WO2020060199A1 - Method for preparing iron sulfide, cathode comprising iron sulfide prepared thereby for lithium secondary battery, and lithium secondary battery comprising same - Google Patents

Method for preparing iron sulfide, cathode comprising iron sulfide prepared thereby for lithium secondary battery, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2020060199A1
WO2020060199A1 PCT/KR2019/012089 KR2019012089W WO2020060199A1 WO 2020060199 A1 WO2020060199 A1 WO 2020060199A1 KR 2019012089 W KR2019012089 W KR 2019012089W WO 2020060199 A1 WO2020060199 A1 WO 2020060199A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
iron sulfide
fes
positive electrode
Prior art date
Application number
PCT/KR2019/012089
Other languages
French (fr)
Korean (ko)
Inventor
예성지
한승훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2021500722A priority Critical patent/JP7098043B2/en
Priority to CN201980045775.1A priority patent/CN112385061A/en
Priority to US17/259,215 priority patent/US20210273225A1/en
Priority to EP19863940.3A priority patent/EP3806207A4/en
Priority claimed from KR1020190114771A external-priority patent/KR20200032660A/en
Priority claimed from KR1020190114782A external-priority patent/KR20200032661A/en
Publication of WO2020060199A1 publication Critical patent/WO2020060199A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/12Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing iron sulfide, a positive electrode for a lithium secondary battery including iron sulfide prepared therefrom, and a lithium secondary battery having the same, and more specifically, it is possible to manufacture selective and high purity iron sulfide by a simple process.
  • the present invention relates to a lithium secondary battery positive electrode including iron sulfide (FeS 2 ) capable of increasing charging and discharging efficiency and improving lifespan characteristics, and a lithium secondary battery having the same.
  • Secondary batteries unlike primary batteries that can only be discharged once, have been established as important parts of portable electronic devices since the 1990s as an electric storage device capable of continuous charging and discharging.
  • the lithium secondary battery was commercialized by Sony Japan in 1992, it has led the information age as a core component of portable electronic devices such as smart phones, digital cameras, and notebook computers.
  • lithium secondary batteries have expanded their application areas, and in mid-sized batteries to be used in fields such as cleaners, power tools, electric bicycles, and electric scooters, electric vehicles (EVs) and hybrid electric vehicles (hybrid electric vehicles) ; HEV), Plug-in hybrid electric vehicle (PHEV), various robots, and large-capacity batteries used in fields such as electric storage systems (ESS), demand at high speed Is increasing.
  • EVs electric vehicles
  • PHEV Plug-in hybrid electric vehicle
  • ESS electric storage systems
  • lithium secondary batteries which have the best characteristics among the secondary batteries to date, have several problems to be actively used in transportation equipment such as electric vehicles and PHEVs, and the biggest problem is the limitation of capacity.
  • the lithium secondary battery is basically composed of materials such as a positive electrode, an electrolyte, and a negative electrode, and among them, since the positive and negative electrode materials determine the capacity of the battery, the lithium secondary battery has a capacity due to the material limitations of the positive and negative electrodes. Is limited by. In particular, the secondary battery to be used in applications such as electric vehicles and PHEVs must be used for as long as possible after one charge, so its discharge capacity is very important.
  • the capacity limitation of the lithium secondary battery is difficult to completely solve due to the structure and material limitations of the lithium secondary battery despite many efforts. Therefore, in order to fundamentally solve the capacity problem of the lithium secondary battery, it is required to develop a new concept of secondary battery that goes beyond the existing secondary battery concept.
  • Lithium-sulfur secondary batteries exceed the capacity limits determined by the intercalation reaction of the lithium ion layered metal oxide and graphite into the basic principle of the existing lithium secondary battery, and replace transition metals and reduce costs. It is a new high-capacity, low-cost battery system that can be imported.
  • a lithium-sulfur secondary battery is a lithium ion and the sulfur conversion (conversion) reaction at the anode - the theoretical capacity resulting from (S 8 + 16Li + + 16e ⁇ 8Li 2 S) reached 1,675 mAh / g anode is lithium metal (theoretical capacity: 3,860 mAh / g) for ultra-high capacity of the battery system.
  • the discharge voltage is about 2.2 V, it theoretically represents an energy density of 2,600 Wh / kg based on the amount of the positive and negative electrode active materials. This is a value that is 6 to 7 times higher than the theoretical energy density of 400 Wh / kg, which is a commercial lithium secondary battery (LiCoO 2 / graphite) using a layered metal oxide and graphite.
  • Lithium-sulfur secondary batteries have been attracting attention as new high-capacity, eco-friendly, and low-cost lithium secondary batteries since it is known that the performance of batteries can be dramatically improved through the formation of nanocomposites around 2010. Is being made.
  • the particle size is several tens of nanometers. It is necessary to reduce the size to the following and surface treatment with a conductive material. To this end, various chemicals (melt impregnation with a nano-sized porous carbon nanostructure or metal oxide structure), a physical method (high energy ball milling), etc. are reported. Is becoming.
  • Li 2 S 8 and Li 2 S 4 which are long-chain chains, have properties that are easily dissolved in a common electrolyte used in lithium ion batteries. When this reaction occurs, not only the reversible anode capacity is greatly reduced, but also the dissolved lithium polysulfide diffuses to the cathode, causing various side reactions.
  • Lithium polysulfide in particular, causes a shuttle reaction during the charging process, which causes the charging capacity to continue to increase and the charge / discharge efficiency rapidly decreases.
  • various methods have been proposed to solve these problems, and can be largely divided into a method of improving the electrolyte, a method of improving the surface of the cathode, and a method of improving the properties of the anode.
  • the method of improving the electrolyte uses a new electrolyte such as a functional liquid electrolyte, a polymer electrolyte, and an ionic liquid of a new composition to suppress the dissolution of polysulfide into the electrolyte or to control the dispersion rate to the cathode through adjustment of viscosity, etc. It is a method to suppress the shuttle reaction as much as possible by controlling.
  • a new electrolyte such as a functional liquid electrolyte, a polymer electrolyte, and an ionic liquid of a new composition to suppress the dissolution of polysulfide into the electrolyte or to control the dispersion rate to the cathode through adjustment of viscosity, etc. It is a method to suppress the shuttle reaction as much as possible by controlling.
  • Electrolyte additives such as LiNO 3 are added to the surface of the lithium anode to form oxide films such as Li x NO y and Li x SO y .
  • SEI solid-electrolyte interphase
  • a method of improving the properties of the anode includes a method of forming a coating layer on the surface of the anode particle or adding a porous material capable of catching the dissolved polysulfide to prevent the dissolution of polysulfide.
  • a method of coating the surface of a positive electrode structure containing, a method of coating the surface of a positive electrode structure with a metal oxide that conducts lithium ions, and a positive electrode having a large specific surface area and large pores capable of absorbing large amounts of lithium polysulfide.
  • the iron precursor and the sulfur precursor are mixed and heat-treated, but the high-purity iron sulfide is selectively controlled by controlling the heat treatment temperature and process time. It was confirmed that it can be produced.
  • an object of the present invention is to provide a method for manufacturing iron sulfide, which is a positive electrode additive for a lithium secondary battery of high purity through a simple process.
  • iron sulfide (FeS 2 ) produced by the above manufacturing method was introduced into the positive electrode of the lithium secondary battery. As a result, it was confirmed that the battery performance of the lithium secondary battery can be improved by solving the above problems, thereby completing the present invention.
  • another object of the present invention is to provide a positive electrode additive for a lithium secondary battery capable of solving the problem caused by lithium polysulfide.
  • Another object of the present invention is to provide a lithium secondary battery having the positive electrode having improved life characteristics of the battery.
  • the present invention (1) mixing the iron precursor and the sulfur precursor to form a mixture; And (2) heat-treating the mixture in an inert gas atmosphere; provides a method for producing iron sulfide (FeS 2 ).
  • the present invention as a positive electrode for a lithium secondary battery comprising an active material, a conductive material and a binder, the positive electrode provides a positive electrode for a lithium secondary battery containing iron sulfide (FeS 2 ).
  • FeS 2 iron sulfide
  • the lithium secondary battery positive electrode cathode; A separator interposed between the anode and the cathode; And electrolyte; provides a lithium secondary battery comprising a.
  • the lithium secondary battery provided with the positive electrode containing the iron sulfide (FeS 2 ) does not cause a reduction in the capacity of sulfur, so it is possible to implement a high-capacity battery and stably apply sulfur with high loading, thereby improving the overvoltage of the battery. And there is no problem of short circuit, heat generation, etc. of the battery, thereby improving the battery stability.
  • the lithium secondary battery has an advantage of high charging and discharging efficiency of the battery and improving life characteristics.
  • Figure 3 shows the X-ray diffraction analysis (XRD) results of iron sulfide (FeS 2 ) according to Preparation Example 1 of the present invention.
  • Figure 4 shows the X-ray diffraction analysis (XRD) results of iron sulfide (FeS 2 ) according to Preparation Example 2 of the present invention.
  • Figure 5 shows the X-ray diffraction analysis (XRD) comparison results of iron sulfide (FeS 2 ) according to Preparation Example 1 and Comparative Preparation Example 1 of the present invention.
  • composite refers to a substance that combines two or more materials to form physically and chemically different phases and express more effective functions.
  • the lithium secondary battery is manufactured by using a material capable of intercalation / deintercalation of lithium ions as a negative electrode and a positive electrode, and charging an organic electrolyte or a polymer electrolyte between the negative electrode and the positive electrode, and lithium ions are inserted at the positive and negative electrodes.
  • an electrochemical device that generates electrical energy by oxidation / reduction reaction when desorption and according to one embodiment of the present invention, the lithium secondary battery is lithium-sulfur containing 'sulfur' as an electrode active material of a positive electrode. It can be a battery.
  • the present invention relates to a method for manufacturing iron sulfide (FeS 2 ), and specifically, it can be produced as iron sulfide having a shape and physical properties that can improve the discharge capacity and life characteristics of a battery by applying it as a positive electrode additive for a lithium secondary battery. It's about how.
  • the present invention complements the disadvantages of the positive electrode for a lithium secondary battery, and provides a positive electrode for a lithium secondary battery with improved problems of continuous reactivity of an electrode due to dissolution and shuttle phenomenon of lithium polysulfide and a problem of reduction in discharge capacity.
  • the positive electrode for a lithium sulfur-cell provided in the present invention is characterized by including an active material, a conductive material, and a binder, and even iron sulfide (FeS 2 ) as a positive electrode additive.
  • the iron sulfide (FeS 2 ) is included in the positive electrode of the lithium secondary battery in the present invention, and lithium polysulfide is transferred to the negative electrode by adsorbing lithium polysulfide, thereby reducing the problem of reducing the life of the lithium secondary battery and lithium By suppressing the reduced reactivity due to polysulfide, it is possible to increase the discharge capacity of the lithium secondary battery including the positive electrode and improve the life of the battery.
  • the method for manufacturing iron sulfide (FeS 2 ) according to the present invention includes (1) mixing an iron precursor and a sulfur precursor to form a mixture, and (2) heat treating the mixture in an inert gas atmosphere.
  • the iron precursor according to the present invention means a material capable of forming iron sulfide (FeS 2 ) by reacting with a sulfur precursor, and an example of a preferred iron precursor is iron nitrate represented by Fe (NO 3 ) 3 ⁇ 9H 2 O, ⁇ It may be iron hydroxide represented by -FeOOH or a combination thereof.
  • iron nitrate Fe (NO 3 ) 3 ⁇ 9H 2 O as the iron precursor
  • the sulfur precursors include thiourea (CH 4 N 2 S), ammonium thiosulfate ((Ammonium Thiosulfate, (NH 4 ) 2 S 2 O 3 ), sulfur (S), etc., but in the case of ammonium thiosulfate, the present invention According to the manufacturing method according to the method, a side reaction may occur in which NH 4 Fe (SO 4 ) 2 and the like are generated instead of complete sulfurization, and when sulfur (S) itself is used as a sulfur precursor, iron to be described later Even when the reaction proceeds with a molar ratio of (Fe) and sulfur (S) of 1: 8 or more, iron sulfide (FeS 2 ) of uniform components may not be generated, such as Fe 7 S 8 and FeS 2 being mixed.
  • the iron precursor and the sulfur precursor may be mixed by a method known to those skilled in the art.
  • the mixing ratio of the iron precursor and the sulfur precursor may be a molar ratio of iron (Fe) and sulfur (S) contained in the iron precursor and the sulfur precursor is 1: 8 or more, preferably 1:10 or more. If the molar ratio of sulfur is less than the above range, a side reaction of Fe 7 S 8 or the like may occur through a heat treatment process to be described later due to insufficient sulfur content, which may cause a side reaction with the above-described binder, and thus the above range It is desirable to maintain the mixing ratio of sulfur.
  • the present invention includes the step of heat-treating the mixture of step (1) in an inert gas atmosphere.
  • an iron precursor and a sulfur precursor react to produce iron sulfide (FeS 2 ).
  • the heat treatment may be performed at 400 to 600 ° C, preferably 400 to 500 ° C.
  • the heating rate of the heat treatment may be controlled between 5 and 20 ° C per minute. If the temperature increase rate exceeds 20 ° C / min, the decomposition rate of the sulfur precursor, which is a reactant, is excessively high, so that the amount of sulfur reacting with the iron precursor may decrease, and as a result, Fe 7 S 8 is not the desired iron sulfide (FeS 2 ). There is a problem that can be produced in the form. In addition, if the heating rate is less than 5 ° C / min, there may be a problem that the production time of the desired product may be too long, so it is appropriately adjusted within the above range.
  • the heat treatment may be performed for 1 to 3 hours in the above temperature range, preferably 1 to 2 hours. If the heat treatment temperature is less than 400 ° C or shorter than the heat treatment time, the iron precursor and the sulfur precursor may not react sufficiently to produce desired iron sulfide (FeS 2 ). In addition, when the heat treatment temperature exceeds 600 ° C or longer than the heat treatment time, the size of the generated iron sulfide (FeS 2 ) particles may increase or, unlike the desired iron sulfide (FeS 2 ), unnecessary oxides may be generated. Therefore, since it may be difficult to synthesize iron sulfide (FeS 2 ) of desired physical properties according to the present invention, it is appropriately adjusted within the temperature and time in the above range.
  • the heat treatment in step (3) may be performed in an inert gas atmosphere.
  • the inert gas atmosphere may be performed under (i) an inert gas atmosphere in which the gas inside the reactor is replaced with an inert gas, or (ii) in a state where the inert gas is continuously introduced to continuously replace the gas in the reactor.
  • the flow rate of the inert gas may be 1 to 500 mL / min, specifically 10 to 200 mL / min, and more specifically 50 to 100 mL / min.
  • the inert gas may be selected from the group consisting of nitrogen, argon, helium, and mixtures thereof, and preferably nitrogen.
  • the iron sulfide (FeS 2 ) prepared by the above-described manufacturing method may have a crystallinity of an average particle size of several hundreds nm to several ⁇ m, for example, 0.1 to 10 ⁇ m. If the average particle diameter exceeds 10 ⁇ m, it may not fit well with other electrode materials of the lithium secondary battery, and when the same amount is added, the performance improvement effect of the battery compared to iron sulfide (FeS 2 ) having a relatively small average particle diameter Can be insignificant.
  • iron hydroxide ⁇ -FeOOH
  • FeS 2 iron sulfide containing plate-shaped particles having an average particle diameter of several hundred nm to several ⁇ m may be prepared, and in this case, as described above.
  • the iron sulfide (FeS 2 ) produced by the above-described manufacturing method can effectively adsorb lithium polysulfide eluted during charging and discharging of a lithium secondary battery, and is suitable as a cathode material of a lithium secondary battery. It does not cause the performance of the battery can be improved.
  • the present invention provides an anode for a lithium secondary battery including an active material, a conductive material, and a binder, the anode comprising a lithium sulfide (FeS 2 ) produced through the above-described manufacturing method.
  • a lithium sulfide FeS 2
  • the positive electrode of the lithium secondary battery may include a current collector and an electrode active material layer formed on at least one surface of the current collector, and the electrode active material layer may include a base solid content including an active material, a conductive material, and a binder.
  • the current collector it may be preferable to use aluminum, nickel or the like having excellent conductivity.
  • the iron sulfide (FeS 2 ) may be included in an amount of 0.1 to 15 parts by weight based on 100 parts by weight of the base solid content including the active material, the conductive material, and the binder, and specifically 1 to 15 parts by weight, preferably 5 to 10 parts by weight. If it is less than the lower limit of the numerical range, the adsorption effect of polysulfide may be insignificant, and if it exceeds the upper limit, the capacity of the electrode is reduced, which is not preferable.
  • the iron sulfide (FeS 2) can be used for the iron sulfide (FeS 2) prepared by the method presented in this invention.
  • S 8 elemental sulfur
  • the positive electrode for a lithium secondary battery according to the present invention may preferably include an active material of a sulfur-carbon composite, and since the sulfur material is not electrically conductive alone, it can be used in combination with a conductive material.
  • the addition of iron sulfide (FeS 2 ) according to the present invention does not affect the maintenance of this sulfur-carbon composite structure.
  • the sulfur-carbon composite may have a sulfur content of 60 to 90 parts by weight based on 100 parts by weight of the sulfur-carbon composite, and preferably 70 to 75 parts by weight. If the content of sulfur is less than 60 parts by weight, the content of the carbon material of the sulfur-carbon composite increases relatively, and as the content of carbon increases, the specific surface area increases, so that the amount of binder added during slurry production must be increased. Increasing the amount of the binder added eventually increases the sheet resistance of the electrode and acts as an insulator preventing electron pass, which can degrade battery performance.
  • the sulfur or sulfur compounds that are not combined with the carbon material may be difficult to directly participate in the electrode reaction due to aggregation or re-eluting to the surface of the carbon material, making it difficult to directly participate in the electrode reaction. Adjust accordingly.
  • the carbon of the sulfur-carbon composite according to the present invention may be either a porous structure or a high specific surface area as long as it is commonly used in the art.
  • the porous carbon material includes graphite; Graphene; Carbon blacks such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Carbon nanotubes (CNT) such as single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT); Carbon fibers such as graphite nanofiber (GNF), carbon nanofiber (CNF), and activated carbon fiber (ACF); And it may be at least one selected from the group consisting of activated carbon, but is not limited thereto, and its shape is spherical, rod-shaped, needle-shaped, plate-shaped, tubular or bulk-type, and can be used without limitation as long as it is commonly used in lithium secondary batteries.
  • the active material is preferably 50 to 95 parts by weight of 100 parts by weight of the base solid content, more preferably 70 parts by weight or less. If the active material is included below the above range, it is difficult to sufficiently exhibit the reaction of the electrode, and even if it is included above the above range, the amount of other conductive materials and binders is relatively insufficient, so that it is difficult to exert sufficient electrode reaction within the above range. It is desirable to determine the appropriate content.
  • the conductive material is a material that electrically connects the electrolyte and the positive electrode active material to serve as a path for electrons to move from the current collector to sulfur, and to change the battery chemically. It is not particularly limited as long as it has porosity and conductivity without causing it.
  • Graphite-based materials such as KS6; Carbon blacks such as super P (Super-P), carbon black, denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Carbon derivatives such as fullerene; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder, and nickel powder; Alternatively, conductive polymers such as polyaniline, polythiophene, polyacetylene, and polypyrrole may be used alone or in combination.
  • the conductive material is preferably configured to constitute 1 to 10 parts by weight of 100 parts by weight of the base solid content, preferably 5 parts by weight or less. If the content of the conductive material included in the electrode is less than the above range, a portion of the electrode that does not react increases in the sulfur, and eventually, a capacity decrease occurs, and if it exceeds the above range, high efficiency discharge characteristics and charge and discharge cycle life are adversely affected. It is desirable to determine the appropriate content within the above-described range.
  • the binder is a material containing a slurry composition of a base solid that forms a positive electrode to adhere well to a current collector, and is a material that is well soluble in a solvent and can well constitute a conductive network between a positive electrode active material and a conductive material. use.
  • binder any binder known in the art can be used, unless otherwise specified, preferably poly (vinyl) acetate, polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, alkylated polyethylene oxide, crosslinked polyethylene oxide , Polyvinyl ether, poly (methyl methacrylate), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, copolymer of polyvinylidene fluoride (trade name: Kynar), poly (ethyl acrylate), poly Siloxane groups such as tetrafluoroethylene polyvinyl chloride, polytetrafluoroethylene, polyacrylonitrile, polyvinylpyridine, polystyrene, carboxymethyl cellulose, polydimethylsiloxane, styrene-butadiene rubber, acrylonitrile-butadiene Rubber, rubber-based binder containing styrene-isoprene rubber, polyester
  • the binder is made to constitute 1 to 10 parts by weight of 100 parts by weight of the base composition included in the electrode, preferably 5 parts by weight. If the content of the binder resin is less than the above range, the physical properties of the positive electrode may deteriorate and the positive electrode active material and the conductive material may drop off. If the content exceeds the above range, the ratio of the active material and the conductive material in the positive electrode may be relatively reduced to decrease the battery capacity. Therefore, it is preferable to determine an appropriate content within the above-described range.
  • the anode including iron sulfide (FeS 2 ) and the base solid content may be prepared according to a conventional method.
  • a mixture of a solvent, a binder, a conductive material, and a dispersant may be mixed with a positive electrode active material, if necessary, to prepare a slurry, and then coated (coated) on a current collector of a metal material, compressed, and dried to produce a positive electrode.
  • iron sulfide FeS 2
  • the obtained solution is mixed with an active material, a conductive material, and a binder to obtain a slurry composition for positive electrode formation.
  • the slurry composition is coated on a current collector and then dried to complete an anode.
  • compression molding may be performed on the current collector.
  • the method for coating the slurry for example, doctor blade coating, dip coating, gravure coating, slit die coating, spin coating coating, comma coating, bar coating, reverse roll coating, screen coating, and cap coating.
  • the solvent one capable of uniformly dispersing the positive electrode active material, the binder, and the conductive material, as well as those capable of easily dissolving iron sulfide (FeS 2 ) are used.
  • water is most preferable as the water-based solvent, and the water may be DW (Distilled Water) distilled second, or DIW (Deionzied Water) distilled third.
  • the present invention is not limited thereto, and if necessary, a lower alcohol that can be easily mixed with water may be used. Examples of the lower alcohol include methanol, ethanol, propanol, isopropanol, and butanol. Preferably, they can be used by mixing with water.
  • the positive electrode includes a current collector and an electrode active material layer formed on at least one surface of the current collector, and the electrode active material layer includes an active material, a conductive material, a binder, and iron sulfide (FeS 2 ) according to the present invention
  • the porosity of the electrode active material layer may be 60 to 75%, specifically 60 to 70%, preferably 60 to 65%.
  • porosity refers to the ratio of the volume occupied by the pores to the total volume in a certain structure, uses% as its unit, is used interchangeably with terms such as porosity, porosity, etc. You can.
  • the measurement of the porosity is not particularly limited, and according to an embodiment of the present invention, for example, the size (micro) by BET (Brunauer-Emmett-Teller) measurement method or mercury penetration method (Hg porosimeter) And meso pore volume.
  • the porosity of the electrode active material layer is less than 60%, the filling degree of the base solids containing the active material, the conductive material, and the binder is too high, and sufficient electrolyte solution capable of exhibiting ionic conductivity and / or electrical conduction between the active materials is obtained. Since it cannot be maintained, the output characteristics or cycle characteristics of the battery may be deteriorated, and the overvoltage and discharge capacity of the battery are severely reduced, so that the effect of including iron sulfide (FeS 2 ) according to the present invention may not be properly expressed. There is.
  • the porosity may be performed by a method selected from the group consisting of a hot press method, a roll press method, a plate press method and a roll laminate method.
  • the positive electrode may have a loading amount of sulfur per unit area of 3 to 7 mAh / cm 2 , preferably 4 to 6 mAh / cm 2 .
  • the present invention includes a high loading amount of 4 to 6 mAh / cm 2 including iron sulfide (FeS 2 ) at the positive electrode.
  • FeS 2 iron sulfide
  • the present invention provides a lithium secondary battery including a positive electrode for a lithium secondary battery, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
  • the negative electrode, the separator and the electrolyte may be composed of common materials that can be used in lithium secondary batteries.
  • the negative electrode is a material capable of reversibly intercalating or deintercalating lithium ions (Li + ) as an active material, a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal Alternatively, a lithium alloy can be used.
  • the material capable of reversibly occluding or releasing the lithium ion (Li + ) may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
  • a material capable of reversibly forming a lithium-containing compound by reacting with the lithium ion (Li + ) may be, for example, tin oxide, titanium nitrate or silicon.
  • the lithium alloy may be, for example, an alloy of lithium and a metal selected from the group consisting of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al and Sn.
  • the negative electrode may further include a binder selectively together with the negative electrode active material.
  • the binder plays the role of pasting the negative electrode active material, mutual adhesion between the active materials, adhesion between the active material and the current collector, and buffering effects for expansion and contraction of the active material.
  • the binder is the same as described above.
  • the negative electrode may further include a current collector for supporting the negative electrode active layer including a negative electrode active material and a binder.
  • the current collector may be specifically selected from the group consisting of copper, aluminum, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof.
  • the stainless steel may be surface treated with carbon, nickel, titanium or silver, and an aluminum-cadmium alloy may be used as the alloy.
  • calcined carbon, a non-conductive polymer surface-treated with a conductive agent, or a conductive polymer may be used.
  • the negative electrode may be a thin film of lithium metal.
  • the separator uses a material that allows lithium ions to be transported between the positive electrode and the negative electrode while insulating or insulating them from each other, but can be used without particular limitation as long as it is used as a separator in a lithium secondary battery. It is preferable to have a low resistance and excellent electrolyte-moisturizing ability.
  • a porous, non-conductive or insulating material may be used, such as an independent member such as a film, or a coating layer added to the positive electrode and / or the negative electrode.
  • a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, and ethylene / methacrylate copolymer is used alone. It may be used as or by laminating them, or a conventional porous non-woven fabric, for example, a high-melting point glass fiber, a polyethylene terephthalate fiber, or the like may be used, but is not limited thereto.
  • a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, and ethylene / methacrylate copolymer is used alone. It may be used as or by laminating them, or a conventional porous non-woven fabric, for example, a high-melting point glass fiber, a polyethylene
  • the electrolyte is a non-aqueous electrolyte containing a lithium salt, and is composed of a lithium salt and an electrolyte.
  • a non-aqueous organic solvent, an organic solid electrolyte, and an inorganic solid electrolyte are used.
  • the lithium salt is a material that can be easily dissolved in a non-aqueous organic solvent, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB (Ph) 4, LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiSO 3 CH 3, LiSO 3 CF 3, LiSCN, LiC (CF 3 SO 2) 3, LiN (CF 3 SO 2) 2, chloroborane lithium, lower aliphatic It may be one or more selected from the group consisting of lithium carboxylate, lithium 4-phenyl borate and imide.
  • the concentration of the lithium salt is preferably 0.2 to 2M, depending on several factors, such as the exact composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the conditions for charging and discharging the cell, the working temperature and other factors known in the field of lithium batteries. It may be 0.6 to 2M, and more preferably 0.7 to 1.7M. If the concentration of the lithium salt is less than the above range, the conductivity of the electrolyte may be lowered to degrade the electrolyte performance, and if it exceeds the above range, the viscosity of the electrolyte may increase and mobility of lithium ions (Li + ) may be reduced, so within the above range. It is desirable to select an appropriate concentration.
  • the non-aqueous organic solvent is a material capable of dissolving the lithium salt well, and preferably 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, and dioxolane (Dioxolane, DOL) ), 1,4-dioxane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methylpropyl carbonate (MPC), ethyl propyl carbonate , Dipropyl carbonate, butyl ethyl carbonate, ethyl propanoate (EP), toluene, xylene, dimethyl ether (DME), diethyl ether, triethylene glycol monomethyl ether (TEGME), Diglyme, tetraglyme, hexamethyl phosphoric triamide, gamma-buty
  • the organic solid electrolyte is a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphoric acid ester polymer, a poly edgeation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, ionic Polymers containing dissociation groups and the like can be used.
  • Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 -LiI-LiOH, Li 3 PO4-Li 2 S-SiS 2 and other nitrides of Li, halide, sulfate, and the like can be used.
  • the shape of the lithium secondary battery as described above is not particularly limited, and may be, for example, a jelly-roll type, a stack type, a stack-folding type (including a stack-Z-folding type), or a lamination-stack type, preferably It may be a stack-folding type.
  • the electrode assembly After preparing the electrode assembly in which the positive electrode, the separator, and the negative electrode are sequentially stacked, they are placed in a battery case, and then an electrolyte is injected into the upper portion of the case and sealed with a cap plate and gasket to assemble to produce a lithium secondary battery. .
  • the lithium secondary battery may be classified into a cylindrical shape, a square shape, a coin shape, a pouch shape, and the like, and may be divided into a bulk type and a thin film type according to the size.
  • the structure and manufacturing method of these batteries are well known in the art, so detailed descriptions thereof are omitted.
  • the lithium secondary battery according to the present invention configured as described above, contains iron sulfide (FeS 2 ) to adsorb lithium polysulfide generated during charging and discharging of the lithium secondary battery, thereby increasing the reactivity of the anode of the lithium secondary battery and applying it
  • the lithium secondary battery has an effect of increasing discharge capacity and life.
  • the iron sulfide (FeS 2 ) according to the present invention is included, there is an advantage that the overload is improved and the discharge capacity is improved even in the electrode having high loading and low porosity.
  • Iron nitrate hydrate Fe (NO 3 ) 3 ⁇ 9H 2 O
  • Sigma-Aldrich Iron nitrate hydrate (Fe (NO 3 ) 3 ⁇ 9H 2 O)
  • the mixture was treated with argon gas at a flow rate of 100 mL / min and heat-treated at 400 ° C for 1.5 hours. At this time, the rate of temperature increase for heat treatment was 10 ° C per minute.
  • Iron sulfide (FeS 2 ) was prepared through the heat treatment.
  • Iron sulfide with plate-like particles was performed in the same manner as in Preparation Example 1, except that 0.42 g of iron hydroxide ( ⁇ -FeOOH) was used instead of iron nitrate hydrate (Fe (NO 3 ) 3 ⁇ 9H 2 O) as an iron precursor ( FeS 2 ) was prepared.
  • FIG. 4 is a graph showing the results of XRD analysis for iron sulfide (FeS 2 ) prepared in Preparation Example 2.
  • iron nitrate hydrates Fe (NO 3 ) 3 ⁇ 9H 2 O
  • iron hydroxides ⁇ -FeOOH
  • FeS 2 iron sulfide
  • the prepared slurry composition was coated on a current collector (Al Foil), dried at 50 ° C. for 12 hours, and pressed with a roll press machine to prepare a positive electrode. At this time, the loading amount was 5.3 mAh / cm 2 , and the porosity of the electrode was set to 68%.
  • a coin cell of a lithium secondary battery including an anode, a cathode, a separator, and an electrolyte prepared according to the above was prepared as follows. Specifically, the positive electrode was punched and used as a 14 phi circular electrode, and a polyethylene (PE) separator was punched to 19 phi, and a 150 um lithium metal was punched to 16 phi as the negative electrode.
  • PE polyethylene
  • the lithium secondary battery was performed in the same manner as in Example 1, except that iron sulfide (FeS 2 ) having plate-like particles prepared in Preparation Example 2 was used instead of iron sulfide (FeS 2 ) prepared in Preparation Example 1. It was prepared (ie, electrode porosity is 68%).
  • FeS 2 iron-carbon composite
  • the prepared slurry composition was coated on a current collector (Al Foil) and dried at 50 ° C. for 12 hours to prepare a positive electrode.
  • the loading amount was 5.3 mAh / cm 2
  • the porosity of the electrode was 68%.
  • a coin cell of a lithium secondary battery including an anode, a cathode, a separator, and an electrolyte prepared according to the above was prepared as follows. Specifically, the positive electrode was punched and used as a 14 phi circular electrode, and a polyethylene (PE) separator was punched to 19 phi, and a 150 um lithium metal was punched to 16 phi as the negative electrode.
  • PE polyethylene
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 2, except that the porosity of the electrode was changed from 68% to 62% by rolling the electrode.
  • FIG. 8 and 9 is a graph showing the discharge capacity measurement results of the lithium secondary battery prepared according to an embodiment and a comparative example of the present invention.
  • Example 1 in which iron sulfide (FeS 2 ) prepared in Preparation Example 1 was added to the positive electrode
  • Example 2 in which iron sulfide (FeS 2 ) prepared in Preparation Example 2 was added to the positive electrode. It was confirmed that the overvoltage of the battery was improved and the initial discharge capacity was further increased as compared with the conventional comparative example 1. Therefore, it was found that the iron sulfide according to the present invention has an effect of increasing the initial discharge capacity and improving the overvoltage of the lithium secondary battery.
  • Example 2 using iron hydroxide ( ⁇ -FeOOH) as an iron precursor of iron sulfide as shown in FIG. 8, using iron nitrate hydrate (Fe (NO 3 ) 3 ⁇ 9H 2 O) as an iron precursor of iron sulfide
  • iron nitrate hydrate Fe (NO 3 ) 3 ⁇ 9H 2 O
  • iron sulfide FeS 2
  • FeS 2 iron sulfide
  • ⁇ -FeOOH iron sulfide
  • Fe (NO 3 ) 3 ⁇ 9H 2 O iron precursor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to: a method for preparing iron sulfide (FeS2), which is selective for and allows high-purity iron sulfide to be prepared in a simple process; a cathode containing iron sulfide (FeS2) for a lithium secondary battery, in which iron sulfide (FeS2) adsorbs lithium polysulfide generated during charging and discharging processes of the lithium secondary battery, thereby enabling the battery to increase in charge and discharge efficiency and to improve in lifespan characteristic; and a lithium secondary battery comprising same.

Description

황화철의 제조방법, 이로부터 제조된 황화철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지Method for manufacturing iron sulfide, positive electrode for lithium secondary battery comprising iron sulfide prepared therefrom, and lithium secondary battery having same
본 출원은 2018년 9월 18일자 한국 특허 출원 제10-2018-0111788호 및 2019년 9월 18일자 한국 특허 출원 제10-2019-0114771호,그리고, 2018년 9월 18일자 한국 특허 출원 제10-2018-0111792호 및 2019년 9월 18일자 한국 특허 출원 제10-2019-0114782호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application is for Korean Patent Application No. 10-2018-0111788 dated September 18, 2018 and Korean Patent Application No. 10-2019-0114771 for September 18, 2019, and Korean Patent Application No. 10 for September 18, 2018 -2018-0111792 and claiming the benefit of priority based on Korean Patent Application No. 10-2019-0114782 dated September 18, 2019, all contents disclosed in the literature of the Korean patent application are incorporated as part of this specification.
본 발명은 황화철의 제조방법, 이로부터 제조된 황화철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지에 관한 것으로서, 더욱 상세하게는, 간소한 공정에 의해 선택적이며 고순도의 황화철을 제조할 수 있고, 리튬 이차전지의 양극 첨가제로 적용 가능한 황화철(FeS2)의 제조방법, 그리고, 이로부터 제조된 황화철(FeS2)이 리튬 이차전지의 충방전 과정에서 생성되는 리튬 폴리설파이드를 흡착하여, 전지의 충방전 효율을 증가시키고 수명 특성을 향상시킬 수 있는 황화철(FeS2)을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지에 관한 것이다.The present invention relates to a method for manufacturing iron sulfide, a positive electrode for a lithium secondary battery including iron sulfide prepared therefrom, and a lithium secondary battery having the same, and more specifically, it is possible to manufacture selective and high purity iron sulfide by a simple process. There is a method of manufacturing iron sulfide (FeS 2 ) applicable as a positive electrode additive for a lithium secondary battery, and iron sulfide (FeS 2 ) prepared therefrom adsorbs lithium polysulfide generated during charging and discharging of a lithium secondary battery, thereby The present invention relates to a lithium secondary battery positive electrode including iron sulfide (FeS 2 ) capable of increasing charging and discharging efficiency and improving lifespan characteristics, and a lithium secondary battery having the same.
이차전지는 1회 방전만 가능한 일차전지와 달리 지속적인 충전 및 방전이 가능한 전기저장기구로서 1990년대 이후 휴대용 전자기기의 중요 부품으로 자리를 잡았다. 특히, 리튬 이차전지는 1992년 일본 소니(Sony)사에 의해 상용화된 이후, 스마트폰, 디지털 카메라, 노트북 컴퓨터 등과 같은 휴대용 전자기기의 핵심부품으로 정보화 시대를 이끌어 왔다.Secondary batteries, unlike primary batteries that can only be discharged once, have been established as important parts of portable electronic devices since the 1990s as an electric storage device capable of continuous charging and discharging. In particular, since the lithium secondary battery was commercialized by Sony Japan in 1992, it has led the information age as a core component of portable electronic devices such as smart phones, digital cameras, and notebook computers.
근래에 리튬 이차전지는 그 활용 영역을 더욱 넓혀가면서 청소기, 전동공구의 전원과 전기자전거, 전기스쿠터와 같은 분야에 사용될 중형전지에서, 전기자동차(electric vehicle; EV), 하이브리드 전기자동차(hybrid electric vehicle; HEV), 플러그-인 하이브리드 전기자동차(Plug-in hybrid electric vehicle; PHEV), 각종 로봇 및 대형 전력저장장치(Electric Storage System; ESS)와 같은 분야에 사용되는 대용량 전지에 이르기까지 빠른 속도로 수요를 늘려가고 있다.In recent years, lithium secondary batteries have expanded their application areas, and in mid-sized batteries to be used in fields such as cleaners, power tools, electric bicycles, and electric scooters, electric vehicles (EVs) and hybrid electric vehicles (hybrid electric vehicles) ; HEV), Plug-in hybrid electric vehicle (PHEV), various robots, and large-capacity batteries used in fields such as electric storage systems (ESS), demand at high speed Is increasing.
그러나, 현재까지 나와 있는 이차전지 중 가장 우수한 특성을 가진 리튬 이차전지도 전기자동차, PHEV와 같은 수송 기구에 활발히 사용되기에는 몇 가지 문제점이 있으며, 그 중 가장 큰 문제점은 용량의 한계이다.However, lithium secondary batteries, which have the best characteristics among the secondary batteries to date, have several problems to be actively used in transportation equipment such as electric vehicles and PHEVs, and the biggest problem is the limitation of capacity.
리튬 이차전지는 기본적으로 양극, 전해질, 음극 등과 같은 소재들로 구성되며, 그 중에서 양극 및 음극 소재가 전지의 용량(capacity)을 결정하기 때문에 리튬 이차전지는 양극과 음극의 물질적인 한계로 인해 용량의 제약을 받는다. 특히, 전기자동차, PHEV와 같은 용도에 사용될 이차전지는 한 번 충전 후 최대한 오래 사용할 수 있어야 하므로, 그 방전 용량이 매우 중요시된다.The lithium secondary battery is basically composed of materials such as a positive electrode, an electrolyte, and a negative electrode, and among them, since the positive and negative electrode materials determine the capacity of the battery, the lithium secondary battery has a capacity due to the material limitations of the positive and negative electrodes. Is limited by. In particular, the secondary battery to be used in applications such as electric vehicles and PHEVs must be used for as long as possible after one charge, so its discharge capacity is very important.
이와 같은 리튬 이차전지의 용량 한계는 많은 노력에도 불구하고 리튬 이차전지의 구조 및 재료적인 제약으로 인해 완전한 해결이 어려운 실정이다. 따라서, 리튬 이차전지의 용량 문제를 근본적으로 해결하기 위해서는 기존의 이차전지 개념을 뛰어 넘는 신개념의 이차전지 개발이 요구된다.The capacity limitation of the lithium secondary battery is difficult to completely solve due to the structure and material limitations of the lithium secondary battery despite many efforts. Therefore, in order to fundamentally solve the capacity problem of the lithium secondary battery, it is required to develop a new concept of secondary battery that goes beyond the existing secondary battery concept.
리튬-황 이차전지는 기존의 리튬 이차전지의 기본원리인 리튬 이온의 층상 구조 금속산화물 및 흑연으로의 삽입/탈리(intercalation) 반응에 의해 결정되는 용량 한계를 뛰어넘고 전이금속 대체 및 비용 절감 등을 가져올 수 있는 새로운 고용량, 저가 전지 시스템이다.Lithium-sulfur secondary batteries exceed the capacity limits determined by the intercalation reaction of the lithium ion layered metal oxide and graphite into the basic principle of the existing lithium secondary battery, and replace transition metals and reduce costs. It is a new high-capacity, low-cost battery system that can be imported.
리튬-황 이차전지는 양극에서 리튬 이온과 황의 변환(conversion) 반응(S8 + 16Li+ + 16e- → 8Li2S)으로부터 나오는 이론 용량이 1,675 mAh/g에 이르고 음극은 리튬 금속(이론용량: 3,860 mAh/g)을 사용하여 전지 시스템의 초고용량화가 가능하다. 또한 방전 전압은 약 2.2 V이므로 이론적으로 양극, 음극 활물질의 양을 기준으로 2,600 Wh/kg의 에너지 밀도를 나타낸다. 이는 층상 구조의 금속 산화물 및 흑연을 사용하는 상용 리튬 이차전지(LiCoO2/graphite)의 이론적 에너지 밀도인 400 Wh/kg보다도 6배 내지 7배 가량이 높은 수치이다.A lithium-sulfur secondary battery is a lithium ion and the sulfur conversion (conversion) reaction at the anode - the theoretical capacity resulting from (S 8 + 16Li + + 16e → 8Li 2 S) reached 1,675 mAh / g anode is lithium metal (theoretical capacity: 3,860 mAh / g) for ultra-high capacity of the battery system. In addition, since the discharge voltage is about 2.2 V, it theoretically represents an energy density of 2,600 Wh / kg based on the amount of the positive and negative electrode active materials. This is a value that is 6 to 7 times higher than the theoretical energy density of 400 Wh / kg, which is a commercial lithium secondary battery (LiCoO 2 / graphite) using a layered metal oxide and graphite.
리튬-황 이차전지는 2010년경 나노 복합체 형성을 통해 전지의 성능이 획기적으로 개선될 수 있다는 것이 알려진 이후 새로운 고용량, 친환경, 저가의 리튬 이차전지로 주목받고 있으며 현재 차세대 전지 시스템으로 세계적으로 집중적인 연구가 이루어지고 있다.Lithium-sulfur secondary batteries have been attracting attention as new high-capacity, eco-friendly, and low-cost lithium secondary batteries since it is known that the performance of batteries can be dramatically improved through the formation of nanocomposites around 2010. Is being made.
현재까지 밝혀진 리튬-황 이차전지의 주요한 문제점 중에 하나는 황의 전기전도도가 5.0 × 10-14 S/cm가량으로 부도체에 가까워 전극에서 전기화학반응이 용이하지 않고, 매우 큰 과전압으로 인해 실제 방전 용량 및 전압이 이론에 훨씬 미치지 못한다는 점이다. 초기 연구자들은 황과 카본의 기계적인 볼밀링이나 카본을 이용한 표면 코팅과 같은 방법으로 성능을 개선해보고자 하였으나 큰 실효가 없었다.One of the main problems of the lithium-sulfur secondary battery that has been identified to date is that the electrical conductivity of sulfur is close to the non-conductor at about 5.0 × 10 -14 S / cm, making electrochemical reactions at the electrode not easy, and the actual discharge capacity and The voltage is far below the theory. Early researchers tried to improve the performance by methods such as mechanical ball milling of sulfur and carbon or surface coating using carbon, but there was no great effect.
전기전도도에 의해 전기화학반응이 제한되는 문제를 효과적으로 해결하기 위해서는 다른 양극 활물질 중의 하나인 LiFePO4의 예와 같이(전기전도도: 10-9 내지 10-10 S/cm) 입자의 크기를 수십 나노미터 이하의 크기로 줄이고 전도성 물질로 표면처리를 할 필요가 있는데, 이를 위하여 여러 가지 화학적(나노 크기의 다공성 탄소 나노 구조체 혹은 금속산화물 구조체로의 melt impregnation), 물리적 방법(high energy ball milling) 등이 보고되고 있다.In order to effectively solve the problem of the electrochemical reaction being restricted by electrical conductivity, as in the case of LiFePO 4, which is one of the other positive electrode active materials (electric conductivity: 10 -9 to 10 -10 S / cm), the particle size is several tens of nanometers. It is necessary to reduce the size to the following and surface treatment with a conductive material. To this end, various chemicals (melt impregnation with a nano-sized porous carbon nanostructure or metal oxide structure), a physical method (high energy ball milling), etc. are reported. Is becoming.
다른 한 가지 리튬-황 전지와 관련된 주요 문제점은 방전 도중 생성되는 황의 중간 생성체인 리튬 폴리설파이드(lithium polysulfide)의 전해질로의 용해이다. 방전이 진행됨에 따라 황(S8)은 리튬 이온과 연속적으로 반응하여 S8 → Li2S8 → (Li2S6) → Li2S4 → Li2S2 → Li2S 등으로 그 상(phase)이 연속적으로 변하게 되는데 그 중 황이 길게 늘어선 체인 형태인 Li2S8, Li2S4(리튬 폴리설파이드) 등은 리튬 이온전지에서 쓰이는 일반적인 전해질에서 쉽게 용해되는 성질이 있다. 이러한 반응이 발생하면 가역 양극 용량이 크게 줄어들 뿐만 아니라 용해된 리튬 폴리설파이드가 음극으로 확산되어 여러 가지 부반응(side reaction)을 일으키게 된다.Another major problem associated with lithium-sulfur batteries is the dissolution of lithium polysulfide, an intermediate product of sulfur generated during discharge, into the electrolyte. As discharge proceeds, sulfur (S 8 ) reacts continuously with lithium ions to form S 8 → Li 2 S 8 → (Li 2 S 6 ) → Li 2 S 4 → Li 2 S 2 → Li 2 S. (phase) changes continuously. Among them, Li 2 S 8 and Li 2 S 4 (lithium polysulfide), which are long-chain chains, have properties that are easily dissolved in a common electrolyte used in lithium ion batteries. When this reaction occurs, not only the reversible anode capacity is greatly reduced, but also the dissolved lithium polysulfide diffuses to the cathode, causing various side reactions.
리튬 폴리설파이드는 특히 충전 과정 중 셔틀반응(shuttle reaction)을 일으키는데, 이로 인하여 충전 용량이 계속 증가하게 되어 충방전 효율이 급격히 저하된다. 최근 이러한 문제를 해결하기 위하여 다양한 방법이 제시되었는데 크게 전해질을 개선하는 방법, 음극의 표면을 개선하는 방법, 양극의 특성을 개선하는 방법 등으로 나눌 수 있다.Lithium polysulfide, in particular, causes a shuttle reaction during the charging process, which causes the charging capacity to continue to increase and the charge / discharge efficiency rapidly decreases. Recently, various methods have been proposed to solve these problems, and can be largely divided into a method of improving the electrolyte, a method of improving the surface of the cathode, and a method of improving the properties of the anode.
전해질을 개선하는 방법은 신규 조성의 기능성 액체 전해질, 고분자 전해질, 이온성 액체(ionic liquid) 등 새로운 전해질을 사용하여 폴리설파이드의 전해질로의 용해를 억제하거나 점도 등의 조절을 통하여 음극으로의 분산 속도를 제어하여 셔틀 반응을 최대한 억제하는 방법이다.The method of improving the electrolyte uses a new electrolyte such as a functional liquid electrolyte, a polymer electrolyte, and an ionic liquid of a new composition to suppress the dissolution of polysulfide into the electrolyte or to control the dispersion rate to the cathode through adjustment of viscosity, etc. It is a method to suppress the shuttle reaction as much as possible by controlling.
음극 표면에 형성되는 SEI의 특성을 개선하여 셔틀 반응을 제어하는 연구가 활발히 이루어지고 있는데 대표적으로 LiNO3과 같은 전해질 첨가제를 투입하여 리튬 음극의 표면에 LixNOy, LixSOy 등의 산화막을 형성하여 개선하는 방법, 리튬 금속의 표면에 두꺼운 기능형 SEI(solid-electrolyte interphase)층을 형성하는 방법 등이 있다.Studies have been actively conducted to control the shuttle reaction by improving the properties of the SEI formed on the surface of the cathode. Typically, electrolyte additives such as LiNO 3 are added to the surface of the lithium anode to form oxide films such as Li x NO y and Li x SO y . And a method for forming a thick functional solid-electrolyte interphase (SEI) layer on the surface of the lithium metal.
마지막으로 양극의 특성을 개선하는 방법은 폴리설파이드의 용해를 막을 수 있도록 양극 입자 표면에 코팅층을 형성하거나 용해된 폴리설파이드를 잡을 수 있는 다공성 물질을 첨가하는 방법 등이 있는데 대표적으로 전도성 고분자로 황 입자가 들어있는 양극 구조체의 표면을 코팅하는 방법, 리튬 이온이 전도되는 금속산화물로 양극 구조체의 표면을 코팅하는 방법, 리튬 폴리설파이드를 다량 흡수할 수 있는 비표면적이 넓고 기공이 큰 다공성 금속산화물을 양극에 첨가하는 방법, 탄소 구조체의 표면에 리튬 폴리설파이드를 흡착할 수 있는 작용기(functional group)를 부착하는 방법, 그래핀 혹은 그래핀 옥사이드 등을 이용하여 황 입자를 감싸는 방법 등이 제시되었다.Lastly, a method of improving the properties of the anode includes a method of forming a coating layer on the surface of the anode particle or adding a porous material capable of catching the dissolved polysulfide to prevent the dissolution of polysulfide. A method of coating the surface of a positive electrode structure containing, a method of coating the surface of a positive electrode structure with a metal oxide that conducts lithium ions, and a positive electrode having a large specific surface area and large pores capable of absorbing large amounts of lithium polysulfide. , A method of attaching a functional group capable of adsorbing lithium polysulfide on the surface of the carbon structure, a method of wrapping sulfur particles using graphene or graphene oxide, and the like.
이와 같은 노력이 진행되고는 있으나, 이러한 방법이 다소 복잡할 뿐만 아니라 활물질인 황을 넣을 수 있는 양이 제한된다는 문제가 있다. 따라서 이러한 문제들을 복합적으로 해결하고 리튬-황 전지의 성능을 개선하기 위한 새로운 기술의 개발이 필요한 실정이다.Although such efforts are underway, this method is rather complicated and there is a problem that the amount of sulfur that can be added as an active material is limited. Therefore, there is a need to develop new technologies to solve these problems in combination and improve the performance of lithium-sulfur batteries.
상술한 문제점을 해결하기 위하여, 리튬 이차전지의 양극 첨가제와 관련한 다각적인 연구를 수행한 결과, 철 전구체와 황 전구체를 혼합하고 이를 열처리하되, 열처리 온도와 공정 시간을 제어하여 선택적으로 고순도의 황화철을 제조할 수 있다는 것을 확인하였다.In order to solve the above-mentioned problems, as a result of conducting various studies related to the positive electrode additive of the lithium secondary battery, the iron precursor and the sulfur precursor are mixed and heat-treated, but the high-purity iron sulfide is selectively controlled by controlling the heat treatment temperature and process time. It was confirmed that it can be produced.
따라서, 본 발명은 간소한 공정을 통해 높은 순도의 리튬 이차전지의 양극 첨가제인 황화철의 제조방법을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a method for manufacturing iron sulfide, which is a positive electrode additive for a lithium secondary battery of high purity through a simple process.
또한, 리튬 이차전지의 양극 측에서 발생하는 리튬 폴리설파이드 용출의 문제를 해소하고 전해액과의 부반응을 억제하기 위해, 리튬 이차전지의 양극에 상기 제조방법에 의해 제조된 황화철(FeS2)을 도입한 결과, 상기 문제를 해결하여 리튬 이차전지의 전지 성능을 향상시킬 수 있음을 확인하여 본 발명을 완성하였다.In addition, in order to solve the problem of elution of lithium polysulfide occurring on the positive electrode side of the lithium secondary battery and suppress side reactions with the electrolyte, iron sulfide (FeS 2 ) produced by the above manufacturing method was introduced into the positive electrode of the lithium secondary battery. As a result, it was confirmed that the battery performance of the lithium secondary battery can be improved by solving the above problems, thereby completing the present invention.
따라서, 본 발명의 다른 목적은, 리튬 폴리설파이드에 의한 문제를 해소할 수 있는 리튬 이차전지용 양극 첨가제를 제공하는 데에 있다.Accordingly, another object of the present invention is to provide a positive electrode additive for a lithium secondary battery capable of solving the problem caused by lithium polysulfide.
또한, 본 발명의 또 다른 목적은, 상기 양극을 구비하여 전지의 수명 특성이 향상된 리튬 이차전지를 제공하는 데에 있다.In addition, another object of the present invention is to provide a lithium secondary battery having the positive electrode having improved life characteristics of the battery.
상기 목적을 달성하기 위하여, 본 발명은, (1) 철 전구체와 황 전구체를 혼합하여 혼합물을 형성하는 단계; 및 (2) 상기 혼합물을 비활성기체 분위기에서 열처리하는 단계;를 포함하는 황화철(FeS2)의 제조방법을 제공한다.In order to achieve the above object, the present invention, (1) mixing the iron precursor and the sulfur precursor to form a mixture; And (2) heat-treating the mixture in an inert gas atmosphere; provides a method for producing iron sulfide (FeS 2 ).
또한, 본 발명은, 활물질, 도전재 및 바인더를 포함하는 리튬 이차전지용 양극으로서, 상기 양극은 황화철(FeS2)을 포함하는 리튬 이차전지용 양극을 제공한다.In addition, the present invention, as a positive electrode for a lithium secondary battery comprising an active material, a conductive material and a binder, the positive electrode provides a positive electrode for a lithium secondary battery containing iron sulfide (FeS 2 ).
또한, 본 발명은, 상기 리튬 이차전지용 양극; 음극; 상기 양극과 음극의 사이에 개재된 분리막; 및 전해질;을 포함하는 리튬 이차전지를 제공한다.In addition, the present invention, the lithium secondary battery positive electrode; cathode; A separator interposed between the anode and the cathode; And electrolyte; provides a lithium secondary battery comprising a.
본 발명에 따르면, 철 전구체와 황 전구체를 혼합하고 이를 열처리하는 단계를 포함하는 간소한 공정에 의해 선택적이며 고순도의 황화철을 제조할 수 있는 장점이 있다. According to the present invention, there is an advantage in that it is possible to prepare iron sulfide of high purity with a selective process by a simple process including the step of mixing the iron precursor and the sulfur precursor and heat-treating it.
또한, 상기 제조되는 황화철(FeS2)을 리튬 이차전지의 양극에 적용하면, 리튬 이차전지의 충, 방전 시 발생하는 리튬 폴리설파이드를 흡착하여 리튬 이차전지 양극의 반응성을 증가시키고 전해액과의 부반응을 억제한다.In addition, when the prepared iron sulfide (FeS 2 ) is applied to the positive electrode of a lithium secondary battery, lithium polysulfide generated during charging and discharging of the lithium secondary battery is adsorbed to increase the reactivity of the positive electrode of the lithium secondary battery and cause side reactions with the electrolyte. Suppress.
또한, 상기 황화철(FeS2)을 포함하는 양극이 구비된 리튬 이차전지는 황의 용량 저하가 발생하지 않아 고용량 전지 구현이 가능하고 황을 고로딩으로 안정적으로 적용 가능할 뿐만 아니라, 이로 인한 전지의 과전압 개선 및 전지의 쇼트, 발열 등의 문제가 없어 전지 안정성이 향상된다. 더불어, 이러한 리튬 이차전지는 전지의 충, 방전 효율이 높고 수명 특성이 개선되는 이점을 갖는다.In addition, the lithium secondary battery provided with the positive electrode containing the iron sulfide (FeS 2 ) does not cause a reduction in the capacity of sulfur, so it is possible to implement a high-capacity battery and stably apply sulfur with high loading, thereby improving the overvoltage of the battery. And there is no problem of short circuit, heat generation, etc. of the battery, thereby improving the battery stability. In addition, the lithium secondary battery has an advantage of high charging and discharging efficiency of the battery and improving life characteristics.
도 1은 본 발명의 제조예 1에 따른 황화철(FeS2)의 주사전자현미경(SEM) 이미지를 나타낸 것이다.1 shows a scanning electron microscope (SEM) image of iron sulfide (FeS 2 ) according to Preparation Example 1 of the present invention.
도 2는 본 발명의 제조예 2에 따른 황화철(FeS2)의 주사전자현미경(SEM) 이미지를 나타낸 것이다.2 shows a scanning electron microscope (SEM) image of iron sulfide (FeS 2 ) according to Preparation Example 2 of the present invention.
도 3은 본 발명의 제조예 1에 따른 황화철(FeS2)의 X-선 회절분석(XRD)결과를 나타낸 것이다.Figure 3 shows the X-ray diffraction analysis (XRD) results of iron sulfide (FeS 2 ) according to Preparation Example 1 of the present invention.
도 4는 본 발명의 제조예 2에 따른 황화철(FeS2)의 X-선 회절분석(XRD)결과를 나타낸 것이다.Figure 4 shows the X-ray diffraction analysis (XRD) results of iron sulfide (FeS 2 ) according to Preparation Example 2 of the present invention.
도 5는 본 발명의 제조예 1 및 비교 제조예 1에 따른 황화철(FeS2)의 X-선 회절분석(XRD) 비교 결과를 나타낸 것이다.Figure 5 shows the X-ray diffraction analysis (XRD) comparison results of iron sulfide (FeS 2 ) according to Preparation Example 1 and Comparative Preparation Example 1 of the present invention.
도 6은 본 발명의 비교 제조예 2에 따른 생성물(NH4Fe(SO4)2)의 X-선 회절분석(XRD) 결과를 나타낸 것이다.6 shows the X-ray diffraction analysis (XRD) results of the product (NH 4 Fe (SO 4 ) 2 ) according to Comparative Preparation Example 2 of the present invention.
도 7은 본 발명의 비교 제조예 3에 따른 생성물의 X-선 회절분석(XRD) 비교 결과를 나타낸 것이다.7 shows X-ray diffraction analysis (XRD) comparison results of the product according to Comparative Preparation Example 3 of the present invention.
도 8 및 9는 본 발명의 일 실시예 및 비교예에 따라 제조된 리튬 이차전지의 방전용량 측정 결과를 나타낸 것이다.8 and 9 show the results of measuring the discharge capacity of a lithium secondary battery manufactured according to an embodiment and a comparative example of the present invention.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에 한정되지 않는다.Hereinafter, with reference to the accompanying drawings to be easily carried out by those of ordinary skill in the art to which the present invention pertains will be described in detail. However, the present invention can be implemented in many different forms, and is not limited to this specification.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the present specification and claims should not be interpreted as being limited to ordinary or lexical meanings, and the inventor can appropriately define the concept of terms in order to best describe his or her invention. Based on the principle that it should be interpreted as meanings and concepts consistent with the technical spirit of the present invention.
본 명세서에서 사용되고 있는 용어 “복합체(composite)”란 두 가지 이상의 재료가 조합되어 물리적, 화학적으로 서로 다른 상(phase)를 형성하면서 보다 유효한 기능을 발현하는 물질을 의미한다.As used herein, the term “composite” refers to a substance that combines two or more materials to form physically and chemically different phases and express more effective functions.
리튬 이차전지는 리튬 이온의 삽입/탈리(intercalation / deintercalation) 가 가능한 물질을 음극 및 양극으로 사용하고, 음극과 양극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조하며, 리튬 이온이 양극 및 음극에서 삽입 및 탈리될 때의 산화/환원반응에 의하여 전기적 에너지를 생성하는 전기 화학 소자를 의미하며, 본 발명의 일 구현예에 따르면 상기 리튬 이차전지는 양극의 전극 활물질로 '황'을 포함하는 리튬-황 전지일 수 있다.The lithium secondary battery is manufactured by using a material capable of intercalation / deintercalation of lithium ions as a negative electrode and a positive electrode, and charging an organic electrolyte or a polymer electrolyte between the negative electrode and the positive electrode, and lithium ions are inserted at the positive and negative electrodes. And an electrochemical device that generates electrical energy by oxidation / reduction reaction when desorption, and according to one embodiment of the present invention, the lithium secondary battery is lithium-sulfur containing 'sulfur' as an electrode active material of a positive electrode. It can be a battery.
본 발명은 황화철(FeS2)의 제조방법에 관한 것으로서, 구체적으로는 리튬 이차전지의 양극 첨가제로 적용하여 전지의 방전 용량 및 수명 특성을 향상시킬 수 있는 형태 및 물성을 가지는 황화철을 제조할 수 있는 방법에 관한 것이다.The present invention relates to a method for manufacturing iron sulfide (FeS 2 ), and specifically, it can be produced as iron sulfide having a shape and physical properties that can improve the discharge capacity and life characteristics of a battery by applying it as a positive electrode additive for a lithium secondary battery. It's about how.
또한, 본 발명은 종래 리튬 이차전지용 양극의 단점을 보완하여, 리튬 폴리설파이드(polysulfide) 용해 및 셔틀 현상에 의한 전극의 지속적 반응성 저하 문제 및 방전 용량 감소 문제 등이 개선된 리튬 이차전지용 양극을 제공한다. 구체적으로, 본 발명에서 제공하는 리튬 황-전지용 양극은 활물질, 도전재 및 바인더를 포함하면서, 양극 첨가제로써 황화철(FeS2)까지 포함하는 것을 특징으로 한다.In addition, the present invention complements the disadvantages of the positive electrode for a lithium secondary battery, and provides a positive electrode for a lithium secondary battery with improved problems of continuous reactivity of an electrode due to dissolution and shuttle phenomenon of lithium polysulfide and a problem of reduction in discharge capacity. . Specifically, the positive electrode for a lithium sulfur-cell provided in the present invention is characterized by including an active material, a conductive material, and a binder, and even iron sulfide (FeS 2 ) as a positive electrode additive.
특히, 상기 황화철(FeS2)은 본 발명에서 리튬 이차전지의 양극에 포함되어, 리튬 폴리설파이드를 흡착함으로써 리튬 폴리설파이드가 음극으로 전달되어 리튬 이차전지의 수명을 감소시키는 문제점을 줄일 수 있고, 리튬 폴리설파이드로 인해 감소된 반응성을 억제함으로써, 상기 양극이 포함된 리튬 이차전지의 방전용량의 증가와 전지의 수명을 향상시킬 수 있다.Particularly, the iron sulfide (FeS 2 ) is included in the positive electrode of the lithium secondary battery in the present invention, and lithium polysulfide is transferred to the negative electrode by adsorbing lithium polysulfide, thereby reducing the problem of reducing the life of the lithium secondary battery and lithium By suppressing the reduced reactivity due to polysulfide, it is possible to increase the discharge capacity of the lithium secondary battery including the positive electrode and improve the life of the battery.
황화철의 제조방법Method for manufacturing iron sulfide
본 발명에 따른 황화철(FeS2)의 제조방법은, (1) 철 전구체와 황 전구체를 혼합하여 혼합물을 형성하는 단계 및 (2) 상기 혼합물을 비활성기체 분위기에서 열처리하는 단계를 포함한다.The method for manufacturing iron sulfide (FeS 2 ) according to the present invention includes (1) mixing an iron precursor and a sulfur precursor to form a mixture, and (2) heat treating the mixture in an inert gas atmosphere.
본 발명에 따른 철 전구체는 황 전구체와 반응하여 황화철(FeS2)을 형성할 수 있는 물질을 의미하며, 바람직한 철 전구체의 예로는 Fe(NO3)9H2O로 표시되는 질산철, γ-FeOOH로 표시되는 수산화철 또는 이의 조합일 수 있다. 다만, 제조되는 황화철의 구조적 차이에 의해 전지의 성능이 달라지는 점(하기의 실시예 내 방전용량 비교 실험 참조)을 고려하였을 때, 상기 철 전구체로서 질산철(Fe(NO3)9H2O)보다는 수산화철(γ-FeOOH, 또는 Lepidocrocite)을 적용하는 것이 보다 바람직하다.The iron precursor according to the present invention means a material capable of forming iron sulfide (FeS 2 ) by reacting with a sulfur precursor, and an example of a preferred iron precursor is iron nitrate represented by Fe (NO 3 ) 3 · 9H 2 O, γ It may be iron hydroxide represented by -FeOOH or a combination thereof. However, considering the fact that the performance of the battery is different due to the structural difference of iron sulfide produced (see the discharge capacity comparison experiment in the examples below), iron nitrate (Fe (NO 3 ) 3 · 9H 2 O as the iron precursor) It is more preferable to apply iron hydroxide (γ-FeOOH, or Lepidocrocite) rather than).
상기 황 전구체로는 티오우레아(Thiourea, CH4N2S), 암모늄 티오설페이트(Ammonium Thiosulfate, (NH4)2S2O3), 황(S) 등이 있으나, 암모늄 티오설페이트의 경우 본 발명에 따른 제조방법에 의할 경우 완전한 황화반응(Sulfurization)이 아닌 NH4Fe(SO4)2 등이 생성되는 부반응이 일어날 수 있으며, 황(S) 자체를 황 전구체로 사용했을 경우, 후술할 철(Fe)과 황(S)의 몰비율을 1:8 이상으로 하여 반응을 진행하여도 Fe7S8과 FeS2이 혼합되어 생성되는 등 균일한 성분의 황화철(FeS2)이 생성되지 않을 수 있으므로, 본 발명에 따른 황화철(FeS2)을 제조하기 위해서는 끓는점이 상대적으로 높은 티오우레아(Thiourea, CH4N2S)를 사용하는 것이 바람직하다(상기 부반응 산물인 Fe7S8의 경우, 리튬 이차전지의 양극 내 바인더와 반응하여 전지의 성능을 악화시킬 수 있는 문제점도 가지고 있다).The sulfur precursors include thiourea (CH 4 N 2 S), ammonium thiosulfate ((Ammonium Thiosulfate, (NH 4 ) 2 S 2 O 3 ), sulfur (S), etc., but in the case of ammonium thiosulfate, the present invention According to the manufacturing method according to the method, a side reaction may occur in which NH 4 Fe (SO 4 ) 2 and the like are generated instead of complete sulfurization, and when sulfur (S) itself is used as a sulfur precursor, iron to be described later Even when the reaction proceeds with a molar ratio of (Fe) and sulfur (S) of 1: 8 or more, iron sulfide (FeS 2 ) of uniform components may not be generated, such as Fe 7 S 8 and FeS 2 being mixed. Therefore, in order to prepare iron sulfide (FeS 2 ) according to the present invention, it is preferable to use thiourea (Thiourea, CH 4 N 2 S) having a relatively high boiling point (in the case of Fe 7 S 8 as a side reaction product, lithium) Problem that can deteriorate the performance of the battery by reacting with the binder in the anode of the secondary battery It has).
상기 철 전구체와 황 전구체의 혼합은 당업자에게 알려진 방법에 의하여 행해질 수 있다. 상기 철 전구체와 황 전구체의 혼합 비율은 철 전구체와 황 전구체에 포함된 철(Fe)과 황(S)의 몰비율이 1:8 이상, 바람직하게는 1:10 이상일 수 있다. 만일 황의 몰비율이 상기 범위 미만인 경우, 황의 함량이 부족하여 후술할 열처리 과정을 거쳐 Fe7S8 등이 생성되는 부반응이 일어날 수 있고, 이는 전술한 바인더와의 부반응을 야기할 수 있으므로 상기 범위 이상으로 황의 혼합 비율을 유지하는 것이 바람직하다.The iron precursor and the sulfur precursor may be mixed by a method known to those skilled in the art. The mixing ratio of the iron precursor and the sulfur precursor may be a molar ratio of iron (Fe) and sulfur (S) contained in the iron precursor and the sulfur precursor is 1: 8 or more, preferably 1:10 or more. If the molar ratio of sulfur is less than the above range, a side reaction of Fe 7 S 8 or the like may occur through a heat treatment process to be described later due to insufficient sulfur content, which may cause a side reaction with the above-described binder, and thus the above range It is desirable to maintain the mixing ratio of sulfur.
다음으로, 본 발명은 단계 (1)의 혼합물을 비활성기체 분위기에서 열처리하는 단계를 포함한다. 상기 열처리 과정을 통해 철 전구체와 황 전구체가 반응하여 황화철(FeS2)을 생성하게 된다. 상기 열처리는 400 내지 600 ℃에서 수행될 수 있으며, 바람직하게는 400 내지 500 ℃에서 수행될 수 있다. 본 발명에 따른 일 구현예는 상기 열처리의 승온 속도가 분당 5 내지 20 ℃ 범위 사이에서 조절되는 것 일 수 있다. 만일 승온 속도가 20 ℃/min를 초과하면 반응 물질인 황 전구체의 분해 속도가 지나치게 높아져 철 전구체와 반응하는 황의 양이 줄어들 수 있으며, 결과적으로 목적하는 황화철(FeS2)이 아닌 Fe7S8의 형태로 제조될 수 있는 문제점이 있다. 또한 승온 속도가 5 ℃/min 미만인 경우 목적하는 생성물의 제조 시간이 지나치게 길어질 수 있는 문제점이 있을 수 있으므로 상기 범위 내에서 적절히 조절한다.Next, the present invention includes the step of heat-treating the mixture of step (1) in an inert gas atmosphere. Through the heat treatment process, an iron precursor and a sulfur precursor react to produce iron sulfide (FeS 2 ). The heat treatment may be performed at 400 to 600 ° C, preferably 400 to 500 ° C. According to an embodiment of the present invention, the heating rate of the heat treatment may be controlled between 5 and 20 ° C per minute. If the temperature increase rate exceeds 20 ° C / min, the decomposition rate of the sulfur precursor, which is a reactant, is excessively high, so that the amount of sulfur reacting with the iron precursor may decrease, and as a result, Fe 7 S 8 is not the desired iron sulfide (FeS 2 ). There is a problem that can be produced in the form. In addition, if the heating rate is less than 5 ° C / min, there may be a problem that the production time of the desired product may be too long, so it is appropriately adjusted within the above range.
또한 상기 열처리는 상기의 온도 범위에서 1 내지 3 시간 동안 수행될 수 있으며, 바람직하게는 1 내지 2 시간 동안 수행될 수 있다. 만일 열처리 온도가 400 ℃ 미만이거나 상기 열처리 시간보다 짧은 경우 철 전구체와 황 전구체가 충분히 반응하지 못하여 원하는 황화철(FeS2)을 생성하지 못할 수 있다. 또한 열처리 온도가 600 ℃를 초과하거나 상기 열처리 시간보다 길 경우에는 생성되는 황화철(FeS2) 입자의 크기가 커지거나, 목적하는 황화철(FeS2)과 달리 불필요한 산화물이 생성될 수 있다. 따라서 본 발명에 따른 원하고자 하는 물성의 황화철(FeS2)을 합성하기 어려울 수 있으므로 상기 범위의 온도와 시간 내에서 적절히 조절한다.In addition, the heat treatment may be performed for 1 to 3 hours in the above temperature range, preferably 1 to 2 hours. If the heat treatment temperature is less than 400 ° C or shorter than the heat treatment time, the iron precursor and the sulfur precursor may not react sufficiently to produce desired iron sulfide (FeS 2 ). In addition, when the heat treatment temperature exceeds 600 ° C or longer than the heat treatment time, the size of the generated iron sulfide (FeS 2 ) particles may increase or, unlike the desired iron sulfide (FeS 2 ), unnecessary oxides may be generated. Therefore, since it may be difficult to synthesize iron sulfide (FeS 2 ) of desired physical properties according to the present invention, it is appropriately adjusted within the temperature and time in the above range.
상기 단계 (3)의 열처리는 비활성기체 분위기에서 수행되는 것일 수 있다. 상기 비활성기체 분위기는 (i) 반응기 내부의 기체가 비활성기체로 치환된 비활성기체 대기 하에서, 또는 (ii) 비활성기체가 지속적으로 유입되어 반응기 내부의 기체를 지속적으로 치환하는 상태에서 진행되는 것일 수 있다. 상기 (ii)의 경우에는, 예를 들어 비활성기체의 유량이 1 내지 500 mL/min일 수 있고, 구체적으로 10 내지 200 mL/min, 보다 구체적으로 50 내지 100 mL/min일 수 있다.The heat treatment in step (3) may be performed in an inert gas atmosphere. The inert gas atmosphere may be performed under (i) an inert gas atmosphere in which the gas inside the reactor is replaced with an inert gas, or (ii) in a state where the inert gas is continuously introduced to continuously replace the gas in the reactor. . In the case of (ii), for example, the flow rate of the inert gas may be 1 to 500 mL / min, specifically 10 to 200 mL / min, and more specifically 50 to 100 mL / min.
여기서, 상기 비활성기체는 질소, 아르곤, 헬륨 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것일 수 있으며, 바람직하게는 질소를 사용할 수 있다. Here, the inert gas may be selected from the group consisting of nitrogen, argon, helium, and mixtures thereof, and preferably nitrogen.
본 발명의 일 구현예에 따른 황화철(FeS2)은 결정성이며, CuKα선을 이용한 X-선 회절 분석 결과 (111), (200), (210), (211), (220), (311), (222) 및 (321) 면의 XRD 피크가 각각 2θ = 28.4±0.2°, 32.9±0.2°, 36.9±0.2°, 40.6±0.2°, 47.3±0.2°, 56.0±0.2°, 58.9±0.2°, 61.5±0.2° 및 64.0±0.2°에서 peak가 나타났고, 이를 통해 본 발명에 따른 황화철(FeS2)이 합성된 것을 확인할 수 있다.Iron sulfide (FeS 2 ) according to an embodiment of the present invention is crystalline, and results of X-ray diffraction analysis using CuKα rays (111), (200), (210), (211), (220), (311) XRD peaks of), (222) and (321) planes are 2θ = 28.4 ± 0.2 °, 32.9 ± 0.2 °, 36.9 ± 0.2 °, 40.6 ± 0.2 °, 47.3 ± 0.2 °, 56.0 ± 0.2 °, 58.9 ± 0.2, respectively. °, 61.5 ± 0.2 ° and 64.0 ± 0.2 ° peak appeared, through which it can be seen that iron sulfide (FeS 2 ) according to the present invention was synthesized.
상기의 제조방법에 의해 제조된 황화철(FeS2)은 평균 입경 수백 nm 내지 수 ㎛, 예를 들어, 0.1 내지 10 ㎛의 결정성일 수 있다. 만일 평균 입경이 10 ㎛를 초과하는 경우 리튬 이차전지의 다른 전극재들과 잘 어울리지 못할 수 있고, 동일한 양이 첨가 되었을 때 상대적으로 평균 입경이 작은 황화철(FeS2)에 비해 전지의 성능 향상 효과가 미미할 수 있다. 한편, 상기 철 전구체로서 수산화철(γ-FeOOH)을 적용하는 경우에는, 평균 입경 수백 nm 내지 수 ㎛의 판상형의 입자를 포함하는 황화철(FeS2)이 제조될 수 있으며, 이 경우, 전술한 바와 같이, 황화철의 구조적 차이에 의해 전지의 성능이 보다 우수해지는 장점을 가지게 된다(하기의 실시예 내 방전용량 비교 실험 참조).The iron sulfide (FeS 2 ) prepared by the above-described manufacturing method may have a crystallinity of an average particle size of several hundreds nm to several μm, for example, 0.1 to 10 μm. If the average particle diameter exceeds 10 μm, it may not fit well with other electrode materials of the lithium secondary battery, and when the same amount is added, the performance improvement effect of the battery compared to iron sulfide (FeS 2 ) having a relatively small average particle diameter Can be insignificant. On the other hand, when iron hydroxide (γ-FeOOH) is applied as the iron precursor, iron sulfide (FeS 2 ) containing plate-shaped particles having an average particle diameter of several hundred nm to several μm may be prepared, and in this case, as described above. , It has the advantage that the performance of the battery is better by the structural difference of iron sulfide (see the discharge capacity comparison experiment in the following examples).
이상과 같은 제조방법에 의해 제조되는 황화철(FeS2)은 리튬 이차전지의 충방전시 용출되는 리튬 폴리설파이드를 효과적으로 흡착할 수 있어 리튬 이차전지의 양극재로서 적합하고, 전지의 양극 내 바인더와 부반응을 일으키지 않아 전지의 성능이 향샹될 수 있다.The iron sulfide (FeS 2 ) produced by the above-described manufacturing method can effectively adsorb lithium polysulfide eluted during charging and discharging of a lithium secondary battery, and is suitable as a cathode material of a lithium secondary battery. It does not cause the performance of the battery can be improved.
리튬 이차전지용 양극Anode for lithium secondary battery
본 발명은 활물질, 도전재 및 바인더를 포함하는 리튬 이차전지용 양극으로서, 상기 양극은 이상의 제조방법을 통하여 제조된 황화철(FeS2)을 포함하는 리튬 이차전지용 양극을 제공한다.The present invention provides an anode for a lithium secondary battery including an active material, a conductive material, and a binder, the anode comprising a lithium sulfide (FeS 2 ) produced through the above-described manufacturing method.
이때, 리튬 이차전지의 양극은 전류 집전체 및 상기 집전체의 적어도 일면에 형성된 전극 활물질층을 포함할 수 있으며, 상기 전극 활물질층은 활물질, 도전재 및 바인더가 포함된 베이스 고형분을 포함할 수 있다. 상기 집전체로는 도전성이 우수한 알루미늄, 니켈 등을 사용하는 것이 바람직할 수 있다.At this time, the positive electrode of the lithium secondary battery may include a current collector and an electrode active material layer formed on at least one surface of the current collector, and the electrode active material layer may include a base solid content including an active material, a conductive material, and a binder. . As the current collector, it may be preferable to use aluminum, nickel or the like having excellent conductivity.
일 구현예로, 상기 활물질, 도전재, 및 바인더를 포함하는 베이스 고형분 100 중량부 기준으로 상기 황화철(FeS2)을 0.1 내지 15 중량부를 포함할 수 있고 구체적으로 1 내지 15 중량부, 바람직하게는 5 내지 10 중량부를 포함할 수 있다. 상기 수치 범위의 하한값 미만인 경우에는 폴리설파이드의 흡착 효과가 미미할 수 있고, 상한값을 초과하는 경우에는 전극의 용량이 줄어들어, 바람직하지 않다. 상기 황화철(FeS2)은 본 발명에서 제시하는 제조방법에 의해 제조된 황화철(FeS2)을 사용할 수 있다.As an embodiment, the iron sulfide (FeS 2 ) may be included in an amount of 0.1 to 15 parts by weight based on 100 parts by weight of the base solid content including the active material, the conductive material, and the binder, and specifically 1 to 15 parts by weight, preferably 5 to 10 parts by weight. If it is less than the lower limit of the numerical range, the adsorption effect of polysulfide may be insignificant, and if it exceeds the upper limit, the capacity of the electrode is reduced, which is not preferable. The iron sulfide (FeS 2) can be used for the iron sulfide (FeS 2) prepared by the method presented in this invention.
한편, 본 발명의 양극을 구성하는 베이스 고형분 중 활물질로는 황 원소(Elemental sulfur, S8), 황 계열 화합물 또는 이들의 혼합물을 포함할 수 있으며, 상기 황 계열 화합물은 구체적으로, Li2Sn(n≥1), 유기황 화합물 또는 탄소-황 복합체((C2Sx)n: x=2.5 내지 50, n≥2) 등일 수 있다.On the other hand, among the base solids constituting the positive electrode of the present invention, the active material may include elemental sulfur (S 8 ), a sulfur-based compound, or a mixture thereof, and the sulfur-based compound is specifically Li 2 S n (n≥1), an organic sulfur compound, or a carbon-sulfur complex ((C 2 S x ) n : x = 2.5 to 50, n≥2).
본 발명에 따른 리튬 이차전지용 양극은 바람직하기로 황-탄소 복합체의 활물질을 포함할 수 있으며, 황 물질은 단독으로는 전기 전도성이 없기 때문에 도전재와 복합하여 사용할 수 있다. 본 발명에 따른 황화철(FeS2)의 첨가는 이러한 황-탄소 복합체 구조 유지에 영향을 주지 않는다.The positive electrode for a lithium secondary battery according to the present invention may preferably include an active material of a sulfur-carbon composite, and since the sulfur material is not electrically conductive alone, it can be used in combination with a conductive material. The addition of iron sulfide (FeS 2 ) according to the present invention does not affect the maintenance of this sulfur-carbon composite structure.
일 구현예에 있어서 상기 황-탄소 복합체는 황-탄소 복합체 100 중량부 기준 황의 함량이 60 내지 90 중량부일 수 있으며, 바람직하게는 70 내지 75 중량부일 수 있다. 만일 황의 함량이 60 중량부 미만일 경우 상대적으로 황-탄소 복합체의 탄소재의 함량이 많아지고, 탄소의 함량이 증가함에 따라 비표면적이 증가하여 슬러리 제조시에 바인더 첨가량을 증가시켜 주어야 한다. 바인더 첨가량의 증가는 결국 전극의 면저항을 증가시키기게 되고 전자 이동(electron pass)을 막는 절연체 역할을 하게 되어 전지 성능을 저하시킬 수 있다. 황의 함량이 90 중량부를 초과하는 경우 탄소재와 결합하지 못한 황 또는 황 화합물이 그들끼리 뭉치거나 탄소재의 표면으로 재용출되어 전자를 받기 어려워서 전극 반응에 직접적으로 참여하기 어렵게 될 수 있으므로 상기 범위에서 적절히 조절한다.In one embodiment, the sulfur-carbon composite may have a sulfur content of 60 to 90 parts by weight based on 100 parts by weight of the sulfur-carbon composite, and preferably 70 to 75 parts by weight. If the content of sulfur is less than 60 parts by weight, the content of the carbon material of the sulfur-carbon composite increases relatively, and as the content of carbon increases, the specific surface area increases, so that the amount of binder added during slurry production must be increased. Increasing the amount of the binder added eventually increases the sheet resistance of the electrode and acts as an insulator preventing electron pass, which can degrade battery performance. If the sulfur content exceeds 90 parts by weight, the sulfur or sulfur compounds that are not combined with the carbon material may be difficult to directly participate in the electrode reaction due to aggregation or re-eluting to the surface of the carbon material, making it difficult to directly participate in the electrode reaction. Adjust accordingly.
본 발명에 따른 황-탄소 복합체의 탄소는 다공성 구조이거나 비표면적이 높은 것으로 당업계에서 통상적으로 사용되는 것이라면 어느 것이든 무방하다. 예를 들어, 상기 다공성 탄소재로는 그래파이트(graphite); 그래핀(graphene); 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 단일벽 탄소나노튜브(SWCNT), 다중벽 탄소나노튜브(MWCNT) 등의 탄소나노튜브(CNT); 그라파이트 나노파이버(GNF), 카본 나노파이버(CNF), 활성화 탄소 파이버(ACF) 등의 탄소 섬유; 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상일 수 있으나 이에 제한되지 않으며 그 형태는 구형, 봉형, 침상형, 판상형, 튜브형 또는 벌크형으로 리튬 이차전지에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다.The carbon of the sulfur-carbon composite according to the present invention may be either a porous structure or a high specific surface area as long as it is commonly used in the art. For example, the porous carbon material includes graphite; Graphene; Carbon blacks such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Carbon nanotubes (CNT) such as single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT); Carbon fibers such as graphite nanofiber (GNF), carbon nanofiber (CNF), and activated carbon fiber (ACF); And it may be at least one selected from the group consisting of activated carbon, but is not limited thereto, and its shape is spherical, rod-shaped, needle-shaped, plate-shaped, tubular or bulk-type, and can be used without limitation as long as it is commonly used in lithium secondary batteries.
상기 활물질은 바람직하기로 베이스 고형분 100 중량부 중 50 내지 95 중량부를 구성하도록 하고, 보다 바람직하기로는 70 중량부 내외로 할 수 있다. 만약 활물질이 상기 범위 미만으로 포함되면 전극의 반응을 충분하게 발휘하기 어렵고, 상기 범위 초과로 포함되어도 기타 도전재 및 바인더의 포함량이 상대적으로 부족하여 충분한 전극 반응을 발휘하기 어렵기 때문에 상기 범위 내에서 적정 함량을 결정하는 것이 바람직하다.The active material is preferably 50 to 95 parts by weight of 100 parts by weight of the base solid content, more preferably 70 parts by weight or less. If the active material is included below the above range, it is difficult to sufficiently exhibit the reaction of the electrode, and even if it is included above the above range, the amount of other conductive materials and binders is relatively insufficient, so that it is difficult to exert sufficient electrode reaction within the above range. It is desirable to determine the appropriate content.
본 발명의 양극을 구성하는 베이스 고형분 중 상기 도전재는, 전해질과 양극 활물질을 전기적으로 연결시켜 주어 전자가 집전체(Current collector)로부터 황까지 이동하는 경로의 역할을 하는 물질로서, 전지에 화학적 변화를 유발하지 않으면서 다공성 및 도전성을 갖는 것이라면 특별히 한정되지 않는다. 예컨대, KS6과 같은 흑연계 물질; 슈퍼 P(Super-P), 카본 블랙, 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙과 같은 카본 블랙; 플러렌 등의 탄소 유도체; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 등의 전도성 고분자를 단독 또는 혼합하여 사용할 수 있다. Among the base solids constituting the positive electrode of the present invention, the conductive material is a material that electrically connects the electrolyte and the positive electrode active material to serve as a path for electrons to move from the current collector to sulfur, and to change the battery chemically. It is not particularly limited as long as it has porosity and conductivity without causing it. Graphite-based materials such as KS6; Carbon blacks such as super P (Super-P), carbon black, denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Carbon derivatives such as fullerene; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder, and nickel powder; Alternatively, conductive polymers such as polyaniline, polythiophene, polyacetylene, and polypyrrole may be used alone or in combination.
상기 도전재는 바람직하기로 베이스 고형분 100 중량부 중 1 내지 10 중량부를 구성하도록 하고, 바람직하기로는 5 중량부 내외로 할 수 있다. 만약, 전극에 포함되는 도전재의 함량이 상기 범위 미만이면 전극 내 황 중 반응하지 못하는 부분이 증가하게 되고, 결국은 용량감소를 일으키게 되며, 상기 범위 초과이면 고효율 방전 특성과 충, 방전 사이클 수명에 악영향을 미치게 되므로 상술한 범위 내에서 적정 함량을 결정하는 것이 바람직하다.The conductive material is preferably configured to constitute 1 to 10 parts by weight of 100 parts by weight of the base solid content, preferably 5 parts by weight or less. If the content of the conductive material included in the electrode is less than the above range, a portion of the electrode that does not react increases in the sulfur, and eventually, a capacity decrease occurs, and if it exceeds the above range, high efficiency discharge characteristics and charge and discharge cycle life are adversely affected. It is desirable to determine the appropriate content within the above-described range.
베이스 고형분으로서 상기 바인더는 양극을 형성하는 베이스 고형분의 슬러리 조성물을 집전체에 잘 부착하기 위하여 포함하는 물질로서, 용매에 잘 용해되고 양극 활물질과 도전재와의 도전 네트워크를 잘 구성할 수 있는 물질을 사용한다. 특별한 제한이 없는 한 당해 업계에서 공지된 모든 바인더들을 사용할 수 있으며, 바람직하기로 폴리(비닐)아세테이트, 폴리비닐 알코올, 폴리에틸렌 옥사이드, 폴리비닐 피롤리돈, 알킬레이티드 폴리에틸렌 옥사이드, 가교결합된 폴리에틸렌 옥사이드, 폴리비닐 에테르, 폴리(메틸 메타크릴레이트), 폴리비닐리덴 플루오라이드(PVdF), 폴리헥사플루오로프로필렌, 폴리비닐리덴플루오라이드의 코폴리머(상품명: Kynar), 폴리(에틸 아크릴레이트), 폴리테트라플루오로에틸렌폴리비닐클로라이드, 폴리테트라플루오로에틸렌, 폴리아크릴로니트릴, 폴리비닐피리딘, 폴리스티렌, 카르복시메틸 셀룰로오즈, 폴리디메틸실록세인과 같은 실록세인계, 스티렌-부타디엔 고무, 아크릴로니트릴-부티디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더, 폴리에틸렌 글리콜 디아크릴레이트와 같은 에틸렌글리콜계 및 이들의 유도체, 이들의 블랜드, 이들의 공중합체 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.As a base solid, the binder is a material containing a slurry composition of a base solid that forms a positive electrode to adhere well to a current collector, and is a material that is well soluble in a solvent and can well constitute a conductive network between a positive electrode active material and a conductive material. use. Any binder known in the art can be used, unless otherwise specified, preferably poly (vinyl) acetate, polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, alkylated polyethylene oxide, crosslinked polyethylene oxide , Polyvinyl ether, poly (methyl methacrylate), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, copolymer of polyvinylidene fluoride (trade name: Kynar), poly (ethyl acrylate), poly Siloxane groups such as tetrafluoroethylene polyvinyl chloride, polytetrafluoroethylene, polyacrylonitrile, polyvinylpyridine, polystyrene, carboxymethyl cellulose, polydimethylsiloxane, styrene-butadiene rubber, acrylonitrile-butadiene Rubber, rubber-based binder containing styrene-isoprene rubber, polyester Ethylene glycol-based such as styrene glycol diacrylate and derivatives thereof, blends thereof, and copolymers thereof may be used, but are not limited thereto.
상기 바인더는 전극에 포함되는 베이스 조성물 100 중량부 중 1 내지 10 중량부를 구성하도록 하고, 바람직하기로는 5 중량부 내외로 할 수 있다. 만약, 바인더 수지의 함량이 상기 범위 미만이면 양극의 물리적 성질이 저하되어 양극 활물질과 도전재가 탈락할 수 있고, 상기 범위 초과이면 양극에서 활물질과 도전재의 비율이 상대적으로 감소되어 전지 용량이 감소될 수 있으므로 상술한 범위 내에서 적정 함량을 결정하는 것이 바람직하다.The binder is made to constitute 1 to 10 parts by weight of 100 parts by weight of the base composition included in the electrode, preferably 5 parts by weight. If the content of the binder resin is less than the above range, the physical properties of the positive electrode may deteriorate and the positive electrode active material and the conductive material may drop off. If the content exceeds the above range, the ratio of the active material and the conductive material in the positive electrode may be relatively reduced to decrease the battery capacity. Therefore, it is preferable to determine an appropriate content within the above-described range.
상술한 바와 같이 황화철(FeS2) 및 베이스 고형분을 포함하는 양극은 통상의 방법에 따라 제조될 수 있다. 예를 들면, 양극 활물질에 용매, 필요에 따라 바인더, 도전재, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 양극을 제조할 수 있다.As described above, the anode including iron sulfide (FeS 2 ) and the base solid content may be prepared according to a conventional method. For example, a mixture of a solvent, a binder, a conductive material, and a dispersant may be mixed with a positive electrode active material, if necessary, to prepare a slurry, and then coated (coated) on a current collector of a metal material, compressed, and dried to produce a positive electrode. have.
이를테면, 상기 양극 슬러리 제조 시 먼저 황화철(FeS2)을 용매에 분산한 후 얻어진 용액을 활물질, 도전재 및 바인더와 믹싱하여 양극 형성을 위한 슬러리 조성물을 얻는다. 이후 이러한 슬러리 조성물을 집전체 상에 코팅한 후 건조하여 양극을 완성한다. 이때 필요에 따라 전극 밀도의 향상을 위하여 집전체에 압축 성형하여 제조할 수 있다. 상기 슬러리를 코팅하는 방법으로 그 제한은 없으며, 예컨대, 닥터 블레이드 코팅(Doctor blade coating), 딥 코팅(Dip coating), 그라비어 코팅(Gravure coating), 슬릿 다이 코팅(Slit die coating), 스핀 코팅(Spin coating), 콤마 코팅(Comma coating), 바 코팅(Bar coating), 리버스 롤 코팅(Reverse roll coating), 스크린 코팅(Screen coating), 캡 코팅(Cap coating) 방법 등을 수행하여 제조할 수 있다.For example, when preparing the positive electrode slurry, iron sulfide (FeS 2 ) is first dispersed in a solvent, and then the obtained solution is mixed with an active material, a conductive material, and a binder to obtain a slurry composition for positive electrode formation. Then, the slurry composition is coated on a current collector and then dried to complete an anode. At this time, in order to improve the electrode density, if necessary, compression molding may be performed on the current collector. There is no limitation in the method for coating the slurry, for example, doctor blade coating, dip coating, gravure coating, slit die coating, spin coating coating, comma coating, bar coating, reverse roll coating, screen coating, and cap coating.
이때 상기 용매로는 양극 활물질, 바인더 및 도전재를 균일하게 분산시킬 수 있는 것은 물론, 황화철(FeS2)을 용이하게 용해할 수 있는 것을 사용한다. 이러한 용매로는 수계 용매로서 물이 가장 바람직하며, 이때 물은 2차 증류한 DW(Distilled Water), 3차 증류한 DIW(Deionzied Water)일 수 있다. 다만 반드시 이에 한정하는 것은 아니며, 필요한 경우 물과 쉽게 혼합이 가능한 저급 알코올이 사용될 수 있다. 상기 저급 알코올로는 메탄올, 에탄올, 프로판올, 이소프로판올, 및 부탄올 등이 있으며, 바람직하기로 이들은 물과 함께 혼합하여 사용될 수 있다.At this time, as the solvent, one capable of uniformly dispersing the positive electrode active material, the binder, and the conductive material, as well as those capable of easily dissolving iron sulfide (FeS 2 ) are used. As the solvent, water is most preferable as the water-based solvent, and the water may be DW (Distilled Water) distilled second, or DIW (Deionzied Water) distilled third. However, the present invention is not limited thereto, and if necessary, a lower alcohol that can be easily mixed with water may be used. Examples of the lower alcohol include methanol, ethanol, propanol, isopropanol, and butanol. Preferably, they can be used by mixing with water.
일 구현예로 상기 양극은 집전체 및 상기 집전체의 적어도 일면에 형성된 전극 활물질층을 포함하며, 상기 전극 활물질층은 활물질, 도전재, 바인더 및 본 발명에 따른 황화철(FeS2)을 포함하고, 상기 전극 활물질층의 기공도는 60 내지 75 % 일 수 있으며, 구체적으로 60 내지 70 %, 바람직하게는 60 내지 65 %일 수 있다.In one embodiment, the positive electrode includes a current collector and an electrode active material layer formed on at least one surface of the current collector, and the electrode active material layer includes an active material, a conductive material, a binder, and iron sulfide (FeS 2 ) according to the present invention, The porosity of the electrode active material layer may be 60 to 75%, specifically 60 to 70%, preferably 60 to 65%.
본 발명에 있어서, 용어 "기공도(porosity)"은 어느 구조체에서 전체 부피에 대해 기공이 차지하는 부피의 비율을 의미하고, 그의 단위로서 %를 사용하며, 공극율, 다공도 등의 용어와 상호 교환하여 사용할 수 있다.In the present invention, the term "porosity (porosity)" refers to the ratio of the volume occupied by the pores to the total volume in a certain structure, uses% as its unit, is used interchangeably with terms such as porosity, porosity, etc. You can.
본 발명에 있어서, 상기 기공도의 측정은 특별히 한정되지 않으며, 본 발명의 일 실시예에 따라 예를 들어 BET(Brunauer-Emmett- Teller) 측정법 또는 수은 침투법 (Hg porosimeter)에 의해 크기(micro) 및 메소 세공 부피(meso pore volume)를 측정할 수 있다.In the present invention, the measurement of the porosity is not particularly limited, and according to an embodiment of the present invention, for example, the size (micro) by BET (Brunauer-Emmett-Teller) measurement method or mercury penetration method (Hg porosimeter) And meso pore volume.
만일 상기 전극 활물질층의 기공도가 60 %에 미치지 못하는 경우에는 활물질, 도전재 및 바인더를 포함하는 베이스 고형분의 충진도가 지나치게 높아져서 활물질 사이에 이온전도 및/또는 전기 전도를 나타낼 수 있는 충분한 전해액이 유지될 수 없게 되어 전지의 출력특성이나 사이클 특성이 저하될 수 있으며, 전지의 과전압 및 방전용량 감소가 심하게 되어 본 발명에 따른 황화철(FeS2)을 포함함에 따른 효과가 제대로 발현되지 않을 수 있는 문제가 있다. 기공도가 75 %를 초과하여 지나치게 높은 기공도를 갖는 경우 집전체와 물리적 및 전기적 연결이 낮아져 접착력이 저하되고 반응이 어려워지는 문제가 있으며, 높아진 기공도를 전해액이 충진되어 전지의 에너지 밀도가 낮아질 수 있는 문제가 있으므로 상기 범위에서 적절히 조절한다. 본 발명의 일 구현예에 따르면, 상기 기공도는 핫프레스법, 롤프레스법, 판프레스법 및 롤라미네이트법으로 이루어진 군으로부터 선택되는 방법에 의해 수행될 수 있다.If the porosity of the electrode active material layer is less than 60%, the filling degree of the base solids containing the active material, the conductive material, and the binder is too high, and sufficient electrolyte solution capable of exhibiting ionic conductivity and / or electrical conduction between the active materials is obtained. Since it cannot be maintained, the output characteristics or cycle characteristics of the battery may be deteriorated, and the overvoltage and discharge capacity of the battery are severely reduced, so that the effect of including iron sulfide (FeS 2 ) according to the present invention may not be properly expressed. There is. When the porosity exceeds 75% and has an excessively high porosity, there is a problem in that the physical and electrical connection with the current collector is lowered, the adhesive strength is lowered and the reaction becomes difficult, and the increased porosity is filled with an electrolyte solution, thereby lowering the energy density of the battery. Since there is a possible problem, it is appropriately adjusted within the above range. According to one embodiment of the present invention, the porosity may be performed by a method selected from the group consisting of a hot press method, a roll press method, a plate press method and a roll laminate method.
본 발명의 일 구현예로 상기 양극은 단위 면적당 황의 로딩양이 3 내지 7 mAh/cm2, 바람직하게는 4 내지 6 mAh/cm2일 수 있다. 일반적으로 상기 로딩양이 6 mAh/cm2 이상일 경우에는 전지의 과전압이 발생하고 방전용량이 감소하나, 본 발명은 양극에 황화철(FeS2)을 포함하여 4 내지 6 mAh/cm2의 고로딩양에도 과전압이 개선되고 전지의 방전용량이 향상되는 효과가 있다.In one embodiment of the present invention, the positive electrode may have a loading amount of sulfur per unit area of 3 to 7 mAh / cm 2 , preferably 4 to 6 mAh / cm 2 . In general, when the loading amount is 6 mAh / cm 2 or more, overvoltage of the battery occurs and the discharge capacity decreases, but the present invention includes a high loading amount of 4 to 6 mAh / cm 2 including iron sulfide (FeS 2 ) at the positive electrode. Edo also has the effect of improving the overvoltage and improving the discharge capacity of the battery.
리튬 이차전지Lithium secondary battery
한편, 본 발명은, 상기 리튬 이차전지용 양극, 음극, 상기 양극과 음극의 사이에 개재된 분리막 및 전해질을 포함하는 리튬 이차전지를 제공한다.Meanwhile, the present invention provides a lithium secondary battery including a positive electrode for a lithium secondary battery, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
이때 상기 음극, 분리막 및 전해질은 리튬 이차전지에 사용될 수 있는 통상의 물질들로 구성될 수 있다.At this time, the negative electrode, the separator and the electrolyte may be composed of common materials that can be used in lithium secondary batteries.
구체적으로, 상기 음극은 활물질로서 리튬 이온(Li+)을 가역적으로 흡장(Intercalation) 또는 방출(Deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 사용할 수 있다.Specifically, the negative electrode is a material capable of reversibly intercalating or deintercalating lithium ions (Li + ) as an active material, a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal Alternatively, a lithium alloy can be used.
상기 리튬 이온(Li+)을 가역적으로 흡장 또는 방출할 수 있는 물질은 이를테면 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 또한, 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 이를테면, 산화주석, 티타늄 나이트레이트 또는 실리콘일 수 있다. 또한, 상기 리튬 합금은 예를 들어, 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn으로 이루어지는 군으로부터 선택되는 금속의 합금일 수 있다.The material capable of reversibly occluding or releasing the lithium ion (Li + ) may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof. In addition, a material capable of reversibly forming a lithium-containing compound by reacting with the lithium ion (Li + ) may be, for example, tin oxide, titanium nitrate or silicon. Further, the lithium alloy may be, for example, an alloy of lithium and a metal selected from the group consisting of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al and Sn.
또, 상기 음극은 음극 활물질과 함께 선택적으로 바인더를 더 포함할 수 있다. 상기 바인더는 음극 활물질의 페이스트화, 활물질간 상호 접착, 활물질과 전류 집전체와의 접착, 활물질 팽창 및 수축에 대한 완충 효과 등의 역할을 한다. 구체적으로 상기 바인더는 앞서 설명한 바와 동일하다.In addition, the negative electrode may further include a binder selectively together with the negative electrode active material. The binder plays the role of pasting the negative electrode active material, mutual adhesion between the active materials, adhesion between the active material and the current collector, and buffering effects for expansion and contraction of the active material. Specifically, the binder is the same as described above.
또, 상기 음극은 음극 활물질 및 바인더를 포함하는 음극 활성층의 지지를 위한 전류 집전체를 더 포함할 수도 있다. 상기 전류 집전체는 구체적으로 구리, 알루미늄, 스테인리스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다. 상기 스테인리스스틸은 카본, 니켈, 티탄 또는 은으로 표면 처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금이 사용될 수 있다. 그 외에도 소성 탄소, 도전제로 표면 처리된 비전도성 고분자, 또는 전도성 고분자 등이 사용될 수도 있다.In addition, the negative electrode may further include a current collector for supporting the negative electrode active layer including a negative electrode active material and a binder. The current collector may be specifically selected from the group consisting of copper, aluminum, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof. The stainless steel may be surface treated with carbon, nickel, titanium or silver, and an aluminum-cadmium alloy may be used as the alloy. In addition, calcined carbon, a non-conductive polymer surface-treated with a conductive agent, or a conductive polymer may be used.
또, 상기 음극은 리튬 금속의 박막일 수도 있다.In addition, the negative electrode may be a thin film of lithium metal.
상기 분리막은 양극과 음극을 서로 분리 또는 절연시키면서 이들 사이에 리튬 이온의 수송을 가능하게 하는 물질을 사용하되, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해질의 이온 이동에 대하여 낮은 저항을 가지면서 전해질 함습 능력이 우수한 것이 바람직하다.The separator uses a material that allows lithium ions to be transported between the positive electrode and the negative electrode while insulating or insulating them from each other, but can be used without particular limitation as long as it is used as a separator in a lithium secondary battery. It is preferable to have a low resistance and excellent electrolyte-moisturizing ability.
보다 바람직하기로 상기 분리막 물질로는 다공성이고 비전도성 또는 절연성인 물질을 사용할 수 있으며, 이를테면 필름과 같은 독립적인 부재이거나, 또는 양극 및/또는 음극에 부가된 코팅층을 사용할 수 있다.More preferably, as the separator material, a porous, non-conductive or insulating material may be used, such as an independent member such as a film, or a coating layer added to the positive electrode and / or the negative electrode.
구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나 반드시 이에 한정되는 것은 아니다.Specifically, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, and ethylene / methacrylate copolymer is used alone. It may be used as or by laminating them, or a conventional porous non-woven fabric, for example, a high-melting point glass fiber, a polyethylene terephthalate fiber, or the like may be used, but is not limited thereto.
상기 전해질은 리튬염을 함유하는 비수계 전해질로서 리튬염과 전해액으로 구성되어 있으며, 전해액으로는 비수계 유기 용매, 유기 고체 전해질 및 무기 고체 전해질 등이 사용된다.The electrolyte is a non-aqueous electrolyte containing a lithium salt, and is composed of a lithium salt and an electrolyte. As the electrolyte, a non-aqueous organic solvent, an organic solid electrolyte, and an inorganic solid electrolyte are used.
상기 리튬염은 비수계 유기 용매에 쉽게 용해될 수 있는 물질로서, 예컨대, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiB(Ph)4, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2, 클로로보란리튬, 저급지방족 카르본산리튬, 4 페닐 붕산 리튬 및 이미드로 이루어진 군으로부터 선택된 하나 이상일 수 있다.The lithium salt is a material that can be easily dissolved in a non-aqueous organic solvent, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB (Ph) 4, LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiSO 3 CH 3, LiSO 3 CF 3, LiSCN, LiC (CF 3 SO 2) 3, LiN (CF 3 SO 2) 2, chloroborane lithium, lower aliphatic It may be one or more selected from the group consisting of lithium carboxylate, lithium 4-phenyl borate and imide.
상기 리튬염의 농도는, 전해질 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 방전 조건, 작업 온도 및 리튬 배터리 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.2 내지 2M, 바람직하기로 0.6 내지 2M, 보다 바람직하기로 0.7 내지 1.7M일 수 있다. 만약, 리튬염의 농도가 상기 범위 미만이면 전해질의 전도도가 낮아져서 전해질 성능이 저하될 수 있고, 상기 범위 초과이면 전해질의 점도가 증가하여 리튬 이온(Li+)의 이동성이 감소될 수 있으므로 상기 범위 내에서 적정 농도를 선택하는 것이 바람직하다.The concentration of the lithium salt is preferably 0.2 to 2M, depending on several factors, such as the exact composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the conditions for charging and discharging the cell, the working temperature and other factors known in the field of lithium batteries. It may be 0.6 to 2M, and more preferably 0.7 to 1.7M. If the concentration of the lithium salt is less than the above range, the conductivity of the electrolyte may be lowered to degrade the electrolyte performance, and if it exceeds the above range, the viscosity of the electrolyte may increase and mobility of lithium ions (Li + ) may be reduced, so within the above range. It is desirable to select an appropriate concentration.
상기 비수계 유기 용매는 리튬염을 잘 용해시킬 수 있는 물질로서, 바람직하기로 1,2-디메톡시에탄, 1,2-디에톡시에탄, 1,2-디부톡시에탄, 디옥솔란 (Dioxolane, DOL), 1,4-디옥산, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란, 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC), 에틸프로필카보네이트, 디프로필카보네이트, 부틸에틸카보네이트, 에틸프로파노에이트(EP), 톨루엔, 자일렌, 디메틸에테르(dimethyl ether, DME), 디에틸에테르, 트리에틸렌글리콜모노메틸에테르(Triethylene glycol monomethyl ether, TEGME), 디글라임, 테트라글라임, 헥사메틸 포스포릭 트리아마이드(hexamethyl phosphoric triamide), 감마부티로락톤(GBL), 아세토니트릴, 프로피오니트릴, 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), N-메틸피롤리돈, 3-메틸-2-옥사졸리돈, 아세트산에스테르, 부티르산에스테르 및 프로피온산에스테르, 디메틸포름아마이드, 설포란(SL), 메틸설포란, 디메틸아세트아마이드, 디메틸설폭사이드, 디메틸설페이트, 에틸렌글리콜 디아세테이트, 디메틸설파이트, 또는 에틸렌글리콜설파이트 등의 비양자성 유기 용매가 사용될 수 있으며, 이들 중 하나 또는 둘 이상의 혼합 용매 형태로 사용될 수 있다.The non-aqueous organic solvent is a material capable of dissolving the lithium salt well, and preferably 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, and dioxolane (Dioxolane, DOL) ), 1,4-dioxane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methylpropyl carbonate (MPC), ethyl propyl carbonate , Dipropyl carbonate, butyl ethyl carbonate, ethyl propanoate (EP), toluene, xylene, dimethyl ether (DME), diethyl ether, triethylene glycol monomethyl ether (TEGME), Diglyme, tetraglyme, hexamethyl phosphoric triamide, gamma-butyrolactone (GBL), acetonitrile, propionitrile, ethylene carbonate (EC), propylene carbonate (PC), N-methylpi Lollidon, 3-methyl-2 -Oxazolidone, acetic acid esters, butyric acid esters and propionic acid esters, dimethylformamide, sulfolane (SL), methylsulfolan, dimethylacetamide, dimethylsulfoxide, dimethylsulfate, ethylene glycol diacetate, dimethylsulfite, or ethylene An aprotic organic solvent such as glycol sulfite may be used, and one or more mixed solvents may be used.
상기 유기 고체 전해질로는 바람직하기로, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(Agitation lysine), 폴리에스테르 설파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.Preferably, the organic solid electrolyte is a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphoric acid ester polymer, a poly edgeation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, ionic Polymers containing dissociation groups and the like can be used.
본 발명의 무기 고체 전해질로는 바람직하기로, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.As the inorganic solid electrolyte of the present invention, Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 -LiI-LiOH, Li 3 PO4-Li 2 S-SiS 2 and other nitrides of Li, halide, sulfate, and the like can be used.
전술한 바의 리튬 이차전지의 형태는 특별히 제한되지 않으며, 예를 들어 젤리-롤형, 스택형, 스택-폴딩형(스택-Z-폴딩형 포함), 또는 라미네이션-스택 형일 수 있으며, 바람직하기로 스택-폴딩형일 수 있다.The shape of the lithium secondary battery as described above is not particularly limited, and may be, for example, a jelly-roll type, a stack type, a stack-folding type (including a stack-Z-folding type), or a lamination-stack type, preferably It may be a stack-folding type.
이러한 상기 양극, 분리막, 및 음극이 순차적으로 적층된 전극 조립체를 제조한 후, 이를 전지 케이스에 넣은 다음, 케이스의 상부에 전해액을 주입하고 캡 플레이트 및 가스켓으로 밀봉하여 조립하여 리튬 이차전지를 제조한다.After preparing the electrode assembly in which the positive electrode, the separator, and the negative electrode are sequentially stacked, they are placed in a battery case, and then an electrolyte is injected into the upper portion of the case and sealed with a cap plate and gasket to assemble to produce a lithium secondary battery. .
상기 리튬 이차전지는 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조 방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.The lithium secondary battery may be classified into a cylindrical shape, a square shape, a coin shape, a pouch shape, and the like, and may be divided into a bulk type and a thin film type according to the size. The structure and manufacturing method of these batteries are well known in the art, so detailed descriptions thereof are omitted.
상술한 바와 같이 구성되는 본 발명에 따른 리튬 이차전지는, 황화철(FeS2)을 포함함으로써 리튬 이차전지의 충방전시 발생하는 리튬 폴리설파이드를 흡착하여 리튬 이차전지 양극의 반응성이 증가하고, 그것이 적용된 리튬 이차전지는 방전용량과 수명을 증가시키는 효과를 가진다. 또한, 본 발명에 따른 황화철(FeS2)을 포함하는 경우 고로딩 및 저기공도의 전극에서도 과전압이 개선되고 방전용량이 향상되는 장점이 있다.The lithium secondary battery according to the present invention, configured as described above, contains iron sulfide (FeS 2 ) to adsorb lithium polysulfide generated during charging and discharging of the lithium secondary battery, thereby increasing the reactivity of the anode of the lithium secondary battery and applying it The lithium secondary battery has an effect of increasing discharge capacity and life. In addition, when the iron sulfide (FeS 2 ) according to the present invention is included, there is an advantage that the overload is improved and the discharge capacity is improved even in the electrode having high loading and low porosity.
이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.Hereinafter, the present invention will be described in more detail through examples and the like, but the scope and content of the present invention may be reduced or limited by the examples below. In addition, if it is based on the disclosure of the present invention including the following examples, it is obvious that a person skilled in the art can easily carry out the present invention in which experimental results are not specifically presented, and patents to which such modifications and corrections are attached Naturally, it is within the scope of the claims.
[제조예 1] [Production Example 1] 황화철의 제조Preparation of iron sulfide
철 전구체로 질산철 수화물(Fe(NO3)9H2O) (Sigma-Aldrich사) 1.9 g과 황 전구체로 티오우레아(Thiourea, CH4N2S) (Sigma-Aldrich사) 3.6 g을 혼합하였다(Fe:S = 1:10 몰비율).Iron nitrate hydrate (Fe (NO 3 ) 3 · 9H 2 O) (Sigma-Aldrich) 1.9 g as an iron precursor and Thiourea (CH 4 N 2 S) (Sigma-Aldrich) 3.6 g as a sulfur precursor Mixed (Fe: S = 1:10 molar ratio).
상기 혼합물을 유량 100 mL/min의 아르곤 기체를 흘려주며 400 ℃에서 1.5 시간 동안 열처리를 하였다. 이때 열처리를 위한 승온 속도는 분당 10 ℃로 하였다. 상기 열처리를 통해 황화철(FeS2)을 제조하였다.The mixture was treated with argon gas at a flow rate of 100 mL / min and heat-treated at 400 ° C for 1.5 hours. At this time, the rate of temperature increase for heat treatment was 10 ° C per minute. Iron sulfide (FeS 2 ) was prepared through the heat treatment.
[제조예 2] [Production Example 2] 황화철의 제조Preparation of iron sulfide
철 전구체로 질산철 수화물(Fe(NO3)9H2O) 대신 수산화철(γ-FeOOH) 0.42 g을 사용한 것을 제외하고는, 상기 제조예 1과 동일하게 수행하여 판상형의 입자를 가진 황화철(FeS2)을 제조하였다.Iron sulfide with plate-like particles was performed in the same manner as in Preparation Example 1, except that 0.42 g of iron hydroxide (γ-FeOOH) was used instead of iron nitrate hydrate (Fe (NO 3 ) 3 · 9H 2 O) as an iron precursor ( FeS 2 ) was prepared.
[비교 제조예 1] [Comparative Production Example 1] 황화철의 제조Preparation of iron sulfide
철(Fe) 대비 황(S)의 몰비율을 1:4로 한 것을 제외하고는 상기 실시예 1과 동일하게 하여 실시하였다.It was carried out in the same manner as in Example 1, except that the molar ratio of sulfur (S) to iron (Fe) was 1: 4.
[비교 제조예 2] [Comparative Production Example 2] 황화철의 제조Preparation of iron sulfide
황 전구체로 티오우레아(Thiourea, CH4N2S) 대신 암모늄 티오설페이트(Ammonium Thiosulfate, (NH4)2S2O3) 1.4 g을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 하여 실시하였다.It was carried out in the same manner as in Example 1, except that 1.4 g of ammonium thiosulfate ((Ammonium Thiosulfate, (NH 4 ) 2 S 2 O 3 ) was used instead of Thiourea (CH 4 N 2 S) as a sulfur precursor. .
[비교 제조예 3] [Comparative Production Example 3] 황화철의 제조Preparation of iron sulfide
황 전구체로 티오우레아(Thiourea, CH4N2S) 대신 황(S) 1.5 g을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 하여 실시하였다.It was carried out in the same manner as in Example 1, except that 1.5 g of sulfur (S) was used instead of Thiourea (CH 4 N 2 S) as the sulfur precursor.
[실험예 1] [Experimental Example 1] SEM (scanning electron microscope) 분석SEM (scanning electron microscope) analysis
상기 제조예 1 및 2에서 제조된 황화철(FeS2)에 대하여 SEM 분석(Hitachi社의 S-4800 FE-SEM)을 실시하여 그 결과를 도 1 및 2에 나타내었다. 각각 제조예 1은 도 1, 제조예 2는 도 2에 나타내었다.SEM results (S-4800 FE-SEM of Hitachi Co., Ltd.) were performed on the iron sulfide (FeS 2 ) prepared in Preparation Examples 1 and 2, and the results are shown in FIGS. 1 and 2. Preparation Example 1 is shown in FIG. 1 and Preparation Example 2 in FIG. 2, respectively.
도 1 및 2를 참조하면, 배율을 20k로 하여 제조예 1의 SEM 분석을 실시한 결과, 입경 수 ㎛의 비정형 황화철(FeS2) 입자가 형성된 것을 확인할 수 있었고, 제조예 2의 SEM 분석을 실시한 결과, 입경 수백 nm 내지 수 ㎛의 판상형의 황화철(FeS2) 입자가 형성된 것을 확인할 수 있었다.1 and 2, as a result of performing the SEM analysis of Preparation Example 1 with a magnification of 20k, it was confirmed that amorphous iron sulfide (FeS 2 ) particles having a particle size of µm were formed, and SEM analysis of Production Example 2 was performed. , It was confirmed that plate-shaped iron sulfide (FeS 2 ) particles having a particle diameter of several hundred nm to several μm were formed.
[실험예 2] [Experimental Example 2] XRD (X-ray Diffraction) 분석XRD (X-ray Diffraction) analysis
상기 제조예 1 및 2에서 제조된 황화철(FeS2)에 대하여 XRD 분석(Bruker社의 D4 Endeavor)을 실시하였다. 도 3은 제조예 1에서 제조된 황화철(FeS2)에 대한 XRD 분석결과를 나타낸 그래프이고, 도 4는 제조예 2에서 제조된 황화철(FeS2)에 대한 XRD 분석결과를 나타낸 그래프이다.XRD analysis (D4 Endeavor of Bruker Corporation) was performed on the iron sulfide (FeS 2 ) prepared in Preparation Examples 1 and 2. 3 is a graph showing the results of XRD analysis for iron sulfide (FeS 2 ) prepared in Preparation Example 1, and FIG. 4 is a graph showing the results of XRD analysis for iron sulfide (FeS 2 ) prepared in Preparation Example 2.
CuKα선을 이용한 X-선 회절 분석 결과, 도 3 및 4를 참조하면, 제조예 1 및 2의 철 전구체인 질산철 수화물(Fe(NO3)9H2O)과 수산화철(γ-FeOOH)이 티오우레아와 각각 반응하여 (111), (200), (210), (211), (220), (311), (222) 및 (321) 면의 XRD 피크가 각각 2θ = 28.4±0.2°, 32.9±0.2°, 36.9±0.2°, 40.6±0.2°, 47.3±0.2°, 56.0±0.2°, 58.9±0.2°, 61.5±0.2° 및 64.0±0.2°에서 XRD 피크를 나타내어, 제조예 1 및 2의 철 전구체인 질산철 수화물(Fe(NO3)9H2O), 수산화철(γ-FeOOH)이 과량의 황과 반응하여 순수한 상의 결정성의 황화철(FeS2)을 형성한 것을 확인할 수 있었으며, 황의 XRD 피크가 관찰되지 않은 것으로 미루어 과량의 황은 열처리의 승온 과정에서 모두 제거된 것을 알 수 있었다.As a result of X-ray diffraction analysis using CuKα rays, referring to FIGS. 3 and 4, iron nitrate hydrates (Fe (NO 3 ) 3 · 9H 2 O) and iron hydroxides (γ-FeOOH) as iron precursors of Preparation Examples 1 and 2 The XRD peaks of the (111), (200), (210), (211), (220), (311), (222), and (321) planes respectively reacted with the thioureas were 2θ = 28.4 ± 0.2 ° , 32.9 ± 0.2 °, 36.9 ± 0.2 °, 40.6 ± 0.2 °, 47.3 ± 0.2 °, 56.0 ± 0.2 °, 58.9 ± 0.2 °, 61.5 ± 0.2 ° and 64.0 ± 0.2 ° showing XRD peaks, Preparation Example 1 and The iron precursor of 2, iron nitrate hydrate (Fe (NO 3 ) 3 · 9H 2 O), and iron hydroxide (γ-FeOOH) reacted with excess sulfur to confirm the formation of crystalline iron sulfide (FeS 2 ) in the pure phase. , XRD peak of sulfur was not observed, and it was found that all of the excess sulfur was removed during the heating process of heat treatment.
한편, 비교 제조예 1 내지 3에 따른 생성물에 대한 XRD 분석결과를 각각 도 5 내지 도 7에 나타내었다.Meanwhile, XRD analysis results for the products according to Comparative Preparation Examples 1 to 3 are shown in FIGS. 5 to 7, respectively.
도 5를 보면, 철(Fe) 대비 황(S)의 몰비율을 1:4로 한 비교 제조예 1의 경우, 본 발명에서 목적하는 황화철(FeS2) 대신 Fe7S8의 peak를 확인하였고, 철(Fe) 대비 황(S)의 몰비율은 1:10 이상으로 할 경우에 본 발명에 따른 단일상의 황화철(FeS2)이 합성되는 것을 확인하여, 철(Fe) 대비 황(S)의 몰비율은 제조되는 최종 산물의 조성에 영향을 미치는 것을 알 수 있었다.Referring to FIG. 5, in Comparative Production Example 1 in which the molar ratio of sulfur (S) to iron (Fe) was 1: 4, the peak of Fe 7 S 8 was confirmed instead of iron sulfide (FeS 2 ) as desired in the present invention. , When the molar ratio of sulfur (S) to iron (Fe) is 1:10 or more, it is confirmed that the single phase iron sulfide (FeS 2 ) according to the present invention is synthesized, and The molar ratio was found to affect the composition of the final product to be prepared.
도 6을 보면, 황 전구체로 암모늄 티오설페이트(Ammonium Thiosulfate, (NH4)2S2O3)를 사용할 경우 부반응이 일어나 황화철(FeS2) 대신 NH4Fe(SO4)2의 peak가 나타나는 것을 확인할 수 있었다.Referring to FIG. 6, when ammonium thiosulfate ((NH 4 ) 2 S 2 O 3 ) is used as a sulfur precursor, a side reaction occurs and a peak of NH 4 Fe (SO 4 ) 2 appears instead of iron sulfide (FeS 2 ). I could confirm.
도 7을 보면, 황 전구체로 황(S) 자체를 사용할 경우, 철(Fe) 대비 황(S)의 몰비율을 1:10으로 한 경우에도 단일상의 FeS2 대신 Fe7S8가 혼합되어 생성되는 것을 확인하였으며, 철(Fe) 대비 황(S)의 몰비율이 1:2 이하인 경우에는 본 발명에서 목적하는 FeS2는 생성되지 않았으며, 황의 비율이 부족한 결과 Fe7S8 및 철 산화물(Fe3O4)이 혼재되어 생성되는 것을 확인할 수 있었다.Referring to FIG. 7, when sulfur (S) itself is used as a sulfur precursor, Fe 7 S 8 is mixed instead of FeS 2 in a single phase even when the molar ratio of sulfur (S) to iron (Fe) is 1:10. When the molar ratio of sulfur (S) to iron (Fe) is 1: 2 or less, FeS 2 desired in the present invention was not generated, and as a result of insufficient sulfur ratio, Fe 7 S 8 and iron oxide ( Fe 3 O 4 ) It was confirmed that the mixture is produced.
[실시예 1] [Example 1] 황화철이 첨가된 양극을 포함한 리튬 이차전지의 제조Manufacture of lithium secondary battery including positive electrode with iron sulfide added
먼저, 용매로서 물에 황화철(FeS2)을 투입할 베이스 고형분(활물질, 도전재 및 바인더)에 총 중량(100 중량부) 대비 상기 제조예 1에서 제조된 5 중량부의 황화철(FeS2)을 투입하여 용해하였다. 이후, 얻어진 용액에 대하여, 베이스 고형분 총 100 중량부, 즉 활물질로 황-탄소 복합체(S/CNT 75:25중량비)를 90 중량부, 도전재로 덴카블랙을 5 중량부, 바인더로 스티렌 부타디엔 고무/카르복시메틸 셀룰로오스(SBR/CMC 7:3) 5 중량부를 투입하고 믹싱하여 양극 슬러리 조성물을 제조하였다.First, 5 parts by weight of iron sulfide (FeS 2 ) prepared in Preparation Example 1 compared to the total weight (100 parts by weight) of base solids (active material, conductive material, and binder) to which iron sulfide (FeS 2 ) is added as water as a solvent is introduced. And dissolved. Then, with respect to the obtained solution, 100 parts by weight of the total solid content of the base, that is, 90 parts by weight of a sulfur-carbon composite (S / CNT 75:25 weight ratio) as an active material, 5 parts by weight of Denka Black as a conductive material, and styrene butadiene rubber as a binder / Carboxymethyl cellulose (SBR / CMC 7: 3) 5 parts by weight was added and mixed to prepare a positive electrode slurry composition.
이어서 상기 제조된 슬러리 조성물을 집전체(Al Foil) 상에 코팅하고 50℃에서 12시간 동안 건조하고 롤프레스(roll press)기기로 압착하여 양극을 제조하였다. 이때 로딩양은 5.3 mAh/cm2이고, 전극의 기공도(porosity)는 68 %로 하였다.Subsequently, the prepared slurry composition was coated on a current collector (Al Foil), dried at 50 ° C. for 12 hours, and pressed with a roll press machine to prepare a positive electrode. At this time, the loading amount was 5.3 mAh / cm 2 , and the porosity of the electrode was set to 68%.
이후 상술한 바에 따라 제조된 양극, 음극, 분리막 및 전해액을 포함한 리튬 이차전지의 코인셀을 하기와 같이 제조하였다. 구체적으로, 상기 양극은 14phi 원형 전극으로 타발하여 사용하였으며, 폴리에틸렌(PE) 분리막은 19phi, 150um 리튬 금속은 음극으로서 16phi로 타발하여 사용하였다.Thereafter, a coin cell of a lithium secondary battery including an anode, a cathode, a separator, and an electrolyte prepared according to the above was prepared as follows. Specifically, the positive electrode was punched and used as a 14 phi circular electrode, and a polyethylene (PE) separator was punched to 19 phi, and a 150 um lithium metal was punched to 16 phi as the negative electrode.
[실시예 2] [Example 2] 황화철이 첨가된 양극을 포함한 리튬 이차전지의 제조Manufacture of lithium secondary battery including positive electrode with iron sulfide added
상기 제조예 1에서 제조된 황화철(FeS2) 대신 상기 제조예 2에서 제조된 판상형의 입자를 가진 황화철(FeS2)을 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 리튬 이차전지를 제조하였다(즉, 전극 기공도는 68 %).The lithium secondary battery was performed in the same manner as in Example 1, except that iron sulfide (FeS 2 ) having plate-like particles prepared in Preparation Example 2 was used instead of iron sulfide (FeS 2 ) prepared in Preparation Example 1. It was prepared (ie, electrode porosity is 68%).
[실시예 3] [Example 3] 황화철이 첨가된 양극을 포함한 리튬 이차전지의 제조Manufacture of lithium secondary battery including positive electrode with iron sulfide added
상기 제조예 2에서 제조된 판상형의 입자를 가진 황화철(FeS2)을 포함하는 전극을 압연하여, 전극의 기공도(porosity)를 68 %에서 62 %로 변경한 것을 제외하고는 상기 실시예 2와 동일하게 수행하여 리튬 이차전지를 제조하였다.By rolling the electrode containing iron sulfide (FeS 2 ) with the plate-shaped particles prepared in Preparation Example 2, except that the porosity of the electrode was changed from 68% to 62%, the Example 2 and A lithium secondary battery was manufactured in the same manner.
[비교예 1] [Comparative Example 1] 황화철이 첨가되지 않은 양극을 포함한 리튬 이차전지의 제조Manufacture of lithium secondary battery including positive electrode without iron sulfide added
황화철(FeS2)을 포함하지 않고 용매로서 물에 베이스 고형분 총 100 중량부, 즉 활물질로 황-탄소 복합체(S/CNT 75:25 중량비)를 90 중량부, 도전재로 덴카블랙을 5 중량부, 바인더로 스티렌 부타디엔 고무/카르복시메틸 셀룰로오스(SBR/CMC 7:3) 5 중량부를 투입하고 믹싱하여 양극 슬러리 조성물을 제조하였다.A total of 100 parts by weight of the base solid content in water as a solvent without containing iron sulfide (FeS 2 ), that is, 90 parts by weight of a sulfur-carbon composite (S / CNT 75:25 weight ratio) as an active material, and 5 parts by weight of denka black as a conductive material , 5 parts by weight of styrene butadiene rubber / carboxymethyl cellulose (SBR / CMC 7: 3) as a binder was added and mixed to prepare a positive electrode slurry composition.
이어서 상기 제조된 슬러리 조성물을 집전체(Al Foil) 상에 코팅하고 50℃에서 12시간 동안 건조하여 양극을 제조하였다. 이때 로딩양은 5.3 mAh/cm2이고, 전극의 공극률(porosity)은 68 %로 하였다.Subsequently, the prepared slurry composition was coated on a current collector (Al Foil) and dried at 50 ° C. for 12 hours to prepare a positive electrode. At this time, the loading amount was 5.3 mAh / cm 2 , and the porosity of the electrode was 68%.
이후 상술한 바에 따라 제조된 양극, 음극, 분리막 및 전해액을 포함한 리튬 이차전지의 코인셀을 하기와 같이 제조하였다. 구체적으로, 상기 양극은 14phi 원형 전극으로 타발하여 사용하였으며, 폴리에틸렌(PE) 분리막은 19phi, 150um 리튬 금속은 음극으로서 16phi로 타발하여 사용하였다.Thereafter, a coin cell of a lithium secondary battery including an anode, a cathode, a separator, and an electrolyte prepared according to the above was prepared as follows. Specifically, the positive electrode was punched and used as a 14 phi circular electrode, and a polyethylene (PE) separator was punched to 19 phi, and a 150 um lithium metal was punched to 16 phi as the negative electrode.
[비교예 2] [Comparative Example 2] 황화철이 첨가되지 않은 양극을 포함한 리튬 이차전지의 제조Manufacture of lithium secondary battery including positive electrode without iron sulfide added
전극을 압연하여 전극의 기공도를 68 %에서 62 %로 변경한 것을 제외하고는 상기 비교예 2와 동일하게 수행하여 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Comparative Example 2, except that the porosity of the electrode was changed from 68% to 62% by rolling the electrode.
[실험예 3] [Experimental Example 3] 리튬 이차전지의 방전용량 비교실험Comparative experiment of discharge capacity of lithium secondary battery
양극재 종류에 따른 리튬 이차전지의 방전용량을 실험하기 위하여, 하기 표 1에 기재된 바와 같이, 상기 실시예 1 내지 3, 비교예 1 및 2에서 제조된 리튬 이차전지의 방전용량을 측정하였다. 이때,측정전류는 0.1C, 전압 범위 1.8 내지 2.6 V로 하였고, 그 결과를 도 8 및 9에 도시하였다.In order to test the discharge capacity of the lithium secondary battery according to the type of positive electrode material, as described in Table 1 below, the discharge capacity of the lithium secondary batteries prepared in Examples 1 to 3 and Comparative Examples 1 and 2 was measured. At this time, the measurement current was 0.1C, the voltage range was 1.8 to 2.6 V, and the results are shown in FIGS. 8 and 9.
리튬 이차전지Lithium secondary battery
음극cathode 양극anode
실시예 1Example 1 금속 리튬Metal lithium ·황-탄소 복합체(S:CNT=75:25) + 도전재 + 바인더 + 제조예 1의 FeS2 (5중량부) (90:5:5:5, 중량비)·양극 내 황 담지량: 5.3 mAh/cm2·전극의 기공도: 68%Sulfur-carbon composite (S: CNT = 75: 25) + conductive material + binder + FeS 2 (5 parts by weight) of Preparation Example 1 (90: 5: 5: 5, weight ratio)-Sulfur loading in anode: 5.3 mAh / cm 2 · Porosity of the electrode: 68%
실시예 2Example 2 금속 리튬Metal lithium ·황-탄소 복합체(S:CNT=75:25) + 도전재 + 바인더 + 제조예 2의 FeS2 (5중량부) (90:5:5:5, 중량비)·양극 내 황 담지량: 5.3 mAh/cm2·전극의 기공도: 68%Sulfur-carbon composite (S: CNT = 75: 25) + conductive material + binder + FeS 2 (5 parts by weight) of Preparation Example 2 (90: 5: 5: 5, weight ratio)-Sulfur loading in anode: 5.3 mAh / cm 2 · Porosity of the electrode: 68%
실시예 3Example 3 금속 리튬Metal lithium ·황-탄소 복합체(S:CNT=75:25) + 도전재 + 바인더 + 제조예 2의 FeS2 (5중량부) (90:5:5:5, 중량비)·양극 내 황 담지량: 5.3 mAh/cm2·전극의 기공도: 62%Sulfur-carbon composite (S: CNT = 75: 25) + conductive material + binder + FeS 2 (5 parts by weight) of Preparation Example 2 (90: 5: 5: 5, weight ratio)-Sulfur loading in anode: 5.3 mAh / cm 2 · Porosity of the electrode: 62%
비교예 1Comparative Example 1 금속 리튬Metal lithium ·황-탄소 복합체(S:CNT=75:25) + 도전재 + 바인더 (90:5:5, 중량비)·양극 내 황 담지량: 5.3 mAh/cm2·전극의 기공도: 68%Sulfur-carbon composite (S: CNT = 75: 25) + conductive material + binder (90: 5: 5, weight ratio) Sulfur loading in the anode: 5.3 mAh / cm 2 · Porosity of the electrode: 68%
비교예 2Comparative Example 2 금속 리튬Metal lithium ·황-탄소 복합체(S:CNT=75:25) + 도전재 + 바인더 (90:5:5, 중량비)·양극 내 황 담지량: 5.3 mAh/cm2·전극의 기공도: 62%Sulfur-carbon composite (S: CNT = 75: 25) + conductive material + binder (90: 5: 5, weight ratio) Sulfur loading in the anode: 5.3 mAh / cm 2 Porosity of the electrode: 62%
도 8 및 9는 본 발명의 일 실시예 및 비교예에 따라 제조된 리튬 이차전지의 방전용량 측정 결과를 나타낸 그래프이다. 도 8에 도시된 바와 같이, 상기 제조예 1에서 제조된 황화철(FeS2)이 양극에 첨가된 실시예 1과, 상기 제조예 2에서 제조된 황화철(FeS2)이 양극에 첨가된 실시예 2는, 통상적인 비교예 1에 비하여 전지의 과전압이 개선되고 초기 방전용량이 더욱 증가한 것을 확인할 수 있었다. 따라서, 본 발명에 따른 황화철이 리튬 이차전지의 초기 방전용량 증가 및 과전압 개선 효과가 있음을 알 수 있었다.8 and 9 is a graph showing the discharge capacity measurement results of the lithium secondary battery prepared according to an embodiment and a comparative example of the present invention. As shown in FIG. 8, Example 1 in which iron sulfide (FeS 2 ) prepared in Preparation Example 1 was added to the positive electrode, and Example 2 in which iron sulfide (FeS 2 ) prepared in Preparation Example 2 was added to the positive electrode. It was confirmed that the overvoltage of the battery was improved and the initial discharge capacity was further increased as compared with the conventional comparative example 1. Therefore, it was found that the iron sulfide according to the present invention has an effect of increasing the initial discharge capacity and improving the overvoltage of the lithium secondary battery.
특히, 황화철의 철 전구체로 수산화철(γ-FeOOH)을 이용한 실시예 2는, 도 8에 도시된 바와 같이, 황화철의 철 전구체로 질산철 수화물(Fe(NO3)9H2O)을 이용한 실시예 1에 비해서도 초기 방전용량이 우수한 것을 확인할 수 있었으며, XRD 분석에 관한 상기 실험예 2에서 수산화철을 적용한 황화철과 질산철 수화물을 적용한 황화철이 동일한 결정 구조를 가짐에도 이와 같이 다른 전지 성능을 나타내는 것으로부터, 황화철의 구조적 차이가 전지의 성능 개선에 추가적으로 중요한 역할을 한다는 것을 알 수 있다.In particular, Example 2 using iron hydroxide (γ-FeOOH) as an iron precursor of iron sulfide, as shown in FIG. 8, using iron nitrate hydrate (Fe (NO 3 ) 3 · 9H 2 O) as an iron precursor of iron sulfide It was confirmed that the initial discharge capacity was superior to that of Example 1, and in the Experimental Example 2 related to XRD analysis, iron sulfide to which iron hydroxide was applied and iron sulfide to which iron nitrate hydrate was applied had the same crystal structure, and thus exhibited different battery performance. From this, it can be seen that the structural difference of iron sulfide plays an additional important role in improving the performance of the battery.
따라서, 이상을 통하여, 황화철(FeS2)을 양극에 첨가하되, 질산철 수화물(Fe(NO3)9H2O)보다는 수산화철(γ-FeOOH)을 철 전구체로 하여 제조한 황화철(FeS2)을 사용하는 것이 보다 바람직하다는 것을 확인할 수 있었다.Therefore, through the above, iron sulfide (FeS 2 ) is added to the anode, but iron sulfide (γ-FeOOH) is prepared as an iron precursor rather than iron nitrate hydrate (Fe (NO 3 ) 3 · 9H 2 O) as iron precursor (FeS 2) It was confirmed that it is more preferable to use).
한편, 일반적인 리튬 이차전지의 경우, 전극의 기공도를 낮추게 되면 전극에 포함되는 전해질의 감소로 인하여 전지의 성능 저하가 나타나지만, 도 9에 도시된 바와 같이, 전극의 기공도를 낮춘 경우에도, 전극의 초기 방전용량이 증가하고 과전압이 개선되는 것을 알 수 있었다(실시예 3과 비교예 2의 비교 대조). 따라서, 본 발명에 따른 황화철(FeS2)이 고로딩의 낮은 기공도의 전극에서도 과전압 개선 및 방전용량을 향상시키는 효과가 있음을 알 수 있었다.On the other hand, in the case of a general lithium secondary battery, if the porosity of the electrode is lowered, the performance of the battery is lowered due to the decrease in the electrolyte contained in the electrode, but as shown in FIG. 9, even when the porosity of the electrode is lowered, the electrode It was found that the initial discharge capacity of and the overvoltage were improved (comparative control of Example 3 and Comparative Example 2). Accordingly, it was found that iron sulfide (FeS 2 ) according to the present invention has an effect of improving overvoltage and discharging capacity even in an electrode having a low porosity of high loading.

Claims (15)

  1. (1) 철 전구체와 황 전구체를 혼합하여 혼합물을 형성하는 단계; 및 (1) mixing an iron precursor and a sulfur precursor to form a mixture; And
    (2) 상기 혼합물을 비활성기체 분위기에서 열처리하는 단계;를 포함하는 황화철(FeS2)의 제조방법.(2) heat-treating the mixture in an inert gas atmosphere; a method for producing iron sulfide (FeS 2 ).
  2. 청구항 1에 있어서, 상기 철 전구체는 Fe(NO3)9H2O, γ-FeOOH 또는 이의 조합인 것을 특징으로 하는, 황화철(FeS2)의 제조방법.The method according to claim 1, the method for producing, iron sulfide (FeS 2), characterized in that the precursor is iron Fe (NO 3) 3 · 9H 2 O, the γ-FeOOH or the combination thereof.
  3. 청구항 2에 있어서, 상기 철 전구체는 γ-FeOOH인 것을 특징으로 하는, 황화철(FeS2)의 제조방법.The method according to claim 2, characterized in that the iron precursor is γ-FeOOH, a method for producing iron sulfide (FeS 2 ).
  4. 청구항 1에 있어서, 상기 황 전구체는 티오우레아(Thiourea)인 것을 특징으로 하는, 황화철(FeS2)의 제조방법.The method according to claim 1, The sulfur precursor is characterized in that the thiourea (Thiourea), the method of manufacturing iron sulfide (FeS 2 ).
  5. 청구항 1에 있어서, 상기 단계 (1)의 혼합은 철(Fe) 대비 황(S)의 몰비율이 1:8 이상인 것을 특징으로 하는, 황화철(FeS2)의 제조방법.The method according to claim 1, wherein the mixing of step (1) is characterized in that the molar ratio of sulfur (S) to iron (Fe) is 1: 8 or more, the method of manufacturing iron sulfide (FeS 2 ).
  6. 청구항 1에 있어서, 상기 단계 (2)의 열처리는 400 내지 600 ℃에서 1 내지 3 시간 동안 비활성기체 대기 하에서 또는 비활성기체가 지속적으로 유입되는 상태에서 수행되며, 승온 속도가 분당 5 내지 20 ℃ 범위 사이에서 조절되는 것을 특징으로 하는, 황화철(FeS2)의 제조방법.The method according to claim 1, The heat treatment of the step (2) is carried out in an inert gas atmosphere or continuously in the inert gas atmosphere for 1 to 3 hours at 400 to 600 ℃, the temperature rise rate is between 5 to 20 ℃ per minute range Characterized in that, the method of manufacturing iron sulfide (FeS 2 ).
  7. 청구항 6에 있어서, 상기 비활성기체는 질소, 아르곤, 헬륨 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 황화철(FeS2)의 제조방법.According to claim 6, wherein said inert gas is a method for producing, iron sulfide (FeS 2), characterized in that is selected from the group consisting of nitrogen, argon, helium and mixtures thereof.
  8. 활물질, 도전재 및 바인더를 포함하는 리튬 이차전지용 양극으로서,As a positive electrode for a lithium secondary battery comprising an active material, a conductive material and a binder,
    상기 양극은 황화철(FeS2)을 포함하는 리튬 이차전지용 양극.The positive electrode is a lithium secondary battery positive electrode containing iron sulfide (FeS 2 ).
  9. 청구항 8에 있어서, 상기 황화철(FeS2)은 판상형의 입자를 포함하는 것을 특징으로 하는, 리튬 이차전지용 양극.The positive electrode for a lithium secondary battery according to claim 8, wherein the iron sulfide (FeS 2 ) comprises plate-shaped particles.
  10. 청구항 8에 있어서, 상기 황화철(FeS2)의 함량은 리튬 이차전지용 양극에 포함되는 베이스 고형분 100 중량부 대비 0.1 내지 15 중량부인 것을 특징으로 하는, 리튬 이차전지용 양극.The positive electrode for a lithium secondary battery according to claim 8, wherein the content of the iron sulfide (FeS 2 ) is 0.1 to 15 parts by weight compared to 100 parts by weight of the base solids contained in the positive electrode for a lithium secondary battery.
  11. 청구항 8에 있어서, 상기 황화철(FeS2)은 평균 입경이 0.1 내지 10 ㎛인 것을 특징으로 하는, 리튬 이차전지용 양극.The positive electrode for a lithium secondary battery according to claim 8, wherein the iron sulfide (FeS 2 ) has an average particle diameter of 0.1 to 10 μm.
  12. 청구항 8에 있어서, 상기 황화철(FeS2)은 결정성인 것을 특징으로 하는, 리튬 이차전지용 양극.The positive electrode for a lithium secondary battery according to claim 8, wherein the iron sulfide (FeS 2 ) is crystalline.
  13. 청구항 8에 있어서, 상기 활물질은 황-탄소 복합체인 것을 특징으로 하는, 리튬 이차전지용 양극.The positive electrode for a lithium secondary battery according to claim 8, wherein the active material is a sulfur-carbon composite.
  14. 청구항 13에 있어서, 상기 황-탄소 복합체는 황-탄소 복합체 100 중량부 기준 황의 함량이 60 내지 90 중량부인 것을 특징으로 하는, 리튬 이차전지용 양극.The positive electrode for a lithium secondary battery according to claim 13, wherein the sulfur-carbon composite has a sulfur-based content of 60 to 90 parts by weight based on 100 parts by weight of the sulfur-carbon composite.
  15. 청구항 8의 리튬 이차전지용 양극; 음극; 상기 양극과 음극의 사이에 개재된 분리막; 및 전해질;을 포함하는 리튬 이차전지.The positive electrode for a lithium secondary battery of claim 8; cathode; A separator interposed between the anode and the cathode; And electrolyte; lithium secondary battery comprising a.
PCT/KR2019/012089 2018-09-18 2019-09-18 Method for preparing iron sulfide, cathode comprising iron sulfide prepared thereby for lithium secondary battery, and lithium secondary battery comprising same WO2020060199A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021500722A JP7098043B2 (en) 2018-09-18 2019-09-18 A method for producing iron sulfide, a positive electrode for a lithium secondary battery containing iron sulfide produced from the method, and a lithium secondary battery provided with the positive electrode.
CN201980045775.1A CN112385061A (en) 2018-09-18 2019-09-18 Method for producing iron sulfide, positive electrode for lithium secondary battery comprising iron sulfide produced thereby, and lithium secondary battery comprising said positive electrode
US17/259,215 US20210273225A1 (en) 2018-09-18 2019-09-18 Method for preparing iron sulfide, cathode comprising iron sulfide prepared thereby for lithium secondary battery, and lithium secondary battery comprising same
EP19863940.3A EP3806207A4 (en) 2018-09-18 2019-09-18 Method for preparing iron sulfide, cathode comprising iron sulfide prepared thereby for lithium secondary battery, and lithium secondary battery comprising same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20180111788 2018-09-18
KR20180111792 2018-09-18
KR10-2018-0111792 2018-09-18
KR10-2018-0111788 2018-09-18
KR10-2019-0114782 2019-09-18
KR1020190114771A KR20200032660A (en) 2018-09-18 2019-09-18 Method for preparing pyrite
KR10-2019-0114771 2019-09-18
KR1020190114782A KR20200032661A (en) 2018-09-18 2019-09-18 Cathode for lithium secondary battery comprising pyrite, and lithium secondary battery comprising thereof

Publications (1)

Publication Number Publication Date
WO2020060199A1 true WO2020060199A1 (en) 2020-03-26

Family

ID=69887476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012089 WO2020060199A1 (en) 2018-09-18 2019-09-18 Method for preparing iron sulfide, cathode comprising iron sulfide prepared thereby for lithium secondary battery, and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2020060199A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022254962A1 (en) * 2021-06-02 2022-12-08 住友ゴム工業株式会社 Sulfur-based active material, electrode, lithium ion secondary battery, and production method
CN116885146A (en) * 2023-08-22 2023-10-13 大连交通大学 Battery negative electrode active material, preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157221A (en) * 1994-11-29 1996-06-18 Sakai Chem Ind Co Ltd Iron disulfide and its production
KR101556804B1 (en) * 2007-09-28 2015-10-01 에버레디 배터리 컴퍼니, 인크. Processes for producing synthetic pyrite
CN107482185A (en) * 2017-07-25 2017-12-15 东莞市天球实业有限公司 A kind of FeS2The synthetic method and battery of composite positive pole
KR20180096252A (en) * 2017-02-21 2018-08-29 영남대학교 산학협력단 Method of fabricating FeS2 nanocrystals
KR20180102406A (en) * 2017-03-07 2018-09-17 주식회사 엘지화학 Carbon-surfur complex, manufacturing method thereof, positive electrode and lithium-sulfur battery comprising the same
KR20180111788A (en) 2015-12-18 2018-10-11 코어 에너지 리커버리 솔루션즈 인코포레이티드 Enthalpy exchanger
KR20180111792A (en) 2016-02-03 2018-10-11 도판 인사츠 가부시키가이샤 An exterior material for a power storage device, and a method for manufacturing an exterior material for a power storage device
KR20190114771A (en) 2018-03-30 2019-10-10 (주)레몬옐로우 Child care service providing method and smart device, and child care service providing system using IoT
KR20190114782A (en) 2018-03-29 2019-10-10 도요타 지도샤(주) Anode, and sulfide solid-state battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157221A (en) * 1994-11-29 1996-06-18 Sakai Chem Ind Co Ltd Iron disulfide and its production
KR101556804B1 (en) * 2007-09-28 2015-10-01 에버레디 배터리 컴퍼니, 인크. Processes for producing synthetic pyrite
KR20180111788A (en) 2015-12-18 2018-10-11 코어 에너지 리커버리 솔루션즈 인코포레이티드 Enthalpy exchanger
KR20180111792A (en) 2016-02-03 2018-10-11 도판 인사츠 가부시키가이샤 An exterior material for a power storage device, and a method for manufacturing an exterior material for a power storage device
KR20180096252A (en) * 2017-02-21 2018-08-29 영남대학교 산학협력단 Method of fabricating FeS2 nanocrystals
KR20180102406A (en) * 2017-03-07 2018-09-17 주식회사 엘지화학 Carbon-surfur complex, manufacturing method thereof, positive electrode and lithium-sulfur battery comprising the same
CN107482185A (en) * 2017-07-25 2017-12-15 东莞市天球实业有限公司 A kind of FeS2The synthetic method and battery of composite positive pole
KR20190114782A (en) 2018-03-29 2019-10-10 도요타 지도샤(주) Anode, and sulfide solid-state battery
KR20190114771A (en) 2018-03-30 2019-10-10 (주)레몬옐로우 Child care service providing method and smart device, and child care service providing system using IoT

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3806207A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022254962A1 (en) * 2021-06-02 2022-12-08 住友ゴム工業株式会社 Sulfur-based active material, electrode, lithium ion secondary battery, and production method
CN116885146A (en) * 2023-08-22 2023-10-13 大连交通大学 Battery negative electrode active material, preparation method and application thereof
CN116885146B (en) * 2023-08-22 2024-02-20 大连交通大学 Battery negative electrode active material, preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2020045854A1 (en) Method for preparing carbon nanostructure comprising molybdenum disulfide, lithium secondary battery cathode comprising carbon nanostructure comprising molybdenum disulfide, prepared thereby, and lithium secondary battery comprising same
WO2019103326A2 (en) Sulfur-carbon composite, preparation method thereof, and lithium secondary battery comprising same
JP7098043B2 (en) A method for producing iron sulfide, a positive electrode for a lithium secondary battery containing iron sulfide produced from the method, and a lithium secondary battery provided with the positive electrode.
KR20200001369A (en) Mesoporous titanium nitride, method for preparing the same, and lithium sulfur battery comprising the same
KR102229456B1 (en) Cathode for lithium secondary battery comprising iron oxyhydroxynitrate, and lithium secondary battery comprising thereof
WO2020060199A1 (en) Method for preparing iron sulfide, cathode comprising iron sulfide prepared thereby for lithium secondary battery, and lithium secondary battery comprising same
WO2020166871A1 (en) Cathode active material for lithium secondary battery
WO2018236060A1 (en) Method for preparing iron hydroxide (feooh), and lithium-sulfur battery cathode comprising iron hydroxide
WO2020013482A1 (en) Method for preparing iron nitrate oxyhydroxide, cathode containing iron nitrate oxyhydroxide prepared thereby for lithium secondary battery, and lithium secondary battery comprising same
WO2019198949A1 (en) Method of producing iron phosphide, positive electrode for lithium secondary battery comprising iron phosphide, and lithium secondary battery comprising same
US11349113B2 (en) Method of producing iron phosphide, positive electrode for lithium secondary battery comprising iron phosphide, and lithium secondary battery comprising same
KR102183665B1 (en) Positive electrode for lithium secondary battery including iron phosphide and lithium secondary battery comprising thereof
KR102663580B1 (en) Cathode for lithium secondary battery comprising carbon nanostructure comprising molybdenum disulfide, and lithium secondary battery comprising thereof
KR20200032661A (en) Cathode for lithium secondary battery comprising pyrite, and lithium secondary battery comprising thereof
WO2020166870A1 (en) Positive electrode comprising goethite for lithium secondary battery and lithium secondary battery comprising same
WO2020017782A1 (en) Cathode of lithium secondary battery comprising iron oxide, and lithium secondary battery comprising same
US20240234684A9 (en) Method for preparing carbon nanostructure comprising molybdenum disulfide, lithium secondary battery cathode comprising carbon nanostructure comprising molybdenum disulfide, prepared thereby, and lithium secondary battery comprising same
WO2019093668A2 (en) Maghemite-containing cathode for lithium-sulfur battery and lithium-sulfur battery comprising same
WO2019194429A1 (en) Positive electrode for lithium secondary battery comprising goethite, and lithium secondary battery comprising same
KR20200063501A (en) Cathode for lithium secondary battery comprising aluminum-doped zinc oxide, and lithium secondary battery comprising the same
KR20200029276A (en) Cathode for lithium secondary battery comprising molybdenum disulfide, and lithium secondary battery comprising thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021500722

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019863940

Country of ref document: EP

Effective date: 20210111

NENP Non-entry into the national phase

Ref country code: DE