuit board of Example 1.
  • each component was added to methyl ethyl ketone in accordance with 40% of solid content and mixed, followed by stirring at room temperature at a rate of 400 rpm for 1 day and viscosity adjustment and defoaming using a rotary evaporator.
  • a resin composition for coating a metal thin film was prepared.
  • each component was added to methyl ethyl ketone in accordance with 40% of solid content and mixed, followed by stirring at room temperature at a rate of 400 rpm for 1 day and viscosity adjustment and defoaming using a rotary evaporator.
  • a resin composition for coating a metal thin film was prepared.
  • thermosetting resin composition (1) Preparation of thermosetting resin composition
  • each component was added to methyl ethyl ketone in accordance with 40% of solid content and mixed, followed by stirring at room temperature at a rate of 400 rpm for 1 day and viscosity adjustment and defoaming using a rotary evaporator.
  • a resin composition for coating a metal thin film was prepared.
  • the impregnated varnish was impregnated into a woven glass fiber (12 ⁇ m thick, manufactured by Asahi Glass), followed by hot air drying at a temperature of 180 ° C. for 2 to 5 minutes to prepare a 16 ⁇ m thick prepreg.
  • thermosetting resin composition (1) Preparation of thermosetting resin composition
  • each component was added to methyl ethyl ketone in accordance with 40% of solid content and mixed, followed by stirring at room temperature at a rate of 400 rpm for 1 day and viscosity adjustment and defoaming using a rotary evaporator.
  • a resin composition for coating a metal thin film was prepared.
  • the impregnated varnish was impregnated into a woven glass fiber (12 ⁇ m thick, manufactured by Asahi Glass), followed by hot air drying at a temperature of 180 ° C. for 2 to 5 minutes to prepare an 18 ⁇ m thick prepreg.
  • BMI-2300 bismaleimide resin (DAIWA KASEI, maleimide equivalent 179 g / eq)
  • each component was added to methyl ethyl ketone according to 40% of solid content and mixed, followed by stirring at room temperature at a rate of 400 rpm for 1 day and viscosity adjustment and defoaming using a rotary evaporator.
  • a resin composition for coating a metal thin film was prepared.
  • the metal thin film coating resin composition After coating the metal thin film coating resin composition with a comma coater on a copper foil (2 ⁇ m thick, manufactured by Mitsui) (coating thickness: 6 ⁇ m), it was cured for 100 minutes under conditions of 220 ° C. and 35 kg / cm 2. Subsequently, the resin coated copper foils of Production Example 5 and Production Example 6 were prepared by cutting them to a size of 17 cm x 15 cm.
  • the temperature range of the complex viscosity of 2000 Pa ⁇ s or less was 120 to 180 ° C., whereas the resin layer of Production Example 5 had no temperature section of the complex viscosity of 2000 Pa ⁇ s or less.
  • a multilayer printed circuit board was manufactured according to the following process sequence.
  • a 15 ⁇ m thick photosensitive dry film resist KL1015 (manufactured by Kolon Industries) was laminated at 110 ° C. on the copper foil layer (M1), and a circular negative photomask having a diameter of 30 ⁇ m was contacted on the photosensitive dry film resist. , Irradiated with ultraviolet light (25 mJ / cm 2 light amount), and then developed the photosensitive dry film resist through a 30 ° C. 1% sodium carbonate developer. At this time, the exposed copper foil layer M1 was removed through etching to form a pattern. Thereafter, the remaining photosensitive dry film resist was removed using a 3% sodium hydroxide resist stripper at a temperature of 50 ° C.
  • the insulating layer (D12) was thermally cured at a temperature of 200 ° C. for 1 hour, and then etched using a CO 2 laser drill to form a via hole.
  • a copper (Cu) metal is deposited to a thickness of 0.5 ⁇ m through a sputtering method to form a seed layer, and 7 through electroplating.
  • a copper foil layer (M2) having a thickness of ⁇ m was formed.
  • a 15 ⁇ m thick photosensitive dry film resist KL1015 (manufactured by Kolon Industries) was laminated at 110 ° C. on the copper foil layer M2, and a circular negative photomask having a diameter of 30 ⁇ m was contacted on the photosensitive dry film resist, , Irradiated with ultraviolet light (25 mJ / cm 2 light amount), and then developed the photosensitive dry film resist through a 30 ° C. 1% sodium carbonate developer. At this time, the exposed copper foil layer M2 was removed through etching to form a pattern. Thereafter, the remaining photosensitive dry film resist was removed using a 3% sodium hydroxide resist stripper at a temperature of 50 ° C.
  • the insulating layer D23 was thermally cured at a temperature of 200 ° C. for 1 hour, and then etched using a CO 2 laser drill to form a via hole.
  • a titanium (Ti) metal was deposited to a thickness of 50 nm and a copper (Cu) metal to a thickness of 0.5 ⁇ m through a sputtering method to form a seed layer.
  • a copper foil layer (M3) having a thickness of 9 ⁇ m was formed through electroplating.
  • a 15 ⁇ m thick photosensitive dry film resist KL1015 (manufactured by Kolon Industries) was laminated at 110 ° C. on the copper foil layer (M3), and a circular negative photomask having a diameter of 30 ⁇ m was brought into contact with the photosensitive dry film resist. , Irradiated with ultraviolet light (25 mJ / cm 2 light amount), and then developed the photosensitive dry film resist through a 30 ° C. 1% sodium carbonate developer. At this time, the exposed copper foil layer (M3) was removed through etching to form a pattern. Thereafter, the remaining photosensitive dry film resist was removed using a 3% sodium hydroxide resist stripper at a temperature of 50 ° C. to prepare a first panel (PN-1).
  • SR BTM ' a photosensitive dry film resist KL1015 (manufactured by Kolon Industries) having a thickness of 9 ⁇ m was laminated at 110 ° C.
  • a circular negative photomask having a diameter of 30 ⁇ m is brought into contact with the photosensitive dry film resist (SR TOP), irradiated with ultraviolet rays (light amount of 25 mJ / cm 2), and then through 30% 1% sodium carbonate developer
  • the photosensitive dry film resist (SR TOP) was developed to form a constant pattern.
  • a multilayer printed circuit board was manufactured according to the following process sequence.
  • a copper (Cu) metal is deposited to a thickness of 0.5 ⁇ m through a sputtering method to form a seed layer, A copper foil layer (M1) having a thickness of 9 ⁇ m was formed through electroplating.
  • a 15 ⁇ m thick photosensitive dry film resist KL1015 (manufactured by Kolon Industries) was laminated at 110 ° C. on the copper foil layer (M1), and a circular negative photomask having a diameter of 30 ⁇ m was contacted on the photosensitive dry film resist. , Irradiated with ultraviolet light (25 mJ / cm 2 light amount), and then developed the photosensitive dry film resist through a 30 ° C. 1% sodium carbonate developer. At this time, the exposed copper foil layer M1 was removed through etching to form a pattern. Thereafter, the remaining photosensitive dry film resist was removed using a 3% sodium hydroxide resist stripper at a temperature of 50 ° C.
  • the insulating layer (D12) was thermally cured at a temperature of 200 ° C. for 1 hour, and then etched using a CO 2 laser drill to form a via hole.
  • a copper (Cu) metal is deposited to a thickness of 0.5 ⁇ m through a sputtering method to form a seed layer, and through electroplating, 8 A copper foil layer (M2) having a thickness of ⁇ m was formed.
  • a 15 ⁇ m thick photosensitive dry film resist KL1015 (manufactured by Kolon Industries) was laminated at 110 ° C. on the copper foil layer M2, and a circular negative photomask having a diameter of 30 ⁇ m was contacted on the photosensitive dry film resist, , Irradiated with ultraviolet light (25 mJ / cm 2 light amount), and then developed the photosensitive dry film resist through a 30 ° C. 1% sodium carbonate developer. At this time, the exposed copper foil layer M2 was removed through etching to form a pattern. Thereafter, the remaining photosensitive dry film resist was removed using a 3% sodium hydroxide resist stripper at a temperature of 50 ° C.
  • the insulating layer (D23) was thermally cured at a temperature of 200 ° C. for 1 hour, and then etched using a CO 2 laser drill to form a via hole.
  • a copper (Cu) metal is deposited to a thickness of 0.5 ⁇ m through a sputtering method to form a seed layer, and through electroplating, 8 A copper foil layer (M3) having a thickness of ⁇ m was formed.
  • a 15 ⁇ m thick photosensitive dry film resist KL1015 (manufactured by Kolon Industries) was laminated at 110 ° C. on the copper foil layer (M3), and a circular negative photomask having a diameter of 30 ⁇ m was brought into contact with the photosensitive dry film resist. , Irradiated with ultraviolet light (25 mJ / cm 2 light amount), and then developed the photosensitive dry film resist through a 30 ° C. 1% sodium carbonate developer. At this time, the exposed copper foil layer M2 was removed through etching to form a pattern. Thereafter, the remaining photosensitive dry film resist was removed using a 3% sodium hydroxide resist stripper at a temperature of 50 ° C.
  • the insulating layer D34 was thermally cured at a temperature of 200 ° C. for 1 hour, and then etched using a CO 2 laser drill to form a via hole.
  • a titanium (Ti) metal was deposited to a thickness of 50 nm and a copper (Cu) metal to a thickness of 0.5 ⁇ m through a sputtering method to form a seed layer.
  • a copper foil layer (M4) having a thickness of 9 ⁇ m was formed through electroplating.
  • a 15 ⁇ m thick photosensitive dry film resist KL1015 (manufactured by Kolon Industries) was laminated at 110 ° C. on the copper foil layer (M4), and a circular negative photomask having a diameter of 30 ⁇ m was contacted on the photosensitive dry film resist. , Irradiated with ultraviolet light (25 mJ / cm 2 light amount), and then developed the photosensitive dry film resist through a 30 ° C. 1% sodium carbonate developer. At this time, the exposed copper foil layer (M4) was removed through etching to form a pattern. Thereafter, the remaining photosensitive dry film resist was removed using a 3% sodium hydroxide resist stripper at a temperature of 50 ° C. to prepare a first panel (PN-1).
  • Example 1 instead of the 8 ⁇ m thick resin coated copper foil obtained in Production Example 1 as the insulating layer (D12), a 16 ⁇ m thick prepreg (PPG) obtained in Production Example 3 was used and insulated. As the layer (D23), instead of the 10 ⁇ m thick resin coated copper foil obtained in Production Example 2, the 18 ⁇ m thick prepreg (PPG) obtained in Production Example 4 was used, and the thickness of each layer of the multi-layer laminate was as shown in Table 3 below. A multilayer printed circuit board was manufactured in the same manner as in Example 1, except that it was changed.
  • Example 2 instead of the 8 ⁇ m thick resin coated copper foil obtained in Production Example 1 as the insulating layer (D12) and the insulating layer (D23), the 18 ⁇ m thick prepreg (PPG) obtained in Production Example 4 ), And instead of the 10 ⁇ m thick resin coated copper foil obtained in Production Example 2 as the insulating layer (D34), the 18 ⁇ m thick prepreg (PPG) obtained in Production Example 4 was used, and the thickness of each layer of the multi-layer laminate A multi-layer printed circuit board was manufactured in the same manner as in Example 2, except that Table 3 was changed.
  • the multilayer printed circuit board of Example 1 containing 3 layers of copper foil layers had a thickness of 61 ⁇ m and copper foil.
  • the multi-layer printed circuit board of Example 2 which contained four layers, had a very thin thickness of 80 ⁇ m, there was no problem of breakage or tearing.
  • the multilayer printed circuit board thickness of Comparative Example 1 containing 3 layers of copper foil layers was 81 ⁇ m, and the comparison of four layers of copper foil layers was included.
  • the thickness of the multi-layer printed circuit board of Example 2 was 120 ⁇ m, so there was a limitation in that it was measured very thickly compared to the example.

Abstract

The present invention relates to a multi-layer printed circuit board, which uses a resin coated-metal thin film and thus includes a thin insulation layer, a method for manufacturing same, and a semiconductor device using same.

Description

다층인쇄회로기판, 이의 제조방법 및 이를 이용한 반도체 장치Multilayer printed circuit board, manufacturing method thereof and semiconductor device using the same
관련 출원(들)과의 상호 인용Cross-citation with relevant application (s)
본 출원은 2018년 9월 20일자 한국 특허 출원 제10-2018-0113248호 및 2019년 9월 19일자 한국 특허 출원 제10-2019-0115354호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0113248 on September 20, 2018 and Korean Patent Application No. 10-2019-0115354 on September 19, 2019. All content disclosed in the literature is incorporated as part of this specification.
본 발명은 얇은 두께를 가지면서도 우수한 내구성을 갖는 다층인쇄회로기판, 이의 제조방법 및 이를 이용한 반도체 장치에 관한 것이다.The present invention relates to a multilayer printed circuit board having a thin thickness and excellent durability, a method for manufacturing the same, and a semiconductor device using the same.
최근의 전자기기는 갈수록 소형화, 경량화, 고기능화되고 있다. 이를 위해, 소형 기기를 중심으로 빌드-업 PCB(Build-up Printed Circuit Board)의 응용분야가 빠르게 확대됨에 따라 다층인쇄 회로기판의 사용이 급속히 늘어 가고 있다.Recently, electronic devices are becoming smaller, lighter, and more functional. To this end, the use of multi-layer printed circuit boards is rapidly increasing as the application fields of build-up printed circuit boards (PCBs) are rapidly expanding, focusing on small devices.
다층 인쇄회로기판은 평면적 배선부터 입체적인 배선이 가능하며, 특히 산업용 전자 분야에서는 IC(integrated circuit), LSI(large scale integration) 등 기능소자의 집적도 향상과 함께 전자 기기의 소형화, 경량화, 고기능화, 구조적인 전기적 기능통합, 조립시간 단축 및 원가절감 등에 유리한 제품이다.Multi-layered printed circuit boards are capable of three-dimensional wiring from planar wiring. Especially in industrial electronics, the integration of functional devices such as integrated circuit (IC) and large scale integration (LSI) is improved, and the size, weight, high functionality, and structure of electronic devices are improved. It is a product that is advantageous for electrical function integration, assembly time reduction, and cost reduction.
최근에는 캐리어 필름과 같은 탈착성 코어 필름을 활용한 코어리스 다층 인쇄회로기판을 통해, 보다 얇은 두께를 구현하는 기술이 활발히 연구되고 있다. 특히, 이러한 코어리스 다층 인쇄회로기판 내부에서 사용되는 절연재료로는 주로 프리프레그가 널리 사용되고 있다.Recently, a technology for realizing a thinner thickness through a coreless multilayer printed circuit board using a removable core film such as a carrier film has been actively researched. In particular, prepreg is mainly used as an insulating material used in the coreless multilayer printed circuit board.
그러나, 절연재료로서 프리프레그를 적용할 경우, 프리프레그 내부의 섬유보강재로인해 다층 인쇄회로기판의 두께를 충분히 박형화하기 어려운 한계가 있었다. 또한, 단순히 절연재료로서 두께를 얇게 설정하고자 섬유보강재를 제외한 고분자 수지필름만을 적용할 경우, 취성이 증가하여 캐리어 필름의 탈착공정시 다층 인쇄회로기판이 파손되는 한계가 있었다.However, when the prepreg is applied as an insulating material, there is a limitation that it is difficult to sufficiently reduce the thickness of the multilayer printed circuit board due to the fiber reinforcement inside the prepreg. In addition, when simply applying a polymer resin film excluding the fiber reinforcement to simply set the thickness as an insulating material, there was a limit to damage the multi-layer printed circuit board during the desorption process of the carrier film by increasing brittleness.
이에, 프리프레그 보다 얇은 두께를 가지면서도 우수한 내구성을 갖는 다층인쇄회로기판의 개발이 요구되고 있다.Accordingly, there is a need to develop a multilayer printed circuit board having a thinner thickness than the prepreg and having excellent durability.
본 발명은 얇은 두께를 가지면서도 우수한 내구성을 갖는 다층인쇄회로기판에 관한 것이다.The present invention relates to a multilayer printed circuit board having a thin thickness and excellent durability.
또한, 본 발명은 상기의 다층인쇄회로기판의 제조 방법을 제공하기 위한 것이다.In addition, the present invention is to provide a method for manufacturing the above multilayer printed circuit board.
또한, 본 발명은 상기의 다층인쇄회로기판을 포함하는 반도체 장치를 제공하기 위한 것이다.In addition, the present invention is to provide a semiconductor device including the multi-layer printed circuit board.
상기 과제를 해결하기 위하여, 본 명세서에서는, 절연패턴 및 금속패턴을 포함한 복수의 빌드업층을 포함한 수지 적층체; 및 상기 수지 적층체의 상면 및 하면에 형성된 레지스트 패턴층;을 포함하고, 상기 빌드업층에 포함된 절연패턴의 두께가 15 ㎛ 이하인, 다층인쇄회로기판을 제공한다.In order to solve the above problems, in the present specification, a resin laminate including a plurality of build-up layers including an insulating pattern and a metal pattern; And a resist pattern layer formed on upper and lower surfaces of the resin laminate, wherein the thickness of the insulating pattern included in the build-up layer is 15 μm or less.
본 명세서에서는 또한, 캐리어 필름의 양면에 금속층을 적층하고 패턴을 형성하는 제1단계; 상기 금속층 상에 절연층을 적층하고 패턴을 형성하는 제2단계; 상기 절연층 상에 금속층을 적층하고 패턴을 형성하는 제3단계; 상기 금속층 상에 레지스트층을 형성하는 제4단계; 상기 제1단계의 캐리어필름과 금속층을 박리하고, 박리된 금속층의 표면에 레지스트층을 적층하고 패턴을 형성하는 제5단계;를 포함하고, 상기 절연층은 두께가 15 ㎛ 이하인 수지코팅금속박막을 포함하며, 상기 제3단계 이후, 제2단계 및 제3단계를 1회이상 반복하여 진행하는 다층인쇄회로기판 제조방법이 제공된다.In the present specification, a first step of laminating a metal layer on both sides of a carrier film and forming a pattern; A second step of stacking an insulating layer on the metal layer and forming a pattern; A third step of laminating a metal layer on the insulating layer and forming a pattern; A fourth step of forming a resist layer on the metal layer; The fifth step of peeling the carrier film and the metal layer of the first step, laminating a resist layer on the surface of the peeled metal layer and forming a pattern; including, the insulating layer is a resin coating metal thin film having a thickness of 15 ㎛ or less Provided is a multi-layer printed circuit board manufacturing method in which the second and third steps are repeated one or more times after the third step.
본 명세서에서는 또한, 다층인쇄회로기판을 포함하는, 반도체 장치가 제공된다.Also provided herein is a semiconductor device, comprising a multi-layer printed circuit board.
이하 발명의 구체적인 구현예에 따른 다층인쇄회로기판, 이의 제조방법 및 이를 이용한 반도체 장치에 대하여 보다 상세하게 설명하기로 한다.Hereinafter, a multilayer printed circuit board according to a specific embodiment of the present invention, a method of manufacturing the same, and a semiconductor device using the same will be described in more detail.
Ⅰ. 다층인쇄회로기판Ⅰ. Multilayer Printed Circuit Board
발명의 일 구현예에 따르면, 절연패턴 및 금속패턴을 포함한 복수의 빌드업층을 포함한 수지 적층체; 및 상기 수지 적층체의 상면 및 하면에 형성된 레지스트패턴층;을 포함하고, 상기 빌드업층에 포함된 절연패턴의 두께가 15 ㎛ 이하인, 다층인쇄회로기판이 제공될 수 있다.According to an embodiment of the present invention, a resin laminate including a plurality of build-up layers including an insulating pattern and a metal pattern; And a resist pattern layer formed on upper and lower surfaces of the resin laminate, and the thickness of the insulating pattern included in the build-up layer is 15 μm or less, and a multilayer printed circuit board may be provided.
본 발명자들은 상기 일 구현예의 다층인쇄회로기판과 같이, 수지 적층체에 포함된 각각의 빌드업층에 포함된 절연패턴의 두께를 15 ㎛ 이하로 박형화 시킴에 따라, 총 5층의 빌드업층이 적층된 다층인쇄회로기판의 두께를 75 ㎛ 이하, 총 7층의 빌드업층이 적층된 다층인쇄회로기판의 두께를 105 ㎛ 이하로 초박형화시킬 수 있음을 실험을 통해 확인하고 발명을 완성하였다.According to the present inventors, as the multilayer printed circuit board of the above embodiment, the thickness of the insulating pattern included in each build-up layer included in the resin laminate is reduced to 15 µm or less, a total of 5 build-up layers are stacked. The thickness of the multi-layer printed circuit board was 75 µm or less, and the thickness of the multi-layer printed circuit board on which a total of seven build-up layers were stacked was reduced to 105 µm or less through experiments, and the invention was completed.
특히, 상기 일 구현예의 다층인쇄회로기판에서는, 수지 적층체의 상하면에 레지스트층을 형성함에 따라, 초박형화된 다층인쇄회로기판 제조시에도 찢어짐과 같은 제품 파손을 방지하여 우수한 내구성을 구현할 수 있었다.In particular, in the multilayer printed circuit board of the above embodiment, as the resist layer is formed on the upper and lower surfaces of the resin laminate, even when manufacturing an ultra-thin multilayer printed circuit board, product damage such as tearing can be prevented and excellent durability can be realized.
기존에는 주로, 수지 조성물을 직조된 유리 섬유에 함침한 프리프레그를 절연층으로 이용하여 다층인쇄회로기판을 제조하여 왔지만, 수지 적층체에 포함된 각각의 빌드업층에 포함된 절연패턴의 두께가 16 ㎛ 이상으로 증가하면서, 총 5층의 빌드업층이 적층된 다층인쇄회로기판의 두께를 80 ㎛ 이상, 총 7층의 빌드업층이 적층된 다층인쇄회로기판의 두께를 112 ㎛ 이상으로 증가되는 한계가 있다.Conventionally, a multilayer printed circuit board has been mainly produced by using a prepreg impregnated with woven glass fiber as an insulating layer, but the thickness of the insulating pattern included in each build-up layer included in the resin laminate is 16. With the increase of more than µm, the limit of increasing the thickness of the multi-layer printed circuit board with a total of 5 layers of build-up layers to 80 µm or more and increasing the thickness of the multi-layer printed circuit board with a total of 7 layers of build-up layers to 112 µm or more have.
(1) 수지 적층체(1) Resin laminate
상기 다층인쇄회로기판은 절연패턴 및 금속패턴을 포함한 복수의 빌드업층을 포함한 수지 적층체를 포함할 수 있다. 상기 수지 적층체는 2 이상, 내지 2 내지 20 개의 빌드업층이 적층된 형태를 이루며, 판넬(Panel)로 지칭될 수 있다. 상기 빌드업층에는 절연패턴 및 금속패턴이 포함될 수 있다.The multilayer printed circuit board may include a resin laminate including a plurality of build-up layers including an insulating pattern and a metal pattern. The resin laminate has a form in which 2 or more, and 2 to 20 to 20 build-up layers are stacked, and may be referred to as a panel. The build-up layer may include an insulating pattern and a metal pattern.
구체적으로, 상기 빌드업층 각각에는 절연패턴 및 금속패턴이 포함될 수 있고, 서로 인접한 빌드업층에 포함된 금속패턴은 서로 접촉되어 전기적 신호를 전달할 수 있다.Specifically, each of the build-up layers may include an insulating pattern and a metal pattern, and metal patterns included in adjacent build-up layers may contact each other to transmit electrical signals.
상기 금속패턴은 후술하는 다층인쇄회로기판 제조방법상 금속층의 부분적인 에칭을 통해 얻어지는 금속 블록을 의미한다. 상기 금속패턴에 포함된 금속의 예로는 금, 은, 동, 주석, 니켈 알루미늄, 타이타늄 등의 금속 또는 이들의 2종 이상의 혼합물을 포함한 합금 등을 들 수 있고, 상기 금속패턴의 두께는 1 ㎛ 내지 20 ㎛, 또는 5 ㎛ 내지 15 ㎛, 또는 9 ㎛ 내지 11 ㎛일 수 있다. 상기 금속패턴의 두께가 지나치게 증가할 경우, 상기 금속패턴을 형성하기 위해 과량의 금속이 필요해짐에 따라, 원료 비용이 증가하여 경제적인 면에서 효율성이 감소할 수 있고, 박형화 및 고집적화된 반도체 장치에의 적용이 어려울 수 있다.The metal pattern refers to a metal block obtained through partial etching of a metal layer in a method of manufacturing a multilayer printed circuit board, which will be described later. Examples of metals included in the metal pattern include metals such as gold, silver, copper, tin, nickel aluminum, and titanium, or alloys containing a mixture of two or more thereof, and the thickness of the metal pattern is 1 μm to It may be 20 μm, or 5 μm to 15 μm, or 9 μm to 11 μm. When the thickness of the metal pattern is excessively increased, as an excessive amount of metal is required to form the metal pattern, the cost of raw materials may increase, resulting in reduced efficiency in economical efficiency, thinning and highly integrated semiconductor devices. Can be difficult to apply.
상기 절연패턴은 후술하는 다층인쇄회로기판 제조방법상 절연층의 부분적인 식각을 통해 얻어지는 고분자 수지 블록을 의미한다. 보다 구체적으로, 상기 다층인쇄회로기판 제조방법상 절연층으로 수지코팅금속박막을 사용하는 경우, 상기 절연패턴은 수지코팅금속박막에 포함된 수지코팅층을 의미한다.The insulating pattern refers to a polymer resin block obtained through partial etching of the insulating layer in the method of manufacturing a multilayer printed circuit board described later. More specifically, when using a resin coated metal thin film as an insulating layer in the method of manufacturing the multilayer printed circuit board, the insulating pattern means a resin coated layer included in the resin coated metal thin film.
상기 절연패턴의 두께는 15 ㎛ 이하, 또는 10 ㎛ 이하, 또는 1 ㎛ 내지 15 ㎛, 또는 1 ㎛ 내지 10 ㎛, 또는 5 ㎛ 내지 10 ㎛, 또는 6 ㎛ 내지 8 ㎛일 수 있다. 상기 절연패턴의 두께가 지나치게 증가할 경우, 상기 절연패턴을 형성하기 위해 과량의 절연재료가 필요해짐에 따라, 원료 비용이 증가하여 경제적인 면에서 효율성이 감소할 수 있고, 박형화 및 고집적화된 반도체 장치에의 적용이 어려울 수 있다.The thickness of the insulating pattern may be 15 μm or less, or 10 μm or less, or 1 μm to 15 μm, or 1 μm to 10 μm, or 5 μm to 10 μm, or 6 μm to 8 μm. When the thickness of the insulating pattern is excessively increased, as an excessive amount of insulating material is required to form the insulating pattern, the cost of raw materials may increase, resulting in reduced efficiency in economical aspects, thinning, and highly integrated semiconductor device. It can be difficult to apply to.
상기 절연패턴에 구체적인 조성이 크게 한정되는 것은 아니나, 바람직하게는 상기 절연패턴은,i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1이상 포함한 아민 화합물; 열경화성 수지; 및 열가소성 수지;간의 경화물과, 상기 경화물 사이에 분산된 무기 충진재를 포함할 수 있다.Although the specific composition is not particularly limited to the insulating pattern, preferably, the insulating pattern includes: 1) carbon atoms having 1 to 20 carbon atoms substituted or unsubstituted with sulfone groups, carbonyl groups, halogen groups, nitro groups, cyano groups or halogen groups; An alkyl group, ii) an aryl group having 6 to 20 carbon atoms unsubstituted or substituted with a nitro group, a cyano group or a halogen group, iii) a heteroaryl group having 2 to 30 carbon atoms unsubstituted or substituted with a nitro group, a cyano group or a halogen group, and iv) an amine compound containing at least one functional group selected from the group consisting of an alkylene group having 1 to 20 carbon atoms unsubstituted or substituted with a nitro group, a cyano group or a halogen group; Thermosetting resins; And a thermoplastic resin; may include a cured product of the liver, and an inorganic filler dispersed between the cured product.
보다 구체적으로, 상기 절연패턴은, i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1이상 포함한 아민 화합물; 열경화성 수지; 열가소성 수지; 및 무기 충진재;를 포함하고, 상기 아민 화합물 및 열경화성 수지의 총합 100 중량부에 대해, 상기 열가소성 수지를 40 중량부 내지 90 중량부로 포함하며, 120 ℃ 내지 180 ℃의 범위에서 2000Pa·s 이하의 복소점도를 갖는 금속 박막 코팅용 열경화성 수지 조성물의 경화물을 포함할 수 있다.More specifically, the insulating pattern, i) a sulfone group, a carbonyl group, a halogen group, a nitro group, a cyano group or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, ii) a nitro group, a cyano group or a halogen group A substituted or unsubstituted aryl group having 6 to 20 carbon atoms, iii) a substituted or unsubstituted heteroaryl group having 2 to 30 carbon atoms, or iv) a nitro group, a cyano group, or a halogen group, or An amine compound containing at least one functional group selected from the group consisting of an unsubstituted alkylene group having 1 to 20 carbon atoms; Thermosetting resins; Thermoplastic resins; And an inorganic filler, containing 40 parts by weight to 90 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the total of the amine compound and the thermosetting resin, and complexing up to 2000 Pa · s in the range of 120 ° C. to 180 ° C. It may include a cured product of a thermosetting resin composition for coating a thin metal film having a viscosity.
상기 절연패턴에서는 에폭시와 아민 경화제 등으로 구성된 수지 시스템 및 일정 함량의 열가소성 수지를 도입하여 수지의 흐름성이 확보하고자 수지 종류 및 혼합 비율을 최적화하는 특징이 있다.In the insulating pattern, a resin system composed of an epoxy and an amine curing agent and a certain amount of a thermoplastic resin are introduced to optimize the resin type and mixing ratio to secure the flowability of the resin.
보다 구체적으로, 특정 아민 경화제를 사용해서, 수지의 경화 반응을 용이하게 제어할 수 있다. 좀 더 구체적으로는 아민 경화제의 작용기를 조절하여 수지의 경화 반응 시 생기는 결합의 수를 조절함으로써 모듈러스를 낮출 수 있다. 이를 통해 내크랙성은 증가하게 되며 같은 인장력 또는 충격에 대해 보다 안정성을 가질 수 있게 된다.More specifically, the curing reaction of the resin can be easily controlled by using a specific amine curing agent. More specifically, the modulus can be lowered by adjusting the functional group of the amine curing agent to control the number of bonds generated during the curing reaction of the resin. Through this, crack resistance is increased and it is possible to have more stability against the same tensile force or impact.
상기 i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1이상 포함한 아민 화합물; 열경화성 수지; 및 열가소성 수지;간의 경화물 또는 상기 금속 박막 코팅용 열경화성 수지 조성물의 코팅 경화물의 유리전이온도 (Tg)는 220 ℃내지 240 ℃를 가지게 된다.The i) a sulfone group, a carbonyl group, a halogen group, a nitro group, a cyano group or an alkyl group having 1 to 20 carbon atoms unsubstituted or substituted with a halogen group, ii) a nitro group, a cyano group or a 6 to 6 carbon atoms unsubstituted or substituted with a halogen group Aryl group of 20, iii) heteroaryl group having 2 to 30 carbon atoms unsubstituted or substituted with nitro group, cyano group or halogen group, and iv) 1 to 20 carbon atoms unsubstituted or substituted with nitro group, cyano group or halogen group An amine compound containing at least one functional group selected from the group consisting of alkylene groups; Thermosetting resins; And a thermoplastic resin; the glass transition temperature (Tg) of the cured product of the liver or the cured product of the thermosetting resin composition for coating the metal thin film is 220 ° C to 240 ° C.
또한, 상기 i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1이상 포함한 아민 화합물; 열경화성 수지; 및 열가소성 수지;간의 경화물 또는 상기 금속 박막 코팅용 열경화성 수지 조성물의 코팅 경화물은 IPC-TM-650 (2.4.18.3)에 따라, Universal Testing Machine(Instron 3365)장비를 이용하여 측정한 MD방향의 인장신율이 1% 이상, 또는 1 % 내지 10%, 또는 2 % 내지 5%, 또는 3% 내지 4%, 또는 3.6 % 내지 3.8%일 수 있다.In addition, i) an alkyl group having 1 to 20 carbon atoms substituted or unsubstituted with a sulfone group, a carbonyl group, a halogen group, a nitro group, a cyano group or a halogen group, ii) a carbon number substituted or unsubstituted with a nitro group, a cyano group or a halogen group. Aryl groups of 6 to 20, iii) heteroaryl groups having 2 to 30 carbon atoms unsubstituted or substituted with a nitro group, cyano group or halogen group, and iv) 1 to 1 carbon atoms unsubstituted or substituted with a nitro group, cyano group or halogen group An amine compound containing at least one functional group selected from the group consisting of alkylene groups of 20; Thermosetting resins; And a thermoplastic resin; the cured product of the liver or the coating cured product of the thermosetting resin composition for coating the metal thin film according to IPC-TM-650 (2.4.18.3), in the MD direction measured using a Universal Testing Machine (Instron 3365) equipment. The tensile elongation may be 1% or more, or 1% to 10%, or 2% to 5%, or 3% to 4%, or 3.6% to 3.8%.
즉, 단분자 계열로 이루어진 수지 조성물과 함께 인장테스트를 한 결과, 동일 두께에서 비교 시 파단 시까지 신율(elongation)이 더 우수한 것을 관찰할 수 있고, 이를 통해 내크랙성이 우수함을 확인할 수 있다.That is, as a result of a tensile test with a resin composition composed of a single molecule series, it can be observed that elongation is better until breakage when compared at the same thickness, and through this, it can be confirmed that the crack resistance is excellent.
그러므로, 본 발명은 기존 단분자 계열로 이루어진 수지 코팅 동박에 비해 동일 두께에서 비교 시 내크랙성이 우수하여, 반도체 소자의 성능 향상에 기여할 수 있다.Therefore, the present invention is excellent in crack resistance when compared at the same thickness compared to a resin-coated copper foil made of a conventional single-molecule series, thereby contributing to improving the performance of a semiconductor device.
또한, 레오미터 최저 점도 구간(window)이 넓어져서 흐름성 및 패턴 채움성에 유리하게 된다. 바람직하게, 금속박 적층 공정의 온도 구간 내에서, 최소 점도를 유지하는 구간 (window)을 넓힘으로써, 수지의 흐름성을 향상시키는 효과가 있다.In addition, the rheometer minimum viscosity window is widened, which is advantageous for flowability and pattern fillability. Preferably, within the temperature section of the metal foil lamination process, by increasing the window (window) to maintain the minimum viscosity, there is an effect of improving the flowability of the resin.
예를 들어, 패턴을 채우는데 적합한 복소 점도를 2000 Pa.s 이하라고 가정할 때, 상기 금속 박막 코팅용 열경화성 수지 조성물의 경우, 상기 점도 조건을 만족하는 온도 구간이 120 ℃ 내지 180 ℃로 매우 넓다. 즉, 적층 공정 구간 내 흐름성이 높고 패턴 채움성이 우수해져서, 열경화성 수지 조성물이 코팅된 금속 박막의 내크랙성을 향상시킬 수 있다.For example, assuming that the complex viscosity suitable for filling the pattern is 2000 Pa.s or less, in the case of the thermosetting resin composition for coating a metal thin film, a temperature range satisfying the viscosity condition is very wide from 120 ° C to 180 ° C. . That is, the flow resistance in the lamination process section is high and the pattern filling property is excellent, so that the crack resistance of the metal thin film coated with the thermosetting resin composition can be improved.
상기 금속 박막 코팅용 열경화성 수지 조성물은 아민 화합물, 열경화성 수지, 열가소성 수지, 및 무기 충진재를 포함할 수 있다.The thermosetting resin composition for coating a metal thin film may include an amine compound, a thermosetting resin, a thermoplastic resin, and an inorganic filler.
상기 성분의 함량이 크게 한정되는 것은 아니나, 상기 금속 박막 코팅용 열경화성 수지 조성물로부터 제조되는 최종 제품의 물성 등을 고려하여 상술한 성분들을 포함할 수 있으며, 이들 성분간의 함량 비율 등은 후술하는 바와 같다.The content of the component is not limited significantly, but may include the above-mentioned components in consideration of physical properties of the final product prepared from the thermosetting resin composition for coating a metal thin film, and the content ratio between these components is as described below. .
구체적으로, 상기 열경화성 수지 조성물은 i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1이상 포함한 아민 화합물을 포함할 수 있다. 상기 아민 화합물은 아민 경화제로 사용될 수 있다.Specifically, the thermosetting resin composition i) a sulfone group, a carbonyl group, a halogen group, a nitro group, a cyano group or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, ii) a nitro group, a cyano group or a halogen group Or an unsubstituted aryl group having 6 to 20 carbon atoms, iii) a substituted or unsubstituted heteroaryl group having 2 to 30 carbon atoms, or iv) a nitro group, a cyano group or a halogen group, and iv) a nitro group, a cyano group or a halogen group. It may include an amine compound containing at least one functional group selected from the group consisting of alkylene groups having 1 to 20 carbon atoms. The amine compound can be used as an amine curing agent.
이때, 상기 아민 화합물에 포함된 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 2 내지 30의 헤테로아릴기 및 탄소수 1 내지 20의 알킬렌기는 각각 독립적으로 니트로기, 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환될 수 있다.In this case, the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 20 carbon atoms, the heteroaryl group having 2 to 30 carbon atoms, and the alkylene group having 1 to 20 carbon atoms included in the amine compound are each independently a nitro group, a cyano group, and a halogen. It may be substituted with one or more functional groups selected from the group consisting of groups.
상기 아민 화합물에 포함된 i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기는 강력한 전자 끌개 작용기(Electron Withdrawing Group, EWG)로서, 상기 전자 끌개 작용기를 포함한 아민 화합물은 전자 끌개 작용기를 포함지 않은 아민 화합물에 비해 반응성이 감소하여 이로부터 수지 조성물의 경화 반응을 용이하게 제어할 수 있다.I) a sulfone group, a carbonyl group, a halogen group, a nitro group, a cyano group or an alkyl group having 1 to 20 carbon atoms unsubstituted or substituted with a halogen group, ii) substituted or unsubstituted with a nitro group, a cyano group or a halogen group A substituted aryl group having 6 to 20 carbon atoms, iii) a heteroaryl group having 2 to 30 carbon atoms substituted or unsubstituted with a nitro group, a cyano group or a halogen group, and iv) a substituted or unsubstituted nitro group, a cyano group or a halogen group At least one functional group selected from the group consisting of alkylene groups having 1 to 20 carbon atoms is a strong electron withdrawing group (EW), and the amine compound containing the electron withdrawing functional group is compared to an amine compound without an electron withdrawing functional group. Since the reactivity is reduced, it is possible to easily control the curing reaction of the resin composition.
따라서, 상기 아민 화합물에 의해 조성물의 경화반응 정도를 조절하여 유동성을 향상시켜 회로 패턴 채움성이 향상될 수 있다.Therefore, by adjusting the degree of curing reaction of the composition by the amine compound to improve the fluidity, the circuit pattern filling property can be improved.
상기 아민 화합물은 i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1 이상 포함하고, 2 내지 5개의 아민기를 포함하는 방향족 아민 화합물일 수 있다.The amine compound is i) an alkyl group having 1 to 20 carbon atoms unsubstituted or substituted with a sulfone group, carbonyl group, halogen group, nitro group, cyano group or halogen group, ii) substituted or unsubstituted with a nitro group, cyano group or halogen group An aryl group having 6 to 20 carbon atoms, iii) a heteroaryl group having 2 to 30 carbon atoms substituted or unsubstituted with a nitro group, a cyano group or a halogen group, and iv) a carbon number substituted or unsubstituted with a nitro group, a cyano group or a halogen group It may be an aromatic amine compound containing at least one functional group selected from the group consisting of alkylene groups of 20 to 1, and containing 2 to 5 amine groups.
보다 구체적으로, 상기 아민 화합물은 하기 화학식 1 내지 3으로 이루어진 군에서 선택된 1종 이상의 화합물을 포함할 수 있다.More specifically, the amine compound may include one or more compounds selected from the group consisting of the following Chemical Formulas 1 to 3.
[화학식1][Formula 1]
Figure PCTKR2019012204-appb-I000001
Figure PCTKR2019012204-appb-I000001
상기 화학식1에서, A는 술폰기, 카보닐기, 또는 탄소수 1 내지 10의 알킬렌기이며, X1 내지 X8는 각각 독립적으로 니트로기, 시아노기, 수소원자, 할로겐기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이고, R1, R1', R2 및 R2'는 각각 독립적으로 수소원자, 할로겐기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이며, n은 1 내지 10의 정수일 수 있다.In Chemical Formula 1, A is a sulfone group, a carbonyl group, or an alkylene group having 1 to 10 carbon atoms, and X 1 to X 8 are each independently a nitro group, a cyano group, a hydrogen atom, a halogen group, or an alkyl group having 1 to 6 carbon atoms. , An aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms, and R 1, R 1, R 2 and R 2 ′ are each independently a hydrogen atom, a halogen group, or an alkyl group having 1 to 6 carbon atoms, An aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms, and n may be an integer of 1 to 10 carbon atoms.
상기 탄소수 1 내지 10의 알킬렌기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 및 탄소수 2 내지 20의 헤테로아릴기는 각각 독립적으로 니트로기, 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환될 수 있다. The alkylene group having 1 to 10 carbon atoms, the alkyl group having 1 to 6 carbon atoms, the aryl group having 6 to 15 carbon atoms, and the heteroaryl group having 2 to 20 carbon atoms are each independently selected from the group consisting of a nitro group, a cyano group, and a halogen group. It may be substituted with the above functional groups.
[화학식2][Formula 2]
Figure PCTKR2019012204-appb-I000002
Figure PCTKR2019012204-appb-I000002
상기 화학식2에서, Y1 내지 Y8는 각각 독립적으로 니트로기, 시아노기, 수소원자, 할로겐기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이고, R3, R3', R4 및 R4'는 각각 독립적으로 수소원자, 할로겐기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이며, m은 1 내지 10의 정수이고, 상기 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 및 탄소수 2 내지 20의 헤테로아릴기는 각각 독립적으로 니트로기, 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환될 수 있다.In Chemical Formula 2, Y 1 to Y 8 are each independently a nitro group, a cyano group, a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms. R 3, R 3, R 4 and R 4 ′ are each independently a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms. , m is an integer of 1 to 10, the alkyl group having 1 to 6 carbon atoms, aryl group having 6 to 15 carbon atoms, and heteroaryl group having 2 to 20 carbon atoms are each independently selected from the group consisting of a nitro group, a cyano group and a halogen group It may be substituted with one or more functional groups.
[화학식3][Formula 3]
Figure PCTKR2019012204-appb-I000003
Figure PCTKR2019012204-appb-I000003
상기 화학식3에서, Z1 내지 Z4는 각각 독립적으로 니트로기, 시아노기, 수소원자, 할로겐기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이고, R5, R5', R6 및 R6'는 각각 독립적으로 수소원자, 할로겐기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이며, 상기 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 및 탄소수 2 내지 20의 헤테로아릴기는 각각 독립적으로 니트로기, 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환될 수 있다.In Formula 3, Z 1 to Z 4 are each independently a nitro group, a cyano group, a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms. R 5, R 5, R 6 and R 6 ′ are each independently a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms. , The alkyl group having 1 to 6 carbon atoms, the aryl group having 6 to 15 carbon atoms, and the heteroaryl group having 2 to 20 carbon atoms may be independently substituted with one or more functional groups selected from the group consisting of a nitro group, a cyano group, and a halogen group. .
상기 알킬기는, 알케인(alkane)으로부터 유래한 1가의 작용기로, 예를 들어, 직쇄형, 분지형 또는 고리형으로서, 메틸, 에틸, 프로필, 이소부틸, sec-부틸, tert-부틸, 펜틸, 헥실 등이 될 수 있다. 상기 알킬기에 포함되어 있는 하나 이상의 수소 원자는 각각 치환기로 치환가능하다.The alkyl group is a monovalent functional group derived from alkane, for example, as straight, branched or cyclic, methyl, ethyl, propyl, isobutyl, sec-butyl, tert-butyl, pentyl, Hexyl, and the like. Each of the one or more hydrogen atoms contained in the alkyl group may be substituted with a substituent.
상기 알킬렌기는, 알케인(alkane)으로부터 유래한 2가의 작용기로, 예를 들어, 직쇄형, 분지형 또는 고리형으로서, 메틸렌기, 에틸렌기, 프로필렌기, 이소부틸렌기, sec-부틸렌기, tert-부틸렌기, 펜틸렌기, 헥실렌기 등이 될 수 있다. 상기 알킬렌기에 포함되어 있는 하나 이상의 수소 원자는 각각 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.The alkylene group is a divalent functional group derived from alkane, for example, as a straight chain, branched or cyclic, methylene group, ethylene group, propylene group, isobutylene group, sec-butylene group, tert-butylene group, pentylene group, hexylene group, and the like. One or more hydrogen atoms contained in the alkylene group may be substituted with substituents similar to those of the alkyl group.
상기 아릴기는 아렌(arene)으로부터 유래한 1가의 작용기로, 예를 들어, 단환식 또는 다환식일 수 있다. 구체적으로, 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기, 스틸베닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 다환식 아릴기로는 나프틸기, 안트릴기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 이러한 아릴기 중 하나 이상의 수소 원자는 각각 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.The aryl group is a monovalent functional group derived from arene, and may be, for example, monocyclic or polycyclic. Specifically, the monocyclic aryl group may be a phenyl group, a biphenyl group, a terphenyl group, a stilbenyl group, but is not limited thereto. The polycyclic aryl group may be a naphthyl group, anthryl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto. One or more hydrogen atoms among these aryl groups may be substituted with substituents similar to those of the alkyl group.
상기 헤테로아릴기는 이종원자로 O, N 또는 S를 포함하는 헤테로 고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 2 내지 30일 수 있다. 헤테로 고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 트리아진기, 아크리딜기, 피리다진기, 퀴놀리닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기 및 디벤조퓨란기 등이 있으나, 이들에만 한정되는 것은 아니다. 이러한 헤테로아릴기 중 하나 이상의 수소 원자는 각각 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.The heteroaryl group is a heteroatom, a heterocyclic group containing O, N, or S, and the number of carbon atoms is not particularly limited, but may be 2 to 30 carbon atoms. Examples of the heterocyclic group include thiophene group, furan group, pyrrol group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, triazine group, acridil group, pyridazine group , Quinolinyl group, isoquinoline group, indole group, carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group and dibenzofuran Flags, etc., but are not limited to these. One or more hydrogen atoms of the heteroaryl group may be substituted with substituents similar to those of the alkyl group.
상기 "치환"이라는 용어는 화합물 내의 수소 원자 대신 다른 작용기가 결합하는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정되지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.The term "substitution" means that other functional groups are bonded instead of the hydrogen atom in the compound, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where the substituent is substitutable. The substituents can be the same or different from each other.
보다 구체적으로, 상기 화학식1은 하기 화학식1-1로 표시되는 화합물을 포함할 수 있다.More specifically, Chemical Formula 1 may include a compound represented by Chemical Formula 1-1.
[화학식1-1] [Formula 1-1]
Figure PCTKR2019012204-appb-I000004
Figure PCTKR2019012204-appb-I000004
상기 화학식1-1에서, A, X1 내지 X8, R1, R1', R2 및 R2', n에 대한 내용은 상기 화학식1에서 상술한 내용을 포함한다.In Formula 1-1, the contents of A, X 1 to X 8 , R 1, R 1, R 2 and R 2 ′, n include the contents described in Formula 1 above.
상기 화학식1-1의 구체적인 예로는 4,4'-diaminodiphenyl sulfone(화학식1-1에서 A는 술폰기, X1 내지 X8, R1, R1', R2 및 R2'는 각각 독립적으로 수소원자이며, n은 1 이다.), bis(4-aminophenyl)methanone(화학식1-1에서 A는 카보닐기, X1, X2, R1, R1', R2 및 R2'는 각각 독립적으로 수소원자이며, n은 1 이다.), 4,4'-(perfluoropropane-2,2-diyl)dianiline(화학식1-1에서 A는 perfluoropropane-2,2-diyl, X1 내지 X8, R1, R1', R2 및 R2'는 각각 독립적으로 수소원자이며, n은 1 이다.), 4,4'-(2,2,2-trifluoroethane-1,1-diyl)dianiline (화학식1-1에서 A는 2,2,2-trifluoroethane-1,1-diyl, X1 내지 X8, R1, R1', R2 및 R2'는 각각 독립적으로 수소원자이며, n은 1 이다.) 등을 들 수 있다.A specific example of the above formula 1-1 is 4,4'-diaminodiphenyl sulfone (A in formula 1-1 is a sulfone group, X 1 to X 8, R 1, R 1 ' , R 2 and R 2 ' are each independently A hydrogen atom, n is 1), bis (4-aminophenyl) methanone (A in Formula 1-1 is a carbonyl group, X 1 , X 2, R 1, R 1 ' , R 2 and R 2 ' are each Independently, it is a hydrogen atom, n is 1), 4,4 '-(perfluoropropane-2,2-diyl) dianiline (A in formula 1-1 is perfluoropropane-2,2-diyl, X 1 to X 8, R 1, R 1, R 2 and R 2 ′ are each independently a hydrogen atom, n is 1), 4,4 '-(2,2,2-trifluoroethane-1,1-diyl) dianiline ( In Formula 1-1, A is 2,2,2-trifluoroethane-1,1-diyl, X 1 to X 8, R 1, R 1, R 2 and R 2 ′ are each independently a hydrogen atom, and n is 1).
또한, 상기 화학식2는 하기 화학식2-1로 표시되는 화합물을 포함할 수 있다.In addition, Formula 2 may include a compound represented by Formula 2-1.
[화학식2-1] [Formula 2-1]
Figure PCTKR2019012204-appb-I000005
Figure PCTKR2019012204-appb-I000005
상기 화학식2-1에서, Y1 내지 Y8, R3, R3', R4 및 R4', m에 대한 내용은 상기 화학식2에서 상술한 내용을 포함한다.In Formula 2-1, the contents of Y 1 to Y 8 , R 3, R 3, R 4 and R 4 ′, m include the contents described in Formula 2 above.
상기 화학식2-1의 구체적인 예로는 2,2',3,3',5,5',6,6'-octafluorobiphenyl-4,4'-diamine (화학식2-1에서 Y1 내지 Y8은 할로겐으로 플루오르기, R3, R3', R4 및 R4'는 각각 독립적으로 수소원자이며, m은 1 이다.), 2,2'-bis(trifluoromethyl)biphenyl-4,4'-diamine (Y2 및 Y7은 각각 트리플루오로메틸기이며, Y1, Y3, Y4, Y5, Y6, Y8은 수소원자, R3, R3', R4 및 R4'는 각각 독립적으로 수소원자이며, m은 1 이다.) 등을 들 수 있다.A specific example of the above Chemical Formula 2-1 is 2,2 ', 3,3', 5,5 ', 6,6'-octafluorobiphenyl-4,4'-diamine (In Formula 2-1, Y 1 to Y 8 are halogen As fluorine group , R 3, R 3 ' , R 4 and R 4 ' are each independently a hydrogen atom, m is 1.), 2,2'-bis (trifluoromethyl) biphenyl-4,4'-diamine ( Y 2 and Y 7 are each a trifluoromethyl group, Y 1 , Y 3 , Y 4 , Y 5 , Y 6 , Y 8 are hydrogen atoms , R 3, R 3 ' , R 4 and R 4 ' are each independently As a hydrogen atom, m is 1.) and the like.
또한, 상기 화학식3는 하기 화학식3-1로 표시되는 화합물을 포함할 수 있다.In addition, Chemical Formula 3 may include a compound represented by Chemical Formula 3-1.
[화학식3-1] [Formula 3-1]
Figure PCTKR2019012204-appb-I000006
Figure PCTKR2019012204-appb-I000006
상기 화학식3-1에서, Z1 내지 Z4, R5, R5', R6 및 R6'에 대한 내용은 상기 화학식3에서 상술한 내용을 포함한다.In Chemical Formula 3-1, contents of Z 1 to Z 4 , R 5, R 5, R 6 and R 6 ′ include the contents described in Chemical Formula 3 above.
상기 화학식3-1의 구체적인 예로는 2,3,5,6-tetrafluorobenzene-1,4-diamine (화학식3-1에서 Z1 내지 Z4는 할로겐으로 플루오르기, R5, R5', R6 및 R6'는 각각 독립적으로 수소원자이다.)등을 들 수 있다.Specific examples of the above Chemical Formula 3-1 are 2,3,5,6-tetrafluorobenzene-1,4-diamine (In Formula 3-1, Z 1 to Z 4 are halogen groups , R 5, R 5 ' , R 6 And R 6 ′ are each independently a hydrogen atom.).
상기 아민 화합물과 수지성분(구체적으로, 열경화성 수지와 열가소성 수지 합계)의 전체 중량에 대하여 아민 화합물의 함량이 5 중량% 내지 50 중량%, 또는 10 중량% 내지 20 중량%일 수 있다. 상기 아민 화합물의 함량이 5 중량% 미만으로 지나치게 감소할 경우, 미경화가 발생할 수 있으며, 상기 아민 화합물의 함량이 50 중량부 초과로 지나치게 증가할 경우, 경화속도가 증가되어 열경화성 수지 조성물의 유동성이 감소될 수 있으며, 또한, 미반응된 아민 화합물에 의해 열경화성 수지 조성물을 이용한 금속 박막의 기계적 물성이 저하될 수 있다.The content of the amine compound with respect to the total weight of the amine compound and the resin component (specifically, the total of the thermosetting resin and the thermoplastic resin) may be 5% to 50% by weight, or 10% to 20% by weight. When the content of the amine compound is excessively reduced to less than 5% by weight, uncuring may occur, and when the content of the amine compound is excessively increased to more than 50 parts by weight, the curing rate is increased to decrease the fluidity of the thermosetting resin composition. In addition, the mechanical properties of a metal thin film using a thermosetting resin composition may be deteriorated by an unreacted amine compound.
한편, 상기 금속 박막 코팅용 열경화성 수지 조성물은 열경화성 수지를 포함할 수 있다.Meanwhile, the thermosetting resin composition for coating a metal thin film may include a thermosetting resin.
상기 열경화성 수지는 디시클로펜타디엔계 에폭시 수지 및 바이페닐계 에폭시 수지를 포함할 수 있다. 구체적으로, 상기 디시클로펜타디엔계 에폭시 수지 100 중량부 대비 상기 바이페닐계 에폭시 수지의 함량이 100 중량부 미만, 또는 1 중량부 내지 90 중량부, 또는 5 중량부 내지 80 중량부, 또는 10 중량부 내지 70 중량부, 또는 20 중량부 내지 50 중량부일 수 있다.The thermosetting resin may include dicyclopentadiene-based epoxy resin and biphenyl-based epoxy resin. Specifically, the content of the biphenyl-based epoxy resin compared to 100 parts by weight of the dicyclopentadiene-based epoxy resin is less than 100 parts by weight, or 1 part to 90 parts by weight, or 5 parts to 80 parts by weight, or 10 parts by weight Parts to 70 parts by weight, or 20 parts to 50 parts by weight.
보다 구체적으로, 상기 바이페닐계 에폭시 수지는 하기 화학식 11로 표시되는 에폭시 수지일 수 있고, 상기 디시클로펜타디엔계 에폭시 수지는 하기 화학식 12로 표시되는 에폭시 수지일 수 있다.More specifically, the biphenyl-based epoxy resin may be an epoxy resin represented by Formula 11 below, and the dicyclopentadiene-based epoxy resin may be an epoxy resin represented by Formula 12 below.
[화학식 11][Formula 11]
Figure PCTKR2019012204-appb-I000007
Figure PCTKR2019012204-appb-I000007
상기 화학식 11에서,In Chemical Formula 11,
n은 0 또는 1 내지 50의 정수이다.n is 0 or an integer from 1 to 50.
[화학식 12] [Formula 12]
Figure PCTKR2019012204-appb-I000008
Figure PCTKR2019012204-appb-I000008
상기 화학식 12에서, n은 0 또는 1 내지 50의 정수이다.In Formula 12, n is 0 or an integer from 1 to 50.
상기 디시클로펜타디엔계 에폭시 수지의 구체적인 예로는, Nippon kayaku사 XD-1000을 들 수 있고, 상기 바이페닐계 에폭시 수지의 구체적인 예로는, Nippon kayaku사 NC-3000H 을 들 수 있다.As a specific example of the dicyclopentadiene-based epoxy resin, Nippon kayaku company XD-1000 may be mentioned, and a specific example of the biphenyl-based epoxy resin may include Nippon kayaku company NC-3000H.
또한, 상기 열경화성 수지는 비스말레이미드 수지, 시아네이트 에스터 수지 및 비스말레이미드-트리아진 수지로 이루어진 군으로부터 선택되는 1종 이상의 수지를 더 포함할 수 있다.In addition, the thermosetting resin may further include at least one resin selected from the group consisting of bismaleimide resin, cyanate ester resin, and bismaleimide-triazine resin.
상기 비스말레이미드 수지는 통상 금속 박막 코팅용 열경화성 수지 조성물에 사용되는 것을 제한 없이 사용 할 수 있으며, 그 종류가 한정되지는 않는다. 바람직한 일례를 들면, 상기 비스말레이미드 수지는 하기 화학식 13으로 표시되는 디페닐메탄형 비스말레이미드 수지, 하기 화학식 14로 표시되는 페닐렌형 비스말레이미드 수지, 하기 화학식 15로 표시되는 비스페놀 A형 디페닐 에테르 비스말레이미드 수지, 및 하기 화학식 16으로 표시되는 디페닐메탄형 비스말레이미드 및 페닐메탄형 말레이미드 수지의 올리고머로 구성된 비스말레이미드 수지로 이루어진 군에서 선택된 1종 이상일 수 있다.The bismaleimide resin may be used without limitation, which is usually used in a thermosetting resin composition for coating a metal thin film, and the type is not limited. For a preferred example, the bismaleimide resin is a diphenylmethane type bismaleimide resin represented by the following Chemical Formula 13, a phenylene type bismaleimide resin represented by the following Chemical Formula 14, and a bisphenol A type diphenyl represented by the following Chemical Formula 15 It may be at least one selected from the group consisting of an ether bismaleimide resin, and a bismaleimide resin composed of oligomers of diphenylmethane type bismaleimide and phenylmethane type maleimide resin represented by Chemical Formula 16 below.
[화학식 13][Formula 13]
Figure PCTKR2019012204-appb-I000009
Figure PCTKR2019012204-appb-I000009
상기 화학식 13에서,In Chemical Formula 13,
R1 및 R2는 각각 독립적으로, H, CH3 또는 C2H5이다.R 1 and R 2 are each independently H, CH 3 or C 2 H 5 .
[화학식 14][Formula 14]
Figure PCTKR2019012204-appb-I000010
Figure PCTKR2019012204-appb-I000010
[화학식 15][Formula 15]
Figure PCTKR2019012204-appb-I000011
Figure PCTKR2019012204-appb-I000011
[화학식 16][Formula 16]
Figure PCTKR2019012204-appb-I000012
Figure PCTKR2019012204-appb-I000012
상기 화학식 16에서,In Chemical Formula 16,
n은 0 또는 1 내지 50의 정수이다.n is 0 or an integer from 1 to 50.
또한, 상기 시아네이트계 수지의 구체적인 예로 시아네이트 에스터 수지를 들 수 있으며, 통상 금속 박막 코팅용 열경화성 수지 조성물에 사용되는 것을 제한 없이 사용 할 수 있으며, 그 종류가 한정되지는 않는다.In addition, a specific example of the cyanate-based resin may include a cyanate ester resin, it can be used without limitation, usually used in the thermosetting resin composition for metal thin film coating, the type is not limited.
바람직한 일례를 들면, 상기 시아네이트 에스터 수지는 하기 화학식 17로 표시되는 노볼락형 시아네이트 수지, 하기 화학식 18로 표시되는 디시클로펜타디엔계형 시아네이트 수지, 하기 화학식 19로 표시되는 비스페놀형 시아네이트 수지 및 이들의 일부 트리아진화된 프리폴리머를 들 수 있고, 이들은 단독 혹은 2종 이상 혼합하여 사용할 수 있다.For a preferred example, the cyanate ester resin is a novolak-type cyanate resin represented by the following formula 17, a dicyclopentadiene-type cyanate resin represented by the following formula 18, a bisphenol-type cyanate resin represented by the following formula 19 And some of these triazine prepolymers, which may be used alone or in combination of two or more.
[화학식 17][Formula 17]
Figure PCTKR2019012204-appb-I000013
Figure PCTKR2019012204-appb-I000013
상기 화학식 17에서,In Chemical Formula 17,
n은 0 또는 1 내지 50의 정수이다.n is 0 or an integer from 1 to 50.
[화학식 18][Formula 18]
Figure PCTKR2019012204-appb-I000014
Figure PCTKR2019012204-appb-I000014
상기 화학식 18에서,In Chemical Formula 18,
n은 0 또는 1 내지 50의 정수이다.n is 0 or an integer from 1 to 50.
[화학식 19][Formula 19]
Figure PCTKR2019012204-appb-I000015
Figure PCTKR2019012204-appb-I000015
상기 화학식 19에서, In Chemical Formula 19,
R은
Figure PCTKR2019012204-appb-I000016
또는
Figure PCTKR2019012204-appb-I000017
이다.
R is
Figure PCTKR2019012204-appb-I000016
or
Figure PCTKR2019012204-appb-I000017
to be.
보다 구체적으로, 상기 화학식 19의 시아네이트 수지는 R의 종류에 따라, 각각 비스페놀 A형 시아네이트 수지, 비스페놀 E형 시아네이트 수지, 비스페놀 F형 시아네이트 수지, 또는 비스페놀 M형 시아네이트 수지일 수 있다.More specifically, the cyanate resin of Chemical Formula 19 may be a bisphenol A cyanate resin, a bisphenol E cyanate resin, a bisphenol F type cyanate resin, or a bisphenol M type cyanate resin, depending on the type of R, respectively. .
그리고, 상기 비스말레이미드 수지로는 비스말레이미드-트리아진 수지 등을 들 수 있고, 상기 비스말레이미드-트리아진 수지는 통상 금속 박막 코팅용 열경화성 수지 조성물에 사용되는 것을 제한 없이 사용 할 수 있으며, 그 종류가 한정되지는 않는다. 상기 비스말레이미드 수지의 바람직한 예로는 DAIWA KASEI사 BMI-2300 등을 들 수 있다.And, the bismaleimide resin includes bismaleimide-triazine resin, and the like, and the bismaleimide-triazine resin can be used without limitation, which is usually used in a thermosetting resin composition for metal thin film coating. The type is not limited. Preferred examples of the bismaleimide resin include DAIWA KASEI BMI-2300.
특히, 상기 금속 박막 코팅용 수지 조성물은 상기 아민 화합물 100 중량부에 대하여 상기 열경화성 수지 함량을 400 중량부 이하로 포함하여, 높은 함량으로 투입된 필러에 의한 열경화성 수지의 물성 변화를 방지하고, 필러의 영향없이 열경화성 수지가 보다 충분한 수준으로 균일하게 경화 가능하도록 유도하여, 최종 제조되는 제품의 신뢰성이 향상될 수 있고, 인성(Toughness)와 같은 기계적 물성 또한 증가시킬 수 있으며, 유리전이온도를 충분히 낮출 수 있다.In particular, the resin composition for coating a metal thin film contains the content of the thermosetting resin in an amount of 400 parts by weight or less based on 100 parts by weight of the amine compound, and prevents a change in physical properties of the thermosetting resin due to the filler injected at a high content, and the influence of the filler Without inducing the thermosetting resin to be uniformly curable to a more sufficient level, the reliability of the final product can be improved, mechanical properties such as toughness can also be increased, and the glass transition temperature can be sufficiently lowered. .
종래에는 상기 아민 경화제 100 중량부에 대하여 상기 열경화성 수지 함량을 400 중량부 이하로 포함시키는 것과 같이, 아민 경화제를 상대적으로 과량으로 첨가시 열경화성 수지의 과도한 경화로 인해 유동성 및 성형성이 감소하는 한계가 있었다. 그러나, 상술한 바와 같이 전자 끌개 작용기(Electron Withdrawing Group, EWG)를 포함하여 반응성이 감소한 특정 아민 경화제를 과량으로 첨가하더라도, 경화제의 반응성 감소로 인해, 열경화성 수지의 경화속도가 급격히 상승하는 것을 억제할 수 있어, 금속 박막 코팅용 수지 조성물이나 이로부터 얻어지는 금속 박막에서의 장기간 보관시에도 높은 흐름성을 나타내어 우수한 유동성을 가질 수 있다.Conventionally, as the content of the thermosetting resin is contained in an amount of 400 parts by weight or less based on 100 parts by weight of the amine curing agent, there is a limit that the flowability and moldability decrease due to excessive curing of the thermosetting resin when a relatively large amount of the amine curing agent is added. there was. However, even if a specific amine curing agent having a reduced reactivity, including an electron withdrawing group (EWG), as described above, is added in excess, the curing rate of the thermosetting resin is suppressed from rapidly increasing due to a decrease in reactivity of the curing agent. It can exhibit a high flowability even during long-term storage in a metal thin film coating resin composition or a metal thin film obtained therefrom can have excellent fluidity.
구체적으로, 상기 금속 박막 코팅용 열경화성 수지 조성물은 상기 아민 경화제 100 중량부에 대하여 상기 열경화성 수지 함량이 400 중량부 이하, 또는 150 중량부 내지 400 중량부, 또는 180 중량부 내지 300 중량부, 또는 180 중량부 내지 290 중량부, 또는 190 중량부 내지 290 중량부, 또는 240 중량부 내지 260 중량부일 수 있다. 상기 아민 경화제 또는 열경화성 수지가 2종 이상의 혼합물인 경우, 아민 경화제 혼합물 100 중량부에 대하여 열경화성 수지 혼합물 함량 또한 400 중량부 이하, 또는 150 중량부 내지 400 중량부, 또는 180 중량부 내지 300 중량부, 또는 180 중량부 내지 290 중량부, 또는 190 중량부 내지 290 중량부, 또는 240 중량부 내지 260 중량부 일 수 있다.Specifically, the thermosetting resin composition for coating a metal thin film has a content of the thermosetting resin of 400 parts by weight or less, or 150 parts by weight to 400 parts by weight, or 180 parts by weight to 300 parts by weight, or 180 parts by weight of the amine curing agent It may be parts by weight to 290 parts by weight, or 190 parts by weight to 290 parts by weight, or 240 parts by weight to 260 parts by weight. When the amine curing agent or the thermosetting resin is a mixture of two or more, the content of the thermosetting resin mixture with respect to 100 parts by weight of the amine curing agent mixture is also 400 parts by weight or less, or 150 parts by weight to 400 parts by weight, or 180 parts by weight to 300 parts by weight, Or it may be 180 parts by weight to 290 parts by weight, or 190 parts by weight to 290 parts by weight, or 240 parts by weight to 260 parts by weight.
상기 아민 경화제 100 중량부에 대하여 상기 열경화성 수지 함량을 400 중량부 초과로 지나치게 증가할 경우, 고함량으로 투입된 필러의 영향으로 열경화성 수지가 보다 충분한 수준까지 균일하게 경화되기 어려워, 최종 제조되는 제품의 신뢰성이 감소할 수 있고, 인성(Toughness)와 같은 기계적 물성 또한 감소될 수 있다.When the content of the thermosetting resin is excessively increased to more than 400 parts by weight based on 100 parts by weight of the amine curing agent, it is difficult to uniformly cure the thermosetting resin to a more sufficient level under the influence of the filler injected at a high content, and the reliability of the final manufactured product This can be reduced, and mechanical properties such as toughness can also be reduced.
또한, 상기 아민 화합물 및 수지성분(구체적으로, 열경화성 수지와 열가소성 수지 합계)의 전체 중량에 대하여 에폭시 수지의 함량이 30 중량% 내지 80 중량%이고, 비스말레이미드 수지의 함량이 1 중량% 내지 20 중량%일 수 있다. 바람직하게, 상기 에폭시 수지의 함량은 상기 아민 화합물 및 수지성분(구체적으로, 열경화성 수지와 열가소성 수지 합계)의 총합에 대하여 35 중량% 내지 70 중량%일 수 있다. 또한, 상기 비스말레이미드 수지의 함량은 상기 아민 화합물 및 수지성분(구체적으로, 열경화성 수지와 열가소성 수지 합계)의 총합에 대하여 1 중량% 내지 10 중량%일 수 있다.In addition, the content of the epoxy resin is 30% by weight to 80% by weight, and the content of bismaleimide resin is 1% by weight to 20% by weight based on the total weight of the amine compound and the resin component (specifically, the total of the thermosetting resin and the thermoplastic resin). It may be weight percent. Preferably, the content of the epoxy resin may be 35% to 70% by weight with respect to the sum of the amine compound and the resin component (specifically, the total of the thermosetting resin and the thermoplastic resin). In addition, the content of the bismaleimide resin may be 1% to 10% by weight relative to the sum of the amine compound and the resin component (specifically, the total of the thermosetting resin and the thermoplastic resin).
상기 에폭시 수지의 사용량이 30 중량% 미만이면 높은 Tg의 구현이 어려운 문제가 있고, 80 중량%를 초과하면 흐름성이 나빠지는 문제가 있다.If the amount of the epoxy resin used is less than 30% by weight, there is a problem in that high Tg is difficult to implement, and when it exceeds 80% by weight, there is a problem in that flowability deteriorates.
상기 비스말레이미드 수지의 사용량이 1 중량% 미만이면 원하는 물성 구현이 안되는 문제가 있고, 20 중량%를 초과하면 미반응기가 많아 내화학성 등의 특성에 악영향을 끼칠 수 있다.If the use amount of the bismaleimide resin is less than 1% by weight, there is a problem that desired physical properties are not realized, and if it exceeds 20% by weight, there are many unreacted groups, which may adversely affect properties such as chemical resistance.
한편, 상기 금속 박막 코팅용 수지 조성물은 하기 수학식1로 계산되는 당량비가 1.4 이상, 또는 1.4 내지 2.5, 또는 1.45 내지 2.5, 또는 1.45 내지 2.1, 또는 1.45 내지 1.8, 또는 1.49 내지 1.75, 또는 1.6 내지 1.7일 수 있다.Meanwhile, the resin composition for coating a metal thin film has an equivalent ratio of 1.4 or more, or 1.4 to 2.5, or 1.45 to 2.5, or 1.45 to 2.1, or 1.45 to 1.8, or 1.49 to 1.75, or 1.6 to 1.7.
[수학식1][Equation 1]
Figure PCTKR2019012204-appb-I000018
Figure PCTKR2019012204-appb-I000018
보다 구체적으로, 상기 수학식1에서, 상기 아민 경화제에 함유된 총 활성수소 당량은, 상기 아민 경화제의 총 중량(단위: g)을 상기 아민 경화제의 활성수소 단위당량(g/eq)로 나눈 값을 의미한다.More specifically, in Equation 1, the total active hydrogen equivalent contained in the amine curing agent is the total weight (unit: g) of the amine curing agent divided by the active hydrogen unit equivalent (g / eq) of the amine curing agent Means
상기 아민 경화제가 2종 이상의 혼합물인 경우, 각각의 화합물 별로 중량(단위:g)을 활성수소 단위당량(g/eq)로 나눈 값을 구하고, 이를 합한 값으로 상기 수학식1의 아민 경화제에 함유된 총 활성수소 당량을 구할 수 있다.When the amine curing agent is a mixture of two or more types, the weight (unit: g) for each compound is determined by dividing it by the unit equivalent of active hydrogen (g / eq), and the sum thereof is included in the amine curing agent of Equation (1). The total amount of active hydrogen equivalent can be determined.
상기 아민 경화제에 함유된 활성수소는, 아민 경화제에 존재하는 아미노기(-NH2)에 포함된 수소원자를 의미하며, 상기 활성수소가 열경화성 수지의 경화성 작용기와의 반응을 통해 경화구조를 형성할 수 있다.The active hydrogen contained in the amine curing agent means a hydrogen atom contained in the amino group (-NH 2 ) present in the amine curing agent, and the active hydrogen can form a curing structure through reaction with the curable functional group of the thermosetting resin. have.
또한, 상기 수학식1에서, 상기 열경화성 수지에 함유된 총 경화성 작용기 당량은, 상기 열경화성 수지의 총 중량(단위: g)을 상기 열경화성 수지의 경화성 작용기 단위당량(g/eq)로 나눈 값을 의미한다.In addition, in Equation 1, the total curable functional group equivalent contained in the thermosetting resin means a value obtained by dividing the total weight of the thermosetting resin (unit: g) by the equivalent of the curable functional group of the thermosetting resin (g / eq) do.
상기 열경화성 수지가 2종 이상의 혼합물인 경우, 각각의 화합물 별로 중량(단위:g)을 경화성 작용기 단위당량(g/eq)로 나눈 값을 구하고, 이를 합한 값으로 상기 수학식1의 열경화성 수지에 함유된 총 경화성 작용기 당량을 구할 수 있다.When the thermosetting resin is a mixture of two or more types, a value obtained by dividing the weight (unit: g) for each compound by the unit equivalent weight of the curable functional group (g / eq) is obtained, and the sum thereof is included in the thermosetting resin of Equation (1). The total equivalent curable functional group equivalent can be obtained.
상기 열경화성 수지에 함유된 경화성 작용기는, 상기 아민 경화제의 활성수소와의 반응을 통해 경화구조를 형성하는 작용기를 의미하며, 상기 열경화성 수지 종류에 따라 경화성 작용기의 종류 또한 달라질 수 있다.The curable functional group contained in the thermosetting resin means a functional group that forms a cured structure through reaction with the active hydrogen of the amine curing agent, and the type of the curable functional group may also vary depending on the type of the thermosetting resin.
예를 들어, 상기 열경화성 수지로 에폭시 수지를 사용할 경우, 상기 에폭시 수지에 함유된 경화성 작용기는 에폭시기가 될 수 있고, 상기 열경화성 수지로 비스말레이미드수지를 사용할 경우, 상기 비스말레이미드 수지에 함유된 경화성 작용기는 말레이미드기가 될 수 있다.For example, when an epoxy resin is used as the thermosetting resin, the curable functional group contained in the epoxy resin may be an epoxy group, and when using a bismaleimide resin as the thermosetting resin, the curability contained in the bismaleimide resin The functional group can be a maleimide group.
즉, 상기 금속 박막 코팅용 수지 조성물이 상기 수학식1로 계산되는 당량비가 1.4 이상을 만족한다는 것은, 모든 열경화성 수지에 함유된 경화성 작용기가 경화반응을 일으킬 수 있을 정도로 충분한 수준의 아민 경화제가 함유되어있음을 의미한다. 따라서, 상기 금속 박막 코팅용 수지 조성물에서 상기 수학식1로 계산되는 당량비가 1.4 미만으로 감소하는 경우, 고함량으로 투입된 필러의 영향으로 열경화성 수지가 보다 충분한 수준까지 균일하게 경화되기 어려워, 최종 제조되는 제품의 신뢰성이 감소할 수 있고, 기계적 물성 또한 감소할 수 있는 단점이 있다.That is, the equivalent ratio of the resin composition for coating a thin metal film calculated by Equation 1 satisfies 1.4 or more. The amine curing agent is contained in a sufficient level so that the curable functional groups contained in all thermosetting resins can cause a curing reaction. It means there is. Therefore, when the equivalent ratio calculated by Equation 1 in the resin composition for coating a metal thin film decreases to less than 1.4, it is difficult for the thermosetting resin to be uniformly cured to a more sufficient level under the influence of the filler injected at a high content, resulting in final production There is a disadvantage that the reliability of the product can be reduced and the mechanical properties can also be reduced.
한편, 상기 금속 박막 코팅용 열경화성 수지 조성물은 열가소성 수지를 포함할 수 있다.Meanwhile, the thermosetting resin composition for coating a metal thin film may include a thermoplastic resin.
상기 열가소성 수지는 경화 후, 인성(Toughness)을 증가시키는 효과가 있으며, 열팽창계수 및 탄성률을 낮게 하여 금속 박막의 휨(Warpage)를 완화시키는 역할을 할 수 있다. 상기 열가소성 수지의 구체적인 예로는 (메트)아크릴레이트계 고분자를 들 수 있다.After curing, the thermoplastic resin has an effect of increasing toughness, and may lower the thermal expansion coefficient and elastic modulus to alleviate warpage of the metal thin film. Specific examples of the thermoplastic resin include (meth) acrylate-based polymers.
상기 (메트)아크릴레이트계 고분자의 예가 크게 한정되는 것은 아니며, 예를 들어 (메트)아크릴레이트계 단량체 유래의 반복단위와 (메트)아크릴로니트릴 유래의 반복 단위가 포함되는 아크릴산 에스테르 공중합체; 또는 부타디엔 유래의 반복 단위가 포함되는 아크릴산 에스테르 공중합체일 수 있다. 예를 들어, 상기 (메트)아크릴레이트계 고분자는 부틸아크릴레이트, 에틸아크릴레이트, 아크릴로니트릴, 메틸메타크릴레이트, 글리시딜메타크릴레이트 등의 단량체를 각각 1 중량% 내지 40 중량%의 범위내(단량체 전체의 총 중량 대비)에서 사용하여 공중합한 공중합체일 수 있다.Examples of the (meth) acrylate-based polymer are not particularly limited, and include, for example, an acrylic ester copolymer containing a repeating unit derived from a (meth) acrylate monomer and a repeating unit derived from (meth) acrylonitrile; Or it may be an acrylic acid ester copolymer containing a repeating unit derived from butadiene. For example, the (meth) acrylate-based polymer is a monomer such as butyl acrylate, ethyl acrylate, acrylonitrile, methyl methacrylate, glycidyl methacrylate, respectively, in the range of 1% by weight to 40% by weight It may be a copolymer that is used in (in comparison to the total weight of the whole monomer) copolymerized.
상기 (메트)아크릴레이트계 고분자는 500,000 내지 1,000,000의 중량평균분자량을 가질 수 있다. 상기 (메트)아크릴레이트계 고분자의 중량평균분자량이 너무 작으면, 경화 후의 인성(Toughnes)증가나 열팽창률 및 탄성률 감소에 효과가 감소하여 기술적으로 불리할 수 있다. 또한, 상기 (메트)아크릴레이트계 고분자의 중량평균분자량이 너무 크면, 유동성을 감소시킬 수 있다.The (meth) acrylate-based polymer may have a weight average molecular weight of 500,000 to 1,000,000. If the weight-average molecular weight of the (meth) acrylate-based polymer is too small, the effect may be technically disadvantageous due to an increase in toughness after curing or a decrease in thermal expansion and elastic modulus. In addition, if the weight average molecular weight of the (meth) acrylate-based polymer is too large, fluidity may be reduced.
본 명세서에서, 중량 평균 분자량은 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 의미한다. 상기 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 측정하는 과정에서는, 통상적으로 알려진 분석 장치와 시차 굴절 검출기(Refractive Index Detector) 등의 검출기 및 분석용 컬럼을 사용할 수 있으며, 통상적으로 적용되는 온도 조건, 용매, flow rate를 적용할 수 있다. 상기 측정 조건의 구체적인 예를 들면, Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 이용하여 Waters PL-GPC220 기기를 이용하여, 평가 온도는 160 ℃이며, 1,2,4-트리클로로벤젠을 용매로서 사용하였으며 유속은 1mL/min의 속도로, 샘플은 10mg/10mL의 농도로 조제한 다음, 200 μL 의 양으로 공급하며, 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw 의 값을 구할 수 있다. 폴리스티렌 표준품의 분자량은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000의 9종을 사용하였다.In this specification, the weight average molecular weight means the weight average molecular weight of polystyrene conversion measured by GPC method. In the process of measuring the weight average molecular weight in terms of polystyrene measured by the GPC method, detectors and analytical columns, such as a commonly known analytical device and a differential index detector, can be used, and the temperature is usually applied. Conditions, solvents and flow rates can be applied. For a specific example of the above measurement conditions, using a Waters PL-GPC220 instrument using a Polymer Laboratories PLgel MIX-B 300 mm length column, the evaluation temperature is 160 ° C. and 1,2,4-trichlorobenzene is used as a solvent. The flow rate was 1 mL / min, the sample was prepared at a concentration of 10 mg / 10 mL, and then supplied in an amount of 200 μL, and the value of Mw can be obtained by using an assay curve formed using a polystyrene standard. The molecular weight of the polystyrene standard was 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000.
상기 열가소성 수지의 바람직한 예로는 Negami chemical industrial Co.,LTD사 PARACRON KG-3015P 등을 들 수 있다.Preferred examples of the thermoplastic resin include Negami chemical industrial Co., LTD. PARACRON KG-3015P.
한편, 상기 아민 화합물 및 열경화성 수지의 총합 100 중량부에 대해, 상기 열가소성 수지를 40 중량부 내지 90 중량부로 포함할 수 있다. 바람직하게, 상기 열가소성 수지는 아민 화합물 및 열경화성 수지의 총합 100 중량부에 대해 41 중량부 내지 80 중량부, 또는 42 중량부 내지 70 중량부, 또는 42.7 중량부 내지 67 중량부를 포함할 수 있다. 상기 열가소성 수지의 함량이 40 중량부 미만이면 수지의 흐름성이 너무 많아 두께 편차가 증가되는 문제가 있고, 90 중량부 초과이면 흐름성이 너무 적어 패턴 채움성이 떨어지는 문제가 있다.On the other hand, with respect to 100 parts by weight of the total of the amine compound and the thermosetting resin, the thermoplastic resin may include 40 parts by weight to 90 parts by weight. Preferably, the thermoplastic resin may include 41 parts by weight to 80 parts by weight, or 42 parts by weight to 70 parts by weight, or 42.7 parts by weight to 67 parts by weight based on 100 parts by weight of the total of the amine compound and the thermosetting resin. When the content of the thermoplastic resin is less than 40 parts by weight, there is a problem in that the flowability of the resin is too large, resulting in an increase in thickness variation.
또한, 상기 금속 박막 코팅용 열경화성 수지 조성물은 무기 충진재를 포함할 수 있다.In addition, the thermosetting resin composition for coating a metal thin film may include an inorganic filler.
상기 무기 충진재는 통상 금속 박막 코팅용 열경화성 수지 조성물에 사용되는 것을 제한 없이 사용 할 수 있으며, 구체적인 예로는 실리카, 알루미늄 트리하이드록사이드, 마그네슘 하이드록사이드, 몰리브데늄 옥사이드, 징크 몰리브데이트, 징크 보레이트, 징크 스타네이트, 알루미나, 클레이, 카올린, 탈크, 소성 카올린, 소성 탈크, 마이카, 유리 단섬유, 글라스 미세 파우더 및 중공 글라스를 들 수 있으며 이들로 이루어진 군에서 선택된 1종 이상일 수 있다.The inorganic filler may be used without limitation that is usually used in a thermosetting resin composition for metal thin film coating, and specific examples include silica, aluminum trihydroxide, magnesium hydroxide, molybdenum oxide, zinc molybdate, and zinc Borate, zinc stannate, alumina, clay, kaolin, talc, calcined kaolin, calcined talc, mica, short glass fibers, glass fine powder and hollow glass may be one or more selected from the group consisting of these.
상기 금속 박막 코팅용 열경화성 수지 조성물은 상기 아민 화합물 및 열경화성 수지의 총합 100 중량부에 대하여 상기 무기 충진재 함량이 200 중량부 내지 500 중량부, 또는 205 중량부 내지 450중량부, 또는 210 중량부 내지 400 중량부를 포함할 수 있다. 상기 무기 충진재의 함량이 너무 작으면 열팽창계수가 증가하여 리플로우(reflow) 공정시 휨 현상이 심화되며, 인쇄회로기판의 강성이 감소하는 문제가 있다.The thermosetting resin composition for coating a metal thin film has an inorganic filler content of 200 parts by weight to 500 parts by weight, or 205 parts by weight to 450 parts by weight, or 210 parts by weight to 400 parts by weight based on a total of 100 parts by weight of the amine compound and the thermosetting resin It may include parts by weight. If the content of the inorganic filler is too small, the thermal expansion coefficient increases, which increases the warpage during the reflow process, and there is a problem that the rigidity of the printed circuit board decreases.
또한, 상기 표면 처리된 충진재를 사용시, 나노 입경의 작은 사이즈와 마이크로 입경의 큰 사이즈를 함께 사용하여 팩킹 밀도 (packing density)를 높여 충진률을 높일 수 있다.In addition, when using the surface-treated filler, the packing density can be increased by using a small size of the nanoparticle size and a large size of the microparticle size to increase the packing density.
상기 무기 충진재는 평균 입경이 상이한 2종 이상의 무기 충진재를 포함할 수 있다. 구체적으로, 상기 2종 이상의 무기 충진재 중 적어도 1종이 평균 입경이 0.1 ㎛ 내지 100 ㎛인 무기 충진재고, 다른 1종이 평균 입경이 1 ㎚ 내지 90 ㎚인 무기 충진재일 수 있다.The inorganic filler may include two or more inorganic fillers having different average particle diameters. Specifically, at least one of the two or more inorganic fillers may be an inorganic filler having an average particle diameter of 0.1 μm to 100 μm, and another one may be an inorganic filler having an average particle diameter of 1 nm to 90 nm.
상기 평균 입경이 0.1 ㎛ 내지 100 ㎛인 무기 충진재 100 중량부에 대하여 상기 평균 입경이 1 ㎚ 내지 90 ㎚인 무기 충진재 함량이 1 중량부 내지 30 중량부일 수 있다.The inorganic filler content of the average particle diameter of 1 nm to 90 nm with respect to 100 parts by weight of the inorganic filler having an average particle diameter of 0.1 μm to 100 μm may be 1 part by weight to 30 parts by weight.
상기 무기 충진재는 내습성, 분산성을 향상시키는 관점에서 실란 커플링제로 표면 처리된 실리카를 사용할 수 있다.The inorganic filler may use silica surface-treated with a silane coupling agent from the viewpoint of improving moisture resistance and dispersibility.
상기 무기 충진재를 표면 처리하는 방법은, 실란 커플링제를 표면 처리제로 이용하여 실리카 입자를 건식 또는 습식으로 처리하는 방법이 사용될 수 있다. 예를 들어, 실리카 입자 100 중량부를 기준으로 0.01 중량부 내지 1 중량부의 실란 커플링제를 사용하여 습식방법으로 실리카를 표면처리하여 사용할 수 있다.As a method of surface-treating the inorganic filler, a method of treating silica particles by dry or wet using a silane coupling agent as a surface treatment agent may be used. For example, silica may be surface-treated by a wet method using 0.01 to 1 part by weight of a silane coupling agent based on 100 parts by weight of silica particles.
구체적으로, 상기 실란 커플링제로는 3-아미노프로필트리에톡시실란, N-페닐-3-아미노프로필트리메톡시실란 및 N-2-(아미노에틸)-3-아미노프로필트리메톡시실란과 같은 아미노실란 커플링제, 3-글리시독시프로필트리메톡시실란과 같은 에폭시 실란커플링제, 3-메타크릴옥시프로필 트리메톡시실란과 같은 비닐 실란커플링제, N-2-(N-비닐벤질아미노에틸)-3-아미노프로필트리메톡시실란 하이드로클로라이드와 같은 양이온 실란커플링제 및 페닐 실란커플링제를 들 수 있으며, 실란 커플링제는 단독으로 사용될 수 있으며, 또는 필요에 따라 적어도 두 개의 실란 커플링제를 조합하여 사용할 수 있다.Specifically, as the silane coupling agent, 3-aminopropyl triethoxysilane, N-phenyl-3-aminopropyl trimethoxysilane and N-2- (aminoethyl) -3-aminopropyl trimethoxysilane. Aminosilane coupling agents, epoxy silane coupling agents such as 3-glycidoxypropyl trimethoxysilane, vinyl silane coupling agents such as 3-methacryloxypropyl trimethoxysilane, N-2- (N-vinylbenzylaminoethyl ) -3-aminopropyltrimethoxysilane hydrochloride, and cationic silane coupling agents such as phenyl silane coupling agents, and silane coupling agents may be used alone, or at least two silane coupling agents may be combined as necessary. Can be used.
보다 구체적으로, 상기 실란 화합물은 방향족 아미노 실란 또는 (메트)아크릴실란을 포함할 수 있으며, 상기 평균 입경이 0.1 ㎛ 내지 100 ㎛인 무기 충진재로는 방향족 아미노 실란이 처리된 실리카를 사용할 수 있고, 상기 평균 입경이 1 ㎚ 내지 90 ㎚인 무기 충진재로는 (메트)아크릴 실란이 처리된 실리카를 사용할 수 있다. 상기 방향족 아미노 실란이 처리된 실리카의 구체적인 예로는 SC2050MTO(Admantechs사)를 들 수 있고, 상기 (메트)아크릴실란이 처리된 실리카의 구체적인 예로는 AC4130Y (Nissan chemical사)를 들 수 있다. 상기 (메트)아크릴은 아크릴 또는 메타크릴을 모두 포함하는 의미로 사용되었다.More specifically, the silane compound may include an aromatic amino silane or (meth) acrylic silane, and as the inorganic filler having an average particle diameter of 0.1 μm to 100 μm, silica treated with an aromatic amino silane may be used. As the inorganic filler having an average particle diameter of 1 nm to 90 nm, (meth) acrylic silane-treated silica may be used. Specific examples of the aromatic amino silane-treated silica include SC2050MTO (Admantechs), and specific examples of the (meth) acrylsilane-treated silica include AC4130Y (Nissan chemical). The (meth) acrylic was used to mean both acrylic or methacrylic.
그리고, 상기 금속 박막 코팅용 열경화성 수지 조성물은 필요에 따라 용제를 첨가하여 용액으로 사용할 수 있다. 상기 용제로는 수지 성분에 대해 양호한 용해성을 나타내는 것이면 그 종류가 특별히 한정되지 않으며, 알코올계, 에테르계, 케톤계, 아미드계, 방향족 탄화수소계, 에스테르계, 니트릴계 등을 사용할 수 있고, 이들은 단독 또는 2종 이상 병용한 혼합 용제를 이용할 수도 있다.In addition, the thermosetting resin composition for coating a metal thin film may be used as a solution by adding a solvent if necessary. The solvent is not particularly limited as long as it exhibits good solubility with respect to the resin component, and alcohols, ethers, ketones, amides, aromatic hydrocarbons, esters, nitriles, etc. can be used. Alternatively, a mixed solvent used in combination of two or more kinds can also be used.
또한 상기 금속 박막 코팅용 열경화성 수지 조성물은, 수지 조성물 고유의 특성을 손상시키지 않는 한, 기타 열경화성 수지, 열가소성 수지 및 이들의 올리고머 및 엘라스토머와 같은 다양한 고분자 화합물, 기타 난연성 화합물 또는 첨가제를 더 포함할 수도 있다. 이들은 통상적으로 사용되는 것으로부터 선택되는 것이라면 특별히 한정하지 않는다.예를 들어 첨가제로는 자외선흡수제, 산화방지제, 광중합개시제, 형광증백제, 광증감제, 안료, 염료, 증점제, 활제, 소포제, 분산제, 레벨링제, 광택제 등이 있고, 목적에 부합되도록 혼합하여 사용하는 것도 가능하다.In addition, the thermosetting resin composition for coating a thin metal film may further include various polymer compounds such as other thermosetting resins, thermoplastic resins, and oligomers and elastomers, and other flame retardant compounds or additives, as long as the properties of the resin composition are not impaired. have. These are not particularly limited as long as they are selected from those commonly used. For example, additives include ultraviolet absorbers, antioxidants, photopolymerization initiators, fluorescent brighteners, photosensitizers, pigments, dyes, thickeners, lubricants, antifoaming agents, dispersants, There are leveling agents, varnishes, etc., and it is also possible to mix and use them to meet the purpose.
상기 기타 열경화성 수지의 예로는 에폭시 수지를 들 수 있고, 상기 에폭시 수지로는 그 종류가 한정되지는 않으나, 비스페놀 A 형 에폭시 수지, 페놀 노볼락 에폭시 수지, 페닐 아랄킬계 에폭시 수지, 테트라페닐 에탄 에폭시 수지, 나프탈렌계 에폭시 수지, 또는 이들의 혼합물 등을 사용할 수 있다.Examples of the other thermosetting resins include epoxy resins, and the epoxy resins are not limited in their types, but bisphenol A type epoxy resins, phenol novolac epoxy resins, phenyl aralkyl epoxy resins, and tetraphenyl ethane epoxy resins. , Naphthalene-based epoxy resins, or mixtures thereof.
구체적으로, 상기 에폭시 수지는 하기 화학식 5로 표시되는 비스페놀형 에폭시 수지, 하기 화학식 6로 표시되는 노볼락형 에폭시 수지, 하기 화학식 7로 표시되는 페닐 아랄킬계 에폭시 수지, 하기 화학식 8로 표시되는 테트라페닐에탄형 에폭시 수지, 하기 화학식 9 및 10으로 표시되는 나프탈렌형 에폭시 수지로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.Specifically, the epoxy resin is a bisphenol-type epoxy resin represented by the following formula (5), a novolac-type epoxy resin represented by the following formula (6), a phenyl aralkyl epoxy resin represented by the following formula (7), tetraphenyl represented by the following formula (8) Ethane type epoxy resin, one or more selected from the group consisting of naphthalene type epoxy resins represented by the following formulas 9 and 10 may be used.
[화학식 5][Formula 5]
Figure PCTKR2019012204-appb-I000019
Figure PCTKR2019012204-appb-I000019
상기 화학식 5에서,In Chemical Formula 5,
R은
Figure PCTKR2019012204-appb-I000020
또는
Figure PCTKR2019012204-appb-I000021
이고,
R is
Figure PCTKR2019012204-appb-I000020
or
Figure PCTKR2019012204-appb-I000021
ego,
n은 0 또는 1 내지 50의 정수이다.n is 0 or an integer from 1 to 50.
보다 구체적으로, 상기 화학식 5의 에폭시 수지는 R의 종류에 따라, 각각 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 M형 에폭시 수지, 또는 비스페놀 S형 에폭시 수지일 수 있다.More specifically, the epoxy resin of Formula 5 may be a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol M type epoxy resin, or a bisphenol S type epoxy resin, depending on the type of R.
[화학식 6][Formula 6]
Figure PCTKR2019012204-appb-I000022
Figure PCTKR2019012204-appb-I000022
상기 화학식 2에서,In Chemical Formula 2,
R은 H 또는 CH3이고,R is H or CH 3 ,
n은 0 또는 1 내지 50의 정수이다.n is 0 or an integer from 1 to 50.
보다 구체적으로, 상기 화학식 3의 노볼락형 에폭시 수지는 R의 종류에 따라, 각각 페놀 노볼락형 에폭시 수지 또는 크레졸 노볼락형 에폭시 수지일 수 있다. More specifically, the novolac-type epoxy resin of Chemical Formula 3 may be a phenol novolac-type epoxy resin or a cresol novolac-type epoxy resin, depending on the type of R, respectively.
[화학식 7] [Formula 7]
Figure PCTKR2019012204-appb-I000023
Figure PCTKR2019012204-appb-I000023
[화학식 8] [Formula 8]
Figure PCTKR2019012204-appb-I000024
Figure PCTKR2019012204-appb-I000024
[화학식 9] [Formula 9]
Figure PCTKR2019012204-appb-I000025
Figure PCTKR2019012204-appb-I000025
[화학식 10][Formula 10]
Figure PCTKR2019012204-appb-I000026
Figure PCTKR2019012204-appb-I000026
한편, 상기 금속 박막 코팅용 열경화성 수지 조성물은 상술한 아민 화합물을 포함할 수 있으며, 상기 아민 화합물 이외의 추가적인 경화제를 더 포함할 수도 있다.Meanwhile, the thermosetting resin composition for coating a metal thin film may include the amine compound described above, and may further include an additional curing agent other than the amine compound.
상술한 각 성분을 혼합하여 코팅용 바니시를 제조하고, 이를 금속박에 코팅한 후 경화 및 건조하는 과정을 통해 간단한 방법으로 수지 코팅 금속 박막을 제조할 수 있다.By mixing each of the above-described components to prepare a varnish for coating, and coating it on a metal foil, a resin coating metal thin film can be produced by a simple method through curing and drying.
이러한 구성을 갖는 상기 금속 박막 코팅용 열경화성 수지 조성물은 레오미터 최저 점도 구간이 120 ℃ 내지 180 ℃의 범위에서 2000Pa·s 이하의 복소 점도 조건을 만족할 수 있다.The thermosetting resin composition for coating a metal thin film having such a configuration may satisfy a complex viscosity condition of 2000 Pa · s or less in a range of 120 ° C. to 180 ° C. for a rheometer minimum viscosity section.
즉, 패턴을 채우는데 적합한 복소 점도를 2000 Pa·s 이하라고 가정할 때, 본 발명에서 제시하는 수지 조성물의 경우, 상기 점도 조건을 만족하는 온도 구간이 120 ℃ 내지 180 ℃로 매우 넓다. 즉, 적층 공정 구간 내 흐름성이 높아서 수지 적층 후 빈 공간이 발생되지 않아 패턴 채움성이 우수해지는 것이다.That is, assuming that the complex viscosity suitable for filling the pattern is 2000 Pa · s or less, in the case of the resin composition presented in the present invention, the temperature range satisfying the viscosity condition is very wide from 120 ° C. to 180 ° C. That is, since the flowability in the lamination process section is high, no empty space is generated after lamination of the resin, so that the pattern filling property is excellent.
상기 금속 박막 코팅용 열경화성 수지 조성물은 상기와 같은 우수한 수지 흐름성을 가짐에 따라, 금속 박막과 이를 이용해서 금속적층판을 만들거나 빌드업 과정에서 흐름성을 확보할 수 있어 미세 패턴을 용이하게 채울 수 있고 또한 박막의 내크랙성을 향상시킬 수 있다.As the thermosetting resin composition for coating a metal thin film has excellent resin flow properties as described above, it is possible to make a metal thin film and a metal laminated plate using the same or secure flowability in a build-up process to easily fill a fine pattern. Also, the crack resistance of the thin film can be improved.
상기 절연패턴으로 사용된 경화물의 두께는 15 ㎛ 이하, 또는 10 ㎛ 이하, 또는 1 ㎛ 내지 15 ㎛, 또는 1 ㎛ 내지 10 ㎛, 또는 5 ㎛ 내지 10 ㎛, 또는 6 ㎛ 내지 8 ㎛일 수 있다.The thickness of the cured product used as the insulating pattern may be 15 μm or less, or 10 μm or less, or 1 μm to 15 μm, or 1 μm to 10 μm, or 5 μm to 10 μm, or 6 μm to 8 μm.
(2) 레지스트 패턴층(2) resist pattern layer
상기 다층인쇄회로기판은 상기 수지 적층체의 상면 및 하면에 형성된 레지스트 패턴층을 포함할 수 있다. 상기 레지스트 패턴층은 개구패턴을 갖는 레지스트패턴을 포함할 수 있다. 상기 레지스트패턴은 후술하는 다층인쇄회로기판 제조방법상 레지스트층의 부분적인 식각을 통해 얻어지는 레지스트 블록을 의미한다.The multilayer printed circuit board may include a resist pattern layer formed on upper and lower surfaces of the resin laminate. The resist pattern layer may include a resist pattern having an opening pattern. The resist pattern refers to a resist block obtained through partial etching of the resist layer in the method of manufacturing a multilayer printed circuit board described later.
상기 레지스트 패턴층은 상기 수지 적층체의 상면 및 하면에 형성되어, 초박형화된 다층인쇄회로기판 제조시에도 찢어짐과 같은 제품 파손을 방지하여 우수한 내구성을 구현할 수 있다.The resist pattern layer is formed on the upper and lower surfaces of the resin laminate to prevent product damage such as tearing and to realize excellent durability even when manufacturing an ultra-thin multilayer printed circuit board.
상기 레지스트 패턴층에 포함된 레지스트의 예로는 알카리 가용성이나 비열경화성인 감광성 드라이필름 레지스트(DFR) 등을 들 수 있다. 상기 레지스트 패턴층의 두께는 1 ㎛ 내지 20 ㎛, 또는 5 ㎛ 내지 15 ㎛, 또는 9 ㎛ 내지 10 ㎛일 수 있다.Examples of the resist included in the resist pattern layer include an alkali-soluble or non-thermosetting photosensitive dry film resist (DFR). The thickness of the resist pattern layer may be 1 μm to 20 μm, or 5 μm to 15 μm, or 9 μm to 10 μm.
Ⅱ. 다층인쇄회로기판의 제조 방법Ⅱ. Manufacturing method of multilayer printed circuit board
본 발명의 다른 구현예에 따르면, 캐리어 필름의 양면에 금속층을 적층하고 패턴을 형성하는 제1단계; 상기 금속층 상에 절연층을 적층하고 패턴을 형성하는 제2단계; 상기 절연층 상에 금속층을 적층하고 패턴을 형성하는 제3단계; 상기 금속층 상에 레지스트층을 형성하는 제4단계; 상기 제1단계의 캐리어필름과 금속층을 박리하고, 박리된 금속층의 표면에 레지스트층을 적층하고 패턴을 형성하는 제5단계;를 포함하고, 상기 절연층은 두께가 15 ㎛ 이하인 수지코팅금속박막을 포함하며, 상기 제3단계 이후, 제2단계 및 제3단계를 1회이상 반복하여 진행하는 다층인쇄회로기판 제조방법을 제공한다.According to another embodiment of the present invention, a first step of laminating a metal layer on both sides of a carrier film and forming a pattern; A second step of stacking an insulating layer on the metal layer and forming a pattern; A third step of laminating a metal layer on the insulating layer and forming a pattern; A fourth step of forming a resist layer on the metal layer; The fifth step of peeling the carrier film and the metal layer of the first step, laminating a resist layer on the surface of the peeled metal layer and forming a pattern; including, the insulating layer is a resin coating metal thin film having a thickness of 15 ㎛ or less Provides a method for manufacturing a multilayer printed circuit board in which the second and third steps are repeated one or more times after the third step.
상기 다른 구현예의 다층인쇄회로기판 제조방법에 의해 상기 일 구현예의 다층인쇄회로기판이 얻어질 수 있다.The multilayer printed circuit board of the one embodiment can be obtained by the method of manufacturing the multilayer printed circuit board of the other embodiment.
상기 다층인쇄회로기판의 제조방법은, 캐리어 필름을 임시 코어층으로 삼아 캐리어필름의 상면 및 하면에 각각 금속층과 절연층의 적층/패턴형성을 반복한 이후, 캐리어필름을 제거함으로서 단일 공정에서 2개의 수지 적층체(판넬)을 형성할 수 있다.The method of manufacturing the multi-layer printed circuit board, using the carrier film as a temporary core layer, repeats the lamination / pattern formation of the metal layer and the insulating layer on the upper and lower surfaces of the carrier film, respectively, and then removing the carrier film to remove the two in a single process. A resin laminate (panel) can be formed.
특히, 수지 적층체 제조시 사용되는 절연층으로 15 ㎛ 이하의 두께를 갖는 수지코팅금속박막을 적용함에 따라, 수지 적층체의 총 두께를 현저히 줄여, 박형화 및 고집적화된 반도체 장치에의 적용 가능성을 높일 수 있다. 또한, 상기 수지코팅금속박막은 절연성을 갖는 수지층과 함께 상기 수지층 표면에 금속박막을 포함하여, 절연층을 형성한 이후 금속층을 형성하는 과정에서 별도의 시드층 도입없이도 용이하게 금속층을 적층할 수 있다.In particular, as a resin coating metal thin film having a thickness of 15 µm or less is applied as an insulating layer used in manufacturing a resin laminate, the total thickness of the resin laminate is significantly reduced, thereby increasing the applicability to thinner and highly integrated semiconductor devices. You can. In addition, the resin-coated metal thin film includes a metal thin film on the surface of the resin layer together with a resin layer having insulating properties, and thus, the metal layer can be easily stacked without introducing a separate seed layer in the process of forming the metal layer after forming the insulating layer. You can.
또한, 상기 캐리어필름을 제거하는 과정에서 발생하는 수지 적층체의 파손을 방지하기 위해, 캐리어필름 제거 이전에 수지 적층체 상단에 레지스트층을 형성하고, 캐리어 필름을 제거한 이후에도 수지 적층체의 남은 상단에 레지스트층을 추가로 형성하는 2차례의 레지스트층 코팅을 통해 수지 적층체의 내구성을 향상시킬 수 있다.In addition, in order to prevent the resin laminate from being damaged in the process of removing the carrier film, a resist layer is formed on the top of the resin laminate prior to the removal of the carrier film, and after removing the carrier film, the remaining top of the resin laminate is removed. The durability of the resin laminate can be improved through two coatings of the resist layer, which further forms a resist layer.
구체적으로 상기 제1단계는, 캐리어 필름의 양면에 금속층을 적층하고 패턴을 형성하는 단계이다. 상기 캐리어필름은 금속층과 절연층의 적층의 지지체가 되는 기재필름으로써, 상기 캐리어필름의 일면 및 이와 마주보는 반대면 각각에 금속층이 적층될 수 있다.Specifically, the first step is a step of laminating a metal layer on both sides of the carrier film and forming a pattern. The carrier film is a base film that serves as a support for lamination of a metal layer and an insulating layer, and a metal layer may be laminated on each side of the carrier film and opposite sides facing the carrier film.
상기 금속층에 포함된 금속의 예로는 금, 은, 동, 주석, 니켈 알루미늄, 타이타늄 등의 금속 또는 이들의 2종 이상의 혼합물을 포함한 합금 등을 들 수 있고, 상기 금속층의 두께는 1 ㎛ 내지 20 ㎛, 또는 5 ㎛ 내지 15 ㎛, 또는 7 ㎛ 내지 9 ㎛일 수 있다. 상기 금속층의 두께가 20 ㎛ 초과로 지나치게 증가할 경우, 상기 금속층을 형성하기 위해 과량의 금속이 필요해짐에 따라, 원료 비용이 증가하여 경제적인 면에서 효율성이 감소할 수 있고, 박형화 및 고집적화된 반도체 장치에의 적용이 어려울 수 있다.Examples of metals included in the metal layer include metals such as gold, silver, copper, tin, nickel aluminum, and titanium, or alloys containing two or more mixtures thereof, and the thickness of the metal layer is 1 μm to 20 μm. , Or 5 μm to 15 μm, or 7 μm to 9 μm. When the thickness of the metal layer is excessively increased to more than 20 μm, as an excessive amount of metal is required to form the metal layer, the cost of raw materials may increase, resulting in reduced efficiency in terms of economy, thinning, and highly integrated semiconductor Application to the device can be difficult.
상기 캐리어필름의 구체적인 예가 크게 한정되는 것은 아니며, 고분자, 금속, 고무 등의 유기, 무기 소재가 다양하게 적용될 수 있다. 구체적인 예를 들면, 폴리에틸렌테레프탈레이트(PET), 폴리에스테르 필름, 폴리이미드 필름, 폴리아미드이미드 필름, 폴리프로필렌 필름, 폴리스티렌 필름 등의 플라스틱 필름을 사용할 수 있다. 상기 캐리어필름의 두께는 10 ㎛ 내지 100 ㎛일 수 있다.The specific example of the carrier film is not particularly limited, and various organic and inorganic materials such as polymer, metal, and rubber may be applied. As a specific example, plastic films such as polyethylene terephthalate (PET), polyester film, polyimide film, polyamideimide film, polypropylene film, and polystyrene film can be used. The thickness of the carrier film may be 10 μm to 100 μm.
상기 캐리어 필름의 양면에 금속층을 적층하는 방법의 예로는, 상기 캐리어 필름의 양면에 금속박막을 형성하는 단계; 및 상기 금속박막 상에 금속을 증착시키는 단계를 포함하는 방법을 사용할 수 있다.Examples of a method of laminating a metal layer on both sides of the carrier film include forming a metal thin film on both sides of the carrier film; And depositing metal on the metal thin film.
구체적으로 상기 캐리어 필름의 양면에 금속박막을 형성하는 단계에서는, 상기 캐리어 필름 표면에 금, 은, 동, 주석, 니켈 알루미늄, 타이타늄 등의 금속 또는 이들의 2종 이상의 혼합물을 포함한 합금 등을 증착하는 방법을 들 수 있다.Specifically, in the step of forming a metal thin film on both sides of the carrier film, metal, such as gold, silver, copper, tin, nickel aluminum, titanium, or an alloy containing a mixture of two or more thereof, is deposited on the surface of the carrier film. And a method.
상기 증착방법의 예로는 건식증착공정 또는 습식증착공정을 들 수 있으며, 구체적인 상기 건식증착공정의 예로는 진공증착, 이온 플레이팅, 스퍼터링 방법 등을 들 수 있다. 한편, 구체적인 상기 습식증착공정의 예로는, 다양한 금속의 무전해 도금 등이 있으며, 보다 구체적으로 무전해 구리 도금을 사용할 수 있다. 또한, 상기 증착 이전 또는 이후에 조화처리공정을 더 포함할 수 있다.Examples of the deposition method include a dry deposition process or a wet deposition process, and specific examples of the dry deposition process include vacuum deposition, ion plating, sputtering, and the like. On the other hand, specific examples of the wet deposition process include electroless plating of various metals, and more specifically electroless copper plating. In addition, a roughening treatment process may be further included before or after the deposition.
상기 금속박막 상에 금속을 증착시키는 단계에서도 상술한 증착방법이 동일하게 적용될 수 있다.In the step of depositing the metal on the metal thin film, the above-described deposition method may be applied in the same way.
상기 금속층에 패턴을 형성하는 방법의 예가 크게 한정된 것은 아니나, 예를 들어, 상기 금속층 상에 패턴화된 감광성 수지층을 형성하는 단계; 및 상기 패턴화된 감광성 수지층에 의해 노출된 금속층을 제거하는 단계를 포함한 방법을 사용할 수 있다.An example of a method of forming a pattern on the metal layer is not particularly limited, for example, forming a patterned photosensitive resin layer on the metal layer; And removing the metal layer exposed by the patterned photosensitive resin layer.
상기 금속층 상에 패턴화된 감광성 수지층을 형성하는 단계에서, 상기 감광성 수지층은 패턴이 형성된 상태에서 상기 금속층 상에 적층되거나, 적층된 이후 패턴이 형성될 수 있으나, 보다 바람직하게는 상기 금속층 상에 적층된 이후 패턴이 형성될 수 있다. 상기 감광성 수지층의 예로는 알카리 가용성이나 비열경화성인 감광성 드라이필름 레지스트(DFR) 등을 들 수 있다.In the step of forming a patterned photosensitive resin layer on the metal layer, the photosensitive resin layer may be laminated on the metal layer in a state in which a pattern is formed, or a pattern may be formed after being laminated, more preferably on the metal layer. After being stacked on, a pattern may be formed. Examples of the photosensitive resin layer include an alkali-soluble or non-thermosetting photosensitive dry film resist (DFR).
상기 금속층 상에 감광성 수지층을 형성하는 방법이 크게 한정되지 않으며, 예를 들어, 감광성 드라이 필름 레지스트와 같은 필름형태의 감광성 수지를 캐리어필름 상에 적층시키는 방법 또는 스프레이나 딥핑 방법으로 감광성 수지 조성물을 캐리어필름 상에 코팅하고, 압착하는 방법 등을 사용할 수 있다.The method of forming the photosensitive resin layer on the metal layer is not particularly limited, for example, a method of laminating a photosensitive resin in the form of a film such as a photosensitive dry film resist on a carrier film, or spraying or dipping the photosensitive resin composition. A method of coating on a carrier film and pressing it can be used.
상기 금속층 상에 패턴화된 감광성 수지층을 형성하는 단계는, 상기 금속층 상에 형성된 감광성 수지층을 노광 및 알카리 현상하는 단계를 포함할 수 있다. 이 경우, 상기 감광성 수지층이 금속층에 대한 보호층, 또는 패터닝 마스크로 사용될 수 있다.The step of forming a patterned photosensitive resin layer on the metal layer may include exposing and alkali developing the photosensitive resin layer formed on the metal layer. In this case, the photosensitive resin layer may be used as a protective layer or patterning mask for the metal layer.
상기 금속층 상에 형성된 감광성 수지층을 노광 및 알카리 현상하는 단계에서, 상기 금속층 상에 형성된 감광성 수지층의 두께는 3 ㎛ 내지 60 ㎛, 또는 5 ㎛ 내지 30 ㎛일 수 있다. 상기 감광성 수지층의 두께가 60 ㎛ 초과로 지나치게 증가할 경우, 해상도가 감소할 수 있다.In the step of exposing and alkali developing the photosensitive resin layer formed on the metal layer, the thickness of the photosensitive resin layer formed on the metal layer may be 3 μm to 60 μm, or 5 μm to 30 μm. When the thickness of the photosensitive resin layer is excessively increased to more than 60 μm, resolution may decrease.
상기 감광성 수지층을 노광하는 방법의 예가 크게 한정되는 것은 아니나, 예를 들어, 상기 감광성 수지층에 소정의 패턴의 형성된 포토 마스크를 접촉하고 자외선을 조사하거나, 마스크에 포함된 소정의 패턴을 프로젝션 대물렌즈를 통해 이미징한 다음 자외선을 조사하거나, 레이저 다이오드(Laser Diode)를 광원으로 사용하여 직접 이미징한 다음 자외선을 조사하는 등의 방식 등을 통해 선택적으로 노광할 수 있다. 이 때, 자외선 조사 조건의 예로는 5mJ/㎠ 내지 600mJ/㎠의 광량으로 조사하는 것을 들 수 있다.An example of a method of exposing the photosensitive resin layer is not particularly limited. For example, a photomask formed of a predetermined pattern is contacted with the photosensitive resin layer and irradiated with ultraviolet rays, or a predetermined pattern included in the mask is projected. It can be selectively exposed through a method such as irradiating ultraviolet rays after imaging through a lens, or directly using a laser diode as a light source, and then irradiating ultraviolet rays. At this time, examples of the ultraviolet irradiation conditions include irradiation with a light amount of 5 mJ / cm 2 to 600 mJ / cm 2.
또한, 상기 감광성 수지층을 현상하는 방법의 예로는 알카리 현상액을 처리하는 방법을 들 수 있다. 상기 알카리 현상액의 예가 크게 한정되는 것은 아니나, 예를 들어, 수산화칼륨, 수산화나트륨, 탄산나트륨, 탄산칼륨, 인산나트륨, 규산나트륨, 암모니아, 테트라메틸암모늄하이드록사이드, 아민류 등의 알카리 수용액을 사용할 수 있으며, 바람직하게는 30 ℃ 1% 탄산나트륨 현상액을 사용할 수 있다. 상기 알카리 현상액의 구체적인 사용량은 크게 제한되지 않는다.In addition, an example of a method of developing the photosensitive resin layer may include a method of treating an alkali developer. Examples of the alkali developer are not particularly limited. For example, an aqueous alkali solution such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, tetramethylammonium hydroxide, and amines can be used. , Preferably, 30 ° C 1% sodium carbonate developer may be used. The specific amount of the alkali developer is not particularly limited.
상기 감광성 수지층 패턴에 의해 노출된 금속층을 제거하는 단계에서, 상기 감광성 수지 패턴은 금속층에 패턴을 형성하기 위한 레지스트의 역할로 사용된다. 따라서, 상기 감광성 수지층 패턴에 의해 노출된 금속층이란, 표면에서 감광성 수지층과 접촉하지 않고 있는 금속층 부분을 의미한다.In the step of removing the metal layer exposed by the photosensitive resin layer pattern, the photosensitive resin pattern is used as a resist for forming a pattern in the metal layer. Therefore, the metal layer exposed by the photosensitive resin layer pattern means a portion of the metal layer that is not in contact with the photosensitive resin layer on the surface.
구체적으로, 상기 감광성 수지층 패턴에 의해 노출된 금속층을 제거하는 단계는 에칭액이 패턴이 형성된 감광성 수지층을 통과하여 금속층에 접촉하는 단계를 포함할 수 있다.Specifically, the step of removing the metal layer exposed by the photosensitive resin layer pattern may include a step in which the etching solution passes through the photosensitive resin layer on which the pattern is formed and contacts the metal layer.
상기 에칭액은 금속층의 종류에 따라 선택될 수 있으며, 감광성 수지층에 영향을 주지 않는 물질을 사용하는 것이 바람직하다.The etchant may be selected according to the type of metal layer, and it is preferable to use a material that does not affect the photosensitive resin layer.
상기 제2단계는, 상기 금속층 상에 절연층을 적층하고 패턴을 형성하는 단계이다. 제2단계에서 금속층은 제1단계를 거친 후에 패턴이 형성된 금속층을 의미한다.The second step is a step of laminating an insulating layer on the metal layer and forming a pattern. The metal layer in the second step refers to a metal layer on which a pattern is formed after the first step.
상기 금속층 상에 형성되는 절연층은 두께가 15 ㎛ 이하인 수지코팅금속박막을 포함할 수 있다. 구체적으로, 상기 수지코팅금속박막의 두께는 15 ㎛ 이하, 또는 10 ㎛ 이하, 또는 1 ㎛ 내지 15 ㎛, 또는 1 ㎛ 내지 10 ㎛, 또는 5 ㎛ 내지 10 ㎛, 또는 8 ㎛ 내지 10 ㎛일 수 있다. 상기 수지코팅금속박막의 두께가 지나치게 증가할 경우, 상기 절연층을 형성하기 위해 과량의 절연재료가 필요해짐에 따라, 원료 비용이 증가하여 경제적인 면에서 효율성이 감소할 수 있고, 박형화 및 고집적화된 반도체 장치에의 적용이 어려울 수 있다.The insulating layer formed on the metal layer may include a resin-coated metal thin film having a thickness of 15 μm or less. Specifically, the thickness of the resin-coated metal thin film may be 15 μm or less, or 10 μm or less, or 1 μm to 15 μm, or 1 μm to 10 μm, or 5 μm to 10 μm, or 8 μm to 10 μm. . When the thickness of the resin-coated metal thin film is excessively increased, as an excessive amount of insulating material is required to form the insulating layer, the cost of raw materials may increase, resulting in reduced efficiency in economical efficiency, thinning and high integration. Applications to semiconductor devices can be difficult.
상기 수지코팅금속박막은 금속박, 및 상기 금속박의 적어도 일면에 형성된 수지 경화물과, 상기 수지 경화물 사이에 분산된 무기 충진재를 포함하고, 상기 수지 경화물은 i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1이상 포함한 아민 화합물; 열경화성 수지; 및 열가소성 수지;간의 경화물일 수 있다.The resin-coated metal thin film includes a metal foil, a resin cured product formed on at least one surface of the metal foil, and an inorganic filler dispersed between the resin cured products, wherein the cured resin product is i) sulfone group, carbonyl group, halogen group , An alkyl group having 1 to 20 carbon atoms unsubstituted or substituted with a nitro group, a cyano group or a halogen group, ii) a nitro group, an aryl group having 6 to 20 carbon atoms unsubstituted or substituted with a cyano group or a halogen group, iii) a nitro group, a cyano group Heteroaryl group having 2 to 30 carbon atoms unsubstituted or substituted with no or halogen group, and iv) at least one functional group selected from the group consisting of a alkylene group having 1 to 20 carbon atoms unsubstituted or substituted with nitro group, cyano group or halogen group. An amine compound containing at least one; Thermosetting resins; And thermoplastic resin; may be a cured product of the liver.
또한, 상기 수지코팅금속박막은 금속박, 및 상기 금속박의 적어도 일면에 형성된 수지 경화물을 포함하고, 상기 수지 경화물은 i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1이상 포함한 아민 화합물; 열경화성 수지; 열가소성 수지; 및 무기 충진재;를 포함하고, 상기 아민 화합물 및 열경화성 수지의 총합 100 중량부에 대해, 상기 열가소성 수지를 40 중량부 내지 90 중량부로 포함하며, 120 ℃ 내지 180 ℃의 범위에서 2000Pa·s 이하의 복소점도를 갖는 금속 박막 코팅용 열경화성 수지 조성물의 경화물일 수 있다.In addition, the resin-coated metal thin film includes a metal foil and a cured resin formed on at least one surface of the metal foil, and the cured resin is i) substituted with a sulfone group, a carbonyl group, a halogen group, a nitro group, a cyano group, or a halogen group. Or an unsubstituted alkyl group having 1 to 20 carbon atoms, ii) an aryl group having 6 to 20 carbon atoms substituted or unsubstituted with a nitro group, a cyano group or a halogen group, iii) a carbon number substituted or unsubstituted with a nitro group, a cyano group or a halogen group 2 to 30 heteroaryl groups, and iv) an amine compound containing at least one functional group selected from the group consisting of an alkylene group having 1 to 20 carbon atoms unsubstituted or substituted with a nitro group, a cyano group, or a halogen group; Thermosetting resins; Thermoplastic resins; And an inorganic filler, containing 40 parts by weight to 90 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the total of the amine compound and the thermosetting resin, and complexing up to 2000 Pa · s in the range of 120 ° C. to 180 ° C. It may be a cured product of a thermosetting resin composition for coating a thin metal film having a viscosity.
상기 금속박은 동박; 알루미늄박; 니켈, 니켈-인, 니켈-주석 합금, 니켈-철 합금, 납 또는 납-주석 합금을 중간층으로 하고, 이 양면에 서로 다른 두께의 구리층을 포함하는 3층 구조의 복합박; 또는 알루미늄과 동박을 복합한 2층 구조의 복합박을 포함한다.The metal foil is copper foil; Aluminum foil; A composite foil of a three-layer structure comprising nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead or lead-tin alloy as an intermediate layer, and including copper layers of different thicknesses on both sides; Or it includes a composite foil of a two-layer structure in which aluminum and copper foil are combined.
바람직한 일 구현예에 따르면, 본 발명에 이용되는 금속박은 동박이나 알루미늄박이 이용되고, 약 2 ㎛ 내지 200 ㎛의 두께를 갖는 것을 사용할 수 있지만, 그 두께가 약 2 ㎛ 내지 35 ㎛인 것이 바람직하다. 바람직하게, 상기 금속박으로는 동박을 사용한다. 또한, 본 발명에 따르면 금속박으로서 니켈, 니켈-인, 니켈-주석 합금, 니켈-철 합금, 납, 또는 납-주석 합금 등을 중간층으로 하고, 이의 양면에 0.5 ㎛ 내지 15 ㎛의 구리층과 10 ㎛ 내지 300 ㎛의 구리층을 설치한, 3층 구조의 복합박 또는 알루미늄과 동박을 복합한 2층 구조 복합박을 사용할 수도 있다. According to one preferred embodiment, the metal foil used in the present invention is a copper foil or an aluminum foil is used, it can be used having a thickness of about 2 ㎛ to 200 ㎛, the thickness is preferably about 2 ㎛ to 35 ㎛. Preferably, copper foil is used as the metal foil. In addition, according to the present invention, as a metal foil, nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, or lead-tin alloy, etc. are used as an intermediate layer, and copper layers having a thickness of 0.5 μm to 15 μm on both sides thereof and 10 It is also possible to use a three-layer structured composite foil provided with a copper layer of µm to 300 µm or a two-layer structure composite foil obtained by combining aluminum and copper foil.
상기 수지 경화물의 두께는 15 ㎛ 이하, 또는 10 ㎛ 이하, 또는 1 ㎛ 내지 15 ㎛, 또는 1 ㎛ 내지 10 ㎛, 또는 5 ㎛ 내지 10 ㎛, 또는 6 ㎛ 내지 8 ㎛일 수 있다. 이러한 경화물은 금속박 상에 두께가 얇게 형성되어도, 금속박에 대하여 우수한 열적, 기계적 물성을 나타내도록 할 수 있다. 상기 경화물의 두께가 특정 수치만큼 증가하거나 감소하는 경우 수지 코팅 금속 박막에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.The cured resin may have a thickness of 15 μm or less, or 10 μm or less, or 1 μm to 15 μm, or 1 μm to 10 μm, or 5 μm to 10 μm, or 6 μm to 8 μm. Even if the cured product has a thin thickness on the metal foil, it is possible to exhibit excellent thermal and mechanical properties with respect to the metal foil. When the thickness of the cured product increases or decreases by a specific value, physical properties measured in the resin-coated metal thin film may also change by a certain value.
한편, 상기 수지 경화물에 대한 내용은 상기 일 구현예에서 상술한 내용을 모두 포함한다.On the other hand, the contents of the cured resin include all the contents described above in one embodiment.
상기 수지코팅금속박막은, 금속 박막 코팅용 열경화성 수지 조성물을 금속 박막에 코팅하는 단계; 및 상기 금속 박막에 코팅된 열경화성 수지 조성물을 경화하는 단계;를 포함하여 형성될 수 있다.The resin coating metal thin film, coating a thermosetting resin composition for metal thin film coating on a metal thin film; And curing the thermosetting resin composition coated on the metal thin film.
상기 일 구현예에서 금속 박막 코팅용 열경화성 수지 조성물에 대해 상술한 각 성분을 혼합하여 코팅용 바니시를 제조하고, 이를 금속박에 코팅한 후 경화 및 건조하는 과정을 통해 간단한 방법으로 수지 코팅 금속 박막을 제조할 수 있다.In one embodiment, the above-mentioned components for the thermosetting resin composition for metal thin film coating are mixed to prepare a coating varnish, and after coating it on a metal foil, curing and drying the resin coating metal thin film by a simple method. can do.
또한, 수지의 경화 반응을 조절하여 적층 공정 온도 구간 내 최소 점도가 유지하는 구간을 길게한다. 바람직하게, 상기 경화조건은 180 ℃ 내지 250 ℃의 온도에서 1 시간 내지 4시간 동안 진행될 수 있다.In addition, the curing reaction of the resin is adjusted to lengthen the section at which the minimum viscosity is maintained in the lamination process temperature section. Preferably, the curing conditions may be performed for 1 hour to 4 hours at a temperature of 180 ° C to 250 ° C.
또한, 상기 금속 박막 코팅용 열경화성 수지 조성물을 금속박에 코팅하는 방법은 크게 제한되지 않으며, 이 분야에 잘 알려진 코팅 방법이 사용될 수 있다.In addition, the method of coating the metal thin film coating thermosetting resin composition on the metal foil is not particularly limited, and a coating method well known in the art may be used.
일례로, 금속박에 금속 박막 코팅용 열경화성 수지 조성물을 코터 장치에 넣고, 일정 두께로 코팅하는 방법이 사용될 수 있다. 상기 코터 장치는 콤마 코터, 블레이드 코터, 립 코터, 로드 코터, 스퀴즈 코터, 리버스 코터, 트랜스퍼 롤 코터, 그라비아 코터 또는 분무 코터 등을 이용할 수 있다.As an example, a method of coating a metal foil with a thermosetting resin composition for coating a thin film in a coater device and coating it with a predetermined thickness may be used. The coater device may use a comma coater, blade coater, lip coater, rod coater, squeeze coater, reverse coater, transfer roll coater, gravure coater or spray coater.
또한, 흐름성 평가를 위해 캐리어 필름을 사용할 수 있으며, 상기 캐리어 필름으로는 폴리에틸렌테레프탈레이트(PET), 폴리에스테르 필름, 폴리이미드 필름, 폴리아미드이미드 필름, 폴리프로필렌 필름, 폴리스티렌 필름 등의 플라스틱 필름을 사용할 수 있다.In addition, a carrier film may be used for evaluation of flowability, and the carrier film may include plastic films such as polyethylene terephthalate (PET), polyester film, polyimide film, polyamideimide film, polypropylene film, and polystyrene film. Can be used.
한편, 상기 코팅에 사용되는 바니시는 열경화성 수지 조성물에 용제를 첨가한 상태일 수 있다. 상기 수지 바니시용 용제는 상기 수지 성분과 혼합 가능하고 양호한 용해성을 갖는 것이라면 특별히 한정하지 않는다. 이들의 구체적인 예로는, 아세톤, 메틸 에틸 케톤, 메틸이소부틸 케톤 및 시클로헥사논과 같은 케톤, 벤젠, 톨루엔 및 자일렌과 같은 방향족 하이드로카본, 및 디메틸포름아미드 및 디메틸아세트아미드와 같은 아미드, 메틸셀로솔브, 부틸셀로솔브 같은 알리파틱 알코올 등이 있다.Meanwhile, the varnish used for the coating may be in a state in which a solvent is added to the thermosetting resin composition. The solvent for the resin varnish is not particularly limited as long as it can be mixed with the resin component and has good solubility. Specific examples of these include ketones such as acetone, methyl ethyl ketone, methylisobutyl ketone and cyclohexanone, aromatic hydrocarbons such as benzene, toluene and xylene, and amides such as dimethylformamide and dimethylacetamide, methylcello And alcohol alcohols such as sorb and butyl cellosolve.
한편, 상기 절연층에 패턴을 형성하는 방법의 예가 크게 한정된 것은 아니나, 예를 들어, 레이저를 이용한 가공방식으로, CO2 또는 YAG 레이저 드릴을 사용할 수 있다.Meanwhile, an example of a method of forming a pattern on the insulating layer is not particularly limited. For example, a CO 2 or YAG laser drill may be used as a processing method using a laser.
상기 제3단계는, 상기 절연층 상에 금속층을 적층하고 패턴을 형성하는 단계이다. 제3단계에서 절연층은 제2단계를 거친 후에 패턴이 형성된 절연층을 의미한다.The third step is a step of laminating a metal layer on the insulating layer and forming a pattern. In the third step, the insulating layer means an insulating layer having a pattern formed after the second step.
상기 절연층 상에 금속층을 형성하고 패턴을 형성하는 구체적인 방법은 상기 제1단계와 동일하다.The specific method of forming a metal layer and forming a pattern on the insulating layer is the same as in the first step.
한편, 상기 제3단계 이후, 제2단계 및 제3단계를 1회이상 반복하여 진행할 수 있다. 즉, 상기 제3단계를 진행하고나서, 다시 제2단계를 진행한 후 제3단계를 진행하는 1회의 반복공정을 진행할 수 있다. 제2단계와 제3단계를 복수회 반복하여 진행함에 따라 수지 적층체 내에는 다층의 빌드업필름이 적층될 수 있다.Meanwhile, after the third step, the second and third steps may be repeated one or more times. That is, after the third step is performed, the second step may be performed again, and then one repeating process of the third step may be performed. As the second and third steps are repeated a plurality of times, a multi-layer build-up film may be laminated in the resin laminate.
상기 제4단계는, 상기 금속층 상에 레지스트층을 형성하는 단계이다. 상술한 바와 같이 캐리어 필름을 제거하는 제5단계에서 발생하는 수지 적층체의 파손을 방지하기 위해, 캐리어필름 제거 이전인 제4단계에서 수지 적층체 상단에 레지스트층을 형성하여 수지 적층체의 내구성을 향상시킬 수 있다.The fourth step is a step of forming a resist layer on the metal layer. As described above, in order to prevent damage to the resin laminate occurring in the fifth step of removing the carrier film, a resist layer is formed on the top of the resin laminate in the fourth step prior to the removal of the carrier film to improve the durability of the resin laminate. Can be improved.
상기 레지스트층의 예로는 알카리 가용성이나 비열경화성인 감광성 드라이필름 레지스트(DFR) 등을 들 수 있다. 상기 레지스트층의 두께는 1 ㎛ 내지 20 ㎛, 또는 5 ㎛ 내지 15 ㎛, 또는 9 ㎛ 내지 10 ㎛일 수 있다.Examples of the resist layer include alkali-soluble or non-thermosetting photosensitive dry film resist (DFR). The resist layer may have a thickness of 1 μm to 20 μm, or 5 μm to 15 μm, or 9 μm to 10 μm.
상기 제5단계는, 상기 제1단계의 캐리어필름과 금속층을 박리하고, 박리된 금속층의 표면에 레지스트층을 적층하고 패턴을 형성하는 단계이다.The fifth step is a step of peeling the carrier film and the metal layer of the first step, laminating a resist layer on the surface of the peeled metal layer and forming a pattern.
특히, 상기 제1단계의 캐리어필름과 금속층 간의 결합력은, 상기 제2단계의 금속층과 절연층 간의 결합력보다 작아, 상기 캐리어필름의 일면에 금속층이 접착된 후에도 이들 간의 물리적 박리가 가능하여 캐리어필름을 손쉽게 제거할 수 있다. 이는 상기 절연층에 사용된 절연재료의 성분상 특징에 의해, 상기 절연층의 금속에 대한 접착력이 향상되었기 때문으로 보인다.In particular, the bonding force between the carrier film and the metal layer in the first step is smaller than the bonding force between the metal layer and the insulating layer in the second step, and even after the metal layer is adhered to one surface of the carrier film, physical separation between them is possible, thereby making the carrier film. It can be easily removed. This seems to be because the adhesion to the metal of the insulating layer was improved by the characteristic of the components of the insulating material used in the insulating layer.
상기 박리된 금속층 표면에는 레지스트층을 적층할 수 있고, 상기 레지스트층의 예로는 알카리 가용성이나 비열경화성인 감광성 드라이필름 레지스트(DFR) 등을 들 수 있다. 상기 레지스트층의 두께는 1 ㎛ 내지 20 ㎛, 또는 5 ㎛ 내지 15 ㎛, 또는 9 ㎛ 내지 10 ㎛일 수 있다.A resist layer may be stacked on the surface of the peeled metal layer, and examples of the resist layer include an alkali-soluble or non-thermosetting photosensitive dry film resist (DFR). The resist layer may have a thickness of 1 μm to 20 μm, or 5 μm to 15 μm, or 9 μm to 10 μm.
상기 레지스트층을 적층한 후에는, 상기 레지스트층에 패턴을 형성할 수 있다. 상기 패턴을 형성하는 레지스트층은 수지 적층체의 상면 및 하면에 포함된 모든 레지스트층 또는 이중 적어도 하나일 수 있다. After laminating the resist layer, a pattern can be formed on the resist layer. The resist layer forming the pattern may be all of the resist layers included in the upper and lower surfaces of the resin laminate or at least one of them.
상기 레지스트층에 패턴을 형성하는 방법의 예로는, 노광 및 알카리 현상을 들 수 있다. 상기 레지스트층을 노광하는 방법의 예가 크게 한정되는 것은 아니나, 예를 들어, 상기 레지스트층에 소정의 패턴의 형성된 포토 마스크를 접촉하고 자외선을 조사하거나, 마스크에 포함된 소정의 패턴을 프로젝션 대물렌즈를 통해 이미징한 다음 자외선을 조사하거나, 레이저 다이오드(Laser Diode)를 광원으로 사용하여 직접 이미징한 다음 자외선을 조사하는 등의 방식 등을 통해 선택적으로 노광할 수 있다. 이 때, 자외선 조사 조건의 예로는 5mJ/㎠ 내지 600mJ/㎠의 광량으로 조사하는 것을 들 수 있다.Examples of a method of forming a pattern on the resist layer include exposure and alkali development. An example of a method of exposing the resist layer is not particularly limited. For example, a photo mask formed of a predetermined pattern is contacted with the resist layer and irradiated with ultraviolet rays, or a predetermined objective included in the mask is projected. It can be selectively exposed through imaging such as irradiating ultraviolet rays after imaging, or directly using a laser diode as a light source and then irradiating ultraviolet rays. At this time, examples of the ultraviolet irradiation conditions include irradiation with a light amount of 5 mJ / cm 2 to 600 mJ / cm 2.
또한, 상기 레지스트층을 현상하는 방법의 예로는 알카리 현상액을 처리하는 방법을 들 수 있다. 상기 알카리 현상액의 예가 크게 한정되는 것은 아니나, 예를 들어, 수산화칼륨, 수산화나트륨, 탄산나트륨, 탄산칼륨, 인산나트륨, 규산나트륨, 암모니아, 테트라메틸암모늄하이드록사이드, 아민류 등의 알카리 수용액을 사용할 수 있으며, 바람직하게는 30 ℃ 1% 탄산나트륨 현상액을 사용할 수 있다. 상기 알카리 현상액의 구체적인 사용량은 크게 제한되지 않는다.In addition, an example of a method for developing the resist layer is a method for treating an alkali developer. Examples of the alkali developer are not particularly limited. For example, an aqueous alkali solution such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, tetramethylammonium hydroxide, and amines can be used. , Preferably, 30 ° C 1% sodium carbonate developer may be used. The specific amount of the alkali developer is not particularly limited.
Ⅲ. 반도체 장치Ⅲ. Semiconductor device
본 발명의 또 다른 구현예에 따르면, 상기 일 구현예의 다층인쇄회로기판을 포함하는 반도체 장치를 제공한다. 상기 반도체 장치에 포함된 다층인쇄회로기판에 대한 내용은 상기 일 구현예에서 상술한 내용을 모두 포함한다.According to another embodiment of the present invention, there is provided a semiconductor device including the multilayer printed circuit board of the one embodiment. The contents of the multilayer printed circuit board included in the semiconductor device include all of the contents described above in one embodiment.
상기 다층인쇄회로기판은 공지의 방법에 의해 반도체 장치에 도입될 수 있고, 상기 다층인쇄회로기판이 초박형화 및 강한 내구성을 가지고 있으므로, 박형화 및 고집적화된 반도체 장치에도 적용이 가능하다.The multi-layer printed circuit board can be introduced into a semiconductor device by a known method, and since the multi-layer printed circuit board has ultra-thin and strong durability, it can be applied to a thinned and highly integrated semiconductor device.
본 발명에 따르면, 얇은 두께를 가지면서도 우수한 내구성을 갖는 다층인쇄회로기판, 이의 제조방법 및 이를 이용한 반도체 장치가 제공될 수 있다.According to the present invention, a multilayer printed circuit board having a thin thickness and excellent durability, a method for manufacturing the same, and a semiconductor device using the same can be provided.
도 1은 실시예1의 다층인쇄회로기판 제조공정을 개략적으로 나타낸 것이다.1 schematically shows a manufacturing process of a multilayer printed circuit board of Example 1.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.The invention is described in more detail in the following examples. However, the following examples are only illustrative of the present invention, and the contents of the present invention are not limited by the following examples.
<제조예: 절연층의 제조><Production Example: Preparation of insulating layer>
제조예1 : 수지코팅동박Production Example 1: Resin coated copper foil
(1) 금속 박막 코팅용 열경화성 수지 조성물의 제조(1) Preparation of a thermosetting resin composition for metal thin film coating
하기 표 1 의 조성에 따라, 각 성분을 메틸에틸케톤에 고형분 40%에 맞추어 투입하여 혼합한 후, 400 rpm 속도로 하루동안 상온 교반하고, 회전 증발 농축기(rotary evaporator)를 사용해서 점도 조절 및 탈포를 진행하여, 금속 박막 코팅용 수지 조성물(수지 바니시)를 제조하였다.According to the composition of Table 1, each component was added to methyl ethyl ketone in accordance with 40% of solid content and mixed, followed by stirring at room temperature at a rate of 400 rpm for 1 day and viscosity adjustment and defoaming using a rotary evaporator. By proceeding, a resin composition (resin varnish) for coating a metal thin film was prepared.
(2) 수지코팅동박의 제조(2) Preparation of resin coated copper foil
콤마코터로 상기 금속 박막 코팅용 수지 조성물을 동박 (두께 2 ㎛, Mitsui사 제조)에 코팅(코팅 두께: 6 ㎛)한 후, 220 ℃ 및 35 kg/㎠의 조건으로 100 분간 경화시켰다. 이어서, 17 cm Х 15 cm 크기로 재단하여 제조예2의 수지 코팅동박을 제작하였다.After coating the metal thin film coating resin composition with a comma coater on a copper foil (2 µm thick, manufactured by Mitsui) (coating thickness: 6 µm), it was cured for 100 minutes under conditions of 220 ° C. and 35 kg / cm 2. Subsequently, a resin coated copper foil of Preparation Example 2 was produced by cutting to a size of 17 cm x 15 cm.
제조예2 : 수지코팅동박Production Example 2: Resin coated copper foil
(1) 금속 박막 코팅용 열경화성 수지 조성물의 제조(1) Preparation of a thermosetting resin composition for metal thin film coating
하기 표 1 의 조성에 따라, 각 성분을 메틸에틸케톤에 고형분 40%에 맞추어 투입하여 혼합한 후, 400 rpm 속도로 하루동안 상온 교반하고, 회전 증발 농축기(rotary evaporator)를 사용해서 점도 조절 및 탈포를 진행하여, 금속 박막 코팅용 수지 조성물(수지 바니시)를 제조하였다.According to the composition of Table 1, each component was added to methyl ethyl ketone in accordance with 40% of solid content and mixed, followed by stirring at room temperature at a rate of 400 rpm for 1 day and viscosity adjustment and defoaming using a rotary evaporator. By proceeding, a resin composition (resin varnish) for coating a metal thin film was prepared.
(2) 수지코팅동박의 제조(2) Preparation of resin coated copper foil
콤마코터로 상기 금속 박막 코팅용 수지 조성물을 동박 (두께 2 ㎛, Mitsui사 제조)에 코팅(코팅 두께: 8 ㎛)한 후, 220 ℃ 및 35 kg/㎠의 조건으로 100 분간 경화시켰다. 이어서, 17 cm Х 15 cm 크기로 재단하여 제조예1의 수지 코팅동박을 제작하였다.After coating the resin composition for metal thin film coating with a comma coater (2 µm thick, manufactured by Mitsui) (coating thickness: 8 µm), it was cured for 100 minutes under conditions of 220 ° C. and 35 kg / cm 2. Subsequently, a resin coated copper foil of Preparation Example 1 was produced by cutting to a size of 17 cm x 15 cm.
제조예3 : 프리프레그Preparation Example 3: Prepreg
(1) 열경화성 수지 조성물의 제조(1) Preparation of thermosetting resin composition
하기 표 1 의 조성에 따라, 각 성분을 메틸에틸케톤에 고형분 40%에 맞추어 투입하여 혼합한 후, 400 rpm 속도로 하루동안 상온 교반하고, 회전 증발 농축기(rotary evaporator)를 사용해서 점도 조절 및 탈포를 진행하여, 금속 박막 코팅용 수지 조성물(수지 바니시)를 제조하였다.According to the composition of Table 1, each component was added to methyl ethyl ketone in accordance with 40% of solid content and mixed, followed by stirring at room temperature at a rate of 400 rpm for 1 day and viscosity adjustment and defoaming using a rotary evaporator. By proceeding, a resin composition (resin varnish) for coating a metal thin film was prepared.
(2) 프리프레그의 제조 (2) Preparation of prepreg
상기 교반한 바니쉬를 직조된 유리 섬유 (Glass Fabric)(두께 12㎛, Asahi Glass사 제조)에 함침시킨 후, 180 ℃의 온도에서 2~5분간 열풍 건조하여 16 ㎛ 두께의 프리프레그를 제조하였다.The impregnated varnish was impregnated into a woven glass fiber (12 µm thick, manufactured by Asahi Glass), followed by hot air drying at a temperature of 180 ° C. for 2 to 5 minutes to prepare a 16 µm thick prepreg.
제조예4 : 프리프레그Preparation Example 4: Prepreg
(1) 열경화성 수지 조성물의 제조(1) Preparation of thermosetting resin composition
하기 표 1 의 조성에 따라, 각 성분을 메틸에틸케톤에 고형분 40%에 맞추어 투입하여 혼합한 후, 400 rpm 속도로 하루동안 상온 교반하고, 회전 증발 농축기(rotary evaporator)를 사용해서 점도 조절 및 탈포를 진행하여, 금속 박막 코팅용 수지 조성물(수지 바니시)를 제조하였다.According to the composition of Table 1, each component was added to methyl ethyl ketone in accordance with 40% of solid content and mixed, followed by stirring at room temperature at a rate of 400 rpm for 1 day and viscosity adjustment and defoaming using a rotary evaporator. By proceeding, a resin composition (resin varnish) for coating a metal thin film was prepared.
(2) 프리프레그의 제조 (2) Preparation of prepreg
상기 교반한 바니쉬를 직조된 유리 섬유 (Glass Fabric)(두께 12㎛, Asahi Glass사 제조)에 함침시킨 후, 180 ℃의 온도에서 2~5분간 열풍 건조하여 18 ㎛ 두께의 프리프레그를 제조하였다.The impregnated varnish was impregnated into a woven glass fiber (12 µm thick, manufactured by Asahi Glass), followed by hot air drying at a temperature of 180 ° C. for 2 to 5 minutes to prepare an 18 µm thick prepreg.
Figure PCTKR2019012204-appb-T000001
Figure PCTKR2019012204-appb-T000001
* XD-1000: 에폭시 수지(Nippon kayaku사; 에폭시 당량 253 g/eq)* NC-3000H: 에폭시 수지(Nippon kayaku사; 에폭시 당량 290 g/eq)* XD-1000: Epoxy resin (Nippon kayaku; epoxy equivalent 253 g / eq) * NC-3000H: Epoxy resin (Nippon kayaku; epoxy equivalent 290 g / eq)
* BMI-2300: 비스말레이미드계 수지(DAIWA KASEI사; 말레이미드 당량 179g/eq)* BMI-2300: bismaleimide resin (DAIWA KASEI, maleimide equivalent 179 g / eq)
* DDS: 4,4'-diaminodiphenyl sulfone(활성수소 당량 62g/eq)* DDS: 4,4'-diaminodiphenyl sulfone (active hydrogen equivalent 62g / eq)
* Acrylic rubber(Mw 800,000): PARACRON KG-3015P(Negami chemical industrial Co.,LTD사)* Acrylic rubber (Mw 800,000): PARACRON KG-3015P (Negami chemical industrial Co., LTD)
제조예5 및 제조예6 : 수지코팅동박Production Example 5 and Production Example 6: Resin coated copper foil
(1) 금속 박막 코팅용 열경화성 수지 조성물의 제조(1) Preparation of a thermosetting resin composition for metal thin film coating
하기 표 2 의 조성에 따라, 각 성분을 메틸에틸케톤에 고형분 40%에 맞추어 투입하여 혼합한 후, 400 rpm 속도로 하루동안 상온 교반하고, 회전 증발 농축기(rotary evaporator)를 사용해서 점도 조절 및 탈포를 진행하여, 금속 박막 코팅용 수지 조성물(수지 바니시)를 제조하였다.According to the composition of Table 2, each component was added to methyl ethyl ketone according to 40% of solid content and mixed, followed by stirring at room temperature at a rate of 400 rpm for 1 day and viscosity adjustment and defoaming using a rotary evaporator. By proceeding, a resin composition (resin varnish) for coating a metal thin film was prepared.
(2) 수지코팅동박의 제조(2) Preparation of resin coated copper foil
콤마코터로 상기 금속 박막 코팅용 수지 조성물을 동박 (두께 2 ㎛, Mitsui사 제조)에 코팅(코팅 두께: 6 ㎛)한 후, 220 ℃ 및 35 kg/㎠의 조건으로 100 분간 경화시켰다. 이어서, 17 cm Х 15 cm 크기로 재단하여 제조예5 및 제조예6의 수지 코팅동박을 제작하였다.After coating the metal thin film coating resin composition with a comma coater on a copper foil (2 µm thick, manufactured by Mitsui) (coating thickness: 6 µm), it was cured for 100 minutes under conditions of 220 ° C. and 35 kg / cm 2. Subsequently, the resin coated copper foils of Production Example 5 and Production Example 6 were prepared by cutting them to a size of 17 cm x 15 cm.
Figure PCTKR2019012204-appb-T000002
Figure PCTKR2019012204-appb-T000002
제조예1 및 제조예5의 수지 코팅동박에서 동박을 에칭하여 제거한 후, 레오미터 점도를 측정했다 (온도에 따른 점도 측정 조건, 승온속도 5 ℃/min, 주파수: 10Hz).After the copper foil was etched and removed from the resin coated copper foils of Preparation Example 1 and Preparation Example 5, rheometer viscosity was measured (viscosity measurement conditions according to temperature, heating rate 5 ° C./min, frequency: 10 Hz).
그 결과, 제조예1의 수지층은 복소점도가 2000 Pa·s 이하인 온도구간이 120~180 ℃인 반면, 제조예5의 수지층은 복소점도가 2000 Pa·s 이하인 온도구간이 없었다.As a result, in the resin layer of Production Example 1, the temperature range of the complex viscosity of 2000 Pa · s or less was 120 to 180 ° C., whereas the resin layer of Production Example 5 had no temperature section of the complex viscosity of 2000 Pa · s or less.
또한, 제조예1 및 제조예6의 수지 코팅동박에서 동박을 에칭하여 제거한 후, IPC-TM-650 (2.4.18.3)에 따라, Universal Testing Machine(Instron 3365)장비를 이용하여 MD방향의 인장신율을 측정하였다.In addition, after the copper foil was etched and removed from the resin coated copper foils of Preparation Examples 1 and 6, according to IPC-TM-650 (2.4.18.3), tensile elongation in the MD direction using Universal Testing Machine (Instron 3365) equipment. Was measured.
그 결과, 제조예1의 수지층은 인장신율이 3.8%인 반면, 제조예6의 수지층은 인장신율이 0.9%로 실시예에 비해 매우 낮게 측정됨을 확인할 수 있었다.As a result, it was confirmed that the resin layer of Production Example 1 had a tensile elongation of 3.8%, whereas the resin layer of Production Example 6 had a tensile elongation of 0.9%, which was measured very low compared to the Example.
<실시예: 다층인쇄회로기판의 제조><Example: Preparation of a multilayer printed circuit board>
실시예1Example 1
하기 도1에 나타난 바와 같이, 다음 공정순서에 따라 다층인쇄회로기판을 제조하였다.As shown in FIG. 1, a multilayer printed circuit board was manufactured according to the following process sequence.
<1> 50~100 ㎛ 두께의 캐리어필름(C)의 양면에 5 ㎛ 두께의 극박동박(M0, MO')을 라미네이트 하였다.<1> An ultra-thin copper foil (M0, MO ') having a thickness of 5 μm was laminated on both sides of a carrier film (C) having a thickness of 50 to 100 μm.
<2> 이후, 상기 극박동박(M0)의 표면에, 아르곤과 산소의 혼합 가스를 증착장비로 공급하면서 스퍼터링법을 통해 구리(Cu) 금속을 0.5㎛ 두께로 증착하여 시드층(seed layer)을 형성하고, 전해도금을 통해 9 ㎛ 두께의 동박층(M1)을 형성하였다.<2> After that, while supplying a mixed gas of argon and oxygen to the surface of the ultra-thin copper foil (M0) as a deposition equipment, a seed layer was deposited by depositing copper (Cu) metal to a thickness of 0.5 μm through sputtering. Formation, and formed a copper foil layer (M1) of 9 ㎛ thickness through electroplating.
상기 동박층(M1) 상에 15 ㎛ 두께의 감광성 드라이필름 레지스트 KL1015(코오롱인더스트리 제조)를 110℃에서 라미네이트하고, 상기 감광성 드라이필름 레지스트 상에 직경이 30㎛인 원형의 네가티브형 포토마스크를 접촉시키고, 자외선을 조사(25mJ/㎠의 광량)한 다음, 30 ℃ 1% 탄산나트륨 현상액을 통해 상기 감광성 드라이필름 레지스트를 현상하였다. 이때 노출된 동박층(M1)을 에칭을 통해 제거하여 패턴을 형성하였다. 이후, 50 ℃ 온도의 3% 수산화 나트륨 레지스트 박리액을 사용하여 남아있는 감광성 드라이필름 레지스트을 제거하였다.A 15 μm thick photosensitive dry film resist KL1015 (manufactured by Kolon Industries) was laminated at 110 ° C. on the copper foil layer (M1), and a circular negative photomask having a diameter of 30 μm was contacted on the photosensitive dry film resist. , Irradiated with ultraviolet light (25 mJ / cm 2 light amount), and then developed the photosensitive dry film resist through a 30 ° C. 1% sodium carbonate developer. At this time, the exposed copper foil layer M1 was removed through etching to form a pattern. Thereafter, the remaining photosensitive dry film resist was removed using a 3% sodium hydroxide resist stripper at a temperature of 50 ° C.
상기 동박층(M1) 상에 절연층(D12)으로 상기 제조예1에서 얻어진 8 ㎛ 두께의 수지코팅동박을 라미네이트 하였다. 이때, 상기 수지코팅동박의 수지층을 동박층(M1)과 접착시켰다.On the copper foil layer M1, an 8 μm thick resin coated copper foil obtained in Preparation Example 1 was laminated as an insulating layer D12. At this time, the resin layer of the resin coated copper foil was adhered to the copper foil layer (M1).
이후, 상기 절연층(D12)을 200 ℃의 온도에서 1시간 동안 열경화시킨다음, CO2 레이저 드릴을 이용하여 식각하여 비아홀을 형성하였다.Thereafter, the insulating layer (D12) was thermally cured at a temperature of 200 ° C. for 1 hour, and then etched using a CO 2 laser drill to form a via hole.
이후, 상기 비아홀 표면에, 아르곤과 산소의 혼합 가스를 증착장비로 공급하면서 스퍼터링법을 통해 구리(Cu) 금속을 0.5㎛ 두께로 증착하여 시드층(seed layer)을 형성하고, 전해도금을 통해 7 ㎛ 두께의 동박층(M2)을 형성하였다. Thereafter, while supplying a mixed gas of argon and oxygen to the via hole surface as a deposition equipment, a copper (Cu) metal is deposited to a thickness of 0.5 μm through a sputtering method to form a seed layer, and 7 through electroplating. A copper foil layer (M2) having a thickness of μm was formed.
상기 동박층(M2) 상에 15 ㎛ 두께의 감광성 드라이필름 레지스트 KL1015(코오롱인더스트리 제조)를 110℃에서 라미네이트하고, 상기 감광성 드라이필름 레지스트 상에 직경이 30㎛인 원형의 네가티브형 포토마스크를 접촉시키고, 자외선을 조사(25mJ/㎠의 광량)한 다음, 30 ℃ 1% 탄산나트륨 현상액을 통해 상기 감광성 드라이필름 레지스트를 현상하였다. 이때 노출된 동박층(M2)을 에칭을 통해 제거하여 패턴을 형성하였다. 이후, 50 ℃ 온도의 3% 수산화 나트륨 레지스트 박리액을 사용하여 남아있는 감광성 드라이필름 레지스트을 제거하였다.A 15 μm thick photosensitive dry film resist KL1015 (manufactured by Kolon Industries) was laminated at 110 ° C. on the copper foil layer M2, and a circular negative photomask having a diameter of 30 μm was contacted on the photosensitive dry film resist, , Irradiated with ultraviolet light (25 mJ / cm 2 light amount), and then developed the photosensitive dry film resist through a 30 ° C. 1% sodium carbonate developer. At this time, the exposed copper foil layer M2 was removed through etching to form a pattern. Thereafter, the remaining photosensitive dry film resist was removed using a 3% sodium hydroxide resist stripper at a temperature of 50 ° C.
이후, 상기 동박층(M2) 상에 절연층(D23)으로 상기 제조예2에서 얻어진 10 ㎛ 두께의 수지코팅동박을 라미네이트 하였다. 이때, 상기 수지코팅동박의 수지층을 동박층(M2)과 접착시켰다.Thereafter, a resin coated copper foil having a thickness of 10 μm obtained in Production Example 2 was laminated on the copper foil layer M2 as an insulating layer D23. At this time, the resin layer of the resin coated copper foil was adhered to the copper foil layer (M2).
이후, 상기 절연층(D23)을 200℃의 온도에서 1시간 동안 열경화시킨다음, CO2 레이저 드릴을 이용하여 식각하여 비아홀을 형성하였다.Thereafter, the insulating layer D23 was thermally cured at a temperature of 200 ° C. for 1 hour, and then etched using a CO 2 laser drill to form a via hole.
이후, 상기 비아홀 표면에, 아르곤과 산소의 혼합 가스를 증착장비로 공급하면서 스퍼터링법을 통해 티타늄(Ti) 금속을 50㎚, 구리(Cu) 금속을 0.5㎛ 두께로 증착하여 시드층(seed layer)을 형성하고, 전해도금을 통해 9 ㎛ 두께의 동박층(M3)을 형성하였다.Thereafter, while supplying a mixed gas of argon and oxygen to the via hole surface as a deposition equipment, a titanium (Ti) metal was deposited to a thickness of 50 nm and a copper (Cu) metal to a thickness of 0.5 µm through a sputtering method to form a seed layer. Was formed, and a copper foil layer (M3) having a thickness of 9 μm was formed through electroplating.
상기 동박층(M3) 상에 15 ㎛ 두께의 감광성 드라이필름 레지스트 KL1015(코오롱인더스트리 제조)를 110℃에서 라미네이트하고, 상기 감광성 드라이필름 레지스트 상에 직경이 30㎛인 원형의 네가티브형 포토마스크를 접촉시키고, 자외선을 조사(25mJ/㎠의 광량)한 다음, 30 ℃ 1% 탄산나트륨 현상액을 통해 상기 감광성 드라이필름 레지스트를 현상하였다. 이때 노출된 동박층(M3)을 에칭을 통해 제거하여 패턴을 형성하였다. 이후, 50 ℃ 온도의 3% 수산화 나트륨 레지스트 박리액을 사용하여 남아있는 감광성 드라이필름 레지스트을 제거하여 제1판넬(PN-1)을 제조하였다.A 15 μm thick photosensitive dry film resist KL1015 (manufactured by Kolon Industries) was laminated at 110 ° C. on the copper foil layer (M3), and a circular negative photomask having a diameter of 30 μm was brought into contact with the photosensitive dry film resist. , Irradiated with ultraviolet light (25 mJ / cm 2 light amount), and then developed the photosensitive dry film resist through a 30 ° C. 1% sodium carbonate developer. At this time, the exposed copper foil layer (M3) was removed through etching to form a pattern. Thereafter, the remaining photosensitive dry film resist was removed using a 3% sodium hydroxide resist stripper at a temperature of 50 ° C. to prepare a first panel (PN-1).
상기 극박동박(MO') 표면에도 상기 제1판넬과 동일한 방법으로 동박층(M1'), 절연층(D12'), 동박층(M2'), 절연층(D23'), 동박층(M3')이 순차적으로 적층된 제2판넬(PN-2)을 형성하였다.On the surface of the ultra-thin copper foil (MO '), copper foil layer (M1'), insulating layer (D12 '), copper foil layer (M2'), insulating layer (D23 '), and copper foil layer (M3') in the same manner as the first panel. ) To form a second panel (PN-2) sequentially stacked.
<3> 상기 제1판넬(PN-1) 표면에 9 ㎛ 두께의 감광성 드라이필름 레지스트 KL1015(코오롱인더스트리 제조) (SR BTM)를 110℃에서 라미네이트하였다. 상기 제2판넬(PN-2) 표면에도 9 ㎛ 두께의 감광성 드라이필름 레지스트 KL1015(코오롱인더스트리 제조) (SR BTM')를 110℃에서 라미네이트하였다.<3> A photosensitive dry film resist KL1015 (manufactured by Kolon Industries) (SR BTM) having a thickness of 9 μm was laminated on the surface of the first panel (PN-1) at 110 ° C. On the surface of the second panel (PN-2), a photosensitive dry film resist KL1015 (manufactured by Kolon Industries) (SR BTM ') having a thickness of 9 µm was laminated at 110 ° C.
<4> 극박동박(M0)과 캐리어필름(C)을 분리하여 캐리어 필름을 제거하였다.<4> The ultra-thin copper foil (M0) and the carrier film (C) were separated to remove the carrier film.
<5> 상기 제1판넬(PN-1) 표면의 극박동박(MO)을 에칭하여 제거하고, 9 ㎛ 두께의 감광성 드라이필름 레지스트 KL1015(코오롱인더스트리 제조) (SR TOP)를 110℃에서 라미네이트하였다.<5> The ultra-thin copper foil (MO) on the surface of the first panel (PN-1) was removed by etching, and a 9 μm thick photosensitive dry film resist KL1015 (manufactured by Kolon Industries) (SR TOP) was laminated at 110 ° C.
<6> 상기 감광성 드라이필름 레지스트(SR TOP) 상에 직경이 30㎛인 원형의 네가티브형 포토마스크를 접촉시키고, 자외선을 조사(25mJ/㎠의 광량)한 다음, 30℃ 1% 탄산나트륨 현상액을 통해 상기 감광성 드라이필름 레지스트(SR TOP)을 현상하여, 일정한 패턴을 형성하였다.<6> A circular negative photomask having a diameter of 30 µm is brought into contact with the photosensitive dry film resist (SR TOP), irradiated with ultraviolet rays (light amount of 25 mJ / cm 2), and then through 30% 1% sodium carbonate developer The photosensitive dry film resist (SR TOP) was developed to form a constant pattern.
감광성 드라이필름 레지스트(SR BTM)에도 동일한 방법으로 일정한 패턴을 형성하여 다층인쇄회로기판을 제조하였다.In the same way as the photosensitive dry film resist (SR BTM), a constant pattern was formed to produce a multilayer printed circuit board.
<7> 제2판넬(PN-2)에 대해서도, 상기 <5> 내지 <6>의 공정을 진행하여, 다층인쇄회로기판을 제조하였다.<7> Also for the second panel (PN-2), the steps of <5> to <6> were performed to prepare a multilayer printed circuit board.
실시예2Example 2
다음 공정순서에 따라 다층인쇄회로기판을 제조하였다.A multilayer printed circuit board was manufactured according to the following process sequence.
<1> 상기 실시예1의 <1>과 동일한 방법으로 진행하였다.<1> The same procedure as in <1> in Example 1 was performed.
<2> 상기 극박동박(M0) 표면에, 아르곤과 산소의 혼합 가스를 증착장비로 공급하면서 스퍼터링법을 통해 구리(Cu) 금속을 0.5㎛ 두께로 증착하여 시드층(seed layer)을 형성하고, 전해도금을 통해 9 ㎛ 두께의 동박층(M1)을 형성하였다.<2> On the surface of the ultra-thin copper foil (M0), while supplying a mixed gas of argon and oxygen to the deposition equipment, a copper (Cu) metal is deposited to a thickness of 0.5 μm through a sputtering method to form a seed layer, A copper foil layer (M1) having a thickness of 9 μm was formed through electroplating.
상기 동박층(M1) 상에 15 ㎛ 두께의 감광성 드라이필름 레지스트 KL1015(코오롱인더스트리 제조)를 110℃에서 라미네이트하고, 상기 감광성 드라이필름 레지스트 상에 직경이 30㎛인 원형의 네가티브형 포토마스크를 접촉시키고, 자외선을 조사(25mJ/㎠의 광량)한 다음, 30 ℃ 1% 탄산나트륨 현상액을 통해 상기 감광성 드라이필름 레지스트를 현상하였다. 이때 노출된 동박층(M1)을 에칭을 통해 제거하여 패턴을 형성하였다. 이후, 50 ℃ 온도의 3% 수산화 나트륨 레지스트 박리액을 사용하여 남아있는 감광성 드라이필름 레지스트을 제거하였다.A 15 μm thick photosensitive dry film resist KL1015 (manufactured by Kolon Industries) was laminated at 110 ° C. on the copper foil layer (M1), and a circular negative photomask having a diameter of 30 μm was contacted on the photosensitive dry film resist. , Irradiated with ultraviolet light (25 mJ / cm 2 light amount), and then developed the photosensitive dry film resist through a 30 ° C. 1% sodium carbonate developer. At this time, the exposed copper foil layer M1 was removed through etching to form a pattern. Thereafter, the remaining photosensitive dry film resist was removed using a 3% sodium hydroxide resist stripper at a temperature of 50 ° C.
상기 동박층(M1) 상에 절연층(D12)으로 상기 제조예1에서 얻어진 8 ㎛ 두께의 수지코팅동박을 라미네이트 하였다. 이때, 상기 수지코팅동박의 수지층을 동박층(M1)과 접착시켰다.On the copper foil layer M1, an 8 μm thick resin coated copper foil obtained in Preparation Example 1 was laminated as an insulating layer D12. At this time, the resin layer of the resin coated copper foil was adhered to the copper foil layer (M1).
이후, 상기 절연층(D12)을 200 ℃의 온도에서 1시간 동안 열경화시킨다음, CO2 레이저 드릴을 이용하여 식각하여 비아홀을 형성하였다.Thereafter, the insulating layer (D12) was thermally cured at a temperature of 200 ° C. for 1 hour, and then etched using a CO 2 laser drill to form a via hole.
이후, 상기 비아홀 표면에, 아르곤과 산소의 혼합 가스를 증착장비로 공급하면서 스퍼터링법을 통해 구리(Cu) 금속을 0.5㎛ 두께로 증착하여 시드층(seed layer)을 형성하고, 전해도금을 통해 8 ㎛ 두께의 동박층(M2)을 형성하였다.Thereafter, while supplying a mixed gas of argon and oxygen to the via hole surface as a deposition equipment, a copper (Cu) metal is deposited to a thickness of 0.5 μm through a sputtering method to form a seed layer, and through electroplating, 8 A copper foil layer (M2) having a thickness of μm was formed.
상기 동박층(M2) 상에 15 ㎛ 두께의 감광성 드라이필름 레지스트 KL1015(코오롱인더스트리 제조)를 110℃에서 라미네이트하고, 상기 감광성 드라이필름 레지스트 상에 직경이 30㎛인 원형의 네가티브형 포토마스크를 접촉시키고, 자외선을 조사(25mJ/㎠의 광량)한 다음, 30 ℃ 1% 탄산나트륨 현상액을 통해 상기 감광성 드라이필름 레지스트를 현상하였다. 이때 노출된 동박층(M2)을 에칭을 통해 제거하여 패턴을 형성하였다. 이후, 50 ℃ 온도의 3% 수산화 나트륨 레지스트 박리액을 사용하여 남아있는 감광성 드라이필름 레지스트을 제거하였다.A 15 μm thick photosensitive dry film resist KL1015 (manufactured by Kolon Industries) was laminated at 110 ° C. on the copper foil layer M2, and a circular negative photomask having a diameter of 30 μm was contacted on the photosensitive dry film resist, , Irradiated with ultraviolet light (25 mJ / cm 2 light amount), and then developed the photosensitive dry film resist through a 30 ° C. 1% sodium carbonate developer. At this time, the exposed copper foil layer M2 was removed through etching to form a pattern. Thereafter, the remaining photosensitive dry film resist was removed using a 3% sodium hydroxide resist stripper at a temperature of 50 ° C.
상기 동박층(M2) 상에 절연층(D23)으로 상기 제조예1에서 얻어진 8 ㎛ 두께의 수지코팅동박을 라미네이트 하였다. 이때, 상기 수지코팅동박의 수지층을 동박층(M2)과 접착시켰다.On the copper foil layer M2, an 8 μm-thick resin-coated copper foil obtained in Preparation Example 1 was laminated as an insulating layer (D23). At this time, the resin layer of the resin coated copper foil was adhered to the copper foil layer (M2).
이후, 상기 절연층(D23)을 200 ℃의 온도에서 1시간 동안 열경화시킨다음, CO2 레이저 드릴을 이용하여 식각하여 비아홀을 형성하였다.Thereafter, the insulating layer (D23) was thermally cured at a temperature of 200 ° C. for 1 hour, and then etched using a CO 2 laser drill to form a via hole.
이후, 상기 비아홀 표면에, 아르곤과 산소의 혼합 가스를 증착장비로 공급하면서 스퍼터링법을 통해 구리(Cu) 금속을 0.5㎛ 두께로 증착하여 시드층(seed layer)을 형성하고, 전해도금을 통해 8 ㎛ 두께의 동박층(M3)을 형성하였다.Thereafter, while supplying a mixed gas of argon and oxygen to the via hole surface as a deposition equipment, a copper (Cu) metal is deposited to a thickness of 0.5 μm through a sputtering method to form a seed layer, and through electroplating, 8 A copper foil layer (M3) having a thickness of μm was formed.
상기 동박층(M3) 상에 15 ㎛ 두께의 감광성 드라이필름 레지스트 KL1015(코오롱인더스트리 제조)를 110℃에서 라미네이트하고, 상기 감광성 드라이필름 레지스트 상에 직경이 30㎛인 원형의 네가티브형 포토마스크를 접촉시키고, 자외선을 조사(25mJ/㎠의 광량)한 다음, 30 ℃ 1% 탄산나트륨 현상액을 통해 상기 감광성 드라이필름 레지스트를 현상하였다. 이때 노출된 동박층(M2)을 에칭을 통해 제거하여 패턴을 형성하였다. 이후, 50 ℃ 온도의 3% 수산화 나트륨 레지스트 박리액을 사용하여 남아있는 감광성 드라이필름 레지스트을 제거하였다.A 15 μm thick photosensitive dry film resist KL1015 (manufactured by Kolon Industries) was laminated at 110 ° C. on the copper foil layer (M3), and a circular negative photomask having a diameter of 30 μm was brought into contact with the photosensitive dry film resist. , Irradiated with ultraviolet light (25 mJ / cm 2 light amount), and then developed the photosensitive dry film resist through a 30 ° C. 1% sodium carbonate developer. At this time, the exposed copper foil layer M2 was removed through etching to form a pattern. Thereafter, the remaining photosensitive dry film resist was removed using a 3% sodium hydroxide resist stripper at a temperature of 50 ° C.
이후, 상기 동박층(M3) 상에 절연층(D34)으로 상기 제조예2에서 얻어진 10 ㎛ 두께의 수지코팅동박을 라미네이트 하였다. 이때, 상기 수지코팅동박의 수지층을 동박층(M3)과 접착시켰다.Thereafter, a resin coated copper foil having a thickness of 10 μm obtained in Production Example 2 was laminated on the copper foil layer M3 as an insulating layer D34. At this time, the resin layer of the resin coated copper foil was adhered to the copper foil layer (M3).
이후, 상기 절연층(D34)을 200℃의 온도에서 1시간 동안 열경화시킨다음, CO2 레이저 드릴을 이용하여 식각하여 비아홀을 형성하였다.Thereafter, the insulating layer D34 was thermally cured at a temperature of 200 ° C. for 1 hour, and then etched using a CO 2 laser drill to form a via hole.
이후, 상기 비아홀 표면에, 아르곤과 산소의 혼합 가스를 증착장비로 공급하면서 스퍼터링법을 통해 티타늄(Ti) 금속을 50㎚, 구리(Cu) 금속을 0.5㎛ 두께로 증착하여 시드층(seed layer)을 형성하고, 전해도금을 통해 9 ㎛ 두께의 동박층(M4)을 형성하였다.Thereafter, while supplying a mixed gas of argon and oxygen to the via hole surface as a deposition equipment, a titanium (Ti) metal was deposited to a thickness of 50 nm and a copper (Cu) metal to a thickness of 0.5 µm through a sputtering method to form a seed layer. Was formed, and a copper foil layer (M4) having a thickness of 9 μm was formed through electroplating.
상기 동박층(M4) 상에 15 ㎛ 두께의 감광성 드라이필름 레지스트 KL1015(코오롱인더스트리 제조)를 110℃에서 라미네이트하고, 상기 감광성 드라이필름 레지스트 상에 직경이 30㎛인 원형의 네가티브형 포토마스크를 접촉시키고, 자외선을 조사(25mJ/㎠의 광량)한 다음, 30 ℃ 1% 탄산나트륨 현상액을 통해 상기 감광성 드라이필름 레지스트를 현상하였다. 이때 노출된 동박층(M4)을 에칭을 통해 제거하여 패턴을 형성하였다. 이후, 50 ℃ 온도의 3% 수산화 나트륨 레지스트 박리액을 사용하여 남아있는 감광성 드라이필름 레지스트을 제거하여 제1판넬(PN-1)을 제조하였다.A 15 μm thick photosensitive dry film resist KL1015 (manufactured by Kolon Industries) was laminated at 110 ° C. on the copper foil layer (M4), and a circular negative photomask having a diameter of 30 μm was contacted on the photosensitive dry film resist. , Irradiated with ultraviolet light (25 mJ / cm 2 light amount), and then developed the photosensitive dry film resist through a 30 ° C. 1% sodium carbonate developer. At this time, the exposed copper foil layer (M4) was removed through etching to form a pattern. Thereafter, the remaining photosensitive dry film resist was removed using a 3% sodium hydroxide resist stripper at a temperature of 50 ° C. to prepare a first panel (PN-1).
상기 극박동박(MO') 표면에도 상기 제1판넬과 동일한 방법으로 동박층(M1'), 절연층(D12'), 동박층(M2'), 절연층(D23'), 동박층(M3'), 절연층(D34'), 동박층(M4')이 순차적으로 적층된 제2판넬(PN-2)을 형성하였다.Copper foil layer M1 ', insulating layer D12', copper foil layer M2 ', insulating layer D23', copper foil layer M3 'on the surface of the ultra-thin copper foil MO' in the same manner as the first panel. ), A second panel (PN-2) in which the insulating layer (D34 ') and the copper foil layer (M4') were sequentially stacked.
<3> 내지 <7> 상기 실시예1의 <3> 내지 <7>과 동일한 방법으로 진행하였다.<3> to <7> The same procedure as in <3> to <7> in Example 1 was performed.
<비교예: 다층인쇄회로기판의 제조><Comparative Example: Manufacturing of a multi-layer printed circuit board>
비교예1Comparative Example 1
상기 실시예1의 공정<2>에서, 절연층(D12)으로 제조예1에서 얻어진 8 ㎛ 두께의 수지코팅동박 대신 상기 제조예3에서 얻어진 16 ㎛ 두께의 프리프레그(PPG)를 사용하고, 절연층(D23)으로 제조예2에서 얻어진 10 ㎛ 두께의 수지코팅동박 대신 상기 제조예4에서 얻어진 18 ㎛ 두께의 프리프레그(PPG)를 사용하며, 다층 적층체 각 층의 두께를 하기 표3과 같이 변경한 것을 제외하고 상기 실시예1과 동일한 방법으로 다층인쇄회로기판을 제조하였다.In the step <2> of Example 1, instead of the 8 μm thick resin coated copper foil obtained in Production Example 1 as the insulating layer (D12), a 16 μm thick prepreg (PPG) obtained in Production Example 3 was used and insulated. As the layer (D23), instead of the 10 μm thick resin coated copper foil obtained in Production Example 2, the 18 μm thick prepreg (PPG) obtained in Production Example 4 was used, and the thickness of each layer of the multi-layer laminate was as shown in Table 3 below. A multilayer printed circuit board was manufactured in the same manner as in Example 1, except that it was changed.
비교예2Comparative Example 2
상기 실시예2의 공정<2>에서, 절연층(D12) 및 절연층(D23)으로 제조예1에서 얻어진 8 ㎛ 두께의 수지코팅동박 대신 상기 제조예4에서 얻어진 18 ㎛ 두께의 프리프레그(PPG)를 사용하고, 절연층(D34)으로 제조예2에서 얻어진 10 ㎛ 두께의 수지코팅동박 대신 상기 제조예4에서 얻어진 18 ㎛ 두께의 프리프레그(PPG)를 사용하며, 다층 적층체 각 층의 두께를 하기 표3과 같이 변경한 것을 제외하고, 상기 실시예2와 동일한 방법으로 다층인쇄회로기판을 제조하였다.In the step <2> of Example 2, instead of the 8 μm thick resin coated copper foil obtained in Production Example 1 as the insulating layer (D12) and the insulating layer (D23), the 18 μm thick prepreg (PPG) obtained in Production Example 4 ), And instead of the 10 μm thick resin coated copper foil obtained in Production Example 2 as the insulating layer (D34), the 18 μm thick prepreg (PPG) obtained in Production Example 4 was used, and the thickness of each layer of the multi-layer laminate A multi-layer printed circuit board was manufactured in the same manner as in Example 2, except that Table 3 was changed.
Figure PCTKR2019012204-appb-T000003
Figure PCTKR2019012204-appb-T000003
상기 표3에 나타난 바와 같이, 제조예1 및 제조예2에서 얻어진 수지코팅동박을 절연층으로 사용한 실시예의 경우, 동박층이 3층 포함된 실시예1의 다층인쇄회로기판 두께가 61 ㎛, 동박층이 4층 포함된 실시예2의 다층인쇄회로기판 두께가 80 ㎛로 매우 얇게 구현되면서도 파손이나 찢어짐의 문제가 나타나지 않았다. 반면, 제조예3 및 제조예4에서 얻어진 프리프레그를 절연층으로 사용한 비교예의 경우, 동박층이 3층 포함된 비교예1의 다층인쇄회로기판 두께가 81 ㎛, 동박층이 4층 포함된 비교예2의 다층인쇄회로기판 두께가 120 ㎛로 실시예에 비해 매우 두껍게 측정되는 한계가 있었다.As shown in Table 3, in the case of using the resin-coated copper foils obtained in Production Example 1 and Production Example 2 as the insulating layer, the multilayer printed circuit board of Example 1 containing 3 layers of copper foil layers had a thickness of 61 µm and copper foil. Although the multi-layer printed circuit board of Example 2, which contained four layers, had a very thin thickness of 80 µm, there was no problem of breakage or tearing. On the other hand, in the case of the comparative example using the prepreg obtained in Production Example 3 and Production Example 4 as the insulating layer, the multilayer printed circuit board thickness of Comparative Example 1 containing 3 layers of copper foil layers was 81 µm, and the comparison of four layers of copper foil layers was included. The thickness of the multi-layer printed circuit board of Example 2 was 120 µm, so there was a limitation in that it was measured very thickly compared to the example.
[부호의 설명][Description of codes]
C : 캐리어필름C: Carrier film
M0, MO': 극박동박M0, MO ': Ultra-thin copper foil
SR TOP, SR TOP': 레지스트SR TOP, SR TOP ': Resist
M1, M1': 동박층M1, M1 ': Copper foil layer
D12, D12': 절연층D12, D12 ': insulating layer
M2, M2': 동박층M2, M2 ': Copper foil layer
D23, D23': 절연층 D23, D23 ': insulating layer
M3, M3': 동박층M3, M3 ': Copper foil layer
D34, D34': 절연층D34, D34 ': insulating layer
M4, M4': 동박층M4, M4 ': Copper foil layer
SR BTM, SR BTM': 레지스트SR BTM, SR BTM ': resist
PN-1 : 제1판넬PN-1: 1st panel
PN-2 : 제2판넬PN-2: 2nd panel
<1> 내지<6>: 공정의 진행 순서<1> to <6>: the order of progress of the process

Claims (19)

  1. 절연패턴 및 금속패턴을 포함한 복수의 빌드업층을 포함한 수지 적층체; 및A resin laminate including a plurality of build-up layers including an insulating pattern and a metal pattern; And
    상기 수지 적층체의 상면 및 하면에 형성된 레지스트 패턴층;을 포함하고,Including; a resist pattern layer formed on the upper and lower surfaces of the resin laminate;
    상기 빌드업층에 포함된 절연패턴의 두께가 15 ㎛ 이하인, 다층인쇄회로기판.A multilayer printed circuit board having a thickness of 15 µm or less of an insulating pattern included in the build-up layer.
  2. 제1항에 있어서The method of claim 1
    상기 절연패턴은,The insulating pattern,
    i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1이상 포함한 아민 화합물; 열경화성 수지; 및 열가소성 수지;간의 경화물과, 상기 경화물 사이에 분산된 무기 충진재를 포함하는, 다층인쇄회로기판.i) an alkyl group having 1 to 20 carbon atoms unsubstituted or substituted with a sulfone group, carbonyl group, halogen group, nitro group, cyano group or halogen group, ii) 6 to 20 carbon atoms unsubstituted or substituted with a nitro group, cyano group or halogen group Aryl group of iii) a heteroaryl group having 2 to 30 carbon atoms unsubstituted or substituted with a nitro group, cyano group or halogen group, and iv) alkyl having 1 to 20 carbon atoms substituted or unsubstituted with a nitro group, cyano group or halogen group An amine compound containing at least one functional group selected from the group consisting of len groups; Thermosetting resins; And a thermoplastic resin; comprising a cured product of the liver and an inorganic filler dispersed between the cured products.
  3. 제1항에 있어서The method of claim 1
    상기 절연패턴은,The insulating pattern,
    i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1이상 포함한 아민 화합물; 열경화성 수지; 열가소성 수지; 및 무기 충진재;를 포함하고, 상기 아민 화합물 및 열경화성 수지의 총합 100 중량부에 대해, 상기 열가소성 수지를 40 중량부 내지 90 중량부로 포함하며, 120 ℃ 내지 180 ℃의 범위에서 2000Pa·s 이하의 복소점도를 갖는 금속 박막 코팅용 열경화성 수지 조성물의 경화물을 포함하는, 다층인쇄회로기판.i) an alkyl group having 1 to 20 carbon atoms unsubstituted or substituted with a sulfone group, carbonyl group, halogen group, nitro group, cyano group or halogen group, ii) 6 to 20 carbon atoms unsubstituted or substituted with a nitro group, cyano group or halogen group Aryl group of iii) a heteroaryl group having 2 to 30 carbon atoms unsubstituted or substituted with a nitro group, cyano group or halogen group, and iv) alkyl having 1 to 20 carbon atoms substituted or unsubstituted with a nitro group, cyano group or halogen group An amine compound containing at least one functional group selected from the group consisting of len groups; Thermosetting resins; Thermoplastic resins; And an inorganic filler, containing 40 parts by weight to 90 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the total of the amine compound and the thermosetting resin, and complexing up to 2000 Pa · s in the range of 120 ° C. to 180 ° C. A multilayer printed circuit board comprising a cured product of a thermosetting resin composition for coating a metal thin film having a viscosity.
  4. 제2항 또는 제3항 중 어느 한 항에 있어서,According to any one of claims 2 or 3,
    상기 열경화성 수지는 디시클로펜타디엔계 에폭시 수지 및 바이페닐계 에폭시 수지를 포함하는, 다층인쇄회로기판.The thermosetting resin comprises a dicyclopentadiene-based epoxy resin and a biphenyl-based epoxy resin, a multilayer printed circuit board.
  5. 제4항에 있어서,According to claim 4,
    상기 디시클로펜타디엔계 에폭시 수지 100 중량부 대비 상기 바이페닐계 에폭시 수지의 함량이 100 중량부 미만인, 다층인쇄회로기판.The content of the biphenyl-based epoxy resin compared to 100 parts by weight of the dicyclopentadiene-based epoxy resin is less than 100 parts by weight, a multilayer printed circuit board.
  6. 제2항 또는 제3항 중 어느 한 항에 있어서,According to any one of claims 2 or 3,
    상기 열경화성 수지는 비스말레이미드 수지, 시아네이트 에스터 수지 및 비스말레이미드-트리아진 수지로 이루어진 군으로부터 선택되는 1종 이상의 수지를 더 포함하는, 다층인쇄회로기판.The thermosetting resin further comprises at least one resin selected from the group consisting of bismaleimide resin, cyanate ester resin, and bismaleimide-triazine resin, a multilayer printed circuit board.
  7. 제2항 또는 제3항 중 어느 한 항에 있어서,According to any one of claims 2 or 3,
    상기 아민 화합물 100 중량부에 대하여 상기 열경화성 수지를 400 중량부 이하로 포함하는, 다층인쇄회로기판.A multi-layer printed circuit board comprising less than 400 parts by weight of the thermosetting resin with respect to 100 parts by weight of the amine compound.
  8. 제2항 또는 제3항 중 어느 한 항에 있어서,According to any one of claims 2 or 3,
    하기 수학식1로 계산되는 당량비가 1.4 이상인, 다층인쇄회로기판: A multilayer printed circuit board having an equivalent ratio calculated by Equation 1 below of 1.4 or more:
    [수학식1][Equation 1]
    Figure PCTKR2019012204-appb-I000027
    Figure PCTKR2019012204-appb-I000027
  9. 제2항 또는 제3항 중 어느 한 항에 있어서,According to any one of claims 2 or 3,
    상기 아민 화합물은 2 내지 5개의 아미노기를 포함하는 방향족 아민 화합물을 포함하는, 다층인쇄회로기판.The amine compound comprises an aromatic amine compound containing 2 to 5 amino groups, a multilayer printed circuit board.
  10. 제2항 또는 제3항 중 어느 한 항에 있어서,According to any one of claims 2 or 3,
    상기 열가소성 수지는 (메트)아크릴레이트계 고분자를 포함하는, 다층인쇄회로기판.The thermoplastic resin includes a (meth) acrylate-based polymer, a multilayer printed circuit board.
  11. 제10항에 있어서,The method of claim 10,
    상기 (메트)아크릴레이트계 고분자는,The (meth) acrylate-based polymer,
    (메트)아크릴레이트계 단량체 유래의 반복단위와 (메트)아크릴로니트릴 유래의 반복 단위가 포함된 아크릴산 에스테르 공중합체; 또는 부타디엔 유래의 반복 단위가 포함된 아크릴산 에스테르 공중합체인, 다층인쇄회로기판.Acrylic ester copolymers containing repeat units derived from (meth) acrylate monomers and repeat units derived from (meth) acrylonitrile; Or an acrylic acid ester copolymer containing a repeating unit derived from butadiene, a multilayer printed circuit board.
  12. 제10항에 있어서,The method of claim 10,
    상기 (메트)아크릴레이트계 고분자는 500000 내지 1000000의 중량평균분자량을 갖는, 다층인쇄회로기판.The (meth) acrylate-based polymer has a weight average molecular weight of 500000 to 1000000, a multilayer printed circuit board.
  13. 제2항 또는 제3항 중 어느 한 항에 있어서,According to any one of claims 2 or 3,
    상기 아민 화합물 및 열경화성 수지의 총합 100 중량부에 대하여 상기 무기 충진재 함량이 200 중량부 내지 500 중량부인, 다층인쇄회로기판.The inorganic filler content is 200 parts by weight to 500 parts by weight based on 100 parts by weight of the total of the amine compound and the thermosetting resin, the multilayer printed circuit board.
  14. 제2항 또는 제3항 중 어느 한 항에 있어서,According to any one of claims 2 or 3,
    상기 무기 충진재는 평균 입경이 상이한 2종 이상의 무기 충진재를 포함할 수 있으며,The inorganic filler may include two or more inorganic fillers having different average particle diameters,
    상기 2종 이상의 무기 충진재 중 적어도 1종이 평균 입경이 0.1 ㎛ 내지 100 ㎛인 무기 충진재고, 다른 1종이 평균 입경이 1 ㎚ 내지 90 ㎚인 무기 충진재인, 다층인쇄회로기판.A multilayer printed circuit board, wherein at least one of the two or more inorganic fillers is an inorganic filler having an average particle diameter of 0.1 μm to 100 μm, and another is an inorganic filler having an average particle diameter of 1 nm to 90 nm.
  15. 캐리어 필름의 양면에 금속층을 적층하고 패턴을 형성하는 제1단계;A first step of laminating a metal layer on both sides of the carrier film and forming a pattern;
    상기 금속층 상에 절연층을 적층하고 패턴을 형성하는 제2단계;A second step of stacking an insulating layer on the metal layer and forming a pattern;
    상기 절연층 상에 금속층을 적층하고 패턴을 형성하는 제3단계;A third step of laminating a metal layer on the insulating layer and forming a pattern;
    상기 금속층 상에 레지스트층을 적층하고 패턴을 형성하는 제4단계;A fourth step of depositing a resist layer on the metal layer and forming a pattern;
    상기 제1단계의 캐리어필름과 금속층을 박리하고, 박리된 금속층의 표면에 레지스트층을 형성하는 제5단계;를 포함하고,Including the fifth step of peeling the carrier film and the metal layer of the first step, and forming a resist layer on the surface of the peeled metal layer;
    상기 절연층은 두께가 15 ㎛ 이하인 수지코팅금속박막을 포함하며,The insulating layer includes a resin-coated metal thin film having a thickness of 15 μm or less,
    상기 제3단계 이후, 제2단계 및 제3단계를 1회이상 반복하여 진행하는, 다층인쇄회로기판 제조방법.After the third step, the second and third steps are repeated one or more times, and a multi-layer printed circuit board manufacturing method.
  16. 제15항에 있어서The method of claim 15
    상기 제1단계의 캐리어필름과 금속층 간의 결합력은, 상기 제2단계의 금속층과 절연층 간의 결합력보다 작은, 다층인쇄회로기판 제조방법.The bonding force between the carrier film and the metal layer in the first step is less than the bonding force between the metal layer and the insulating layer in the second step, a method for manufacturing a multilayer printed circuit board.
  17. 제15항에 있어서The method of claim 15
    상기 수지코팅금속박막은,The resin coating metal thin film,
    금속박, 및Metal foil, and
    상기 금속박의 적어도 일면에 형성된 수지 경화물과, 상기 수지 경화물 사이에 분산된 무기 충진재를 포함하고,It includes a cured resin formed on at least one surface of the metal foil, and an inorganic filler dispersed between the cured resin,
    상기 수지 경화물은 i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1이상 포함한 아민 화합물; 열경화성 수지; 및 열가소성 수지;간의 경화물인, 다층인쇄회로기판 제조방법.The cured resin is i) a sulfone group, a carbonyl group, a halogen group, a nitro group, a cyano group or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, ii) a nitro group, a cyano group or a halogen group substituted or unsubstituted An aryl group having 6 to 20 carbon atoms, iii) a heteroaryl group having 2 to 30 carbon atoms unsubstituted or substituted with a nitro group, a cyano group or a halogen group, and iv) a carbon number substituted or unsubstituted with a nitro group, a cyano group or a halogen group An amine compound containing at least one functional group selected from the group consisting of 1 to 20 alkylene groups; Thermosetting resins; And a thermoplastic resin; a method for manufacturing a multilayer printed circuit board which is a cured product of the liver.
  18. 제15항에 있어서The method of claim 15
    상기 수지코팅금속박막은,The resin coating metal thin film,
    금속박, 및Metal foil, and
    상기 금속박의 적어도 일면에 형성된 수지 경화물을 포함하고,It includes a cured resin formed on at least one surface of the metal foil,
    상기 수지 경화물은 i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1이상 포함한 아민 화합물; 열경화성 수지; 열가소성 수지; 및 무기 충진재;를 포함하고, 상기 아민 화합물 및 열경화성 수지의 총합 100 중량부에 대해, 상기 열가소성 수지를 40 중량부 내지 90 중량부로 포함하며, 120 ℃ 내지 180 ℃의 범위에서 2000Pa·s 이하의 복소점도를 갖는 금속 박막 코팅용 열경화성 수지 조성물의 경화물인, 다층인쇄회로기판 제조방법.The cured resin is i) a sulfone group, a carbonyl group, a halogen group, a nitro group, a cyano group or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, ii) a nitro group, a cyano group or a halogen group substituted or unsubstituted An aryl group having 6 to 20 carbon atoms, iii) a heteroaryl group having 2 to 30 carbon atoms unsubstituted or substituted with a nitro group, a cyano group or a halogen group, and iv) a carbon number substituted or unsubstituted with a nitro group, a cyano group or a halogen group An amine compound containing at least one functional group selected from the group consisting of 1 to 20 alkylene groups; Thermosetting resins; Thermoplastic resins; And an inorganic filler, containing 40 parts by weight to 90 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the total of the amine compound and the thermosetting resin, and complexing up to 2000 Pa · s in the range of 120 ° C. to 180 ° C. A method of manufacturing a multilayer printed circuit board, which is a cured product of a thermosetting resin composition for coating a thin metal film having a viscosity.
  19. 제1항의 다층인쇄회로기판을 포함하는, 반도체 장치.A semiconductor device comprising the multilayer printed circuit board of claim 1.
PCT/KR2019/012204 2018-09-20 2019-09-20 Multi-layer printed circuit board, method for manufacturing same, and semiconductor device using same WO2020060265A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980010655.8A CN111656874B (en) 2018-09-20 2019-09-20 Multilayer printed circuit board, method for manufacturing the same, and semiconductor device using the same
EP19862372.0A EP3726944A4 (en) 2018-09-20 2019-09-20 Multi-layer printed circuit board, method for manufacturing same, and semiconductor device using same
JP2020539785A JP7463644B2 (en) 2018-09-20 2019-09-20 Multilayer printed circuit board, its manufacturing method and semiconductor device using the same
US16/968,384 US11848263B2 (en) 2018-09-20 2019-09-20 Multilayered printed circuit board, method for manufacturing the same, and semiconductor device using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0113248 2018-09-20
KR20180113248 2018-09-20
KR10-2019-0115354 2019-09-19
KR1020190115354A KR102257926B1 (en) 2018-09-20 2019-09-19 Multilayered printed circuit board, method for manufacturing the same, and semiconductor device using the same

Publications (1)

Publication Number Publication Date
WO2020060265A1 true WO2020060265A1 (en) 2020-03-26

Family

ID=69888632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012204 WO2020060265A1 (en) 2018-09-20 2019-09-20 Multi-layer printed circuit board, method for manufacturing same, and semiconductor device using same

Country Status (1)

Country Link
WO (1) WO2020060265A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220106444A1 (en) * 2019-02-06 2022-04-07 Central Glass Company, Limited Method for Producing 1,1,1-Trifluoro-2,2-Bisarylethane, and 1,1,1-Trifluoro-2,2-Bisarylethane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688103B1 (en) * 2003-09-29 2007-03-02 이비덴 가부시키가이샤 Interlayer insulating layer for printed wiring board, printed wiring board and method for manufacturing same
KR101479349B1 (en) * 2008-03-19 2015-01-05 신코 덴키 코교 가부시키가이샤 Multilayer wiring substrate and method of manufacturing the same
KR20150093032A (en) * 2014-02-06 2015-08-17 삼성전기주식회사 Embedded board, printed circuit board and method of manufactruing the same
JP2017011298A (en) * 2012-09-27 2017-01-12 積水化学工業株式会社 Method for manufacturing multilayer substrate, multilayer insulation film, and multilayer substrate
JP2017220543A (en) * 2016-06-07 2017-12-14 新光電気工業株式会社 Wiring board, semiconductor device, and method of manufacturing them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688103B1 (en) * 2003-09-29 2007-03-02 이비덴 가부시키가이샤 Interlayer insulating layer for printed wiring board, printed wiring board and method for manufacturing same
KR101479349B1 (en) * 2008-03-19 2015-01-05 신코 덴키 코교 가부시키가이샤 Multilayer wiring substrate and method of manufacturing the same
JP2017011298A (en) * 2012-09-27 2017-01-12 積水化学工業株式会社 Method for manufacturing multilayer substrate, multilayer insulation film, and multilayer substrate
KR20150093032A (en) * 2014-02-06 2015-08-17 삼성전기주식회사 Embedded board, printed circuit board and method of manufactruing the same
JP2017220543A (en) * 2016-06-07 2017-12-14 新光電気工業株式会社 Wiring board, semiconductor device, and method of manufacturing them

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3726944A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220106444A1 (en) * 2019-02-06 2022-04-07 Central Glass Company, Limited Method for Producing 1,1,1-Trifluoro-2,2-Bisarylethane, and 1,1,1-Trifluoro-2,2-Bisarylethane

Similar Documents

Publication Publication Date Title
WO2017057813A1 (en) Binder resin and photosensitive resin composition containing same
WO2017111300A1 (en) Polyamic acid solution to which diamine monomer having novel structure is applied, and polyimide film comprising same
WO2017047917A1 (en) Modified polyimide and curable resin composition containing same
WO2015046956A1 (en) Modified polyphenylene oxide, and copper-clad laminate using same
WO2016043558A1 (en) Photo-acid generating agent
WO2015194901A1 (en) Inorganic filler, epoxy resin composition including the same and light emitting element including insulating layer using the composition
WO2019235712A1 (en) Siloxane compound and polyimide precursor composition comprising same
WO2020060265A1 (en) Multi-layer printed circuit board, method for manufacturing same, and semiconductor device using same
WO2014021635A1 (en) Separation membrane comprising coating layer and battery using same
WO2014021634A1 (en) Separation membrane coating agent composition, separation membrane made from coating agent composition, and battery using same
WO2015102461A1 (en) Resin double layer-attached copper foil, multilayer printed circuit board including same, and manufacturing method thereof
WO2012087060A2 (en) Printed circuit board and method for manufacturing the same
WO2014104496A1 (en) Monomer, hardmask composition including monomer, and method for forming pattern by using hardmask composition
WO2020060197A1 (en) Thermocurable resin composition for coating metal thin film, resin-coated metal thin film using same, and metal foil laminate
WO2015099451A1 (en) Insulation resin sheet for forming flexible printed circuit board, method for manufacturing same, and printed circuit board comprising same
WO2021054771A1 (en) Phosphorous-containing resin endcapped with unsaturated group, preparation method therefor, and resin composition comprising phosphorous-containing resin endcapped with unsaturated group
WO2021040367A1 (en) Printed circuit board
WO2021080203A1 (en) Insulating layer for multilayer printed circuit board, multilayer printed circuit board comprising same, and method for producing same
WO2021040364A1 (en) Circuit board
WO2020184972A1 (en) Polyimide copolymer, method for producing polyimide copolymer, and photosensitive resin composition, photosensitive resin film, and optical device using same
WO2020185023A1 (en) Packaging substrate and method for manufacturing same
WO2020162668A1 (en) Thermosetting resin composition for semiconductor package, prepreg, and metal clad laminate
WO2020213992A1 (en) Epoxy resin, preparation method thereof, and epoxy resin composition comprising same
WO2021256869A1 (en) Circuit board
WO2024054072A1 (en) Circuit board and semiconductor package comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539785

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019862372

Country of ref document: EP

Effective date: 20200716

NENP Non-entry into the national phase

Ref country code: DE