WO2020060077A1 - 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치 - Google Patents

비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치 Download PDF

Info

Publication number
WO2020060077A1
WO2020060077A1 PCT/KR2019/011407 KR2019011407W WO2020060077A1 WO 2020060077 A1 WO2020060077 A1 WO 2020060077A1 KR 2019011407 W KR2019011407 W KR 2019011407W WO 2020060077 A1 WO2020060077 A1 WO 2020060077A1
Authority
WO
WIPO (PCT)
Prior art keywords
intra prediction
prediction mode
mode
coding unit
chroma block
Prior art date
Application number
PCT/KR2019/011407
Other languages
English (en)
French (fr)
Inventor
최나래
박민우
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2020060077A1 publication Critical patent/WO2020060077A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques

Definitions

  • the present disclosure relates to a video decoding method / apparatus and a video coding method / apparatus, and more particularly, to encoding / decoding an intra prediction mode of a chroma block.
  • the image data is encoded by a codec according to a predetermined data compression standard, for example, a Moving Picture Expert Group (MPEG) standard, and then stored in a recording medium in the form of a bitstream or transmitted through a communication channel.
  • MPEG Moving Picture Expert Group
  • Efficiently compressing next-generation media such as 4K / 8K Ultra High Definition (UHD), 360-degree video, and VR (Virtual Reality) video in addition to the existing traditional video media, along with the recent evolution of wired / wireless communication infrastructure such as 5G.
  • next-generation media such as 4K / 8K Ultra High Definition (UHD), 360-degree video, and VR (Virtual Reality) video
  • UHD Ultra High Definition
  • VR Virtual Reality
  • the intra prediction mode used for intra prediction of the chroma block may be selected from an intra prediction mode list composed of a number of intra prediction mode candidates. In order to lower the complexity of the prediction operation and improve the accuracy of prediction, it is necessary to efficiently construct the intra prediction mode list.
  • a video decoding method includes: obtaining intra prediction mode information of a current chroma block from a bitstream; Determining an intra prediction mode list of the current chroma block based on the shape of the current chroma block; Determining one of the intra prediction mode candidates included in the intra prediction mode list of the current chroma block as the intra prediction mode of the current chroma block based on the obtained intra prediction mode information; And performing intra prediction on the current chroma block based on the determined intra prediction mode.
  • a video decoding apparatus includes a memory and at least one processor functionally connected to the memory, and the memory includes at least one instruction configured to be executable by the at least one processor
  • the at least one instruction when executed, causes the at least one processor to obtain intra prediction mode information of a current chroma block from a bitstream, and based on the shape of the current chroma block, the The intra prediction mode list of the current chroma block is determined, and based on the obtained intra prediction mode information, one of the intra prediction mode candidates included in the intra prediction mode list of the current chroma block is the intra prediction mode of the current chroma block.
  • the intra example determined above May be set based on the mode that performs intra prediction on the current chroma block.
  • a video encoding method may include determining an intra prediction mode list of the current chroma block based on a shape of the current chroma block; Determining an intra prediction mode of the current chroma block among intra prediction mode candidates included in the intra prediction mode list of the current chroma block; Performing intra prediction on the current chroma block based on the determined intra prediction mode; And encoding intra prediction mode information indicating the determined intra prediction mode among intra prediction mode candidates included in the intra prediction mode list of the current chroma block.
  • the intra prediction mode list may be adaptively configured according to the shape of the current chroma block, thereby improving intra prediction efficiency while reducing complexity.
  • FIG. 1A is a block diagram of an image decoding apparatus according to various embodiments.
  • 1B is a block diagram of an image decoder according to various embodiments.
  • 1C is a block diagram of an image decoding apparatus according to various embodiments.
  • FIG. 2A is a block diagram of an image encoding apparatus according to various embodiments.
  • 2B is a block diagram of an image decoder according to various embodiments.
  • 2C is a block diagram of an image encoding apparatus according to various embodiments.
  • FIG. 3 illustrates a process in which an image decoding apparatus determines at least one coding unit by dividing a current coding unit according to an embodiment.
  • FIG. 4 illustrates a process in which an image decoding apparatus determines at least one coding unit by dividing a coding unit having a non-square shape according to an embodiment.
  • FIG. 5 illustrates a process in which an image decoding apparatus divides a coding unit based on at least one of block type information and split type mode information according to an embodiment.
  • FIG. 6 illustrates a method for an image decoding apparatus to determine a predetermined coding unit among odd coding units according to an embodiment.
  • FIG. 7 illustrates an order in which a plurality of coding units are processed when a video decoding apparatus determines a plurality of coding units by dividing a current coding unit according to an embodiment.
  • FIG. 8 is a diagram for a process in which an image decoding apparatus determines that a current coding unit is divided into an odd number of coding units when a coding unit cannot be processed in a predetermined order according to an embodiment.
  • FIG. 9 is a diagram illustrating a process in which an image decoding apparatus determines at least one coding unit by dividing a first coding unit according to an embodiment.
  • FIG. 10 illustrates that a form in which the second coding unit may be split is limited when the second coding unit having a non-square shape determined by dividing the first coding unit according to an embodiment satisfies a predetermined condition. City.
  • FIG. 11 is a diagram illustrating a process in which an image decoding apparatus divides a coding unit in a square shape when the split mode mode information cannot be divided into four coding units in a square shape according to an embodiment.
  • FIG. 12 illustrates that a processing order among a plurality of coding units may vary according to a splitting process of coding units according to an embodiment.
  • FIG. 13 is a diagram illustrating a process in which a depth of a coding unit is determined as a shape and a size of a coding unit change when a coding unit is recursively divided and a plurality of coding units are determined according to an embodiment.
  • FIG. 14 is a diagram illustrating a depth (part index, hereinafter, PID) for classification of a coding unit and a depth that may be determined according to the type and size of coding units according to an embodiment.
  • PID part index
  • FIG. 15 illustrates that a plurality of coding units are determined according to a plurality of predetermined data units included in a picture according to an embodiment.
  • FIG. 16 illustrates a processing block serving as a criterion for determining a determination order of a reference coding unit included in a picture according to an embodiment.
  • 17 is a diagram illustrating intra prediction modes according to an embodiment.
  • FIG. 18 is a flowchart of an image decoding method according to various embodiments.
  • 19 is a flowchart of a method of determining an intra prediction mode list of a current chroma block based on the shape of the current chroma block, according to various embodiments.
  • 20 is a flowchart of a method of determining an intra prediction mode list of a current chroma block based on the shape of the current chroma block, according to various embodiments.
  • 21 is a diagram for explaining intra prediction mode candidates determined based on a shape of a current chroma block, according to an embodiment.
  • 22 is a diagram for describing intra prediction mode candidates determined based on a current chroma block type, according to an embodiment.
  • FIG. 23 is a flowchart of a method of determining an intra prediction mode list of a current chroma block based on the shape of the current chroma block, according to various embodiments.
  • FIG. 24 is a flowchart of a method of determining an intra prediction mode list of a current chroma block based on the shape of the current chroma block, according to various embodiments.
  • 25 shows an example of pseudo code for determining a list of intra prediction modes of a current chroma block based on the shape of the current chroma block.
  • 26 shows another example of pseudo code for determining a list of intra prediction modes of a current chroma block based on the shape of the current chroma block.
  • 27 illustrates another example of pseudo code for determining a list of intra prediction modes of a current chroma block based on the shape of the current chroma block.
  • part as used in the specification means a software or hardware component, and “part” performs certain roles. However, “part” is not meant to be limited to software or hardware.
  • the “unit” may be configured to be in an addressable storage medium or may be configured to reproduce one or more processors.
  • part refers to components such as software components, object-oriented software components, class components and task components, processes, functions, attributes, procedures, Includes subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, database, data structures, tables, arrays and variables.
  • the functionality provided within components and “parts” can be combined into a smaller number of components and “parts” or further separated into additional components and “parts”.
  • the “unit” may be implemented with a processor and memory.
  • processor should be broadly interpreted to include general purpose processors, central processing units (CPUs), microprocessors, digital signal processors (DSPs), controllers, microcontrollers, state machines, and the like.
  • processor may refer to an application specific semiconductor (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), and the like.
  • ASIC application specific semiconductor
  • PLD programmable logic device
  • FPGA field programmable gate array
  • processor refers to a combination of processing devices such as, for example, a combination of a DSP and microprocessor, a combination of multiple microprocessors, a combination of one or more microprocessors in combination with a DSP core, or any other combination of such configurations. It can also be referred to.
  • memory should be interpreted broadly to include any electronic component capable of storing electronic information.
  • the term memory is random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), programmable read-only memory (PROM), erase-programmable read-only memory (EPROM), electrical It may also refer to various types of processor-readable media such as erasable PROM (EEPROM), flash memory, magnetic or optical data storage, registers, and the like.
  • RAM random access memory
  • ROM read-only memory
  • NVRAM non-volatile random access memory
  • PROM programmable read-only memory
  • EPROM erase-programmable read-only memory
  • a memory is said to be in electronic communication with the processor if the processor can read information from and / or write information to the memory.
  • the memory integrated in the processor is in electronic communication with the processor.
  • the "image” may represent a static image such as a still image of a video or a dynamic image such as a video, that is, the video itself.
  • sample means data to be processed as data allocated to a sampling position of an image.
  • pixel values in a spatial domain image and transform coefficients on a transform region may be samples.
  • a unit including such at least one sample may be defined as a block.
  • FIGS. 1 to 28 A method of determining a data unit of an image according to an embodiment will be described with reference to FIGS. 3 to 16, and a method of encoding and decoding an intra prediction mode will be described with reference to FIGS. 1-2 and 17 to 28. .
  • FIGS. 1 and 2 an image encoding / decoding method and apparatus for encoding / decoding an intra prediction mode of a chroma block according to an embodiment of the present disclosure will be described with reference to FIGS. 1 and 2.
  • FIG. 1A is a block diagram of an image decoding apparatus according to various embodiments.
  • the image decoding apparatus 100 may include a receiving unit 110 and a decoding unit 120.
  • the receiving unit 110 and the decoding unit 120 may include at least one processor.
  • the receiving unit 110 and the decoding unit 120 may include a memory that stores instructions to be executed by at least one processor.
  • the receiver 110 may receive a bitstream.
  • the bitstream includes information encoded by the video encoding apparatus 2200 described later.
  • the bitstream may be transmitted from the video encoding apparatus 150.
  • the video encoding apparatus 150 and the video decoding apparatus 100 may be connected by wire or wireless, and the reception unit 110 may receive a bitstream through wire or wireless.
  • the receiver 110 may receive a bitstream from a storage medium such as an optical media, hard disk, or the like.
  • the decoder 120 may reconstruct an image based on information obtained from the received bitstream.
  • the decoder 120 may obtain a syntax element for reconstructing an image from a bitstream.
  • the decoder 120 may reconstruct an image based on the syntax element.
  • the receiver 110 may obtain information about the prediction mode of the current block and information about the intra prediction mode of the current block from the bitstream.
  • the information about the prediction mode of the current block included in the bitstream may include skip mode, intra mode, or inter prediction mode.
  • the current block When the current block is not in the skip mode, it may be signaled in which prediction mode, the intra block or the inter prediction mode, is encoded.
  • the information on the intra prediction mode of the current block may be information on the intra prediction mode applied to the current block among the plurality of intra prediction modes.
  • the intra prediction mode may be one of a plurality of angular modes having a non-directional mode and a prediction direction, such as a DC mode, a planar mode, a plane mode, and a bi-linear mode.
  • the directional mode includes a horizontal mode, a vertical mode and a diagonal mode, and may include a mode having a predetermined direction except for the horizontal direction, the vertical direction, and the diagonal direction.
  • the number of directional modes may be 65.
  • the receiver 110 may obtain intra prediction mode information of a current chroma block from a bitstream.
  • the intra prediction mode information may indicate one of the intra prediction mode candidates included in the intra prediction mode list of the current chroma block.
  • the decoder 120 may obtain a prediction block of the current block according to the prediction mode of the current block.
  • the decoder 120 obtains information about a transform coefficient of a current block from a bitstream, and performs inverse quantization and inverse transform using the obtained transform coefficient information to obtain a residual sample of a residual block of the current block You can.
  • the decoder 120 may determine an intra prediction mode list of the current chroma block based on the shape of the current chroma block.
  • the decoder 120 may determine one of the intra prediction mode candidates included in the intra prediction mode list of the current chroma block as the intra prediction mode of the current chroma block based on the acquired intra prediction mode information.
  • the decoder 120 may perform intra prediction on the current chroma block based on the determined intra prediction mode.
  • the decoder 120 may determine the intra prediction mode list of the current chroma block based on the result of comparing the width and height of the current chroma block. In one embodiment, the decoder 120 may determine the intra prediction mode list of the current chroma block based on whether the current chroma block is square.
  • the decoder 120 may determine an intra prediction mode of the luma block corresponding to the current chroma block.
  • the decoder 120 determines the intra prediction mode of the luma block as a first intra prediction mode candidate included in the intra prediction mode list of the current chroma block, and based on the first intra prediction mode, adds the intra prediction mode list to the intra prediction mode list.
  • the included second intra prediction mode candidate can be determined.
  • the decoder 120 may determine the second intra prediction mode candidate according to whether the first intra prediction mode is a directional mode or a non-directional mode.
  • 1B is a block diagram of an image decoder 6000 according to various embodiments.
  • the image decoding unit 6000 performs tasks that are performed by the decoding unit 120 of the image decoding apparatus 100 to encode image data.
  • the entropy decoding unit 6150 parses the encoded image data to be decoded and encoding information necessary for decoding from the bitstream 6050.
  • the coded image data is a quantized transform coefficient
  • the inverse quantization unit 6200 and the inverse transform unit 6250 recover residual data from the quantized transform coefficients.
  • the entropy decoding unit 6150 may acquire intra prediction mode information of a current chroma block from a bitstream.
  • the intra prediction mode information may indicate an intra prediction mode determined among intra prediction mode candidates included in the intra prediction mode list of the current chroma block.
  • the intra prediction unit 6400 performs intra prediction for each block. As described later, in various embodiments, the intra prediction unit 6400 may determine the intra prediction mode list of the current chroma block based on the shape of the current chroma block. The intra prediction unit 6400 may determine one of the intra prediction mode candidates included in the intra prediction mode list of the current chroma block as the intra prediction mode of the current chroma block based on the acquired intra prediction mode information. The intra prediction unit 6400 may perform intra prediction on the current chroma block based on the determined intra prediction mode.
  • the inter prediction unit 6350 performs inter prediction by using a reference image obtained from the reconstructed picture buffer 6300 for each block. By adding prediction data and residual data for each block generated by the intra prediction unit 6400 or the inter prediction unit 6350, data of a spatial region for a block of the current image is restored, and the deblocking unit 6450 and The SAO performing unit 6500 may output a filtered reconstructed image 6600 by performing loop filtering on the reconstructed spatial data. Also, reconstructed images stored in the reconstructed picture buffer 6300 may be output as reference images.
  • step-by-step operations of the image decoder 6000 may be performed block by block.
  • FIG. 1C is a block diagram of an image decoding apparatus 100 according to an embodiment.
  • the image decoding apparatus 100 may include a memory 130 and at least one processor 125 connected to the memory 130.
  • the operations of the image decoding apparatus 100 according to an embodiment may operate as individual processors or may be operated under the control of a central processor.
  • the memory 130 of the video decoding apparatus 100 may store data received from the outside and data generated by the processor.
  • the processor 125 of the image decoding apparatus 100 obtains intra prediction mode information of the current chroma block from the bitstream, and based on the shape of the current chroma block, the intra of the current chroma block A prediction mode list is determined, and based on the obtained intra prediction mode information, one of the intra prediction mode candidates included in the intra prediction mode list of the current chroma block is determined as the intra prediction mode of the current chroma block, and the Intra prediction for the current chroma block may be performed based on the determined intra prediction mode.
  • FIG. 2A is a block diagram of an image encoding apparatus according to various embodiments.
  • the image encoding apparatus 150 may include an encoding unit 155 and an output unit 160.
  • the encoding unit 155 and the output unit 160 may include at least one processor. Also, the encoding unit 155 and the output unit 160 may include a memory that stores instructions to be executed by at least one processor. The encoding unit 155 and the output unit 160 may be implemented with separate hardware, or the encoding unit 155 and the output unit 160 may be included in one hardware.
  • the encoder 155 determines a prediction mode of a current block by applying various prediction modes such as skip mode, intra mode, or inter prediction mode.
  • various prediction modes such as skip mode, intra mode, or inter prediction mode.
  • the current block is not in the skip mode, it may be signaled in which prediction mode, the intra block or the inter prediction mode, is encoded.
  • the encoder 155 may obtain a prediction block of the current block, transform and quantize a residual, which is a difference value between the current block and the prediction block, and encode it.
  • the encoder 155 may determine an intra prediction mode candidate applied to the current block.
  • the encoding unit 155 may encode information regarding the intra prediction mode of the current block.
  • the encoder 155 applies intra prediction modes according to various embodiments to determine an intra prediction mode having an optimal RD (Rate Distortion) cost.
  • the encoding unit 155 intra prediction with information on which prediction mode is predicted from the skip mode, the inter prediction mode, or the intra prediction mode.
  • the intra prediction mode information of the current block may be included in the bitstream and transmitted to the video decoding apparatus 100.
  • the encoder 155 may determine an intra prediction mode list of the current chroma block based on the shape of the current chroma block.
  • the encoding unit 155 determines the intra prediction mode of the current chroma block from among the intra prediction mode candidates included in the intra prediction mode list of the current chroma block, and based on the determined intra prediction mode, for the current chroma block Intra prediction can be performed.
  • the encoding unit 155 may encode intra prediction mode information indicating the determined intra prediction mode among the intra prediction mode candidates included in the intra prediction mode list of the current chroma block.
  • the output unit 160 may generate a bitstream including information about intra prediction mode of a current block and structure information for determining a data unit having other hierarchical division, and output a bitstream.
  • 2B is a block diagram of an image encoder according to various embodiments.
  • the image encoding unit 7000 performs operations that are performed by the encoding unit 155 of the image encoding apparatus 150 to encode image data.
  • the intra prediction unit 7200 performs intra prediction for each block among the current images 7050, and the inter prediction unit 7150 performs reference images obtained from the current image 7050 and the reconstructed picture buffer 7100 for each block. To perform inter prediction.
  • Residual data is generated by subtracting prediction data for each block output from the intra prediction unit 7200 or the inter prediction unit 7150 from data for an encoded block of the current image 7050, and converting unit 7250
  • the quantization unit 7300 may perform transform and quantization on residual data to output quantized transform coefficients for each block.
  • the intra prediction unit 7200 may determine the intra prediction mode list of the current chroma block based on the shape of the current chroma block.
  • the intra prediction unit 7200 determines the intra prediction mode of the current chroma block from among the intra prediction mode candidates included in the intra prediction mode list of the current chroma block, and based on the determined intra prediction mode.
  • the intra prediction unit 7200 may encode intra prediction mode information indicating the determined intra prediction mode among intra prediction mode candidates included in the intra prediction mode list of the current chroma block.
  • the inverse quantization unit 7450 and the inverse transform unit 7500 may perform inverse quantization and inverse transformation on the quantized transform coefficient to restore residual data in the spatial domain.
  • the residual data of the reconstructed spatial region is restored to data of the spatial region for the block of the current image 7050 by adding it with prediction data for each block output from the intra prediction unit 7200 or the inter prediction unit 7150.
  • the deblocking unit 7550 and the SAO performing unit perform in-loop filtering on the data of the reconstructed spatial region to generate a filtered reconstructed image.
  • the generated reconstructed image is stored in the reconstructed picture buffer 7100.
  • the reconstructed images stored in the reconstructed picture buffer 7100 may be used as reference images for inter prediction of other images.
  • the entropy encoding unit 7350 may entropy-encode the quantized transform coefficients, and the entropy-encoded coefficients may be output to the bitstream 7400.
  • step-by-step operations of the image encoder 7000 according to various embodiments may be performed block by block.
  • 2C is a block diagram of an image encoding apparatus 150 according to an embodiment.
  • the video encoding apparatus 150 may include a memory 165 and at least one processor 170 connected to the memory 165.
  • the operations of the image encoding apparatus 150 according to an embodiment may operate as individual processors or may be operated under the control of a central processor.
  • the memory 165 of the video encoding apparatus 150 may store data received from the outside and data generated by the processor.
  • the processor 170 of the image encoding apparatus 150 may apply an intra prediction mode available for the current block and determine an intra prediction mode having an optimal RD cost.
  • the processor 170 of the image encoding apparatus 150 determines the intra prediction mode list of the current chroma block based on the shape of the current chroma block, and adds to the intra prediction mode list of the current chroma block.
  • the processor 170 of the image encoding apparatus 150 determines the intra prediction mode list of the current chroma block based on the shape of the current chroma block, and adds to the intra prediction mode list of the current chroma block.
  • intra prediction mode candidates an intra prediction mode of the current chroma block is determined, intra prediction on the current chroma block is performed based on the determined intra prediction mode, and an intra prediction mode list of the current chroma block is added to the list.
  • intra prediction mode information indicating the determined intra prediction mode may be encoded.
  • one picture may be divided into one or more slices or one or more tiles.
  • One slice or one tile may be a sequence of one or more coding tree units (CTUs).
  • CTU coding tree units
  • CTB maximum coding block
  • the largest coding block means an NxN block including NxN samples (N is an integer). Each color component may be divided into one or more largest coding blocks.
  • a maximum coding unit is a maximum coding block of a luma sample and two maximum coding blocks of chroma samples corresponding thereto, and luma A unit that includes syntax elements used to encode samples and chroma samples.
  • a maximum coding unit is a unit including a maximum coding block of a monochrome sample and syntax elements used to encode monochrome samples.
  • a maximum coding unit is a unit including syntax elements used to code a corresponding picture and samples of a picture.
  • One largest coding block may be divided into an MxN coding block including MxN samples (M and N are integers).
  • a coding unit is a coding block of a luma sample and two coding blocks of chroma samples corresponding thereto, and luma samples and chroma samples. It is a unit that contains syntax elements used to do this.
  • a coding unit is a unit including a coding block of a monochrome sample and syntax elements used to encode monochrome samples.
  • a coding unit is a unit including syntax elements used to encode a picture and samples of a picture.
  • the maximum coding block and the maximum coding unit are concepts that are distinguished from each other, and the coding block and the coding unit are concepts that are different from each other. That is, the (maximum) coding unit refers to a data structure including a (maximum) coding block including a corresponding sample and a syntax element corresponding thereto.
  • the (maximum) coding unit or the (maximum) coding block refers to a block of a predetermined size including a predetermined number of samples, in the following specification, the maximum coding block and the maximum coding unit, or the coding block and the coding unit Refers to without distinction unless otherwise specified.
  • the image may be divided into a maximum coding unit (CTU).
  • the size of the largest coding unit may be determined based on information obtained from a bitstream.
  • the shape of the largest coding unit may have a square of the same size. However, it is not limited thereto.
  • information on the maximum size of a luma coding block may be obtained from a bitstream.
  • the maximum size of the luma coding block indicated by the information on the maximum size of the luma coding block may be one of 16x16, 32x32, 64x64, 128x128, and 256x256.
  • information on a difference between a maximum size of a luma coding block that can be divided into two and a luma block size may be obtained from a bitstream.
  • Information on the difference in luma block size may indicate a size difference between a luma maximum coding unit and a maximum luma coding block that can be divided into two. Accordingly, when information about the maximum size of a dividable luma coding block obtained from a bitstream and information about a difference in a luma block size are combined, the size of a luma maximum coding unit may be determined. If the size of the luma maximum coding unit is used, the size of the chroma maximum coding unit may also be determined.
  • the size of the chroma block may be half the size of the luma block, and similarly, the size of the chroma maximum coding unit may be equal to that of the luma maximum coding unit. It can be half the size.
  • a maximum size of a luma coding block capable of binary splitting may be variably determined.
  • the maximum size of a luma coding block capable of ternary split may be fixed.
  • a maximum size of a luma coding block capable of ternary splitting in an I picture may be 32x32
  • a maximum size of a luma coding block capable of ternary splitting in a P picture or a B picture may be 64x64.
  • the largest coding unit may be hierarchically divided into coding units based on split mode mode information obtained from a bitstream.
  • split mode mode information at least one of information indicating whether to split a quad, information indicating whether to split, or not, split direction information, and split type information may be obtained from a bitstream.
  • information indicating whether to split a quad may indicate whether the current coding unit is to be quad split (QUAD_SPLIT) or not to be split.
  • information indicating whether or not the current coding unit is split may indicate whether the current coding unit is no longer split (NO_SPLIT) or binary / ternary split.
  • the split direction information indicates that the current coding unit is split in either the horizontal direction or the vertical direction.
  • the split type information indicates that the current coding unit is split into binary split or ternary split.
  • a split mode of a current coding unit may be determined.
  • the split mode when the current coding unit is binary split in the horizontal direction is binary horizontal split (SPLIT_BT_HOR), ternary horizontal split in the horizontal direction split (SPLIT_TT_HOR), and split mode when the binary split in the vertical direction is The binary vertical split (SPLIT_BT_VER) and the split mode in the case of ternary split in the vertical direction may be determined as ternary vertical split (SPLIT_BT_VER).
  • the video decoding apparatus 100 may obtain split mode mode information from a bitstream from one empty string.
  • the form of the bitstream received by the image decoding apparatus 100 may include a fixed length binary code, an unary code, a truncated unary code, a predetermined binary code, and the like.
  • An empty string is a binary representation of information.
  • the binstring may consist of at least one bit.
  • the video decoding apparatus 100 may obtain segmentation mode mode information corresponding to the empty string based on the segmentation rule.
  • the video decoding apparatus 100 may determine whether to divide the coding unit into quads, or not, or a split direction and a split type, based on one empty string.
  • the coding unit may be smaller than or equal to the maximum coding unit.
  • the largest coding unit is a coding unit having a maximum size, it is one of coding units.
  • the coding unit determined in the largest coding unit has the same size as the largest coding unit.
  • the split mode mode information for the largest coding unit is split, the largest coding unit may be divided into coding units.
  • split mode mode information for a coding unit indicates split, coding units may be split into smaller coding units.
  • the segmentation of the image is not limited to this, and the maximum coding unit and the coding unit may not be distinguished. The division of the coding unit will be described in more detail in FIGS. 3 to 16.
  • one or more prediction blocks for prediction may be determined from coding units.
  • the prediction block may be equal to or smaller than the coding unit.
  • one or more transform blocks for transformation may be determined from coding units.
  • the transform block may be equal to or smaller than the coding unit.
  • the shape and size of the transform block and the prediction block may not be related to each other.
  • prediction may be performed using a coding unit as a coding block as a prediction block.
  • a coding unit may be transformed using a coding unit as a transform block.
  • the current block and neighboring blocks of the present disclosure may represent one of the largest coding unit, coding unit, prediction block, and transform block.
  • the current block or the current coding unit is a block in which decoding or encoding is currently in progress or a block in which the current division is in progress.
  • the neighboring block may be a block reconstructed before the current block.
  • the neighboring blocks can be spatially or temporally adjacent from the current block.
  • the neighboring block may be located in one of the lower left, left, upper left, upper, upper right, right, and lower sides of the current block.
  • FIG 3 illustrates a process in which the image decoding apparatus 100 determines at least one coding unit by dividing a current coding unit according to an embodiment.
  • the block form may include 4Nx4N, 4Nx2N, 2Nx4N, 4NxN, Nx4N, 32NxN, Nx32N, 16NxN, Nx16N, 8NxN or Nx8N.
  • N may be a positive integer.
  • the block shape information is information indicating at least one of a shape, a direction, a ratio of width and height, and a size of width and height of a coding unit.
  • the shape of the coding unit may include a square (square) and a non-square (non-square).
  • the image decoding apparatus 100 may determine block type information of the coding unit as a square.
  • the image decoding apparatus 100 may determine the shape of the coding unit to be non-square.
  • the image decoding apparatus 100 Block type information of a coding unit may be determined to be non-square.
  • the image decoding apparatus 100 may have a ratio of width and height of block type information of the coding unit of 1: 2, 2: 1, 1: 4, 4: 1, and 1: 8, It can be determined to be at least one of 8: 1, 1:16, 16: 1, 1:32, and 32: 1.
  • the image decoding apparatus 100 may determine whether the coding unit is horizontal or vertical. In addition, the video decoding apparatus 100 may determine the size of the coding unit based on at least one of a width length, a height length, or a width of the coding unit.
  • the image decoding apparatus 100 may determine a type of a coding unit using block shape information, and determine what type of coding unit is split using split mode mode information. That is, a method of dividing a coding unit indicated by split mode mode information may be determined according to what block shape the block shape information used by the image decoding apparatus 100 represents.
  • the video decoding apparatus 100 may obtain split mode mode information from the bitstream. However, the present invention is not limited thereto, and the image decoding apparatus 100 and the image encoding apparatus 150 may determine previously divided division mode mode information based on the block shape information.
  • the image decoding apparatus 100 may determine the split mode mode information previously promised for the largest coding unit or the smallest coding unit. For example, the image decoding apparatus 100 may determine split mode mode information as a quad split with respect to the largest coding unit.
  • the apparatus 100 for decoding an image may determine split mode mode information as “not split” for the minimum coding unit. Specifically, the image decoding apparatus 100 may determine the size of the largest coding unit to be 256x256.
  • the video decoding apparatus 100 may determine the predetermined division mode mode information as quad division.
  • Quad split is a split mode in which both the width and height of the coding unit are bisected.
  • the video decoding apparatus 100 may obtain a coding unit having a size of 128x128 from a largest coding unit having a size of 256x256 based on the split mode mode information. Also, the image decoding apparatus 100 may determine the size of the minimum coding unit to be 4x4. The image decoding apparatus 100 may obtain split mode mode information indicating “not splitting” with respect to the minimum coding unit.
  • the image decoding apparatus 100 may use block shape information indicating that the current coding unit is a square shape. For example, the video decoding apparatus 100 may determine whether to divide the square coding unit according to the split mode mode information, vertically, horizontally, or split into four coding units. Referring to FIG. 3, when the block shape information of the current coding unit 300 indicates a square shape, the decoder 120 has the same size as the current coding unit 300 according to split mode mode information indicating that it is not split. It is possible to determine the coding unit 310a having, or to divide the coding units 310b, 310c, 310d, 310e, 310f, etc. based on the split mode mode information indicating a predetermined splitting method.
  • the image decoding apparatus 100 divides two coding units 310b in which the current coding unit 300 is vertically split based on split mode mode information indicating that the split is vertically according to an embodiment. Can decide.
  • the image decoding apparatus 100 may determine two coding units 310c that split the current coding unit 300 in the horizontal direction based on the split mode mode information indicating that the split is in the horizontal direction.
  • the image decoding apparatus 100 may determine four coding units 310d that split the current coding unit 300 in the vertical and horizontal directions based on split mode mode information indicating split in the vertical and horizontal directions.
  • the image decoding apparatus 100 may divide three coding units 310e that split the current coding unit 300 into a vertical direction based on split mode mode information indicating that the ternary split is vertically performed according to an embodiment. Can decide.
  • the image decoding apparatus 100 may determine three coding units 310f that split the current coding unit 300 in the horizontal direction based on the split mode mode information indicating that the ternary split in the horizontal direction.
  • the division form in which a square coding unit can be divided should not be interpreted as being limited to the above-described form, and various forms that can be represented by the division mode mode information may be included.
  • the predetermined division types in which the square coding unit is divided will be described in detail through various embodiments below.
  • FIG. 4 illustrates a process in which the image decoding apparatus 100 determines at least one coding unit by dividing a coding unit having a non-square shape according to an embodiment.
  • the image decoding apparatus 100 may use block shape information indicating that the current coding unit is a non-square shape.
  • the video decoding apparatus 100 may determine whether to divide the non-square current coding unit according to the split mode mode information or to split it in a predetermined method. Referring to FIG.
  • the image decoding apparatus 100 when the block shape information of the current coding unit 400 or 450 represents a non-square shape, the image decoding apparatus 100 according to the split mode mode information indicating that it is not split, the current coding unit 400 Or 450), or the coding units 420a, 420b, 430a, 430b, 430c, 470a, which are determined based on split mode mode information indicating a predetermined splitting method, or determining coding units 410 or 460 having the same size. 470b, 480a, 480b, 480c).
  • the predetermined division method in which the non-square coding unit is divided will be described in detail through various embodiments below.
  • the image decoding apparatus 100 may determine a form in which a coding unit is split using split mode mode information, in which case, the split mode mode information includes at least one coding unit generated by splitting a coding unit. You can indicate the number. Referring to FIG. 4, when the split mode mode information indicates that the current coding unit 400 or 450 is split into two coding units, the image decoding apparatus 100 may use the current coding unit 400 or 450) to determine two coding units 420a, 420b, or 470a, 470b included in the current coding unit.
  • the image decoding apparatus 100 may display the non-square current coding unit.
  • the current coding unit may be split by considering the position of the long side of (400 or 450). For example, the image decoding apparatus 100 divides the current coding unit 400 or 450 in the direction of dividing the long side of the current coding unit 400 or 450 in consideration of the type of the current coding unit 400 or 450 A plurality of coding units can be determined.
  • the image decoding apparatus 100 when the split mode information indicates that the coding unit is split (ternary split) into odd blocks, the image decoding apparatus 100 encodes the odd number included in the current coding unit 400 or 450 Units can be determined. For example, when the split mode mode information indicates that the current coding unit 400 or 450 is split into three coding units, the image decoding apparatus 100 sets the current coding unit 400 or 450 into three coding units ( 430a, 430b, 430c, 480a, 480b, 480c).
  • the ratio of the width and height of the current coding unit 400 or 450 may be 4: 1 or 1: 4.
  • the block shape information may be horizontal.
  • the ratio of width and height is 1: 4
  • the length of the width is shorter than the length of the height, so the block shape information may be vertical.
  • the video decoding apparatus 100 may determine to split the current coding unit into an odd number of blocks based on the split mode mode information. Also, the apparatus 100 for decoding an image may determine a split direction of the current coding unit 400 or 450 based on block type information of the current coding unit 400 or 450.
  • the image decoding apparatus 100 determines the coding units 430a, 430b, and 430c by dividing the current coding unit 400 in the horizontal direction. You can.
  • the image decoding apparatus 100 may determine the coding units 480a, 480b, and 480c by dividing the current coding unit 450 in the vertical direction. .
  • the image decoding apparatus 100 may determine an odd number of coding units included in the current coding unit 400 or 450, and not all of the determined coding units may have the same size. For example, the size of a predetermined coding unit 430b or 480b among the determined odd number of coding units 430a, 430b, 430c, 480a, 480b, and 480c is different from other coding units 430a, 430c, 480a, and 480c.
  • a coding unit that can be determined by dividing the current coding unit 400 or 450 may have a plurality of types of sizes, and in some cases, an odd number of coding units 430a, 430b, 430c, 480a, 480b, and 480c. Each may have a different size.
  • the image decoding apparatus 100 may determine an odd number of coding units included in the current coding unit 400 or 450, Furthermore, the image decoding apparatus 100 may place a predetermined restriction on at least one coding unit among odd coding units generated by being split.
  • the image decoding apparatus 100 is a coding unit positioned in the center among three coding units 430a, 430b, 430c, 480a, 480b, and 480c generated by dividing the current coding unit 400 or 450.
  • the decoding process for 430b and 480b may be different from other coding units 430a, 430c, 480a, and 480c.
  • the video decoding apparatus 100 restricts the coding units 430b and 480b located at the center from being split further, unlike other coding units 430a, 430c, 480a, and 480c, or only a predetermined number of times It can be restricted to split.
  • FIG 5 illustrates a process in which the image decoding apparatus 100 divides a coding unit based on at least one of block shape information and split shape mode information according to an embodiment.
  • the image decoding apparatus 100 may determine that the first coding unit 500 having a square shape is split into coding units or not based on at least one of block shape information and split shape mode information. .
  • the image decoding apparatus 100 splits the first coding unit 500 in the horizontal direction to perform second coding.
  • the unit 510 can be determined.
  • the first coding unit, the second coding unit, and the third coding unit used according to an embodiment are terms used to understand before and after splitting between coding units. For example, when the first coding unit is split, the second coding unit may be determined, and when the second coding unit is split, the third coding unit may be determined.
  • the relationship between the first coding unit, the second coding unit, and the third coding unit used may be understood as following the above-described features.
  • the image decoding apparatus 100 may determine that the determined second coding unit 510 is split into coding units based on split mode mode information or not. Referring to FIG. 5, the video decoding apparatus 100 divides the first coding unit 500 based on the split mode mode information, and includes at least one third coding unit of the second coding unit 510 having a non-square shape. (520a, 520b, 520c, 520d, etc.) or the second coding unit 510 may not be split. The image decoding apparatus 100 may obtain split mode mode information, and the image decoding apparatus 100 may split the first coding unit 500 based on the obtained split shape mode information to obtain a plurality of second encodings of various types.
  • a unit (eg, 510) may be determined, and the second coding unit 510 may be divided according to the manner in which the first coding unit 500 is divided based on the split mode mode information.
  • the second coding unit 510 when the first coding unit 500 is divided into the second coding unit 510 based on the split mode mode information for the first coding unit 500, the second coding unit 510 is also The second coding unit 510 may be split into third coding units (eg, 520a, 520b, 520c, 520d, etc.) based on the split mode mode information. That is, the coding unit may be recursively divided based on split mode mode information related to each coding unit. Accordingly, a square coding unit may be determined from a coding unit having a square shape, and the coding unit having a square shape may be recursively divided to determine a coding unit having a non-square shape.
  • a predetermined coding unit (eg, a centered coding) among odd numbered third coding units 520b, 520c, and 520d determined by dividing and determining the second squared coding unit 510 Units or square units of coding units) may be recursively divided.
  • the third coding unit 520b having a square shape, which is one of the odd numbered third coding units 520b, 520c, and 520d may be split in a horizontal direction and divided into a plurality of fourth coding units.
  • the fourth coding unit 530b or 530d having a non-square shape that is one of the plurality of fourth coding units 530a, 530b, 530c, and 530d may be divided into a plurality of coding units.
  • the fourth coding unit 530b or 530d having a non-square shape may be divided into odd numbered coding units. Methods that can be used for recursive division of coding units will be described later through various embodiments.
  • the image decoding apparatus 100 may divide each of the third coding units 520a, 520b, 520c, and 520d into coding units based on the split mode mode information. Also, the image decoding apparatus 100 may determine not to split the second coding unit 510 based on the split mode mode information. The image decoding apparatus 100 may divide the second coding unit 510 in a non-square shape into odd numbered third coding units 520b, 520c, and 520d according to an embodiment. The image decoding apparatus 100 may place a predetermined restriction on a predetermined third coding unit among the odd number of third coding units 520b, 520c, and 520d.
  • the image decoding apparatus 100 is limited to no longer splitting or is divided into a settable number of times for the coding unit 520c located in the center among the odd numbered third coding units 520b, 520c, and 520d. It can be limited to.
  • the image decoding apparatus 100 includes a coding unit 520c positioned in the center among an odd number of third coding units 520b, 520c, and 520d included in the non-square second coding unit 510. ) Is no longer divided, or is divided into a predetermined division type (for example, only divided into four coding units or the second encoding unit 510 is divided into a form corresponding to the divided type), or a predetermined It can be limited to dividing only by the number of times (eg, dividing only n times, n> 0).
  • the above limitation on the coding unit 520c located in the middle is only simple embodiments and should not be interpreted as being limited to the above-described embodiments, and the coding unit 520c located in the middle is different coding units 520b and 520d. ) And should be interpreted as including various restrictions that can be decoded.
  • the image decoding apparatus 100 may obtain split mode mode information used to split the current coding unit at a predetermined position within the current coding unit.
  • FIG. 6 illustrates a method for the image decoding apparatus 100 to determine a predetermined coding unit among odd coding units according to an embodiment.
  • the split mode mode information of the current coding units 600 and 650 is a sample at a predetermined position (for example, a sample located in the center) among a plurality of samples included in the current coding units 600 and 650. 640, 690)).
  • a predetermined position in the current coding unit 600 in which at least one of the split mode mode information can be obtained should not be interpreted as being limited to the center position shown in FIG. 6, and a predetermined position is included in the current coding unit 600 It should be interpreted that various positions (eg, top, bottom, left, right, top left, bottom left, top right, or bottom right) can be included.
  • the image decoding apparatus 100 may obtain split mode mode information obtained from a predetermined location and determine whether to split or split the current coding unit into coding units having various shapes and sizes.
  • the image decoding apparatus 100 may select one coding unit therefrom.
  • Methods for selecting one of a plurality of coding units may be various, and descriptions of these methods will be described later through various embodiments.
  • the image decoding apparatus 100 may divide the current coding unit into a plurality of coding units and determine a coding unit at a predetermined location.
  • the image decoding apparatus 100 may use information indicating the location of each of the odd number of coding units to determine a coding unit located in the middle of the odd number of coding units.
  • the image decoding apparatus 100 divides the current coding unit 600 or the current coding unit 650 to an odd number of coding units 620a, 620b, and 620c, or an odd number of coding units 660a, 660b, 660c).
  • the image decoding apparatus 100 uses the information about the positions of the odd number of coding units 620a, 620b, and 620c or the odd number of coding units 660a, 660b, and 660c, and the middle coding unit 620b or the middle coding unit.
  • the image decoding apparatus 100 determines the position of the coding units 620a, 620b, and 620c based on information indicating the location of a predetermined sample included in the coding units 620a, 620b, and 620c.
  • the coding unit 620b located at may be determined.
  • the image decoding apparatus 100 may encode units 620a, 620b, and 620c based on information indicating the positions of samples 630a, 630b, and 630c at the upper left of the coding units 620a, 620b, and 620c.
  • the coding unit 620b positioned at the center may be determined by determining the position of.
  • information indicating the positions of the upper left samples 630a, 630b, and 630c included in the coding units 620a, 620b, and 620c, respectively, is within a picture of the coding units 620a, 620b, and 620c. It may include information about the location or coordinates of.
  • information indicating the positions of the upper left samples 630a, 630b, and 630c included in the coding units 620a, 620b, and 620c, respectively is coding units 620a included in the current coding unit 600 , 620b, 620c), and the width or height may correspond to information indicating a difference between coordinates in a picture of coding units 620a, 620b, and 620c. That is, the image decoding apparatus 100 directly uses information about the position or coordinates in the picture of the coding units 620a, 620b, and 620c, or information about the width or height of the coding unit corresponding to a difference value between coordinates. By using, it is possible to determine the coding unit 620b located at the center.
  • the information indicating the position of the sample 630a at the upper left of the upper coding unit 620a may indicate (xa, ya) coordinates
  • the sample 530b at the upper left of the middle coding unit 620b Information indicating the position of) may indicate (xb, yb) coordinates
  • information indicating the position of the sample 630c at the upper left of the lower coding unit 620c may indicate (xc, yc) coordinates.
  • the image decoding apparatus 100 may determine the middle coding unit 620b by using coordinates of samples 630a, 630b, and 630c at the upper left included in the coding units 620a, 620b, and 620c, respectively.
  • the coding unit 620b includes (xb, yb) which is the coordinates of the sample 630b located in the center. May be determined as a coding unit positioned in the center among coding units 620a, 620b, and 620c determined by splitting the current coding unit 600.
  • the coordinates representing the positions of the upper left samples 630a, 630b, and 630c may represent coordinates representing absolute positions in the picture, and further, the positions of the upper left samples 630a of the upper coding unit 620a may be determined.
  • (dxb, dyb) coordinates which are information indicating the relative position of the sample 630b in the upper left of the middle coding unit 620b, and the relative position of the sample 630c in the upper left of the lower coding unit 620c.
  • Information (dxc, dyc) coordinates can also be used.
  • a method for determining a coding unit at a predetermined location by using coordinates of a corresponding sample as information indicating a location of a sample included in a coding unit should not be interpreted as limited to the above-described method, and various arithmetic operations that can use the coordinates of the sample It should be interpreted as a method.
  • the image decoding apparatus 100 may divide the current coding unit 600 into a plurality of coding units 620a, 620b, and 620c, and a predetermined one of the coding units 620a, 620b, and 620c
  • the coding unit can be selected according to the criteria. For example, the image decoding apparatus 100 may select coding units 620b having different sizes from among coding units 620a, 620b, and 620c.
  • the image decoding apparatus 100 may include (xa, ya) coordinates, which is information indicating the location of the sample 630a at the upper left of the upper coding unit 620a, and a sample at the upper left of the middle coding unit 620b. Coding units 620a using (xb, yb) coordinates, which are information indicating the location of (630b), and (xc, yc) coordinates, which are information indicating the location of the sample 630c at the upper left of the lower coding unit 620c. , 620b, 620c) each width or height can be determined.
  • the image decoding apparatus 100 uses coding units 620a and 620b using coordinates (xa, ya), (xb, yb), and (xc, yc) indicating the positions of the coding units 620a, 620b, and 620c. , 620c) Each size can be determined. According to an embodiment, the image decoding apparatus 100 may determine the width of the upper coding unit 620a as the width of the current coding unit 600. The video decoding apparatus 100 may determine the height of the upper coding unit 620a as yb-ya. According to an embodiment, the image decoding apparatus 100 may determine the width of the middle coding unit 620b as the width of the current coding unit 600.
  • the image decoding apparatus 100 may determine the height of the middle coding unit 620b as yc-yb. According to an embodiment, the image decoding apparatus 100 may determine the width or height of the lower coding unit using the width or height of the current coding unit and the width and height of the upper coding unit 620a and the middle coding unit 620b. . The video decoding apparatus 100 may determine a coding unit having a different size from other coding units based on the width and height of the determined coding units 620a, 620b, and 620c. Referring to FIG.
  • the image decoding apparatus 100 may determine a coding unit 620b having a size different from that of the upper coding unit 620a and the lower coding unit 620c as a coding unit of a predetermined position.
  • the above-described image decoding apparatus 100 determines a coding unit at a predetermined location by using a size of a coding unit determined based on sample coordinates in the process of determining a coding unit having a different size from other coding units. Since it is merely a method, various processes of determining a coding unit at a predetermined location by comparing the sizes of coding units determined according to predetermined sample coordinates may be used.
  • the image decoding apparatus 100 is (xd, yd) coordinates, which is information indicating the location of the sample 670a at the top left of the left coding unit 660a, and the location of the sample 670b at the top left of the middle coding unit 660b. Coding units 660a, 660b, and 660c using (xe, ye) coordinates, which are information representing, and (xf, yf) coordinates, which are information indicating the location of the sample 670c at the upper left of the right coding unit 660c. Each width or height can be determined.
  • the image decoding apparatus 100 uses the coding units 660a and 660b using (xd, yd), (xe, ye), and (xf, yf) coordinates indicating the positions of the coding units 660a, 660b, and 660c. , 660c) Each size can be determined.
  • the image decoding apparatus 100 may determine the width of the left coding unit 660a as xe-xd.
  • the image decoding apparatus 100 may determine the height of the left coding unit 660a as the height of the current coding unit 650.
  • the image decoding apparatus 100 may determine the width of the middle coding unit 660b as xf-xe.
  • the image decoding apparatus 100 may determine the height of the middle coding unit 660b as the height of the current coding unit 600.
  • the image decoding apparatus 100 may include a width or height of the right coding unit 660c and a width or height of the current coding unit 650 and a width and height of the left coding unit 660a and the middle coding unit 660b.
  • the image decoding apparatus 100 may determine a coding unit having a different size from other coding units based on the width and height of the determined coding units 660a, 660b, and 660c. Referring to FIG. 6, the image decoding apparatus 100 may determine a coding unit 660b as a coding unit of a predetermined position, having a size different from that of the left coding unit 660a and the right coding unit 660c. However, the above-described image decoding apparatus 100 determines a coding unit at a predetermined location by using a size of a coding unit determined based on sample coordinates in the process of determining a coding unit having a different size from other coding units. Since it is merely a method, various processes of determining a coding unit at a predetermined location by comparing the sizes of coding units determined according to predetermined sample coordinates may be used.
  • the location of the sample considered in order to determine the location of the coding unit should not be interpreted as being limited to the upper left, and it can be interpreted that information about the location of any sample included in the coding unit can be used.
  • the image decoding apparatus 100 may select a coding unit at a predetermined position among odd coding units determined by dividing the current coding unit in consideration of the shape of the current coding unit. For example, if the current coding unit is a non-square shape having a width greater than a height, the image decoding apparatus 100 may determine a coding unit at a predetermined position according to a horizontal direction. That is, the image decoding apparatus 100 may determine one of the coding units having different positions in the horizontal direction and place restrictions on the corresponding coding unit. If the current coding unit is a non-square shape having a height higher than a width, the image decoding apparatus 100 may determine a coding unit at a predetermined position according to a vertical direction. That is, the image decoding apparatus 100 may determine one of the coding units having different positions in the vertical direction and place restrictions on the coding unit.
  • the image decoding apparatus 100 may use information indicating the location of each of the even numbered coding units to determine a coding unit of a predetermined position among the even numbered coding units.
  • the image decoding apparatus 100 may determine an even number of coding units by dividing (binary splitting) the current coding unit, and determine a coding unit at a predetermined location using information about the positions of the even number of coding units. A detailed process for this may be omitted because it may be a process corresponding to a process of determining a coding unit of a predetermined position (for example, a center position) among the odd number of coding units described above with reference to FIG. 6.
  • a predetermined value for a coding unit at a predetermined position in a splitting process is determined in order to determine a coding unit at a predetermined position among a plurality of coding units
  • Information is available.
  • the image decoding apparatus 100 may block information and split form stored in a sample included in a middle coding unit in a splitting process in order to determine a coding unit positioned in the center among coding units in which a plurality of current coding units are split. At least one of the mode information can be used.
  • the image decoding apparatus 100 may divide the current coding unit 600 into a plurality of coding units 620a, 620b, and 620c based on the split mode mode information, and the plurality of coding units ( Among the 620a, 620b, and 620c), a coding unit 620b located in the center may be determined. Furthermore, the apparatus 100 for decoding an image may determine a coding unit 620b positioned in the center in consideration of a location where split mode mode information is obtained. That is, the split mode mode information of the current coding unit 600 may be obtained from the sample 640 located in the center of the current coding unit 600, and the current coding unit 600 may be based on the split mode mode information.
  • the coding unit 620b including the sample 640 may be determined as a coding unit located in the center.
  • information used to determine the coding unit located in the middle should not be interpreted as limited to split mode mode information, and various types of information may be used in the process of determining the coding unit located in the middle.
  • predetermined information for identifying a coding unit at a predetermined location may be obtained from a predetermined sample included in a coding unit to be determined.
  • the image decoding apparatus 100 may include a coding unit (eg, divided into a plurality of units) at a predetermined position among a plurality of coding units 620a, 620b, and 620c determined by dividing the current coding unit 600.
  • Split type mode information obtained from samples at a predetermined position in the current coding unit 600 (for example, a sample located in the center of the current coding unit 600) to determine a coding unit positioned in the middle among coding units. Can be used.
  • the video decoding apparatus 100 may determine the sample at the predetermined position in consideration of the block form of the current coding unit 600, and the video decoding apparatus 100 may determine a plurality of split current coding units 600.
  • a coding unit 620b including a sample from which predetermined information (eg, split mode mode information) can be obtained may be determined to place a predetermined restriction. .
  • the image decoding apparatus 100 may determine a sample 640 located in the center of the current coding unit 600 as a sample from which predetermined information can be obtained, and the image decoding apparatus The 100 may place a predetermined restriction in the decoding process of the coding unit 620b in which the sample 640 is included.
  • the location of a sample from which predetermined information can be obtained should not be interpreted as being limited to the above-described location, but can be interpreted as samples at an arbitrary location included in the coding unit 620b to be determined in order to place a limit.
  • a location of a sample from which predetermined information can be obtained may be determined according to the type of the current coding unit 600.
  • the block shape information may determine whether a current coding unit has a square shape or a non-square shape, and may determine a location of a sample from which predetermined information can be obtained according to the shape.
  • the image decoding apparatus 100 is located on a boundary that divides at least one of the width and height of the current coding unit in half by using at least one of information about the width and height of the current coding unit.
  • the sample may be determined as a sample from which predetermined information can be obtained.
  • the video decoding apparatus 100 may determine one of samples adjacent to a boundary dividing the long side of the current coding unit in half. It can be determined as a sample from which information can be obtained.
  • the image decoding apparatus 100 may use split mode mode information to determine a coding unit at a predetermined position among the plurality of coding units.
  • the image decoding apparatus 100 may obtain split mode mode information from a sample at a predetermined location included in a coding unit, and the image decoding apparatus 100 may generate a plurality of encodings generated by splitting a current coding unit.
  • the units may be split using split mode mode information obtained from samples at predetermined positions included in each of the plurality of coding units. That is, the coding unit may be split recursively using split mode mode information obtained from samples at a predetermined location included in each coding unit.
  • the recursive splitting process of the coding unit has been described with reference to FIG. 5, so a detailed description thereof will be omitted.
  • the image decoding apparatus 100 may determine at least one coding unit by dividing the current coding unit, and the order in which the at least one coding unit is decoded may be determined by a predetermined block (eg, the current coding unit). ).
  • FIG. 7 illustrates an order in which a plurality of coding units are processed when the image decoding apparatus 100 determines a plurality of coding units by dividing a current coding unit according to an embodiment.
  • the image decoding apparatus 100 determines the second coding units 710a and 710b by dividing the first coding unit 700 in the vertical direction according to the split mode mode information, or the first coding unit 700.
  • the second coding units 750a, 750b, 750c, and 750d may be determined by splitting the horizontal direction to determine the second coding units 730a and 730b, or by dividing the first coding unit 700 in the vertical and horizontal directions. have.
  • the image decoding apparatus 100 may determine an order to process the second coding units 710a and 710b determined by dividing the first coding unit 700 in the vertical direction in the horizontal direction 710c. .
  • the image decoding apparatus 100 may determine the processing order of the second coding units 730a and 730b determined by dividing the first coding unit 700 in the horizontal direction in the vertical direction 730c. After the first coding unit 700 is divided into a vertical direction and a horizontal direction, the image decoding apparatus 100 processes the second coding units 750a, 750b, 750c, and 750d determined in one row, and then processes them.
  • the coding units positioned in the next row may be determined according to a predetermined order (for example, a raster scan order or a z scan order 750e).
  • the image decoding apparatus 100 may recursively divide coding units. Referring to FIG. 7, the image decoding apparatus 100 may determine a plurality of coding units 710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d by dividing the first coding unit 700, Each of the determined plurality of coding units 710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d may be recursively divided.
  • a method of dividing the plurality of coding units 710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d may be a method corresponding to a method of dividing the first coding unit 700. Accordingly, the plurality of coding units 710a, 710b, 730a, 730b, 750a, 750b, 750c, and 750d may be independently divided into a plurality of coding units. Referring to FIG. 7, the image decoding apparatus 100 may determine the second coding units 710a and 710b by dividing the first coding unit 700 in the vertical direction, and further, respectively, the second coding units 710a and 710b You can decide to split independently or not.
  • the image decoding apparatus 100 may split the second coding unit 710a on the left side into the third coding units 720a and 720b by splitting it horizontally, and the second coding unit 710b on the right side. ) May not be divided.
  • a processing order of coding units may be determined based on a splitting process of coding units.
  • the processing order of the divided coding units may be determined based on the processing order of the coding units immediately before being split.
  • the image decoding apparatus 100 may independently determine the order in which the third coding units 720a and 720b determined by dividing the second coding unit 710a on the left are processed independently from the second coding unit 710b on the right. Since the second coding unit 710a on the left is split in the horizontal direction, and the third coding units 720a and 720b are determined, the third coding units 720a and 720b may be processed in the vertical direction 720c.
  • the order in which the second coding unit 710a on the left and the second coding unit 710b on the right are processed corresponds to the horizontal direction 710c
  • the right coding unit 710b may be processed. Since the above-described content is for explaining a process in which the processing order is determined according to coding units before splitting, coding units determined by dividing and determining in various forms are not limited to the above-described embodiment. It should be interpreted as being used in a variety of ways that can be processed independently in sequence.
  • FIG 8 illustrates a process in which the image decoding apparatus 100 determines that the current coding unit is divided into an odd number of coding units when the coding units cannot be processed in a predetermined order according to an embodiment.
  • the image decoding apparatus 100 may determine that the current coding unit is split into an odd number of coding units based on the obtained split mode mode information.
  • the first coding unit 800 in a square shape may be divided into second coding units 810a and 810b in a non-square shape, and the second coding units 810a and 810b are each independently a third It may be divided into coding units 820a, 820b, 820c, 820d, and 820e.
  • the image decoding apparatus 100 may determine a plurality of third coding units 820a and 820b by dividing the left coding unit 810a among the second coding units in a horizontal direction, and the right coding unit 810b ) May be divided into an odd number of third coding units 820c, 820d, and 820e.
  • the image decoding apparatus 100 determines whether the third coding units 820a, 820b, 820c, 820d, and 820e can be processed in a predetermined order to determine whether an odd number of coding units exist. Can decide. Referring to FIG. 8, the image decoding apparatus 100 may recursively divide the first coding unit 800 to determine third coding units 820a, 820b, 820c, 820d, and 820e.
  • the video decoding apparatus 100 based on at least one of block type information and split type mode information, the first coding unit 800, the second coding units 810a, 810b, or the third coding units 820a, 820b, 820c , 820d, 820e) may be determined whether or not to be divided into odd number of coding units. For example, among the second coding units 810a and 810b, a coding unit positioned on the right side may be divided into an odd number of third coding units 820c, 820d, and 820e.
  • the order in which the plurality of coding units included in the first coding unit 800 are processed may be a predetermined order (for example, a z-scan order 830), and the image decoding apparatus ( 100) may determine whether the third coding unit 820c, 820d, 820e determined by dividing the right second coding unit 810b into odd numbers satisfies a condition that can be processed according to the predetermined order.
  • a predetermined order for example, a z-scan order 830
  • the image decoding apparatus 100 satisfies a condition that the third coding units 820a, 820b, 820c, 820d, and 820e included in the first coding unit 800 may be processed according to a predetermined order. Whether or not the conditions are divided in half by at least one of the width and height of the second coding units 810a and 810b according to the boundary of the third coding units 820a, 820b, 820c, 820d, and 820e.
  • the third coding units 820a and 820b which are determined by dividing the height of the left second coding unit 810a in a non-square shape in half, may satisfy the condition.
  • the boundary of the third coding units 820c, 820d, and 820e determined by dividing the right second coding unit 810b into three coding units does not divide the width or height of the right second coding unit 810b in half. Therefore, it may be determined that the third coding units 820c, 820d, and 820e do not satisfy the condition. In the case of dissatisfaction with the condition, the image decoding apparatus 100 may determine that the scan order is disconnected, and determine that the right second coding unit 810b is divided into an odd number of coding units based on the determination result.
  • a predetermined restriction may be placed on a coding unit at a predetermined position among the split coding units. Since it has been described through examples, detailed descriptions will be omitted.
  • FIG 9 illustrates a process in which the image decoding apparatus 100 determines the at least one coding unit by dividing the first coding unit 900 according to an embodiment.
  • the image decoding apparatus 100 may split the first coding unit 900 based on the split mode mode information obtained through the receiver (not shown).
  • the first coding unit 900 having a square shape may be divided into coding units having four square shapes or may be divided into a plurality of coding units having a non-square shape.
  • the image decoding apparatus 100 may include a plurality of first coding units 900. It can be divided into two non-square coding units.
  • the image decoding apparatus 100 may include a first coding unit in a square shape ( 900) may be divided into second coding units 910a, 910b, and 910c determined by splitting in the vertical direction as odd coding units or second coding units 920a, 920b, and 920c determined by splitting in the horizontal direction.
  • the image decoding apparatus 100 may include conditions in which second coding units 910a, 910b, 910c, 920a, 920b, and 920c included in the first coding unit 900 may be processed in a predetermined order. It may be determined whether or not, and the condition is divided into at least one of the width and height of the first coding unit 900 according to the boundary of the second coding unit 910a, 910b, 910c, 920a, 920b, 920c. Whether it is related. Referring to FIG. 9, the boundary of the second coding units 910a, 910b, and 910c determined by dividing the square first coding unit 900 in the vertical direction divides the width of the first coding unit 900 in half.
  • the image decoding apparatus 100 may determine that the scan sequence is disconnected, and determine that the first coding unit 900 is divided into an odd number of coding units based on the determination result.
  • a predetermined restriction may be placed on a coding unit at a predetermined position among the split coding units. Since it has been described through examples, detailed descriptions will be omitted.
  • the image decoding apparatus 100 may determine various types of coding units by dividing the first coding unit.
  • the image decoding apparatus 100 may divide the first coding unit 900 in a square shape and the first coding unit 930 or 950 in a non-square shape into various coding units.
  • FIG. 10 is a diagram for a second encoding unit in which the second encoding unit having a non-square shape determined by dividing the first encoding unit 1000 by the image decoding apparatus 100 satisfies a predetermined condition according to an embodiment. It shows that the form is limited.
  • the image decoding apparatus 100 may use the first coding unit 1000 in a square shape as a second coding unit 1010a in a square shape based on the split mode mode information obtained through a receiver (not shown). 1010b, 1020a, 1020b).
  • the second coding units 1010a, 1010b, 1020a, and 1020b may be divided independently. Accordingly, the image decoding apparatus 100 may determine whether to divide or not divide into a plurality of coding units based on split mode mode information related to each of the second coding units 1010a, 1010b, 1020a, and 1020b.
  • the image decoding apparatus 100 splits the left second coding unit 1010a in the non-square shape determined by dividing the first coding unit 1000 in the vertical direction in the horizontal direction, thereby terminating the third coding unit 1012a. , 1012b).
  • the image decoding apparatus 100 may have the right second coding unit 1010b in the same horizontal direction as the left second coding unit 1010a is split.
  • the right second coding unit 1010b is split in the same direction and the third coding units 1014a and 1014b are determined, the left second coding unit 1010a and the right second coding unit 1010b are respectively in the horizontal direction.
  • the third coding units 1012a, 1012b, 1014a, and 1014b may be determined by being independently divided. However, this is the same result as the image decoding apparatus 100 splitting the first coding unit 1000 into four square-shaped second coding units 1030a, 1030b, 1030c, and 1030d based on the split mode mode information. In terms of image decoding, it may be inefficient.
  • the image decoding apparatus 100 may divide the second coding unit 1020a or 1020b of the non-square shape determined by dividing the first coding unit 1000 in the horizontal direction in the vertical direction, and thereby generate a third coding unit ( 1022a, 1022b, 1024a, 1024b).
  • a third coding unit 1022a, 1022b, 1024a, 1024b.
  • the image decoding apparatus 100 divides one of the second coding units (for example, the upper second coding unit 1020a) in the vertical direction, another second coding unit (for example, lower end) according to the aforementioned reason
  • the coding unit 1020b may restrict the upper second coding unit 1020a from being split in the same vertical direction as the split direction.
  • FIG. 11 is a diagram illustrating a process in which the image decoding apparatus 100 divides a square type coding unit when the split mode mode information cannot be divided into four square type coding units, according to an embodiment.
  • the image decoding apparatus 100 may determine the second coding units 1110a, 1110b, 1120a, and 1120b by dividing the first coding unit 1100 based on the split mode mode information.
  • the split mode mode information may include information on various types in which coding units can be split, but information on various types may not include information for splitting into four coding units having a square shape.
  • the image decoding apparatus 100 does not divide the first coding unit 1100 having a square shape into four second coding units 1130a, 1130b, 1130c, and 1130d having a square shape.
  • the image decoding apparatus 100 may determine a second coding unit (1110a, 1110b, 1120a, 1120b, etc.) having a non-square shape.
  • the image decoding apparatus 100 may independently divide the second coding units 1110a, 1110b, 1120a, and 1120b in the non-square form, respectively.
  • Each of the second coding units 1110a, 1110b, 1120a, 1120b, etc. may be divided in a predetermined order through a recursive method, which is based on how the first coding unit 1100 is split based on the split mode mode information. It may be a corresponding partitioning method.
  • the image decoding apparatus 100 may determine the third coding units 1112a and 1112b in a square shape by dividing the second coding unit 1110a on the left side in the horizontal direction, and the second coding unit 1110b on the right side.
  • the third coding units 1114a and 1114b having a square shape may be determined by being split in a horizontal direction.
  • the image decoding apparatus 100 may determine the third coding units 1116a, 1116b, 1116c, and 1116d in a square shape by dividing both the left second coding unit 1110a and the right second coding unit 1110b in the horizontal direction. have.
  • the coding unit may be determined in the same form as the first coding unit 1100 is divided into four square-type second coding units 1130a, 1130b, 1130c, and 1130d.
  • the image decoding apparatus 100 may determine the third coding units 1122a and 1122b in a square shape by dividing the upper second coding unit 1120a in a vertical direction, and the lower second coding unit 1120b. ) Is divided in the vertical direction to determine the third coding units 1124a and 1124b in a square shape. Furthermore, the image decoding apparatus 100 may determine the third coding units 1126a, 1126b, 1126a, and 1126b in a square shape by dividing both the upper second coding unit 1120a and the lower second coding unit 1120b in the vertical direction. have. In this case, the coding unit may be determined in the same form as the first coding unit 1100 is divided into four square-type second coding units 1130a, 1130b, 1130c, and 1130d.
  • FIG. 12 illustrates that a processing order among a plurality of coding units may vary according to a splitting process of coding units according to an embodiment.
  • the image decoding apparatus 100 may split the first coding unit 1200 based on the split mode mode information.
  • the image decoding apparatus 100 displays the first coding unit 1200.
  • the second coding unit eg, 1210a, 1210b, 1220a, 1220b, etc.
  • the second coding units 1210a, 1210b, 1220a, and 1220b of the non-square shape determined by dividing the first coding unit 1200 only in the horizontal direction or the vertical direction are independent based on the split mode mode information for each Can be divided into
  • the image decoding apparatus 100 splits the second coding units 1210a and 1210b generated by dividing the first coding unit 1200 in the vertical direction in the horizontal direction, respectively, and generates third coding units 1216a and 1216b, respectively. 1216c and 1216d), and the second coding units 1220a and 1220b generated by dividing the first coding unit 1200 in the horizontal direction are respectively split in the horizontal direction, and the third coding units 1226a, 1226b, and 1226c. , 1226d). Since the splitting process of the second coding units 1210a, 1210b, 1220a, and 1220b has been described above with reference to FIG. 11, a detailed description thereof will be omitted.
  • the image decoding apparatus 100 may process coding units according to a predetermined order. Characteristics of the processing of the coding unit according to a predetermined order have been described above with reference to FIG. 7, so a detailed description thereof will be omitted. Referring to FIG. 12, the image decoding apparatus 100 divides the first coding unit 1200 in a square shape, and the third coding units 1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, and 1226d in four square shapes ).
  • the image decoding apparatus 100 may process a third coding unit 1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d according to a form in which the first coding unit 1200 is divided. Can decide.
  • the image decoding apparatus 100 determines the third coding units 1216a, 1216b, 1216c, and 1216d by dividing the second coding units 1210a and 1210b generated by being split in the vertical direction in the horizontal direction, respectively.
  • the video decoding apparatus 100 may first process the third coding units 1216a and 1216c included in the left second coding unit 1210a in the vertical direction, and then include the right second coding unit 1210b.
  • the third coding units 1216a, 1216b, 1216c, and 1216d may be processed according to a procedure 1217 for processing the third coding units 1216b and 1216d in the vertical direction.
  • the image decoding apparatus 100 determines the third coding units 1226a, 1226b, 1226c, and 1226d by dividing the second coding units 1220a and 1220b generated by being split in the horizontal direction in the vertical direction, respectively.
  • the video decoding apparatus 100 may first process the third coding units 1226a and 1226b included in the upper second coding unit 1220a in the horizontal direction, and then include the lower second coding units 1220b.
  • the third coding units 1226a, 1226b, 1226c, and 1226d may be processed according to a procedure 1227 for processing the third coding units 1226c and 1226d in the horizontal direction.
  • the second coding units 1210a, 1210b, 1220a, and 1220b are divided, so that the third coding units 1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, and 1226d in a square form may be determined. have.
  • the second coding units 1210a and 1210b determined by splitting in the vertical direction and the second coding units 1220a and 1220b determined by splitting in the horizontal direction are split in different forms, but the third coding units 1216a determined later.
  • 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d) the first coding unit 1200 is divided into coding units having the same type.
  • the image decoding apparatus 100 divides coding units recursively through different processes based on split mode mode information, so that even if the coding units of the same type are determined as a result, a plurality of coding units determined in the same type are different. It can be processed in order.
  • FIG. 13 is a diagram illustrating a process in which a depth of a coding unit is determined as a shape and a size of a coding unit change when a coding unit is recursively divided and a plurality of coding units are determined according to an embodiment.
  • the image decoding apparatus 100 may determine a depth of the coding unit according to a predetermined criterion.
  • the predetermined criterion may be the length of the long side of the coding unit.
  • the depth of the current coding unit is greater than the depth of the coding unit before being split. It can be determined that the depth is increased by n.
  • a coding unit having an increased depth is expressed as a coding unit of a lower depth.
  • the image decoding apparatus 100 may be configured to have a square shape based on block shape information indicating that it is a square shape (for example, block shape information may indicate '0: SQUARE').
  • the first coding unit 1300 may be split to determine a second coding unit 1302 of a lower depth, a third coding unit 1304, and the like. If the size of the first coding unit 1300 in the square form is 2Nx2N, the second coding unit 1302 determined by dividing the width and height of the first coding unit 1300 by 1/2 times may have a size of NxN. have.
  • the third coding unit 1304 determined by dividing the width and height of the second coding unit 1302 into 1/2 size may have a size of N / 2xN / 2.
  • the width and height of the third coding unit 1304 are 1/4 times the first coding unit 1300.
  • the depth of the first coding unit 1300 is D
  • the depth of the second coding unit 1302 that is 1/2 times the width and height of the first coding unit 1300 may be D + 1
  • the first coding unit A depth of the third coding unit 1304 that is 1/4 times the width and height of (1300) may be D + 2.
  • block shape information indicating a non-square shape (eg, block shape information is' 1: NS_VER 'indicating that the height is non-square longer than width or' 2: NS_HOR indicating that the width is non-square longer than height)
  • the video decoding apparatus 100 divides the first coding unit 1310 or 1320 in a non-square form, and thus the second coding unit 1312 or 1322 of a lower depth and a third coding unit. (1314 or 1324).
  • the image decoding apparatus 100 may determine a second coding unit (eg, 1302, 1312, 1322, etc.) by dividing at least one of the width and height of the first coding unit 1310 of Nx2N size. That is, the image decoding apparatus 100 may divide the first coding unit 1310 in the horizontal direction to determine the second coding unit 1302 of NxN size or the second coding unit 1322 of NxN / 2 size, The second coding unit 1312 having an N / 2 ⁇ N size may be determined by dividing it in a horizontal direction and a vertical direction.
  • a second coding unit eg, 1302, 1312, 1322, etc.
  • the image decoding apparatus 100 determines a second coding unit (eg, 1302, 1312, 1322, etc.) by dividing at least one of a width and a height of the first coding unit 1320 having a size of 2NxN. It might be. That is, the image decoding apparatus 100 may determine the second coding unit 1302 having an NxN size or a second coding unit 1312 having an N / 2xN size by dividing the first coding unit 1320 in a vertical direction, The second coding unit 1322 having an NxN / 2 size may be determined by dividing it in a horizontal direction and a vertical direction.
  • a second coding unit eg, 1302, 1312, 1322, etc.
  • the image decoding apparatus 100 determines a third coding unit (eg, 1304, 1314, 1324, etc.) by dividing at least one of a width and a height of the NxN-sized second coding unit 1302. It might be. That is, the image decoding apparatus 100 divides the second coding unit 1302 into vertical and horizontal directions to determine a third coding unit 1304 having an N / 2xN / 2 size, or an N / 4xN / 2 sized coding unit 1304. The third coding unit 1314 may be determined, or the third coding unit 1324 having an N / 2xN / 4 size may be determined.
  • a third coding unit eg, 1304, 1314, 1324, etc.
  • the image decoding apparatus 100 divides at least one of a width and a height of the second coding unit 1312 having an N / 2xN size, and a third coding unit (for example, 1304, 1314, 1324, etc.) You can also decide That is, the image decoding apparatus 100 divides the second coding unit 1312 in the horizontal direction, thereby forming a third coding unit 1304 having an N / 2xN / 2 size or a third coding unit 1324 having an N / 2xN / 4 size. ) Or split in the vertical direction and the horizontal direction to determine the third coding unit 1314 having an N / 4xN / 2 size.
  • the image decoding apparatus 100 divides at least one of a width and a height of the second coding unit 1322 having an NxN / 2 size, and thus a third coding unit (eg, 1304, 1314, 1324, etc.) You can also decide That is, the image decoding apparatus 100 divides the second coding unit 1322 in the vertical direction, and thus a third coding unit 1304 having an N / 2xN / 2 size or a third coding unit having an N / 4xN / 2 size 1314 ) Or split in a vertical direction and a horizontal direction to determine a third coding unit 1324 having an N / 2 ⁇ N / 4 size.
  • a third coding unit eg, 1304, 1314, 1324, etc.
  • the image decoding apparatus 100 may divide a square-type coding unit (eg, 1300, 1302, 1304) in a horizontal direction or a vertical direction.
  • the first coding unit 1320 having a size of 2Nx2N may be determined by dividing the first coding unit 1300 having a size of 2Nx2N in the vertical direction, or a first coding unit 1310 having a size of 2NxN by splitting in the horizontal direction. You can.
  • the depth of the coding unit determined by dividing the first coding unit 1300 having a size of 2Nx2N in the horizontal direction or the vertical direction is the first coding
  • the depth of the unit 1300 may be the same.
  • the width and height of the third coding unit 1314 or 1324 may correspond to 1/4 times the first coding unit 1310 or 1320.
  • the depth of the second coding unit 1312 or 1322 that is 1/2 times the width and height of the first coding unit 1310 or 1320 may be D + 1.
  • the depth of the third coding unit 1314 or 1324 that is 1/4 times the width and height of the first coding unit 1310 or 1320 may be D + 2.
  • FIG. 14 is a diagram illustrating a depth (part index, hereinafter, PID) for classification of a coding unit and a depth that may be determined according to the type and size of coding units according to an embodiment.
  • PID part index
  • the image decoding apparatus 100 may determine a second coding unit of various types by dividing the first coding unit 1400 in a square shape. Referring to FIG. 14, the image decoding apparatus 100 divides the first coding unit 1400 into at least one of a vertical direction and a horizontal direction according to the split mode mode information, and then the second coding units 1402a, 1402b, and 1404a , 1404b, 1406a, 1406b, 1406c, 1406d). That is, the image decoding apparatus 100 may determine the second coding units 1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, and 1406d based on the split mode mode information for the first coding unit 1400. .
  • the second coding units 1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, and 1406d determined according to the split mode mode information for the first coding unit 1400 having a square shape have a long side length Based on the depth can be determined. For example, since the length of one side of the first coding unit 1400 in the square shape and the length of the long side of the second coding units 1402a, 1402b, 1404a, and 1404b in the non-square shape are the same, the first coding unit 1400 ) And the depths of the non-square-type second coding units 1402a, 1402b, 1404a, and 1404b may be regarded as D.
  • the image decoding apparatus 100 divides the first coding unit 1400 into four square-shaped second coding units 1406a, 1406b, 1406c, and 1406d based on the split mode mode information
  • the square-shaped Since the length of one side of the second coding units 1406a, 1406b, 1406c, and 1406d is 1/2 times the length of one side of the first coding unit 1400, the length of one side of the second coding unit 1406a, 1406b, 1406c, 1406d
  • the depth may be a depth of D + 1 that is one depth lower than D that is the depth of the first coding unit 1400.
  • the image decoding apparatus 100 divides the first coding unit 1410 in a form having a height greater than a width in a horizontal direction according to the split mode mode information, thereby providing a plurality of second coding units 1412a, 1412b, and 1414a. , 1414b, 1414c). According to an embodiment of the present disclosure, the image decoding apparatus 100 divides the first coding unit 1420 having a width longer than a height in a vertical direction according to the split mode mode information, thereby providing a plurality of second coding units 1422a, 1422b, and 1424a. , 1424b, 1424c).
  • Second coding units 1412a, 1412b, 1414a, 1414b, 1414c. 1422a, 1422b, 1424a, 1424b determined according to split mode mode information for the first coding unit 1410 or 1420 in a non-square form according to an embodiment , 1424c) may determine the depth based on the length of the long side.
  • the length of one side of the second coding units 1412a and 1412b in the square shape is 1/2 times the length of one side of the first coding unit 1410 in a non-square shape having a height higher than the width
  • the depth of the second coding units 1412a and 1412b of is D + 1, which is a depth lower than a depth D of the first coding unit 1410 in the non-square form.
  • the video decoding apparatus 100 may divide the first coding unit 1410 in the non-square shape into odd numbered second coding units 1414a, 1414b, and 1414c based on the split mode mode information.
  • the odd number of second coding units 1414a, 1414b, and 1414c may include non-square second coding units 1414a and 1414c and square second coding units 1414b.
  • the length of the long side of the second coding units 1414a and 1414c in the non-square shape and the length of one side of the second coding unit 1414b in the square shape are 1/2 of the length of one side of the first coding unit 1410.
  • the depth of the second coding units 1414a, 1414b, and 1414c may be a depth of D + 1 that is one depth lower than D, which is the depth of the first coding unit 1410.
  • the image decoding apparatus 100 encodes the first coding unit 1420 having a non-square shape longer than a height in a manner corresponding to the above method for determining the depth of coding units related to the first coding unit 1410. You can determine the depth of the units.
  • the image decoding apparatus 100 determines an index (PID) for distinguishing the divided coding units, and when odd-numbered coding units are not the same size, the size ratio between the coding units is determined. Based on the index can be determined.
  • PID index
  • the coding unit 1414b located in the center has the same width as other coding units 1414a, 1414c, but different heights. It may be twice the height of the fields 1414a, 1414c. That is, in this case, the coding unit 1414b positioned at the center may include two of other coding units 1414a and 1414c.
  • the apparatus 100 for decoding an image may determine whether odd numbered coding units are not the same size based on whether there is a discontinuity in an index for distinguishing between the split coding units.
  • the image decoding apparatus 100 may determine whether it is divided into a specific partitioning type based on an index value for distinguishing a plurality of coding units determined by being split from the current coding unit. Referring to FIG. 14, the image decoding apparatus 100 determines an even number of coding units 1412a and 1412b by dividing a rectangular first coding unit 1410 having a height greater than a width or an odd number of coding units 1414a and 1414b. , 1414c). The image decoding apparatus 100 may use an index (PID) indicating each coding unit to distinguish each of the plurality of coding units. According to an embodiment, the PID may be obtained from a sample at a predetermined position of each coding unit (eg, an upper left sample).
  • the image decoding apparatus 100 may determine an encoding unit at a predetermined location among the determined coding units, which are divided by using an index for classification of coding units.
  • the image decoding apparatus 100 may include a first coding unit 1410. Can be divided into three coding units 1414a, 1414b, and 1414c.
  • the video decoding apparatus 100 may allocate an index for each of the three coding units 1414a, 1414b, and 1414c.
  • the image decoding apparatus 100 may compare an index for each coding unit to determine a middle coding unit among coding units divided into odd numbers.
  • the image decoding apparatus 100 encodes a coding unit 1414b having an index corresponding to a middle value among indexes based on an index of coding units, and encoding of a center position among coding units determined by splitting the first coding unit 1410. It can be determined as a unit.
  • the image decoding apparatus 100 may determine an index based on a size ratio between coding units when the coding units are not the same size as each other in determining an index for dividing the divided coding units. . Referring to FIG.
  • the coding unit 1414b generated by dividing the first coding unit 1410 is of coding units 1414a and 1414c having the same width but different heights from other coding units 1414a and 1414c. It can be twice the height.
  • the index (PID) of the coding unit 1414b located in the middle is 1, the coding unit 1414c positioned in the next order may be 3 with an index of 2.
  • the image decoding apparatus 100 may determine that the image decoding apparatus 100 is divided into a plurality of coding units including coding units having different sizes from other coding units.
  • the image decoding apparatus 100 When the split mode mode information is divided into odd number of coding units, the image decoding apparatus 100 has a different coding unit from a coding unit having a predetermined position (for example, a middle coding unit) among odd coding units having different sizes. In the form, the current coding unit can be divided. In this case, the image decoding apparatus 100 may determine a coding unit having a different size using an index (PID) for the coding unit.
  • PID index
  • the size or position of a coding unit at a predetermined position to be determined is specific to explain an embodiment, and should not be interpreted as being limited thereto, and various indexes and positions and sizes of coding units can be used. Should be interpreted.
  • the image decoding apparatus 100 may use a predetermined data unit in which recursive division of the coding unit starts.
  • FIG. 15 illustrates that a plurality of coding units are determined according to a plurality of predetermined data units included in a picture according to an embodiment.
  • a predetermined data unit may be defined as a data unit in which the coding unit starts to be recursively divided using split mode mode information. That is, it may correspond to a coding unit of a highest depth used in a process in which a plurality of coding units for splitting a current picture are determined.
  • a predetermined data unit will be referred to as a reference data unit.
  • the reference data unit may indicate a predetermined size and shape.
  • the reference coding unit may include samples of MxN.
  • M and N may be the same as each other, or may be integers represented by a power of two. That is, the reference data unit may have a square or non-square shape, and may be divided into an integer number of coding units.
  • the image decoding apparatus 100 may divide the current picture into a plurality of reference data units. According to an embodiment, the image decoding apparatus 100 may divide a plurality of reference data units for dividing a current picture using split mode mode information for each reference data unit. The division process of the reference data unit may correspond to a division process using a quad-tree structure.
  • the image decoding apparatus 100 may determine in advance a minimum size that a reference data unit included in the current picture can have. Accordingly, the image decoding apparatus 100 may determine the reference data units of various sizes having a size equal to or greater than the minimum size, and may determine at least one coding unit using split mode mode information based on the determined reference data units. .
  • the image decoding apparatus 100 may use a square type reference coding unit 1500 or may use a non-square type reference coding unit 1502.
  • the shape and size of the reference coding unit may include various data units (eg, sequences, pictures, slices, slice segments (eg, sequences) that may include at least one reference coding unit. slice segment), tile, tile group, maximum coding unit, and the like.
  • the reception unit (not shown) of the image decoding apparatus 100 may acquire at least one of information on a type of a reference coding unit and information on a size of a reference coding unit from a bitstream for each of the various data units. have.
  • the process of determining at least one coding unit included in the square type reference coding unit 1500 has been described through the process of dividing the current coding unit 300 of FIG. 3, and the non-square type reference coding unit 1502
  • the process of determining at least one coding unit included in the above is described through the process of dividing the current coding unit 400 or 450 of FIG. 4, so a detailed description thereof will be omitted.
  • the image decoding apparatus 100 may index the size and shape of the reference coding unit in order to determine the size and shape of the reference coding unit according to some predetermined data units based on predetermined conditions Can be used. That is, the receiving unit (not shown) is a predetermined condition (for example, less than or equal to a slice) among the various data units (eg, sequence, picture, slice, slice segment, tile, tile group, maximum coding unit, etc.) from the bitstream. As a data unit that satisfies a data unit having a size), only slices, slice segments, tiles, tile groups, maximum coding units, etc., can obtain only an index for identifying the size and shape of a reference coding unit.
  • predetermined condition for example, less than or equal to a slice
  • the various data units eg, sequence, picture, slice, slice segment, tile, tile group, maximum coding unit, etc.
  • the image decoding apparatus 100 may determine the size and shape of a reference data unit for each data unit that satisfies the predetermined condition by using an index.
  • an index can be obtained and used. In this case, at least one of the size and shape of the reference coding unit corresponding to the index indicating the size and shape of the reference coding unit may be predetermined.
  • the image decoding apparatus 100 selects at least one of the size and shape of the predetermined reference coding unit according to the index, thereby selecting at least one of the size and shape of the reference coding unit included in the data unit that is the basis of index acquisition. Can decide.
  • the image decoding apparatus 100 may use at least one reference coding unit included in one largest coding unit. That is, the largest coding unit for splitting an image may include at least one reference coding unit, and a coding unit may be determined through a recursive splitting process of each reference coding unit. According to an embodiment, at least one of the width and height of the largest coding unit may correspond to an integer multiple of the width and height of the reference coding unit. According to an embodiment, the size of the reference coding unit may be a size obtained by dividing the largest coding unit n times according to a quad tree structure.
  • the image decoding apparatus 100 may determine the reference coding unit by dividing the largest coding unit n times according to a quad tree structure, and the reference coding unit according to various embodiments at least among block type information and split type mode information. It can be divided based on one.
  • FIG. 16 illustrates a processing block serving as a reference for determining a determination order of a reference coding unit included in the picture 1600 according to an embodiment.
  • the image decoding apparatus 100 may determine at least one processing block for dividing a picture.
  • the processing block is a data unit including at least one reference coding unit that splits an image, and at least one reference coding unit included in the processing block may be determined in a specific order. That is, the determination order of at least one reference coding unit determined in each processing block may correspond to one of various types of order in which the reference coding units can be determined, and the reference coding unit determination order determined in each processing block Can be different for each processing block.
  • the order of determination of the reference coding unit determined for each processing block is a raster scan, a Z-scan, an N-scan, an up-right diagonal scan, and a horizontal scan ( It may be one of various sequences such as a horizontal scan and a vertical scan, but the order that can be determined should not be interpreted to be limited to the scan sequences.
  • the image decoding apparatus 100 may obtain information about the size of a processing block to determine the size of at least one processing block included in the image.
  • the image decoding apparatus 100 may obtain information about the size of a processing block from a bitstream and determine the size of at least one processing block included in the image.
  • the size of the processing block may be a predetermined size of a data unit indicated by information about the size of the processing block.
  • the reception unit (not shown) of the image decoding apparatus 100 may acquire information about the size of a processing block from a bitstream for each specific data unit.
  • information on the size of a processing block may be obtained from a bitstream in units of data such as an image, a sequence, a picture, a slice, a slice segment, a tile, and a tile group. That is, the receiver (not shown) may obtain information on the size of a processing block from a bitstream for each of the data units, and the image decoding apparatus 100 may divide a picture using information on the size of the obtained processing block.
  • the size of at least one processing block may be determined, and the size of the processing block may be an integer multiple of a reference coding unit.
  • the image decoding apparatus 100 may determine the sizes of the processing blocks 1602 and 1612 included in the picture 1600. For example, the image decoding apparatus 100 may determine the size of the processing block based on information about the size of the processing block obtained from the bitstream. Referring to FIG. 16, the image decoding apparatus 100 sets the horizontal size of the processing blocks 1602 and 1612 to four times the horizontal size of the reference coding unit and the vertical size to four times the vertical size of the reference coding unit, according to an embodiment. Can decide. The image decoding apparatus 100 may determine an order in which at least one reference coding unit is determined in at least one processing block.
  • the image decoding apparatus 100 may determine each of the processing blocks 1602 and 1612 included in the picture 1600 based on the size of the processing block, and include the processing blocks 1602 and 1612
  • the determination order of the at least one reference coding unit may be determined.
  • the determination of the reference coding unit may include determining the size of the reference coding unit.
  • the image decoding apparatus 100 may obtain information on a decision order of at least one reference coding unit included in at least one processing block from a bitstream, and based on the obtained decision order information Accordingly, an order in which at least one reference coding unit is determined may be determined.
  • the information about the decision order may be defined in the order or direction in which the reference coding units are determined in the processing block. That is, the order in which the reference coding units are determined may be independently determined for each processing block.
  • the image decoding apparatus 100 may obtain information on a determination order of a reference coding unit for each specific data unit from a bitstream.
  • the receiving unit (not shown) may obtain information on the determination order of the reference coding unit from the bitstream for each data unit such as an image, a sequence, a picture, a slice, a slice segment, a tile, a tile group, and a processing block. have. Since the information on the decision order of the reference coding unit indicates the reference coding unit decision order in the processing block, information on the decision order can be obtained for each specific data unit including an integer number of processing blocks.
  • the video decoding apparatus 100 may determine at least one reference coding unit based on the order determined according to an embodiment.
  • the receiving unit may obtain information on a reference coding unit determination order as information related to processing blocks 1602 and 1612 from a bitstream, and the image decoding apparatus 100 may process the processing block An order of determining at least one reference coding unit included in (1602, 1612) may be determined, and at least one reference coding unit included in the picture 1600 may be determined according to a decision order of the coding unit. Referring to FIG. 16, the image decoding apparatus 100 may determine a determination order 1604 and 1614 of at least one reference coding unit associated with each processing block 1602 and 1612.
  • the reference coding unit decision order associated with each processing block 1602 and 1612 may be different for each processing block.
  • the reference coding unit determination order 1604 associated with the processing block 1602 is a raster scan order
  • the reference coding units included in the processing block 1602 may be determined according to the raster scan order.
  • the reference coding unit determination order 1614 related to another processing block 1612 is in the reverse order of the raster scan order
  • the reference coding unit included in the processing block 1612 may be determined according to the reverse order of the raster scan order.
  • the image decoding apparatus 100 may decode the determined at least one reference coding unit, according to an embodiment.
  • the image decoding apparatus 100 may decode the image based on the reference coding unit determined through the above-described embodiment.
  • the method of decoding the reference coding unit may include various methods of decoding the image.
  • the image decoding apparatus 100 may obtain and use block shape information indicating a shape of a current coding unit or split shape mode information indicating a method of splitting a current coding unit from a bitstream.
  • the split mode mode information may be included in a bitstream associated with various data units.
  • the image decoding apparatus 100 may include a sequence parameter set, a picture parameter set, a video parameter set, a slice header, and a slice segment header. Segmentation mode information included in a segment header, a tile header, and a tile group header may be used.
  • the image decoding apparatus 100 may obtain and use a syntax element corresponding to block type information or split mode mode information from a bit stream for each largest coding unit, a reference coding unit, and a processing block from a bit stream.
  • the image decoding apparatus 100 may determine a division rule of an image.
  • the segmentation rule may be predetermined between the video decoding apparatus 100 and the video encoding apparatus 150.
  • the image decoding apparatus 100 may determine a division rule of the image based on the information obtained from the bitstream.
  • the video decoding apparatus 100 includes a sequence parameter set, a picture parameter set, a video parameter set, a slice header, and a slice segment header.
  • a partitioning rule may be determined based on information obtained from at least one of a tile header and a tile group header.
  • the image decoding apparatus 100 may differently determine a division rule according to a frame, a slice, a temporal layer, a maximum coding unit, or coding units.
  • the video decoding apparatus 100 may determine a division rule based on the block type of the coding unit.
  • the block shape may include the size, shape, ratio of width and height, and direction of the coding unit.
  • the video encoding apparatus 150 and the video decoding apparatus 100 may determine in advance to determine a division rule based on a block type of a coding unit. However, it is not limited thereto.
  • the video decoding apparatus 100 may determine a division rule based on information obtained from the bitstream received from the video encoding apparatus 150.
  • the shape of the coding unit may include a square (square) and a non-square (non-square).
  • the image decoding apparatus 100 may determine the shape of the coding unit as a square. Also, when the widths and heights of the coding units are not the same, the image decoding apparatus 100 may determine the shape of the coding unit to be non-square.
  • the size of the coding unit is 4x4, 8x4, 4x8, 8x8, 16x4, 16x8,. . . , 256x256.
  • the size of the coding unit may be classified according to the length of the long side, the length or the width of the short side of the coding unit.
  • the image decoding apparatus 100 may apply the same division rule to coding units classified into the same group. For example, the image decoding apparatus 100 may classify coding units having the same long side length into the same size. Also, the apparatus 100 for decoding an image may apply the same division rule to coding units having the same long side.
  • the ratio of the width and height of the coding unit may include 1: 2, 2: 1, 1: 4, 4: 1, 1: 8, 8: 1, 1:16, or 16: 1.
  • the direction of the coding unit may include a horizontal direction and a vertical direction.
  • the horizontal direction may indicate a case where the length of the width of the coding unit is longer than the length of the height.
  • the vertical direction may represent a case in which the length of the width of the coding unit is shorter than the length of the height.
  • the video decoding apparatus 100 may adaptively determine a division rule based on the size of the coding unit.
  • the image decoding apparatus 100 may differently determine an allowable split mode mode based on the size of the coding unit. For example, the video decoding apparatus 100 may determine whether division is allowed based on the size of the coding unit.
  • the image decoding apparatus 100 may determine a split direction according to the size of the coding unit.
  • the image decoding apparatus 100 may determine an allowable division type according to the size of the coding unit.
  • the determination of the division rule based on the size of the coding unit may be a predetermined division rule between the image encoding apparatus 150 and the image decoding apparatus 100. Also, the video decoding apparatus 100 may determine a division rule based on the information obtained from the bitstream.
  • the video decoding apparatus 100 may adaptively determine a division rule based on the location of the coding unit.
  • the video decoding apparatus 100 may adaptively determine a division rule based on a position occupied by the coding unit in the image.
  • the apparatus 100 for decoding an image may determine a splitting rule so that coding units generated by different splitting paths do not have the same block shape.
  • the present invention is not limited thereto, and coding units generated with different split paths may have the same block shape. Coding units generated with different split paths may have different decoding processing sequences. Since the decoding processing procedure has been described with reference to FIG. 12, detailed description is omitted.
  • the decoder 120 of the image decoding apparatus 100 of FIG. 1A and the encoding unit 155 of the image encoding apparatus 150 of FIG. 2A, or the image decoding illustrated in FIG. 1C It may be performed by the processor 125 of the apparatus 100 and the processor 170 of the image encoding apparatus 150 shown in FIG. 2C.
  • the intra prediction process according to various embodiments may be performed by the intra prediction unit 6400 of the decoding unit 6000 of FIG. 1B and the intra prediction unit 7200 of the encoding unit 7000 of FIG. 2B.
  • 17 is a diagram illustrating intra prediction modes according to an embodiment.
  • Intra prediction modes may include a non-angular intra prediction mode having no directionality and an angular intra prediction mode having directionality, such as a planar mode and a DC mode.
  • the non-directional mode may include a plane mode and a bi-linear mode in addition to the planar mode and DC mode.
  • the directional intra prediction mode may include intra prediction modes indicating a specific direction in a range of -135 degrees to -180 degrees and 45 degrees to 180 degrees based on the x-axis. .
  • the angle of the prediction direction in the range of 0 to 180 degrees indicating the direction on the first and second quadrants is represented by +, and the prediction of the range of -180 to 0 degrees indicating the direction on the third and fourth quadrants
  • the angle of the direction can be expressed as?.
  • the predetermined angle? A (a is a positive real number) indicating the direction on the third and fourth quadrants points in the same direction as (360-a) deg.
  • the direction of -135 degrees is the same direction as the 225 degrees direction
  • the direction of -180 degrees is the same direction as the direction of 180 degrees.
  • the prediction direction indicated by the arrow direction shown in FIG. 17 indicates the direction of surrounding pixels used for intra prediction based on the current pixel being intra predicted in the current block.
  • the numbers shown in FIG. 17 illustrate the intra prediction mode index according to the intra prediction direction.
  • the intra prediction mode index may be referred to as predModeIntra.
  • the predModeIntra may be set to 0 for a planar mode that is a non-directional intra prediction mode, and the predModeIntra may be set to 1 for a DC mode.
  • the directional intra prediction modes are 65 intra prediction modes divided into 65 between -135 degrees to -180 degrees and 45 degrees to 180 degrees based on 45 and -135 degrees directions. It may include.
  • the 65 directional intra prediction modes may sequentially have a value of predModeIntra from -135 degrees to 2 to 66 clockwise. For example, in FIG.
  • the intra prediction mode in which predModeIntra is 2 is an intra prediction mode pointing in the lower left diagonal direction in the direction of -135 degrees
  • the intra prediction mode in which predModeIntra is 18 is -180 degrees (180 degrees)
  • the intra prediction mode indicating the horizontal direction of the direction, the intra prediction mode with predModeIntra of 34 (mode 34) is the intra prediction mode pointing diagonally in the upper left 135 degree direction, and the intra prediction mode with predModeIntra of 50 (mode 50) is 90 degrees
  • the intra prediction mode indicating the vertical direction of the direction and the intra prediction mode having predModeIntra of 66 may refer to the intra prediction mode indicating the diagonal direction of the upper right 45 degrees.
  • PLANAR_IDX may indicate a Planar mode in which predModeIntra is 0
  • DC_IDX may indicate a DC mode in which predModeIntra is 1.
  • VER_IDX may indicate a vertical mode with predModeIntra of 50
  • HOR_IDX may indicate a horizontal mode with predModeIntra of 18.
  • DIA_IDX refers to the upper left diagonal direction mode in the 135 degree direction with predModeIntra 34
  • HDIA_IDX refers to the lower left diagonal direction mode in the -135 degree direction with predModeIntra 2
  • VDIA_IDX refers to the upper right diagonal direction mode in the 45 degree direction with predModeIntra 66. You can.
  • preModeIntra of the intra prediction modes is not limited to that shown in FIG. 17 and can be changed.
  • the number of directional intra prediction modes is not limited to 65 and may be changed.
  • directional intra prediction modes pointing between 0 and 45 degrees, such as the arrow direction indicated by the dotted line in FIG. 17, may be additionally set clockwise from the 45 degree direction, and additionally set directional intra prediction mode Can have a predModeIntra of 67 or more.
  • the directional intra prediction modes pointing between -90 degrees and -135 degrees may be additionally set counterclockwise from the 45 degree direction, and the additionally set directional intra prediction modes are -1 or less.
  • predModeIntra of the directional intra prediction modes may be sequentially set in a clockwise or counterclockwise direction, and the value of the predModeIntra set may also be changed.
  • the present invention is not limited thereto, and the directional intra prediction modes may include a predetermined number of intra prediction modes indicating a specific direction within a range of arbitrary A deg (A is real) to B deg (B is real).
  • FIG. 18 is a flowchart of an image decoding method according to various embodiments.
  • the image decoding apparatus 100 may obtain intra prediction mode information of a current chroma block from a bitstream.
  • the intra prediction mode information may indicate one of the intra prediction mode candidates included in the intra prediction mode list of the current chroma block, which is determined by a method described later.
  • the image decoding apparatus 100 may determine an intra prediction mode list of the current chroma block based on the shape of the current chroma block.
  • the intra prediction mode list may be composed of a predetermined number of intra prediction mode candidates.
  • the intra prediction mode list may be composed of five or fewer intra prediction mode candidates.
  • Intra-prediction mode candidates included in the intra-prediction mode list may be arranged in the order in which they are likely to be used for intra-prediction of the current chroma block, or in the order in which the selected frequencies are high.
  • the intra prediction mode candidates may be selected from the intra prediction modes shown in FIG. 17. In another embodiment, the intra prediction mode candidates may be selected from a set of intra prediction modes set for a current chroma block.
  • the intra prediction mode list may be configured to always include important modes with high frequency of use.
  • the intra prediction mode list may include at least DC mode, planar mode, horizontal mode, and vertical mode as intra prediction mode candidates.
  • the intra prediction mode list may include at least one diagonal intra prediction mode.
  • the diagonal intra prediction mode may be selected from -135 degree direction mode (HDIA_IDX, mode 2), 135 degree direction mode (DIA_IDX, mode 34), and 45 degree direction mode (VDIA_IDX, mode 66).
  • the frequency with which a specific intra prediction mode is used for intra prediction of the current chroma block may vary depending on the shape of the current chroma block. For example, in the case of a non-square block having a width larger than a height, that is, a horizontally elongated shape, it may be more suitable to use an intra prediction mode closer to the horizontal direction than an intra prediction mode closer to the vertical direction. In contrast, in the case of a non-square block having a width smaller than a height, that is, a vertically elongated shape, it may be more suitable to use an intra prediction mode closer to the vertical direction than an intra prediction mode closer to the horizontal direction.
  • the image decoding apparatus 100 may determine the intra prediction mode list of the current chroma block based on the width and height of the current chroma block.
  • the image decoding apparatus 100 may determine an intra prediction mode list of the current chroma block based on a result of comparing the width and height of the current chroma block. In one embodiment, the image decoding apparatus 100 may determine the order of the intra prediction mode candidates included in the intra prediction mode list based on a result of comparing the width and height of the current chroma block.
  • the image decoding apparatus 100 may determine the intra prediction mode list of the current chroma block based on whether the current chroma block is square. In one embodiment, when the current chroma block is non-square, the image decoding apparatus 100 may determine a directional intra prediction mode matching an edge of the current chroma block as an intra prediction mode candidate.
  • the intra prediction mode used for intra prediction of the current chroma block is the same as the intra prediction mode of the luma block corresponding to the current chroma block. Or similar. In consideration of these characteristics, the image decoding apparatus 100 may determine the intra prediction mode list of the current chroma block based on the intra prediction mode of the luma block corresponding to the current chroma block.
  • the image decoding apparatus 100 determines the intra prediction mode of the luma block corresponding to the current chroma block, and includes the intra prediction mode of the luma block in the intra prediction mode list of the current chroma block It can be determined as an intra prediction mode candidate.
  • the video decoding apparatus 100 may determine a second intra prediction mode candidate included in the intra prediction mode list based on the first intra prediction mode.
  • the image decoding apparatus 100 may determine the second intra prediction mode candidate according to whether the first intra prediction mode is a directional mode or a non-directional mode.
  • the intra prediction mode used for intra prediction of the current chroma block is likely to be the same or similar to the intra prediction mode of the neighboring blocks.
  • the image decoding apparatus 100 may determine the intra prediction mode list of the current chroma block based on the intra prediction mode of the block adjacent to the current chroma block.
  • the image decoding apparatus 100 may determine one of the intra prediction mode candidates included in the intra prediction mode list of the current chroma block as the intra prediction mode of the current chroma block based on the acquired intra prediction mode information. .
  • the apparatus 100 for decoding an image may perform intra prediction on the current chroma block based on the determined intra prediction mode.
  • Steps 1910 to 1960 of FIG. 19 may correspond to steps 1830 of FIG. 18.
  • the image decoding apparatus 100 may compare the width and height of the current chroma block. As a result of comparison, when the width of the current chroma block is greater than the height, the image decoding apparatus 100 may perform step 1920. In contrast, when the width of the current chroma block is less than or equal to the height, the image decoding apparatus 100 may perform step 1930.
  • the image decoding apparatus 100 may determine the horizontal mode as an intra prediction mode candidate having a higher priority than the vertical mode. On the other hand, if the width of the current chroma block is less than or equal to the height, in step 1930, the image decoding apparatus 100 may determine the vertical mode as an intra prediction mode candidate having a higher priority than the horizontal mode.
  • the image decoding apparatus 100 may determine the intra prediction mode pointing to the lower left direction as an intra prediction mode candidate.
  • the intra prediction mode pointing to the lower left direction may be a diagonal mode (HDIA_IDX, mode 2) in the direction of -135 degrees.
  • the intra prediction mode pointing to the lower left direction may be one of directional intra prediction modes pointing between -135 degrees and -180 degrees.
  • the image decoding apparatus 100 may determine the intra prediction mode pointing to the upper right direction as an intra prediction mode candidate.
  • the intra prediction mode pointing to the upper right direction may be a diagonal mode (VDIA_IDX, mode 66) in a 45 degree direction.
  • the intra prediction mode pointing to the upper right direction may be one of directional intra prediction modes pointing between 45 degrees and 90 degrees.
  • Steps 1920 and 1940 are sequentially performed, and steps 1930 and 1950 are sequentially performed, but are not limited thereto. Steps 1940 and 1950 may be performed before steps 1920 and 1930, or some of 1920 to 1950 steps may be omitted entirely.
  • the width of the current chroma block is equal to the height
  • the case where the width is less than the height is exemplarily illustrated in FIG. 19, but is not necessarily limited thereto, and the current chroma block has the same width as the height. It can behave as if the width is greater than the height.
  • the horizontal mode may be determined as an intra prediction mode candidate having a higher priority than the vertical mode, or the intra prediction mode pointing to the lower left direction may be determined as an intra prediction mode candidate. have.
  • FIG. 20 is a flowchart of a method of determining an intra prediction mode list of a current chroma block based on the shape of the current chroma block, according to various embodiments. Each operation of FIG. 20 may be performed by the image decoding apparatus 100 illustrated in FIG. 1A or the image decoding apparatus 100 illustrated in FIG. 1C or the processor 125 of the image decoding apparatus 100. Steps 20 to 2030 of FIG. 20 may correspond to steps 1830 of FIG. 18.
  • the image decoding apparatus 100 may determine whether the current chroma block is square. As a result of comparison, when the current chroma block is square, the image decoding apparatus 100 may perform step 2020. Alternatively, if the current chroma block is non-square, the image decoding apparatus 100 may perform step 2030.
  • the image decoding apparatus 100 may determine a diagonal mode in the 45-degree direction or a diagonal mode in the -135-degree direction, that is, mode 2 or mode 66 as an intra prediction mode candidate.
  • the image decoding apparatus 100 may determine a directional mode matching an edge of the current chroma block as an intra prediction mode candidate. For example, the image decoding apparatus 100 may indicate an intra prediction mode indicating a direction from the lower left corner to the upper right corner of the current chroma block or an intra prediction mode indicating a direction from the upper right corner to the lower left corner of the current chroma block. Can be determined as an intra prediction mode candidate. In one embodiment, the apparatus 100 for decoding an image may replace the diagonal mode of 45 degrees or -135 degrees included in the intra prediction mode list with a directional mode matching the edge of the current chroma block.
  • the closest directional mode may be determined as an intra prediction mode candidate.
  • the image decoding apparatus 100 may include an intra prediction mode indicating a direction closest to a direction toward the upper right corner from the lower left corner of the current chroma block or a direction toward the lower left corner from the upper right corner of the current chroma block.
  • An intra prediction mode indicating the closest direction may be determined as an intra prediction mode candidate.
  • the directional intra prediction mode matching the edge of the current chroma block may be preset according to the ratio of the width and height of the current chroma block.
  • the directional intra prediction mode matching the edge of the current chroma block according to the ratio of the width and height of the current chroma block may be preset as shown in Table 1.
  • predModeIntra indicates an intra prediction mode index.
  • Width Height predModeIntra 1:16 52 1: 8 54 1: 4 56 1: 2 60 1: 1 66 2: 1 72 4: 1 76 8: 1 78 16: 1 80
  • the directional intra prediction mode matching the edge of the current chroma block according to the ratio of the width and height of the current chroma block may be preset as shown in Table 2.
  • predModeIntra indicates an intra prediction mode index.
  • Width Height predModeIntra 1:16 -14 1: 8 -12 1: 4 -10 1: 2 -6 1: 1 66 2: 1 72 4: 1 76 8: 1 78 16: 1 80
  • a list may be configured by selecting from Table 1 and Table 2 according to availability of a reference sample of a block.
  • 21 is a diagram for explaining intra prediction mode candidates determined based on a shape of a current chroma block, according to an embodiment.
  • the intra prediction mode list includes horizontal mode 2101, vertical mode 2102, and diagonal mode 2103 in the direction of -135 degrees intra prediction. It can be included as a mode candidate.
  • intra prediction mode candidates may be arranged in the order of horizontal mode, vertical mode, and diagonal mode.
  • the intra prediction mode list may further include a non-directional mode or a directional mode other than the above-described mode.
  • the diagonal mode 2103 in the -135 degree direction when the width of the block is greater than the height, the diagonal mode 2103 in the -135 degree direction does not exactly match the edge of the block, so the upper right side of the block instead of the diagonal mode 2103 in the -135 degree direction
  • the directional mode 2104 indicating the direction from the edge toward the bottom left corner may be determined as an intra prediction mode candidate.
  • the closest directional mode may be determined as an intra prediction mode candidate.
  • the directional mode from the upper right corner of the block toward the lower left corner may be preset according to the ratio of the width and height of the current chroma block.
  • the intra prediction mode list may include a vertical mode 2215, a horizontal mode 2152, and a diagonal mode 2153 in a 45 degree direction as intra prediction mode candidates.
  • intra prediction mode candidates may be arranged in the order of vertical mode, horizontal mode, and diagonal mode.
  • the intra prediction mode list may further include a non-directional mode or a directional mode other than the above-described mode.
  • the diagonal mode 2153 in the 45-degree direction when the width of the block is greater than the height, the diagonal mode 2153 in the 45-degree direction does not exactly match the edge of the block, so from the lower left corner of the block instead of the diagonal mode 2153 in the 45-degree direction
  • the directional mode 2154 pointing in the direction toward the upper right corner may be determined as an intra prediction mode candidate.
  • the closest directional mode may be determined as an intra prediction mode candidate.
  • the directional mode from the lower left corner of the block to the upper right corner may be preset according to the ratio of the width and height of the current chroma block.
  • 22 is a diagram for describing intra prediction mode candidates determined based on a current chroma block type, according to an embodiment.
  • FIG. 22 illustrates a case where the diagonal mode 2103 in the direction of -135 degrees and the diagonal mode 2153 in the direction of 45 degrees are replaced by the diagonal mode 2203 in the direction of 135 degrees in FIG.
  • both the non-square block 2200 with a width greater than the height and the non-direction block 2250 with the width less than the height are both horizontal mode 2201, vertical mode 2202, and diagonal mode in the 135 degree direction.
  • 2203 may be an intra prediction mode candidate. That is, regardless of the result of comparing the width and height of the current block, the intra prediction mode list may include the same intra prediction mode candidate.
  • the order of intra prediction mode candidates included in the intra prediction mode list may vary according to the shape of the current chroma block.
  • the priority of the horizontal mode may be increased than that of the vertical mode.
  • intra prediction mode candidates may be arranged in the order of horizontal mode, vertical mode, and diagonal mode.
  • the priority of the vertical mode may be increased than that of the horizontal mode.
  • intra prediction mode candidates may be arranged in the order of vertical mode, horizontal mode, and diagonal mode.
  • the diagonal mode 2203 in the 135 degree direction does not exactly match the edge of the block, so the diagonal mode 2153 in the 135 degree direction
  • the directional modes 2204 and 2254 pointing in the direction from the lower right corner of the block to the upper left corner may be determined as intra prediction mode candidates.
  • the closest directional mode may be determined as an intra prediction mode candidate.
  • the directional mode from the lower left corner of the block to the upper right corner may be preset according to the ratio of the width and height of the current chroma block.
  • Step 2310 to 2330 of FIG. 23 may correspond to step 1830 of FIG. 18.
  • the image decoding apparatus 100 may determine an intra prediction mode of a luma block corresponding to the current chroma block.
  • the luma block corresponding to the current chroma block may be a luma block corresponding to the center position of the current chroma block.
  • the center position of the current chroma block may be defined as the (W / 2, H / 2) position based on the upper left sample of the current chroma block.
  • the center position of the current chroma block is (W / 2-1, H / 2-1), (W / 2-1, H / 2), (W / 2, H / 2-1).
  • the image decoding apparatus 100 acquires an intra prediction mode from a luma block corresponding to a center position of the current chroma block, and the current block uses a separate tree structure If not, the intra prediction mode can be obtained from the luma block corresponding to the upper left position of the current chroma block.
  • the image decoding apparatus 100 may acquire an intra prediction mode from the luma block corresponding to the upper left position of the current chroma block.
  • the image decoding apparatus 100 may determine the intra prediction mode of the luma block corresponding to the current chroma block as the first intra prediction mode candidate included in the intra prediction mode list of the current chroma block.
  • the intra prediction mode candidate of the current chroma block determined based on the intra prediction mode of the corresponding luma block is referred to as a direct mode (DM mode).
  • the first intra prediction mode candidate may be a first order intra prediction mode candidate in the intra prediction mode list.
  • the image decoding apparatus 100 may determine a second intra prediction mode candidate included in the intra prediction mode list of the current chroma block, based on the first intra prediction mode.
  • the order of the second intra prediction modes may be determined based on the first intra prediction mode.
  • the image decoding apparatus 100 may determine whether the first intra prediction mode is one of a planar mode, a DC mode, a vertical mode, and a horizontal mode. When the first intra prediction mode is not included in any of the four modes, the image decoding apparatus 100 may determine the four modes as second intra prediction mode candidates. On the other hand, when the first intra prediction mode is one of the four modes, the image decoding apparatus 100 may determine the remaining three modes except the first intra prediction mode as second intra prediction mode candidates. . In an embodiment, when the first intra prediction mode is one of the four modes, the image decoding apparatus 100 may further determine a diagonal mode, for example, VDIA_IDX as a second intra prediction mode candidate. .
  • the image decoding apparatus 100 may determine the second intra prediction mode candidate according to whether the first intra prediction mode is a directional mode or a non-directional mode. This will be described in detail in the description of FIG. 24 to be described later.
  • Steps 2410 to 2450 of FIG. 24 may correspond to step 1830 of FIG. 18.
  • the image decoding apparatus 100 may determine an intra prediction mode of a luma block corresponding to the current chroma block.
  • the image decoding apparatus 100 may determine the intra prediction mode of the luma block corresponding to the current chroma block as the first intra prediction mode candidate included in the intra prediction mode list of the current chroma block. Steps 2410 and 2420 of FIG. 24 may correspond to steps 2310 and 2320 of FIG. 23, respectively.
  • the image decoding apparatus 100 may determine whether the first intra prediction mode candidate is a directional mode. As a result of the determination, when the first intra prediction mode candidate is the directional mode, the image decoding apparatus 100 may perform step 2440. In contrast, when the first intra prediction mode candidate is a non-directional mode, for example, a planar mode or a DC mode, the image decoding apparatus 100 may perform step 2450.
  • the image decoding apparatus 100 may determine a directional mode in which a predetermined offset is applied to the first intra prediction mode candidate as a second intra prediction mode candidate.
  • the predetermined offset may be any natural number n.
  • the image decoding apparatus 100 may include a directional mode in which a predetermined offset n is added to an index of the first intra prediction mode candidate and a directional mode in which the predetermined offset n is subtracted from the index of the first intra prediction mode candidate. It can be determined as intra prediction mode candidates. For example, when the first intra prediction mode candidate is mode n, mode n + 2 and mode n-2 may be determined as second intra prediction mode candidates.
  • the image decoding apparatus 100 may determine a predetermined directional mode as a second intra prediction mode candidate. For example, when the first intra prediction mode candidate is the vertical mode, the image decoding apparatus 100 determines the horizontal mode as the second intra prediction mode candidate, and when the first intra prediction mode candidate is the horizontal mode, the vertical mode Can be determined as a second intra prediction mode candidate.
  • the video decoding apparatus 100 determines a diagonal mode (VDIA_IDX, mode 66) in the 45-degree direction as a second intra prediction mode candidate, and the first intra
  • a diagonal mode (HDIA_IDX, mode 2) in the -135 degree direction may be determined as a second intra prediction mode candidate.
  • the image decoding apparatus 100 may determine a non-directional mode different from the first intra prediction mode candidate as a second intra prediction mode candidate. For example, the image decoding apparatus 100 determines the DC mode as the second intra prediction mode candidate when the first intra prediction mode candidate is the planar mode, and the planar mode when the first intra prediction mode candidate is the DC mode Can be determined as a second intra prediction mode candidate.
  • the intra prediction mode list of the current chroma block may be configured using intra prediction modes of a plurality of corresponding luma blocks, that is, a plurality of DM modes.
  • the image decoding apparatus 100 may acquire intra prediction modes of the plurality of luma blocks corresponding to the current chroma block.
  • the plurality of luma blocks may be selected from luma blocks corresponding to a center position, an upper left position, a lower left position, an upper right position, and a lower right position of the current chroma block.
  • the image decoding apparatus 100 acquires the first DM mode from the luma block corresponding to the center position of the current chroma block, and the upper left position, lower left position, upper right position, and lower right corner of the current chroma block.
  • a second DM mode may be acquired from one of the luma blocks corresponding to the location.
  • the intra prediction mode list of the current chroma block may be configured based on a result of comparing the DM modes with each other.
  • the video decoding apparatus 100 may configure the intra prediction mode list in the same way as when only one DM mode is used.
  • the video decoding apparatus 100 determines both the first DM mode and the second DM mode as intra prediction mode candidates included in the intra prediction mode list, The remaining intra prediction mode candidates may be determined based on the first DM mode and the second DM mode.
  • Intra prediction mode list can be constructed in the same way as when only one DM mode is used.
  • the video decoding apparatus 100 determines the current chroma based on whether the first DM mode and the second DM mode are directional or non-directional modes.
  • a list of intra prediction modes of blocks can be constructed.
  • the image decoding apparatus 100 intra predicts the first DM mode, the second DM mode, the vertical mode, the horizontal mode, and the diagonal mode Intra prediction candidates included in the mode list may be determined.
  • the order of the vertical mode and the horizontal mode included in the intra prediction mode list may be determined according to the shape of the current chroma block.
  • the diagonal mode may be one of a -135 degree direction mode (HDIA_IDX), a 135 degree direction mode (DIA_IDX), and a 45 degree direction mode (VDIA_IDX), and may be determined according to the shape of the current chroma block. .
  • the diagonal mode may be a directional mode matching the edge of the current chroma block.
  • the image decoding apparatus 100 may list the directional mode with a predetermined offset applied to the DM mode, which is the directional mode, in the intra prediction mode list It can be determined as an intra prediction candidate included in.
  • the predetermined offset may be any natural number n.
  • the image decoding apparatus 100 intra-predicts a directional mode in which a predetermined offset n is added to an index of the DM mode, which is the directional mode, and a directional mode, which is obtained by subtracting a predetermined offset n from the index of the DM mode, which is the directional mode.
  • Intra prediction candidates included in the mode list may be determined.
  • the video decoding apparatus 100 may include a first DM mode, a second DM mode, a planar mode, a DC mode, and a first DM mode.
  • the directional mode indicating the middle direction of the 2 DM mode may be determined as intra prediction candidates included in the intra prediction mode list.
  • the directional mode indicating an intermediate direction between the first DM mode and the second DM mode may be obtained from an average of the index of the first DM mode and the index of the second DM mode. For example, when the first DM mode is mode n and the second DM mode is mode m, the directional mode indicating an intermediate direction between the first DM mode and the second DM mode is mode (n + m) / 2. Can be determined.
  • the video decoding apparatus 100 may list intra prediction modes based on a larger index among the first DM mode and the second DM mode. Intra prediction candidates included in may be determined. For example, the video decoding apparatus 100 selects a mode having a larger index among the first DM mode and the second DM mode as the basic DM mode of the current chroma block, and performs intra prediction in the same way as when only one DM mode is used. You can configure the mode list.
  • 25 shows an example of pseudo code for determining a list of intra prediction modes of a current chroma block based on the shape of the current chroma block.
  • the intra prediction mode list of the current chroma block is defined as modeList [n], and up to 5 intra prediction mode candidates are selected.
  • the intra prediction mode of the luma block corresponding to the current chroma block, that is, the DM mode is determined as the first intra prediction mode candidate modeList [0] (2510).
  • the first intra prediction mode candidate is one of the non-directional modes, that is, the planar mode or the DC mode (2520)
  • a non-directional mode different from the first intra prediction mode candidate is determined as the second intra prediction mode candidate modeList [1]
  • the vertical mode and the horizontal mode are sequentially added as a third intra prediction mode candidate modeList [2] and a fourth intra prediction mode candidate modeList [3].
  • the width and height of the current chroma block are compared, and if the width is greater than the height, mode 2, that is, the diagonal mode in the -135 degree direction is determined as a candidate for the intra prediction mode, otherwise mode 66, that is, the diagonal in the 45 degree direction.
  • the mode is determined as an intra prediction mode candidate.
  • mode 34 may be selected as an intra prediction mode candidate regardless of the current chroma block type.
  • a directional mode matching the edge of the current chroma block may be determined as an intra prediction mode candidate.
  • the directional mode and the first intra prediction obtained by subtracting a predetermined offset (for example, 2) from the index of the first intra prediction mode candidate
  • a predetermined offset for example, 2
  • a directional mode in which a predetermined offset is added from the index of the mode candidate is determined as a second intra prediction mode candidate and a third intra prediction mode candidate, respectively.
  • the remaining digits of the intra prediction mode list are filled with the non-directional modes Planar mode and DC mode.
  • FIG. 26 shows another example of pseudo code for determining a list of intra prediction modes of a current chroma block based on the shape of the current chroma block.
  • the pseudo code illustrated in FIG. 26 is the same as FIG. 25 except that the order of the vertical mode and the horizontal mode is configured to be determined according to the shape of the current chroma block.
  • the first intra prediction mode candidate is one of the non-directional modes, that is, the planar mode or the DC mode
  • a non-directional mode different from the first intra prediction mode candidate is determined as the second intra prediction mode candidate .
  • the width and height of the current chroma block are compared (2610). If the width is greater than the height, the intra prediction mode candidates are determined in the order of horizontal mode, vertical mode, and mode 2, otherwise the intra prediction mode candidates are determined in the order of vertical mode, horizontal mode, and mode 66.
  • mode 34 may be selected as an intra prediction mode candidate regardless of the current chroma block type.
  • a directional mode matching the edge of the current chroma block may be determined as an intra prediction mode candidate.
  • 27 illustrates another example of pseudo code for determining a list of intra prediction modes of a current chroma block based on the shape of the current chroma block.
  • an intra prediction mode of a luma block corresponding to a current chroma block is determined as a first intra prediction mode candidate modeList [0] (2710), and it is determined whether the first intra prediction mode candidate is a non-directional mode do.
  • the first intra prediction mode candidate is one of the non-directional modes, that is, the planar mode or the DC mode (2720)
  • a non-directional mode different from the first intra prediction mode candidate is determined as the second intra prediction mode candidate, and then the current The width and height of the chroma blocks are compared. If the width is greater than the height, the intra prediction mode candidates are determined in the order of horizontal mode, vertical mode, and mode 2, otherwise, the intra prediction mode candidates are determined in the order of vertical mode, horizontal mode, and mode 66.
  • the first intra prediction mode candidate is a directional mode other than the planar mode or DC mode
  • the first intra prediction mode candidate is a directional mode other than the vertical mode and the horizontal mode (2740)
  • Planar mode, DC mode, horizontal mode, and vertical mode are determined as intra prediction mode candidates.
  • the intra prediction mode list is always Planar Mode, DC mode, vertical mode, and horizontal mode.
  • the index of the first intra prediction mode candidate is subtracted from a predetermined offset.
  • a directional mode in which a predetermined offset is added to an index of the mode and the first intra prediction mode candidate may be determined as the second intra prediction mode and the third intra prediction mode candidate, respectively.
  • mode 34 may be selected as an intra prediction mode candidate regardless of the current chroma block type.
  • a directional mode matching the edge of the current chroma block may be determined as an intra prediction mode candidate.
  • the video encoding apparatus 150 may determine an intra prediction mode list of the current chroma block based on the shape of the current chroma block.
  • the method in which the image encoding apparatus 150 determines the intra prediction mode list of the current chroma block corresponds to a method in which the image decoding apparatus 100 determines the intra prediction mode list of the current chroma block according to various embodiments described above. .
  • the video encoding apparatus 150 may determine an intra prediction mode of the current chroma block among the intra prediction mode candidates included in the intra prediction mode list of the current chroma block.
  • the video encoding apparatus 150 may perform intra prediction on the current chroma block based on the determined intra prediction mode.
  • the image encoding apparatus 150 may encode intra prediction mode information indicating the determined intra prediction mode among the intra prediction mode candidates included in the intra prediction mode list of the current chroma block.
  • the encoded intra prediction mode information may be included in a bitstream and transmitted to an image decoding apparatus.
  • intra prediction mode information of the current chroma block may be signaled with a syntax element intra_chroma_pred_mode.
  • the video encoding apparatus 150 may encode intra prediction mode information by applying truncated unary coding.
  • the intra prediction mode candidates in the intra prediction mode list are listed in the order in which they are frequently selected, the number of bits is reduced as the number of intra prediction mode candidates of the previous rank is signaled with a smaller number of bits.
  • the video encoding apparatus 150 encodes 1 bit when the intra prediction mode information points to the first intra prediction mode candidate in the intra prediction mode list, and when the remaining intra prediction mode candidates point to the same number of bits. Can be coded. For example, when the number of remaining intra prediction mode candidates is N or less, intra prediction mode information indicating the remaining intra prediction mode candidates may be encoded with 1 + log 2 N bits.
  • the first intra prediction mode candidate may be coded as 0, and the remaining 4 intra prediction mode candidates may be 100, 101, 110, and 111, respectively.
  • modeList [n] points to the n-th intra prediction mode candidate of the intra prediction mode list.
  • intra prediction mode information when using a cross component linear model (CCLM) method for intra prediction of the current chroma block, intra prediction mode information may be encoded as shown in Table 4.
  • modeList [n] indicates the nth intra prediction mode candidate of the intra prediction mode list
  • CCLM_LT is a CCLM mode referring to the upper and left samples of the current block
  • CCLM_L is a CCLM mode referring only to the left sample of the current block
  • CCLM_T is Pointer to a CCLM mode that refers only to the upper sample of the current block.
  • intra prediction mode information may be encoded as shown in Table 5.
  • modeList [n] indicates the nth intra prediction mode candidate of the intra prediction mode list
  • CCLM_LT is a CCLM mode referring to the upper and left samples of the current block
  • CCLM_L is a CCLM mode referring only to the left sample of the current block
  • CCLM_T is Pointer to a CCLM mode that refers only to the upper sample of the current block.
  • an additional flag may be used in encoding intra prediction mode information indicating the DM mode.
  • intra prediction mode information indicating a DM mode may be encoded by applying a context model.
  • various embodiments of determining an intra prediction mode list of the current chroma block based on the current chroma block type have been described.
  • the various embodiments described above may also be applied to determine a Most Probable Mode (MPM) list of the current luma block based on the shape of the current luma block.
  • MPM Most Probable Mode
  • the image decoding apparatus 100 may determine the MPM list of the current luma block based on the result of comparing the width and height of the current luma block. In one embodiment, when the width of the current luma block is greater than the height, the image decoding apparatus 100 may determine the horizontal mode as the MPM having a higher priority than the vertical mode. On the other hand, if the width of the current luma block is less than or equal to the height, the image decoding apparatus 100 may determine the vertical mode as the MPM having a higher priority than the horizontal mode. In one embodiment, when the width of the current luma block is greater than the height, the image decoding apparatus 100 may determine the intra prediction mode pointing to the lower left direction as the MPM. Alternatively, when the width of the current luma block is less than or equal to the height, the image decoding apparatus 100 may determine the intra prediction mode pointing to the upper right direction as the MPM.
  • the video decoding apparatus 100 may determine the MPM list of the current luma block based on whether the current luma block is square. In one embodiment, when the current luma block is square, the apparatus 100 for decoding an image may determine a diagonal mode in the direction of 45 degrees or a diagonal mode in the direction of -135 degrees, that is, mode 2 or mode 66 as MPM.
  • the image decoding apparatus 100 may determine the directional mode matching the edge of the current luma block as MPM. For example, the image decoding apparatus 100 may indicate an intra prediction mode indicating a direction from the lower left corner of the current luma block to the upper right corner or an intra prediction mode indicating a direction from the upper right corner of the current luma block toward the lower left corner. Can be determined as MPM. In one embodiment, the apparatus 100 for decoding an image may replace the diagonal mode of 45 degrees or -135 degrees included in the MPM list with a directional mode matching the edge of the current luma block.
  • the closest directional mode may be determined as MPM.
  • the directional intra prediction mode matching the edge of the current luma block may be preset according to the ratio of the width and height of the current luma block.
  • uniformity when generating a chroma prediction mode candidate using two or more DM modes, uniformity may be improved by applying the same method as MPM.
  • Computer-readable recording media includes magnetic storage media (eg, ROM, floppy disks, hard disks, etc.), and optical media (eg, CD-ROM, DVD, etc.) storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

비트스트림으로부터, 현재 크로마 블록의 인트라 예측 모드 정보를 획득하는 단계, 상기 현재 크로마 블록의 형태에 기초하여, 상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 단계, 상기 획득된 인트라 예측 모드 정보에 기초하여, 상기 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중 하나를 상기 현재 크로마 블록의 인트라 예측 모드로 결정하는 단계, 및 상기 결정된 인트라 예측 모드에 기초하여 상기 현재 크로마 블록에 대한 인트라 예측을 수행하는 단계를 포함하는, 비디오 복호화 방법이 제공된다.

Description

비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
본 개시는 비디오 복호화 방법/장치 및 비디오 부호화 방법/장치에 관한 것으로, 보다 구체적으로는 크로마 블록의 인트라 예측 모드를 부호화/복호화하는 것과 관련된 것이다.
영상 데이터는 소정의 데이터 압축 표준, 예를 들면 MPEG(Moving Picture Expert Group) 표준에 따른 코덱(codec)에 의하여 부호화된 후 비트스트림의 형태로 기록매체에 저장되거나 통신 채널을 통해 전송된다. 최근 5G 등의 유/무선 통신 인프라의 진화와 함께, 기존의 전통적인 영상 미디어에 더하여, 4K/8K UHD(Ultra High Definition), 360도 비디오, VR(Virtual Reality) 영상과 같은 차세대 미디어들을 효율적으로 압축하는 기술에 대한 수요가 증가되고 있다.
크로마 블록의 인트라 예측에 이용되는 인트라 예측 모드는 다수의 인트라 예측 모드 후보들로 구성된 인트라 예측 모드 리스트 내에서 선택될 수 있다. 예측 연산의 복잡도를 낮추고 예측의 정확도를 향상시키기 위해서는 인트라 예측 모드 리스트를 효율적으로 구성하여야 할 필요가 있다.
본 개시의 다양한 실시예들에 따른 비디오 복호화 방법은, 비트스트림으로부터, 현재 크로마 블록의 인트라 예측 모드 정보를 획득하는 단계; 상기 현재 크로마 블록의 형태에 기초하여, 상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 단계; 상기 획득된 인트라 예측 모드 정보에 기초하여, 상기 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중 하나를 상기 현재 크로마 블록의 인트라 예측 모드로 결정하는 단계; 및 상기 결정된 인트라 예측 모드에 기초하여 상기 현재 크로마 블록에 대한 인트라 예측을 수행하는 단계를 포함할 수 있다.
본 개시의 다양한 실시예들에 따른 비디오 복호화 장치는, 메모리 및 상기 메모리와 기능적으로 연결된 적어도 하나의 프로세서를 포함하고, 상기 메모리는, 상기 적어도 하나의 프로세서에 의해 실행 가능하도록 구성되는 적어도 하나의 명령어를 포함하며, 상기 적어도 하나의 명령어는, 실행 시에, 상기 적어도 하나의 프로세서로 하여금, 비트스트림으로부터, 현재 크로마 블록의 인트라 예측 모드 정보를 획득하고, 상기 현재 크로마 블록의 형태에 기초하여, 상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하고, 상기 획득된 인트라 예측 모드 정보에 기초하여, 상기 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중 하나를 상기 현재 크로마 블록의 인트라 예측 모드로 결정하고, 상기 결정된 인트라 예측 모드에 기초하여 상기 현재 크로마 블록에 대한 인트라 예측을 수행하도록 설정될 수 있다.
본 개시의 다양한 실시예들에 따른 비디오 부호화 방법은, 현재 크로마 블록의 형태에 기초하여, 상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 단계; 상기 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중, 상기 현재 크로마 블록의 인트라 예측 모드를 결정하는 단계; 상기 결정된 인트라 예측 모드에 기초하여 상기 현재 크로마 블록에 대한 인트라 예측을 수행하는 단계; 및 상기 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중 상기 결정된 인트라 예측 모드를 가리키는 인트라 예측 모드 정보를 부호화하는 단계;를 포함할 수 있다.
다양한 실시예들에서, 현재 크로마 블록의 형태에 따라서 적응적으로 인트라 예측 모드 리스트를 구성함으로서, 복잡도를 감소시키면서 인트라 예측 효율을 향상시킬 수 있다.
도 1a는 다양한 실시예들에 따른 영상 복호화 장치의 블록도를 도시한다.
도 1b는 다양한 실시예들에 따른 영상 복호화부의 블록도를 도시한다.
도 1c는 다양한 실시예들에 따른 영상 복호화 장치의 블록도를 도시한다.
도 2a는 다양한 실시예들에 따른 영상 부호화 장치의 블록도를 도시한다.
도 2b는 다양한 실시예들에 따른 영상 복호화부의 블록도를 도시한다.
도 2c는 다양한 실시예들에 따른 영상 부호화 장치의 블록도를 도시한다.
도 3은 일 실시예에 따라 영상 복호화 장치가 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 4는 일 실시예에 따라 영상 복호화 장치가 비정방형의 형태인 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 5는 일 실시예에 따라 영상 복호화 장치가 블록 형태 정보 및 분할 형태 모드 정보 중 적어도 하나에 기초하여 부호화 단위를 분할하는 과정을 도시한다.
도 6은 일 실시예에 따라 영상 복호화 장치가 홀수개의 부호화 단위들 중 소정의 부호화 단위를 결정하기 위한 방법을 도시한다.
도 7은 일 실시예에 따라 영상 복호화 장치가 현재 부호화 단위를 분할하여 복수개의 부호화 단위들을 결정하는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
도 8은 일 실시예에 따라 영상 복호화 장치가 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것임을 결정하는 과정을 도시한다.
도 9는 일 실시예에 따라 영상 복호화 장치가 제1 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 10은 일 실시예에 따라 영상 복호화 장치가 제1 부호화 단위가 분할되어 결정된 비정방형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
도 11은 일 실시예에 따라 분할 형태 모드 정보가 4개의 정방형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 영상 복호화 장치가 정방형 형태의 부호화 단위를 분할하는 과정을 도시한다.
도 12는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
도 13은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
도 14은 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
도 15는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
도 16은 일 실시예에 따라 픽쳐에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
도 17은 일 실시예에 따른 인트라 예측 모드들을 나타낸 도면이다.
도 18은 다양한 실시예들에 따른 영상 복호화 방법의 흐름도를 도시한다.
도 19는 다양한 실시예들에 따른, 현재 크로마 블록의 형태에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 방법의 흐름도를 도시한다.
도 20은 다양한 실시예들에 따른, 현재 크로마 블록의 형태에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 방법의 흐름도를 도시한다.
도 21은 일 실시예에 따라, 현재 크로마 블록의 형태에 기초하여 결정되는 인트라 예측 모드 후보들을 설명하기 위한 도면이다.
도 22는 일 실시예에 따라, 현재 크로마 블록의 형태에 기초하여 결정되는 인트라 예측 모드 후보들을 설명하기 위한 도면이다.
도 23은 다양한 실시예들에 따른, 현재 크로마 블록의 형태에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 방법의 흐름도를 도시한다.
도 24는 다양한 실시예들에 따른, 현재 크로마 블록의 형태에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 방법의 흐름도를 도시한다.
도 25는 현재 크로마 블록의 형태에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 pseudo code의 일 예를 도시한다.
도 26은 현재 크로마 블록의 형태에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 pseudo code의 다른 일 예를 도시한다.
도 27은 현재 크로마 블록의 형태에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 pseudo code의 다른 일 예를 도시한다.
도 28은 다양한 실시예들에 따른 영상 부호화 방법의 흐름도를 도시한다.
개시된 실시예의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것일 뿐이다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 개시된 실시예에 대해 구체적으로 설명하기로 한다.
본 명세서에서 사용되는 용어는 본 개시에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 관련 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 개시에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 개시의 전반에 걸친 내용을 토대로 정의되어야 한다.
본 명세서에서의 단수의 표현은 문맥상 명백하게 단수인 것으로 특정하지 않는 한, 복수의 표현을 포함한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
또한, 명세서에서 사용되는 "부"라는 용어는 소프트웨어 또는 하드웨어 구성요소를 의미하며, "부"는 어떤 역할들을 수행한다. 그렇지만 "부"는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. "부"는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 "부"는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 "부"들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 "부"들로 결합되거나 추가적인 구성요소들과 "부"들로 더 분리될 수 있다.
본 개시의 일 실시예에서 "부"는 프로세서 및 메모리로 구현될 수 있다. 용어 "프로세서" 는 범용 프로세서, 중앙 처리 장치 (CPU), 마이크로프로세서, 디지털 신호 프로세서 (DSP), 제어기, 마이크로제어기, 상태 머신, 및 등을 포함하도록 넓게 해석되어야 한다. 몇몇 환경에서는, "프로세서" 는 주문형 반도체 (ASIC), 프로그램가능 로직 디바이스 (PLD), 필드 프로그램가능 게이트 어레이 (FPGA), 등을 지칭할 수도 있다. 용어 "프로세서" 는, 예를 들어, DSP 와 마이크로프로세서의 조합, 복수의 마이크로프로세서들의 조합, DSP 코어와 결합한 하나 이상의 마이크로프로세서들의 조합, 또는 임의의 다른 그러한 구성들의 조합과 같은 처리 디바이스들의 조합을 지칭할 수도 있다.
용어 "메모리" 는 전자 정보를 저장 가능한 임의의 전자 컴포넌트를 포함하도록 넓게 해석되어야 한다. 용어 메모리는 임의 액세스 메모리 (RAM), 판독-전용 메모리 (ROM), 비-휘발성 임의 액세스 메모리 (NVRAM), 프로그램가능 판독-전용 메모리 (PROM), 소거-프로그램가능 판독 전용 메모리 (EPROM), 전기적으로 소거가능 PROM (EEPROM), 플래쉬 메모리, 자기 또는 광학 데이터 저장장치, 레지스터들, 등과 같은 프로세서-판독가능 매체의 다양한 유형들을 지칭할 수도 있다. 프로세서가 메모리에 메모리로부터 정보를 판독하고/하거나 메모리에 정보를 기록할 수 있다면 메모리는 프로세서와 전자 통신 상태에 있다고 불린다. 프로세서에 집적된 메모리는 프로세서와 전자 통신 상태에 있다.
이하, "영상"은 비디오의 정지영상와 같은 정적 이미지이거나 동영상, 즉 비디오 그 자체와 같은 동적 이미지를 나타낼 수 있다.
이하 "샘플"은, 영상의 샘플링 위치에 할당된 데이터로서 프로세싱 대상이 되는 데이터를 의미한다. 예를 들어, 공간영역의 영상에서 픽셀값, 변환 영역 상의 변환 계수들이 샘플들일 수 있다. 이러한 적어도 하나의 샘플들을 포함하는 단위를 블록이라고 정의할 수 있다.
아래에서는 첨부한 도면을 참고하여 실시예에 대하여 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그리고 도면에서 본 개시를 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략한다.
이하 도 1 내지 도 28을 참조하여 일 실시예에 따라 영상 부호화 장치 및 영상 복호화 장치, 영상 부호화 방법 및 영상 복호화 방법이 상술된다. 도 3 내지 도 16을 참조하여 일 실시예에 따라 영상의 데이터 단위를 결정하는 방법이 설명되고, 도 1-2 및 도 17 내지 도 28을 참조하여 인트라 예측 모드를 부호화 및 복호화하는 방식이 설명된다.
이하 도 1 및 도 2를 참조하여 본 개시의 일 실시예에 따라 크로마 블록의 인트라 예측 모드를 부호화/복호화하기 위한 영상 부호화/복호화 방법 및 장치가 상술된다.
도 1a는 다양한 실시예들에 따른 영상 복호화 장치의 블록도를 도시한다.
영상 복호화 장치(100)는 수신부(110) 및 복호화부(120)를 포함할 수 있다. 수신부(110) 및 복호화부(120)는 적어도 하나의 프로세서를 포함할 수 있다. 또한 수신부(110) 및 복호화부(120)는 적어도 하나의 프로세서가 수행할 명령어들을 저장하는 메모리를 포함할 수 있다.
수신부(110)는 비트스트림을 수신할 수 있다. 비트스트림은 후술되는 영상 부호화 장치(2200)가 영상을 부호화한 정보를 포함한다. 또한 비트스트림은 영상 부호화 장치(150)로부터 송신될 수 있다. 영상 부호화 장치(150) 및 영상 복호화 장치(100)는 유선 또는 무선으로 연결될 수 있으며, 수신부(110)는 유선 또는 무선을 통하여 비트스트림을 수신할 수 있다. 수신부(110)는 광학미디어, 하드디스크 등과 같은 저장매체로부터 비트스트림을 수신할 수 있다. 복호화부(120)는 수신된 비트스트림으로부터 획득된 정보에 기초하여 영상을 복원할 수 있다. 복호화부(120)는 영상을 복원하기 위한 신택스 엘리먼트를 비트스트림으로부터 획득할 수 있다. 복호화부(120)는 신택스 엘리먼트에 기초하여 영상을 복원할 수 있다.
수신부(110)는 비트스트림으로부터 현재 블록의 예측 모드에 관한 정보 및 현재 블록의 인트라 예측 모드에 관한 정보를 획득할 수 있다.
비트스트림에 포함된 현재 블록의 예측 모드에 관한 정보는 스킵 모드, 인트라 모드 또는 인터 예측 모드에 관한 정보를 포함할 수 있다. 현재 블록이 스킵 모드가 아닌 경우 현재 블록이 인트라 모드 또는 인터 예측 모드 중 어떤 예측 모드로 부호화되었는지 시그널링될 수 있다.
현재 블록의 인트라 예측 모드에 관한 정보는 복수의 인트라 예측 모드 중 현재 블록에 적용되는 인트라 예측 모드에 관한 정보일 수 있다. 예를 들어, 인트라 예측 모드는 DC 모드, 플래너(planar) 모드, plane 모드 및 bi-linear 모드 등의 비방향성 모드 및 예측 방향을 갖는 복수 개의 방향성(angular) 모드 중 하나일 수 있다. 방향성 모드는 수평 모드, 수직 모드 및 대각 모드를 포함하고, 수평 방향, 수직 방향 및 대각 방향을 제외한 소정의 방향을 갖는 모드를 포함할 수 있다. 예를 들어, 방향성 모드의 개수는 65개일 수 있다.
후술되는 바와 같이, 다양한 실시예들에서 수신부(110)는 비트스트림으로부터, 현재 크로마 블록의 인트라 예측 모드 정보를 획득할 수 있다. 일 실시예에서 상기 인트라 예측 모드 정보는 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중 하나를 가리키는 것일 수 있다.
복호화부(120)는 현재 블록의 예측 모드에 따라서, 현재 블록의 예측 블록을 획득할 수 있다. 복호화부(120)는 비트스트림으로부터 현재 블록의 변환 계수에 관한 정보를 획득하고, 획득된 변환 계수 정보를 이용하여 역양자화 및 역변환을 수행하여 현재 블록의 레지듀얼 블록에 관한 레지듀얼 샘플을 획득할 수 있다.
후술되는 바와 같이, 다양한 실시예들에서 복호화부(120)는 현재 크로마 블록의 형태에 기초하여, 현재 크로마 블록의 인트라 예측 모드 리스트를 결정할 수 있다. 복호화부(120)는 획득된 인트라 예측 모드 정보에 기초하여, 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중 하나를 현재 크로마 블록의 인트라 예측 모드로 결정할 수 있다. 복호화부(120)는 결정된 인트라 예측 모드에 기초하여 현재 크로마 블록에 대한 인트라 예측을 수행할 수 있다.
일 실시예에서, 복호화부(120)는 현재 크로마 블록의 너비와 높이를 비교한 결과에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정할 수 있다. 일 실시예에서, 복호화부(120)는 현재 크로마 블록이 정방형인지 여부에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정할 수 있다.
일 실시예에서, 복호화부(120)는 현재 크로마 블록에 대응되는 루마 블록의 인트라 예측 모드를 결정할 수 있다. 복호화부(120)는 루마 블록의 인트라 예측 모드를 현재 크로마 블록의 인트라 예측 모드 리스트에 포함되는 제1 인트라 예측 모드 후보로 결정하고, 상기 제1 인트라 예측 모드에 기초하여, 상기 인트라 예측 모드 리스트에 포함되는 제2 인트라 예측 모드 후보를 결정할 수 있다. 일 실시예에서, 복호화부(120)는 상기 제1 인트라 예측 모드가 방향성 모드인지 비방향성 모드인지에 따라 상기 제2 인트라 예측 모드 후보를 결정할 수 있다.
도 1b는 다양한 실시예들에 따른 영상 복호화부(6000)의 블록도를 도시한다.
다양한 실시예들에 따른 영상 복호화부(6000)는, 영상 복호화 장치(100)의 복호화부(120)에서 영상 데이터를 부호화하는데 거치는 작업들을 수행한다.
도 1b를 참조하면, 엔트로피 복호화부(6150)는 비트스트림(6050)으로부터 복호화 대상인 부호화된 영상 데이터 및 복호화를 위해 필요한 부호화 정보를 파싱한다. 부호화된 영상 데이터는 양자화된 변환계수로서, 역양자화부(6200) 및 역변환부(6250)는 양자화된 변환 계수로부터 레지듀얼 데이터를 복원한다.
후술되는 바와 같이, 다양한 실시예들에서 엔트로피 복호화부(6150)는 비트스트림으로부터, 현재 크로마 블록의 인트라 예측 모드 정보를 획득할 수 있다. 일 실시예에서 상기 인트라 예측 모드 정보는 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중 결정된 인트라 예측 모드를 가리키는 것일 수 있다.
인트라 예측부(6400)는 블록 별로 인트라 예측을 수행한다. 후술되는 바와 같이, 다양한 실시예들에서 인트라 예측부(6400)는 현재 크로마 블록의 형태에 기초하여, 현재 크로마 블록의 인트라 예측 모드 리스트를 결정할 수 있다. 인트라 예측부(6400)는 획득된 인트라 예측 모드 정보에 기초하여, 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중 하나를 현재 크로마 블록의 인트라 예측 모드로 결정할 수 있다. 인트라 예측부(6400)는 결정된 인트라 예측 모드에 기초하여 현재 크로마 블록에 대한 인트라 예측을 수행할 수 있다.
인터 예측부(6350)는 블록 별로 복원 픽처 버퍼(6300)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다. 인트라 예측부(6400) 또는 인터 예측부(6350)에서 생성된 각 블록에 대한 예측 데이터와 레지듀 데이터가 더해짐으로써 현재 영상의 블록에 대한 공간 영역의 데이터가 복원되고, 디블로킹부(6450) 및 SAO 수행부(6500)는 복원된 공간 영역의 데이터에 대해 루프 필터링을 수행하여 필터링된 복원 영상(6600)을 출력할 수 있다. 또한, 복원 픽쳐 버퍼(6300)에 저장된 복원 영상들은 참조 영상으로서 출력될 수 있다.
영상 복호화 장치(100)의 복호화부(120)에서 영상 데이터를 복호화하기 위해, 다양한 실시예들에 따른 영상 복호화부(6000)의 단계별 작업들이 블록별로 수행될 수 있다.
도 1c는 일 실시예에 따른 영상 복호화 장치(100)의 블록도를 도시한다.
일 실시예에 따른 영상 복호화 장치(100)는 메모리(130) 및 메모리(130)에 접속된 적어도 하나의 프로세서(125)를 포함할 수 있다. 일 실시예에 따른 영상 복호화 장치(100)의 동작들은 개별적인 프로세서로서 작동하거나, 중앙 프로세서의 제어에 의해 작동될 수 있다. 또한, 영상 복호화 장치(100)의 메모리(130)는, 외부로부터 수신한 데이터와, 프로세서에 의해 생성된 데이터를 저장할 수 있다.
다양한 실시예들에서, 영상 복호화 장치(100)의 프로세서(125)는 비트스트림으로부터, 현재 크로마 블록의 인트라 예측 모드 정보를 획득하고, 상기 현재 크로마 블록의 형태에 기초하여, 상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하고, 상기 획득된 인트라 예측 모드 정보에 기초하여, 상기 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중 하나를 상기 현재 크로마 블록의 인트라 예측 모드로 결정하고, 상기 결정된 인트라 예측 모드에 기초하여 상기 현재 크로마 블록에 대한 인트라 예측을 수행할 수 있다.
도 2a는 다양한 실시예들에 따른 영상 부호화 장치의 블록도를 도시한다.
다양한 실시예들에 따른 영상 부호화 장치(150)는 부호화부(155) 및 출력부(160)를 포함할 수 있다.
부호화부(155) 및 출력부(160)는 적어도 하나의 프로세서를 포함할 수 있다. 또한 부호화부(155) 및 출력부(160)는 적어도 하나의 프로세서가 수행할 명령어들을 저장하는 메모리를 포함할 수 있다. 부호화부(155) 및 출력부(160)는 별도의 하드웨어로 구현되거나, 부호화부(155) 및 출력부(160)는 하나의 하드웨어에 포함될 수 있다.
부호화부(155)는 스킵 모드, 인트라 모드 또는 인터 예측 모드 등의 다양한 예측 모드를 적용하여 현재 블록의 예측 모드를 결정한다. 현재 블록이 스킵 모드가 아닌 경우 현재 블록이 인트라 모드 또는 인터 예측 모드 중 어떤 예측 모드로 부호화되었는지 시그널링될 수 있다.
부호화부(155)는 현재 블록의 예측 모드에 따라서, 현재 블록의 예측 블록을 획득하고, 현재 블록과 예측 블록의 차이값인 레지듀얼을 변환 및 양자화하여 부호화할 수 있다. 부호화부(155)는 현재 블록에 적용되는 인트라 예측 모드 후보를 결정할 수 있다. 부호화부(155)는 현재 블록의 인트라 예측 모드에 관한 정보를 부호화할 수 있다. 부호화부(155)는 다양한 실시예들에 따라서 인트라 예측 모드들을 적용하여 RD (Rate Distortion) 코스트가 최적인 인트라 예측 모드를 결정한다. 최종적으로 현재 블록의 예측 모드가 인트라 예측 모드로 결정된 경우, 부호화부(155)는 현재 블록이 스킵 모드, 인터 예측 모드, 인트라 예측 모드 중 어떤 예측 모드로 예측되었는지에 대한 정보들과 함께, 인트라 예측된 현재 블록의 인트라 예측 모드 정보를 비트스트림에 포함시켜 영상 복호화 장치(100)로 전송할 수 있다.
후술되는 바와 같이, 다양한 실시예들에서 부호화부(155)는 현재 크로마 블록의 형태에 기초하여, 상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정할 수 있다. 부호화부(155)는 상기 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중, 상기 현재 크로마 블록의 인트라 예측 모드를 결정하고, 상기 결정된 인트라 예측 모드에 기초하여 상기 현재 크로마 블록에 대한 인트라 예측을 수행할 수 있다. 부호화부(155)는 상기 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중, 상기 결정된 인트라 예측 모드를 가리키는 인트라 예측 모드 정보를 부호화할 수 있다.
출력부(160)는 현재 블록의 인트라 예측 모드에 관한 정보 및 기타 계층적 분할 형태를 갖는 데이터 단위를 결정하기 위한 구조 정보 등을 포함하는 비트스트림을 생성하고, 비트스트림을 출력할 수 있다.
도 2b는 다양한 실시예들에 따른 영상 부호화부의 블록도를 도시한다.
다양한 실시예들에 따른 영상 부호화부(7000)는, 영상 부호화 장치(150)의 부호화부(155)에서 영상 데이터를 부호화하는데 거치는 작업들을 수행한다.
즉, 인트라 예측부(7200)는 현재 영상(7050) 중 블록별로 인트라 예측을 수행하고, 인터 예측부(7150)는 블록별로 현재 영상(7050) 및 복원 픽처 버퍼(7100)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다.
인트라 예측부(7200) 또는 인터 예측부(7150)로부터 출력된 각 블록에 대한 예측 데이터를 현재 영상(7050)의 인코딩되는 블록에 대한 데이터로부터 빼줌으로써 레지듀얼 데이터를 생성하고, 변환부(7250) 및 양자화부(7300)는 레지듀얼 데이터에 대해 변환 및 양자화를 수행하여 블록별로 양자화된 변환 계수를 출력할 수 있다.
후술되는 바와 같이, 인트라 예측부(7200)는 현재 크로마 블록의 형태에 기초하여, 상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정할 수 있다. 인트라 예측부(7200)는 상기 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중, 상기 현재 크로마 블록의 인트라 예측 모드를 결정하고, 상기 결정된 인트라 예측 모드에 기초하여 상기 현재 크로마 블록에 대한 인트라 예측을 수행할 수 있다. 인트라 예측부(7200)는 상기 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중 상기 결정된 인트라 예측 모드를 가리키는 인트라 예측 모드 정보를 부호화할 수 있다.
역양자화부(7450), 역변환부(7500)는 양자화된 변환 계수에 대해 역양자화 및 역변환을 수행하여 공간 영역의 레지듀얼 데이터를 복원할 수 있다. 복원된 공간 영역의 레지듀얼 데이터는 인트라 예측부(7200) 또는 인터 예측부(7150)로부터 출력된 각 블록에 대한 예측 데이터와 더해짐으로써 현재 영상(7050)의 블록에 대한 공간 영역의 데이터로 복원된다. 디블로킹부(7550) 및 SAO 수행부는 복원된 공간 영역의 데이터에 대해 인루프 필터링을 수행하여, 필터링된 복원 영상을 생성한다. 생성된 복원 영상은 복원 픽쳐 버퍼(7100)에 저장된다. 복원 픽처 버퍼(7100)에 저장된 복원 영상들은 다른 영상의 인터예측을 위한 참조 영상으로 이용될 수 있다. 엔트로피 부호화부(7350)는 양자화된 변환 계수에 대해 엔트로피 부호화하고, 엔트로피 부호화된 계수가 비트스트림(7400)으로 출력될 수 있다.
다양한 실시예들에 따른 영상 부호화부(7000)가 영상 부호화 장치(150)에 적용되기 위해서, 다양한 실시예들에 따른 영상 부호화부(7000)의 단계별 작업들이 블록별로 수행될 수 있다.
도 2c는 일 실시예에 따른 영상 부호화 장치(150)의 블록도를 도시한다.
일 실시예에 따른 영상 부호화 장치(150)는 메모리(165) 및 메모리(165)에 접속된 적어도 하나의 프로세서(170)를 포함할 수 있다. 일 실시예에 따른 영상 부호화 장치(150)의 동작들은 개별적인 프로세서로서 작동하거나, 중앙 프로세서의 제어에 의해 작동될 수 있다. 또한, 영상 부호화 장치(150)의 메모리(165)는, 외부로부터 수신한 데이터와, 프로세서에 의해 생성된 데이터를 저장할 수 있다.
영상 부호화 장치(150)의 프로세서(170)는 현재 블록에 이용가능한 인트라 예측 모드를 적용하고 최적의 RD 코스트를 갖는 인트라 예측 모드를 결정할 수 있다.
다양한 실시예들에서 영상 부호화 장치(150)의 프로세서(170)는, 현재 크로마 블록의 형태에 기초하여, 상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하고, 상기 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중, 상기 현재 크로마 블록의 인트라 예측 모드를 결정하고, 상기 결정된 인트라 예측 모드에 기초하여 상기 현재 크로마 블록에 대한 인트라 예측을 수행하고, 상기 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중 상기 결정된 인트라 예측 모드를 가리키는 인트라 예측 모드 정보를 부호화할 수 있다.
이하에서는 본 개시의 일 실시예에 따라 부호화 단위의 분할에 대하여 자세히 설명한다.
먼저 하나의 픽처 (Picture)는 하나 이상의 슬라이스 또는 하나 이상의 타일(tile)로 분할될 수 있다. 하나의 슬라이스 또는 하나의 타일은 하나 이상의 최대 부호화 단위(Coding Tree Unit; CTU)의 시퀀스일 수 있다. 최대 부호화 단위 (CTU)와 대비되는 개념으로 최대 부호화 블록 (Coding Tree Block; CTB)이 있다.
최대 부호화 블록(CTB)은 NxN개의 샘플들을 포함하는 NxN 블록을 의미한다(N은 정수). 각 컬러 성분은 하나 이상의 최대 부호화 블록으로 분할될 수 있다.
픽처가 3개의 샘플 어레이(Y, Cr, Cb 성분별 샘플 어레이)를 가지는 경우에 최대 부호화 단위(CTU)란, 루마 샘플의 최대 부호화 블록 및 그에 대응되는 크로마 샘플들의 2개의 최대 부호화 블록과, 루마 샘플, 크로마 샘플들을 부호화하는데 이용되는 신택스 엘리먼트들(syntax elements)을 포함하는 단위이다. 픽처가 모노크롬(monochrome) 픽처인 경우에 최대 부호화 단위란, 모노크롬 샘플의 최대 부호화 블록과 모노크롬 샘플들을 부호화하는데 이용되는 신택스 엘리먼트들을 포함하는 단위이다. 픽처가 컬러 성분별로 분리되는 컬러 플레인(plane)으로 부호화되는 픽처인 경우에 최대 부호화 단위란, 해당 픽처와 픽처의 샘플들을 부호화하는데 이용되는 신택스 엘리먼트들을 포함하는 단위이다.
하나의 최대 부호화 블록(CTB)은 MxN개의 샘플들을 포함하는 MxN 부호화 블록(coding block)으로 분할될 수 있다 (M, N은 정수).
픽처가 Y, Cr, Cb 성분별 샘플 어레이를 가지는 경우에 부호화 단위(Coding Unit; CU)란, 루마 샘플의 부호화 블록 및 그에 대응되는 크로마 샘플들의 2개의 부호화 블록과, 루마 샘플, 크로마 샘플들을 부호화하는데 이용되는 신택스 엘리먼트들을 포함하는 단위이다. 픽처가 모노크롬 픽처인 경우에 부호화 단위란, 모노크롬 샘플의 부호화 블록과 모노크롬 샘플들을 부호화하는데 이용되는 신택스 엘리먼트들을 포함하는 단위이다. 픽처가 컬러 성분별로 분리되는 컬러 플레인으로 부호화되는 픽처인 경우에 부호화 단위란, 해당 픽처와 픽처의 샘플들을 부호화하는데 이용되는 신택스 엘리먼트들을 포함하는 단위이다.
위에서 설명한 바와 같이, 최대 부호화 블록과 최대 부호화 단위는 서로 구별되는 개념이며, 부호화 블록과 부호화 단위는 서로 구별되는 개념이다. 즉, (최대) 부호화 단위는 해당 샘플을 포함하는 (최대) 부호화 블록과 그에 대응하는 신택스 엘리먼트를 포함하는 데이터 구조를 의미한다. 하지만 당업자가 (최대) 부호화 단위 또는 (최대) 부호화 블록가 소정 개수의 샘플들을 포함하는 소정 크기의 블록을 지칭한다는 것을 이해할 수 있으므로, 이하 명세서에서는 최대 부호화 블록과 최대 부호화 단위, 또는 부호화 블록과 부호화 단위를 특별한 사정이 없는 한 구별하지 않고 언급한다.
영상은 최대 부호화 단위(Coding Tree Unit; CTU)로 분할될 수 있다. 최대 부호화 단위의 크기는 비트스트림으로부터 획득된 정보에 기초하여 결정될 수 있다. 최대 부호화 단위의 모양은 동일 크기의 정방형을 가질 수 있다. 하지만 이에 한정되는 것은 아니다.
예를 들어, 비트스트림으로부터 루마 부호화 블록의 최대 크기에 대한 정보가 획득될 수 있다. 예를 들어, 루마 부호화 블록의 최대 크기에 대한 정보가 나타내는 루마 부호화 블록의 최대 크기는 16x16, 32x32, 64x64, 128x128, 256x256 중 하나일 수 있다.
예를 들어, 비트스트림으로부터 2분할이 가능한 루마 부호화 블록의 최대 크기와 루마 블록 크기 차이에 대한 정보가 획득될 수 있다. 루마 블록 크기 차이에 대한 정보는 루마 최대 부호화 단위와 2분할이 가능한 최대 루마 부호화 블록 간의 크기 차이를 나타낼 수 있다. 따라서, 비트스트림으로부터 획득된 2분할이 가능한 루마 부호화 블록의 최대 크기에 대한 정보와 루마 블록 크기 차이에 대한 정보를 결합하면, 루마 최대 부호화 단위의 크기가 결정될 수 있다. 루마 최대 부호화 단위의 크기를 이용하면 크로마 최대 부호화 단위의 크기도 결정될 수 있다. 예를 들어, 컬러 포맷에 따라 Y: Cb : Cr 비율이 4:2:0 이라면, 크로마 블록의 크기는 루마 블록의 크기의 절반일 수 있고, 마찬가지로 크로마 최대 부호화 단위의 크기는 루마 최대 부호화 단위의 크기의 절반일 수 있다.
일 실시예에서, 바이너리 분할(binary split)이 가능한 루마 부호화 블록의 최대 크기에 대한 정보는 비트스트림으로부터 획득되므로, 바이너리 분할이 가능한 루마 부호화 블록의 최대 크기는 가변적으로 결정될 수 있다. 이와 달리, 터너리 분할(ternary split)이 가능한 루마 부호화 블록의 최대 크기는 고정될 수 있다. 예를 들어, I 픽처에서 터너리 분할이 가능한 루마 부호화 블록의 최대 크기는 32x32이고, P 픽처 또는 B 픽처에서 터너리 분할이 가능한 루마 부호화 블록의 최대 크기는 64x64일 수 있다.
또한 최대 부호화 단위는 비트스트림으로부터 획득된 분할 형태 모드 정보에 기초하여 부호화 단위로 계층적으로 분할될 수 있다. 분할 형태 모드 정보로서, 쿼드분할(quad split) 여부를 나타내는 정보, 다분할 여부를 나타내는 정보, 분할 방향 정보 및 분할 타입 정보 중 적어도 하나가 비트스트림으로부터 획득될 수 있다.
예를 들어, 쿼드분할(quad split) 여부를 나타내는 정보는 현재 부호화 단위가 쿼드분할(QUAD_SPLIT)될지 또는 쿼드분할되지 않을지를 나타낼 수 있다.
현재 부호화 단위가 쿼드분할되지 않으면, 다분할 여부를 나타내는 정보는 현재 부호화 단위가 더 이상 분할되지 않을지(NO_SPLIT) 아니면 바이너리/터너리 분할될지 여부를 나타낼 수 있다.
현재 부호화 단위가 바이너리 분할되거나 터너리 분할되면, 분할 방향 정보는 현재 부호화 단위가 수평 방향 또는 수직 방향 중 하나로 분할됨을 나타낸다.
현재 부호화 단위가 수평 또는 수직 방향으로 분할되면 분할 타입 정보는 현재 부호화 단위를 바이너리 분할 또는 터너리 분할로 분할함을 나타낸다.
분할 방향 정보 및 분할 타입 정보에 따라, 현재 부호화 단위의 분할 모드가 결정될 수 있다. 현재 부호화 단위가 수평 방향으로 바이너리 분할되는 경우의 분할 모드는 바이너리 수평 분할(SPLIT_BT_HOR), 수평 방향으로 터너리 분할되는 경우의 터너리 수평 분할(SPLIT_TT_HOR), 수직 방향으로 바이너리 분할되는 경우의 분할 모드는 바이너리 수직 분할 (SPLIT_BT_VER) 및 수직 방향으로 터너리 분할되는 경우의 분할 모드는 터너리 수직 분할 (SPLIT_BT_VER)로 결정될 수 있다.
영상 복호화 장치(100)는 비트스트림으로부터 분할 형태 모드 정보를 하나의 빈스트링으로부터 획득할 수 있다. 영상 복호화 장치(100)가 수신한 비트스트림의 형태는 Fixed length binary code, Unary code, Truncated unary code, 미리 결정된 바이너리 코드 등을 포함할 수 있다. 빈스트링은 정보를 2진수의 나열로 나타낸 것이다. 빈스트링은 적어도 하나의 비트로 구성될 수 있다. 영상 복호화 장치(100)는 분할 규칙에 기초하여 빈스트링에 대응하는 분할 형태 모드 정보를 획득할 수 있다. 영상 복호화 장치(100)는 하나의 빈스트링에 기초하여, 부호화 단위를 쿼드분할할지 여부, 분할하지 않을지 또는 분할 방향 및 분할 타입을 결정할 수 있다.
부호화 단위는 최대 부호화 단위보다 작거나 같을 수 있다. 예를 들어 최대 부호화 단위도 최대 크기를 가지는 부호화 단위이므로 부호화 단위의 하나이다. 최대 부호화 단위에 대한 분할 형태 모드 정보가 분할되지 않음을 나타내는 경우, 최대 부호화 단위에서 결정되는 부호화 단위는 최대 부호화 단위와 같은 크기를 가진다. 최대 부호화 단위에 대한 분할 형태 모드 정보가 분할됨을 나타내는 경우 최대 부호화 단위는 부호화 단위들로 분할 될 수 있다. 또한 부호화 단위에 대한 분할 형태 모드 정보가 분할을 나타내는 경우 부호화 단위들은 더 작은 크기의 부호화 단위들로 분할 될 수 있다. 다만, 영상의 분할은 이에 한정되는 것은 아니며 최대 부호화 단위 및 부호화 단위는 구별되지 않을 수 있다. 부호화 단위의 분할에 대해서는 도 3 내지 도 16에서 보다 자세히 설명한다.
또한 부호화 단위로부터 예측을 위한 하나 이상의 예측 블록이 결정될 수 있다. 예측 블록은 부호화 단위와 같거나 작을 수 있다. 또한 부호화 단위로부터 변환을 위한 하나 이상의 변환 블록이 결정될 수 있다. 변환 블록은 부호화 단위와 같거나 작을 수 있다.
변환 블록과 예측 블록의 모양 및 크기는 서로 관련 없을 수 있다.
다른 실시예로, 부호화 단위가 예측 블록으로서 부호화 단위를 이용하여 예측이 수행될 수 있다. 또한 부호화 단위가 변환 블록으로서 부호화 단위를 이용하여 변환이 수행될 수 있다.
부호화 단위의 분할에 대해서는 도 3 내지 도 16에서 보다 자세히 설명한다. 본 개시의 현재 블록 및 주변 블록은 최대 부호화 단위, 부호화 단위, 예측 블록 및 변환 블록 중 하나를 나타낼 수 있다. 또한, 현재 블록 또는 현재 부호화 단위는 현재 복호화 또는 부호화가 진행되는 블록 또는 현재 분할이 진행되고 있는 블록이다. 주변 블록은 현재 블록 이전에 복원된 블록일 수 있다. 주변 블록은 현재 블록으로부터 공간적 또는 시간적으로 인접할 수 있다. 주변 블록은 현재 블록의 좌하측, 좌측, 좌상측, 상측, 우상측, 우측, 우하측 중 하나에 위치할 수 있다.
도 3은 일 실시예에 따라 영상 복호화 장치(100)가 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
블록 형태는 4Nx4N, 4Nx2N, 2Nx4N, 4NxN, Nx4N, 32NxN, Nx32N, 16NxN, Nx16N, 8NxN 또는 Nx8N을 포함할 수 있다. 여기서 N은 양의 정수일 수 있다. 블록 형태 정보는 부호화 단위의 모양, 방향, 너비 및 높이의 비율, 너비 및 높이의 크기 중 적어도 하나를 나타내는 정보이다.
부호화 단위의 모양은 정방형(square) 및 비정방형(non-square)을 포함할 수 있다. 부호화 단위의 너비 및 높이의 길이가 같은 경우(즉, 부호화 단위의 블록 형태가 4Nx4N 인 경우), 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보를 정방형으로 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위의 모양을 비정방형으로 결정할 수 있다.
부호화 단위의 너비 및 높이의 길이가 다른 경우(즉, 부호화 단위의 블록 형태가 4Nx2N, 2Nx4N, 4NxN, Nx4N, 32NxN, Nx32N, 16NxN, Nx16N, 8NxN 또는 Nx8N인 경우), 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보를 비정방형으로 결정할 수 있다. 부호화 단위의 모양이 비정방형인 경우, 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보 중 너비 및 높이의 비율을 1:2, 2:1, 1:4, 4:1, 1:8, 8:1, 1:16, 16:1, 1:32, 32:1 중 적어도 하나로 결정할 수 있다. 또한, 부호화 단위의 너비의 길이 및 높이의 길이에 기초하여, 영상 복호화 장치(100)는 부호화 단위가 수평 방향인지 수직 방향인지 결정할 수 있다. 또한, 부호화 단위의 너비의 길이, 높이의 길이 또는 넓이 중 적어도 하나에 기초하여, 영상 복호화 장치(100)는 부호화 단위의 크기를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보를 이용하여 부호화 단위의 형태를 결정할 수 있고, 분할 형태 모드 정보를 이용하여 부호화 단위가 어떤 형태로 분할되는지를 결정할 수 있다. 즉, 영상 복호화 장치(100)가 이용하는 블록 형태 정보가 어떤 블록 형태를 나타내는지에 따라 분할 형태 모드 정보가 나타내는 부호화 단위의 분할 방법이 결정될 수 있다.
영상 복호화 장치(100)는 비트스트림으로부터 분할 형태 모드 정보를 획득할 수 있다. 하지만 이에 한정되는 것은 아니며, 영상 복호화 장치(100) 및 영상 부호화 장치(150)는 블록 형태 정보에 기초하여 미리 약속된 분할 형태 모드 정보를 결정할 수 있다. 영상 복호화 장치(100)는 최대 부호화 단위 또는 최소 부호화 단위에 대하여 미리 약속된 분할 형태 모드 정보를 결정할 수 있다. 예를 들어 영상 복호화 장치(100)는 최대 부호화 단위에 대하여 분할 형태 모드 정보를 쿼드 분할(quad split)로 결정할 수 있다. 또한, 영상 복호화 장치(100)는 최소 부호화 단위에 대하여 분할 형태 모드 정보를 "분할하지 않음"으로 결정할 수 있다. 구체적으로 영상 복호화 장치(100)는 최대 부호화 단위의 크기를 256x256으로 결정할 수 있다. 영상 복호화 장치(100)는 미리 약속된 분할 형태 모드 정보를 쿼드 분할로 결정할 수 있다. 쿼드 분할은 부호화 단위의 너비 및 높이를 모두 이등분하는 분할 형태 모드이다. 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 256x256 크기의 최대 부호화 단위로부터 128x128 크기의 부호화 단위를 획득할 수 있다. 또한 영상 복호화 장치(100)는 최소 부호화 단위의 크기를 4x4로 결정할 수 있다. 영상 복호화 장치(100)는 최소 부호화 단위에 대하여 "분할하지 않음"을 나타내는 분할 형태 모드 정보를 획득할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 현재 부호화 단위가 정방형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 예를 들어 영상 복호화 장치(100)는 분할 형태 모드 정보에 따라 정방형의 부호화 단위를 분할하지 않을지, 수직으로 분할할지, 수평으로 분할할지, 4개의 부호화 단위로 분할할지 등을 결정할 수 있다. 도 3을 참조하면, 현재 부호화 단위(300)의 블록 형태 정보가 정방형의 형태를 나타내는 경우, 복호화부(120)는 분할되지 않음을 나타내는 분할 형태 모드 정보에 따라 현재 부호화 단위(300)와 동일한 크기를 가지는 부호화 단위(310a)를 결정하거나, 소정의 분할방법을 나타내는 분할 형태 모드 정보에 기초하여 분할된 부호화 단위(310b, 310c, 310d, 310e, 310f 등)를 결정할 수 있다.
도 3을 참조하면 영상 복호화 장치(100)는 일 실시예에 따라 수직방향으로 분할됨을 나타내는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(300)를 수직방향으로 분할한 두 개의 부호화 단위(310b)를 결정할 수 있다. 영상 복호화 장치(100)는 수평방향으로 분할됨을 나타내는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(300)를 수평방향으로 분할한 두 개의 부호화 단위(310c)를 결정할 수 있다. 영상 복호화 장치(100)는 수직방향 및 수평방향으로 분할됨을 나타내는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(300)를 수직방향 및 수평방향으로 분할한 네 개의 부호화 단위(310d)를 결정할 수 있다. 영상 복호화 장치(100)는 일 실시예에 따라 수직방향으로 터너리(ternary) 분할됨을 나타내는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(300)를 수직방향으로 분할한 세 개의 부호화 단위(310e)를 결정할 수 있다. 영상 복호화 장치(100)는 수평방향으로 터너리 분할됨을 나타내는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(300)를 수평방향으로 분할한 세 개의 부호화 단위(310f)를 결정할 수 있다. 다만 정방형의 부호화 단위가 분할될 수 있는 분할 형태는 상술한 형태로 한정하여 해석되어서는 안되고, 분할 형태 모드 정보가 나타낼 수 있는 다양한 형태가 포함될 수 있다. 정방형의 부호화 단위가 분할되는 소정의 분할 형태들은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
도 4는 일 실시예에 따라 영상 복호화 장치(100)가 비정방형의 형태인 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위가 비정방형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 영상 복호화 장치(100)는 분할 형태 모드 정보에 따라 비정방형의 현재 부호화 단위를 분할하지 않을지 소정의 방법으로 분할할지 여부를 결정할 수 있다. 도 4를 참조하면, 현재 부호화 단위(400 또는 450)의 블록 형태 정보가 비정방형의 형태를 나타내는 경우, 영상 복호화 장치(100)는 분할되지 않음을 나타내는 분할 형태 모드 정보에 따라 현재 부호화 단위(400 또는 450)와 동일한 크기를 가지는 부호화 단위(410 또는 460)를 결정하거나, 소정의 분할방법을 나타내는 분할 형태 모드 정보에 따라 기초하여 분할된 부호화 단위(420a, 420b, 430a, 430b, 430c, 470a, 470b, 480a, 480b, 480c)를 결정할 수 있다. 비정방형의 부호화 단위가 분할되는 소정의 분할 방법은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 모드 정보를 이용하여 부호화 단위가 분할되는 형태를 결정할 수 있고, 이 경우 분할 형태 모드 정보는 부호화 단위가 분할되어 생성되는 적어도 하나의 부호화 단위의 개수를 나타낼 수 있다. 도 4를 참조하면 분할 형태 모드 정보가 두 개의 부호화 단위로 현재 부호화 단위(400 또는 450)가 분할되는 것을 나타내는 경우, 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(400 또는 450)를 분할하여 현재 부호화 단위에 포함되는 두 개의 부호화 단위(420a, 420b, 또는 470a, 470b)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)가 분할 형태 모드 정보에 기초하여 비정방형의 형태의 현재 부호화 단위(400 또는 450)를 분할하는 경우, 영상 복호화 장치(100)는 비정방형의 현재 부호화 단위(400 또는 450)의 긴 변의 위치를 고려하여 현재 부호화 단위를 분할할 수 있다. 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)의 형태를 고려하여 현재 부호화 단위(400 또는 450)의 긴 변을 분할하는 방향으로 현재 부호화 단위(400 또는 450)를 분할하여 복수개의 부호화 단위를 결정할 수 있다.
일 실시예에 따라, 분할 형태 모드 정보가 홀수개의 블록으로 부호화 단위를 분할(터너리 분할)하는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있다. 예를 들면, 분할 형태 모드 정보가 3개의 부호화 단위로 현재 부호화 단위(400 또는 450)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)를 3개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)로 분할할 수 있다.
일 실시예에 따라, 현재 부호화 단위(400 또는 450)의 너비 및 높이의 비율이 4:1 또는 1:4 일 수 있다. 너비 및 높이의 비율이 4:1 인 경우, 너비의 길이가 높이의 길이보다 길므로 블록 형태 정보는 수평 방향일 수 있다. 너비 및 높이의 비율이 1:4 인 경우, 너비의 길이가 높이의 길이보다 짧으므로 블록 형태 정보는 수직 방향일 수 있다. 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 현재 부호화 단위를 홀수개의 블록으로 분할할 것을 결정할 수 있다. 또한 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)의 블록 형태 정보에 기초하여 현재 부호화 단위(400 또는 450)의 분할 방향을 결정할 수 있다. 예를 들어 현재 부호화 단위(400)가 높이가 너비보다 큰 수직 방향인 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400)를 수평 방향으로 분할하여 부호화 단위(430a, 430b, 430c)를 결정할 수 있다. 또한 현재 부호화 단위(450)가 너비가 높이보다 큰 수평 방향인 경우, 영상 복호화 장치(100)는 현재 부호화 단위(450)를 수직 방향으로 분할 하여 부호화 단위(480a, 480b, 480c)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있으며, 결정된 부호화 단위들의 크기 모두가 동일하지는 않을 수 있다. 예를 들면, 결정된 홀수개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c) 중 소정의 부호화 단위(430b 또는 480b)의 크기는 다른 부호화 단위(430a, 430c, 480a, 480c)들과는 다른 크기를 가질 수도 있다. 즉, 현재 부호화 단위(400 또는 450)가 분할되어 결정될 수 있는 부호화 단위는 복수의 종류의 크기를 가질 수 있고, 경우에 따라서는 홀수개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)가 각각 서로 다른 크기를 가질 수도 있다.
일 실시예에 따라 분할 형태 모드 정보가 홀수개의 블록으로 부호화 단위가 분할되는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있고, 나아가 영상 복호화 장치(100)는 분할하여 생성되는 홀수개의 부호화 단위들 중 적어도 하나의 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 도 4을 참조하면 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)가 분할되어 생성된 3개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)들 중 중앙에 위치하는 부호화 단위(430b, 480b)에 대한 복호화 과정을 다른 부호화 단위(430a, 430c, 480a, 480c)와 다르게 할 수 있다. 예를 들면, 영상 복호화 장치(100)는 중앙에 위치하는 부호화 단위(430b, 480b)에 대하여는 다른 부호화 단위(430a, 430c, 480a, 480c)와 달리 더 이상 분할되지 않도록 제한하거나, 소정의 횟수만큼만 분할되도록 제한할 수 있다.
도 5는 일 실시예에 따라 영상 복호화 장치(100)가 블록 형태 정보 및 분할 형태 모드 정보 중 적어도 하나에 기초하여 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드 정보 중 적어도 하나에 기초하여 정방형 형태의 제1 부호화 단위(500)를 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 일 실시예에 따라 분할 형태 모드 정보가 수평 방향으로 제1 부호화 단위(500)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(100)는 제1 부호화 단위(500)를 수평 방향으로 분할하여 제2 부호화 단위(510)를 결정할 수 있다. 일 실시예에 따라 이용되는 제1 부호화 단위, 제2 부호화 단위, 제3 부호화 단위는 부호화 단위 간의 분할 전후 관계를 이해하기 위해 이용된 용어이다. 예를 들면, 제1 부호화 단위를 분할하면 제2 부호화 단위가 결정될 수 있고, 제2 부호화 단위가 분할되면 제3 부호화 단위가 결정될 수 있다. 이하에서는 이용되는 제1 부호화 단위, 제2 부호화 단위 및 제3 부호화 단위의 관계는 상술한 특징에 따르는 것으로 이해될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 결정된 제2 부호화 단위(510)를 분할 형태 모드 정보에 기초하여 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 도 5를 참조하면 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 제1 부호화 단위(500)를 분할하여 결정된 비정방형의 형태의 제2 부호화 단위(510)를 적어도 하나의 제3 부호화 단위(520a, 520b, 520c, 520d 등)로 분할하거나 제2 부호화 단위(510)를 분할하지 않을 수 있다. 영상 복호화 장치(100)는 분할 형태 모드 정보를 획득할 수 있고 영상 복호화 장치(100)는 획득한 분할 형태 모드 정보에 기초하여 제1 부호화 단위(500)를 분할하여 다양한 형태의 복수개의 제2 부호화 단위(예를 들면, 510)를 결정할 수 있으며, 제2 부호화 단위(510)는 분할 형태 모드 정보에 기초하여 제1 부호화 단위(500)가 분할된 방식에 따라 분할될 수 있다. 일 실시예에 따라, 제1 부호화 단위(500)가 제1 부호화 단위(500)에 대한 분할 형태 모드 정보에 기초하여 제2 부호화 단위(510)로 분할된 경우, 제2 부호화 단위(510) 역시 제2 부호화 단위(510)에 대한 분할 형태 모드 정보에 기초하여 제3 부호화 단위(예를 들면, 520a, 520b, 520c, 520d 등)으로 분할될 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 관련된 분할 형태 모드 정보에 기초하여 재귀적으로 분할될 수 있다. 따라서 비정방형 형태의 부호화 단위에서 정방형의 부호화 단위가 결정될 수 있고, 이러한 정방형 형태의 부호화 단위가 재귀적으로 분할되어 비정방형 형태의 부호화 단위가 결정될 수도 있다.
도 5를 참조하면, 비정방형 형태의 제2 부호화 단위(510)가 분할되어 결정되는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 소정의 부호화 단위(예를 들면, 가운데에 위치하는 부호화 단위 또는 정방형 형태의 부호화 단위)는 재귀적으로 분할될 수 있다. 일 실시예에 따라 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 하나인 정방형 형태의 제3 부호화 단위(520b)는 수평 방향으로 분할되어 복수개의 제4 부호화 단위로 분할될 수 있다. 복수개의 제4 부호화 단위(530a, 530b, 530c, 530d) 중 하나인 비정방형 형태의 제4 부호화 단위(530b 또는 530d)는 다시 복수개의 부호화 단위들로 분할될 수 있다. 예를 들면, 비정방형 형태의 제4 부호화 단위(530b 또는 530d)는 홀수개의 부호화 단위로 다시 분할될 수도 있다. 부호화 단위의 재귀적 분할에 이용될 수 있는 방법에 대하여는 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 제3 부호화 단위(520a, 520b, 520c, 520d 등) 각각을 부호화 단위들로 분할할 수 있다. 또한 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 제2 부호화 단위(510)를 분할하지 않는 것으로 결정할 수 있다. 영상 복호화 장치(100)는 일 실시예에 따라 비정방형 형태의 제2 부호화 단위(510)를 홀수개의 제3 부호화 단위(520b, 520c, 520d)로 분할할 수 있다. 영상 복호화 장치(100)는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 소정의 제3 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 예를 들면 영상 복호화 장치(100)는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 가운데에 위치하는 부호화 단위(520c)에 대하여는 더 이상 분할되지 않는 것으로 제한하거나 또는 설정 가능한 횟수로 분할되어야 하는 것으로 제한할 수 있다.
도 5를 참조하면, 영상 복호화 장치(100)는 비정방형 형태의 제2 부호화 단위(510)에 포함되는 홀수개의 제3 부호화 단위(520b, 520c, 520d)들 중 가운데에 위치하는 부호화 단위(520c)는 더 이상 분할되지 않거나, 소정의 분할 형태로 분할(예를 들면 4개의 부호화 단위로만 분할하거나 제2 부호화 단위(510)가 분할된 형태에 대응하는 형태로 분할)되는 것으로 제한하거나, 소정의 횟수로만 분할(예를 들면 n회만 분할, n>0)하는 것으로 제한할 수 있다. 다만 가운데에 위치한 부호화 단위(520c)에 대한 상기 제한은 단순한 실시예들에 불과하므로 상술한 실시예들로 제한되어 해석되어서는 안되고, 가운데에 위치한 부호화 단위(520c)가 다른 부호화 단위(520b, 520d)와 다르게 복호화 될 수 있는 다양한 제한들을 포함하는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 분할하기 위해 이용되는 분할 형태 모드 정보를 현재 부호화 단위 내의 소정의 위치에서 획득할 수 있다.
도 6은 일 실시예에 따라 영상 복호화 장치(100)가 홀수개의 부호화 단위들 중 소정의 부호화 단위를 결정하기 위한 방법을 도시한다.
도 6을 참조하면, 현재 부호화 단위(600, 650)의 분할 형태 모드 정보는 현재 부호화 단위(600, 650)에 포함되는 복수개의 샘플 중 소정 위치의 샘플(예를 들면, 가운데에 위치하는 샘플(640, 690))에서 획득될 수 있다. 다만 이러한 분할 형태 모드 정보 중 적어도 하나가 획득될 수 있는 현재 부호화 단위(600) 내의 소정 위치가 도 6에서 도시하는 가운데 위치로 한정하여 해석되어서는 안되고, 소정 위치에는 현재 부호화 단위(600)내에 포함될 수 있는 다양한 위치(예를 들면, 최상단, 최하단, 좌측, 우측, 좌측상단, 좌측하단, 우측상단 또는 우측하단 등)가 포함될 수 있는 것으로 해석되어야 한다. 영상 복호화 장치(100)는 소정 위치로부터 획득되는 분할 형태 모드 정보를 획득하여 현재 부호화 단위를 다양한 형태 및 크기의 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위가 소정의 개수의 부호화 단위들로 분할된 경우 그 중 하나의 부호화 단위를 선택할 수 있다. 복수개의 부호화 단위들 중 하나를 선택하기 위한 방법은 다양할 수 있으며, 이러한 방법들에 대한 설명은 이하의 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 복수개의 부호화 단위들로 분할하고, 소정 위치의 부호화 단위를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 홀수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 현재 부호화 단위(600) 또는 현재 부호화 단위(650)를 분할하여 홀수개의 부호화 단위들(620a, 620b, 620c) 또는 홀수개의 부호화 단위들(660a, 660b, 660c)을 결정할 수 있다. 영상 복호화 장치(100)는 홀수개의 부호화 단위들(620a, 620b, 620c) 또는 홀수개의 부호화 단위들(660a, 660b, 660c)의 위치에 대한 정보를 이용하여 가운데 부호화 단위(620b) 또는 가운데 부호화 단위(660b)를 결정할 수 있다. 예를 들면 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)에 포함되는 소정의 샘플의 위치를 나타내는 정보에 기초하여 부호화 단위들(620a, 620b, 620c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 구체적으로, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보에 기초하여 부호화 단위들(620a, 620b, 620c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다.
일 실시예에 따라 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 포함할 수 있다. 일 실시예에 따라 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보는 현재 부호화 단위(600)에 포함되는 부호화 단위들(620a, 620b, 620c)의 너비 또는 높이를 나타내는 정보를 포함할 수 있고, 이러한 너비 또는 높이는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 좌표 간의 차이를 나타내는 정보에 해당할 수 있다. 즉, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 직접 이용하거나 좌표간의 차이값에 대응하는 부호화 단위의 너비 또는 높이에 대한 정보를 이용함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다.
일 실시예에 따라, 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 나타내는 정보는 (xa, ya) 좌표를 나타낼 수 있고, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(530b)의 위치를 나타내는 정보는 (xb, yb) 좌표를 나타낼 수 있고, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 위치를 나타내는 정보는 (xc, yc) 좌표를 나타낼 수 있다. 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 좌표를 이용하여 가운데 부호화 단위(620b)를 결정할 수 있다. 예를 들면, 좌측 상단의 샘플(630a, 630b, 630c)의 좌표를 오름차순 또는 내림차순으로 정렬하였을 때, 가운데에 위치하는 샘플(630b)의 좌표인 (xb, yb)를 포함하는 부호화 단위(620b)를 현재 부호화 단위(600)가 분할되어 결정된 부호화 단위들(620a, 620b, 620c) 중 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 좌표는 픽쳐 내에서의 절대적인 위치를 나타내는 좌표를 나타낼 수 있고, 나아가 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 기준으로, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(630b)의 상대적 위치를 나타내는 정보인 (dxb, dyb)좌표, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 상대적 위치를 나타내는 정보인 (dxc, dyc)좌표를 이용할 수도 있다. 또한 부호화 단위에 포함되는 샘플의 위치를 나타내는 정보로서 해당 샘플의 좌표를 이용함으로써 소정 위치의 부호화 단위를 결정하는 방법이 상술한 방법으로 한정하여 해석되어서는 안되고, 샘플의 좌표를 이용할 수 있는 다양한 산술적 방법으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위(600)를 복수개의 부호화 단위들(620a, 620b, 620c)로 분할할 수 있고, 부호화 단위들(620a, 620b, 620c) 중 소정의 기준에 따라 부호화 단위를 선택할 수 있다. 예를 들면, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c) 중 크기가 다른 부호화 단위(620b)를 선택할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 나타내는 정보인 (xa, ya) 좌표, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(630b)의 위치를 나타내는 정보인 (xb, yb) 좌표, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 위치를 나타내는 정보인 (xc, yc) 좌표를 이용하여 부호화 단위들(620a, 620b, 620c) 각각의 너비 또는 높이를 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 위치를 나타내는 좌표인 (xa, ya), (xb, yb), (xc, yc)를 이용하여 부호화 단위들(620a, 620b, 620c) 각각의 크기를 결정할 수 있다. 일 실시예에 따라, 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 너비를 현재 부호화 단위(600)의 너비로 결정할 수 있다. 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 높이를 yb-ya로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 가운데 부호화 단위(620b)의 너비를 현재 부호화 단위(600)의 너비로 결정할 수 있다. 영상 복호화 장치(100)는 가운데 부호화 단위(620b)의 높이를 yc-yb로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 하단 부호화 단위의 너비 또는 높이는 현재 부호화 단위의 너비 또는 높이와 상단 부호화 단위(620a) 및 가운데 부호화 단위(620b)의 너비 및 높이를 이용하여 결정할 수 있다. 영상 복호화 장치(100)는 결정된 부호화 단위들(620a, 620b, 620c)의 너비 및 높이에 기초하여 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 상단 부호화 단위(620a) 및 하단 부호화 단위(620c)의 크기와 다른 크기를 가지는 가운데 부호화 단위(620b)를 소정 위치의 부호화 단위로 결정할 수 있다. 다만 상술한 영상 복호화 장치(100)가 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정하는 과정은 샘플 좌표에 기초하여 결정되는 부호화 단위의 크기를 이용하여 소정 위치의 부호화 단위를 결정하는 일 실시예에 불과하므로, 소정의 샘플 좌표에 따라 결정되는 부호화 단위의 크기를 비교하여 소정 위치의 부호화 단위를 결정하는 다양한 과정이 이용될 수 있다.
영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 좌측 상단의 샘플(670a)의 위치를 나타내는 정보인 (xd, yd) 좌표, 가운데 부호화 단위(660b)의 좌측 상단의 샘플(670b)의 위치를 나타내는 정보인 (xe, ye) 좌표, 우측 부호화 단위(660c)의 좌측 상단의 샘플(670c)의 위치를 나타내는 정보인 (xf, yf) 좌표를 이용하여 부호화 단위들(660a, 660b, 660c) 각각의 너비 또는 높이를 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위들(660a, 660b, 660c)의 위치를 나타내는 좌표인 (xd, yd), (xe, ye), (xf, yf)를 이용하여 부호화 단위들(660a, 660b, 660c) 각각의 크기를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 너비를 xe-xd로 결정할 수 있다. 영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 높이를 현재 부호화 단위(650)의 높이로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 가운데 부호화 단위(660b)의 너비를 xf-xe로 결정할 수 있다. 영상 복호화 장치(100)는 가운데 부호화 단위(660b)의 높이를 현재 부호화 단위(600)의 높이로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 우측 부호화 단위(660c)의 너비 또는 높이는 현재 부호화 단위(650)의 너비 또는 높이와 좌측 부호화 단위(660a) 및 가운데 부호화 단위(660b)의 너비 및 높이를 이용하여 결정할 수 있다. 영상 복호화 장치(100)는 결정된 부호화 단위들(660a, 660b, 660c)의 너비 및 높이에 기초하여 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 좌측 부호화 단위(660a) 및 우측 부호화 단위(660c)의 크기와 다른 크기를 가지는 가운데 부호화 단위(660b)를 소정 위치의 부호화 단위로 결정할 수 있다. 다만 상술한 영상 복호화 장치(100)가 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정하는 과정은 샘플 좌표에 기초하여 결정되는 부호화 단위의 크기를 이용하여 소정 위치의 부호화 단위를 결정하는 일 실시예에 불과하므로, 소정의 샘플 좌표에 따라 결정되는 부호화 단위의 크기를 비교하여 소정 위치의 부호화 단위를 결정하는 다양한 과정이 이용될 수 있다.
다만 부호화 단위의 위치를 결정하기 위하여 고려하는 샘플의 위치는 상술한 좌측 상단으로 한정하여 해석되어서는 안되고 부호화 단위에 포함되는 임의의 샘플의 위치에 대한 정보가 이용될 수 있는 것으로 해석될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 형태를 고려하여, 현재 부호화 단위가 분할되어 결정되는 홀수개의 부호화 단위들 중 소정 위치의 부호화 단위를 선택할 수 있다. 예를 들면, 현재 부호화 단위가 너비가 높이보다 긴 비정방형 형태라면 영상 복호화 장치(100)는 수평 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 수평 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다. 현재 부호화 단위가 높이가 너비보다 긴 비정방형 형태라면 영상 복호화 장치(100)는 수직 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 수직 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 짝수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 짝수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 영상 복호화 장치(100)는 현재 부호화 단위를 분할(바이너리 분할)하여 짝수개의 부호화 단위들을 결정할 수 있고 짝수개의 부호화 단위들의 위치에 대한 정보를 이용하여 소정 위치의 부호화 단위를 결정할 수 있다. 이에 대한 구체적인 과정은 도 6에서 상술한 홀수개의 부호화 단위들 중 소정 위치(예를 들면, 가운데 위치)의 부호화 단위를 결정하는 과정에 대응하는 과정일 수 있으므로 생략하도록 한다.
일 실시예에 따라, 비정방형 형태의 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 분할 과정에서 소정 위치의 부호화 단위에 대한 소정의 정보를 이용할 수 있다. 예를 들면 영상 복호화 장치(100)는 현재 부호화 단위가 복수개로 분할된 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 분할 과정에서 가운데 부호화 단위에 포함된 샘플에 저장된 블록 형태 정보 및 분할 형태 모드 정보 중 적어도 하나를 이용할 수 있다.
도 6을 참조하면 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(600)를 복수개의 부호화 단위들(620a, 620b, 620c)로 분할할 수 있으며, 복수개의 부호화 단위들(620a, 620b, 620c) 중 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 분할 형태 모드 정보가 획득되는 위치를 고려하여, 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 즉, 현재 부호화 단위(600)의 분할 형태 모드 정보는 현재 부호화 단위(600)의 가운데에 위치하는 샘플(640)에서 획득될 수 있으며, 상기 분할 형태 모드 정보에 기초하여 현재 부호화 단위(600)가 복수개의 부호화 단위들(620a, 620b, 620c)로 분할된 경우 상기 샘플(640)을 포함하는 부호화 단위(620b)를 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 가운데에 위치하는 부호화 단위로 결정하기 위해 이용되는 정보가 분할 형태 모드 정보로 한정하여 해석되어서는 안되고, 다양한 종류의 정보가 가운데에 위치하는 부호화 단위를 결정하는 과정에서 이용될 수 있다.
일 실시예에 따라 소정 위치의 부호화 단위를 식별하기 위한 소정의 정보는, 결정하려는 부호화 단위에 포함되는 소정의 샘플에서 획득될 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 현재 부호화 단위(600)가 분할되어 결정된 복수개의 부호화 단위들(620a, 620b, 620c) 중 소정 위치의 부호화 단위(예를 들면, 복수개로 분할된 부호화 단위 중 가운데에 위치하는 부호화 단위)를 결정하기 위하여 현재 부호화 단위(600) 내의 소정 위치의 샘플(예를 들면, 현재 부호화 단위(600)의 가운데에 위치하는 샘플)에서 획득되는 분할 형태 모드 정보를 이용할 수 있다. 즉, 영상 복호화 장치(100)는 현재 부호화 단위(600)의 블록 형태를 고려하여 상기 소정 위치의 샘플을 결정할 수 있고, 영상 복호화 장치(100)는 현재 부호화 단위(600)가 분할되어 결정되는 복수개의 부호화 단위들(620a, 620b, 620c) 중, 소정의 정보(예를 들면, 분할 형태 모드 정보)가 획득될 수 있는 샘플이 포함된 부호화 단위(620b)를 결정하여 소정의 제한을 둘 수 있다. 도 6을 참조하면 일 실시예에 따라 영상 복호화 장치(100)는 소정의 정보가 획득될 수 있는 샘플로서 현재 부호화 단위(600)의 가운데에 위치하는 샘플(640)을 결정할 수 있고, 영상 복호화 장치(100)는 이러한 샘플(640)이 포함되는 부호화 단위(620b)를 복호화 과정에서의 소정의 제한을 둘 수 있다. 다만 소정의 정보가 획득될 수 있는 샘플의 위치는 상술한 위치로 한정하여 해석되어서는 안되고, 제한을 두기 위해 결정하려는 부호화 단위(620b)에 포함되는 임의의 위치의 샘플들로 해석될 수 있다.
일 실시예에 따라 소정의 정보가 획득될 수 있는 샘플의 위치는 현재 부호화 단위(600)의 형태에 따라 결정될 수 있다. 일 실시예에 따라 블록 형태 정보는 현재 부호화 단위의 형태가 정방형인지 또는 비정방형인지 여부를 결정할 수 있고, 형태에 따라 소정의 정보가 획득될 수 있는 샘플의 위치를 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위의 너비에 대한 정보 및 높이에 대한 정보 중 적어도 하나를 이용하여 현재 부호화 단위의 너비 및 높이 중 적어도 하나를 반으로 분할하는 경계 상에 위치하는 샘플을 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다. 또다른 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위에 관련된 블록 형태 정보가 비정방형 형태임을 나타내는 경우, 현재 부호화 단위의 긴 변을 반으로 분할하는 경계에 인접하는 샘플 중 하나를 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여, 분할 형태 모드 정보를 이용할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 모드 정보를 부호화 단위에 포함된 소정 위치의 샘플에서 획득할 수 있고, 영상 복호화 장치(100)는 현재 부호화 단위가 분할되어 생성된 복수개의 부호화 단위들을 복수개의 부호화 단위 각각에 포함된 소정 위치의 샘플로부터 획득되는 분할 형태 모드 정보를 이용하여 분할할 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 포함된 소정 위치의 샘플에서 획득되는 분할 형태 모드 정보를 이용하여 재귀적으로 분할될 수 있다. 부호화 단위의 재귀적 분할 과정에 대하여는 도 5를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정할 수 있고, 이러한 적어도 하나의 부호화 단위가 복호화되는 순서를 소정의 블록(예를 들면, 현재 부호화 단위)에 따라 결정할 수 있다.
도 7는 일 실시예에 따라 영상 복호화 장치(100)가 현재 부호화 단위를 분할하여 복수개의 부호화 단위들을 결정하는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 모드 정보에 따라 제1 부호화 단위(700)를 수직 방향으로 분할하여 제2 부호화 단위(710a, 710b)를 결정하거나 제1 부호화 단위(700)를 수평 방향으로 분할하여 제2 부호화 단위(730a, 730b)를 결정하거나 제1 부호화 단위(700)를 수직 방향 및 수평 방향으로 분할하여 제2 부호화 단위(750a, 750b, 750c, 750d)를 결정할 수 있다.
도 7를 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향으로 분할하여 결정된 제2 부호화 단위(710a, 710b)를 수평 방향(710c)으로 처리되도록 순서를 결정할 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수평 방향으로 분할하여 결정된 제2 부호화 단위(730a, 730b)의 처리 순서를 수직 방향(730c)으로 결정할 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향 및 수평 방향으로 분할하여 결정된 제2 부호화 단위(750a, 750b, 750c, 750d)를 하나의 행에 위치하는 부호화 단위들이 처리된 후 다음 행에 위치하는 부호화 단위들이 처리되는 소정의 순서(예를 들면, 래스터 스캔 순서((raster scan order) 또는 z 스캔 순서(z scan order)(750e) 등)에 따라 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위들을 재귀적으로 분할할 수 있다. 도 7를 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(700)를 분할하여 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)을 결정할 수 있고, 결정된 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d) 각각을 재귀적으로 분할할 수 있다. 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)을 분할하는 방법은 제1 부호화 단위(700)를 분할하는 방법에 대응하는 방법이 될 수 있다. 이에 따라 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)은 각각 독립적으로 복수개의 부호화 단위들로 분할될 수 있다. 도 7를 참조하면 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향으로 분할하여 제2 부호화 단위(710a, 710b)를 결정할 수 있고, 나아가 제2 부호화 단위(710a, 710b) 각각을 독립적으로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 좌측의 제2 부호화 단위(710a)를 수평 방향으로 분할하여 제3 부호화 단위(720a, 720b)로 분할할 수 있고, 우측의 제2 부호화 단위(710b)는 분할하지 않을 수 있다.
일 실시예에 따라 부호화 단위들의 처리 순서는 부호화 단위의 분할 과정에 기초하여 결정될 수 있다. 다시 말해, 분할된 부호화 단위들의 처리 순서는 분할되기 직전의 부호화 단위들의 처리 순서에 기초하여 결정될 수 있다. 영상 복호화 장치(100)는 좌측의 제2 부호화 단위(710a)가 분할되어 결정된 제3 부호화 단위(720a, 720b)가 처리되는 순서를 우측의 제2 부호화 단위(710b)와 독립적으로 결정할 수 있다. 좌측의 제2 부호화 단위(710a)가 수평 방향으로 분할되어 제3 부호화 단위(720a, 720b)가 결정되었으므로 제3 부호화 단위(720a, 720b)는 수직 방향(720c)으로 처리될 수 있다. 또한 좌측의 제2 부호화 단위(710a) 및 우측의 제2 부호화 단위(710b)가 처리되는 순서는 수평 방향(710c)에 해당하므로, 좌측의 제2 부호화 단위(710a)에 포함되는 제3 부호화 단위(720a, 720b)가 수직 방향(720c)으로 처리된 후에 우측 부호화 단위(710b)가 처리될 수 있다. 상술한 내용은 부호화 단위들이 각각 분할 전의 부호화 단위에 따라 처리 순서가 결정되는 과정을 설명하기 위한 것이므로, 상술한 실시예에 한정하여 해석되어서는 안되고, 다양한 형태로 분할되어 결정되는 부호화 단위들이 소정의 순서에 따라 독립적으로 처리될 수 있는 다양한 방법으로 이용되는 것으로 해석되어야 한다.
도 8는 일 실시예에 따라 영상 복호화 장치(100)가 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것임을 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 획득된 분할 형태 모드 정보에 기초하여 현재 부호화 단위가 홀수개의 부호화 단위들로 분할되는 것을 결정할 수 있다. 도 8를 참조하면 정방형 형태의 제1 부호화 단위(800)가 비정방형 형태의 제2 부호화 단위(810a, 810b)로 분할될 수 있고, 제2 부호화 단위(810a, 810b)는 각각 독립적으로 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)로 분할될 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 제2 부호화 단위 중 좌측 부호화 단위(810a)는 수평 방향으로 분할하여 복수개의 제3 부호화 단위(820a, 820b)를 결정할 수 있고, 우측 부호화 단위(810b)는 홀수개의 제3 부호화 단위(820c, 820d, 820e)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제3 부호화 단위들(820a, 820b, 820c, 820d, 820e)이 소정의 순서로 처리될 수 있는지 여부를 판단하여 홀수개로 분할된 부호화 단위가 존재하는지를 결정할 수 있다. 도 8를 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(800)를 재귀적으로 분할하여 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)를 결정할 수 있다. 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드 정보 중 적어도 하나에 기초하여, 제1 부호화 단위(800), 제2 부호화 단위(810a, 810b) 또는 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)가 분할되는 형태 중 홀수개의 부호화 단위로 분할되는지 여부를 결정할 수 있다. 예를 들면, 제2 부호화 단위(810a, 810b) 중 우측에 위치하는 부호화 단위가 홀수개의 제3 부호화 단위(820c, 820d, 820e)로 분할될 수 있다. 제1 부호화 단위(800)에 포함되는 복수개의 부호화 단위들이 처리되는 순서는 소정의 순서(예를 들면, z-스캔 순서(z-scan order)(830))가 될 수 있고, 영상 복호화 장치(100)는 우측 제2 부호화 단위(810b)가 홀수개로 분할되어 결정된 제3 부호화 단위(820c, 820d, 820e)가 상기 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 판단할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(800)에 포함되는 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)의 경계에 따라 제2 부호화 단위(810a, 810b)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 예를 들면 비정방형 형태의 좌측 제2 부호화 단위(810a)의 높이를 반으로 분할하여 결정되는 제3 부호화 단위(820a, 820b)는 조건을 만족할 수 있다. 우측 제2 부호화 단위(810b)를 3개의 부호화 단위로 분할하여 결정되는 제3 부호화 단위(820c, 820d, 820e)들의 경계가 우측 제2 부호화 단위(810b)의 너비 또는 높이를 반으로 분할하지 못하므로 제3 부호화 단위(820c, 820d, 820e)는 조건을 만족하지 못하는 것으로 결정될 수 있다. 영상 복호화 장치(100)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 우측 제2 부호화 단위(810b)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
도 9은 일 실시예에 따라 영상 복호화 장치(100)가 제1 부호화 단위(900)를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 수신부(미도시)를 통해 획득한 분할 형태 모드 정보에 기초하여 제1 부호화 단위(900)를 분할할 수 있다. 정방형 형태의 제1 부호화 단위(900)는 4개의 정방형 형태를 가지는 부호화 단위로 분할되거나 또는 비정방형 형태의 복수개의 부호화 단위로 분할할 수 있다. 예를 들면 도 9을 참조하면, 제1 부호화 단위(900)는 정방형이고 분할 형태 모드 정보가 비정방형의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(100)는 제1 부호화 단위(900)를 복수개의 비정방형의 부호화 단위들로 분할할 수 있다. 구체적으로, 분할 형태 모드 정보가 제1 부호화 단위(900)를 수평 방향 또는 수직 방향으로 분할하여 홀수개의 부호화 단위를 결정하는 것을 나타내는 경우, 영상 복호화 장치(100)는 정방형 형태의 제1 부호화 단위(900)를 홀수개의 부호화 단위들로서 수직 방향으로 분할되어 결정된 제2 부호화 단위(910a, 910b, 910c) 또는 수평 방향으로 분할되어 결정된 제2 부호화 단위(920a, 920b, 920c)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(900)에 포함되는 제2 부호화 단위(910a, 910b, 910c, 920a, 920b, 920c)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제2 부호화 단위(910a, 910b, 910c, 920a, 920b, 920c)의 경계에 따라 제1 부호화 단위(900)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 도 9를 참조하면 정방형 형태의 제1 부호화 단위(900)를 수직 방향으로 분할하여 결정되는 제2 부호화 단위(910a, 910b, 910c)들의 경계가 제1 부호화 단위(900)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(900)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 또한 정방형 형태의 제1 부호화 단위(900)를 수평 방향으로 분할하여 결정되는 제2 부호화 단위(920a, 920b, 920c)들의 경계가 제1 부호화 단위(900)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(900)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 영상 복호화 장치(100)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 제1 부호화 단위(900)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라, 영상 복호화 장치(100)는 제1 부호화 단위를 분할하여 다양한 형태의 부호화 단위들을 결정할 수 있다.
도 9을 참조하면, 영상 복호화 장치(100)는 정방형 형태의 제1 부호화 단위(900), 비정방형 형태의 제1 부호화 단위(930 또는 950)를 다양한 형태의 부호화 단위들로 분할할 수 있다.
도 10은 일 실시예에 따라 영상 복호화 장치(100)가 제1 부호화 단위(1000)가 분할되어 결정된 비정방형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 수신부(미도시)를 통해 획득한 분할 형태 모드 정보에 기초하여 정방형 형태의 제1 부호화 단위(1000)를 비정방형 형태의 제2 부호화 단위(1010a, 1010b, 1020a, 1020b)로 분할하는 것으로 결정할 수 있다. 제2 부호화 단위(1010a, 1010b, 1020a, 1020b)는 독립적으로 분할될 수 있다. 이에 따라 영상 복호화 장치(100)는 제2 부호화 단위(1010a, 1010b, 1020a, 1020b) 각각에 관련된 분할 형태 모드 정보에 기초하여 복수개의 부호화 단위로 분할하거나 분할하지 않는 것을 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 수직 방향으로 제1 부호화 단위(1000)가 분할되어 결정된 비정방형 형태의 좌측 제2 부호화 단위(1010a)를 수평 방향으로 분할하여 제3 부호화 단위(1012a, 1012b)를 결정할 수 있다. 다만 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1010a)를 수평 방향으로 분할한 경우, 우측 제2 부호화 단위(1010b)는 좌측 제2 부호화 단위(1010a)가 분할된 방향과 동일하게 수평 방향으로 분할될 수 없도록 제한할 수 있다. 만일 우측 제2 부호화 단위(1010b)가 동일한 방향으로 분할되어 제3 부호화 단위(1014a, 1014b)가 결정된 경우, 좌측 제2 부호화 단위(1010a) 및 우측 제2 부호화 단위(1010b)가 수평 방향으로 각각 독립적으로 분할됨으로써 제3 부호화 단위(1012a, 1012b, 1014a, 1014b)가 결정될 수 있다. 하지만 이는 영상 복호화 장치(100)가 분할 형태 모드 정보에 기초하여 제1 부호화 단위(1000)를 4개의 정방형 형태의 제2 부호화 단위(1030a, 1030b, 1030c, 1030d)로 분할한 것과 동일한 결과이며 이는 영상 복호화 측면에서 비효율적일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수평 방향으로 제1 부호화 단위(1000)가 분할되어 결정된 비정방형 형태의 제2 부호화 단위(1020a 또는 1020b)를 수직 방향으로 분할하여 제3 부호화 단위(1022a, 1022b, 1024a, 1024b)를 결정할 수 있다. 다만 영상 복호화 장치(100)는 제2 부호화 단위 중 하나(예를 들면 상단 제2 부호화 단위(1020a))를 수직 방향으로 분할한 경우, 상술한 이유에 따라 다른 제2 부호화 단위(예를 들면 하단 부호화 단위(1020b))는 상단 제2 부호화 단위(1020a)가 분할된 방향과 동일하게 수직 방향으로 분할될 수 없도록 제한할 수 있다.
도 11은 일 실시예에 따라 분할 형태 모드 정보가 4개의 정방형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 영상 복호화 장치(100)가 정방형 형태의 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 제1 부호화 단위(1100)를 분할하여 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 결정할 수 있다. 분할 형태 모드 정보에는 부호화 단위가 분할될 수 있는 다양한 형태에 대한 정보가 포함될 수 있으나, 다양한 형태에 대한 정보에는 정방형 형태의 4개의 부호화 단위로 분할하기 위한 정보가 포함될 수 없는 경우가 있다. 이러한 분할 형태 모드 정보에 따르면, 영상 복호화 장치(100)는 정방형 형태의 제1 부호화 단위(1100)를 4개의 정방형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할하지 못한다. 분할 형태 모드 정보에 기초하여 영상 복호화 장치(100)는 비정방형 형태의 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 비정방형 형태의 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 각각 독립적으로 분할할 수 있다. 재귀적인 방법을 통해 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등) 각각이 소정의 순서대로 분할될 수 있으며, 이는 분할 형태 모드 정보에 기초하여 제1 부호화 단위(1100)가 분할되는 방법에 대응하는 분할 방법일 수 있다.
예를 들면 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1110a)가 수평 방향으로 분할되어 정방형 형태의 제3 부호화 단위(1112a, 1112b)를 결정할 수 있고, 우측 제2 부호화 단위(1110b)가 수평 방향으로 분할되어 정방형 형태의 제3 부호화 단위(1114a, 1114b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1110a) 및 우측 제2 부호화 단위(1110b) 모두 수평 방향으로 분할되어 정방형 형태의 제3 부호화 단위(1116a, 1116b, 1116c, 1116d)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1100)가 4개의 정방형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
또 다른 예를 들면 영상 복호화 장치(100)는 상단 제2 부호화 단위(1120a)가 수직 방향으로 분할되어 정방형 형태의 제3 부호화 단위(1122a, 1122b)를 결정할 수 있고, 하단 제2 부호화 단위(1120b)가 수직 방향으로 분할되어 정방형 형태의 제3 부호화 단위(1124a, 1124b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 상단 제2 부호화 단위(1120a) 및 하단 제2 부호화 단위(1120b) 모두 수직 방향으로 분할되어 정방형 형태의 제3 부호화 단위(1126a, 1126b, 1126a, 1126b)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1100)가 4개의 정방형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
도 12는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 제1 부호화 단위(1200)를 분할할 수 있다. 블록 형태가 정방형이고, 분할 형태 모드 정보가 제1 부호화 단위(1200)가 수평 방향 및 수직 방향 중 적어도 하나의 방향으로 분할됨을 나타내는 경우, 영상 복호화 장치(100)는 제1 부호화 단위(1200)를 분할하여 제2 부호화 단위(예를 들면, 1210a, 1210b, 1220a, 1220b 등)를 결정할 수 있다. 도 12를 참조하면 제1 부호화 단위1200)가 수평 방향 또는 수직 방향만으로 분할되어 결정된 비정방형 형태의 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)는 각각에 대한 분할 형태 모드 정보에 기초하여 독립적으로 분할될 수 있다. 예를 들면 영상 복호화 장치(100)는 제1 부호화 단위(1200)가 수직 방향으로 분할되어 생성된 제2 부호화 단위(1210a, 1210b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 결정할 수 있고, 제1 부호화 단위(1200)가 수평 방향으로 분할되어 생성된 제2 부호화 단위(1220a, 1220b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 결정할 수 있다. 이러한 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)의 분할 과정은 도 11과 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 소정의 순서에 따라 부호화 단위를 처리할 수 있다. 소정의 순서에 따른 부호화 단위의 처리에 대한 특징은 도 7와 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다. 도 12를 참조하면 영상 복호화 장치(100)는 정방형 형태의 제1 부호화 단위(1200)를 분할하여 4개의 정방형 형태의 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)를 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(1200)가 분할되는 형태에 따라 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)의 처리 순서를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수직 방향으로 분할되어 생성된 제2 부호화 단위(1210a, 1210b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 결정할 수 있고, 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1210a)에 포함되는 제3 부호화 단위(1216a, 1216c)를 수직 방향으로 먼저 처리한 후, 우측 제2 부호화 단위(1210b)에 포함되는 제3 부호화 단위(1216b, 1216d)를 수직 방향으로 처리하는 순서(1217)에 따라 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 처리할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수평 방향으로 분할되어 생성된 제2 부호화 단위(1220a, 1220b)를 수직 방향으로 각각 분할하여 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 결정할 수 있고, 영상 복호화 장치(100)는 상단 제2 부호화 단위(1220a)에 포함되는 제3 부호화 단위(1226a, 1226b)를 수평 방향으로 먼저 처리한 후, 하단 제2 부호화 단위(1220b)에 포함되는 제3 부호화 단위(1226c, 1226d)를 수평 방향으로 처리하는 순서(1227)에 따라 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 처리할 수 있다.
도 12를 참조하면, 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)가 각각 분할되어 정방형 형태의 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)가 결정될 수 있다. 수직 방향으로 분할되어 결정된 제2 부호화 단위(1210a, 1210b) 및 수평 방향으로 분할되어 결정된 제2 부호화 단위(1220a, 1220b)는 서로 다른 형태로 분할된 것이지만, 이후에 결정되는 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)에 따르면 결국 동일한 형태의 부호화 단위들로 제1 부호화 단위(1200)가 분할된 결과가 된다. 이에 따라 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 상이한 과정을 통해 재귀적으로 부호화 단위를 분할함으로써 결과적으로 동일한 형태의 부호화 단위들을 결정하더라도, 동일한 형태로 결정된 복수개의 부호화 단위들을 서로 다른 순서로 처리할 수 있다.
도 13은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 심도를 소정의 기준에 따라 결정할 수 있다. 예를 들면 소정의 기준은 부호화 단위의 긴 변의 길이가 될 수 있다. 영상 복호화 장치(100)는 현재 부호화 단위의 긴 변의 길이가 분할되기 전의 부호화 단위의 긴 변의 길이보다 2n (n>0) 배로 분할된 경우, 현재 부호화 단위의 심도는 분할되기 전의 부호화 단위의 심도보다 n만큼 심도가 증가된 것으로 결정할 수 있다. 이하에서는 심도가 증가된 부호화 단위를 하위 심도의 부호화 단위로 표현하도록 한다.
도 13을 참조하면, 일 실시예에 따라 정방형 형태임을 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는 ′0: SQUARE′를 나타낼 수 있음)에 기초하여 영상 복호화 장치(100)는 정방형 형태인 제1 부호화 단위(1300)를 분할하여 하위 심도의 제2 부호화 단위(1302), 제3 부호화 단위(1304) 등을 결정할 수 있다. 정방형 형태의 제1 부호화 단위(1300)의 크기를 2Nx2N이라고 한다면, 제1 부호화 단위(1300)의 너비 및 높이를 1/2배로 분할하여 결정된 제2 부호화 단위(1302)는 NxN의 크기를 가질 수 있다. 나아가 제2 부호화 단위(1302)의 너비 및 높이를 1/2크기로 분할하여 결정된 제3 부호화 단위(1304)는 N/2xN/2의 크기를 가질 수 있다. 이 경우 제3 부호화 단위(1304)의 너비 및 높이는 제1 부호화 단위(1300)의 1/4배에 해당한다. 제1 부호화 단위(1300)의 심도가 D인 경우 제1 부호화 단위(1300)의 너비 및 높이의 1/2배인 제2 부호화 단위(1302)의 심도는 D+1일 수 있고, 제1 부호화 단위(1300)의 너비 및 높이의 1/4배인 제3 부호화 단위(1304)의 심도는 D+2일 수 있다.
일 실시예에 따라 비정방형 형태를 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는, 높이가 너비보다 긴 비정방형임을 나타내는 ′1: NS_VER′ 또는 너비가 높이보다 긴 비정방형임을 나타내는 ′2: NS_HOR′를 나타낼 수 있음)에 기초하여, 영상 복호화 장치(100)는 비정방형 형태인 제1 부호화 단위(1310 또는 1320)를 분할하여 하위 심도의 제2 부호화 단위(1312 또는 1322), 제3 부호화 단위(1314 또는 1324) 등을 결정할 수 있다.
영상 복호화 장치(100)는 Nx2N 크기의 제1 부호화 단위(1310)의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 1302, 1312, 1322 등)를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1310)를 수평 방향으로 분할하여 NxN 크기의 제2 부호화 단위(1302) 또는 NxN/2 크기의 제2 부호화 단위(1322)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 N/2xN 크기의 제2 부호화 단위(1312)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(100)는 2NxN 크기의 제1 부호화 단위(1320) 의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 1302, 1312, 1322 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1320)를 수직 방향으로 분할하여 NxN 크기의 제2 부호화 단위(1302) 또는 N/2xN 크기의 제2 부호화 단위(1312)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 NxN/2 크기의 제2 부호화 단위(1322)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(100)는 NxN 크기의 제2 부호화 단위(1302) 의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1302)를 수직 방향 및 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304)를 결정하거나 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정하거나 N/2xN/4 크기의 제3 부호화 단위(1324)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 N/2xN 크기의 제2 부호화 단위(1312)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1312)를 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304) 또는 N/2xN/4 크기의 제3 부호화 단위(1324)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 NxN/2 크기의 제2 부호화 단위(1322)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1322)를 수직 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304) 또는 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/2xN/4크기의 제3 부호화 단위(1324)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 정방형 형태의 부호화 단위(예를 들면, 1300, 1302, 1304)를 수평 방향 또는 수직 방향으로 분할할 수 있다. 예를 들면, 2Nx2N 크기의 제1 부호화 단위(1300)를 수직 방향으로 분할하여 Nx2N 크기의 제1 부호화 단위(1310)를 결정하거나 수평 방향으로 분할하여 2NxN 크기의 제1 부호화 단위(1320)를 결정할 수 있다. 일 실시예에 따라 심도가 부호화 단위의 가장 긴 변의 길이에 기초하여 결정되는 경우, 2Nx2N 크기의 제1 부호화 단위(1300)가 수평 방향 또는 수직 방향으로 분할되어 결정되는 부호화 단위의 심도는 제1 부호화 단위(1300)의 심도와 동일할 수 있다.
일 실시예에 따라 제3 부호화 단위(1314 또는 1324)의 너비 및 높이는 제1 부호화 단위(1310 또는 1320)의 1/4배에 해당할 수 있다. 제1 부호화 단위(1310 또는 1320)의 심도가 D인 경우 제1 부호화 단위(1310 또는 1320)의 너비 및 높이의 1/2배인 제2 부호화 단위(1312 또는 1322)의 심도는 D+1일 수 있고, 제1 부호화 단위(1310 또는 1320)의 너비 및 높이의 1/4배인 제3 부호화 단위(1314 또는 1324)의 심도는 D+2일 수 있다.
도 14은 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 정방형 형태의 제1 부호화 단위(1400)를 분할하여 다양한 형태의 제2 부호화 단위를 결정할 수 있다. 도 14를 참조하면, 영상 복호화 장치(100)는 분할 형태 모드 정보에 따라 제1 부호화 단위(1400)를 수직 방향 및 수평 방향 중 적어도 하나의 방향으로 분할하여 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1400)에 대한 분할 형태 모드 정보에 기초하여 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)를 결정할 수 있다.
일 실시예에 따라 정방형 형태의 제1 부호화 단위(1400)에 대한 분할 형태 모드 정보에 따라 결정되는 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정방형 형태의 제1 부호화 단위(1400)의 한 변의 길이와 비정방형 형태의 제2 부호화 단위(1402a, 1402b, 1404a, 1404b)의 긴 변의 길이가 동일하므로, 제1 부호화 단위(1400)와 비정방형 형태의 제2 부호화 단위(1402a, 1402b, 1404a, 1404b)의 심도는 D로 동일하다고 볼 수 있다. 이에 반해 영상 복호화 장치(100)가 분할 형태 모드 정보에 기초하여 제1 부호화 단위(1400)를 4개의 정방형 형태의 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)로 분할한 경우, 정방형 형태의 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)의 한 변의 길이는 제1 부호화 단위(1400)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)의 심도는 제1 부호화 단위(1400)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 높이가 너비보다 긴 형태의 제1 부호화 단위(1410)를 분할 형태 모드 정보에 따라 수평 방향으로 분할하여 복수개의 제2 부호화 단위(1412a, 1412b, 1414a, 1414b, 1414c)로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 너비가 높이보다 긴 형태의 제1 부호화 단위(1420)를 분할 형태 모드 정보에 따라 수직 방향으로 분할하여 복수개의 제2 부호화 단위(1422a, 1422b, 1424a, 1424b, 1424c)로 분할할 수 있다.
일 실시예에 따라 비정방형 형태의 제1 부호화 단위(1410 또는 1420)에 대한 분할 형태 모드 정보에 따라 결정되는 제2 부호화 단위(1412a, 1412b, 1414a, 1414b, 1414c. 1422a, 1422b, 1424a, 1424b, 1424c)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정방형 형태의 제2 부호화 단위(1412a, 1412b)의 한 변의 길이는 높이가 너비보다 긴 비정방형 형태의 제1 부호화 단위(1410)의 한 변의 길이의 1/2배이므로, 정방형 형태의 제2 부호화 단위(1412a, 1412b)의 심도는 비정방형 형태의 제1 부호화 단위(1410)의 심도 D보다 한 심도 하위의 심도인 D+1이다.
나아가 영상 복호화 장치(100)가 분할 형태 모드 정보에 기초하여 비정방형 형태의 제1 부호화 단위(1410)를 홀수개의 제2 부호화 단위(1414a, 1414b, 1414c)로 분할할 수 있다. 홀수개의 제2 부호화 단위(1414a, 1414b, 1414c)는 비정방형 형태의 제2 부호화 단위(1414a, 1414c) 및 정방형 형태의 제2 부호화 단위(1414b)를 포함할 수 있다. 이 경우 비정방형 형태의 제2 부호화 단위(1414a, 1414c)의 긴 변의 길이 및 정방형 형태의 제2 부호화 단위(1414b)의 한 변의 길이는 제1 부호화 단위(1410)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(1414a, 1414b, 1414c)의 심도는 제1 부호화 단위(1410)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(1410)와 관련된 부호화 단위들의 심도를 결정하는 상기 방식에 대응하는 방식으로, 너비가 높이보다 긴 비정방형 형태의 제1 부호화 단위(1420)와 관련된 부호화 단위들의 심도를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 분할된 부호화 단위들의 구분을 위한 인덱스(PID)를 결정함에 있어서, 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 14를 참조하면, 홀수개로 분할된 부호화 단위들(1414a, 1414b, 1414c) 중 가운데에 위치하는 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)와 너비는 동일하지만 높이가 다른 부호화 단위들(1414a, 1414c)의 높이의 두 배일 수 있다. 즉, 이 경우 가운데에 위치하는 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)의 두 개를 포함할 수 있다. 따라서, 스캔 순서에 따라 가운데에 위치하는 부호화 단위(1414b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(1414c)는 인덱스가 2가 증가한 3일수 있다. 즉 인덱스의 값의 불연속성이 존재할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 이러한 분할된 부호화 단위들 간의 구분을 위한 인덱스의 불연속성의 존재 여부에 기초하여 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌지 여부를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위로부터 분할되어 결정된 복수개의 부호화 단위들을 구분하기 위한 인덱스의 값에 기초하여 특정 분할 형태로 분할된 것인지를 결정할 수 있다. 도 14를 참조하면 영상 복호화 장치(100)는 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(1410)를 분할하여 짝수개의 부호화 단위(1412a, 1412b)를 결정하거나 홀수개의 부호화 단위(1414a, 1414b, 1414c)를 결정할 수 있다. 영상 복호화 장치(100)는 복수개의 부호화 단위 각각을 구분하기 위하여 각 부호화 단위를 나타내는 인덱스(PID)를 이용할 수 있다. 일 실시예에 따라 PID는 각각의 부호화 단위의 소정 위치의 샘플(예를 들면, 좌측 상단 샘플)에서 획득될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 구분을 위한 인덱스를 이용하여 분할되어 결정된 부호화 단위들 중 소정 위치의 부호화 단위를 결정할 수 있다. 일 실시예에 따라 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(1410)에 대한 분할 형태 모드 정보가 3개의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(100)는 제1 부호화 단위(1410)를 3개의 부호화 단위(1414a, 1414b, 1414c)로 분할할 수 있다. 영상 복호화 장치(100)는 3개의 부호화 단위(1414a, 1414b, 1414c) 각각에 대한 인덱스를 할당할 수 있다. 영상 복호화 장치(100)는 홀수개로 분할된 부호화 단위 중 가운데 부호화 단위를 결정하기 위하여 각 부호화 단위에 대한 인덱스를 비교할 수 있다. 영상 복호화 장치(100)는 부호화 단위들의 인덱스에 기초하여 인덱스들 중 가운데 값에 해당하는 인덱스를 갖는 부호화 단위(1414b)를, 제1 부호화 단위(1410)가 분할되어 결정된 부호화 단위 중 가운데 위치의 부호화 단위로서 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 분할된 부호화 단위들의 구분을 위한 인덱스를 결정함에 있어서, 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 14를 참조하면, 제1 부호화 단위(1410)가 분할되어 생성된 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)와 너비는 동일하지만 높이가 다른 부호화 단위들(1414a, 1414c)의 높이의 두 배일 수 있다. 이 경우 가운데에 위치하는 부호화 단위(1414b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(1414c)는 인덱스가 2가 증가한 3일수 있다. 이러한 경우처럼 균일하게 인덱스가 증가하다가 증가폭이 달라지는 경우, 영상 복호화 장치(100)는 다른 부호화 단위들과 다른 크기를 가지는 부호화 단위를 포함하는 복수개의 부호화 단위로 분할된 것으로 결정할 수 있다, 일 실시예에 따라 분할 형태 모드 정보가 홀수개의 부호화 단위로 분할됨을 나타내는 경우, 영상 복호화 장치(100)는 홀수개의 부호화 단위 중 소정 위치의 부호화 단위(예를 들면 가운데 부호화 단위)가 다른 부호화 단위와 크기가 다른 형태로 현재 부호화 단위를 분할할 수 있다. 이 경우 영상 복호화 장치(100)는 부호화 단위에 대한 인덱스(PID)를 이용하여 다른 크기를 가지는 가운데 부호화 단위를 결정할 수 있다. 다만 상술한 인덱스, 결정하고자 하는 소정 위치의 부호화 단위의 크기 또는 위치는 일 실시예를 설명하기 위해 특정한 것이므로 이에 한정하여 해석되어서는 안되며, 다양한 인덱스, 부호화 단위의 위치 및 크기가 이용될 수 있는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 재귀적인 분할이 시작되는 소정의 데이터 단위를 이용할 수 있다.
도 15는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
일 실시예에 따라 소정의 데이터 단위는 부호화 단위가 분할 형태 모드 정보를 이용하여 재귀적으로 분할되기 시작하는 데이터 단위로 정의될 수 있다. 즉, 현재 픽쳐를 분할하는 복수개의 부호화 단위들이 결정되는 과정에서 이용되는 최상위 심도의 부호화 단위에 해당할 수 있다. 이하에서는 설명 상 편의를 위해 이러한 소정의 데이터 단위를 기준 데이터 단위라고 지칭하도록 한다.
일 실시예에 따라 기준 데이터 단위는 소정의 크기 및 형태를 나타낼 수 있다. 일 실시예에 따라, 기준 부호화 단위는 MxN의 샘플들을 포함할 수 있다. 여기서 M 및 N은 서로 동일할 수도 있으며, 2의 승수로 표현되는 정수일 수 있다. 즉, 기준 데이터 단위는 정방형 또는 비정방형의 형태를 나타낼 수 있으며, 이후에 정수개의 부호화 단위로 분할될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐를 복수개의 기준 데이터 단위로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐를 분할하는 복수개의 기준 데이터 단위를 각각의 기준 데이터 단위에 대한 분할 형태 모드 정보를 이용하여 분할할 수 있다. 이러한 기준 데이터 단위의 분할 과정은 쿼드 트리(quad-tree)구조를 이용한 분할 과정에 대응될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐에 포함되는 기준 데이터 단위가 가질 수 있는 최소 크기를 미리 결정할 수 있다. 이에 따라, 영상 복호화 장치(100)는 최소 크기 이상의 크기를 갖는 다양한 크기의 기준 데이터 단위를 결정할 수 있고, 결정된 기준 데이터 단위를 기준으로 분할 형태 모드 정보를 이용하여 적어도 하나의 부호화 단위를 결정할 수 있다.
도 15를 참조하면, 영상 복호화 장치(100)는 정방형 형태의 기준 부호화 단위(1500)를 이용할 수 있고, 또는 비정방형 형태의 기준 부호화 단위(1502)를 이용할 수도 있다. 일 실시예에 따라 기준 부호화 단위의 형태 및 크기는 적어도 하나의 기준 부호화 단위를 포함할 수 있는 다양한 데이터 단위(예를 들면, 시퀀스(sequence), 픽쳐(picture), 슬라이스(slice), 슬라이스 세그먼트(slice segment), 타일(tile), 타일 그룹(tile group), 최대부호화단위 등)에 따라 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 수신부(미도시)는 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보 중 적어도 하나를 상기 다양한 데이터 단위마다 비트스트림으로부터 획득할 수 있다. 정방형 형태의 기준 부호화 단위(1500)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 3의 현재 부호화 단위(300)가 분할되는 과정을 통해 상술하였고, 비정방형 형태의 기준 부호화 단위(1502)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 4의 현재 부호화 단위(400 또는 450)가 분할되는 과정을 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 소정의 조건에 기초하여 미리 결정되는 일부 데이터 단위에 따라 기준 부호화 단위의 크기 및 형태를 결정하기 위하여, 기준 부호화 단위의 크기 및 형태를 식별하기 위한 인덱스를 이용할 수 있다. 즉, 수신부(미도시)는 비트스트림으로부터 상기 다양한 데이터 단위(예를 들면, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 타일, 타일 그룹, 최대부호화단위 등) 중 소정의 조건(예를 들면 슬라이스 이하의 크기를 갖는 데이터 단위)을 만족하는 데이터 단위로서 슬라이스, 슬라이스 세그먼트, 타일, 타일 그룹, 최대부호화 단위 등 마다, 기준 부호화 단위의 크기 및 형태의 식별을 위한 인덱스만을 획득할 수 있다. 영상 복호화 장치(100)는 인덱스를 이용함으로써 상기 소정의 조건을 만족하는 데이터 단위마다 기준 데이터 단위의 크기 및 형태를 결정할 수 있다. 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 상대적으로 작은 크기의 데이터 단위마다 비트스트림으로부터 획득하여 이용하는 경우, 비트스트림의 이용 효율이 좋지 않을 수 있으므로, 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 직접 획득하는 대신 상기 인덱스만을 획득하여 이용할 수 있다. 이 경우 기준 부호화 단위의 크기 및 형태를 나타내는 인덱스에 대응하는 기준 부호화 단위의 크기 및 형태 중 적어도 하나는 미리 결정되어 있을 수 있다. 즉, 영상 복호화 장치(100)는 미리 결정된 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 인덱스에 따라 선택함으로써, 인덱스 획득의 기준이 되는 데이터 단위에 포함되는 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 하나의 최대 부호화 단위에 포함하는 적어도 하나의 기준 부호화 단위를 이용할 수 있다. 즉, 영상을 분할하는 최대 부호화 단위에는 적어도 하나의 기준 부호화 단위가 포함될 수 있고, 각각의 기준 부호화 단위의 재귀적인 분할 과정을 통해 부호화 단위가 결정될 수 있다. 일 실시예에 따라 최대 부호화 단위의 너비 및 높이 중 적어도 하나는 기준 부호화 단위의 너비 및 높이 중 적어도 하나의 정수배에 해당할 수 있다. 일 실시예에 따라 기준 부호화 단위의 크기는 최대부호화단위를 쿼드 트리 구조에 따라 n번 분할한 크기일 수 있다. 즉, 영상 복호화 장치(100)는 최대부호화단위를 쿼드 트리 구조에 따라 n 번 분할하여 기준 부호화 단위를 결정할 수 있고, 다양한 실시예들에 따라 기준 부호화 단위를 블록 형태 정보 및 분할 형태 모드 정보 중 적어도 하나에 기초하여 분할할 수 있다.
도 16은 일 실시예에 따라 픽쳐(1600)에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 픽쳐를 분할하는 적어도 하나의 프로세싱 블록을 결정할 수 있다. 프로세싱 블록이란, 영상을 분할하는 적어도 하나의 기준 부호화 단위를 포함하는 데이터 단위로서, 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위는 특정 순서대로 결정될 수 있다. 즉, 각각의 프로세싱 블록에서 결정되는 적어도 하나의 기준 부호화 단위의 결정 순서는 기준 부호화 단위가 결정될 수 있는 다양한 순서의 종류 중 하나에 해당할 수 있으며, 각각의 프로세싱 블록에서 결정되는 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록마다 결정되는 기준 부호화 단위의 결정 순서는 래스터 스캔(raster scan), Z 스캔(Z-scan), N 스캔(N-scan), 우상향 대각 스캔(up-right diagonal scan), 수평적 스캔(horizontal scan), 수직적 스캔(vertical scan) 등 다양한 순서 중 하나일 수 있으나, 결정될 수 있는 순서는 상기 스캔 순서들에 한정하여 해석되어서는 안 된다.
일 실시예에 따라 영상 복호화 장치(100)는 프로세싱 블록의 크기에 대한 정보를 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 영상 복호화 장치(100)는 프로세싱 블록의 크기에 대한 정보를 비트스트림으로부터 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 이러한 프로세싱 블록의 크기는 프로세싱 블록의 크기에 대한 정보가 나타내는 데이터 단위의 소정의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 수신부(미도시)는 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 특정의 데이터 단위마다 획득할 수 있다. 예를 들면 프로세싱 블록의 크기에 대한 정보는 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 타일, 타일 그룹 등의 데이터 단위로 비트스트림으로부터 획득될 수 있다. 즉 수신부(미도시)는 상기 여러 데이터 단위마다 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 획득할 수 있고 영상 복호화 장치(100)는 획득된 프로세싱 블록의 크기에 대한 정보를 이용하여 픽쳐를 분할하는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있으며, 이러한 프로세싱 블록의 크기는 기준 부호화 단위의 정수배의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 픽쳐(1600)에 포함되는 프로세싱 블록(1602, 1612)의 크기를 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)는 비트스트림으로부터 획득된 프로세싱 블록의 크기에 대한 정보에 기초하여 프로세싱 블록의 크기를 결정할 수 있다. 도 16을 참조하면, 영상 복호화 장치(100)는 일 실시예에 따라 프로세싱 블록(1602, 1612)의 가로크기를 기준 부호화 단위 가로크기의 4배, 세로크기를 기준 부호화 단위의 세로크기의 4배로 결정할 수 있다. 영상 복호화 장치(100)는 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 프로세싱 블록의 크기에 기초하여 픽쳐(1600)에 포함되는 각각의 프로세싱 블록(1602, 1612)을 결정할 수 있고, 프로세싱 블록(1602, 1612)에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서를 결정할 수 있다. 일 실시예에 따라 기준 부호화 단위의 결정은 기준 부호화 단위의 크기의 결정을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 비트스트림으로부터 적어도 하나의 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서에 대한 정보를 획득할 수 있고, 획득한 결정 순서에 대한 정보에 기초하여 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다. 결정 순서에 대한 정보는 프로세싱 블록 내에서 기준 부호화 단위들이 결정되는 순서 또는 방향으로 정의될 수 있다. 즉, 기준 부호화 단위들이 결정되는 순서는 각각의 프로세싱 블록마다 독립적으로 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 특정 데이터 단위마다 기준 부호화 단위의 결정 순서에 대한 정보를 비트스트림으로부터 획득할 수 있다. 예를 들면, 수신부(미도시)는 기준 부호화 단위의 결정 순서에 대한 정보를 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 타일, 타일 그룹, 프로세싱 블록 등의 데이터 단위로마다 비트스트림으로부터 획득할 수 있다. 기준 부호화 단위의 결정 순서에 대한 정보는 프로세싱 블록 내에서의 기준 부호화 단위 결정 순서를 나타내므로, 결정 순서에 대한 정보는 정수개의 프로세싱 블록을 포함하는 특정 데이터 단위 마다 획득될 수 있다.
영상 복호화 장치(100)는 일 실시예에 따라 결정된 순서에 기초하여 적어도 하나의 기준 부호화 단위를 결정할 수 있다.
일 실시예에 따라 수신부(미도시)는 비트스트림으로부터 프로세싱 블록(1602, 1612)과 관련된 정보로서, 기준 부호화 단위 결정 순서에 대한 정보를 획득할 수 있고, 영상 복호화 장치(100)는 상기 프로세싱 블록(1602, 1612)에 포함된 적어도 하나의 기준 부호화 단위를 결정하는 순서를 결정하고 부호화 단위의 결정 순서에 따라 픽쳐(1600)에 포함되는 적어도 하나의 기준 부호화 단위를 결정할 수 있다. 도 16을 참조하면, 영상 복호화 장치(100)는 각각의 프로세싱 블록(1602, 1612)과 관련된 적어도 하나의 기준 부호화 단위의 결정 순서(1604, 1614)를 결정할 수 있다. 예를 들면, 기준 부호화 단위의 결정 순서에 대한 정보가 프로세싱 블록마다 획득되는 경우, 각각의 프로세싱 블록(1602, 1612)과 관련된 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록(1602)과 관련된 기준 부호화 단위 결정 순서(1604)가 래스터 스캔(raster scan)순서인 경우, 프로세싱 블록(1602)에 포함되는 기준 부호화 단위는 래스터 스캔 순서에 따라 결정될 수 있다. 이에 반해 다른 프로세싱 블록(1612)과 관련된 기준 부호화 단위 결정 순서(1614)가 래스터 스캔 순서의 역순인 경우, 프로세싱 블록(1612)에 포함되는 기준 부호화 단위는 래스터 스캔 순서의 역순에 따라 결정될 수 있다.
영상 복호화 장치(100)는 일 실시예에 따라, 결정된 적어도 하나의 기준 부호화 단위를 복호화할 수 있다. 영상 복호화 장치(100)는 상술한 실시예를 통해 결정된 기준 부호화 단위에 기초하여 영상을 복호화 할 수 있다. 기준 부호화 단위를 복호화 하는 방법은 영상을 복호화 하는 다양한 방법들을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 형태를 나타내는 블록 형태 정보 또는 현재 부호화 단위를 분할하는 방법을 나타내는 분할 형태 모드 정보를 비트스트림으로부터 획득하여 이용할 수 있다. 분할 형태 모드 정보는 다양한 데이터 단위와 관련된 비트스트림에 포함될 수 있다. 예를 들면, 영상 복호화 장치(100)는 시퀀스 파라미터 세트(sequence parameter set), 픽쳐 파라미터 세트(picture parameter set), 비디오 파라미터 세트(video parameter set), 슬라이스 헤더(slice header), 슬라이스 세그먼트 헤더(slice segment header), 타일 헤더(tile header), 타일 그룹 헤더(tile group header)에 포함된 분할 형태 모드 정보를 이용할 수 있다. 나아가, 영상 복호화 장치(100)는 최대 부호화 단위, 기준 부호화 단위, 프로세싱 블록마다 비트스트림으로부터 블록 형태 정보 또는 분할 형태 모드 정보에 대응하는 신택스 엘리먼트를 비트스트림으로부터 획득하여 이용할 수 있다.
이하 본 개시의 일 실시예에 따른 분할 규칙을 결정하는 방법에 대하여 자세히 설명한다.
영상 복호화 장치(100)는 영상의 분할 규칙을 결정할 수 있다. 분할 규칙은 영상 복호화 장치(100) 및 영상 부호화 장치(150) 사이에 미리 결정되어 있을 수 있다. 영상 복호화 장치(100)는 비트스트림으로부터 획득된 정보에 기초하여 영상의 분할 규칙을 결정할 수 있다. 영상 복호화 장치(100)는 시퀀스 파라미터 세트(sequence parameter set), 픽쳐 파라미터 세트(picture parameter set), 비디오 파라미터 세트(video parameter set), 슬라이스 헤더(slice header), 슬라이스 세그먼트 헤더(slice segment header), 타일 헤더(tile header), 타일 그룹 헤더(tile group header) 중 적어도 하나로부터 획득된 정보에 기초하여 분할 규칙을 결정할 수 있다. 영상 복호화 장치(100)는 분할 규칙을 프레임, 슬라이스, 템포럴 레이어(Temporal layer), 최대 부호화 단위 또는 부호화 단위에 따라 다르게 결정할 수 있다.
영상 복호화 장치(100)는 부호화 단위의 블록 형태에 기초하여 분할 규칙을 결정할 수 있다. 블록 형태는 부호화 단위의 크기, 모양, 너비 및 높이의 비율, 방향을 포함할 수 있다. 영상 부호화 장치(150) 및 영상 복호화 장치(100)는 부호화 단위의 블록 형태에 기초하여 분할 규칙을 결정할 것을 미리 결정할 수 있다. 하지만 이에 한정되는 것은 아니다. 영상 복호화 장치(100)는 영상 부호화 장치(150)로부터 수신된 비트스트림으로부터 획득된 정보에 기초하여, 분할 규칙을 결정할 수 있다.
부호화 단위의 모양은 정방형(square) 및 비정방형(non-square)을 포함할 수 있다. 부호화 단위의 너비 및 높이의 길이가 같은 경우, 영상 복호화 장치(100)는 부호화 단위의 모양을 정방형으로 결정할 수 있다. 또한, 부호화 단위의 너비 및 높이의 길이가 같지 않은 경우, 영상 복호화 장치(100)는 부호화 단위의 모양을 비정방형으로 결정할 수 있다.
부호화 단위의 크기는 4x4, 8x4, 4x8, 8x8, 16x4, 16x8, . . . , 256x256의 다양한 크기를 포함할 수 있다. 부호화 단위의 크기는 부호화 단위의 긴변의 길이, 짧은 변의 길이또는 넓이에 따라 분류될 수 있다. 영상 복호화 장치(100)는 동일한 그룹으로 분류된 부호화 단위에 동일한 분할 규칙을 적용할 수 있다. 예를 들어 영상 복호화 장치(100)는 동일한 긴변의 길이를 가지는 부호화 단위를 동일한 크기로 분류할 수 있다. 또한 영상 복호화 장치(100)는 동일한 긴변의 길이를 가지는 부호화 단위에 대하여 동일한 분할 규칙을 적용할 수 있다.
부호화 단위의 너비 및 높이의 비율은 1:2, 2:1, 1:4, 4:1, 1:8, 8:1, 1:16 또는 16:1 등을 포함할 수 있다. 또한, 부호화 단위의 방향은 수평 방향 및 수직 방향을 포함할 수 있다. 수평 방향은 부호화 단위의 너비의 길이가 높이의 길이보다 긴 경우를 나타낼 수 있다. 수직 방향은 부호화 단위의 너비의 길이가 높이의 길이보다 짧은 경우를 나타낼 수 있다.
영상 복호화 장치(100)는 부호화 단위의 크기에 기초하여 분할 규칙을 적응적으로 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위의 크기에 기초하여 허용가능한 분할 형태 모드를 다르게 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 부호화 단위의 크기에 기초하여 분할이 허용되는지 여부를 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위의 크기에 따라 분할 방향을 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위의 크기에 따라 허용가능한 분할 타입을 결정할 수 있다.
부호화 단위의 크기에 기초하여 분할 규칙을 결정하는 것은 영상 부호화 장치(150) 및 영상 복호화 장치(100) 사이에 미리 결정된 분할 규칙일 수 있다. 또한, 영상 복호화 장치(100)는 비트스트림으로부터 획득된 정보에 기초하여, 분할 규칙을 결정할 수 있다.
영상 복호화 장치(100)는 부호화 단위의 위치에 기초하여 분할 규칙을 적응적으로 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위가 영상에서 차지하는 위치에 기초하여 분할 규칙을 적응적으로 결정할 수 있다.
또한, 영상 복호화 장치(100)는 서로 다른 분할 경로로 생성된 부호화 단위가 동일한 블록 형태를 가지지 않도록 분할 규칙을 결정할 수 있다. 다만 이에 한정되는 것은 아니며 서로 다른 분할 경로로 생성된 부호화 단위는 동일한 블록 형태를 가질 수 있다. 서로 다른 분할 경로로 생성된 부호화 단위들은 서로 다른 복호화 처리 순서를 가질 수 있다. 복호화 처리 순서에 대해서는 도 12와 함께 설명하였으므로 자세한 설명은 생략한다.
이하 도 17 내지 도 28을 참조하여, 본 명세서에서 개시된 다양한 실시예들에 따라서 인트라 예측을 수행하고, 결정된 각 블록의 인트라 예측 모드를 부호화 및 복호화하는 과정에 대하여 상세히 설명한다. 다양한 실시예들에 따른 인트라 예측 과정은 도 1a의 영상 복호화 장치(100)의 복호화부(120) 및 도 2a의 영상 부호화 장치(150)의 부호화부(155), 또는 도 1c에 도시된 영상 복호화 장치(100)의 프로세서(125) 및 도 2c에 도시된 영상 부호화 장치(150)의 프로세서(170)에 의해 수행될 수 있다. 구체적으로, 다양한 실시예들에 따른 인트라 예측 과정은 도 1b의 복호화부(6000)의 인트라 예측부(6400) 및 도 2b의 부호화부(7000)의 인트라 예측부(7200)에서 수행될 수 있다.
도 17은 일 실시예에 따른 인트라 예측 모드들을 나타낸 도면이다.
다양한 실시예들에 따른 인트라 예측 모드들은 Planar 모드 및 DC 모드와 같이 방향성을 갖지 않는 비방향성(non-angular) 인트라 예측 모드와, 방향성을 갖는 방향성(Angular) 인트라 예측 모드를 포함할 수 있다. 비방향성 모드에는 planar 모드 및 DC 모드 이외에 plane 모드 및 bi-linear 모드가 포함될 수도 있다.
도 17의 실선으로 표현된 화살표 방향을 참조하면, 방향성 인트라 예측 모드는 x축을 기준으로, -135도 ~ -180도 및 45도 ~ 180도 범위에서 특정 방향을 가리키는 인트라 예측 모드들을 포함할 수 있다.
이하의 설명에서, 제 1, 2 사분면(quadrant) 상의 방향을 가리키는 0~180도 범위의 예측 방향의 각도는 +로 표현되며, 제 3, 4 사분면상의 방향을 가리키는 -180~0도 범위의 예측 방향의 각도는 ?로 표현될 수 있다. 제 3, 4 사분면상의 방향을 가리키는 소정 각도 ?a(a는 양의 실수)는 (360-a)deg와 동일한 방향을 가리킨다. 예를 들어, -135도의 방향은 225도 방향과 동일한 방향이며, -180도의 방향은 180도의 방향과 동일한 방향이다.
도 17에 도시된 화살표 방향이 가리키는 예측 방향은 현재 블록의 인트라 예측되는 현재 픽셀을 기준으로 인트라 예측에 이용되는 주변 픽셀의 방향을 가리킨다. 또한, 도 17에 도시된 숫자들은 인트라 예측 방향에 따른 인트라 예측 모드 인덱스를 예시한 것이다. 이하, 인트라 예측 모드 인덱스는 predModeIntra로 지칭될 수 있다. 비방향성 인트라 예측 모드인 플라나(Planar) 모드에 대해서는 predModeIntra가 0으로 설정되고, DC 모드에 대해서는 predModeIntra가 1로 설정될 수 있다.
도 17을 참조하면, 일 실시예에 따른 방향성 인트라 예측 모드들은 45도와 -135도 방향을 기준으로, -135도 ~ -180도 및 45도 ~ 180도 사이를 65개로 분할한 65개의 인트라 예측 모드들을 포함할 수 있다. 65개의 방향성 인트라 예측 모드들은 -135도 방향부터 시계방향(clockwise)으로 2~66까지의 predModeIntra의 값을 순차적으로 가질 수 있다. 예를 들어, 도 17에서, predModeIntra가 2인 인트라 예측 모드(mode 2)는 -135도 방향의 좌측 하단 대각선 방향을 가리키는 인트라 예측 모드, predModeIntra가 18인 인트라 예측 모드는 -180도 (180도) 방향의 수평 방향을 가리키는 인트라 예측 모드, predModeIntra가 34인 인트라 예측 모드 (mode 34)는 좌측 상단 135도 방향의 대각선 방향을 가리키는 인트라 예측 모드, predModeIntra가 50인 인트라 예측 모드 (mode 50)는 90도 방향의 수직 방향을 가리키는 인트라 예측 모드, predModeIntra가 66인 인트라 예측 모드 (mode 66)는 우측 상단 45도 방향의 대각선 방향을 가리키는 인트라 예측 모드를 가리킬 수 있다.
일 실시예에서, 특정 인트라 예측 모드들에 대하여 인트라 예측 모드 인덱스에 대응되는 코드를 사용하여 지칭할 수 있다. 예를 들어, PLANAR_IDX는 predModeIntra가 0인 Planar 모드, DC_IDX는 predModeIntra가 1인 DC 모드를 가리킬 수 있다. VER_IDX는 predModeIntra가 50인 수직 모드, HOR_IDX는 predModeIntra가 18인 수평 모드를 가리킬 수 있다. DIA_IDX는 predModeIntra가 34인 135도 방향의 좌측 상단 대각선 방향 모드, HDIA_IDX는 predModeIntra가 2인 -135도 방향의 좌측 하단 대각선 방향 모드, VDIA_IDX는 predModeIntra가 66인 45도 방향의 우측 상단 대각선 방향 모드를 가리킬 수 있다.
인트라 예측 모드들이 갖는 preModeIntra의 값은 도 17에 도시된 것에 한정되지 않고 변경될 수 있다. 일 실시예에서, 방향성 인트라 예측 모드들의 개수는 65개에 한정되지 않고 변경될 수 있다. 예를 들어, 도 17의 점선으로 표시된 화살표 방향처럼 0도 ~ 45도 사이를 가리키는 방향성 인트라 예측 모드들이 45도 방향부터 시계방향(clockwise)으로 추가로 설정될 수 있고, 추가로 설정된 방향성 인트라 예측 모드들은 67 이상의 predModeIntra를 가질 수 있다. 다른 예를 들어, -90도 ~ -135도 사이를 가리키는 방향성 인트라 예측 모드들이 45도 방향부터 반시계방향(counterclockwise)으로 추가로 설정될 수 있고, 상기 추가로 설정된 방향성 인트라 예측 모드들은 -1 이하의 predModeIntra를 가질 수 있다. 방향성 인트라 예측 모드들이 갖는 predModeIntra의 값은 시계방향 또는 반시계방향으로 순차적으로 설정될 수 있고, 설정되는 predModeIntra의 값 역시 변경될 수 있다. 이에 한정되지 않고, 방향성 인트라 예측 모드들은 임의의 A deg (A는 실수)부터 B deg (B는 실수) 범위 내의 특정 방향을 가리키는 소정 개수의 인트라 예측 모드들을 포함할 수 있다.
도 18은 다양한 실시예들에 따른 영상 복호화 방법의 흐름도를 도시한다.
도 18을 참조하면, 1810 단계에서, 영상 복호화 장치(100)는 비트스트림으로부터, 현재 크로마 블록의 인트라 예측 모드 정보를 획득할 수 있다. 상기 인트라 예측 모드 정보는, 후술하는 방법으로 결정되는, 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중 하나를 가리키는 것일 수 있다.
1830 단계에서, 영상 복호화 장치(100)는 현재 크로마 블록의 형태에 기초하여, 현재 크로마 블록의 인트라 예측 모드 리스트를 결정할 수 있다. 상기 인트라 예측 모드 리스트는 소정의 개수의 인트라 예측 모드 후보들로 구성될 수 있다. 예를 들어, 상기 인트라 예측 모드 리스트는 5개 또는 그 이하의 인트라 예측 모드 후보들로 구성될 수 있다. 상기 인트라 예측 모드 리스트에 포함되는 인트라 예측 모드 후보들은, 현재 크로마 블록의 인트라 예측에 사용될 가능성이 높은 순서대로, 또는 선택되는 빈도가 높은 순서대로 나열될 수 있다.
일 실시예에서, 상기 인트라 예측 모드 후보들은 도 17에 도시된 인트라 예측 모드들 중에서 선택될 수 있다. 다른 실시예에서, 상기 인트라 예측 모드 후보들은 현재 크로마 블록에 대하여 설정된 인트라 예측 모드들의 세트 중에서 선택될 수 있다.
다양한 실시예들에서, 상기 인트라 예측 모드 리스트는, 사용 빈도가 높은 중요 모드들을 항상 포함하도록 구성될 수 있다. 일 실시예에서, 상기 인트라 예측 모드 리스트는, 적어도 DC 모드, Planar 모드, 수평 모드 및 수직 모드를 모두 인트라 예측 모드 후보들로서 포함할 수 있다. 다른 실시예에서, 상기 인트라 예측 모드 리스트는, 적어도 하나의 대각선 방향(diagonal) 인트라 예측 모드를 포함할 수 있다. 상기 대각선 방향 인트라 예측 모드는 -135도 방향 모드 (HDIA_IDX, mode 2), 135도 방향 모드 (DIA_IDX, mode 34), 및 45도 방향 모드 (VDIA_IDX, mode 66) 중에서 선택될 수 있다.
다양한 실시예들에서, 특정 인트라 예측 모드가 현재 크로마 블록의 인트라 예측에 사용되는 빈도는 현재 크로마 블록의 형태에 따라 다를 수 있다. 예를 들어, 너비가 높이보다 큰, 즉 가로로 길쭉한 모양의 비정방형 블록의 경우, 수직 방향에 가까운 인트라 예측 모드보다 수평 방향에 가까운 인트라 예측 모드를 사용하는 것이 더 적합할 수 있다. 이와 달리, 너비가 높이보다 작은, 즉 세로로 길쭉한 모양의 비정방형 블록의 경우, 반대로 수평 방향에 가까운 인트라 예측 모드보다 수직 방향에 가까운 인트라 예측 모드를 사용하는 것이 더 적합할 수 있다. 또는, 너비가 높이보다 큰 경우 수직 방향에 가까운 인트라 예측 모드를 사용하고, 너비가 높이보다 작은 경우 수평 방향에 가까운 인트라 모드를 사용하는 것이 더 적합할 수 있다. 이러한 특성을 고려하여, 영상 복호화 장치(100)는 현재 크로마 블록의 너비와 높이에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정할 수 있다.
다양한 실시예들에서, 영상 복호화 장치(100)는 현재 크로마 블록의 너비와 높이를 비교한 결과에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정할 수 있다. 일 실시예에서, 영상 복호화 장치(100)는 현재 크로마 블록의 너비와 높이를 비교한 결과에 기초하여 인트라 예측 모드 리스트에 포함되는 상기 인트라 예측 모드 후보들의 순서를 결정할 수 있다.
다양한 실시예들에서, 영상 복호화 장치(100)는 현재 크로마 블록이 정방형인지 여부에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정할 수 있다. 일 실시예에서, 영상 복호화 장치(100)는 현재 크로마 블록이 비정방형일 경우, 현재 크로마 블록의 모서리에 매칭되는 방향성 인트라 예측 모드를 인트라 예측 모드 후보로 결정할 수 있다.
다양한 실시예들에서, 일반적으로 서로 대응되는 크로마 블록 루마 블록은 비슷한 영상특성을 가지므로, 현재 크로마 블록의 인트라 예측에 사용되는 인트라 예측 모드는 현재 크로마 블록에 대응되는 루마 블록의 인트라 예측 모드와 동일하거나 유사할 가능성이 크다. 이러한 특성을 고려하여, 영상 복호화 장치(100)는 현재 크로마 블록에 대응되는 루마 블록의 인트라 예측 모드에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정할 수 있다.
다양한 실시예들에서, 영상 복호화 장치(100)는 현재 크로마 블록에 대응되는 루마 블록의 인트라 예측 모드를 결정하고, 상기 루마 블록의 인트라 예측 모드를 현재 크로마 블록의 인트라 예측 모드 리스트에 포함되는 제1 인트라 예측 모드 후보로 결정할 수 있다. 영상 복호화 장치(100)는, 상기 제1 인트라 예측 모드에 기초하여, 상기 인트라 예측 모드 리스트에 포함되는 제2 인트라 예측 모드 후보를 결정할 수 있다. 일 실시예에서, 영상 복호화 장치(100)는 상기 제1 인트라 예측 모드가 방향성 모드인지 비방향성 모드인지에 따라 상기 제2 인트라 예측 모드 후보를 결정할 수 있다.
다양한 실시예들에서, 일반적으로 하나의 블록과 주변 블록들은 비슷한 영상특성을 가지므로, 현재 크로마 블록의 인트라 예측에 사용되는 인트라 예측 모드는 주변 블록의 인트라 예측 모드와 동일하거나 유사할 가능성이 크다. 이러한 특성을 고려하여, 영상 복호화 장치(100)는 현재 크로마 블록에 인접한 블록의 인트라 예측 모드에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정할 수 있다.
1850 단계에서, 영상 복호화 장치(100)는 획득된 인트라 예측 모드 정보에 기초하여, 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중 하나를 현재 크로마 블록의 인트라 예측 모드로 결정할 수 있다.
1870 단계에서, 영상 복호화 장치(100)는 결정된 인트라 예측 모드에 기초하여 현재 크로마 블록에 대한 인트라 예측을 수행할 수 있다.
도 19는 다양한 실시예들에 따른, 현재 크로마 블록의 형태에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 방법의 흐름도를 도시한다. 도 19의 1910 내지 1960 단계는 도 18의 1830 단계에 상응할 수 있다.
도 19를 참조하면, 1910 단계에서, 영상 복호화 장치(100)는 현재 크로마 블록의 너비와 높이를 비교할 수 있다. 비교 결과, 현재 크로마 블록의 너비가 높이보다 큰 경우, 영상 복호화 장치(100)는 1920 단계를 수행할 수 있다. 이와 달리 현재 크로마 블록의 너비가 높이보다 작거나 같은 경우, 영상 복호화 장치(100)는 1930 단계를 수행할 수 있다.
현재 크로마 블록의 너비가 높이보다 큰 경우, 1920 단계에서, 영상 복호화 장치(100)는 수평 모드를 수직 모드보다 앞선 순위의 인트라 예측 모드 후보로 결정할 수 있다. 이와 달리, 현재 크로마 블록의 너비가 높이보다 작거나 같은 경우, 1930 단계에서, 영상 복호화 장치(100)는 수직 모드를 수평 모드보다 앞선 순위의 인트라 예측 모드 후보로 결정할 수 있다.
현재 크로마 블록의 너비가 높이보다 큰 경우, 1940 단계에서, 영상 복호화 장치(100)는 좌측 하단 방향을 가리키는 인트라 예측 모드를 인트라 예측 모드 후보로 결정할 수 있다. 일 실시예에서, 상기 좌측 하단 방향을 가리키는 인트라 예측 모드는 -135도 방향의 대각선 모드 (HDIA_IDX, mode 2) 일 수 있다. 다른 실시예에서, 상기 좌측 하단 방향을 가리키는 인트라 예측 모드는 -135도 ~ -180도 사이를 가리키는 방향성 인트라 예측 모드들 중 하나일 수 있다.
현재 크로마 블록의 너비가 높이보다 작거나 같은 경우, 1950 단계에서, 영상 복호화 장치(100)는 우측 상단 방향을 가리키는 인트라 예측 모드를 인트라 예측 모드 후보로 결정할 수 있다. 일 실시예에서, 상기 우측 상단 방향을 가리키는 인트라 예측 모드는 45도 방향의 대각선 모드 (VDIA_IDX, mode 66) 일 수 있다. 다른 실시예에서, 상기 우측 상단 방향을 가리키는 인트라 예측 모드는 45도 ~ 90도 사이를 가리키는 방향성 인트라 예측 모드들 중 하나일 수 있다.
1920 단계와 1940 단계가 순차적으로 수행되고, 1930 단계와 1950단계가 순차적으로 수행되는 경우가 도 19에 예시적으로 도시되어 있으나, 반드시 이에 한정되는 것은 아니다. 1940 단계와 1950 단계는 1920 단계와 1930 단계 이전에 수행될 수 있고, 또는 1920 내지 1950 단계 중 일부 단계가 완전히 생략될 수도 있다.
현재 크로마 블록의 너비가 높이와 같은 경우, 너비가 높이보다 작은 경우와 같이 동작하는 경우가 도 19에 예시적으로 도시되어 있으나, 반드시 이에 한정되지만은 않으며, 현재 크로마 블록의 너비가 높이와 같은 경우 너비가 높이보다 큰 경우와 같이 동작할 수도 있다. 예를 들어, 현재 크로마 블록의 너비가 높이와 같은 경우, 수평 모드를 수직 모드보다 앞선 순위의 인트라 예측 모드 후보로 결정할 수 있고, 또는 좌측 하단 방향을 가리키는 인트라 예측 모드를 인트라 예측 모드 후보로 결정할 수 있다.
도 20은 다양한 실시예들에 따른, 현재 크로마 블록의 형태에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 방법의 흐름도를 도시한다. 도 20의 각 동작들은 도 1a에 도시된 영상 복호화 장치(100), 또는 도 1c에 도시된 영상 복호화 장치(100) 또는 영상 복호화 장치(100)의 프로세서(125)에 의해 수행될 수 있다. 도 20의 2010 내지 2030 단계는 도 18의 1830 단계에 상응할 수 있다.
도 20을 참조하면, 2010 단계에서, 영상 복호화 장치(100)는 현재 크로마 블록이 정방형인지 판단할 수 있다. 비교 결과, 현재 크로마 블록이 정방형인 경우, 영상 복호화 장치(100)는 2020 단계를 수행할 수 있다. 이와 달리 현재 크로마 블록이 비정방형인 경우, 영상 복호화 장치(100)는 2030 단계를 수행할 수 있다.
현재 크로마 블록이 정방형인 경우, 2020 단계에서, 영상 복호화 장치(100)는 45도 방향의 대각선 모드 또는 -135도 방향의 대각선 모드, 즉 mode 2 또는 mode 66을 인트라 예측 모드 후보로 결정할 수 있다.
현재 크로마 블록이 비정방형인 경우, 2030 단계에서, 영상 복호화 장치(100)는 현재 크로마 블록의 모서리에 매칭되는 방향성 모드를 인트라 예측 모드 후보로 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 현재 크로마 블록의 좌측 하단 모서리로부터 우측 상단 모서리로 향하는 방향을 가리키는 인트라 예측 모드 또는 현재 크로마 블록의 우측 상단 모서리로부터 좌측 하단 모서리로 향하는 방향을 가리키는 인트라 예측 모드를 인트라 예측 모드 후보로 결정할 수 있다. 일 실시예에서, 영상 복호화 장치(100)는 인트라 예측 모드 리스트에 포함된 45도 또는 -135도 방향의 대각선 모드를 상기 현재 크로마 블록의 모서리에 매칭되는 방향성 모드로 대체할 수 있다.
일 실시예에서, 현재 크로마 블록의 모서리에 정확히 매칭되는 방향성 인트라 예측 모드가 없는 경우, 가장 가까운 방향성 모드를 인트라 예측 모드 후보로 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 현재 크로마 블록의 좌측 하단 모서리로부터 우측 상단 모서리로 향하는 방향에 가장 근접한 방향을 가리키는 인트라 예측 모드 또는 현재 크로마 블록의 우측 상단 모서리로부터 좌측 하단 모서리로 향하는 방향에 가장 근접한 방향을 가리키는 인트라 예측 모드를 인트라 예측 모드 후보로 결정할 수 있다.
일 실시예에서, 상기 현재 크로마 블록의 모서리에 매칭되는 방향성 인트라 예측 모드는 현재 크로마 블록의 너비와 높이의 비율에 따라 미리 설정된 것일 수 있다. 예를 들어, 현재 크로마 블록의 너비와 높이의 비율에 따라 현재 크로마 블록의 모서리에 매칭되는 방향성 인트라 예측 모드는 표 1과 같이 미리 설정될 수 있다. 여기서 predModeIntra는 인트라 예측 모드 인덱스를 가리킨다.
Width : Height predModeIntra
1:16 52
1:8 54
1:4 56
1:2 60
1:1 66
2:1 72
4:1 76
8:1 78
16:1 80
다른 예를 들어, 블록의 참조샘플의 availability를 고려하여 현재 크로마 블록의 너비와 높이의 비율에 따라 현재 크로마 블록의 모서리에 매칭되는 방향성 인트라 예측 모드는 표 2와 같이 미리 설정될 수 있다. 여기서 predModeIntra는 인트라 예측 모드 인덱스를 가리킨다.
Width : Height predModeIntra
1:16 -14
1:8 -12
1:4 -10
1:2 -6
1:1 66
2:1 72
4:1 76
8:1 78
16:1 80
일 실시예로, 블록의 참조샘플의 availability에 따라 표 1 과 표 2 중 선택하여 리스트를 구성할 수 있다.
도 21은 일 실시예에 따라, 현재 크로마 블록의 형태에 기초하여 결정되는 인트라 예측 모드 후보들을 설명하기 위한 도면이다.
도 21을 참조하면, 너비가 높이보다 큰 비정방형 블록(2100)의 경우, 인트라 예측 모드 리스트에는 수평 모드 (2101), 수직 모드 (2102) 및 -135도 방향의 대각선 모드(2103)가 인트라 예측 모드 후보로 포함될 수 있다. 상기 인트라 예측 모드 리스트에서, 인트라 예측 모드 후보는 수평 모드, 수직 모드, 대각선 모드의 순서로 나열될 수 있다. 상기 인트라 예측 모드 리스트는 비방향성 모드, 또는 상술한 모드 외의 방향성 모드를 더 포함할 수 있다.
일 실시예에서, 블록의 너비가 높이보다 클 경우 상기 -135도 방향의 대각선 모드(2103)는 블록의 모서리에 정확하게 매칭되지 않으므로, 상기 -135도 방향의 대각선 모드(2103) 대신 블록의 우측 상단 모서리로부터 좌측 하단 모서리를 향하는 방향을 가리키는 방향성 모드(2104)를 인트라 예측 모드 후보로 결정할 수 있다. 일 실시예에서, 현재 블록의 모서리에 정확히 매칭되는 방향성 인트라 예측 모드가 없는 경우, 가장 가까운 방향성 모드를 인트라 예측 모드 후보로 결정할 수 있다. 일 실시예에서, 상기 블록의 우측 상단 모서리로부터 좌측 하단 모서리를 향하는 방향성 모드는 현재 크로마 블록의 너비와 높이의 비율에 따라 미리 설정된 것일 수 있다.
너비가 높이보다 작은 비정방형 블록(2150)의 경우, 인트라 예측 모드 리스트에는 수직 모드 (2151), 수평 모드 (2152) 및 45도 방향의 대각선 모드(2153)가 인트라 예측 모드 후보로 포함될 수 있다. 상기 인트라 예측 모드 리스트에서, 인트라 예측 모드 후보는 수직 모드, 수평 모드, 대각선 모드의 순서로 나열될 수 있다. 상기 인트라 예측 모드 리스트는 비방향성 모드, 또는 상술한 모드 외의 방향성 모드를 더 포함할 수 있다.
일 실시예에서, 블록의 너비가 높이보다 클 경우 상기 45도 방향의 대각선 모드(2153)는 블록의 모서리에 정확하게 매칭되지 않으므로, 상기 45도 방향의 대각선 모드(2153) 대신 블록의 좌측 하단 모서리로부터 우측 상단 모서리를 향하는 방향을 가리키는 방향성 모드(2154)를 인트라 예측 모드 후보로 결정할 수 있다. 일 실시예에서, 현재 블록의 모서리에 정확히 매칭되는 방향성 인트라 예측 모드가 없는 경우, 가장 가까운 방향성 모드를 인트라 예측 모드 후보로 결정할 수 있다. 일 실시예에서, 상기 블록의 좌측 하단 모서리로부터 우측 상단 모서리를 향하는 방향성 모드는 현재 크로마 블록의 너비와 높이의 비율에 따라 미리 설정된 것일 수 있다.
도 22는 일 실시예에 따라, 현재 크로마 블록의 형태에 기초하여 결정되는 인트라 예측 모드 후보들을 설명하기 위한 도면이다.
도 22는 도 21에서 -135도 방향의 대각선 모드(2103) 및 45도 방향의 대각선 모드(2153)를 135도 방향의 대각선 모드 (2203)로 대체한 경우를 도시한다. 도 22를 참조하면, 너비가 높이보다 큰 비정방형 블록(2200)과 너비가 높이보다 작은 비정방향 블록 (2250)은 모두, 수평 모드 (2201), 수직 모드 (2202) 및 135도 방향의 대각선 모드(2203)를 인트라 예측 모드 후보로 가질 수 있다. 즉, 현재 블록의 너비와 높이를 비교한 결과에 무관하게, 인트라 예측 모드 리스트에는 동일한 인트라 예측 모드 후보가 포함될 수 있다.
일 실시예에서, 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보의 순서는 현재 크로마 블록의 형태에 따라 달라질 수 있다. 예를 들어, 너비가 높이보다 큰 비정방형 블록(2200)의 인트라 예측 모드 리스트에서, 수평 모드의 우선순위를 수직 모드보다 높여줄 수 있다. 일 예로, 인트라 예측 모드 후보는 수평 모드, 수직 모드, 대각선 모드의 순서로 나열될 수 있다. 너비가 높이보다 작은 비정방형 블록(2250)의 인트라 예측 모드 리스트에서, 수직 모드의 우선순위를 수평 모드보다 높여줄 수 있다. 일 예로, 인트라 예측 모드 후보는 수직 모드, 수평 모드, 대각선 모드의 순서로 나열될 수 있다.
일 실시예에서, 블록의 너비가 높이와 같지 않을 경우, 즉 비정방형 블록의 경우 상기 135도 방향의 대각선 모드(2203)는 블록의 모서리에 정확하게 매칭되지 않으므로, 상기 135도 방향의 대각선 모드(2153) 대신 블록의 우측 하단 모서리로부터 좌측 상단 모서리를 향하는 방향을 가리키는 방향성 모드(2204, 2254)를 인트라 예측 모드 후보로 결정할 수 있다. 일 실시예에서, 현재 블록의 모서리에 정확히 매칭되는 방향성 인트라 예측 모드가 없는 경우, 가장 가까운 방향성 모드를 인트라 예측 모드 후보로 결정할 수 있다. 일 실시예에서, 상기 블록의 좌측 하단 모서리로부터 우측 상단 모서리를 향하는 방향성 모드는 현재 크로마 블록의 너비와 높이의 비율에 따라 미리 설정된 것일 수 있다.
도 23은 다양한 실시예들에 따른, 현재 크로마 블록의 형태에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 방법의 흐름도를 도시한다. 도 23의 2310 내지 2330 단계는 도 18의 1830 단계에 상응할 수 있다.
도 23을 참조하면, 2310 단계에서, 영상 복호화 장치(100)는 현재 크로마 블록에 대응되는 루마 블록의 인트라 예측 모드를 결정할 수 있다.
일 실시예에서, 현재 크로마 블록에 대응되는 루마 블록은 현재 크로마 블록의 중심 위치에 대응되는 루마 블록일 수 있다. 현재 크로마 블록의 너비가 W, 높이가 H일 때, 현재 크로마 블록의 중심 위치는 현재 크로마 블록의 좌측 상단 샘플을 기준으로 (W/2, H/2) 위치로 정의될 수 있다. 또는, 현재 크로마 블록의 중심 위치는 현재 크로마 블록의 좌측 상단 샘플을 기준으로 (W/2-1, H/2-1), (W/2-1, H/2), (W/2, H/2-1) 중 하나의 위치로 정의될 수 있다.
일 실시예에서, 영상 복호화 장치(100)는 현재 블록이 separate tree 구조를 사용하는 경우, 현재 크로마 블록의 중심 위치에 대응되는 루마 블록으로부터 인트라 예측 모드를 획득하고, 현재 블록이 separate tree 구조를 사용하지 않는 경우, 현재 크로마 블록의 좌측 상단 위치에 대응되는 루마 블록으로부터 인트라 예측 모드를 획득할 수 있다.
일 실시예에서, 영상 복호화 장치(100)는 현재 크로마 블록의 크기가 4 이하인 경우, 현재 크로마 블록의 좌측 상단 위치에 대응되는 루마 블록으로부터 인트라 예측 모드를 획득할 수 있다.
2320 단계에서, 영상 복호화 장치(100)는 현재 크로마 블록에 대응되는 루마 블록의 인트라 예측 모드를 현재 크로마 블록의 인트라 예측 모드 리스트에 포함되는 제1 인트라 예측 모드 후보로 결정할 수 있다. 상기 대응되는 루마 블록의 인트라 예측 모드에 기초하여 결정된 현재 크로마 블록의 인트라 예측 모드 후보는 DM 모드(direct mode)로 지칭된다. 일 실시예에서, 상기 제1 인트라 예측 모드 후보는 인트라 예측 모드 리스트에서 첫 번째 순위의 인트라 예측 모드 후보일 수 있다.
2330 단계에서, 영상 복호화 장치(100)는 상기 제1 인트라 예측 모드에 기초하여, 현재 크로마 블록의 인트라 예측 모드 리스트에 포함되는 제2 인트라 예측 모드 후보를 결정할 수 있다. 일 실시예에서, 상기 제2 인트라 예측 모드들의 순서는 상기 제1 인트라 예측 모드에 기초하여 결정될 수 있다.
일 실시예에서, 영상 복호화 장치(100)는 상기 제1 인트라 예측 모드가 Planar 모드, DC 모드, 수직 모드, 및 수평 모드 중 하나인지 판단할 수 있다. 상기 제1 인트라 예측 모드가 상기 4개의 모드들 중 어느 것에도 포함되지 않을 경우, 영상 복호화 장치(100)는 상기 4개의 모드를 제2 인트라 예측 모드 후보들로 결정할 수 있다. 이와 달리, 상기 제1 인트라 예측 모드가 상기 4개의 모드들 중 하나일 경우, 영상 복호화 장치(100)는 상기 제1 인트라 예측 모드를 제외한 나머지 3개의 모드를 제2 인트라 예측 모드 후보들로 결정할 수 있다. 일 실시예에서, 상기 제1 인트라 예측 모드가 상기 4개의 모드들 중 하나일 경우, 영상 복호화 장치(100)는 대각선 모드, 예를 들어, VDIA_IDX를 추가로 제2 인트라 예측 모드 후보로 결정할 수 있다.
일 실시예에서, 영상 복호화 장치(100)는 상기 제1 인트라 예측 모드가 방향성 모드인지 비방향성 모드인지에 따라 상기 제2 인트라 예측 모드 후보를 결정할 수 있다. 이에 대하여는 후술할 도 24에 대한 설명에서 상세히 기술한다.
도 24는 다양한 실시예들에 따른, 현재 크로마 블록의 형태에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 방법의 흐름도를 도시한다. 도 24의 2410 내지 2450 단계는 도 18의 1830 단계에 상응할 수 있다.
도 24를 참조하면, 2410 단계에서, 영상 복호화 장치(100)는 현재 크로마 블록에 대응되는 루마 블록의 인트라 예측 모드를 결정할 수 있다. 2420 단계에서, 영상 복호화 장치(100)는 현재 크로마 블록에 대응되는 루마 블록의 인트라 예측 모드를 현재 크로마 블록의 인트라 예측 모드 리스트에 포함되는 제1 인트라 예측 모드 후보로 결정할 수 있다. 도 24의 2410 및 2420 단계는 각각 도 23의 2310 및 2320 단계에 상응할 수 있다.
2430 단계에서, 영상 복호화 장치(100)는 제1 인트라 예측 모드 후보가 방향성 모드인지 판단할 수 있다. 판단 결과, 제1 인트라 예측 모드 후보가 방향성 모드인 경우, 영상 복호화 장치(100)는 2440 단계를 수행할 수 있다. 이와 달리 제1 인트라 예측 모드 후보가 비방향성 모드, 예를 들어 planar 모드 또는 DC 모드인 경우, 영상 복호화 장치(100)는 2450 단계를 수행할 수 있다.
제1 인트라 예측 모드 후보가 방향성 모드인 경우, 2440 단계에서, 영상 복호화 장치(100)는 제1 인트라 예측 모드 후보에 소정의 오프셋을 적용한 방향성 모드를 제2 인트라 예측 모드 후보로 결정할 수 있다. 상기 소정의 오프셋은 임의의 자연수 n일 수 있다.
일 실시예에서, 영상 복호화 장치(100)는 제1 인트라 예측 모드 후보의 인덱스에 소정의 오프셋 n을 더한 방향성 모드와 제1 인트라 예측 모드 후보의 인덱스에서 소정의 오프셋 n을 뺀 방향성 모드를 제2 인트라 예측 모드 후보들로 결정할 수 있다. 예를 들어, 제1 인트라 예측 모드 후보가 mode n일 때, mode n+2 및 mode n-2가 제2 인트라 예측 모드 후보들로 결정될 수 있다.
다른 실시예에서, 제1 인트라 예측 모드 후보가 수직 모드 또는 수평 모드일 경우, 영상 복호화 장치(100)는 미리 지정된 방향성 모드를 제2 인트라 예측 모드 후보로 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 제1 인트라 예측 모드 후보가 수직 모드일 경우, 수평 모드를 제2 인트라 예측 모드 후보로 결정하고, 제1 인트라 예측 모드 후보가 수평 모드일 경우, 수직 모드를 제2 인트라 예측 모드 후보로 결정할 수 있다. 다른 예를 들어, 영상 복호화 장치(100)는 제1 인트라 예측 모드 후보가 수직 모드일 경우, 45도 방향의 대각선 모드 (VDIA_IDX, mode 66)를 제2 인트라 예측 모드 후보로 결정하고, 제1 인트라 예측 모드 후보가 수평 모드일 경우, -135도 방향의 대각선 모드 (HDIA_IDX, mode 2)를 제2 인트라 예측 모드 후보로 결정할 수 있다.
제1 인트라 예측 모드 후보가 비방향성 모드인 경우, 2450 단계에서, 영상 복호화 장치(100)는 제1 인트라 예측 모드 후보와 다른 비방향성 모드를 제2 인트라 예측 모드 후보로 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 제1 인트라 예측 모드 후보가 Planar 모드일 경우, DC 모드를 제2 인트라 예측 모드 후보로 결정하고, 제1 인트라 예측 모드 후보가 DC 모드일 경우, Planar 모드를 제2 인트라 예측 모드 후보로 결정할 수 있다.
상술한 다양한 실시예들에서, 현재 크로마 블록에 대응되는 루마 블록 중 하나의 인트라 예측 모드만 사용하는 경우에 대하여 기술하였다. 그러나 현재 블록이 separate tree 구조를 사용하고 있을 경우, 현재 크로마 블록에 대응되는 루마 블록들이 복수 개 존재할 수 있다. 이 경우 현재 크로마 블록의 인트라 예측 모드 리스트는 복수 개의 대응되는 루마 블록들의 인트라 예측 모드들, 즉 복수의 DM 모드들을 사용하여 구성될 수 있다.
다양한 실시예들에서, 현재 크로마 블록에 대응되는 루마 블록들이 복수 개 존재할 경우, 영상 복호화 장치(100)는 현재 크로마 블록에 대응되는 복수의 루마 블록들의 인트라 예측 모드들을 획득할 수 있다. 일 실시예에서, 상기 복수의 루마 블록들은 현재 크로마 블록의 중심 위치, 좌측 상단 위치, 좌측 하단 위치, 우측 상단 위치, 및 우측 하단 위치에 대응되는 루마 블록들 중에서 선택될 수 있다. 예를 들어, 영상 복호화 장치(100)는 현재 크로마 블록의 중심 위치에 대응되는 루마 블록으로부터 제1 DM 모드를 획득하고, 현재 크로마 블록의 좌측 상단 위치, 좌측 하단 위치, 우측 상단 위치, 및 우측 하단 위치에 대응되는 루마 블록들 중 하나로부터 제2 DM 모드를 획득할 수 있다.
다양한 실시예들에서, 두 개 이상의 DM 모드를 사용하는 경우, 현재 크로마 블록의 인트라 예측 모드 리스트는 DM 모드들을 서로 비교한 결과에 기초하여 구성될 수 있다. 일 실시예에서, 제1 DM 모드와 제2 DM 모드가 서로 같은 경우, 영상 복호화 장치(100)는 DM 모드를 하나만 사용할 때와 같은 방법으로 인트라 예측 모드 리스트를 구성할 수 있다. 이와 달리, 제1 DM 모드와 제2 DM 모드가 서로 다른 경우, 영상 복호화 장치(100)는 제1 DM 모드와 제2 DM 모드를 모두 인트라 예측 모드 리스트에 포함되는 인트라 예측 모드 후보로 결정하고, 상기 제1 DM 모드와 제2 DM 모드에 기초하여 나머지 인트라 예측 모드 후보를 결정할 수 있다. 또는, 제1 DM 모드와 제2 DM 모드가 서로 다른 경우, 영상 복호화 장치(100)는 현재 크로마 블록의 중심 위치에 대응되는 루마 블록으로부터 획득한 DM 모드를 현재 크로마 블록의 기본 DM 모드로 선택하고, DM 모드를 하나만 사용할 때와 같은 방법으로 인트라 예측 모드 리스트를 구성할 수 있다.
다양한 실시예들에서, 제1 DM 모드와 제2 DM 모드가 서로 다른 경우, 영상 복호화 장치(100)는 제1 DM 모드와 제2 DM 모드가 방향성 모드인지 비방향성 모드인지 여부에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 구성할 수 있다.
일 실시예에서, 제1 DM 모드와 제2 DM 모드가 모두 비방향성 모드인 경우, 영상 복호화 장치(100)는 제1 DM 모드, 제2 DM 모드, 수직 모드, 수평 모드 및 대각선 모드를 인트라 예측 모드 리스트에 포함되는 인트라 예측 후보들로 결정할 수 있다. 일 실시예에서, 이 경우 인트라 예측 모드 리스트에 포함되는 수직 모드 및 수평 모드의 순서는 현재 크로마 블록의 형태에 따라 결정될 수 있다. 일 실시예에서, 상기 대각선 모드는 -135도 방향 모드 (HDIA_IDX), 135도 방향 모드 (DIA_IDX), 및 45도 방향 모드 (VDIA_IDX) 중 하나일 수 있고, 현재 크로마 블록의 형태에 따라 결정될 수 있다. 또는, 상기 대각선 모드는 현재 크로마 블록의 모서리에 매칭되는 방향성 모드일 수 있다.
일 실시예에서, 제1 DM 모드와 제2 DM 모드 중 한 개의 모드만이 방향성 모드인 경우, 영상 복호화 장치(100)는 방향성 모드인 DM 모드에 소정의 오프셋을 적용한 방향성 모드를 인트라 예측 모드 리스트에 포함되는 인트라 예측 후보로 결정할 수 있다. 상기 소정의 오프셋은 임의의 자연수 n일 수 있다. 예를 들어, 영상 복호화 장치(100)는 상기 방향성 모드인 DM 모드의 인덱스에 소정의 오프셋 n을 더한 방향성 모드와, 상기 방향성 모드인 DM 모드의 인덱스에서 소정의 오프셋 n을 뺀 방향성 모드를 인트라 예측 모드 리스트에 포함되는 인트라 예측 후보들로 결정할 수 있다.
일 실시예에서, 제1 DM 모드와 제2 DM 모드가 모두 방향성 모드인 경우, 영상 복호화 장치(100)는 제1 DM 모드, 제2 DM 모드, Planar 모드, DC 모드 및 제1 DM 모드와 제2 DM 모드의 중간 방향을 가리키는 방향성 모드를 인트라 예측 모드 리스트에 포함되는 인트라 예측 후보들로 결정할 수 있다. 상기 제1 DM 모드와 제2 DM 모드의 중간 방향을 가리키는 방향성 모드는 상기 제1 DM 모드의 인덱스와 상기 제2 DM 모드의 인덱스의 평균으로부터 획득될 수 있다. 예를 들어, 제1 DM mode가 mode n이고, 제2 DM 모드가 mode m일 때, 상기 제1 DM 모드와 제2 DM 모드의 중간 방향을 가리키는 방향성 모드는 mode (n+m)/2로 결정될 수 있다.
다른 실시예에서, 제1 DM 모드와 제2 DM 모드가 모두 방향성 모드인 경우, 영상 복호화 장치(100)는 제1 DM 모드와 제2 DM 모드 중 인덱스가 더 큰 모드에 기초하여 인트라 예측 모드 리스트에 포함되는 인트라 예측 후보를 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 제1 DM 모드와 제2 DM 모드 중 인덱스가 더 큰 모드를 현재 크로마 블록의 기본 DM 모드로 선택하고, DM 모드를 하나만 사용할 때와 같은 방법으로 인트라 예측 모드 리스트를 구성할 수 있다.
도 25는 현재 크로마 블록의 형태에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 pseudo code의 일 예를 도시한다.
도 25를 참고하면, 현재 크로마 블록의 인트라 예측 모드 리스트가 modeList[n]으로 정의되고, 최대 5개의 인트라 예측 모드 후보가 선택된다. 먼저, 현재 크로마 블록에 대응되는 루마 블록의 인트라 예측 모드, 즉 DM 모드가 제1 인트라 예측 모드 후보 modeList[0]로 결정된다 (2510).
제1 인트라 예측 모드 후보가 비방향성 모드, 즉 Planar 모드 또는 DC 모드 중 하나라고 판단되면 (2520), 제1 인트라 예측 모드 후보와 다른 비방향성 모드가 제2 인트라 예측 모드 후보 modeList[1]로 결정되고, 수직 모드와 수평 모드가 차례로 제3 인트라 예측 모드 후보 modeList[2]와 제4 인트라 예측 모드 후보 modeList[3]로 추가된다. 이어서 현재 크로마 블록의 너비와 높이를 비교하여, 너비가 높이보다 클 경우 mode 2, 즉 -135도 방향의 대각선 모드가 인트라 예측 모드 후보로 결정되고, 그렇지 않을 경우 mode 66, 즉 45도 방향의 대각선 모드가 인트라 예측 모드 후보로 결정된다.
일 실시예에서, 상기 mode 2 및 mode 66 대신, 현재 크로마 블록의 형태와 무관하게 mode 34가 인트라 예측 모드 후보로 선택될 수 있다. 다른 실시예에서, 상기 mode 2 및 mode 66 대신 현재 크로마 블록의 모서리에 매칭되는 방향성 모드가 인트라 예측 모드 후보로 결정될 수 있다.
제1 인트라 예측 모드 후보가 Planar 모드 또는 DC 모드가 아닌 방향성 모드라고 판단되면 (2530), 제1 인트라 예측 모드 후보의 인덱스에서 소정의 오프셋 (예를 들어 2)를 뺀 방향성 모드와 제1 인트라 예측 모드 후보의 인덱스에서 소정의 오프셋을 더한 방향성 모드가 각각 제2 인트라 예측 모드 후보와 제3 인트라 예측 모드 후보로 결정된다. 인트라 예측 모드 리스트의 나머지 자리는 비방향성 모드인 Planar 모드와 DC 모드로 채워진다.
도 26은 현재 크로마 블록의 형태에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 pseudo code의 다른 일 예를 도시한다. 도 26에 예시된 pseudo code는 수직 모드와 수평 모드의 순서를 현재 크로마 블록의 형태에 따라 결정하도록 구성되었다는 점을 제외하고는 도 25과 동일하다.
도 26을 참조하면, 제1 인트라 예측 모드 후보가 비방향성 모드, 즉 Planar 모드 또는 DC 모드 중 하나라고 판단되면, 제1 인트라 예측 모드 후보와 다른 비방향성 모드가 제2 인트라 예측 모드 후보로 결정된다. 이어서 현재 크로마 블록의 너비와 높이가 비교된다(2610). 너비가 높이보다 클 경우 수평 모드, 수직 모드, mode 2의 순서로 인트라 예측 모드 후보로 결정되고, 그렇지 않을 경우 수직 모드, 수평 모드, mode 66의 순서로 인트라 예측 모드 후보로 결정된다.
일 실시예에서, 상기 mode 2 및 mode 66 대신, 현재 크로마 블록의 형태와 무관하게 mode 34가 인트라 예측 모드 후보로 선택될 수 있다. 다른 실시예에서, 상기 mode 2 및 mode 66 대신 현재 크로마 블록의 모서리에 매칭되는 방향성 모드가 인트라 예측 모드 후보로 결정될 수 있다.
도 27은 현재 크로마 블록의 형태에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 pseudo code의 다른 일 예를 도시한다.
도 27을 참고하면, 현재 크로마 블록에 대응되는 루마 블록의 인트라 예측 모드가 제1 인트라 예측 모드 후보 modeList[0]로 결정되고 (2710), 제1 인트라 예측 모드 후보가 비방향성 모드인지 여부가 판단된다.
제1 인트라 예측 모드 후보가 비방향성 모드, 즉 Planar 모드 또는 DC 모드 중 하나라고 판단되면 (2720), 제1 인트라 예측 모드 후보와 다른 비방향성 모드가 제2 인트라 예측 모드 후보로 결정되고, 이어서 현재 크로마 블록의 너비와 높이가 비교된다. 너비가 높이보다 클 경우 수평 모드, 수직 모드, mode 2의 순서로 인트라 예측 모드 후보로 결정되고, 그렇지 않을 경우 수직 모드, 수평 모드, mode 66의 순서로 인트라 예측 모드 후보로 결정된다.
제1 인트라 예측 모드 후보가 Planar 모드 또는 DC 모드가 아닌 방향성 모드라고 판단되면, 제1 인트라 예측 모드 후보가 수직 모드 또는 수평 모드인지 여부가 판단된다. 제1 인트라 예측 모드 후보가 수직 모드 또는 수평 모드라면 (2730), Planar 모드와 DC 모드가 제2, 제3 인트라 예측 모드 후보로 추가된다. 만일 제1 인트라 예측 모드 후보가 수직 모드라면 수평 모드와 mode 2가, 제1 인트라 예측 모드 후보가 수평 모드라면 수직 모드와 mode 66가 나머지 인트라 예측 모드 후보들로 결정된다.
제1 인트라 예측 모드 후보가 수직 모드와 수평 모드가 아닌 그 외의 방향성 모드라면 (2740), Planar 모드, DC 모드, 수평 모드 및 수직 모드가 인트라 예측 모드 후보들로 결정된다.
도 27에 도시된 pseudo code의 알고리즘에 따르면, 현재 크로마 블록에 대응되는 루마 블록의 인트라 예측 모드가 무엇인지와 무관하게, 또한 현재 크로마 블록의 형태가 어떠한지와 무관하게, 인트라 예측 모드 리스트가 항상 Planar 모드, DC 모드, 수직 모드, 및 수평 모드를 포함한다.
다른 실시예에서, 제1 인트라 예측 모드 후보가 수직 모드와 수평 모드가 아닌 그 외의 방향성 모드일 때, 도 25 및 도 26의 예시와 같이 제1 인트라 예측 모드 후보의 인덱스에서 소정의 오프셋을 뺀 방향성 모드와 제1 인트라 예측 모드 후보의 인덱스에 소정의 오프셋을 더한 방향성 모드가 각각 제2 인트라 예측 모드와 제3 인트라 예측 모드 후보로 결정될 수 있다.
일 실시예에서, 상기 mode 2 및 mode 66 대신, 현재 크로마 블록의 형태와 무관하게 mode 34가 인트라 예측 모드 후보로 선택될 수 있다. 다른 실시예에서, 상기 mode 2 및 mode 66 대신 현재 크로마 블록의 모서리에 매칭되는 방향성 모드가 인트라 예측 모드 후보로 결정될 수 있다.
도 28은 다양한 실시예들에 따른 영상 부호화 방법의 흐름도를 도시한다.
도 28을 참조하면, 2810 단계에서, 영상 부호화 장치(150)는 현재 크로마 블록의 형태에 기초하여, 현재 크로마 블록의 인트라 예측 모드 리스트를 결정할 수 있다. 영상 부호화 장치(150)가 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 방법은, 상술한 다양한 실시예에 따라 영상 복호화 장치(100)가 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 방법에 상응한다.
2830 단계에서, 영상 부호화 장치(150)는 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중, 현재 크로마 블록의 인트라 예측 모드를 결정할 수 있다.
2850 단계에서, 영상 부호화 장치(150)는 결정된 인트라 예측 모드에 기초하여 현재 크로마 블록에 대한 인트라 예측을 수행할 수 있다.
2870 단계에서, 영상 부호화 장치(150)는 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중, 상기 결정된 인트라 예측 모드를 가리키는 인트라 예측 모드 정보를 부호화할 수 있다.
부호화된 인트라 예측 모드 정보는 비트스트림에 포함되어 영상 복호화 장치로 전달될 수 있다. 일 실시예에서, 현재 크로마 블록의 인트라 예측 모드 정보는 신택스 엘리먼트 intra_chroma_pred_mode로 시그널링될 수 있다.
일 실시예에서, 영상 부호화 장치(150)는 인트라 예측 모드 정보를 truncated unary coding을 적용하여 부호화할 수 있다. 상기 인트라 예측 모드 리스트의 인트라 예측 모드 후보가 자주 선택되는 순서로 나열되는 경우, 앞선 순위의 인트라 예측 모드 후보일 수록 적은 비트수로 시그널링되므로, 비트량을 감소시킬 수 있다.
다른 실시예에서, 영상 부호화 장치(150)는 인트라 예측 모드 정보가 인트라 예측 모드 리스트의 첫 번째 인트라 예측 모드 후보를 가리킬 경우 1비트로 부호화하고, 나머지 인트라 예측 모드 후보들을 가리킬 경우에는 모두 같은 비트수로 부호화할 수 있다. 예를 들어, 나머지 인트라 예측 모드 후보의 개수가 N개 이하일 경우 나머지 인트라 예측 모드 후보들을 가리키는 인트라 예측 모드 정보는 1+log 2N 비트로 부호화할 수 있다.
예를 들어, 5개의 인트라 예측 모드 후보가 있을 경우, 표 3과 같이, 첫 번째 인트라 예측 모드 후보는 0, 나머지 4개의 인트라 예측 모드 후보는 각각 100, 101, 110, 111로 부호화될 수 있다. 여기서 modeList[n]은 인트라 예측 모드 리스트의 n번째 인트라 예측 모드 후보를 가리킨다.
Value of intra_chroma_pred_mode Bin string
modeList[0] // (DM mode) 0
modeList[1] 100
modeList[2] 101
modeList[3] 110
modeList[4] 111
다른 예를 들어, 현재 크로마 블록의 인트라 예측 시에 CCLM (cross component linear model) 방식을 사용할 경우, 인트라 예측 모드 정보는 표 4와 같이 부호화될 수 있다. 여기서 modeList[n]은 인트라 예측 모드 리스트의 n번째 인트라 예측 모드 후보를 가리키며, CCLM_LT는 현재 블록의 상측과 좌측 샘플을 참조하는 CCLM 모드, CCLM_L는 현재 블록의 좌측 샘플만을 참조하는 CCLM 모드, CCLM_T는 현재 블록의 상측 샘플만을 참조하는 CCLM 모드를 가리킨다.
Value of intra_chroma_pred_mode Bin string
modeList[0] // (DM mode) 0
CCLM_LT 10
CCLM_L 1110
CCLM_T 1111
modeList[1] 11000
modeList[2] 11001
modeList[3] 11010
modeList[4] 11011
다른 예를 들어, 인트라 예측 모드 정보는 표 5와 같이 부호화될 수 있다. 여기서 modeList[n]은 인트라 예측 모드 리스트의 n번째 인트라 예측 모드 후보를 가리키며, CCLM_LT는 현재 블록의 상측과 좌측 샘플을 참조하는 CCLM 모드, CCLM_L는 현재 블록의 좌측 샘플만을 참조하는 CCLM 모드, CCLM_T는 현재 블록의 상측 샘플만을 참조하는 CCLM 모드를 가리킨다.
Value of intra_chroma_pred_mode Bin string
modeList[0] // (DM mode) 10
CCLM_LT 01
CCLM_L 000
CCLM_T 001
modeList[1] 1100
modeList[2] 1101
modeList[3] 1110
modeList[4] 1111
일 실시예에서, DM 모드를 나타내는 인트라 예측 모드 정보를 부호화함에 있어서 추가적인 플래그를 사용할 수 있다. 일 실시예에서, 컨텍스트 모델을 적용하여 DM 모드를 나타내는 인트라 예측 모드 정보를 부호화할 수 있다.
이상 현재 크로마 블록의 형태에 기초하여 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 다양한 실시예들을 살펴보았다. 상술한 다양한 실시예들은, 현재 루마 블록의 형태에 기초하여 현재 루마 블록의 MPM(Most Probable Mode) 리스트를 결정하기 위해서도 적용될 수 있다.
다양한 실시예에서, 영상 복호화 장치(100)는 현재 루마 블록의 너비와 높이를 비교한 결과에 기초하여 현재 루마 블록의 MPM 리스트를 결정할 수 있다. 일 실시예에서, 현재 루마 블록의 너비가 높이보다 큰 경우, 영상 복호화 장치(100)는 수평 모드를 수직 모드보다 앞선 순위의 MPM으로 결정할 수 있다. 이와 달리, 현재 루마 블록의 너비가 높이보다 작거나 같은 경우, 영상 복호화 장치(100)는 수직 모드를 수평 모드보다 앞선 순위의 MPM으로 결정할 수 있다. 일 실시예에서, 현재 루마 블록의 너비가 높이보다 큰 경우, 영상 복호화 장치(100)는 좌측 하단 방향을 가리키는 인트라 예측 모드를 MPM으로 결정할 수 있다. 이와 달리, 현재 루마 블록의 너비가 높이보다 작거나 같은 경우, 영상 복호화 장치(100)는 우측 상단 방향을 가리키는 인트라 예측 모드를 MPM으로 결정할 수 있다.
다양한 실시예들에서, 영상 복호화 장치(100)는 현재 루마 블록이 정방형인지 여부에 기초하여 현재 루마 블록의 MPM 리스트를 결정할 수 있다. 일 실시예에서, 현재 루마 블록이 정방형인 경우, 영상 복호화 장치(100)는 45도 방향의 대각선 모드 또는 -135도 방향의 대각선 모드, 즉 mode 2 또는 mode 66을 MPM으로 결정할 수 있다.
일 실시예에서, 현재 루마 블록이 비정방형인 경우, 영상 복호화 장치(100)는 현재 루마 블록의 모서리에 매칭되는 방향성 모드를 MPM으로 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 현재 루마 블록의 좌측 하단 모서리로부터 우측 상단 모서리로 향하는 방향을 가리키는 인트라 예측 모드 또는 현재 루마 블록의 우측 상단 모서리로부터 좌측 하단 모서리로 향하는 방향을 가리키는 인트라 예측 모드를 MPM으로 결정할 수 있다. 일 실시예에서, 영상 복호화 장치(100)는 MPM 리스트에 포함된 45도 또는 -135도 방향의 대각선 모드를 상기 현재 루마 블록의 모서리에 매칭되는 방향성 모드로 대체할 수 있다. 일 실시예에서, 현재 루마 블록의 모서리에 정확히 매칭되는 방향성 인트라 예측 모드가 없는 경우, 가장 가까운 방향성 모드를 MPM으로 결정할 수 있다. 일 실시예에서, 상기 현재 루마 블록의 모서리에 매칭되는 방향성 인트라 예측 모드는 현재 루마 블록의 너비와 높이의 비율에 따라 미리 설정된 것일 수 있다.
일 실시예에서, 두 개 이상의 DM 모드를 사용하여 크로마 예측 모드 후보를 생성하는 경우 MPM과 동일한 방식을 적용하여 통일성을 높일 수 있다.
이제까지 다양한 실시예들을 중심으로 살펴보았다. 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자는 본 개시가 본 개시의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 개시의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 개시에 포함된 것으로 해석되어야 할 것이다.
한편, 상술한 본 개시의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.

Claims (15)

  1. 비트스트림으로부터, 현재 크로마 블록의 인트라 예측 모드 정보를 획득하는 단계;
    상기 현재 크로마 블록의 형태에 기초하여, 상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 단계;
    상기 획득된 인트라 예측 모드 정보에 기초하여, 상기 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중 하나를 상기 현재 크로마 블록의 인트라 예측 모드로 결정하는 단계; 및
    상기 결정된 인트라 예측 모드에 기초하여 상기 현재 크로마 블록에 대한 인트라 예측을 수행하는 단계를 포함하는, 비디오 복호화 방법.
  2. 제1항에 있어서,
    상기 현재 크로마 블록의 인트라 예측 모드 리스트는, DC 모드, Planar 모드, 수평 모드 및 수직 모드를 모두 인트라 예측 모드 후보들로서 포함하는, 비디오 복호화 방법.
  3. 제1항에 있어서,
    상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 단계는,
    상기 현재 크로마 블록의 너비와 높이를 비교한 결과에 기초하여 상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 단계를 포함하는, 비디오 복호화 방법.
  4. 제3항에 있어서,
    상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 단계는,
    상기 현재 크로마 블록의 너비가 높이보다 큰 경우, 수평 모드를 수직 모드보다 앞선 순위의 인트라 예측 모드 후보로 결정하는 단계; 및,
    상기 현재 크로마 블록의 너비가 높이보다 작거나 같은 경우, 수직 모드를 수평 모드보다 앞선 순위의 인트라 예측 모드 후보로 결정하는 단계를 포함하는, 비디오 복호화 방법.
  5. 제3항에 있어서,
    상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 단계는,
    상기 현재 크로마 블록의 너비가 높이보다 큰 경우, 좌측 하단 방향을 가리키는 인트라 예측 모드를 상기 인트라 예측 모드 리스트에 포함되는 인트라 예측 모드 후보로 결정하는 단계; 및
    상기 현재 크로마 블록의 너비가 높이보다 작거나 같은 경우, 우측 상단 방향을 가리키는 인트라 예측 모드를 상기 인트라 예측 모드 리스트에 포함되는 인트라 예측 모드 후보로 결정하는 단계를 포함하는, 비디오 복호화 방법.
  6. 제1항에 있어서,
    상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 단계는,
    상기 현재 크로마 블록이 정방형인지 여부에 기초하여 상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 단계를 포함하는, 비디오 복호화 방법.
  7. 제6항에 있어서,
    상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 단계는,
    상기 현재 크로마 블록이 비정방형인 경우, 상기 현재 크로마 블록의 좌측 하단 모서리로부터 우측 상단 모서리로 향하는 방향에 가장 근접한 방향을 가리키는 인트라 예측 모드 또는 상기 현재 크로마 블록의 우측 상단 모서리로부터 좌측 하단 모서리로 향하는 방향에 가장 근접한 방향을 가리키는 인트라 예측 모드를 인트라 예측 모드 후보로 결정하는 단계를 포함하는, 비디오 복호화 방법.
  8. 제6항에 있어서,
    상기 인트라 예측 모드 리스트를 결정하는 단계는,
    상기 현재 크로마 블록이 비정방형인 경우, 상기 현재 크로마 블록의 너비와 높이의 비율에 따라 미리 설정된 방향성 모드를 인트라 예측 모드 후보로 결정하는 단계를 포함하는, 비디오 복호화 방법.
  9. 제1항에 있어서,
    상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 단계는,
    상기 현재 크로마 블록에 대응되는 루마 블록의 인트라 예측 모드를 결정하는 단계;
    상기 루마 블록의 인트라 예측 모드를 상기 인트라 예측 모드 리스트에 포함되는 제1 인트라 예측 모드 후보로 결정하는 단계; 및
    상기 제1 인트라 예측 모드에 기초하여, 상기 인트라 예측 모드 리스트에 포함되는 제2 인트라 예측 모드 후보를 결정하는 단계를 포함하는, 비디오 복호화 방법.
  10. 제9항에 있어서, 상기 제2 인트라 예측 모드 후보를 결정하는 단계는,
    상기 제1 인트라 예측 모드 후보가 방향성 모드인 경우, 상기 제1 인트라 예측 모드에 소정의 오프셋을 적용한 방향성 모드를 상기 제2 인트라 예측 모드 후보로 결정하는 단계를 포함하는, 비디오 복호화 방법.
  11. 제9항에 있어서, 상기 제2 인트라 예측 모드 후보를 결정하는 단계는,
    상기 제1 인트라 예측 모드 후보가 비방향성 모드인 경우, 상기 제1 인트라 예측 모드와 다른 비방향성 모드를 상기 제2 인트라 예측 모드 후보로 결정하는 단계를 포함하는, 비디오 복호화 방법.
  12. 제9항에 있어서, 상기 현재 크로마 블록에 대응되는 루마 블록의 인트라 예측 모드는, 상기 현재 크로마 블록의 중심 위치에 대응되는 루마 블록으로부터 획득되는, 비디오 복호화 방법.
  13. 제1항에 있어서, 상기 인트라 예측 모드 정보는, truncated unary coding 방식으로 시그널링되는 비디오 복호화 방법.
  14. 메모리; 및
    상기 메모리와 기능적으로 연결된 적어도 하나의 프로세서를 포함하고,
    상기 메모리는, 상기 적어도 하나의 프로세서에 의해 실행 가능하도록 구성되는 적어도 하나의 명령어를 포함하며,
    상기 적어도 하나의 명령어는, 실행 시에, 상기 적어도 하나의 프로세서로 하여금,
    비트스트림으로부터, 현재 크로마 블록의 인트라 예측 모드 정보를 획득하고,
    상기 현재 크로마 블록의 형태에 기초하여, 상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하고,
    상기 획득된 인트라 예측 모드 정보에 기초하여, 상기 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중 하나를 상기 현재 크로마 블록의 인트라 예측 모드로 결정하고,
    상기 결정된 인트라 예측 모드에 기초하여 상기 현재 크로마 블록에 대한 인트라 예측을 수행하도록 설정되는, 비디오 복호화 장치.
  15. 현재 크로마 블록의 형태에 기초하여, 상기 현재 크로마 블록의 인트라 예측 모드 리스트를 결정하는 단계;
    상기 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중, 상기 현재 크로마 블록의 인트라 예측 모드를 결정하는 단계;
    상기 결정된 인트라 예측 모드에 기초하여 상기 현재 크로마 블록에 대한 인트라 예측을 수행하는 단계; 및
    상기 현재 크로마 블록의 인트라 예측 모드 리스트에 포함된 인트라 예측 모드 후보들 중 상기 결정된 인트라 예측 모드를 가리키는 인트라 예측 모드 정보를 부호화하는 단계;
    를 포함하는, 비디오 부호화 방법.
PCT/KR2019/011407 2018-09-20 2019-09-04 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치 WO2020060077A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201862733804P 2018-09-20 2018-09-20
US62/733,804 2018-09-20
US201862775405P 2018-12-05 2018-12-05
US62/775,405 2018-12-05
US201962790815P 2019-01-10 2019-01-10
US62/790,815 2019-01-10

Publications (1)

Publication Number Publication Date
WO2020060077A1 true WO2020060077A1 (ko) 2020-03-26

Family

ID=69887521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011407 WO2020060077A1 (ko) 2018-09-20 2019-09-04 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치

Country Status (1)

Country Link
WO (1) WO2020060077A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150003219A (ko) * 2012-04-26 2015-01-08 소니 주식회사 색차 값들에 대한 인트라 예측 모드 도출
JP2016171586A (ja) * 2013-03-29 2016-09-23 株式会社Jvcケンウッド 画像復号装置、画像復号方法、画像復号プログラム、受信装置、受信方法、及び受信プログラム
US20180048889A1 (en) * 2016-08-15 2018-02-15 Qualcomm Incorporated Intra video coding using a decoupled tree structure
WO2018117892A1 (en) * 2016-12-23 2018-06-28 Huawei Technologies Co., Ltd. An intra-prediction apparatus for extending a set of predetermined directional intra-prediction modes
KR20180075422A (ko) * 2016-12-26 2018-07-04 에스케이텔레콤 주식회사 인트라 예측을 이용한 영상의 부호화 및 복호화

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150003219A (ko) * 2012-04-26 2015-01-08 소니 주식회사 색차 값들에 대한 인트라 예측 모드 도출
JP2016171586A (ja) * 2013-03-29 2016-09-23 株式会社Jvcケンウッド 画像復号装置、画像復号方法、画像復号プログラム、受信装置、受信方法、及び受信プログラム
US20180048889A1 (en) * 2016-08-15 2018-02-15 Qualcomm Incorporated Intra video coding using a decoupled tree structure
WO2018117892A1 (en) * 2016-12-23 2018-06-28 Huawei Technologies Co., Ltd. An intra-prediction apparatus for extending a set of predetermined directional intra-prediction modes
KR20180075422A (ko) * 2016-12-26 2018-07-04 에스케이텔레콤 주식회사 인트라 예측을 이용한 영상의 부호화 및 복호화

Similar Documents

Publication Publication Date Title
WO2021006692A1 (ko) 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
WO2020060158A1 (ko) 움직임 정보의 부호화 및 복호화 방법, 및 움직임 정보의 부호화 및 복호화 장치
WO2019172676A1 (ko) 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
WO2018012808A1 (ko) 크로마 인트라 예측 방법 및 그 장치
WO2020040619A1 (ko) 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
WO2020027551A1 (ko) 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
WO2017142327A1 (ko) 인트라 예측오차의 감소를 위한 인트라 예측 방법 및 그 장치
WO2019216712A1 (ko) 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
WO2019209028A1 (ko) 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
WO2020130730A1 (ko) 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
WO2020076130A1 (ko) 타일 및 타일 그룹을 이용하는 비디오 부호화 및 복호화 방법, 및 타일 및 타일 그룹을 이용하는 비디오 부호화 및 복호화 장치
WO2017090968A1 (ko) 영상을 부호화/복호화 하는 방법 및 그 장치
WO2020130712A1 (ko) 삼각 예측 모드를 이용하는 영상 부호화 장치 및 영상 복호화 장치, 및 이에 의한 영상 부호화 방법 및 영상 복호화 방법
WO2021141451A1 (ko) 양자화 파라미터를 획득하기 위한 비디오 복호화 방법 및 장치, 양자화 파라미터를 전송하기 위한 비디오 부호화 방법 및 장치
WO2019066514A1 (ko) 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
WO2020101429A1 (ko) 양방향 예측을 이용한 영상의 부호화 및 복호화 방법, 및 영상의 부호화 및 복호화 장치
WO2019093597A1 (ko) 움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법
WO2019135558A1 (ko) 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
WO2020013627A1 (ko) 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
WO2020117010A1 (ko) 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
WO2019066472A1 (ko) 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
WO2019216710A1 (ko) 영상의 부호화 및 복호화를 위한 영상의 분할 방법 및 장치
WO2021086153A1 (ko) 어파인 모델에 따른 인터 예측을 수행하는 비디오 복호화 방법 및 그 장치, 비디오 부호화 방법 및 그 장치
WO2020256521A1 (ko) 제한된 예측 모드에서 복원후 필터링을 수행하는 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
WO2017195945A1 (ko) 영상을 부호화/복호화 하는 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862766

Country of ref document: EP

Kind code of ref document: A1