WO2020059871A1 - Production method of water absorbing resin including chelating agent - Google Patents

Production method of water absorbing resin including chelating agent Download PDF

Info

Publication number
WO2020059871A1
WO2020059871A1 PCT/JP2019/037091 JP2019037091W WO2020059871A1 WO 2020059871 A1 WO2020059871 A1 WO 2020059871A1 JP 2019037091 W JP2019037091 W JP 2019037091W WO 2020059871 A1 WO2020059871 A1 WO 2020059871A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
polymerization
chelating agent
absorbent resin
monomer
Prior art date
Application number
PCT/JP2019/037091
Other languages
French (fr)
Japanese (ja)
Inventor
加奈子 津留
智嗣 松本
好希 片田
邦彦 石▲崎▼
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to CN201980061281.2A priority Critical patent/CN112714770B/en
Priority to KR1020217011184A priority patent/KR102562511B1/en
Priority to JP2020549156A priority patent/JP7064614B2/en
Publication of WO2020059871A1 publication Critical patent/WO2020059871A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/175Amines; Quaternary ammonium compounds containing COOH-groups; Esters or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • C08K5/5357Esters of phosphonic acids cyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels

Definitions

  • the present invention relates to a method for producing a water absorbent resin containing a chelating agent.
  • a water-absorbent resin (SAP / Super Absorbent polymer) is a water-swellable, water-insoluble polymer gelling agent, and absorbent articles such as disposable diapers and sanitary napkins, as well as agricultural and horticultural water retention agents, and industrial water stoppages. As a material, it is mainly used for disposable purposes.
  • Such a water-absorbent resin is produced through a production step such as a polymerization step, a drying step, a removal step of an undried substance if necessary, a pulverization step, a classification step, a surface cross-linking step, and the like.
  • a production step such as a polymerization step, a drying step, a removal step of an undried substance if necessary, a pulverization step, a classification step, a surface cross-linking step, and the like.
  • many functions are also required for a water absorbent resin. Specifically, the gel strength, water-soluble content, water absorption rate, water absorption capacity under pressure, liquid permeability, particle size distribution, urine resistance, antibacterial property, impact resistance (not limited to the mere water absorption capacity) Damage), powder fluidity, deodorant properties, coloring resistance (whiteness), low dust, and the like.
  • a small amount of additives may be used in the water-absorbent resin, as various additives of the water-absorbent resin, Water-soluble or water-insoluble inorganic or organic powder, surfactant, plasticizer, water-soluble polymer, water-insoluble (thermoplastic) polymer, antibacterial agent, deodorant, reducing agent, antioxidant, organic acid, inorganic acid Additives such as anti-coloring agents and chelating agents are known.
  • the water-absorbent resin in particular, polymerization stability, color tone stability of the water-absorbent resin (color stability when stored for a long time under high temperature and high humidity), urine resistance (gel) It is known to add a chelating agent (also called an ion-sequestering agent) to a water-absorbent resin for the purpose of improving deterioration prevention or the like.
  • a chelating agent also called an ion-sequestering agent
  • Patent Documents 1 to 4 disclose that a chelating agent is added to a monomer of a water-absorbing resin mainly for improving polymerization stability.
  • Patent Literatures 5 to 11 mainly describe a process for polymerizing a water-absorbent resin, a drying process, a surface cross-linking process, a granulation process, a fine powder collection process, and the like, mainly for improving urine resistance of a water-absorbent resin (preventing urine deterioration).
  • a method for producing a water-absorbing resin in which a chelating agent is added to a monomer or a polymer thereof in a production process is disclosed.
  • Patent Documents 12 to 19 and 23 disclose a method for producing a water-absorbent resin in which a metal chelating agent is added in any of the production steps in order to suppress coloring (particularly coloring with time) of the water-absorbent resin.
  • Patent Literatures 12 and 14 describe that it is known that a chelating agent is preferably present inside a water-absorbing resin for preventing coloration.
  • a method of adding a chelating agent to the inside of a water-absorbent resin by adding the chelating agent to a gel before drying discloses a water-absorbing resin composition containing a chelating agent for improving the salt resistance of the water-absorbing resin.
  • Patent Documents 21 and 23 disclose a method for producing a water-absorbent resin in which a metal chelating agent is added in any of the production steps in order to improve the urine resistance of the water-absorbent resin.
  • Patent Document 22 discloses a method for producing a water-absorbent resin in which a chelating agent is added to a second-stage monomer in a two-stage polymerization in order to improve physical properties such as a water absorption capacity under pressure of the water-absorbent resin after reverse phase suspension polymerization. Is disclosed.
  • the chelating agent used for the purpose of stabilizing polymerization in the production process and preventing drying deterioration in the above-mentioned Patent Documents 1 to 7 can also improve urine resistance when a water-absorbing resin is used if it remains in the final product. It works to prevent coloring.
  • the present inventors further studied the method for producing a water-absorbent resin containing a chelating agent, and particularly when the chelating agent is added in the polymerization step and the drying step among the above-described production steps, the addition of the chelating agent in the final product
  • a new problem has been found that it is difficult to obtain a sufficient effect commensurate with the amount.
  • the amount of the chelating agent corresponding to the amount of the chelating agent added to the monomer or the polymer gel was not contained in the water absorbent resin of the final product.
  • one embodiment of the present invention provides a chelating agent that can prevent the decomposition of the chelating agent in the process of manufacturing the water-absorbent resin and can improve the residual ratio of the chelating agent in the water-absorbent resin as a final product. It is a main object to provide a method for producing a water-absorbent resin containing the same.
  • Another object of one embodiment of the present invention is to provide a water-absorbent resin containing a chelating agent obtained by the above-described production method, which has good coloring resistance (whiteness).
  • the present inventors have investigated the cause thereof in order to solve the above-described problem that has been found this time, and found that in a step of drying a hydrogel polymer obtained by polymerizing a monomer, a step before the drying step was performed. It was found that the chelating agent that had been added to the sample was specifically reduced in the drying step. The inventors have found that the cause of the decrease in the chelating agent in the drying step is a polymerization initiator (particularly, persulfate) remaining in the hydrogel polymer.
  • the present invention controls the persulfate in the polymerization initiator at the time of polymerization or before drying (0.04 mol% or less), and further controls the gel particle size and drying conditions before drying. And suppressing the decomposition of the chelating agent in the drying step, and includes the inventions described in the following [1] to [20].
  • CRC water absorption capacity
  • the persulfate used in the polymerization step is 0 to 0.04 mol% (based on the monomer at the time of polymerization) (provided that the persulfate is 0 mol%).
  • a chelating agent is added to the monomer aqueous solution or the hydrogel polymer in a step prior to the drying step in a total of 10 ppm or more (relative to the polymerization time).
  • Monomer or solid content of hydrogel polymer) Including a chelating agent, the weight-average particle diameter (D50) of the hydrated hydrogel polymer is 1 mm or less, and in the drying step, the drying time until the solid content is 80% by weight or more is 20 minutes or less.
  • D50 weight-average particle diameter
  • the chelating agent is 10 ppm or more (based on the solid content of the hydrogel polymer) and the persulfate is 0 to 0.04 mol% (based on the polymerization time).
  • a chelating agent by drying a particulate hydrogel polymer having a weight-average particle diameter (D50) of 1 mm or less containing a monomer) until the solid content becomes 80% by weight or more for a drying time of 20 minutes or less.
  • D50 weight-average particle diameter
  • the drying time refers to a time until the solid content becomes 80% by weight or more.
  • the total amount of the chelating agent added in the steps before the drying step is 60 ppm to 1% (based on the solid content of the monomer at the time of polymerization or the solid content of the hydrogel polymer).
  • the monomer used in the polymerization step contains acrylic acid (salt), and the content of the acrylic acid (salt) is based on the total monomers (excluding the internal crosslinking agent) used in the polymerization step.
  • the water-absorbing resin containing 50 to 100 mol% of the chelating agent has a residual amount (C1) of the chelating agent of 10 ppm or more, an L value of an initial color tone of 85 or more, and a YI value of 13 or less.
  • the production method according to any one of [1] to [13], which is a polyacrylic acid (salt) -based water-absorbent resin.
  • the water-absorbent resin containing a chelating agent has a residual amount (C1) of the chelating agent of 200 ppm or more, an L value of an initial color tone of 89 or more, and a YI value of 10 or less.
  • C1 residual amount of the chelating agent of 200 ppm or more
  • L value of an initial color tone of 89 or more an L value of an initial color tone of 89 or more
  • YI value 10 or less.
  • a polyacrylic acid (salt) -based water-absorbent resin having a chelating agent content (C2) of 200 ppm or more, an initial color tone L value of 89 or more, and a YI value of 10 or less.
  • Acrylic acid (salt) is 50 to 100 mol% of the total monomer (excluding the internal cross-linking agent), 0.001 to 5 mol% of the internal cross-linking agent based on the monomer, and persulfate
  • a hydrogel polymer obtained by polymerizing an aqueous monomer solution containing a monomer and a polymerization initiator is gel-pulverized during and / or after polymerization, if necessary, to obtain a particulate hydrous polymer.
  • the water-absorbent resin according to any one of [16] to [18], wherein a monomer at the time or a solid content of the hydrogel polymer is added.
  • the decomposition of the chelating agent in the production process of the water-absorbing resin is prevented, the residual ratio of the chelating agent in the water-absorbing resin as the final product is improved, and the surface and the inside of the particles of the water-absorbing resin are improved. This has the effect that a chelating agent can be added.
  • Water absorbent resin The “water-absorbent resin” in the present invention means a water-swellable, water-insoluble polymer gelling agent.
  • water swelling means that the CRC (absorption capacity under no pressure) specified by ERT442.2-02 is 5 [g / g] or more
  • water insoluble means ERT470.2 It means that the Ext (water-soluble content) defined by ⁇ 02 is 0 to 50% by weight.
  • the water-absorbent resin can be appropriately designed according to its use, and is not particularly limited, but is preferably a hydrophilic polymer obtained by polymerizing an unsaturated monomer having a carboxyl group.
  • the composition is not limited to a form in which the total amount (100% by weight) is a polymer, and may be a composition containing a surface-crosslinked resin, an additive, or the like as long as the above performance is maintained. According to the production method of the present invention, a particulate or powdery water-absorbent resin can be produced as a final product.
  • water-absorbent resin refers to a water-absorbent resin before surface treatment or surface cross-linking, a water-absorbent resin after surface treatment or surface cross-linking, and a water absorbing resin having different shapes obtained in each step.
  • Water-absorbent resin compositions containing additives such as a water-soluble resin (for example, sheet-like, fibrous, film-like, and gel-like shapes).
  • the “polyacrylic acid (salt)” in the present invention includes acrylic acid and / or a salt thereof (hereinafter, sometimes referred to as acrylic acid (salt)) as a main component as a repeating unit, optionally including a graft component.
  • Acrylic acid (salt) is essentially 50 to 100 mol%, preferably 70 to 100 mol%, more preferably 90 to 100 mol%. It refers to a polymer containing 100 mol%, particularly preferably substantially 100 mol%.
  • a water-soluble salt is essential, a monovalent salt is preferable as a main component of the neutralized salt, an alkali metal salt or an ammonium salt is more preferable, and an alkali metal salt is further preferable.
  • the sodium salt is particularly preferred.
  • EDANA European Disposables and Nonwovens Assoiations
  • ERT is an abbreviation of EDANA Recommended Test Metods, a method of measuring water-absorbent resin which is a European standard (almost a global standard). is there. In the present invention, the measurement is performed based on the original ERT (publicly known document: revised in 2002) unless otherwise specified.
  • CRC is an abbreviation of Centrifuge Retention Capacity (centrifuge retention capacity), and means a non-pressurized water absorption capacity (hereinafter sometimes referred to as “water absorption capacity”). Specifically, 0.200 g of the water-absorbent resin in the non-woven fabric bag was freely swelled in a large excess of 0.9% by weight aqueous sodium chloride solution for 30 minutes, and then drained with a centrifuge. Magnification (unit: [g / g]). The CRC of the hydrogel polymer (hereinafter referred to as “gel CRC”) was measured by changing the sample to 0.4 g and the free swelling time to 24 hours.
  • AAP is an abbreviation for Absorption against Pressure, and means the water absorption capacity under pressure. Specifically, 0.900 g of a water-absorbing resin is swollen against a 0.9% by weight aqueous solution of sodium chloride for 1 hour under a load of 2.06 kPa (0.3 psi, 21 [g / cm 2 ]). It is a water absorption capacity (unit: [g / g]) after the water absorption.
  • the measurement may be performed with the load condition changed to 4.83 kPa (0.7 psi, 49 [g / cm 2 ]). In this case, AAP (0.7 psi) is used. Describe.
  • Ext is an abbreviation for Extractables and means a water-soluble component (amount of water-soluble component). Specifically, it is the amount of dissolved polymer (unit: wt%) after adding 1.000 g of the water-absorbing resin to 200 ml of 0.9 wt% aqueous sodium chloride solution and stirring for 16 hours. The measurement of the amount of the dissolved polymer is performed using pH titration. The water-soluble content of the hydrogel polymer (hereinafter, referred to as “gel Ext”) was measured by changing the sample to 5.0 g and the stirring time to 24 hours.
  • PSD is an abbreviation of Particle Size Distribution, and means a particle size distribution measured by sieve classification.
  • the weight average particle diameter (D50) and the particle diameter distribution width are described in “(3) Mass-Average Particle Diameter (D50) and Logarithmic Standard Deviation ( ⁇ ) of Particle Diameter Distribution” described in US Pat. No. 7,638,570. Measure in the same way.
  • the standard sieve (mesh) used in the particle size measurement may be appropriately added depending on the particle size of the object. For example, a standard sieve having an opening of 710 ⁇ m, 600 ⁇ m, or the like may be added. The method for measuring the PSD of the hydrogel polymer will be described later.
  • Residual Monomers means the amount of monomer (monomer) remaining in the water-absorbent resin (hereinafter, referred to as “residual monomer”). Specifically, 1.0 g of a water-absorbent resin was added to 200 ml of a 0.9% by weight aqueous sodium chloride solution, and the amount of dissolved monomer (unit: ppm) after stirring at 500 rpm for 1 hour using a 35 mm stirrer chip was determined. Say. The amount of the dissolved monomer is measured using HPLC (high performance liquid chromatography). The residual monomer of the hydrogel polymer was measured by changing the sample to 2 g and the stirring time to 3 hours, and converting the measured value to the weight of the hydrogel polymer per solid resin. (Unit: ppm).
  • “Moisture Content” (ERT430.2-02) “Moisture Content” means the water content of the water absorbent resin. Specifically, it is a value (unit:% by weight) calculated from the loss on drying when 1 g of the water absorbent resin is dried at 105 ° C. for 3 hours.
  • the water content of the water-absorbent resin and the dried polymer was measured by changing the drying temperature to 180 ° C.
  • the moisture content of the hydrogel polymer was measured by changing the sample to 2 g, the drying temperature to 180 ° C., and the drying time to 16 hours.
  • the value calculated by ⁇ 100-water content (% by weight) ⁇ is referred to as "resin solid content", and can be applied to a water-absorbent resin, a dried polymer, and a hydrogel polymer.
  • Liquid permeability refers to the fluidity of a liquid passing between particles of a swollen gel under a load or no load, and as a typical measurement method, SFC (Saline Flow Conductivity / physiology) is used. Saline flow inducibility) and GBP (Gel Bed Permeability / gel bed permeability).
  • SFC physiological saline flow conductivity
  • FSR Free Swell Rate
  • a water absorption rate free swelling rate
  • gel pulverization refers to an operation of applying shear and compressive force to reduce the size and increase the surface area with the aim of facilitating drying of the hydrogel polymer obtained in the polymerization step. That means.
  • gel pulverization a particulate hydrogel polymer, in particular, a particulate hydrogel polymer having a weight average particle diameter (D50) described below is obtained.
  • gel polymerization is performed after polymerization in non-stirring aqueous polymerization (static aqueous polymerization, particularly belt polymerization), whereas in kneader polymerization, polymerization and gel pulverization are performed continuously in the same apparatus.
  • the weight average particle diameter (D50) of the particulate hydrogel polymer supplied to the drying step may be in the range described below, and gel pulverization may be performed during or after polymerization. .
  • Weight average molecular weight of water-soluble component refers to the weight-average molecular weight of a component (water-soluble component) that dissolves when a water-absorbent resin is added to an aqueous solvent, by GPC (gel permeation chromatography). It refers to the measured value (unit: daltons / hereinafter, abbreviated as [Da]). That is, it is the result of GPC measurement of the solution obtained by the measurement method described in the above (1-3) (c) “Ext”.
  • the weight-average molecular weight of the water-soluble component of the hydrogel polymer was determined by changing the particle diameter to 5 mm or less, and further, to 5.0 g for a sample having a fine particle size of 1 to 3 mm, and changing the stirring time to 24 hours. A measurement was made.
  • the present invention comprises a polymerization step of polymerizing an aqueous monomer solution containing a monomer and a polymerization initiator to obtain a hydrogel polymer, and, if necessary, a polymerization step.
  • the present invention provides a method for producing a water-absorbing resin having a water absorption capacity (CRC) of 15 g / g or more and containing a chelating agent, and the following methods 1 and 2.
  • CRC water absorption capacity
  • the persulfate used in the above polymerization step is 0 to 0.04 mol% (based on the monomer at the time of polymerization) (however, when the persulfate is 0 mol% (unused), another polymerization initiator is used). ), And the chelating agent is added to the aqueous monomer solution or the hydrogel polymer in a step prior to the drying step in a total of 10 ppm or more (solid content of the monomer or the hydrogel polymer at the time of polymerization).
  • the weight-average particle diameter (D50) of the particulate hydrogel polymer is 1 mm or less, and in the drying step, the drying time until the solid content is 80% by weight or more is 20 minutes or less. And a method for producing a water-absorbent resin containing a chelating agent.
  • Method 2 Persulfate in hydrogel polymer / gel particle size / drying conditions are specified
  • the weight average particle diameter (D50) containing 10 ppm or more of the chelating agent (based on the solid content of the hydrogel polymer) and 0 to 0.04 mol% of the persulfate (based on the monomer at the time of polymerization).
  • A) A method for producing a water-absorbent resin containing a chelating agent, wherein a particulate hydrogel polymer having a particle size of 1 mm or less is dried for a drying time of 20 minutes or less until the solid content becomes 80% by weight or more.
  • the drying time refers to a time until the solid content becomes 80% by weight or more.
  • hydrogel a monomer aqueous solution containing a monomer and a polymerization initiator is polymerized to obtain a hydrogel polymer (hereinafter sometimes abbreviated as “hydrogel”). It is a process.
  • the water-absorbent resin obtained by the present invention preferably uses a monomer containing acrylic acid (salt) as a main component as its raw material (monomer), and is usually polymerized in an aqueous solution state. (Salt) -based water-absorbing resin.
  • the concentration of the monomer (monomer) in the aqueous monomer solution is preferably 10 to 80% by weight, more preferably 20 to 80% by weight, still more preferably 30 to 70% by weight, and particularly preferably 40 to 60% by weight. .
  • a monovalent salt selected from alkali metal salts, ammonium salts, and amine salts is preferable, alkali metal salts are more preferable, and sodium salts, lithium salts, and potassium salts.
  • Alkali metal salts selected from salts are more preferable, and sodium salts are particularly preferable.
  • the basic substance used for the neutralization is not particularly limited, but includes hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, and lithium hydroxide, sodium (hydrogen) carbonate, potassium (hydrogen) carbonate, and the like.
  • Monovalent basic substances such as carbonic acid (hydrogen) salt are preferred, and sodium hydroxide is particularly preferred.
  • carbonate is used for neutralization, carbon dioxide is generated at the time of neutralization, so that the carbon dioxide can be used as a foaming agent at the time of polymerization.
  • the above-mentioned neutralization can be performed in each form and state before, during or after the polymerization.
  • non-neutralized or low-neutralized eg, a neutralization ratio of 0 to 30 mol% acrylic acid
  • Neutralization of the hydrogel polymer obtained by polymerizing the polymer can be carried out, particularly neutralization simultaneously with gel pulverization.However, from the viewpoint of improving productivity and physical properties, neutralization of acrylic acid before polymerization is carried out. It is preferred to do so. That is, it is preferable to use neutralized acrylic acid (partially neutralized salt of acrylic acid) as a monomer.
  • the neutralization ratio in the neutralization is not particularly limited, but is preferably from 10 to 100 mol%, more preferably from 30 to 95 mol%, further preferably from 45 to 90 mol%, as a final water-absorbing resin. Particularly preferred is ⁇ 80 mol%.
  • the neutralization temperature is not particularly limited, but is preferably from 10 to 100 ° C, more preferably from 30 to 90 ° C.
  • a hydrophilic or hydrophobic unsaturated monomer other than acrylic acid (salt) (hereinafter referred to as “other monomer”) ) May be used in combination.
  • Such other monomers are not particularly limited, but include, for example, methacrylic acid, (anhydrous) maleic acid, 2- (meth) acrylamide-2-methylpropanesulfonic acid, (meth) acryloxyalkanesulfonic acid, N -Vinyl-2-pyrrolidone, N-vinylacetamide, (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, methoxypolyethylene glycol (meth) Examples include acrylate, polyethylene glycol (meth) acrylate, stearyl acrylate, and salts thereof.
  • the amount used is appropriately determined within a range that does not impair the water absorbing performance of the obtained water-absorbing resin, and is not particularly limited, but is based on the total monomers (excluding the internal crosslinking agent).
  • 0 to 50 mol% is preferable, 0 to 30 mol% is more preferable, and 0 to 10 mol% is further preferable.
  • the aqueous monomer solution may optionally contain a polymerization inhibitor for the purpose of stabilizing polymerization and neutralization.
  • a polymerization inhibitor for the purpose of stabilizing polymerization and neutralization.
  • the amount used is typically 200 ppm or less, more preferably 10 to 130 ppm, based on the monomer, from the viewpoints of coloring and polymerization stability. More preferably, it is 20 to 100 ppm.
  • a methoxyphenol-based polymerization inhibitor is used. More preferably, the polymerization inhibitor is p-methoxyphenol.
  • the aqueous monomer solution further contains a polymerization initiator.
  • the polymerization initiator suitably used in the present invention is appropriately selected depending on the polymerization mode, and is not particularly limited, but is preferably a radical polymerization initiator.
  • the persulfate in the polymerization initiator used in the polymerization step is reduced to 0 to 0.04 mol% (based on the monomer at the time of polymerization) (however, the persulfate is 0 mol % (Unused), another polymerization initiator is used essentially).
  • the persulfate contained in the particulate hydrogel polymer is controlled to 0 to 0.04 mol% (monomer at the time of polymerization), This is a method for controlling the gel particle diameter and the drying conditions of the hydrogel polymer. Thereby, the present invention suppresses the decomposition of the chelating agent in the drying step.
  • the persulfate can be added not only to the monomer but also to the hydrogel polymer, from the polymerization step to before the drying step. It is more preferable to control the total amount of the persulfate added to 0 to 0.04 mol% (based on the monomer at the time of polymerization).
  • the addition amount of the persulfate and the content of the persulfate in the hydrogel polymer are preferably as low as possible, and are preferably 0.04 mol% or less, 0.035 mol% or less based on the monomer at the time of polymerization.
  • the persulfate is 0.0001 mol% or more, preferably 0.001 mol% or more, more preferably, from the viewpoint of reducing the residual monomer during drying. It is desirable that the amount is contained in the monomer aqueous solution or the hydrogel polymer in an amount of 0.01 mol% or more.
  • the upper and lower limits of the amount of persulfate to be added may be in any combination.
  • the addition amount of the persulfate exceeds 0.04 mol% based on the monomer at the time of polymerization, unreacted persulfate coexists in the hydrogel polymer in the subsequent drying step. It is not preferable because it reacts with a chelating agent and can decompose it.
  • the radical polymerization initiator used in the present invention may be a persulfate (eg, sodium persulfate, potassium persulfate, ammonium persulfate, etc.), and a peroxide other than the persulfate (eg, hydrogen peroxide, t -Butyl peroxide, methyl ethyl ketone peroxide, etc.), an azo polymerization initiator, or a photopolymerization initiator.
  • a persulfate eg, sodium persulfate, potassium persulfate, ammonium persulfate, etc.
  • a peroxide other than the persulfate eg, hydrogen peroxide, t -Butyl peroxide, methyl ethyl ketone peroxide, etc.
  • azo polymerization initiator used in the present invention examples include water-soluble azo compounds (eg, 2,2′-azobis (2-methylpropionamidine) dihydrochloride, 2,2′-azobis [2- (2-imidazoline- 2-yl) propane] dihydrochloride, 2,2 ′- ⁇ azobis (2-methyl-N- [1,1′-bis (hydroxymethyl) -2-hydroxyethyl] propionamide) ⁇ and the like.
  • 2,2'-azobis (2-methylpropionamidine) dihydrochloride is used.
  • the photopolymerization initiator used in the present invention includes diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethylketal, and 4- (2-hydroxyethoxy) phenyl- Acetophenone derivatives such as (2-hydroxy) -2-propyl ketone and 1-hydroxycyclohexyl phenyl ketone; benzoin alkyl ethers such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether and benzoin isobutyl ether; methyl o-benzoyl benzoate Benzophenone derivatives such as, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenylsulfide, (4-benzoylbenzyl) trimethylammonium chloride; thioxanthone Compound, bis (2,4,6-trimethylbenzoyl) - phenyl phosphine
  • the amount of the polymerization initiator containing a persulfate (0 to 0.04 mol%) is preferably 0.0001 to 1 mol% in total, preferably 0.0005 to 0 mol%, based on the monomers used in the polymerization. 0.5 mol% is more preferred. When the amount of the polymerization initiator exceeds 1 mol%, it is difficult to control the polymerization, and further, the color tone of the obtained water-absorbent resin may be deteriorated. When the amount of the polymerization initiator is less than 0.0001 mol%, there is a concern that the amount of the residual monomer may increase.
  • two or more polymerization initiators may be used in combination.
  • a persulfate is preferably used in the above range from the viewpoint of handleability, physical properties of the water-absorbing resin, and the like.
  • a second polymerization initiator selected from an azo polymerization initiator and a photopolymerization initiator as a polymerization initiator other than the persulfate from the viewpoint of the performance of the water-absorbing resin.
  • the molar ratio of the persulfate to the polymerization initiator other than the persulfate is from 1/99 to 99/1, preferably from 1/9 to 99/1.
  • the ratio is 9/1, more preferably 2/8 to 8/2, and still more preferably 3/7 to 7/3.
  • a redox initiator can be obtained by using together a reducing agent which promotes the decomposition of these polymerization initiators (particularly persulfate or peroxide) and combining them.
  • a reducing agent include (bis) sulfite (salt) such as sodium sulfite and sodium hydrogen sulfite, reducing metals (salt) such as L-ascorbic acid (salt) and ferrous salt, amines and the like. Is mentioned.
  • the polymerization is carried out by irradiating the reaction system with an active energy ray such as radiation, an electron beam, or an ultraviolet ray.
  • an active energy ray such as radiation, an electron beam, or an ultraviolet ray.
  • the reaction may be started.
  • persulfate includes sodium persulfate (half-life ( ⁇ ) at 90 ° C .; 1.24 hours), potassium persulfate (half-life ( ⁇ ) at 90 ° C .; 1.24 hours), ammonium persulfate (90 C .; half-life (.tau.) At 0.44 hours), and sodium persulfate is more preferred.
  • sodium acrylate is used as the monomer of the water-absorbent resin, if persulfate is used in the above range as the polymerization initiator, it will be substantially sodium persulfate regardless of the type of salt.
  • the half life ( ⁇ ) of sodium or potassium persulfate is 2100 hours (30 ° C.), 499 hours (40 ° C.), 130 hours (50 ° C.), 36.5 hours (60 ° C.), 11 0.1 hour (70 ° C.), 3.59 hours (80 ° C.), 1.24 hours (90 ° C.), and 0.45 hours (100 ° C.). Therefore, sodium persulfate or potassium persulfate remains mostly (more than 80%) in the hydrogel polymer before drying.
  • the aqueous monomer solution further contains an internal crosslinking agent.
  • the internal cross-linking agent suitably used in the present invention is not particularly limited, and includes, for example, a polymerizable cross-linking agent that polymerizes with acrylic acid, a reactive cross-linking agent that reacts with a carboxyl group, or a cross-linking agent having these properties. Is mentioned.
  • polymerizable crosslinking agent examples include N, N′-methylenebisacrylamide, (poly) ethylene glycol di (meth) acrylate, (polyoxyethylene) trimethylolpropane tri (meth) acrylate, and poly (meth) allyloxy.
  • examples include compounds having at least two polymerizable double bonds in the molecule, such as alkanes.
  • the reactive cross-linking agent examples include polyglycidyl ethers such as ethylene glycol diglycidyl ether; polyhydric alcohols such as propanediol, glycerin and sorbitol; covalent cross-linking agents such as; and polyvalent metals such as aluminum salts.
  • an ion-bonding crosslinking agent such as a compound.
  • a polymerizable crosslinker that polymerizes with acrylic acid is more preferable, and an acrylate, allyl, or acrylamide polymerizable crosslinker is particularly preferable.
  • One of these internal crosslinking agents may be used alone, or two or more thereof may be used in combination.
  • the mixing ratio is preferably from 10: 1 to 1:10.
  • the amount of the internal crosslinking agent used is preferably 0.001 to 5 mol%, more preferably 0.002 to 2 mol%, and more preferably 0.04 to 1 mol%, based on the monomer. More preferably, it is 0.06 to 0.5 mol%, most preferably 0.07 to 0.2 mol%.
  • the aqueous monomer solution contains acrylic acid (salt) in an amount of 50 to 100 mol% of the total monomers (excluding the internal cross-linking agent), and the internal cross-linking agent in an amount of 0. It is preferable to contain 001 to 5 mol%, and 0 to 0.04 mol% of the persulfate based on the monomer.
  • the water-absorbing resin composed of the polyacrylic acid (salt) -based crosslinked polymer obtained from the monomer aqueous solution can exhibit a preferable numerical range as the L value and the YI value of the initial color tone.
  • a further conventional additive may be added to the aqueous monomer solution in order to improve the physical properties of the water-absorbent resin obtained in the present invention.
  • additives examples include water-soluble resins or water-absorbing resins such as starch, cellulose, polyvinyl alcohol (PVA), polyacrylic acid (salt), and polyethyleneimine; carbonates, various foaming agents that generate air bubbles; surfactants And the like.
  • additives can be added to the hydrogel polymer, the dried polymer, the water-absorbing resin, or the like in any of the production steps of the present invention, in addition to the monomer aqueous solution.
  • the amount of these additives is preferably 0 to 50% by weight, more preferably 0 to 20% by weight, and still more preferably 0 to 10% by weight, based on the monomer. %, Particularly preferably 0 to 3% by weight.
  • the foaming agent or the surfactant it is preferably 0 to 5% by weight, more preferably 0 to 1% by weight, based on the monomer.
  • the graft polymer or the water-absorbent resin composition can be obtained by adding the above-mentioned water-soluble resin or water-absorbent resin.
  • These starch-acrylic acid polymer, PVA-acrylic acid polymer and the like are also used in the present invention. Treat as
  • a chelating agent is added to the aqueous monomer solution or the hydrogel polymer in a step prior to the drying step in a total of 10 ppm or more (for the monomer at the time of polymerization or the hydrogel polymer). Solids).
  • the content of the chelating agent of the particulate hydrogel polymer (solid content of the hydrogel polymer) provided in the drying step is 10 ppm or more, 40 ppm or more, 60 ppm or more, 100 ppm or more. , 200 ppm or more, 250 ppm or more, 500 ppm or more, and 600 ppm or more in this order.
  • the upper limit of the amount of the chelating agent or the upper limit of the content is determined by the solid content of the monomer or the hydrogel polymer at the time of polymerization. It is preferable that the content is 1% or less, 8000 ppm or less, 6000 ppm or less, and 5000 ppm or less. In the present invention, any combination of the upper limit and the lower limit of the added amount or the content of the chelating agent is preferable.
  • the above-mentioned added amount (ppm) of the chelating agent is the weight of the chelating agent at the time of addition (to the monomer at the time of polymerization or the solid content of the hydrogel polymer), and is a single amount after mixing after addition.
  • the salt exchange with the carboxy group of the polymer and the polymer is not taken into account, and the neutralized salt type chelating agent shows the amount of addition as a salt type, and the acid type chelating agent shows the actual addition amount as an acid type.
  • the weight% of the chelating agent with respect to the solid content of the monomer or the hydrogel polymer can be converted into a molar ratio (mol%) to the monomer at the time of polymerization.
  • the added amount or the content of the chelating agent is 0.0002 mol% or more, 0.001 mol% or more, 0.002 mol% or more, 0.005 mol% or more based on the monomer at the time of polymerization. , 0.01 mol% or more in this order.
  • the upper limit is preferably in the order of 0.2 mol% or less, 0.15 mol% or less, 0.12 mol% or less, and 0.1 mol% or less.
  • the upper and lower limits of the molar ratio of the chelating agent may be in any combination.
  • the molar ratio of the persulfate to the chelating agent is preferably lower, more preferably 50 times or less, 20 times or less, 10 times or less, 5 times or less, 3 times or less, The lower limit is 0.
  • the residual ratio of the chelating agent is improved, and not only the content of the chelating agent in the polymer in the obtained water-absorbent resin is increased, but also the L value of the initial coloring of the obtained water-absorbent resin is increased. Increase and the YI value decreases.
  • the chelating agent By adding a chelating agent to the monomer at the time of polymerization or the hydrogel before drying, the chelating agent is uniformly blended into the polymer of the water-absorbing resin (particularly, the water-absorbing resin of the final product) after the drying step. be able to.
  • the chelating agent is selectively added to the surface of the water-absorbent resin by adding the chelating agent after the drying step and further in the surface cross-linking step or subsequent steps.
  • the effect of the chelating agent can be further enhanced by blending the chelating agent inside the polymer.
  • a chelating agent When a chelating agent is added in the above-mentioned polymerization step, it can be added to the aqueous monomer solution as in the case of other additives.
  • gel pulverization can be performed by adding and kneading to the hydrogel polymer.
  • an aqueous solution containing a chelating agent can be supplied into the gel crusher while the hydrogel polymer is retained in the gel crusher.
  • an aqueous solution containing a chelating agent may be added in advance to the hydrogel polymer and charged into the gel pulverizer. The timing of adding these chelating agents may be appropriately combined.
  • a high-molecular or non-polymer chelating agent more preferably a non-polymer chelating agent, further preferably a non-polymer chelating agent having a molecular weight of 1,000 or less can be mentioned.
  • the chelating agent used in the present invention include amino polyvalent carboxylic acid, organic polyvalent phosphoric acid (particularly, amino polyvalent phosphoric acid), inorganic polyvalent phosphoric acid, and tropolone derivatives. At least one chelating agent selected from the group consisting of these compounds is used in the present invention.
  • polyvalent refers to having a plurality of functional groups in one molecule, preferably 2 to 30, more preferably 3 to 20, and still more preferably 4 to 10. Refers to having a functional group.
  • amino polycarboxylic acid specifically, imino diacetic acid, hydroxyethyl imino diacetic acid, nitrilotriacetic acid, nitrilotripropionic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid (DTPA), triethylenetetramine hexaacetic acid (TTHA), trans -1,2-diaminocyclohexane tetraacetic acid, N, N-bis (2-hydroxyethyl) glycine, diaminopropanol tetraacetic acid, ethylenediamine-2-propionic acid, N-hydroxyethylethylenediamine triacetic acid, glycol ether diamine tetraacetic acid , Diaminopropanetetraacetic acid, N, N'-bis (2-hydroxybenzyl) ethylenediamine-N, N'-2acetic acid, 1,6-hexamethylenediamine-N, N
  • organic polyvalent phosphoric acid examples include nitriloacetic acid-di (methylenephosphinic acid), nitriloacetic acid- (methylenephosphinic acid), nitriloacetic acid- ⁇ -propionic acid-methylenephosphonic acid, and nitrilotris (methylenephosphonic acid). Acid), 1-hydroxyethylidene diphosphonic acid, amino polyphosphoric acid and the like.
  • amino polyvalent phosphoric acid examples include ethylenediamine-N, N′-di (methylenephosphinic acid), ethylenediaminetetra (methylenephosphinic acid), cyclohexanediaminetetra (methylenephosphonic acid), ethylenediamine-N, N '-Diacetic acid-N, N'-di (methylene phosphonic acid), ethylenediamine-N, N'-di (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), polymethylenediaminetetra (methylenephosphonic acid), diethylenetriamine Penta (methylene phosphonic acid), ethylenediaminetetramethylene phosphonic acid (EDTMP), and salts thereof.
  • ethylenediamine-N, N′-di methylenephosphinic acid
  • ethylenediaminetetra methylenephosphinic acid
  • cyclohexanediaminetetra methylenephosphonic acid
  • inorganic polyvalent phosphoric acid examples include pyrophosphoric acid, tripolyphosphoric acid, and salts thereof.
  • tropolone derivative examples include tropolone, ⁇ -thiaprisin, ⁇ -thiaprisin, and the like.
  • an amino polycarboxylic acid chelating agent and / or an amino polyphosphoric acid chelating agent are preferable.
  • the amino polycarboxylic acid chelating agent specifically, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid and triethylenetetraaminehexaacetic acid, and metal salts thereof, for example, sodium salt, potassium salt and the like Is mentioned.
  • the amino polyvalent phosphoric acid chelating agent include ethylenediaminetetramethylenephosphonic acid.
  • a water-absorbent resin containing a chelating agent uniformly in a polymer can be obtained by such a technique.
  • the deterioration and coloring of the water-absorbing resin are easily performed on the particle surface. Therefore, in the present invention, by adding a chelating agent to the surface of the particles by adding a chelating agent to the water-absorbing resin in a step after the drying step, that is, by adding the chelating agent a plurality of times, the water absorbing
  • the type and amount of the chelating agent to be added in the steps after the drying step may be the same as or different from the type and the amount of the chelating agent to be added in the step before the drying step. It is preferable to use the following types and addition amounts. Further, the chelating agent may be added to the monomer or the hydrogel polymer only with the chelating agent, or may be added to the monomer or the hydrogel polymer in the form of a solution (particularly an aqueous solution). Good.
  • the polymerization method comprises directly obtaining a particulate hydrogel polymer by spray / droplet polymerization or reverse phase suspension polymerization in the gas phase. From the viewpoint of the liquid permeability (SFC) and water absorption rate (FSR) of the obtained water-absorbent resin, ease of polymerization control, etc., aqueous solution polymerization is adopted.
  • SFC liquid permeability
  • FSR water absorption rate
  • a hydrogel polymer may be obtained by a tank type (silo type) or belt type non-stirring polymerization, and may be separately subjected to gel pulverization.
  • the reaction may be carried out to obtain a particulate hydrogel polymer, but from the viewpoint of easy control of polymerization, preferably, kneader polymerization or belt polymerization is employed. Further, from the viewpoint of productivity, continuous aqueous solution polymerization, more preferably, high-concentration continuous aqueous solution polymerization is employed.
  • stirring polymerization means that a hydrogel polymer (especially, a hydrogel polymer having a polymerization rate of 10 mol% or more, more preferably 50 mol% or more) is polymerized while being stirred, particularly with stirring and fragmentation. Before and after the non-stirring polymerization, the aqueous monomer solution (polymerization rate: 0 to less than 10 mol%) may be appropriately stirred.
  • Examples of the continuous aqueous solution polymerization include continuous kneader polymerization described in U.S. Patent Nos. 6,987,171 and 6,710,141 and U.S. Patent Nos. 4,893,999 and 6,241,928, and U.S. Patent Application Publication No. 2005 / 215,734. Continuous belt polymerization. By such aqueous solution polymerization, a water-absorbent resin can be produced with high productivity.
  • the decomposition of the chelating agent during drying can be suppressed by increasing the solid content concentration of the hydrogel polymer by high concentration polymerization and shortening the drying step.
  • the monomer concentration (solid content) is preferably 35% by weight or more, more preferably 40% by weight or more, and even more preferably 45% by weight or more (the upper limit is the saturation concentration).
  • the polymerization initiation temperature is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, still more preferably 40 ° C. or higher, and particularly preferably 50 ° C. or higher (the upper limit is the boiling point).
  • the polymerization peak temperature is usually preferably from 80 to 130 ° C., more preferably from the boiling point of high-temperature polymerization to 120 ° C.
  • high-concentration, high-temperature initiation polymerization is a combination of these, and the aqueous monomer solution tends to boil during the polymerization, and a solvent such as water evaporates, so that a high-solids hydrogel polymer is obtained.
  • the solid content of the hydrogel polymer is preferably from 40 to 75% by mass, more preferably from 45 to 70% by mass, and still more preferably from 50 to 65% by mass.
  • the decomposition of the chelating agent in the drying step is reduced, and the residual ratio of the chelating agent is improved.
  • the solid content of the hydrogel polymer exceeds 75% by mass, the physical properties of the obtained water-absorbing resin may be deteriorated.
  • the polymerization in the present invention is preferably foam polymerization or boiling polymerization.
  • the residual monomer is 0.1% by mass or more, and more preferably 0.5 to 10% by mass, in the hydrogel polymer before the drying step. %, About 0.5 to 5% by weight, and about 0.5 to 3% by weight. In order to allow almost 100% of the chelating agent to remain in the polymerization step, it is preferable from the above estimation mechanism that the polymerization time be short in order to sufficiently leave unreacted monomer at the end of the polymerization step.
  • the present invention is preferably applied to short-time polymerization in which the polymerization time is 60 minutes or less, 10 minutes or less, 5 minutes or less, 3 minutes or less (the lower limit of the polymerization time is 1 second, and more preferably 10 seconds or more). .
  • the polymerization conditions include a polymerization initiation temperature of 30 ° C. or higher (further in the above range) and a polymerization peak temperature of 80 to 130 ° C. Range), high-temperature short-time polymerization with a polymerization time of 60 minutes or less (and further in the above range) is particularly preferable, and high-concentration and high-temperature short-time polymerization in which the monomer concentration is 35% by weight or more (and further in the above range). Is most preferred.
  • the polymerization method in the production method according to the present invention is preferably applied to a large-scale production apparatus having a large production volume per line.
  • the production amount is preferably 0.5 t / hr or more, more preferably 1 t / hr or more, still more preferably 5 t / hr or more, and particularly preferably 10 t / hr or more.
  • the above polymerization can be carried out in an air atmosphere, but is preferably carried out in an atmosphere of an inert gas such as steam, nitrogen or argon (for example, an oxygen concentration of 1% by volume or less) from the viewpoint of preventing coloration. Furthermore, it is preferable to carry out polymerization after replacing (degassing) the dissolved oxygen in the monomer or the solution containing the monomer with an inert gas (for example, less than 1 mg / L of oxygen). Even if such degassing is performed, the stability of the monomer is excellent, gelation before polymerization does not occur, and a water absorbing resin having higher physical properties and higher whiteness can be provided.
  • an inert gas such as steam, nitrogen or argon
  • Gel pulverizing step This step is a step of obtaining a particulate hydrogel polymer by fragmenting the hydrogel polymer during or after the polymerization described above. This step is referred to as “gel pulverization” in distinction from “pulverization” in the following (2-4) pulverization step / classification step.
  • a particulate hydrogel polymer is obtained in the gel pulverizing step during and / or after the polymerization step, or directly in the polymerization step. It is more preferable to obtain a particulate hydrogel polymer in the gel pulverizing step during and / or after the polymerization step.
  • the gel crusher used during or after polymerization used in this step is not particularly limited, and a gel crusher equipped with a plurality of rotary stirring blades, such as a batch-type or continuous-type double-arm kneader, or a single-shaft crusher may be used.
  • An extruder, a twin-screw extruder, a meat chopper, especially a screw type extruder and the like can be mentioned.
  • a screw type extruder in which a perforated plate is provided at one end of the casing is preferable, and specific examples include a screw type extruder disclosed in JP-A-2000-63527 and WO2011 / 126079.
  • JP-A-2000-63527 JP-A-2000-63527
  • WO2011 / 126079 Can be
  • the gel pulverization is performed during and / or after the polymerization step, and more preferably is performed on the hydrogel polymer after the polymerization step.
  • the state in which the aqueous monomer solution is "sufficiently gelled" is defined as a gel pulverizing step.
  • the aqueous monomer solution changes into a hydrogel polymer as the polymerization time elapses. That is, the stirring region of the aqueous monomer solution at the start of the polymerization, the stirring region of the low-polymerized hydrogel polymer having a constant viscosity during the polymerization, the gel of a part of the hydrogel polymer as the polymerization proceeds.
  • the pulverization start area and the gel pulverization area at the latter or late stage of polymerization are continuously performed. Therefore, in order to clearly distinguish between “stirring of the aqueous monomer solution” at the start of the polymerization and “gel pulverization” at the end, the judgment is made based on the state of “sufficiently gelled”.
  • the term “sufficiently gelled” refers to a state in which the hydrogel polymer can be finely divided by applying a shearing force after the time when the polymerization temperature reaches a maximum (polymerization peak temperature).
  • the polymerization rate of the monomer in the monomer aqueous solution also known as a conversion rate; the polymerization rate is preferably calculated from the amount of the polymer calculated from the pH titration of the hydrogel polymer and the amount of the remaining monomer
  • a hydrogel polymer having a monomer polymerization rate within the above range is gel-pulverized.
  • a polymerization reaction that does not show the above-mentioned polymerization peak temperature (for example, when the polymerization always proceeds at a constant temperature or when the polymerization temperature keeps increasing)
  • “sufficient gelation” is performed with the polymerization rate of the monomer. Stipulate.
  • a hydrogel polymer in the middle and / or after the polymerization step preferably a hydrogel polymer after the polymerization step is reduced to about several tens cm. Can be cut or crushed to size. By this operation, it becomes easy to fill the hydrogel polymer into the gel pulverizer, and the gel pulverization step can be performed more smoothly.
  • the means for cutting or crushing is preferably a means capable of cutting or crushing the hydrogel polymer without kneading, for example, a guillotine cutter or the like.
  • the size and shape of the hydrogel polymer obtained by cutting or crushing are not particularly limited as long as they can be filled in a gel crusher.
  • water can be added to the hydrogel polymer to carry out gel pulverization.
  • water takes any form of solid, liquid, and gas.
  • the water may be supplied into the gel crusher while the hydrated gel polymer remains in the gel crusher.
  • water may be added in advance to the hydrogel polymer and charged into the gel pulverizer.
  • the water is not limited to “water alone”, and other additives (for example, a surfactant, a neutralizing base, a crosslinking agent, and the like) and a solvent other than water may be added.
  • the content of water is preferably from 90 to 100% by weight, more preferably from 99 to 100% by weight, even more preferably substantially 100% by weight.
  • the water can be used in any form of solid, liquid, and gas, but liquid and / or gas is preferable from the viewpoint of handleability.
  • the amount of water to be supplied is preferably 0 to 25 parts by weight, preferably 0 to 15 parts by weight, 0 to 10 parts by weight, 0 to 4 parts by weight, 0 to 2 parts by weight based on 100 parts by weight of the hydrogel polymer. Are more preferable.
  • the supply amount of water is more than 25 parts by weight, it becomes difficult to control the particle size of the hydrogel polymer, the drying time becomes longer, the remaining amount of the chelating agent decreases, May be generated. From the viewpoint of drying efficiency, it is preferable that the supply amount of water in this step does not exceed the amount of the solvent evaporated in the polymerization step, particularly, the amount of evaporated water.
  • the temperature during the supply is preferably 10 to 100 ° C, more preferably 40 to 100 ° C.
  • the temperature during the supply is preferably 100 to 220 ° C., more preferably 100 to 160 ° C., and further preferably 100 to 130 ° C.
  • the preparation method is not particularly limited. For example, a method using water vapor generated by heating a boiler, a method in which water is vibrated by ultrasonic waves, and a gas state generated from the water surface is used. And the like utilizing water.
  • steam having a pressure higher than the atmospheric pressure is preferable, and steam generated in a boiler is more preferable.
  • the hydrogel polymer obtained in the above polymerization step is pulverized into particles by using a gel pulverizer (kneader, meat chopper, screw type extruder, etc.) to which the above-described gel pulverization of the present invention is applied.
  • a gel pulverizer kneader, meat chopper, screw type extruder, etc.
  • the gel particle size can be controlled by classification, preparation, etc., but preferably the gel particle size is controlled by the gel pulverization of the present invention.
  • the weight-average particle diameter (D50) (defined by sieve classification) of the particulate hydrogel polymer after gel pulverization is 1 mm or less, and is 10 ⁇ m to 1 mm, 20 ⁇ m to 1 mm, 40 ⁇ m to 1 mm, 50 ⁇ m to 900 ⁇ m. More preferred in order.
  • the upper limit of the weight average particle diameter is more preferably 800 ⁇ m or less, 700 ⁇ m or less, and 600 ⁇ m or less.
  • the lower limit of the weight average particle diameter is more preferably 100 ⁇ m or more and 200 ⁇ m or more. In the present invention, the upper limit and the lower limit of the weight average particle diameter may be in any combination.
  • the gel particle diameter can be measured by the method described in WO2011 / 126079.
  • the addition of the special method as described above requires a large amount of a surfactant or an organic solvent for polymerization and classification, decreases productivity (increases costs) and deteriorates physical properties ( (Residual monomer increase and fine powder increase), which may cause new problems. For this reason, it may be difficult to obtain a particulate hydrogel polymer having a weight average particle diameter of less than 10 ⁇ m.
  • the gel CRC of the particulate hydrogel polymer after gel pulverization is preferably from 10 to 35 g / g, more preferably from 10 to 32 g / g, even more preferably from 15 to 30 g / g.
  • the gel CRC after gel pulverization is preferably -1 to +3 g / g, more preferably 0.1 to 2 g / g, and more preferably 0.3 to 1.5 g, relative to the gel CRC before gel pulverization. / G is more preferred.
  • the gel CRC may be reduced by using a cross-linking agent at the time of gel pulverization, but it is preferable to increase the gel CRC within the above range.
  • the gel Ext of the particulate hydrogel polymer after gel pulverization is preferably 0.1 to 20% by weight, more preferably 0.1 to 10% by weight, and 0.1 to 8% by weight. More preferred is 0.1 to 5% by weight.
  • the increase amount of the gel Ext of the particulate hydrogel polymer after gel pulverization is preferably 5% by weight or less, more preferably 4% by weight or less, and 3% by weight.
  • the content is particularly preferably 2% by weight or less, and most preferably 1% by weight or less.
  • the lower limit may be minus (for example, -3.0% by weight, or even -1.0% by weight), but is usually 0% by weight or more, preferably 0.1% by weight or more, and more preferably 0.1% by weight or more. It is at least 2% by weight, more preferably at least 0.3% by weight.
  • the gel Ext is increased so as to fall within the arbitrary range of the above-mentioned upper limit and lower limit, such as preferably 0 to 5.0% by weight, more preferably 0.1 to 3.0% by weight.
  • the gel may be crushed until it is done.
  • the gel Ext may be reduced by using a cross-linking agent at the time of gel pulverization, but it is preferable to increase the gel Ext within the above range.
  • the effective number of the increase amount of the gel Ext is one digit after the decimal point. For example, 5% by weight and 5.0% by weight are treated as synonyms.
  • the lower limit of the weight-average molecular weight of the water-soluble component of the hydrogel polymer after gel pulverization is 10,000 Da. Or more, more preferably 20,000 Da or more, and even more preferably 30,000 Da or more.
  • the upper limit is preferably 500,000 Da or less, more preferably 400,000 Da or less, further preferably 250,000 Da or less, and particularly preferably 100,000 Da or less.
  • the increase in the weight average molecular weight of the water-soluble portion of the particulate hydrogel polymer after gel pulverization relative to the hydrogel polymer before gel pulverization is 10,000 to 500,000 Da. It is preferably 20,000 to 400,000 Da, more preferably 30,000 to 250,000 Da, and further preferably 100,000 Da or less.
  • the resin solid content of the particulate hydrogel polymer after gel pulverization is preferably from 40 to 75% by mass, more preferably from the viewpoint of physical properties.
  • the content is 45 to 70% by mass, and more preferably 50 to 65% by mass.
  • the hydrogel polymer before gel pulverization is evaluated based on the weight-average molecular weight of the water-soluble component, but it is necessary that this value be a sufficiently averaged value. .
  • the production amount of the water-absorbent resin is 1 to 20 t / hr or 1 to 10 t / hr by continuous gel pulverization using a continuous kneader or meat chopper, two or more points are obtained for every 100 kg of the hydrogel polymer. At least 10 points or more may be sampled and measured in total, and in the case of batch-type gel pulverization (for example, a batch-type kneader), at least 10 points or more are sampled and measured from a batch sample to obtain particulate water-containing powder. The physical properties of the gel polymer may be evaluated.
  • This step is a step of drying the particulate hydrogel polymer pulverized to the specific particle size in the gel pulverizing step to obtain a dry polymer.
  • a drying method preferably applied in the present invention will be described.
  • the particulate hydrogel containing the chelating agent is dried.
  • the chelating agent does not substantially decrease at the time of polymerization or after completion of the drying step, and the chelating agent is decomposed during the drying step by remaining persulfate.
  • the amount of persulfate remaining in the drying step it is preferable to control the amount of persulfate remaining in the drying step to be low. Further, in order to suppress the decomposition of the chelating agent, it is preferable to perform rapid drying in the drying step.
  • the particle diameter of the hydrogel polymer is reduced, specifically, the weight average particle diameter (D50) of the particulate hydrogel polymer is controlled to 1 mm or less, and the drying time is 20 minutes or less. It is particularly preferable to dry until the solid content becomes 80% by weight or more. However, the drying time refers to the time until the solid content becomes 80% by weight or more.
  • the content of the persulfate in the particulate hydrogel polymer subjected to the drying step is specifically 0.04 to the monomer at the time of polymerization. It is preferable in the order of mol% or less, 0.035 mol% or less, 0.03 mol% or less, 0.025 mol% or less, 0.02 mol% or less, and 0.015 mol% or less.
  • the lower limit of the amount of persulfate added is 0 mol%, which means that it is not used during polymerization or is completely consumed before the drying step.
  • the persulfate is effective in reducing the residual monomer, the persulfate is 0.0001 mol% or more, preferably 0.001 mol% or more, more preferably, from the viewpoint of reducing the residual monomer during drying. It is desirable that the amount is contained in the monomer aqueous solution or the hydrogel polymer in an amount of 0.01 mol% or more.
  • the residual ratio of the chelating agent is improved, and not only the amount of the chelating agent inside the polymer in the obtained water-absorbent resin is increased, but also the L value of the initial coloring of the obtained water-absorbent resin is increased. , YI values decrease.
  • the upper and lower limits of the amount of persulfate to be added may be in any combination.
  • the persulfate content in the hydrogel polymer can be measured by the method described in WO2007 / 116778.
  • the content of the chelating agent of the particulate hydrogel polymer (based on the solid content of the hydrogel polymer) provided in the drying step is 10 ppm or more, and 40 ppm or more.
  • the above is preferred in the order of at least 60 ppm, at least 100 ppm, at least 200 ppm, at least 250 ppm, at least 500 ppm, and at least 600 ppm.
  • the upper limit of the content of the chelating agent is 1% or less and 8000 ppm or less based on the solid content of the hydrogel polymer.
  • the upper limit and the lower limit of the content of the chelating agent may be in any combination.
  • the content of the above chelating agent indicates the apparent weight ppm concentration when added as a chelating agent without considering salt exchange with the carboxy group of the monomer and the polymer after mixing.
  • a hot air heat transfer type dryer As a drying device used in the drying step, a hot air heat transfer type dryer (hereinafter, referred to as “hot air dryer”) is preferable from the viewpoint of a drying speed. That is, hot air drying is preferable as the drying method.
  • the hot air dryer include a ventilation belt (band) type, a ventilation circuit type, a vertical ventilation type, a parallel flow belt (band) type, a ventilation tunnel type, a ventilation groove type stirring type, a fluidized bed type, an air flow type, a spray type and the like.
  • a hot air dryer is mentioned.
  • a ventilation belt type hot air dryer is preferable from the viewpoint of physical property control.
  • the wind direction of the hot air used in the dryer is a water-containing layer which is laminated on the ventilation belt and allowed to stand still. It is preferable that the direction is perpendicular to the gel polymer layer (for example, both in the vertical direction or in the upward and downward directions).
  • the “vertical direction” refers to the vertical direction (from the top to the bottom of the gel layer) with respect to the gel layer (a particulate hydrogel polymer having a thickness of 10 to 300 mm laminated on a punching metal or metal net).
  • a state in which air is passed from the bottom to the top of the gel layer is not limited to a strictly vertical direction as long as air is passed in the vertical direction.
  • hot air in an oblique direction may be used. In this case, it is within 30 ° with respect to the vertical direction, preferably within 20 °, more preferably within 10 °, even more preferably within 5 °, and particularly preferably 0 °. ° hot air is used.
  • drying conditions and the like in the drying step of the present invention will be described.
  • the drying temperature in the drying step of the present invention is 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and particularly preferably 150 ° C. or higher. Further, the drying temperature is 200 ° C. or lower, preferably 190 ° C. or lower, more preferably 180 ° C. or lower. In the present invention, any combination of the upper limit and the lower limit of the drying temperature is preferable. If the drying temperature is lower than 80 ° C., the drying time until a suitable resin solid content (moisture content) is obtained is long, and the decomposition rate of the chelating agent is undesirably increased.
  • the drying temperature refers to the temperature of the heating medium used for drying in the case of direct heating, the temperature of hot air used for drying in the case of hot air drying, and the heat transfer surface used for drying in the case of indirect heating. Refers to the temperature of
  • the drying time in the drying step of the present invention refers to the time until the solid content becomes 80% by weight or more, and is preferably 20 minutes or less, more preferably 18 minutes or less, 15 minutes or less, and 12 minutes or less.
  • the lower limit of the drying time is about 1 minute in consideration of the drying efficiency. It has also been found that the decomposition of the chelating agent occurs mainly in the drying stage until the solids content reaches 80% by weight. Further, the total drying time in the present invention is preferably 60 minutes or less, more preferably 50 minutes or less, and more preferably 40 minutes or less. If the drying time is short, undried matter is generated, and clogging may occur during the subsequent pulverization step.
  • the rate of decomposition of the chelating agent is undesirably increased.
  • the step of heating the particulate hydrogel polymer in a dryer to raise the temperature is also included in the drying step. Shall be taken.
  • the start of the drying time is when the hydrogel polymer is placed in the dryer, and the total drying time is after the hydrogel polymer is placed in the dryer, and the hydrogel polymer is dried and dried. It is the time until it is taken out of the machine.
  • the temperature for moving and the temperature of the hydrogel polymer at the time of moving to the dryer entrance are specifically 30 ° C. or lower. It is preferable to use a combination of not more than 90 minutes, not more than 20 minutes at 90 ° C, not more than 10 minutes at not more than 100 ° C, and not more than 5 minutes at 110 ° C.
  • the hydrogel polymer obtained in the polymerization step can be once cooled to 40 ° C. or lower, left for a long time, and then introduced into the drying step.
  • the particulate hydrogel obtained in the above-mentioned gel pulverizing step is dried in the above-mentioned drying step to be a dried polymer.
  • the resin solid content determined from the loss on drying of the dried polymer is preferably 80% by weight or more, more preferably 85 to 99% by weight, More preferably, it is 90 to 98% by weight.
  • the velocity of the hot air in the through-air dryer is preferably 0.8 to 2.5 m / s in the vertical direction (vertical direction), and is 1.0 to 2.5 m / s. 2.02.0 m / s is more preferable.
  • the wind speed may be controlled within a range that does not impair the effects of the present invention.
  • the wind speed may be controlled within a range of 70% or more of the drying time, preferably 90% or more, and more preferably 95% or more.
  • the above-mentioned wind speed is represented by an average flow velocity of hot air passing in a direction perpendicular to a horizontally moving band surface, taking a ventilation belt type dryer as an example. Therefore, the average flow velocity of the hot air may be obtained by dividing the amount of air blown to the ventilation belt dryer by the area of the ventilation belt.
  • the hot air used in the ventilation belt type dryer preferably contains at least water vapor and has a dew point of 30 to 100 ° C, more preferably 30 to 80 ° C.
  • the dew point is a value at the time when the water content of the particulate hydrogel polymer is at least 10% by weight or more, preferably 20% by weight or more.
  • the dew point near the dryer outlet (or at the end of drying; for example, 50% or more of the drying time) is closer to the dryer inlet.
  • the dew point is high (or early in the drying; for example, before 50% of the drying time).
  • the particulate hydrogel polymer is continuously supplied in a layer form on a belt of a ventilation belt type dryer. , Hot air dried.
  • the width of the belt of the ventilation belt type dryer used at this time is not particularly limited, but is preferably 0.5 m or more, more preferably 1 m or more.
  • the upper limit is preferably 10 m or less, more preferably 5 m or less.
  • the length of the belt is preferably 20 m or more, and more preferably 40 m or more.
  • the upper limit is preferably 100 m or less, more preferably 50 m or less.
  • the layer length (thickness of the gel layer) of the particulate hydrogel polymer on the belt is preferably 10 to 300 mm, more preferably 50 to 200 mm, and more preferably 80 to 150 mm from the viewpoint of solving the problems of the present invention. Is more preferable, and 90 to 110 mm is particularly preferable.
  • the moving speed of the particulate hydrogel polymer on the belt may be appropriately set according to the belt width, the belt length, the production amount, the drying time, etc., but from the viewpoint of the load of the belt driving device, durability and the like. From this, it is preferably 0.3 to 5 m / min, more preferably 0.5 to 2.5 m / min, further preferably 0.5 to 2 m / min, and particularly preferably 0.7 to 1.5 m / min.
  • the method for producing a water-absorbent resin containing a chelating agent according to the present invention further includes a pulverizing step and a classifying step of pulverizing and classifying the dried polymer obtained in the drying step. May be.
  • This step is different from the above-mentioned (2-2) gel pulverizing step in that the resin solid content at the time of pulverization, particularly the point that the object to be pulverized has undergone a drying step (preferably, the resin solid content is dried).
  • the water-absorbing resin obtained after the pulverizing step may be referred to as a pulverized product.
  • the dried polymer obtained in the drying step can be used as it is as a water-absorbing resin, but it is preferable to control the particle size to a specific particle size in order to improve the physical properties in the surface treatment step described below, particularly in the surface crosslinking step. .
  • the particle size control is not limited to the main pulverization step and the classification step, but can be appropriately performed in the polymerization step, the fine powder recovery step, the granulation step, and the like.
  • the pulverizer that can be used in the pulverization step is not particularly limited.
  • a vibration mill, a roll granulator, a knuckle-type pulverizer, a roll mill, a high-speed rotary pulverizer (pin mill, hammer mill, screw mill), cylindrical A mixer etc. can be mentioned.
  • a multi-stage roll mill or roll granulator from the viewpoint of particle size control.
  • the classification operation is performed so as to have the following particle size.
  • the classification operation is preferably performed before the surface cross-linking step (first classification step), and further after the surface cross-linking.
  • a classification operation (second classification step) may also be performed.
  • the first classification step is usually performed after the pulverizing step, but may be further performed before the pulverizing step.
  • the weight-average particle size (D50) of the water-absorbent resin particles after classification is not particularly limited, and can be appropriately adjusted according to the application.
  • the weight-average particle size (D50) of the classified water-absorbent resin particles is preferably 200 to 800 ⁇ m, more preferably 200 to 600 ⁇ m, and further preferably 300 to 500 ⁇ m.
  • the proportion of particles having a particle diameter of 850 to 150 ⁇ m is preferably 90% by weight or more, more preferably 95% by weight or more, and even more preferably 97% by weight or more.
  • the water-absorbent resin as the final product is also preferably in the form of particles, and the above-described range of the particle diameter is applied.
  • the method for producing a water-absorbent resin containing a chelating agent according to the present invention preferably further includes a surface treatment step for controlling physical properties.
  • the surface treatment step includes a surface cross-linking step performed using a known surface cross-linking agent and a surface cross-linking method, and further includes other addition steps as necessary.
  • the chelating agent does not decrease in the surface crosslinking or heating step.
  • the surface cross-linking agent As the surface cross-linking agent that can be used in the present invention, various organic or inorganic surface cross-linking agents can be exemplified, and preferably, an organic surface cross-linking agent can be used.
  • the surface crosslinking agent is preferably a polyhydric alcohol compound, an epoxy compound, a polyvalent amine compound or a condensate thereof with a haloepoxy compound, an oxazoline compound, a (mono, di, or poly) oxazolidinone compound, or an alkylene carbonate compound.
  • a dehydration-reactive cross-linking agent comprising a polyhydric alcohol compound, an alkylene carbonate compound, and an oxazolidinone compound, which requires a reaction at a high temperature
  • a dehydration-reactive cross-linking agent comprising a polyhydric alcohol compound, an alkylene carbonate compound, and an oxazolidinone compound, which requires a reaction at a high temperature
  • the dehydration-reactive cross-linking agent is not used, more specifically, compounds exemplified in U.S. Pat. Nos. 6,228,930, 6,071,976 and 6,254,990 can be exemplified.
  • Such compounds include, for example, mono, di, tri, tetra or propylene glycol, 1,3-propanediol, glycerin, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, Polyhydric alcohol compounds such as 6-hexanediol and sorbitol; epoxy compounds such as ethylene glycol diglycidyl ether and glycidol; alkylene carbonate compounds such as ethylene carbonate; oxetane compounds; and cyclic urea compounds such as 2-imidazolidinone. No.
  • the amount of the surface cross-linking agent to be used is appropriately determined, preferably in the range of about 0.001 to 10 parts by weight, more preferably about 0.01 to 5 parts by weight, based on 100 parts by weight of the water absorbent resin particles.
  • Water is preferably used according to the surface crosslinking agent.
  • the amount of water used is preferably 0.5 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the water absorbent resin particles.
  • the amount is preferably 0.001 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the water absorbent resin particles. Is done.
  • a hydrophilic organic solvent may be used, and the amount of the organic solvent is preferably from 0 to 10 parts by weight, more preferably from 0 to 5 parts by weight, based on 100 parts by weight of the water-absorbing resin particles. It is.
  • the effect of the present invention is not impaired, for example, preferably 0 to 10 parts by weight, more preferably 0 to 5 parts by weight, and still more preferably 0 to 1 part by weight.
  • a water-insoluble fine particle powder and a surfactant may coexist.
  • the surfactant used and the amount used are exemplified in U.S. Pat. No. 7,473,739.
  • the surface crosslinking agent solution When the surface crosslinking agent solution is mixed with the water-absorbing resin particles, the water-absorbing resin particles swell due to water or the like in the surface crosslinking agent solution.
  • the swollen water-absorbent resin particles are dried by heating.
  • the heating temperature is preferably from 80 to 220 ° C.
  • the heating time is preferably from 10 to 120 minutes.
  • a vertical or horizontal high-speed stirring type mixer is preferably used for mixing the surface crosslinking agent.
  • the rotation speed of the mixer is preferably 100 to 10000 rpm, and more preferably 300 to 2000 rpm.
  • the residence time is preferably within 180 seconds, more preferably 0.1 to 60 seconds, further preferably 1 to 30 seconds.
  • a surface cross-linking method using a radical polymerization initiator (US Pat. No. 4,783,510, WO 2006/062258) instead of the surface cross-linking using the surface cross-linking agent, and water absorption
  • a surface cross-linking method of polymerizing a monomer on the surface of a conductive resin (US Patent Application Publication Nos. 2005/048221, 2009/0239966, and International Publication No. 2009/048160) may be used.
  • the radical polymerization initiator preferably used is persulfate, and arbitrarily preferably used monomers include acrylic acid (salt) and the above-described surface cross-linking agent, and water is preferably used as a solvent.
  • surface crosslinking is performed by performing a cross-linking polymerization or a cross-linking reaction with a radical polymerization initiator on the surface of the water-absorbent resin by active energy rays (especially ultraviolet rays) or heating.
  • active energy rays especially ultraviolet rays
  • the present invention may further include an addition step of adding at least one of a polyvalent metal salt, a cationic polymer, and inorganic fine particles simultaneously with or separately from the above-described surface crosslinking step. That is, in addition to the organic surface cross-linking agent, an inorganic surface cross-linking agent may be used or used in combination to improve the liquid permeability and the water absorption rate.
  • the inorganic surface crosslinking agent can be used simultaneously with or separately from the organic surface crosslinking agent.
  • the inorganic surface cross-linking agent to be used include salts (organic salts or inorganic salts) or hydroxides of divalent or higher, preferably trivalent or tetravalent polyvalent metals.
  • the polyvalent metal that can be used include aluminum and zirconium, and specifically, aluminum lactate and aluminum sulfate. Preferably, it is an aqueous solution containing aluminum sulfate.
  • a recycling step of the evaporated monomer a granulation step, a fine powder removing step, a fine powder recycling step, and the like may be provided.
  • the following additives may be used, if necessary, for any or all of them. That is, a water-soluble or water-insoluble polymer, a lubricant, a deodorant, an antibacterial agent, water, a surfactant, water-insoluble fine particles, an antioxidant, a reducing agent, and the like are preferably added to the water-absorbing resin in an amount of 0 to 30. % By weight, more preferably 0.01 to 10% by weight.
  • These additives can also be used as a surface treatment agent.
  • the production method of the present invention can include a fine powder recycling step.
  • the fine powder recycling process is a process in which fine powder (especially fine powder containing 70% by weight or more of powder having a particle diameter of 150 ⁇ m or less) generated in a drying step and, if necessary, a crushing step and a classifying step is separated and is used as it is or in water. It refers to a step of recycle to a polymerization step and a drying step, and a method described in U.S. Patent Application Publication No. 2006/247351 or U.S. Patent No. 6,228,930 can be applied.
  • oxidizing agents such as antioxidants, water, polyvalent metal compounds, water-insoluble inorganic or organic powders such as silica and metal soap, deodorants, antibacterial agents, high-molecular polyamines, pulp and thermoplastic fibers And the like may be added to the water-absorbent resin in an amount of 0 to 3% by weight, preferably 0 to 1% by weight.
  • Water-absorbing resin The present invention provides a water-absorbing resin containing a chelating agent, which is obtained by the above-described production method according to the present invention.
  • a water-absorbing resin containing a chelating agent obtained by the above-described production method according to the present invention.
  • various physical properties of the water-absorbing resin containing the chelating agent according to the present invention will be described.
  • the water-absorbing resin containing a chelating agent obtained by the production method according to the present invention is preferably a polyacrylic acid (salt) -based crosslinked polymer water-absorbing resin.
  • the residual amount (C1) of the chelating agent of the water-absorbing resin is determined by taking into account the salt exchange with the carboxy group of the monomer and polymer after mixing, the neutralized salt type chelating agent as a salt type, and the acid type chelating agent. The agent shows the remaining amount as it is when added as an acid form.
  • the content (C2) of the chelating agent of the water-absorbing resin indicates the content as an acid-type chelating agent.
  • the amount is the same as the remaining amount (C1) of the chelating agent, and when the chelating agent is in the salt form, the concentration is calculated as the acid form of the same chelating agent.
  • the content (C2) of the chelating agent is calculated by “the remaining amount of the chelating agent (C1) ⁇ the molecular weight of the acid form / the molecular weight at the time of adding the chelating agent”.
  • the remaining rate (%) of the chelating agent is calculated by “ ⁇ (remaining amount of chelating agent (C1) [ppm]) / (adding amount of chelating agent [ppm]) ⁇ ⁇ 100”.
  • the residual amount (C1) and content (C2) of the chelating agent in the water-absorbent resin according to the present invention are 10 ppm or more, 40 ppm or more, 60 ppm or more, 100 ppm or more, 200 ppm or more, 250 ppm from the viewpoint of prevention of coloring and deterioration prevention. More preferably, the order is 500 ppm or more and 600 ppm or more. Further, the upper limit of the remaining amount (C1) and the content (C2) of the chelating agent in the water-absorbing resin according to the present invention is 1% by weight from the viewpoint of the effect (prevention of coloring, deterioration prevention, etc.) and cost of the chelating agent. Hereinafter, 8000 ppm or less, 6000 ppm or less, and 5000 ppm or less are preferable.
  • the residual ratio of the chelating agent is preferably 50% or more, and more preferably 60% or more.
  • the residual ratio of the chelating agent is defined as the amount of the chelating agent added to the water-absorbent resin in the production process [ppm] (based on the solid content of the monomer at the time of polymerization or the solid content of the hydrogel polymer). It is the ratio [%] of the remaining amount (C1) [ppm] of the chelating agent.
  • the residual rate of the chelating agent is defined as the chelating agent content of the final product with respect to the sum of the content of the chelating agent in the final product and the amount obtained by converting the amount (ppm) of the decomposition product derived from the chelating agent into the content of the chelating agent. It may be determined from the ratio of the contents of the agent.
  • the water-absorbing resin according to the present invention is a water-absorbing resin that can be suitably used for sanitary materials such as disposable diapers, and is preferably a white powder.
  • the water-absorbent resin according to the present invention has an L value (Lightness: lightness index) of an initial color tone (also referred to as “initial coloring”) of at least 85, and more preferably 89 or more, in a Hunter Lab color system measurement using a spectral colorimeter. , Preferably 90 or more.
  • the upper limit of the L value is usually 100, but if the value is 85 for powder, no problem due to the color tone occurs in products such as sanitary materials.
  • the initial color tone is a color tone after the production of the water-absorbent resin, but is generally a color tone measured before shipment from the factory. Further, for example, in the case of storage in an atmosphere of 30 ° C. or lower and a relative humidity of 50% RH, the value is measured within one year after production.
  • the water-absorbent resin according to the present invention has an initial color tone YI value (yellowness; yellowness index) of 0 to 13, 0 to 10, 0 to 9, 0 to 7, 0 to 5, and 0 to 3 in this order. Preferably, there is almost no yellowing.
  • a method for producing a water-absorbent resin containing the chelating agent according to the present invention wherein the persulfate in the polymerization initiator used in the polymerization step is 0 to 0.04 mol%.
  • the persulfate in the polymerization initiator used in the polymerization step is 0 to 0.04 mol%.
  • another polymerization initiator is indispensable
  • the chelating agent is used in the step before the drying step.
  • a total of 10 ppm or more solid content of the monomer at the time of polymerization or the solid content of the hydrogel polymer
  • the weight average particle diameter of the particulate hydrogel polymer is increased.
  • the remaining amount of the chelating agent (C1) is 10 ppm as a final product by a manufacturing method in which the drying time until the solid content becomes 80% by weight or more is 20 minutes or less.
  • the L value of the initial color tone is 85 A top, it is possible to produce a water-absorbent resin YI value is 13 or less.
  • a total of 200 ppm or more (solid content of the monomer at the time of polymerization or the solid content of the hydrogel polymer) was added to the aqueous monomer solution or the hydrogel polymer, and the weight average particle of the particulate hydrogel polymer was added.
  • the diameter (D50) is set to 1 mm or less, and in the drying step, the remaining amount of the chelating agent (C1) is determined as a final product by a manufacturing method in which the drying time until the solid content becomes 80% by weight or more is 20 minutes or less.
  • the content (C2) of the chelating agent is 200 ppm or more (further in the above range), the L value of the initial color tone is 89 or more (further in the above range), and the YI value is 10 or less.
  • the present invention provides a polyacrylic acid (salt) -based water-absorbent resin having the above range).
  • a water-absorbent resin wherein the water-absorbent resin contains a chelating agent on the surface and inside, and the amount of the chelating agent present on the surface is larger than the amount of the chelating agent present inside. I do.
  • the shape of the water-absorbent resin of the present invention is not particularly limited as long as it can be handled as a powder, but is preferably an irregular crushed shape.
  • the amorphous crushed shape is a particle shape having an irregular shape obtained by crushing a hydrogel polymer or a dried polymer.
  • the weight average particle size (D50) of the water absorbent resin of the present invention is preferably from 200 to 800 ⁇ m, more preferably from 200 to 600 ⁇ m, and still more preferably from 300 to 500 ⁇ m. Further, the proportion of particles having a particle diameter of 850 to 150 ⁇ m is preferably 90% by weight or more, more preferably 95% by weight or more, and even more preferably 97% by weight or more.
  • the water-absorbent resin of the present invention having the above-mentioned particle size is easy to handle, and easily exhibits water-absorbing performance with sanitary materials and the like.
  • the water absorption capacity under no pressure (CRC) of the water-absorbent resin according to the present invention is preferably higher, more preferably 15 g / g. g or more, more preferably 25 g / g or more, further preferably 30 g / g or more, and particularly preferably 33 g / g or more.
  • the upper limit of the CRC is preferably 60 g / g or less, more preferably 50 g / g or less, and still more preferably 45 g / g or less, from the viewpoint of balance with other physical properties (for example, absorbency against pressure (AAP)). is there.
  • CRC can be controlled by the crosslinking density at the time of polymerization or surface crosslinking.
  • the CRC is less than 15 g / g, the cross-linking density of the water-absorbent resin is high, so that the effect of preventing deterioration by the chelating agent is difficult to appear.
  • the water-absorbing resin is used as a sanitary material such as a disposable diaper, the water-absorbing efficiency deteriorates, which is not preferable.
  • the water absorption capacity under pressure (AAP (0.7 psi)) of the water-absorbent resin according to the present invention is controlled to preferably 15 g / g or more, more preferably 20 g / g or more, and further preferably 23 g / g or more.
  • the upper limit of AAP (0.7 psi) is preferably 40 g / g or less, more preferably 35 g / g or less, and still more preferably from the viewpoint of balance with other physical properties (for example, water absorption capacity under no pressure (CRC)). Is 33 g / g or less.
  • AAP (0.7 psi) can be controlled by the crosslinking density at the time of surface crosslinking.
  • the ratio of the water absorption capacity under pressure to the water absorption capacity under no pressure (AAP (0.7 psi) / CRC) of the water-absorbent resin according to the present invention is 0.5 or more, 0.6 or more, 0.7 or more, and 0. 8 or more, preferably 0.9 or more.
  • the upper limit of AAP (0.7 psi) / CRC is about 1.5 or less, 1.2 or less, and about 1.0 or less. While CRC removes interstitial water between gels after swelling by centrifugation, AAP (0.7 psi) has a water absorption capacity that includes interstitial water, so AAP (0.7 psi) may exceed CRC. However, the upper limit is usually within the above range.
  • the use of the water absorbent resin obtained by the production method according to the present invention is not particularly limited, but it is preferably used for absorbent articles such as paper diapers, sanitary napkins, incontinence pads, and the like.
  • the water-absorbent resin obtained by the production method according to the present invention is a high-concentration diaper (a paper diaper that uses a large amount of the water-absorbent resin per paper diaper), in which odors and coloring derived from raw materials have been a problem. Particularly, when used in the upper layer portion of the absorbent article, excellent performance is exhibited.
  • the proportion of the water-absorbing resin contained in the absorbent body of the disposable diaper is preferably at least 50% by weight, more preferably at least 60% by weight, at least 70% by weight, at least 80% by weight, and at least 90% by weight.
  • the present inventors have found that a chelating agent added in a step prior to a drying step in a drying step of a hydrogel polymer obtained by polymerizing a monomer. Was found to decrease specifically.
  • the present inventors have found that the cause of the decrease in the chelating agent in the drying step is a polymerization initiator (particularly, persulfate) remaining in the hydrogel polymer.
  • the present invention controls persulfate in a polymerization initiator at the time of polymerization or before drying (0.04 mol% or less), and further controls gel particle diameter and drying conditions before drying. Of the chelating agent in the drying step.
  • Patent Documents 1 to 23 disclose the use of a chelating agent in the process of producing a water absorbent resin.
  • Persulfates are the most widely used polymerization initiators for water-absorbing resins, and Patent Documents 1 to 23 also disclose persulfates as polymerization initiators.
  • Patent Documents 1 to 23 described above there is no description about the problems pointed out in the present application and means for solving the problems, let alone decomposition of the chelating agent by persulfate.
  • the persulfate in the polymerization initiator is 0 to 0.04 mol% (based on the monomer at the time of polymerization) (0 mol% is not used during the polymerization or is completely consumed before the drying step.
  • a hydrogel polymer (solid content: ⁇ wt%) at a temperature of 20 to 25 ° C. is mixed with a 20 wt% aqueous sodium chloride solution containing 0.08 wt% emal 20C (surfactant, manufactured by Kao Corporation) (Hereinafter referred to as "emar aqueous solution”) was added to 500 g to form a dispersion, and the mixture was stirred at 300 rpm for 60 minutes using a stirrer chip having a length of 50 mm and a diameter of 7 mm (a cylinder made of polypropylene having a height of 21 cm and a diameter of 8 cm). 1.14 L container is used).
  • the percentage by weight was calculated from the following formula (1).
  • the particle size distribution of the hydrogel polymer was plotted on log probability paper according to the following formula (2). From this graph, the particle diameter corresponding to the residual percentage of 50% by weight was read as the weight average particle diameter (D50) of the hydrogel polymer.
  • the particulate water-absorbing resin is added to 100 g of physiological saline (a 0.9% by weight aqueous solution of sodium chloride), and the mixture is stirred at room temperature for 1 hour (stirring speed: 500 ⁇ 50 rpm).
  • physiological saline a 0.9% by weight aqueous solution of sodium chloride
  • the chelating agent was extracted into physiological saline.
  • the obtained filtrate was passed through a filter for HPLC sample pretreatment (Chromatodisk 25A / water-based type, pore size: 0.45 ⁇ m / manufactured by Kurashiki Spinning Co., Ltd.), and the filtrate was subjected to high-performance liquid chromatography (HPLC). The content of the chelating agent therein was measured.
  • the content of the chelating agent in the particulate water-absorbent resin is determined by taking into account the dilution ratio of the particulate water-absorbent resin to physiological saline using the calibration curve obtained by measuring a standard solution of known concentration as an external standard. I asked.
  • the HPLC measurement conditions were appropriately changed depending on the type of the chelating agent. Specifically, the following measurement conditions 1 were used for diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), and nitrilotriacetic acid (NTA), and the following measurement conditions 2 were used for ethylenediaminetetra (methylenephosphonic acid) (EDTMP). Quantification was performed according to the above.
  • Measurement condition 1 ⁇ Eluent>; 0.3 ml of 0.4 mol / L alum aqueous solution, 450 ml of 0.1 N potassium hydroxide aqueous solution, 3 ml of 0.4 mol / L aqueous solution of tetra-n-butylammonium hydroxide, 3 ml of sulfuric acid, ethylene glycol Mixed solution of 1.5 ml and ion-exchanged water 2550 ml ⁇ Column>; LichroCART 250-4 Superspher 100 RP-18e (4 ⁇ m) (Merck Co., Ltd.) ⁇ Column temperature>; 23 ⁇ 2 ° C ⁇ Flow rate>; 1 ml / min ⁇ Detector>; UV, wavelength 258 nm.
  • Measurement condition 2 ⁇ Eluent>; 0.003 mol / L aqueous sulfuric acid solution ⁇ Column>; Shodex IC NI-424 (manufactured by Showa Denko KK) ⁇ Column temperature>; 40 ° C ⁇ Flow rate>; 1 ml / min ⁇ Detector>; RI Since the content of the chelating agent is affected by the water content, in the present invention, the content is a value corrected for the water content, and is a value converted per 100 parts by weight of the water-absorbent resin solids.
  • the chelating agent to be added is of an anionic type, for convenience, it is considered that the salt of the added chelating agent is present in the water-absorbent resin without salt exchange.
  • the content (C2) of the chelating agent is the same as the remaining amount of the chelating agent (C1) when the chelating agent is of the acid type. If the chelating agent is in salt form, the concentration is calculated as the acid form of the same chelating agent. That is, the content (C2) of the chelating agent was calculated by “the remaining amount of the chelating agent (C1) ⁇ the molecular weight of the acid form / the apparent molecular weight when the chelating agent was added”.
  • the remaining ratio (%) of the chelating agent was calculated by “ ⁇ (remaining amount of chelating agent [ppm]) / (addition amount of chelating agent [ppm]) ⁇ ⁇ 100”.
  • the L value Lightness: lightness index
  • the YI value yellowness; yellowness index
  • the paste sample table was filled with about 5 g of a water-absorbent resin and adjusted to an atmosphere of 70 ⁇ 1 ° C. and a relative humidity of 65 ⁇ 1% (product name: small environmental tester manufactured by Espec Corporation). , Type SH-641) filled with a water-absorbent resin was exposed for 7 days. This exposure is a 7-day color acceleration test. After the exposure, the L value (Lightness) and the YI value (yellowness) in the Hunter Lab color system on the surface were measured by the above-mentioned spectral colorimeter. This measured value is referred to as “coloring with time (70 ⁇ 1 ° C., relative humidity 65 ⁇ 1%, 7 days)”. The higher the L value, the better, and the lower the YI value, the lower the coloration and the closer to substantially white.
  • the absorbance of an aqueous solution (blank) obtained by adding 0.50 g of a 44% by weight aqueous solution of potassium iodide to 5 g of an aqueous sodium solution was set to 0).
  • 5 wt% aqueous sodium chloride solutions containing 0 ppm (not added), 5 ppm, 10 ppm, 15 ppm, and 20 ppm of persulfate were prepared, and the absorbance was determined by the above operation to prepare a calibration curve. Then, the amount (ppm) of persulfate in the hydrogel of the sample was calculated from the absorbance of the obtained sample and the calibration curve. Further, the amount (mol%) of the persulfate was determined by calculation.
  • the amount of persulfate can be measured in the same manner for the water-absorbent resin after drying.
  • the measurement limit is appropriately determined depending on the amount of polymer, sensitivity, and the like.
  • the detection limit is usually 0.5 ppm, and below the detection limit is expressed as ND (Non-Detactable).
  • (F) Solid content of hydrogel polymer The solid content of the particulate hydrogel polymer was measured in the same manner as in the above-mentioned method of measuring “solid content of water-absorbent resin”. However, the amount of the hydrogel polymer was changed to about 2 g, the drying temperature was changed to 180 ° C., and the drying time was changed to 24 hours.
  • CRC is an abbreviation of Centrifuge Retention Capacity (centrifuge retention capacity), and means a non-pressurized water absorption capacity (hereinafter sometimes referred to as “water absorption capacity”). Specifically, 0.200 g of the water-absorbent resin in the non-woven fabric bag was freely swelled in a large excess of 0.9% by weight aqueous sodium chloride solution for 30 minutes, and then drained with a centrifuge. Magnification (unit: [g / g]) was measured.
  • AAP (0.7 psi) (ERT442.2-02) “AAP” is an abbreviation for Absorption against Pressure, and means the water absorption capacity under pressure.
  • AAP (0.7 psi) is a method in which 0.900 g of a water-absorbing resin is applied to a 0.9% by weight aqueous sodium chloride solution for 1 hour at 4.83 kPa (0.7 psi, 49 [g / cm 2 ]). The water absorption capacity (unit: [g / g]) after swelling was measured.
  • Residual monomer ERT410.2-02
  • ERT410.2-02 Residual monomer 1.0 g of a water-absorbing resin was added to 200 ml of a 0.9% by weight aqueous sodium chloride solution, and stirred for 1 hour at 500 rpm using a 35 mm stirrer chip.
  • Chrromatography The residual monomer of the hydrogel polymer was measured by changing the sample to 2 g and the stirring time to 3 hours, and converting the measured value to the weight of the hydrogel polymer per solid resin. (Unit: ppm).
  • DTPA chelating agent
  • NaPS persulfate
  • gel particle size 958 ⁇ m (about 0.9 mm).
  • the solution (B) was added and mixed while stirring the solution (A) using a magnetic stirrer to prepare a solution (C).
  • the stainless steel bat type container is a container having a bottom surface size of 250 mm ⁇ 250 mm, an upper surface size of 640 mm ⁇ 640 mm, a height of 50 mm, a trapezoidal center cross section, and a silicone sheet attached to the inner surface. there were.
  • the stainless steel bat type container was placed on a hot plate (NEO HOTPLATE H1-1000, manufactured by Iuchi Seieido Co., Ltd.) heated to 100 ° C. and preheated.
  • the polymerization reaction After the aqueous monomer solution (1) expands and foams in all directions upward while generating water vapor, the polymerization reaction proceeds to a size slightly larger than the bottom surface of the stainless steel vat container. The hydrogel polymer (1) thus shrunk was completed. The polymerization reaction (expansion and shrinkage) was completed within about 1 minute, but after that, the hydrogel polymer (1) was held in the stainless steel bat type container for 3 minutes. By the polymerization reaction (boiling polymerization), a hydrogel polymer (1) containing bubbles was obtained.
  • the particulate hydrogel polymer (1) obtained by the above gel pulverization had a weight average particle size (D50) of 958 ⁇ m.
  • the residual monomer of the particulate hydrogel polymer (1) was 1.1% by weight.
  • the particulate hydrogel polymer (1) was spread and placed on a wire mesh having a mesh size of 300 ⁇ m (50 mesh) and placed in a hot-air dryer.
  • the particulate hydrogel polymer (1) was dried by passing hot air at 160 ° C. for 30 minutes to obtain a particulate dried polymer (1).
  • the dried polymer (1) was put into a roll mill (WML-type roll grinder, manufactured by Inoguchi Giken Co., Ltd.) and pulverized, and thereafter, using two kinds of JIS standard sieves having openings of 850 ⁇ m and 150 ⁇ m. By classifying, an amorphous crushed water-absorbent resin (1) was obtained.
  • WML-type roll grinder manufactured by Inoguchi Giken Co., Ltd.
  • the amorphous crushed water-absorbent resin (1) obtained by the above series of operations had a CRC of 28.9 g / g.
  • the humidified mixture (1) was uniformly placed in a stainless steel container (about 22 cm in width, about 28 cm in depth, about 5 cm in height), and was heat-treated at 180 ° C. for 40 minutes to obtain a surface-crosslinked water-absorbent resin ( 1) was obtained.
  • the surface-crosslinked water-absorbent resin (1) was passed through a JIS standard sieve having openings of 850 ⁇ m to obtain a water-absorbent resin (1) as a final product.
  • the water-absorbent resin (1) as the final product obtained was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • the particulate hydrogel polymer (2) obtained in the gel pulverizing step had a weight average particle size (D50) of 942 ⁇ m.
  • the irregularly crushed water-absorbent resin (2) had a CRC of 28.8 g / g.
  • Example 2 surface cross-linking was performed in the same manner as in Example 1 to obtain a water absorbent resin (2) as a final product.
  • the resulting water-absorbent resin (2) as the final product was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • a difference between the YI value of the initial coloring and the YI value of the temporal coloring was calculated.
  • the calculation results are shown in Table 3 below.
  • Example 3 Changing the gel particle diameter of Example 1 (from about 0.9 mm to about 0.5 mm); In the above Example 1, except that after the second gel pulverization in the gel pulverization step, the obtained gel was further charged into a tabletop meat chopper to perform the third gel pulverization in order to change the gel particle diameter. In the same manner as in Example 1, a water absorbent resin (3) was produced.
  • the particulate hydrogel polymer (3) obtained in the gel pulverizing step had a weight average particle size (D50) of 514 ⁇ m (about 0.5 mm). Further, the amorphous crushed water-absorbent resin (3) had a CRC of 28.3 g / g.
  • Example 2 surface cross-linking was performed in the same manner as in Example 1 to obtain a water absorbent resin (3) as a final product.
  • the water-absorbent resin (3) obtained as the final product was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • Example 4 Changing the type of polymerization initiator in Example 1 (NaPS ⁇ azo polymerization initiator); 3.
  • the polymerization initiator was changed to an aqueous solution of 10% by weight of 2,2′-azobis (2-methylpropionamidine) dihydrochloride (trade name; Wako Pure Chemical V-50), which is an azo polymerization initiator.
  • a water-absorbent resin (4) was produced in the same manner as in Example 1, except that the amount was changed to 34 g (0.04 mol% based on acrylic acid).
  • the particulate hydrogel polymer (4) obtained in the gel pulverizing step had a weight average particle size (D50) of 971 ⁇ m.
  • the amorphous crushed water-absorbent resin (4) had a CRC of 30.0 / g.
  • Example 2 the surface was crosslinked in the same manner as in Example 1 to obtain a water absorbent resin (4) as a final product.
  • the resulting water-absorbent resin (4) as the final product was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • Example 5 Changing the chelating agent of Example 1 (DTPA ⁇ EDTMP); Same as Example 1 except that the chelating agent was changed to a 10% by weight aqueous solution of ethylenediaminetetramethylenephosphonic acid (EDTMP) ⁇ 5 sodium (3.52 g, 1000 ppm based on monomer). Thus, a water-absorbing resin (5) was produced.
  • EDTMP ethylenediaminetetramethylenephosphonic acid
  • the particulate hydrogel polymer (5) obtained in the gel pulverizing step had a weight average particle size (D50) of 964 ⁇ m (about 0.9 mm).
  • the amorphous crushed water-absorbent resin (5) had a CRC of 28.5 g / g.
  • Example 2 the surface was crosslinked in the same manner as in Example 1 to obtain a water absorbent resin (5) as a final product.
  • the resulting water-absorbent resin (5) as the final product was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • the particulate hydrogel polymer (6) obtained in the gel pulverizing step had a weight average particle diameter (D50) of 923 ⁇ m.
  • the amorphous crushed water-absorbent resin (6) had a CRC of 29.3 g / g.
  • Example 2 surface cross-linking was performed in the same manner as in Example 1 to obtain a water absorbent resin (6) as a final product.
  • the resulting water-absorbent resin (6) as the final product was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • Example 7 Changing the type of polymerization initiator of Example 5 (persulfate ⁇ azo polymerization initiator);
  • Example 5 4.34 g of a 10% by weight aqueous solution of 2,2′-azobis (2-methylpropionamidine) dihydrochloride (V-50), which is an azo polymerization initiator, was used in Example 5 (based on acrylic acid).
  • Water-absorbent resin (7) was produced in the same manner as in Example 5, except that the water-absorbent resin (7) was changed to 0.04 mol%).
  • the particulate hydrogel polymer (7) obtained in the gel pulverizing step had a weight average particle size (D50) of 933 ⁇ m.
  • the amorphous crushed water-absorbent resin (7) had a CRC of 29.1 g / g.
  • Example 2 surface cross-linking was performed in the same manner as in Example 1 to obtain a water absorbent resin (7) as a final product.
  • the resulting water-absorbent resin (7) as the final product was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • Example 8 Changing the polymerization initiator of Example 5 (persulfate ⁇ UV polymerization with UV polymerization initiator); The procedure of Example 5 was repeated except that the polymerization initiator (10% by weight aqueous sodium persulfate solution) in the polymerization step was changed to a UV polymerization initiator, and the amount added was 0.04 mol% to perform UV polymerization. In the same manner as in Example 5, a water absorbent resin (8) was produced.
  • the temperature of the aqueous monomer solution (8) rose to 101.9 ° C. due to heat of neutralization and heat of dissolution generated during the mixing process.
  • the neutralization ratio of the aqueous monomer solution (8) was 73 mol%, and the monomer concentration was 43% by weight.
  • the aqueous monomer solution (8) is poured into the stainless steel vat-shaped container, and at the same time, a height of 600 mm from the bottom surface of the stainless steel vat-shaped container.
  • the monomer aqueous solution (8) was irradiated with ultraviolet rays by an ultraviolet irradiation device (Toskure # 401; Model name: HC-04131-B; Lamp: H400L / 2; manufactured by Harrison Toshiba Lighting Co., Ltd.) installed at the position of (1).
  • an ultraviolet irradiation device Toskure # 401; Model name: HC-04131-B; Lamp: H400L / 2; manufactured by Harrison Toshiba Lighting Co., Ltd.
  • the stainless steel bat type container is a container having a bottom surface size of 250 mm ⁇ 250 mm, an upper surface size of 640 mm ⁇ 640 mm, a height of 50 mm, a trapezoidal center cross section, and a silicone sheet attached to the inner surface. there were.
  • the stainless steel bat type container was placed on a hot plate (NEO HOTPLATE H1-1000, manufactured by Iuchi Seieido Co., Ltd.) heated to 100 ° C. and preheated.
  • the polymerization (static solution polymerization) proceeded while generating steam.
  • the polymerization reached a peak temperature within about 1 minute (polymerization peak temperature: 102 ° C.).
  • the irradiation of ultraviolet rays was stopped to obtain a hydrogel polymer (8) containing bubbles.
  • the particulate hydrogel polymer (8) obtained in the gel pulverizing step had a weight average particle size (D50) of 917 ⁇ m. Further, the amorphous crushed water-absorbent resin (8) had a CRC of 28.0 g / g.
  • Example 2 the surface was crosslinked in the same manner as in Example 1 to obtain a water absorbent resin (8) as a final product.
  • the resulting water-absorbent resin (8) as the final product was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • the particulate comparative hydrogel polymer (1) obtained in the gel pulverizing step had a weight average particle diameter (D50) of 900 ⁇ m.
  • the irregularly crushed comparative water-absorbent resin (1) had a CRC of 28.8 g / g.
  • Example 2 surface cross-linking was performed in the same manner as in Example 1 to obtain a comparative water-absorbent resin (1) as a final product.
  • the comparative water absorbent resin (1) obtained was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • Example 2 Changing the gel particle diameter of Example 1 (about 0.9 mm ⁇ 5 mm or more); A comparative water-absorbent resin (2) was produced in the same manner as in Example 1 except that the gel pulverizing step was performed only once in order to change the gel particle diameter.
  • the particulate hydrogel polymer (2) obtained in the gel pulverizing step had a weight average particle diameter (D50) of 5000 ⁇ m (5 mm) or more.
  • the amorphous crushed comparative water absorbent resin (2) had a CRC of 27.1 g / g.
  • Example 2 surface cross-linking was performed in the same manner as in Example 1 to obtain a comparative water-absorbent resin (2) as a final product.
  • the comparative water absorbent resin (2) obtained was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • a difference between the YI value of the initial coloring and the YI value of the temporal coloring was calculated.
  • the calculation results are shown in Table 3 below.
  • Example 3 Changing the gel particle diameter of Example 5 (from about 0.9 mm to 5 mm or more); A comparative water-absorbent resin (3) was produced in the same manner as in Example 5 except that the gel pulverizing step was performed once in order to change the gel particle diameter.
  • the particulate hydrogel polymer (3) obtained in the gel pulverizing step had a weight average particle diameter (D50) of 5000 ⁇ m (5 mm) or more.
  • the amorphous crushed comparative water-absorbent resin (3) had a CRC of 27.2 g / g.
  • Example 2 surface cross-linking was performed in the same manner as in Example 1 to obtain a comparative water-absorbent resin (3) as a final product.
  • the comparative water absorbent resin (3) obtained was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • the particulate hydrogel polymer (9) obtained in the gel pulverizing step had a weight average particle size (D50) of 922 ⁇ m.
  • the amorphous crushed water-absorbent resin (9) had a CRC of 29.8 g / g.
  • Example 2 surface cross-linking was performed in the same manner as in Example 1 to obtain a water absorbent resin (9) as a final product.
  • the water-absorbent resin (9) as the final product obtained was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • the particulate hydrogel polymer (10) obtained in the gel pulverizing step had a weight average particle size (D50) of 950 ⁇ m.
  • the amorphous crushed water-absorbent resin (10) had a CRC of 30.3 g / g.
  • Example 2 surface cross-linking was performed in the same manner as in Example 1 to obtain a water absorbent resin (10) as a final product.
  • the water-absorbent resin (10) as the final product obtained was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • the addition amount of DTPA ⁇ 5 sodium was set to 50 ppm with respect to the monomer, and the addition amount of the polymerization initiator (10% by weight aqueous sodium persulfate solution) was 1.43 g ( 0.015 mol% with respect to acrylic acid), and 2.71 g of an aqueous solution of 2,2'-azobis (2-methylpropionamidine) dihydrochloride (V-50) (10% by weight) as an azo polymerization initiator (acrylic).
  • Water-absorbent resin (11) was produced in the same manner as in Example 1 except that 0.025 mol% of the acid was used in combination.
  • the particulate hydrogel polymer (11) obtained in the gel pulverizing step had a weight average particle size (D50) of 919 ⁇ m. Further, the amorphous crushed water-absorbent resin (11) had a CRC of 30.1 g / g.
  • Example 2 the surface was crosslinked in the same manner as in Example 1 to obtain a water absorbent resin (11) as a final product.
  • the resulting water-absorbent resin (11) as the final product was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • Example 12 Changing the drying temperature and drying time in Example 1 (160 ° C. ⁇ 120 ° C., 30 minutes ⁇ 120 minutes); In the above Example 1, except that the drying temperature and the drying time in the drying step were changed to 120 ° C. for 120 minutes (hot air of 120 ° C. was passed for 120 minutes), the water absorbing resin (12 ) Manufactured.
  • the particulate hydrogel polymer (12) obtained in the gel pulverizing step had a weight average particle size (D50) of 937 ⁇ m.
  • the irregularly crushed water-absorbent resin (12) had a CRC of 26.3 g / g and a solid content of 94.3%.
  • Example 2 the surface was crosslinked in the same manner as in Example 1 to obtain a water absorbent resin (12) as a final product.
  • the water-absorbent resin (12) as the final product obtained was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • Example 13 Changing the drying temperature and gel particle diameter of Example 1 (160 ° C. ⁇ 120 ° C., about 0.9 mm ⁇ about 0.5 mm);
  • Example 1 in order to change the gel particle diameter, after the second gel pulverization in the gel pulverization step, the obtained gel was further charged into a tabletop meat chopper to perform the third gel pulverization,
  • a water-absorbent resin (13) was produced in the same manner as in Example 1 except that the drying temperature in the drying step was changed to 120 ° C. (hot air of 120 ° C. was passed for 30 minutes).
  • the particulate hydrogel polymer (13) obtained in the gel pulverizing step had a weight average particle diameter (D50) of 510 ⁇ m (about 0.5 mm).
  • the amorphous crushed water-absorbent resin (13) had a CRC of 26.4 g / g and a solid content of 93.4%.
  • Example 2 surface cross-linking was performed in the same manner as in Example 1 to obtain a water absorbent resin (13) as a final product.
  • the water-absorbent resin (13) obtained as the final product was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • Example 4 Changing the drying temperature and drying time of Example 1 and the gel particle diameter (160 ° C. ⁇ 120 ° C., 30 minutes ⁇ 180 minutes, about 0.9 mm ⁇ 5 mm or more);
  • the gel pulverization in the gel pulverization step was performed once, and the drying temperature and the drying time in the drying step were set to 120 ° C. for 180 minutes (hot air of 120 ° C.).
  • a comparative water-absorbent resin (4) was produced in the same manner as in Example 1, except that the air flow was changed to 180 minutes.
  • the particulate hydrogel polymer (4) obtained in the gel pulverizing step had a weight average particle diameter (D50) of 5000 ⁇ m (5 mm) or more.
  • the amorphous crushed comparative water-absorbent resin (4) had a CRC of 24.4 g / g and a solid content of 91.5%.
  • Example 2 surface cross-linking was performed in the same manner as in Example 1 to obtain a comparative water-absorbent resin (4) as a final product.
  • the comparative water absorbent resin (4) obtained was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • Example 5 Changing the drying temperature and drying time of Example 1 and the gel particle size (160 ° C. ⁇ 150 ° C., 30 minutes ⁇ 180 minutes, about 0.9 mm ⁇ 1.2 to 1.6 cm);
  • the hydrogel polymer was cut using scissors as the gel pulverization in the gel pulverization step, and the size of each side was 1.2 to 1.6 cm. It was a hydrogel polymer.
  • a comparative water-absorbent resin (5) was produced in the same manner as in Example 1 except that the drying temperature and the drying time in the drying step were changed to 150 ° C. for 180 minutes (hot air at 150 ° C. was passed for 180 minutes). did.
  • the particulate hydrogel polymer (5) obtained in the gel pulverizing step had a weight average particle size (D50) of 1.2 to 1.6 cm.
  • the comparative crushed amorphous water-absorbent resin (5) had a CRC of 31.6 g / g.
  • Example 2 surface cross-linking was performed in the same manner as in Example 1 to obtain a comparative water-absorbent resin (5) as a final product.
  • the obtained comparative water absorbent resin (5) was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • Example 14 Changing the chelating agent of Example 1 (DTPA ⁇ EDTA); In the same manner as in Example 1, except that the chelating agent was changed to a 10% by weight aqueous solution of ethylenediaminetetraacetic acid (EDTA) ⁇ 4 sodium (3.52 g, 1000 ppm with respect to the monomer). And a water-absorbing resin (14).
  • EDTA ethylenediaminetetraacetic acid
  • the particulate hydrogel polymer (14) obtained in the gel pulverizing step had a weight average particle size (D50) of 955 ⁇ m (about 0.9 mm). Further, the amorphous crushed water-absorbent resin (14) had a CRC of 29.2 g / g.
  • Example 2 surface cross-linking was performed in the same manner as in Example 1 to obtain a water absorbent resin (14) as a final product.
  • the water-absorbent resin (14) as the final product obtained was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • the particulate hydrogel polymer (15) obtained in the gel pulverizing step had a weight average particle size (D50) of 930 ⁇ m. Further, the amorphous crushed water-absorbent resin (15) had a CRC of 29.5 g / g.
  • Example 2 the surface was crosslinked in the same manner as in Example 1 to obtain a water absorbent resin (15) as a final product.
  • the water-absorbent resin (15) obtained as the final product was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • Example 16 Changing the chelating agent of Example 1 (DTPA ⁇ NTA); In the same manner as in Example 1, except that the chelating agent was changed to a 10% by weight nitrilotriacetic acid (NTA) ⁇ trisodium aqueous solution (3.52 g, 1000 ppm with respect to the monomer). And a water-absorbing resin (16).
  • NTA nitrilotriacetic acid
  • the particulate hydrogel polymer (16) obtained in the gel pulverizing step had a weight average particle diameter (D50) of 943 ⁇ m (about 0.9 mm).
  • the amorphous crushed water-absorbent resin (16) had a CRC of 29.1 g / g.
  • Example 2 the surface was crosslinked in the same manner as in Example 1 to obtain a water absorbent resin (16) as a final product.
  • the water-absorbent resin (16) obtained as the final product was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • the particulate comparative hydrogel polymer (6) obtained in the gel pulverizing step had a weight average particle diameter (D50) of 929 ⁇ m.
  • the amorphous crushed comparative water-absorbent resin (6) had a CRC of 29.5 g / g.
  • Example 2 surface cross-linking was performed in the same manner as in Example 1 to obtain a comparative water-absorbent resin (6) as a final product.
  • the comparative water absorbent resin (6) obtained was analyzed.
  • the manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
  • Example 17 Hereinafter, in Example 17 and Comparative Example 7, the polymerization step and the gel pulverization step were performed simultaneously.
  • a reactor formed by attaching a lid to a double-armed jacketed stainless steel kneader having two sigma-type blades having an inner volume of 10 L, 425.2 g of acrylic acid, 4499.5 g of a 37% by weight aqueous solution of sodium acrylate, and pure After 513.65 g of water and 11.1 g of polyethylene glycol diacrylate (molecular weight: 523) were added to prepare a reaction solution, the mixture was degassed for 20 minutes in a nitrogen gas atmosphere.
  • the hydrogel crosslinked polymer (17) was removed from the reactor.
  • the obtained particulate hydrogel polymer (17) had a weight average particle size (D50) of 479 ⁇ m.
  • the finely divided hydrogel crosslinked polymer (17) was spread on a metal mesh having a mesh size of 300 ⁇ m (50 mesh) and placed in a hot air drier. Then, the particulate hydrogel polymer (17) was dried by passing hot air at 170 ° C. for 30 minutes to obtain a particulate dry polymer (17). Subsequently, the dried polymer (17) was put into a roll mill (WML type roll pulverizer, manufactured by Inoguchi Giken Co., Ltd.) and pulverized. By classifying, an amorphous crushed water-absorbent resin (17) was obtained. In addition, the amorphous crushed water-absorbent resin (17) had a CRC of 31.8 g / g.
  • Example 17 After drying in the same manner as in Example 17 to obtain a comparative dry polymer (7) in the form of particles, it is pulverized and classified to obtain a comparative crushed amorphous water-absorbent resin (7) having a size of 850 to 150 ⁇ m. Obtained.
  • Comparative Example 8 A comparative water-absorbent resin (8) was obtained according to the method described in Example 1-8 of International Publication No. 2011/040530 (Patent Document 17). The resulting final product, comparative water-absorbent resin (8), was analyzed. The analysis results are shown in Table 3 below. The manufacturing conditions and analysis results are shown in Tables 1 to 3 below.
  • Comparative water-absorbent resin (9) was obtained according to the method described in Example 2-23 of International Publication WO 2014/054656 (Patent Document 23). The resulting final product, comparative water-absorbent resin (9), was analyzed. The manufacturing conditions and analysis results are shown in Tables 1 to 3 below.
  • Comparative Example 10 A comparative water-absorbent resin (10) was obtained according to the method described in Example 2-24 of International Publication WO2014 / 054656 (Patent Document 23). The resulting final product, comparative water-absorbent resin (10), was analyzed. The production conditions and analysis results are shown in Tables 1, 2, and 4 below.
  • the amount of the chelating agent in the hydrogel after the polymerization step in each of the Examples and Comparative Examples, and the amount of the chelating agent in the hydrogel after the gel pulverizing step are as follows: 97% to almost 100% of the amount of 1000 ppm added to the monomer remained. Therefore, substantially no decrease in the chelating agent was observed in the polymerization step or the gel pulverizing step.
  • the amount of the chelating agent in the water-absorbent resin or the comparative water-absorbent resin obtained by pulverization and the temperature of 180 ° C.
  • the heat treatment was performed for 40 minutes, and the amount of the chelating agent in the surface-crosslinked water-absorbent resin or the comparative water-absorbent resin was compared, but no difference was found between the two. Therefore, even when the surface crosslinking step was performed at 180 ° C., no decrease in the chelating agent was observed.
  • the production method according to the present invention increases the content of the chelating agent and also increases the L value of the initial coloring of the obtained water-absorbent resin (the same chelating agent improves the L value by one point). ). Also, from the comparison results of Comparative Example 2 and Comparative Example 5 in which the amount of the polymerization initiator added (0.04 mol%), the amount of the chelating agent added, and the gel particle diameter were the same, the solid content when dried was 80%. It can be seen that as the time for achieving the above becomes shorter, the residual ratio of the chelating agent is improved, and the L value of the initial coloring is increased. In the production method according to the present invention, it can be seen that the L value increases as the gel particle diameter is smaller and the time to achieve a solid content of 80% upon drying is faster.
  • Example 1 1000 ppm based on monomer; 0.0173 mol, in which the polymerization initiator and the amount added (0.04 mol%) were the same and the amount added of the chelating agent (DTPA) was changed. %), Example 9 (300 ppm based on the monomer; 0.0052 mol%), and Example 10 (50 ppm based on the monomer; 0.0009 mol%) show that the persulfate for the chelating agent was used. It can be seen that as the molar ratio increases from 2.3 to 7.7 and further to 46.3, the residual amount of the chelating agent in the water absorbent resin of the final product decreases from 50% to 39% and further to 30%. .
  • Example 2 (0.015 mol%; 942 ⁇ m) in which the chelating agent (DTPA) and its addition amount (0.0173 mol%) were the same, and the addition amount of the polymerization initiator and the gel particle diameter were changed. From the results of comparison with Comparative Example 2 (0.04 mol%; ⁇ 5000 ⁇ m), the molar ratio of the persulfate to the chelating agent and the gel particle diameter were reduced, so that the water absorption resin in the final product was reduced. It can be seen that the residual amount of the chelating agent is remarkably improved, and the YI values of the initial coloring and the coloring with the lapse of time are reduced, and in particular, the resistance to the coloring with the lapse of time is improved.
  • Comparative Example 8 has a smaller amount of the chelating agent added during the polymerization and a larger amount of the persulfate as the polymerization initiator than Example 2. Therefore, it can be seen that the residual ratio of the chelating agent decreases and the initial coloring (L value, YI value) deteriorates.
  • Example 18 To 100 parts by weight of the water-absorbent resin (1) obtained in Example 1, 1 part by weight of a 1% by weight DTPA ⁇ 5 sodium aqueous solution was added, and the inside thereof contained 501 ppm of a chelating agent, and further contained 100 ppm of a chelating agent on the surface. Water-absorbing resin (18) was obtained. Almost all of the chelating agent added later was contained near the surface of the water absorbent resin (18), and the content of the chelating agent in the water absorbent resin (18) was increased by about 100 ppm. The CRC and AAP (0.7 psi) of the water absorbent resin (18) were almost the same as those of the water absorbent resin (1) (decrease corresponding to 1% of added water).
  • Examples 19 to 21 In the same manner as in Example 18, for each of the water-absorbent resins (2) to (4) obtained in Examples 2 to 4, 1% by weight of a 1% by weight DTPA / 5 sodium aqueous solution was added to 100 parts by weight of the water-absorbent resin. Was added to obtain water-absorbing resins (19) to (21). Each of the water-absorbent resins (19) to (21) contained the same amount of the chelating agent as the water-absorbent resins (2) to (4), respectively, and further contained 100 ppm of the chelating agent on the surface.
  • the water-absorbent resin obtained by the production method of the present invention shows a high chelating agent residual ratio with respect to the chelating agent added before the drying step, A sufficient amount of the chelating agent remained in the water absorbent resin as the final product. Therefore, a chelating agent can be blended on the surface and inside of the particles of the water-absorbing resin, and due to the coloring resistance of the chelating agent, the water-absorbing resin as a final product exhibited a low YI value and exhibited good whiteness.
  • the water-absorbent resin produced by the production method of the present invention is useful for sanitary articles such as disposable diapers, sanitary napkins, and medical blood retention agents.
  • pet urine absorbents urine gelling agents for portable toilets and freshness preserving agents for fruits and vegetables, drip absorbents for meat and seafood, cooling agents, disposable warmers, gelling agents for batteries, water retaining agents for plants and soil, etc. It can also be used in various applications such as anti-condensation agents, water blocking agents and packing agents, and artificial snow.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

According to the present invention, the addition amount of persulfate in a polymerization initiator from a polymerizing step before a drying step is reduced to the total amount of 0-0.04 mol% (with respect to a monomer during polymerization), and a gel particle size of a water-containing gel-like polymer before the drying step and a drying condition are controlled, thereby suppressing the decomposition of a chelating agent in the drying step.

Description

キレート剤を含む吸水性樹脂の製造方法Method for producing water-absorbing resin containing chelating agent
 本発明は、キレート剤を含む吸水性樹脂の製造方法に関する。 The present invention relates to a method for producing a water absorbent resin containing a chelating agent.
 吸水性樹脂(SAP/Super Absorbent polymer)は、水膨潤性水不溶性の高分子ゲル化剤であり、紙オムツ、生理用ナプキン等の吸収物品、さらには、農園芸用保水剤、工業用止水材等として、主に使い捨て用途に多用されている。 A water-absorbent resin (SAP / Super Absorbent polymer) is a water-swellable, water-insoluble polymer gelling agent, and absorbent articles such as disposable diapers and sanitary napkins, as well as agricultural and horticultural water retention agents, and industrial water stoppages. As a material, it is mainly used for disposable purposes.
 このような吸水性樹脂は、重合工程、乾燥工程、必要により未乾燥物の除去工程、粉砕工程、分級工程、表面架橋工程等の製造工程を経て製造されるが、主用途である紙オムツの高性能化に伴って、吸水性樹脂についても多くの機能(物性)が要求されている。具体的には、単なる吸水倍率の高さに限らず、ゲル強度、水可溶分、吸水速度、加圧下吸水倍率、通液性、粒度分布、耐尿性、抗菌性、耐衝撃性(耐ダメージ性)、粉体流動性、消臭性、耐着色性(白色度)、低粉塵等の性能が挙げられる。 Such a water-absorbent resin is produced through a production step such as a polymerization step, a drying step, a removal step of an undried substance if necessary, a pulverization step, a classification step, a surface cross-linking step, and the like. With high performance, many functions (physical properties) are also required for a water absorbent resin. Specifically, the gel strength, water-soluble content, water absorption rate, water absorption capacity under pressure, liquid permeability, particle size distribution, urine resistance, antibacterial property, impact resistance (not limited to the mere water absorption capacity) Damage), powder fluidity, deodorant properties, coloring resistance (whiteness), low dust, and the like.
 吸水性樹脂の上記性能向上のために、単量体や上記製造工程の変更以外の手法として、吸水性樹脂に微量の添加剤が使用されることもあり、吸水性樹脂の各種添加剤として、水溶性または水不溶性の無機粉末または有機粉末、界面活性剤、可塑剤、水溶性ポリマー、水不溶性(熱可塑性)ポリマー、抗菌剤、消臭剤、還元剤、酸化防止剤、有機酸、無機酸、着色防止剤、キレート剤等の添加剤が知られている。 In order to improve the performance of the water-absorbent resin, as a method other than changing the monomer and the manufacturing process, a small amount of additives may be used in the water-absorbent resin, as various additives of the water-absorbent resin, Water-soluble or water-insoluble inorganic or organic powder, surfactant, plasticizer, water-soluble polymer, water-insoluble (thermoplastic) polymer, antibacterial agent, deodorant, reducing agent, antioxidant, organic acid, inorganic acid Additives such as anti-coloring agents and chelating agents are known.
 吸水性樹脂の上述した物性や各種添加剤の中で、特に、重合安定性、吸水性樹脂の色調安定性(高温高湿下で長期間保存したときの色調安定性)、耐尿性(ゲル劣化防止)等の向上を目的として、吸水性樹脂にキレート剤(別称;イオン封鎖剤)を添加することが知られている。 Among the above-mentioned physical properties and various additives of the water-absorbent resin, in particular, polymerization stability, color tone stability of the water-absorbent resin (color stability when stored for a long time under high temperature and high humidity), urine resistance (gel) It is known to add a chelating agent (also called an ion-sequestering agent) to a water-absorbent resin for the purpose of improving deterioration prevention or the like.
 例えば、特許文献1~4には、主に重合安定性向上のために、吸水性樹脂の単量体にキレート剤を添加することが開示されている。特許文献5~11には、主に吸水性樹脂の耐尿性向上(尿劣化防止)のために、吸水性樹脂の重合工程/乾燥工程/表面架橋工程/造粒工程/微粉回収工程等の製造工程で、モノマーやその重合物へキレート剤を添加する吸水性樹脂の製造方法が開示されている。特許文献12~19,23には、吸水性樹脂の着色(特に経時着色)を抑制するために、製造工程の何れかにおいて金属キレート剤を添加する吸水性樹脂の製造方法が開示されている。 For example, Patent Documents 1 to 4 disclose that a chelating agent is added to a monomer of a water-absorbing resin mainly for improving polymerization stability. Patent Literatures 5 to 11 mainly describe a process for polymerizing a water-absorbent resin, a drying process, a surface cross-linking process, a granulation process, a fine powder collection process, and the like, mainly for improving urine resistance of a water-absorbent resin (preventing urine deterioration). A method for producing a water-absorbing resin in which a chelating agent is added to a monomer or a polymer thereof in a production process is disclosed. Patent Documents 12 to 19 and 23 disclose a method for producing a water-absorbent resin in which a metal chelating agent is added in any of the production steps in order to suppress coloring (particularly coloring with time) of the water-absorbent resin.
 特に、特許文献12,14には、着色防止のためにキレート剤を吸水性樹脂の内部に存在させることが好適であることが知られている旨が記載され、キレート剤を重合時のモノマーや乾燥前のゲルに添加することで吸水性樹脂の内部にキレート剤を添加する方法が開示されている。特許文献20には、吸水性樹脂の耐塩性向上のための、キレート剤を含む吸水性樹脂組成物が開示されている。特許文献21,23には、吸水性樹脂の耐尿性向上のために、製造工程の何れかにおいて金属キレート剤を添加する、吸水性樹脂の製造方法が開示されている。特許文献22には、逆相懸濁重合後の吸水性樹脂の加圧下吸水倍率等の物性向上のために、2段重合の2段目のモノマーにキレート剤を添加する吸水性樹脂の製造方法が開示されている。 In particular, Patent Literatures 12 and 14 describe that it is known that a chelating agent is preferably present inside a water-absorbing resin for preventing coloration. There is disclosed a method of adding a chelating agent to the inside of a water-absorbent resin by adding the chelating agent to a gel before drying. Patent Document 20 discloses a water-absorbing resin composition containing a chelating agent for improving the salt resistance of the water-absorbing resin. Patent Documents 21 and 23 disclose a method for producing a water-absorbent resin in which a metal chelating agent is added in any of the production steps in order to improve the urine resistance of the water-absorbent resin. Patent Document 22 discloses a method for producing a water-absorbent resin in which a chelating agent is added to a second-stage monomer in a two-stage polymerization in order to improve physical properties such as a water absorption capacity under pressure of the water-absorbent resin after reverse phase suspension polymerization. Is disclosed.
 ここで、上記特許文献1~7において製造工程での重合安定化や乾燥劣化防止の目的に使用されるキレート剤も、最終製品中に残存すれば吸水性樹脂の使用時の耐尿性向上や着色防止に作用する。 Here, the chelating agent used for the purpose of stabilizing polymerization in the production process and preventing drying deterioration in the above-mentioned Patent Documents 1 to 7 can also improve urine resistance when a water-absorbing resin is used if it remains in the final product. It works to prevent coloring.
国際公開第93/005080号パンフレットWO93 / 005080 pamphlet 国際公開第2011/120746号パンフレットInternational Publication No. 2011/120746 pamphlet 日本国公開特許公報「特開平02-117903号公報」Japanese Unexamined Patent Publication "JP-A-02-117903" 日本国公開特許公報「特開平08-283318号公報」Japanese Unexamined Patent Publication "JP-A-08-283318" 日本国公開特許公報「特開2000-38407号公報」Japanese Unexamined Patent Publication "JP-A-2000-38407" 日本国公開特許公報「特開2000-007790号公報」Japanese Unexamined Patent Publication "JP-A-2000-007790" 日本国公開特許公報「特開平11-246674号公報」Japanese Unexamined Patent Publication "JP-A-11-246677" 日本国公開特許公報「特開平11-315148号公報」Japanese Unexamined Patent Publication "JP-A-11-315148" 日本国公開特許公報「特開平11-315147号公報」Japanese Unexamined Patent Publication "JP-A-11-315147" 欧州特許公開0781146A号European Patent Publication No. 0781146A 国際公開第2015/053372号パンフレットWO 2015/053372 pamphlet 国際公開第2008/090961号パンフレットWO 2008/09961 pamphlet 国際公開第2003/059962号パンフレットWO 2003/059962 pamphlet 国際公開第2009/005114号パンフレットWO2009 / 005114 pamphlet 国際公開第2016/006134号パンフレットWO 2016/006134 pamphlet 国際公開第2018/029045号パンフレットWO2018 / 029045 pamphlet 国際公開第2011/040530号パンフレットInternational Publication No. 2011/040530 pamphlet 国際公開第03/059961号パンフレットWO 03/059961 pamphlet 日本国公開特許公報「特開平05-086251号公報」Japanese Unexamined Patent Publication "JP-A-05-086251" 日本国公開特許公報「特開昭59-230046号公報」Japanese Unexamined Patent Publication "JP-A-59-230046" 日本国公開特許公報「特開平08-067821号公報」Japanese Unexamined Patent Publication "Japanese Patent Application Laid-Open No. 08-067821" 国際公開第2007/004529号パンフレットInternational Publication No. 2007/004529 pamphlet 国際公開第2014/054656号パンフレットWO 2014/054656 pamphlet
 しかしながら、本発明者らがキレート剤を含む吸水性樹脂の製造方法をさらに検討したところ、上記製造工程のうち特に重合工程や乾燥工程でキレート剤を添加する場合において、最終製品でキレート剤の添加量に見合った十分な効果が得られ難いという問題が新たに見出された。そして、当該問題に係る原因として、モノマーや重合ゲルへのキレート剤の添加量に見合った量のキレート剤が、最終製品の吸水性樹脂に含まれていないことが判明した。 However, the present inventors further studied the method for producing a water-absorbent resin containing a chelating agent, and particularly when the chelating agent is added in the polymerization step and the drying step among the above-described production steps, the addition of the chelating agent in the final product A new problem has been found that it is difficult to obtain a sufficient effect commensurate with the amount. Then, as a cause of the problem, it was found that the amount of the chelating agent corresponding to the amount of the chelating agent added to the monomer or the polymer gel was not contained in the water absorbent resin of the final product.
 この問題に対し、本発明の一態様は、吸水性樹脂の製造工程におけるキレート剤の分解を防ぎ、最終製品である吸水性樹脂中のキレート剤の残存率を向上させることができる、キレート剤を含む吸水性樹脂の製造方法を提供することを主たる目的とする。 In response to this problem, one embodiment of the present invention provides a chelating agent that can prevent the decomposition of the chelating agent in the process of manufacturing the water-absorbent resin and can improve the residual ratio of the chelating agent in the water-absorbent resin as a final product. It is a main object to provide a method for producing a water-absorbent resin containing the same.
 さらに、本発明の一態様は、上記製造方法により得られるキレート剤を含む吸水性樹脂であって、良好な耐着色性(白色度)を示す吸水性樹脂を提供することを主たる目的とする。 Another object of one embodiment of the present invention is to provide a water-absorbent resin containing a chelating agent obtained by the above-described production method, which has good coloring resistance (whiteness).
 本発明者らは、今回見出された上記課題を解決するために、その原因究明を行ったところ、単量体を重合して得られる含水ゲル状重合体を乾燥させる工程において、乾燥工程以前に添加されていたキレート剤が乾燥工程で特異的に減少することを見出した。そして、乾燥工程でのキレート剤の減少の原因が含水ゲル状重合体に残存する重合開始剤(特に過硫酸塩)であることを見出した。 The present inventors have investigated the cause thereof in order to solve the above-described problem that has been found this time, and found that in a step of drying a hydrogel polymer obtained by polymerizing a monomer, a step before the drying step was performed. It was found that the chelating agent that had been added to the sample was specifically reduced in the drying step. The inventors have found that the cause of the decrease in the chelating agent in the drying step is a polymerization initiator (particularly, persulfate) remaining in the hydrogel polymer.
 本発明は上記課題を解決するために、重合時または乾燥前の重合開始剤中の過硫酸塩を制御し(0.04モル%以下)、さらに乾燥前のゲル粒子径および乾燥条件を制御して乾燥工程でのキレート剤の分解を抑えることを特徴とし、以下の[1]~[20]に記載の発明を含む。 In order to solve the above problems, the present invention controls the persulfate in the polymerization initiator at the time of polymerization or before drying (0.04 mol% or less), and further controls the gel particle size and drying conditions before drying. And suppressing the decomposition of the chelating agent in the drying step, and includes the inventions described in the following [1] to [20].
 [1]単量体および重合開始剤を含む単量体水溶液を重合させて含水ゲル状重合体を得る重合工程と、必要により、重合工程の途中および/または後に含水ゲル状重合体を粉砕するゲル粉砕工程と、得られた粒子状の含水ゲル状重合体を乾燥させて、粒子状の乾燥重合体を得る乾燥工程と、を含む、吸水倍率(CRC)が15g/g以上でかつキレート剤を含む吸水性樹脂の製造方法であって、上記重合工程で使用される過硫酸塩が0~0.04モル%(対重合時の単量体)であり(但し、過硫酸塩0モル%(不使用)の場合は他の重合開始剤を必須に使用)、乾燥工程より前の工程でキレート剤を上記単量体水溶液または上記含水ゲル状重合体に合計10ppm以上(対重合時の単量体または対含水ゲル状重合体の固形分)添加し、上記粒子状の含水ゲル状重合体の重量平均粒子径(D50)を1mm以下とし、上記乾燥工程では、固形分が80重量%以上となるまでの乾燥時間を20分間以下とする、キレート剤を含む吸水性樹脂の製造方法。 [1] A polymerization step of polymerizing a monomer aqueous solution containing a monomer and a polymerization initiator to obtain a hydrogel polymer, and, if necessary, pulverizing the hydrogel polymer during and / or after the polymerization step A chelating agent having a water absorption capacity (CRC) of 15 g / g or more, comprising a gel pulverizing step and a drying step of drying the obtained particulate hydrogel polymer to obtain a particulate dry polymer. Wherein the persulfate used in the polymerization step is 0 to 0.04 mol% (based on the monomer at the time of polymerization) (provided that the persulfate is 0 mol%). In the case of (not used), another polymerization initiator is indispensably used), and a chelating agent is added to the monomer aqueous solution or the hydrogel polymer in a step prior to the drying step in a total of 10 ppm or more (relative to the polymerization time). Monomer or solid content of hydrogel polymer) Including a chelating agent, the weight-average particle diameter (D50) of the hydrated hydrogel polymer is 1 mm or less, and in the drying step, the drying time until the solid content is 80% by weight or more is 20 minutes or less. A method for producing a water absorbent resin.
 [2]単量体および重合開始剤を含む単量体水溶液を重合させて含水ゲル状重合体を得る重合工程と、必要により、重合工程の途中および/または後に含水ゲル状重合体を粉砕するゲル粉砕工程と、得られた粒子状の含水ゲル状重合体を乾燥させて、粒子状の乾燥重合体を得る乾燥工程と、を含む、吸水倍率(CRC)が15g/g以上でかつキレート剤を含む吸水性樹脂の製造方法であって、上記乾燥工程では、キレート剤を10ppm以上(対含水ゲル状重合体の固形分)、過硫酸塩を0~0.04モル%(対重合時の単量体)含む、重量平均粒子径(D50)が1mm以下の粒子状の含水ゲル状重合体を、乾燥時間20分間以下で、固形分が80重量%以上となるまで乾燥させる、キレート剤を含む吸水性樹脂の製造方法。但し、上記乾燥時間は、固形分が80重量%以上となるまでの時間を指す。 [2] A polymerization step of polymerizing an aqueous monomer solution containing a monomer and a polymerization initiator to obtain a hydrogel polymer, and, if necessary, pulverizing the hydrogel polymer during and / or after the polymerization step A chelating agent having a water absorption capacity (CRC) of 15 g / g or more, comprising a gel pulverizing step and a drying step of drying the obtained particulate hydrogel polymer to obtain a particulate dry polymer. In the drying step, the chelating agent is 10 ppm or more (based on the solid content of the hydrogel polymer) and the persulfate is 0 to 0.04 mol% (based on the polymerization time). A chelating agent, by drying a particulate hydrogel polymer having a weight-average particle diameter (D50) of 1 mm or less containing a monomer) until the solid content becomes 80% by weight or more for a drying time of 20 minutes or less. A method for producing a water-absorbent resin containing the same. However, the drying time refers to a time until the solid content becomes 80% by weight or more.
 [3]重合工程から乾燥工程前までにおける過硫酸塩の添加量が、合計で0~0.04モル%(対重合時の単量体)である、[1]または[2]に記載の製造方法。 [3] The method according to [1] or [2], wherein the total amount of the persulfate added from the polymerization step to before the drying step is 0 to 0.04 mol% (based on the monomer at the time of polymerization). Production method.
 [4]上記乾燥工程では、150~200℃の熱風乾燥を行う、[1]~[3]の何れか一項に記載の製造方法。 [4] The production method according to any one of [1] to [3], wherein in the drying step, hot-air drying at 150 to 200 ° C. is performed.
 [5]上記キレート剤が、アミノ多価カルボン酸系キレート剤およびアミノ多価リン酸系キレート剤からなる群より選択される少なくとも一種である、[1]~[4]の何れか一項に記載の製造方法。 [5] The method according to any one of [1] to [4], wherein the chelating agent is at least one selected from the group consisting of an amino polycarboxylic acid chelating agent and an amino polyphosphoric acid chelating agent. The manufacturing method as described.
 [6]含水ゲル状重合体を、上記ゲル粉砕工程において粒子状とする、[1]~[5]の何れか一項に記載の製造方法。 [6] The production method according to any one of [1] to [5], wherein the hydrogel polymer is formed into particles in the gel pulverizing step.
 [7]乾燥工程前までの工程でのキレート剤の添加量が、合計で60ppm~1%(対重合時の単量体または対含水ゲル状重合体の固形分)である、[1]~[6]の何れか一項に記載の製造方法。 [7] The total amount of the chelating agent added in the steps before the drying step is 60 ppm to 1% (based on the solid content of the monomer at the time of polymerization or the solid content of the hydrogel polymer). The production method according to any one of [6].
 [8]重合が、水溶液重合である、[1]~[7]の何れか一項に記載の製造方法。 [8] The production method according to any one of [1] to [7], wherein the polymerization is an aqueous solution polymerization.
 [9]重合が、発泡重合ないし沸騰重合であり、含水ゲル状重合体が気泡を含む、[1]~[8]の何れか一項に記載の製造方法。 [9] The production method according to any one of [1] to [8], wherein the polymerization is a foaming polymerization or a boiling polymerization, and the hydrogel polymer contains bubbles.
 [10]重合が、重合開始温度30℃以上、重合ピーク温度80~130℃、重合時間60分間以下の高温開始短時間重合である、[1]~[9]の何れか一項に記載の製造方法。 [10] The method according to any one of [1] to [9], wherein the polymerization is a high-temperature-initiated short-time polymerization of a polymerization initiation temperature of 30 ° C. or higher, a polymerization peak temperature of 80 to 130 ° C., and a polymerization time of 60 minutes or less. Production method.
 [11]さらに、乾燥工程の後に、吸水性樹脂の表面架橋工程を含む、[1]~[10]の何れか一項に記載の製造方法。 [11] The production method according to any one of [1] to [10], further including a step of cross-linking the surface of the water-absorbent resin after the drying step.
 [12]さらに、乾燥工程以降の工程で、吸水性樹脂にキレート剤を添加する工程を含む、[1]~[11]の何れか一項に記載の製造方法。 [12] The production method according to any one of [1] to [11], further including a step of adding a chelating agent to the water-absorbent resin in the steps after the drying step.
 [13]乾燥前の含水ゲル状重合体が残存モノマーを0.1重量%以上含む、[1]~[12]の何れか一項に記載の製造方法。 [13] The production method according to any one of [1] to [12], wherein the hydrogel polymer before drying contains 0.1% by weight or more of a residual monomer.
 [14]重合工程で用いる単量体がアクリル酸(塩)を含み、上記アクリル酸(塩)の含有量が、上記重合工程で用いる総単量体(内部架橋剤を除く)に対して、50~100モル%であり、上記キレート剤を含む吸水性樹脂は、キレート剤の残存量(C1)が10ppm以上であり、初期色調のL値が85以上であり、YI値が13以下であるポリアクリル酸(塩)系吸水性樹脂である、[1]~[13]の何れか一項に記載の製造方法。 [14] The monomer used in the polymerization step contains acrylic acid (salt), and the content of the acrylic acid (salt) is based on the total monomers (excluding the internal crosslinking agent) used in the polymerization step. The water-absorbing resin containing 50 to 100 mol% of the chelating agent has a residual amount (C1) of the chelating agent of 10 ppm or more, an L value of an initial color tone of 85 or more, and a YI value of 13 or less. The production method according to any one of [1] to [13], which is a polyacrylic acid (salt) -based water-absorbent resin.
 [15]上記キレート剤を含む吸水性樹脂は、キレート剤の残存量(C1)が200ppm以上であり、初期色調のL値が89以上であり、YI値が10以下である、[1]~[14]の何れか一項に記載の製造方法。 [15] The water-absorbent resin containing a chelating agent has a residual amount (C1) of the chelating agent of 200 ppm or more, an L value of an initial color tone of 89 or more, and a YI value of 10 or less. The production method according to any one of [14].
 [16]キレート剤の含有量(C2)が200ppm以上であり、初期色調のL値が89以上であり、YI値が10以下である、ポリアクリル酸(塩)系吸水性樹脂。 [16] A polyacrylic acid (salt) -based water-absorbent resin having a chelating agent content (C2) of 200 ppm or more, an initial color tone L value of 89 or more, and a YI value of 10 or less.
 [17]無加圧下吸水倍率(CRC)が25g/g以上であり、加圧下吸水倍率(AAP(0.7psi))が15g/g以上であり、加圧下吸水倍率と無加圧下吸水倍率との比(AAP(0.7psi)/CRC)が0.5以上である、[16]に記載の吸水性樹脂。 [17] Water absorption capacity under no load (CRC) is 25 g / g or more, water absorption capacity under pressure (AAP (0.7 psi)) is 15 g / g or more, and water absorption capacity under pressure and water absorption capacity under no pressure The water-absorbent resin according to [16], wherein the ratio (AAP (0.7 psi) / CRC) is 0.5 or more.
 [18]アクリル酸(塩)を総単量体(内部架橋剤を除く)の50~100モル%、内部架橋剤を単量体に対して0.001~5モル%、および、過硫酸塩を単量体に対して0~0.04モル%含む単量体水溶液から得られるポリアクリル酸(塩)系架橋重合体を含む、[16]または[17]に記載の吸水性樹脂。 [18] Acrylic acid (salt) is 50 to 100 mol% of the total monomer (excluding the internal cross-linking agent), 0.001 to 5 mol% of the internal cross-linking agent based on the monomer, and persulfate The water-absorbent resin according to [16] or [17], comprising a polyacrylic acid (salt) -based crosslinked polymer obtained from a monomer aqueous solution containing 0 to 0.04 mol% of a monomer.
 [19]単量体および重合開始剤を含む単量体水溶液を重合させて得られた含水ゲル状重合体を、必要により重合途中および/または重合後にゲル粉砕し、得られた粒子状の含水ゲル状重合体を乾燥させて得られるキレート剤を含む吸水性樹脂であって、乾燥工程より前の工程でキレート剤を上記単量体水溶液または上記含水ゲル状重合体に合計10ppm以上(対重合時の単量体または対含水ゲル状重合体の固形分)を添加する、[16]~[18]の何れか一項に記載の吸水性樹脂。 [19] A hydrogel polymer obtained by polymerizing an aqueous monomer solution containing a monomer and a polymerization initiator is gel-pulverized during and / or after polymerization, if necessary, to obtain a particulate hydrous polymer. A water-absorbent resin containing a chelating agent obtained by drying a gel polymer, wherein the chelating agent is added to the monomer aqueous solution or the hydrogel polymer in a step prior to the drying step in a total amount of 10 ppm or more (based on polymerization). The water-absorbent resin according to any one of [16] to [18], wherein a monomer at the time or a solid content of the hydrogel polymer is added.
 [20]不定形破砕状である、[16]~[19]の何れか一項に記載の吸水性樹脂。 [20] The water-absorbent resin according to any one of [16] to [19], which is in an irregularly crushed state.
 [21]キレート剤の残存率が50%以上である、[16]~[20]の何れか一項に記載の吸水性樹脂。 [21] The water-absorbing resin according to any one of [16] to [20], wherein the residual ratio of the chelating agent is 50% or more.
 [22]表面および内部にキレート剤を含み、表面に存在するキレート剤の量が、内部に存在するキレート剤の量よりも多い、[16]~[21]の何れか一項に記載の吸水性樹脂。 [22] The water absorption according to any one of [16] to [21], including a chelating agent on the surface and inside, wherein the amount of the chelating agent present on the surface is larger than the amount of the chelating agent present inside. Resin.
 本発明の一態様によれば、吸水性樹脂の製造工程におけるキレート剤の分解を防ぎ、最終製品である吸水性樹脂中のキレート剤の残存率を向上させ、吸水性樹脂の粒子表面および内部にキレート剤を配合することができるという効果を奏する。 According to one embodiment of the present invention, the decomposition of the chelating agent in the production process of the water-absorbing resin is prevented, the residual ratio of the chelating agent in the water-absorbing resin as the final product is improved, and the surface and the inside of the particles of the water-absorbing resin are improved. This has the effect that a chelating agent can be added.
 以下、本発明に係るキレート剤を含む吸水性樹脂の製造方法、および、これにより得られるキレート剤を含む吸水性樹脂について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更、実施し得る。具体的には、本発明は下記の各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。 Hereinafter, a method for producing a water-absorbing resin containing a chelating agent according to the present invention, and a water-absorbing resin containing a chelating agent obtained thereby will be described in detail, but the scope of the present invention is not limited to these descriptions. In addition, other than the following examples, the present invention can be appropriately changed and implemented without departing from the spirit of the present invention. Specifically, the present invention is not limited to the following embodiments, and various modifications are possible within the scope shown in the claims, and the technical means disclosed in the different embodiments are appropriately combined. The embodiments obtained by the above are also included in the technical scope of the present invention.
 〔1〕各種定義
 (1-1)「吸水性樹脂」
 本発明における「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を意味する。なお、「水膨潤性」とは、ERT442.2-02で規定するCRC(無加圧下吸水倍率)が5[g/g]以上であることをいい、「水不溶性」とは、ERT470.2-02で規定するExt(水可溶分)が0~50重量%であることをいう。
[1] Various definitions (1-1) "Water absorbent resin"
The “water-absorbent resin” in the present invention means a water-swellable, water-insoluble polymer gelling agent. Here, “water swelling” means that the CRC (absorption capacity under no pressure) specified by ERT442.2-02 is 5 [g / g] or more, and “water insoluble” means ERT470.2 It means that the Ext (water-soluble content) defined by −02 is 0 to 50% by weight.
 上記吸水性樹脂は、その用途に応じて適宜設計可能であり、特に限定されるものではないが、カルボキシル基を有する不飽和単量体を重合させた、親水性重合体であることが好ましい。また、全量(100重量%)が重合体である形態に限定されず、上記性能を維持する範囲内において、表面架橋された樹脂や添加剤等を含んだ組成物であってもよい。本発明の製造方法によれば、最終製品として、粒子状または粉末状の吸水性樹脂を製造することができる。なお、本発明において、用語「吸水性樹脂」は、表面処理または表面架橋を行う前の吸水性樹脂、表面処理または表面架橋を行った後の吸水性樹脂、各工程で得られる形状が異なる吸水性樹脂(形状として、例えば、シート状、繊維状、フィルム状、ゲル状等が挙げられる)、添加剤等を含有した吸水性樹脂組成物等を包含する。 The water-absorbent resin can be appropriately designed according to its use, and is not particularly limited, but is preferably a hydrophilic polymer obtained by polymerizing an unsaturated monomer having a carboxyl group. Further, the composition is not limited to a form in which the total amount (100% by weight) is a polymer, and may be a composition containing a surface-crosslinked resin, an additive, or the like as long as the above performance is maintained. According to the production method of the present invention, a particulate or powdery water-absorbent resin can be produced as a final product. In the present invention, the term "water-absorbent resin" refers to a water-absorbent resin before surface treatment or surface cross-linking, a water-absorbent resin after surface treatment or surface cross-linking, and a water absorbing resin having different shapes obtained in each step. Water-absorbent resin compositions containing additives such as a water-soluble resin (for example, sheet-like, fibrous, film-like, and gel-like shapes).
 (1-2)「ポリアクリル酸(塩)」
 本発明における「ポリアクリル酸(塩)」とは、任意にグラフト成分を含み、繰り返し単位として、アクリル酸および/またはその塩(以下、アクリル酸(塩)と称することがある)を主成分とする重合体を意味する。具体的には、重合に用いられる総単量体(内部架橋剤を除く)のうち、アクリル酸(塩)を必須に50~100モル%、好ましくは70~100モル%、さらに好ましくは90~100モル%、特に好ましくは実質100モル%含む重合体をいう。また、重合体としてポリアクリル酸塩を用いる場合は、必須に水溶性塩を含み、中和塩の主成分として一価塩が好ましく、アルカリ金属塩またはアンモニウム塩がより好ましく、アルカリ金属塩がさらに好ましく、ナトリウム塩が特に好ましい。
(1-2) "Polyacrylic acid (salt)"
The “polyacrylic acid (salt)” in the present invention includes acrylic acid and / or a salt thereof (hereinafter, sometimes referred to as acrylic acid (salt)) as a main component as a repeating unit, optionally including a graft component. Polymer. Specifically, of the total monomers (excluding the internal crosslinking agent) used for the polymerization, acrylic acid (salt) is essentially 50 to 100 mol%, preferably 70 to 100 mol%, more preferably 90 to 100 mol%. It refers to a polymer containing 100 mol%, particularly preferably substantially 100 mol%. When a polyacrylate is used as the polymer, a water-soluble salt is essential, a monovalent salt is preferable as a main component of the neutralized salt, an alkali metal salt or an ammonium salt is more preferable, and an alkali metal salt is further preferable. Preferably, the sodium salt is particularly preferred.
 (1-3)「EDANA」および「ERT」
 「EDANA」は、欧州不織布工業会(European Disposables and Nonwovens Assoiations)の略称であり、「ERT」は、欧州標準(ほぼ世界標準)である吸水性樹脂の測定方法(EDANA Recommended Test Metods)の略称である。なお、本発明においては、特に断りのない限り、ERT原本(公知文献:2002年改定)に準拠して測定を行う。
(1-3) “EDANA” and “ERT”
“EDANA” is an abbreviation of European Disposables and Nonwovens Assoiations, and “ERT” is an abbreviation of EDANA Recommended Test Metods, a method of measuring water-absorbent resin which is a European standard (almost a global standard). is there. In the present invention, the measurement is performed based on the original ERT (publicly known document: revised in 2002) unless otherwise specified.
 (a)「CRC」(ERT441.2-02)
 「CRC」は、Centrifuge Retention Capacity (遠心分離機保持容量)の略称であり、無加圧下吸水倍率(以下、「吸水倍率」と称することもある)を意味する。具体的には、不織布袋中の0.200gの吸水性樹脂を、大過剰の0.9重量%塩化ナトリウム水溶液に対して30分間自由膨潤させた後、さらに遠心分離機で水切りした後の吸水倍率(単位;[g/g])である。なお、含水ゲル状重合体のCRC(以下、「ゲルCRC」と称する)は、試料を0.4g、自由膨潤時間を24時間にそれぞれ変更して測定を行った。
(A) "CRC" (ERT441.2-02)
“CRC” is an abbreviation of Centrifuge Retention Capacity (centrifuge retention capacity), and means a non-pressurized water absorption capacity (hereinafter sometimes referred to as “water absorption capacity”). Specifically, 0.200 g of the water-absorbent resin in the non-woven fabric bag was freely swelled in a large excess of 0.9% by weight aqueous sodium chloride solution for 30 minutes, and then drained with a centrifuge. Magnification (unit: [g / g]). The CRC of the hydrogel polymer (hereinafter referred to as “gel CRC”) was measured by changing the sample to 0.4 g and the free swelling time to 24 hours.
 (b)「AAP」(ERT442.2-02)
 「AAP」は、Absorption Against Pressure の略称であり、加圧下吸水倍率を意味する。具体的には、0.900gの吸水性樹脂を、0.9重量%塩化ナトリウム水溶液に対して1時間、2.06kPa(0.3psi、21[g/cm])での荷重下で膨潤させた後の吸水倍率(単位;[g/g])である。なお、ERT442.2-02では、Absorption Under Pressure と表記されているが、実質的に同一内容である。また、本発明および実施例では、荷重条件を4.83kPa(0.7psi、49[g/cm])に変更して測定を行うこともあり、その場合にはAAP(0.7psi)と記載する。
(B) “AAP” (ERT442.2-02)
“AAP” is an abbreviation for Absorption Against Pressure, and means the water absorption capacity under pressure. Specifically, 0.900 g of a water-absorbing resin is swollen against a 0.9% by weight aqueous solution of sodium chloride for 1 hour under a load of 2.06 kPa (0.3 psi, 21 [g / cm 2 ]). It is a water absorption capacity (unit: [g / g]) after the water absorption. In addition, in ERT442.2-02, although it is described as Absorption Under Pressure, it has substantially the same contents. In the present invention and examples, the measurement may be performed with the load condition changed to 4.83 kPa (0.7 psi, 49 [g / cm 2 ]). In this case, AAP (0.7 psi) is used. Describe.
 (c)「Ext」(ERT470.2-02)
 「Ext」は、Extractablesの略称であり、水可溶分(水可溶成分量)を意味する。具体的には、吸水性樹脂1.000gを0.9重量%塩化ナトリウム水溶液200mlに添加し、16時間攪拌した後の溶解ポリマー量(単位;重量%)である。溶解ポリマー量の測定はpH滴定を用いて行う。なお、含水ゲル状重合体の水可溶分(以下、「ゲルExt」と称する)は、試料を5.0g、攪拌時間を24時間にそれぞれ変更して測定を行った。
(C) "Ext" (ERT 470.2-02)
“Ext” is an abbreviation for Extractables and means a water-soluble component (amount of water-soluble component). Specifically, it is the amount of dissolved polymer (unit: wt%) after adding 1.000 g of the water-absorbing resin to 200 ml of 0.9 wt% aqueous sodium chloride solution and stirring for 16 hours. The measurement of the amount of the dissolved polymer is performed using pH titration. The water-soluble content of the hydrogel polymer (hereinafter, referred to as “gel Ext”) was measured by changing the sample to 5.0 g and the stirring time to 24 hours.
 (d)「PSD」(ERT420.2-02)
 「PSD」は、Particle Size Distributionの略称であり、篩分級により測定される粒度分布を意味する。なお、重量平均粒子径(D50)および粒子径分布幅は、米国特許第7638570号に記載された「(3)Mass-Average Particle Diameter (D50) and Logarithmic Standard Deviation (σζ) of Particle Diameter Distribution」と同様の方法で測定する。また、粒度測定で使用する標準篩(目開き)は、対象物の粒度によって適宜追加してもよい。例えば、目開きが710μm、600μm等の標準篩を追加すればよい。なお、含水ゲル状重合体のPSDの測定方法については後述する。
(D) "PSD" (ERT420.2-02)
“PSD” is an abbreviation of Particle Size Distribution, and means a particle size distribution measured by sieve classification. The weight average particle diameter (D50) and the particle diameter distribution width are described in “(3) Mass-Average Particle Diameter (D50) and Logarithmic Standard Deviation (σζ) of Particle Diameter Distribution” described in US Pat. No. 7,638,570. Measure in the same way. The standard sieve (mesh) used in the particle size measurement may be appropriately added depending on the particle size of the object. For example, a standard sieve having an opening of 710 μm, 600 μm, or the like may be added. The method for measuring the PSD of the hydrogel polymer will be described later.
 (e)「Residual Monomers」(ERT410.2-02)
 「Residual Monomers」は、吸水性樹脂中に残存する単量体(モノマー)量(以下、「残存モノマー」と称する)を意味する。具体的には、吸水性樹脂1.0gを0.9重量%塩化ナトリウム水溶液200mlに添加し、35mmのスターラーチップを用いて500rpmで1時間攪拌した後の溶解したモノマー量(単位;ppm)をいう。溶解モノマー量の測定はHPLC(高速液体クロマトグラフィー)を用いて行う。なお、含水ゲル状重合体の残存モノマーは、試料を2g、攪拌時間を3時間にそれぞれ変更して測定を行い、得られた測定値を含水ゲル状重合体の樹脂固形分当りの重量に換算した値(単位;ppm)とする。
(E) "Residual Monomers" (ERT410.2-02)
“Residual Monomers” means the amount of monomer (monomer) remaining in the water-absorbent resin (hereinafter, referred to as “residual monomer”). Specifically, 1.0 g of a water-absorbent resin was added to 200 ml of a 0.9% by weight aqueous sodium chloride solution, and the amount of dissolved monomer (unit: ppm) after stirring at 500 rpm for 1 hour using a 35 mm stirrer chip was determined. Say. The amount of the dissolved monomer is measured using HPLC (high performance liquid chromatography). The residual monomer of the hydrogel polymer was measured by changing the sample to 2 g and the stirring time to 3 hours, and converting the measured value to the weight of the hydrogel polymer per solid resin. (Unit: ppm).
 (f)「Moisture Content」(ERT430.2-02)
 「Moisture Content」は、吸水性樹脂の含水率を意味する。具体的には、吸水性樹脂1gを105℃で3時間乾燥したときの乾燥減量から算出した値(単位;重量%)である。なお、本発明では、吸水性樹脂および乾燥重合体の含水率は、乾燥温度を180℃に変更して測定を行った。また、含水ゲル状重合体の含水率は、試料を2g、乾燥温度を180℃、乾燥時間を16時間にそれぞれ変更して測定を行った。さらに、{100-含水率(重量%)}で算出される値を、本発明では「樹脂固形分」とし、吸水性樹脂、乾燥重合体および含水ゲル状重合体に適用することができる。
(F) "Moisture Content" (ERT430.2-02)
"Moisture Content" means the water content of the water absorbent resin. Specifically, it is a value (unit:% by weight) calculated from the loss on drying when 1 g of the water absorbent resin is dried at 105 ° C. for 3 hours. In the present invention, the water content of the water-absorbent resin and the dried polymer was measured by changing the drying temperature to 180 ° C. The moisture content of the hydrogel polymer was measured by changing the sample to 2 g, the drying temperature to 180 ° C., and the drying time to 16 hours. Further, in the present invention, the value calculated by {100-water content (% by weight)} is referred to as "resin solid content", and can be applied to a water-absorbent resin, a dried polymer, and a hydrogel polymer.
 (1-4)「通液性」
 本発明における「通液性」とは、荷重下または無荷重下での膨潤ゲルの粒子間を通過する液の流れ性のことをいい、代表的な測定方法として、SFC(Saline Flow Conductivity/生理食塩水流れ誘導性)や、GBP(Gel Bed Permeability/ゲル床透過性)がある。
(1-4) "Liquid permeability"
“Liquid permeability” in the present invention refers to the fluidity of a liquid passing between particles of a swollen gel under a load or no load, and as a typical measurement method, SFC (Saline Flow Conductivity / physiology) is used. Saline flow inducibility) and GBP (Gel Bed Permeability / gel bed permeability).
 「SFC(生理食塩水流れ誘導性)」は、荷重2.07kPaでの吸水性樹脂に対する0.69重量%塩化ナトリウム水溶液の通液性をいい、米国特許第5669894号に開示されたSFC試験方法に準じて測定される。また、「GBP」は、荷重下または自由膨張での吸水性樹脂に対する0.69重量%塩化ナトリウム水溶液の通液性をいい、国際公開第2005/016393号に開示されたGBP試験方法に準じて測定される。 "SFC (physiological saline flow conductivity)" refers to the permeability of a 0.69% by weight aqueous sodium chloride solution to a water-absorbent resin under a load of 2.07 kPa, and is an SFC test method disclosed in US Pat. No. 5,669,894. It is measured according to. "GBP" refers to the liquid permeability of a 0.69% by weight aqueous sodium chloride solution to a water-absorbent resin under load or free expansion, and is based on the GBP test method disclosed in WO 2005/016393. Measured.
 (1-5)「FSR」
 本発明における「FSR」とは、Free Swell Rate の略称であり、吸水速度(自由膨潤速度)を意味する。具体的には、吸水性樹脂1gが0.9重量%塩化ナトリウム水溶液20gを吸水するときの速度(単位;[g/g/s])である。
(1-5) “FSR”
“FSR” in the present invention is an abbreviation of Free Swell Rate and means a water absorption rate (free swelling rate). Specifically, it is the speed (unit: [g / g / s]) when 1 g of the water-absorbent resin absorbs 20 g of the 0.9% by weight aqueous sodium chloride solution.
 (1-6)「ゲル粉砕」
 本発明における「ゲル粉砕」とは、重合工程で得られた含水ゲル状重合体の乾燥を容易にすることを目的に、せん断、圧縮力を加えて大きさを小さくし表面積を大きくする操作のことをいう。「ゲル粉砕」により、粒子状の含水ゲル状重合体、特に後述する重量平均粒子径(D50)を有する粒子状の含水ゲル状重合体が得られる。
(1-6) “Gel pulverization”
In the present invention, "gel pulverization" refers to an operation of applying shear and compressive force to reduce the size and increase the surface area with the aim of facilitating drying of the hydrogel polymer obtained in the polymerization step. That means. By “gel pulverization”, a particulate hydrogel polymer, in particular, a particulate hydrogel polymer having a weight average particle diameter (D50) described below is obtained.
 なお、無攪拌水溶液重合(静置水溶液重合、特にベルト重合)では重合後にゲル粉砕が行われるのに対して、ニーダー重合の場合には重合とゲル粉砕が同一装置内で連続的に行われる。乾燥工程に供給される粒子状の含水ゲル状重合体の重量平均粒子径(D50)が後述した範囲となっていればよく、重合中または重合後の何れかでゲル粉砕が行われてもよい。 In addition, gel polymerization is performed after polymerization in non-stirring aqueous polymerization (static aqueous polymerization, particularly belt polymerization), whereas in kneader polymerization, polymerization and gel pulverization are performed continuously in the same apparatus. The weight average particle diameter (D50) of the particulate hydrogel polymer supplied to the drying step may be in the range described below, and gel pulverization may be performed during or after polymerization. .
 (1-7)「水可溶分の重量平均分子量」
 本発明における「水可溶分の重量平均分子量」とは、吸水性樹脂を水溶媒に添加したときに溶解する成分(水可溶分)の重量平均分子量について、GPC(ゲル浸透クロマトグラフィー)で測定した値(単位;daltons /以下、[Da]と略記する)をいう。即ち、上記(1-3)(c)「Ext」に記載した測定方法で得た溶液をGPC測定した結果である。なお、含水ゲル状重合体の水可溶分の重量平均分子量は、粒子径を5mm以下、さらには1~3mmに細粒化した試料を5.0g、攪拌時間を24時間にそれぞれ変更して測定を行った。
(1-7) “Weight average molecular weight of water-soluble component”
The term “weight-average molecular weight of the water-soluble component” in the present invention refers to the weight-average molecular weight of a component (water-soluble component) that dissolves when a water-absorbent resin is added to an aqueous solvent, by GPC (gel permeation chromatography). It refers to the measured value (unit: daltons / hereinafter, abbreviated as [Da]). That is, it is the result of GPC measurement of the solution obtained by the measurement method described in the above (1-3) (c) “Ext”. The weight-average molecular weight of the water-soluble component of the hydrogel polymer was determined by changing the particle diameter to 5 mm or less, and further, to 5.0 g for a sample having a fine particle size of 1 to 3 mm, and changing the stirring time to 24 hours. A measurement was made.
 (1-8)その他
 本明細書において、範囲を示す「X~Y」は、「X以上、Y以下」を意味する。また、「質量」と「重量」は同義語として扱い、重量の単位である「t(トン)」は、「Metric ton(メトリック トン)」を意味し、さらに、特に注釈のない限り、「ppm」は「重量ppm」を意味する。さらに、「~酸(塩)」は「~酸および/またはその塩」を意味し、「(メタ)アクリル」は「アクリルおよび/またはメタクリル」を意味する。
(1-8) Others In this specification, “X to Y” indicating a range means “X or more and Y or less”. Also, “mass” and “weight” are treated as synonyms, and the unit of weight “t (ton)” means “metric ton (metric ton)”, and unless otherwise specified, “ppm”. "Means" ppm by weight ". Further, “to acid (salt)” means “to acid and / or salt thereof”, and “(meth) acryl” means “acryl and / or methacryl”.
 〔2〕キレート剤を含む吸水性樹脂の製造方法
 本発明は、単量体および重合開始剤を含む単量体水溶液を重合させて含水ゲル状重合体を得る重合工程と、必要により、重合工程の途中および/または後に含水ゲル状重合体を粉砕するゲル粉砕工程と、得られた粒子状の含水ゲル状重合体を乾燥させて、粒子状の乾燥重合体を得る乾燥工程と、を含む、吸水倍率(CRC)が15g/g以上でかつキレート剤を含む吸水性樹脂の製造方法であって、以下の方法1および方法2を提供する。
[2] Method for producing water-absorbent resin containing chelating agent The present invention comprises a polymerization step of polymerizing an aqueous monomer solution containing a monomer and a polymerization initiator to obtain a hydrogel polymer, and, if necessary, a polymerization step. A gel pulverizing step of pulverizing the hydrogel polymer during and / or after, and a drying step of drying the obtained particulate hydrogel polymer to obtain a particulate dry polymer, The present invention provides a method for producing a water-absorbing resin having a water absorption capacity (CRC) of 15 g / g or more and containing a chelating agent, and the following methods 1 and 2.
 (方法1;単量体中の過硫酸塩/ゲル粒子径/乾燥条件を規定)
 上記重合工程で使用される過硫酸塩が0~0.04モル%(対重合時の単量体)であり(但し、過硫酸塩0モル%(不使用)の場合は他の重合開始剤を必須に使用)、乾燥工程より前の工程でキレート剤を上記単量体水溶液または上記含水ゲル状重合体に合計10ppm以上(対重合時の単量体または対含水ゲル状重合体の固形分)添加し、上記粒子状の含水ゲル状重合体の重量平均粒子径(D50)を1mm以下とし、上記乾燥工程では、固形分が80重量%以上となるまでの乾燥時間を20分間以下とする、キレート剤を含む吸水性樹脂の製造方法。
(Method 1; persulfate in monomer / gel particle size / drying conditions)
The persulfate used in the above polymerization step is 0 to 0.04 mol% (based on the monomer at the time of polymerization) (however, when the persulfate is 0 mol% (unused), another polymerization initiator is used). ), And the chelating agent is added to the aqueous monomer solution or the hydrogel polymer in a step prior to the drying step in a total of 10 ppm or more (solid content of the monomer or the hydrogel polymer at the time of polymerization). ), The weight-average particle diameter (D50) of the particulate hydrogel polymer is 1 mm or less, and in the drying step, the drying time until the solid content is 80% by weight or more is 20 minutes or less. And a method for producing a water-absorbent resin containing a chelating agent.
 (方法2;含水ゲル状重合体中の過硫酸塩/ゲル粒子径/乾燥条件を規定)
 上記乾燥工程では、キレート剤を10ppm以上(対含水ゲル状重合体の固形分)、過硫酸塩を0~0.04モル%(対重合時の単量体)含む、重量平均粒子径(D50)が1mm以下の粒子状の含水ゲル状重合体を、乾燥時間20分間以下で、固形分が80重量%以上となるまで乾燥させる、キレート剤を含む吸水性樹脂の製造方法。但し、上記乾燥時間は、固形分が80重量%以上となるまでの時間を指す。
(Method 2: Persulfate in hydrogel polymer / gel particle size / drying conditions are specified)
In the above drying step, the weight average particle diameter (D50) containing 10 ppm or more of the chelating agent (based on the solid content of the hydrogel polymer) and 0 to 0.04 mol% of the persulfate (based on the monomer at the time of polymerization). A) A method for producing a water-absorbent resin containing a chelating agent, wherein a particulate hydrogel polymer having a particle size of 1 mm or less is dried for a drying time of 20 minutes or less until the solid content becomes 80% by weight or more. However, the drying time refers to a time until the solid content becomes 80% by weight or more.
 以下、上記方法1および方法2を詳細に説明する。 方法 Hereinafter, the above methods 1 and 2 will be described in detail.
 (2-1)重合工程
 本工程は、単量体および重合開始剤を含む単量体水溶液を重合させて、含水ゲル状重合体(以下、「含水ゲル」と略記する場合がある)を得る工程である。
(2-1) Polymerization Step In this step, a monomer aqueous solution containing a monomer and a polymerization initiator is polymerized to obtain a hydrogel polymer (hereinafter sometimes abbreviated as “hydrogel”). It is a process.
 (単量体)
 本発明で得られる吸水性樹脂は、その原料(単量体)として、好ましくはアクリル酸(塩)を主成分として含む単量体を使用し、通常、水溶液状態で重合される、ポリアクリル酸(塩)系吸水性樹脂である。
(Monomer)
The water-absorbent resin obtained by the present invention preferably uses a monomer containing acrylic acid (salt) as a main component as its raw material (monomer), and is usually polymerized in an aqueous solution state. (Salt) -based water-absorbing resin.
 単量体水溶液中の単量体(モノマー)濃度としては、10~80重量%が好ましく、20~80重量%がより好ましく、30~70重量%がさらに好ましく、40~60重量%が特に好ましい。 The concentration of the monomer (monomer) in the aqueous monomer solution is preferably 10 to 80% by weight, more preferably 20 to 80% by weight, still more preferably 30 to 70% by weight, and particularly preferably 40 to 60% by weight. .
 また、上記単量体水溶液の重合により得られる含水ゲル状重合体は、吸水性能や残存モノマーの観点から、重合体の酸基の少なくとも一部が中和されていることが好ましい。係る部分中和塩としては特に限定されないが、吸水性能の観点から、アルカリ金属塩、アンモニウム塩、アミン塩から選ばれる一価塩が好ましく、アルカリ金属塩がより好ましく、ナトリウム塩、リチウム塩、カリウム塩から選ばれるアルカリ金属塩がさらに好ましく、ナトリウム塩が特に好ましい。従って、上記中和に用いられる塩基性物質としては特に限定されないが、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属の水酸化物、炭酸(水素)ナトリウム、炭酸(水素)カリウム等の炭酸(水素)塩等の一価の塩基性物質が好ましく、水酸化ナトリウムが特に好ましい。中和に炭酸塩を使用する場合には、中和時に炭酸ガスが発生するため、当該炭酸ガスを重合時の発泡剤として使用することもできる。 From the viewpoint of water absorption performance and residual monomers, it is preferable that at least a part of the acid groups of the polymer is neutralized in the hydrogel polymer obtained by polymerization of the monomer aqueous solution. Such a partially neutralized salt is not particularly limited, but from the viewpoint of water absorption performance, a monovalent salt selected from alkali metal salts, ammonium salts, and amine salts is preferable, alkali metal salts are more preferable, and sodium salts, lithium salts, and potassium salts. Alkali metal salts selected from salts are more preferable, and sodium salts are particularly preferable. Accordingly, the basic substance used for the neutralization is not particularly limited, but includes hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, and lithium hydroxide, sodium (hydrogen) carbonate, potassium (hydrogen) carbonate, and the like. Monovalent basic substances such as carbonic acid (hydrogen) salt are preferred, and sodium hydroxide is particularly preferred. When a carbonate is used for neutralization, carbon dioxide is generated at the time of neutralization, so that the carbon dioxide can be used as a foaming agent at the time of polymerization.
 上記中和は、重合前、重合中または重合後でのそれぞれの形態・状態で行うことができ、例えば、未中和または低中和(例えば、中和率0~30モル%)のアクリル酸を重合して得られる含水ゲル状重合体を中和、特にゲル粉砕と同時に中和を行うこともできるが、生産性や物性向上等の観点から、重合前のアクリル酸に対して中和を行うことが好ましい。即ち、中和されたアクリル酸(アクリル酸の部分中和塩)を単量体として使用することが好ましい。 The above-mentioned neutralization can be performed in each form and state before, during or after the polymerization. For example, non-neutralized or low-neutralized (eg, a neutralization ratio of 0 to 30 mol%) acrylic acid Neutralization of the hydrogel polymer obtained by polymerizing the polymer can be carried out, particularly neutralization simultaneously with gel pulverization.However, from the viewpoint of improving productivity and physical properties, neutralization of acrylic acid before polymerization is carried out. It is preferred to do so. That is, it is preferable to use neutralized acrylic acid (partially neutralized salt of acrylic acid) as a monomer.
 なお、上記中和における中和率は、特に限定されないが、最終的な吸水性樹脂として10~100モル%が好ましく、30~95モル%がより好ましく、45~90モル%がさらに好ましく、60~80モル%が特に好ましい。また、中和温度についても特に限定されないが、10~100℃が好ましく、30~90℃がより好ましい。 The neutralization ratio in the neutralization is not particularly limited, but is preferably from 10 to 100 mol%, more preferably from 30 to 95 mol%, further preferably from 45 to 90 mol%, as a final water-absorbing resin. Particularly preferred is ~ 80 mol%. Also, the neutralization temperature is not particularly limited, but is preferably from 10 to 100 ° C, more preferably from 30 to 90 ° C.
 また、本発明においては、アクリル酸(塩)を主成分として使用するとき、アクリル酸(塩)以外の親水性または疎水性の不飽和単量体(以下、「他の単量体」を称する)を併用してもよい。このような他の単量体としては特に限定されないが、例えば、メタクリル酸、(無水)マレイン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリロキシアルカンスルホン酸、N-ビニル-2-ピロリドン、N-ビニルアセトアミド、(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ステアリルアクリレート、およびこれらの塩等が挙げられる。他の単量体を使用する場合、その使用量は、得られる吸水性樹脂の吸水性能を損なわない範囲で適宜決定され、特に限定されないが、総単量体(内部架橋剤を除く)に対して、0~50モル%が好ましく、0~30モル%がより好ましく、0~10モル%がさらに好ましい。 In the present invention, when acrylic acid (salt) is used as a main component, a hydrophilic or hydrophobic unsaturated monomer other than acrylic acid (salt) (hereinafter referred to as “other monomer”) ) May be used in combination. Such other monomers are not particularly limited, but include, for example, methacrylic acid, (anhydrous) maleic acid, 2- (meth) acrylamide-2-methylpropanesulfonic acid, (meth) acryloxyalkanesulfonic acid, N -Vinyl-2-pyrrolidone, N-vinylacetamide, (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, methoxypolyethylene glycol (meth) Examples include acrylate, polyethylene glycol (meth) acrylate, stearyl acrylate, and salts thereof. When other monomers are used, the amount used is appropriately determined within a range that does not impair the water absorbing performance of the obtained water-absorbing resin, and is not particularly limited, but is based on the total monomers (excluding the internal crosslinking agent). Thus, 0 to 50 mol% is preferable, 0 to 30 mol% is more preferable, and 0 to 10 mol% is further preferable.
 (重合禁止剤)
 上記単量体水溶液は、重合および中和の安定化等を目的として、必要により重合禁止剤を含んでいてもよい。単量体水溶液が重合禁止剤を含む場合、その使用量は、着色および重合安定性の観点から、代表的には、単量体に対して200ppm以下であり、さらには10~130ppmであり、より好ましくは20~100ppmである。好ましくはメトシフェノール系の重合禁止剤が使用される。より好ましくは、重合禁止剤はp-メトキシフェノールである。
(Polymerization inhibitor)
The aqueous monomer solution may optionally contain a polymerization inhibitor for the purpose of stabilizing polymerization and neutralization. When the aqueous monomer solution contains a polymerization inhibitor, the amount used is typically 200 ppm or less, more preferably 10 to 130 ppm, based on the monomer, from the viewpoints of coloring and polymerization stability. More preferably, it is 20 to 100 ppm. Preferably, a methoxyphenol-based polymerization inhibitor is used. More preferably, the polymerization inhibitor is p-methoxyphenol.
 (重合開始剤)
 単量体水溶液の重合を開始させるために、上記単量体水溶液は、さらに重合開始剤を含む。本発明において好適に使用される重合開始剤は、重合形態によって適宜選択され、特に限定されないが、ラジカル重合開始剤であることが好ましい。
(Polymerization initiator)
In order to start the polymerization of the aqueous monomer solution, the aqueous monomer solution further contains a polymerization initiator. The polymerization initiator suitably used in the present invention is appropriately selected depending on the polymerization mode, and is not particularly limited, but is preferably a radical polymerization initiator.
 本発明(方法1)は、重合工程で使用される重合開始剤中の過硫酸塩を0~0.04モル%(対重合時の単量体)に低減する(但し、過硫酸塩0モル%(不使用)の場合は他の重合開始剤を必須に使用)方法である。また、本発明(方法2)は、粒子状の含水ゲル状重合体に含まれる過硫酸塩を0~0.04モル%(対重合時の単量体)に制御し、さらに乾燥工程前の含水ゲル状重合体のゲル粒子径および乾燥条件を制御する方法である。これにより、本発明は、乾燥工程でのキレート剤の分解を抑制する。 In the present invention (method 1), the persulfate in the polymerization initiator used in the polymerization step is reduced to 0 to 0.04 mol% (based on the monomer at the time of polymerization) (however, the persulfate is 0 mol % (Unused), another polymerization initiator is used essentially). In the present invention (method 2), the persulfate contained in the particulate hydrogel polymer is controlled to 0 to 0.04 mol% (monomer at the time of polymerization), This is a method for controlling the gel particle diameter and the drying conditions of the hydrogel polymer. Thereby, the present invention suppresses the decomposition of the chelating agent in the drying step.
 さらに、本発明では、残存モノマーの低減や物性向上等を目的として、過硫酸塩は単量体だけでなく含水ゲル状重合体に対しても添加することができ、重合工程から乾燥工程前までにおける過硫酸塩の添加量を、合計で0~0.04モル%(対重合時の単量体)に制御することがより好ましい。当該過硫酸塩の添加量、および含水ゲル状重合体における過硫酸塩の含有量は、低いほど好ましく、重合時の単量体に対して0.04モル%以下、0.035モル%以下、0.03モル%以下、0.025モル%以下、0.02モル%以下、0.015モル%以下の順に好ましい。過硫酸塩の添加量の下限値は0モル%であり、重合時に不使用または乾燥工程前までに完全に消費されている場合である。但し、過硫酸塩は残存モノマーの低減に有効であるため、乾燥時における残存モノマーを低減する観点から、過硫酸塩は0.0001モル%以上、好ましくは0.001モル%以上、より好ましくは0.01モル%以上となる量で、上記単量体水溶液または上記含水ゲル状重合体に含まれていることが望ましい。なお、本発明においては、過硫酸塩の添加量の上限値と下限値はどのような組み合わせであっても好ましい。 Further, in the present invention, for the purpose of reducing the residual monomer or improving the physical properties, etc., the persulfate can be added not only to the monomer but also to the hydrogel polymer, from the polymerization step to before the drying step. It is more preferable to control the total amount of the persulfate added to 0 to 0.04 mol% (based on the monomer at the time of polymerization). The addition amount of the persulfate and the content of the persulfate in the hydrogel polymer are preferably as low as possible, and are preferably 0.04 mol% or less, 0.035 mol% or less based on the monomer at the time of polymerization. It is preferable in the order of 0.03 mol% or less, 0.025 mol% or less, 0.02 mol% or less, and 0.015 mol% or less. The lower limit of the amount of persulfate added is 0 mol%, which means that it is not used during polymerization or is completely consumed before the drying step. However, since the persulfate is effective in reducing the residual monomer, the persulfate is 0.0001 mol% or more, preferably 0.001 mol% or more, more preferably, from the viewpoint of reducing the residual monomer during drying. It is desirable that the amount is contained in the monomer aqueous solution or the hydrogel polymer in an amount of 0.01 mol% or more. In the present invention, the upper and lower limits of the amount of persulfate to be added may be in any combination.
 過硫酸塩の添加量が重合時の単量体に対して0.04モル%を超える場合、その後に行われる乾燥工程において、未反応の過硫酸塩が、含水ゲル状重合体中に併存するキレート剤と反応し、これを分解し得るため好ましくない。 When the addition amount of the persulfate exceeds 0.04 mol% based on the monomer at the time of polymerization, unreacted persulfate coexists in the hydrogel polymer in the subsequent drying step. It is not preferable because it reacts with a chelating agent and can decompose it.
 本発明で使用されるラジカル重合開始剤としては、過硫酸塩(例えば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等)でもよく、過硫酸塩以外の過酸化物(例えば、過酸化水素、t-ブチルパーオキシド、メチルエチルケトンパーオキシド等)、アゾ重合開始剤、光重合開始剤でもよい。 The radical polymerization initiator used in the present invention may be a persulfate (eg, sodium persulfate, potassium persulfate, ammonium persulfate, etc.), and a peroxide other than the persulfate (eg, hydrogen peroxide, t -Butyl peroxide, methyl ethyl ketone peroxide, etc.), an azo polymerization initiator, or a photopolymerization initiator.
 本発明で使用されるアゾ重合開始剤としては、水溶性アゾ化合物(例えば、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-{アゾビス(2-メチル-N-[1,1’-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド)}等)が挙げられる。好適には、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリドが使用される。 Examples of the azo polymerization initiator used in the present invention include water-soluble azo compounds (eg, 2,2′-azobis (2-methylpropionamidine) dihydrochloride, 2,2′-azobis [2- (2-imidazoline- 2-yl) propane] dihydrochloride, 2,2 ′-{azobis (2-methyl-N- [1,1′-bis (hydroxymethyl) -2-hydroxyethyl] propionamide)} and the like. Preferably, 2,2'-azobis (2-methylpropionamidine) dihydrochloride is used.
 また、本発明で使用される光重合開始剤としては、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ)-2-プロピルケトン、1-ヒドロキシシクロヘキシルフェニルケトン等のアセトフェノン誘導体;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインアルキルエーテル類;o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニル硫化物、(4-ベンゾイルベンジル)トリメチルアンモニウム塩化物等のベンゾフェノン誘導体;チオキサントン(thioxanthone)系化合物;ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド、ジフェニル(2,4,6-トリメチルベンゾイル)-ホスフィンオキシド等のアシルホスフィンオキシド誘導体;2-ヒドロキシメチルプロピオンニトリル等が挙げられる。好ましくは、アセトフェノン誘導体であり、中でも好ましくは1-ヒドロキシシクロヘキシルフェニルケトンが使用される。 The photopolymerization initiator used in the present invention includes diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethylketal, and 4- (2-hydroxyethoxy) phenyl- Acetophenone derivatives such as (2-hydroxy) -2-propyl ketone and 1-hydroxycyclohexyl phenyl ketone; benzoin alkyl ethers such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether and benzoin isobutyl ether; methyl o-benzoyl benzoate Benzophenone derivatives such as, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenylsulfide, (4-benzoylbenzyl) trimethylammonium chloride; thioxanthone Compound, bis (2,4,6-trimethylbenzoyl) - phenyl phosphine oxide, diphenyl (2,4,6-trimethylbenzoyl) - acyl phosphine oxide derivatives such as phosphine oxide; 2-hydroxymethyl-propionitrile, and the like. Preferably, it is an acetophenone derivative, and more preferably, 1-hydroxycyclohexyl phenyl ketone is used.
 過硫酸塩(0~0.04モル%)を含む重合開始剤の使用量は、重合時の単量体に対して、合計で、0.0001~1モル%が好ましく、0.0005~0.5モル%がより好ましい。上記重合開始剤の使用量が1モル%を超える場合、重合の制御が困難となり、さらに、得られる吸水性樹脂の色調が悪化するおそれがある。また、上記重合開始剤の使用量が0.0001モル%未満の場合、残存モノマーの増加が懸念される。 The amount of the polymerization initiator containing a persulfate (0 to 0.04 mol%) is preferably 0.0001 to 1 mol% in total, preferably 0.0005 to 0 mol%, based on the monomers used in the polymerization. 0.5 mol% is more preferred. When the amount of the polymerization initiator exceeds 1 mol%, it is difficult to control the polymerization, and further, the color tone of the obtained water-absorbent resin may be deteriorated. When the amount of the polymerization initiator is less than 0.0001 mol%, there is a concern that the amount of the residual monomer may increase.
 本発明においては、二種類以上の重合開始剤を併用してもよい。中でも、取り扱い性、吸水性樹脂の物性等の観点から、過硫酸塩が上記範囲で好ましく使用される。過硫酸塩と他の重合開始剤を併用する場合、吸水性樹脂の性能面から、過硫酸塩以外の重合開始剤として、アゾ重合開始剤および光重合開始剤から選ばれる第2の重合開始剤を用いることが好ましい。過硫酸塩と過硫酸塩以外の重合開始剤(=アゾ重合開始剤+光重合開始剤+その他の重合開始剤)とのモル比は、1/99~99/1、好ましくは1/9~9/1、より好ましくは2/8~8/2、さらに好ましくは3/7~7/3である。 に お い て In the present invention, two or more polymerization initiators may be used in combination. Among them, a persulfate is preferably used in the above range from the viewpoint of handleability, physical properties of the water-absorbing resin, and the like. When a persulfate and another polymerization initiator are used in combination, a second polymerization initiator selected from an azo polymerization initiator and a photopolymerization initiator as a polymerization initiator other than the persulfate from the viewpoint of the performance of the water-absorbing resin. It is preferable to use The molar ratio of the persulfate to the polymerization initiator other than the persulfate (= azo polymerization initiator + photopolymerization initiator + other polymerization initiator) is from 1/99 to 99/1, preferably from 1/9 to 99/1. The ratio is 9/1, more preferably 2/8 to 8/2, and still more preferably 3/7 to 7/3.
 さらに、これら重合開始剤(特に過硫酸塩または過酸化物)の分解を促進する還元剤を併用し、両者を組み合わせることによりレドックス系開始剤とすることもできる。このような還元剤としては、例えば、亜硫酸ナトリウム、亜硫酸水素ナトリウム等の(重)亜硫酸(塩)、L-アスコルビン酸(塩)、第一鉄塩等の還元性金属(塩)、アミン類等が挙げられる。 Furthermore, a redox initiator can be obtained by using together a reducing agent which promotes the decomposition of these polymerization initiators (particularly persulfate or peroxide) and combining them. Examples of such a reducing agent include (bis) sulfite (salt) such as sodium sulfite and sodium hydrogen sulfite, reducing metals (salt) such as L-ascorbic acid (salt) and ferrous salt, amines and the like. Is mentioned.
 単量体水溶液の重合を開始させるために、上記重合開始剤を用いる替わりに、または重合開始剤と併用して、反応系に放射線、電子線、紫外線等の活性エネルギー線を照射することにより重合反応の開始を行ってもよい。 Instead of using the above polymerization initiator or in combination with the polymerization initiator to start the polymerization of the aqueous monomer solution, the polymerization is carried out by irradiating the reaction system with an active energy ray such as radiation, an electron beam, or an ultraviolet ray. The reaction may be started.
 (含水ゲルに残存する過硫酸塩)
 キレート剤を含む吸水性樹脂の製造方法では、キレート剤の減少が見出され、その減少機構を探求した結果、重合時においてキレート剤は実質的に分解されず、乾燥時にキレート剤が分解されることが見出された。このことは、重合後の含水ゲルに含まれるキレート剤の量がほぼ一定である実験事実に加えて、単量体の存在下でキレート剤を含む水溶液を加熱してもキレート剤の量は減少しないが、過硫酸塩をキレート剤の水溶液に存在させるとキレート剤の量が減少する実験事実によって確認することができる。
(Persulfate remaining in hydrogel)
In the method for producing a water-absorbent resin containing a chelating agent, a decrease in the chelating agent was found, and as a result of exploring the reduction mechanism, the chelating agent was not substantially decomposed during polymerization, and the chelating agent was decomposed when dried. Was found. This means that in addition to the experimental fact that the amount of chelating agent contained in the hydrogel after polymerization is almost constant, the amount of chelating agent decreases even when the aqueous solution containing the chelating agent is heated in the presence of the monomer. However, it can be confirmed by the experimental fact that the amount of the chelating agent decreases when the persulfate is present in the aqueous solution of the chelating agent.
 重合に使用する重合開始剤のうち、過硫酸塩はその半減期から、通常の重合条件では大部分(80%超)が重合後の含水ゲルに残存する。このため、乾燥時の高温によって過硫酸塩が分解して含水ゲル中にラジカルが発生する。しかし、重合後の含水ゲルに残存する単量体(残存モノマー)は0.数%~数%と少量であるため、発生した過硫酸塩のラジカルは単量体とは反応し難く、替わりにキレート剤の分解を促進すると推定される。 (4) Among the polymerization initiators used in the polymerization, most of the persulfate remains in the hydrogel after polymerization under the ordinary polymerization conditions due to its half-life (more than 80%). For this reason, the persulfate is decomposed by the high temperature during drying, and radicals are generated in the hydrogel. However, the amount of monomer (residual monomer) remaining in the hydrogel after polymerization is 0.1%. Since the amount is as small as several% to several%, the generated radical of persulfate hardly reacts with the monomer, and is presumed to accelerate the decomposition of the chelating agent instead.
 本発明において過硫酸塩は、過硫酸ナトリウム(90℃における半減期(τ);1.24時間)、過硫酸カリウム(90℃における半減期(τ);1.24時間)、過硫酸アンモニウム(90℃における半減期(τ);0.44時間)が好ましく、過硫酸ナトリウムがより好ましい。吸水性樹脂の単量体としてアクリル酸ナトリウムを使用する場合、重合開始剤として過硫酸塩を上記範囲で用いると、塩の種類に関わらず、実質的に過硫酸ナトリウムとなる。そして、過硫酸ナトリウムまたは過硫酸カリウムに関して、その半減期(τ)は、2100時間(30℃)、499時間(40℃)、130時間(50℃)、36.5時間(60℃)、11.1時間(70℃)、3.59時間(80℃)、1.24時間(90℃)、0.45時間(100℃)である。それゆえ、乾燥前の含水ゲル状重合体には、過硫酸ナトリウムまたは過硫酸カリウムが大部分(80%超)残存する。 In the present invention, persulfate includes sodium persulfate (half-life (τ) at 90 ° C .; 1.24 hours), potassium persulfate (half-life (τ) at 90 ° C .; 1.24 hours), ammonium persulfate (90 C .; half-life (.tau.) At 0.44 hours), and sodium persulfate is more preferred. When sodium acrylate is used as the monomer of the water-absorbent resin, if persulfate is used in the above range as the polymerization initiator, it will be substantially sodium persulfate regardless of the type of salt. The half life (τ) of sodium or potassium persulfate is 2100 hours (30 ° C.), 499 hours (40 ° C.), 130 hours (50 ° C.), 36.5 hours (60 ° C.), 11 0.1 hour (70 ° C.), 3.59 hours (80 ° C.), 1.24 hours (90 ° C.), and 0.45 hours (100 ° C.). Therefore, sodium persulfate or potassium persulfate remains mostly (more than 80%) in the hydrogel polymer before drying.
 (内部架橋剤)
 本発明の一態様において、本発明で得られる吸水性樹脂の吸水性能を向上させるために、上記単量体水溶液は、内部架橋剤をさらに含むことが好ましい。
(Internal crosslinking agent)
In one embodiment of the present invention, in order to improve the water absorbing performance of the water-absorbing resin obtained in the present invention, it is preferable that the aqueous monomer solution further contains an internal crosslinking agent.
 本発明において好適に使用される内部架橋剤としては、特に限定されないが、例えば、アクリル酸と重合する重合性架橋剤、カルボキシル基と反応する反応性架橋剤、またはこれら性質を併せ持った架橋剤等が挙げられる。 The internal cross-linking agent suitably used in the present invention is not particularly limited, and includes, for example, a polymerizable cross-linking agent that polymerizes with acrylic acid, a reactive cross-linking agent that reacts with a carboxyl group, or a cross-linking agent having these properties. Is mentioned.
 上記重合性架橋剤としては、例えば、N,N’-メチレンビスアクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリオキシエチレン)トリメチロールプロパントリ(メタ)アクリレート、ポリ(メタ)アリロキシアルカン等、分子内に重合性二重結合を少なくとも2個有する化合物が挙げられる。また、上記反応性架橋剤としては、例えば、エチレングリコールジグリシジルエーテル等のポリグリシジルエーテル;プロパンジオール、グリセリン、ソルビトール等の多価アルコール;等の共有結合性架橋剤、アルミニウム塩等の多価金属化合物;等のイオン結合性架橋剤が挙げられる。これらの中でも、吸水性能の観点から、アクリル酸と重合する重合性架橋剤がより好ましく、アクリレート系、アリル系、アクリルアミド系の重合性架橋剤が特に好ましい。これらの内部架橋剤は一種類を単独で用いてもよいし、または二種類以上を併用してもよい。なお、上記重合性架橋剤と共有結合性架橋剤とを併用する場合、その混合比率は10:1~1:10が好ましい。 Examples of the polymerizable crosslinking agent include N, N′-methylenebisacrylamide, (poly) ethylene glycol di (meth) acrylate, (polyoxyethylene) trimethylolpropane tri (meth) acrylate, and poly (meth) allyloxy. Examples include compounds having at least two polymerizable double bonds in the molecule, such as alkanes. Examples of the reactive cross-linking agent include polyglycidyl ethers such as ethylene glycol diglycidyl ether; polyhydric alcohols such as propanediol, glycerin and sorbitol; covalent cross-linking agents such as; and polyvalent metals such as aluminum salts. And an ion-bonding crosslinking agent such as a compound. Among these, from the viewpoint of water absorption performance, a polymerizable crosslinker that polymerizes with acrylic acid is more preferable, and an acrylate, allyl, or acrylamide polymerizable crosslinker is particularly preferable. One of these internal crosslinking agents may be used alone, or two or more thereof may be used in combination. When the polymerizable crosslinking agent and the covalent crosslinking agent are used in combination, the mixing ratio is preferably from 10: 1 to 1:10.
 また、上記内部架橋剤の使用量は、物性の観点から、上記単量体に対して、0.001~5モル%が好ましく、0.002~2モル%がより好ましく、0.04~1モル%がさらに好ましく、0.06~0.5モル%が特に好ましく、0.07~0.2モル%が最も好ましい。 From the viewpoint of physical properties, the amount of the internal crosslinking agent used is preferably 0.001 to 5 mol%, more preferably 0.002 to 2 mol%, and more preferably 0.04 to 1 mol%, based on the monomer. More preferably, it is 0.06 to 0.5 mol%, most preferably 0.07 to 0.2 mol%.
 本発明の一態様において、上記単量体水溶液は、アクリル酸(塩)を総単量体(内部架橋剤を除く)の50~100モル%、内部架橋剤を単量体に対して0.001~5モル%、および、過硫酸塩を単量体に対して0~0.04モル%含むことが好ましい。当該単量体水溶液から得られるポリアクリル酸(塩)系架橋重合体からなる吸水性樹脂は、初期色調のL値およびYI値として、好ましい数値範囲を呈することができる。 In one embodiment of the present invention, the aqueous monomer solution contains acrylic acid (salt) in an amount of 50 to 100 mol% of the total monomers (excluding the internal cross-linking agent), and the internal cross-linking agent in an amount of 0. It is preferable to contain 001 to 5 mol%, and 0 to 0.04 mol% of the persulfate based on the monomer. The water-absorbing resin composed of the polyacrylic acid (salt) -based crosslinked polymer obtained from the monomer aqueous solution can exhibit a preferable numerical range as the L value and the YI value of the initial color tone.
 (その他の添加剤)
 本発明の一態様において、本発明で得られる吸水性樹脂の物性を改善するために、上記単量体水溶液に、さらなる慣用の添加剤を添加してもよい。
(Other additives)
In one embodiment of the present invention, a further conventional additive may be added to the aqueous monomer solution in order to improve the physical properties of the water-absorbent resin obtained in the present invention.
 このような添加剤としては、澱粉、セルロース、ポリビニルアルコール(PVA)、ポリアクリル酸(塩)、ポリエチレンイミン等の水溶性樹脂または吸水性樹脂;炭酸塩、気泡を生じる各種発泡剤;界面活性剤等が挙げられる。 Examples of such additives include water-soluble resins or water-absorbing resins such as starch, cellulose, polyvinyl alcohol (PVA), polyacrylic acid (salt), and polyethyleneimine; carbonates, various foaming agents that generate air bubbles; surfactants And the like.
 なお、これらの添加剤は、上記単量体水溶液の他にも、本発明の製造工程の何れかにおいて、含水ゲル状重合体、乾燥重合体または吸水性樹脂等に添加することができる。これらの添加剤の添加量は、上記水溶性樹脂または吸水性樹脂の場合、単量体に対して、好ましくは0~50重量%、より好ましくは0~20重量%、さらに好ましくは0~10重量%、特に好ましくは0~3重量%である。一方、上記発泡剤または界面活性剤の場合は、単量体に対して、0~5重量%が好ましく、0~1重量%がより好ましい。なお、上記水溶性樹脂または吸水性樹脂の添加によって、グラフト重合体または吸水性樹脂組成物が得られるが、これら澱粉-アクリル酸重合体、PVA-アクリル酸重合体等も本発明では吸水性樹脂として扱う。 These additives can be added to the hydrogel polymer, the dried polymer, the water-absorbing resin, or the like in any of the production steps of the present invention, in addition to the monomer aqueous solution. In the case of the water-soluble resin or the water-absorbing resin, the amount of these additives is preferably 0 to 50% by weight, more preferably 0 to 20% by weight, and still more preferably 0 to 10% by weight, based on the monomer. %, Particularly preferably 0 to 3% by weight. On the other hand, in the case of the foaming agent or the surfactant, it is preferably 0 to 5% by weight, more preferably 0 to 1% by weight, based on the monomer. The graft polymer or the water-absorbent resin composition can be obtained by adding the above-mentioned water-soluble resin or water-absorbent resin. These starch-acrylic acid polymer, PVA-acrylic acid polymer and the like are also used in the present invention. Treat as
 (キレート剤)
 本発明では、乾燥工程よりも前の工程で、キレート剤を上記単量体水溶液または上記含水ゲル状重合体に、合計で10ppm以上(対重合時の単量体または対含水ゲル状重合体の固形分)添加する。吸水性樹脂の物性の観点から、上記単量体水溶液または上記含水ゲル状重合体に添加されるキレート剤の合計の添加量(対重合時の単量体または対含水ゲル状重合体の固形分)、若しくは、乾燥工程に供される粒子状の含水ゲル状重合体のキレート剤の含有量(対含水ゲル状重合体の固形分)は、10ppm以上であり、40ppm以上、60ppm以上、100ppm以上、200ppm以上、250ppm以上、500ppm以上、600ppm以上の順に好ましい。また、キレート剤の効果(例;着色防止、劣化防止等)およびコストの観点から、キレート剤の添加量または含有量の上限値は、重合時の単量体または含水ゲル状重合体の固形分に対して、1%以下、8000ppm以下、6000ppm以下、5000ppm以下の順に好ましい。なお、本発明においては、キレート剤の添加量または含有量の上限値と下限値はどのような組み合わせであっても好ましい。また、キレート剤の上記添加量(ppm)は、添加時のキレート剤の重量(対重合時の単量体または対含水ゲル状重合体の固形分)であり、添加後に混合した後の単量体および重合体のカルボキシ基との塩交換は考慮せずに、中和塩型キレート剤は塩型として、酸型キレート剤は酸型としての添加時の有姿の添加量を示す。
(Chelating agent)
In the present invention, a chelating agent is added to the aqueous monomer solution or the hydrogel polymer in a step prior to the drying step in a total of 10 ppm or more (for the monomer at the time of polymerization or the hydrogel polymer). Solids). From the viewpoint of the physical properties of the water-absorbing resin, the total amount of the chelating agent added to the aqueous monomer solution or the hydrogel polymer (solid content of the monomer or the hydrogel polymer at the time of polymerization) ) Or the content of the chelating agent of the particulate hydrogel polymer (solid content of the hydrogel polymer) provided in the drying step is 10 ppm or more, 40 ppm or more, 60 ppm or more, 100 ppm or more. , 200 ppm or more, 250 ppm or more, 500 ppm or more, and 600 ppm or more in this order. In addition, from the viewpoints of the effects (eg, prevention of coloration and deterioration) of the chelating agent and the cost, the upper limit of the amount of the chelating agent or the upper limit of the content is determined by the solid content of the monomer or the hydrogel polymer at the time of polymerization. It is preferable that the content is 1% or less, 8000 ppm or less, 6000 ppm or less, and 5000 ppm or less. In the present invention, any combination of the upper limit and the lower limit of the added amount or the content of the chelating agent is preferable. The above-mentioned added amount (ppm) of the chelating agent is the weight of the chelating agent at the time of addition (to the monomer at the time of polymerization or the solid content of the hydrogel polymer), and is a single amount after mixing after addition. The salt exchange with the carboxy group of the polymer and the polymer is not taken into account, and the neutralized salt type chelating agent shows the amount of addition as a salt type, and the acid type chelating agent shows the actual addition amount as an acid type.
 単量体または含水ゲル状重合体の固形分に対するキレート剤の重量%は、重合時の単量体に対するモル比(モル%)に換算することができる。本発明ではキレート剤の添加量または含有量は、重合時の単量体に対して、0.0002モル%以上、0.001モル%以上、0.002モル%以上、0.005モル%以上、0.01モル%以上の順に好ましい。また、上限値は、0.2モル%以下、0.15モル%以下、0.12モル%以下、0.1モル%以下の順に好ましい。なお、本発明においては、キレート剤の上記モル比の上限値と下限値はどのような組み合わせであっても好ましい。また、キレート剤の残存率を向上させるために、キレート剤に対する過硫酸塩のモル比は低いほど好ましく、50倍以下、20倍以下、10倍以下、5倍以下、3倍以下の順に好ましく、下限値は0である。係る手法で、キレート剤の残存率が向上し、得られる吸水性樹脂中の重合体内部のキレート剤の含有量が増加するのみならず、さらに、得られる吸水性樹脂の初期着色のL値が増加し、YI値が低下する。 重量 The weight% of the chelating agent with respect to the solid content of the monomer or the hydrogel polymer can be converted into a molar ratio (mol%) to the monomer at the time of polymerization. In the present invention, the added amount or the content of the chelating agent is 0.0002 mol% or more, 0.001 mol% or more, 0.002 mol% or more, 0.005 mol% or more based on the monomer at the time of polymerization. , 0.01 mol% or more in this order. The upper limit is preferably in the order of 0.2 mol% or less, 0.15 mol% or less, 0.12 mol% or less, and 0.1 mol% or less. In the present invention, the upper and lower limits of the molar ratio of the chelating agent may be in any combination. Further, in order to improve the residual ratio of the chelating agent, the molar ratio of the persulfate to the chelating agent is preferably lower, more preferably 50 times or less, 20 times or less, 10 times or less, 5 times or less, 3 times or less, The lower limit is 0. By such a method, the residual ratio of the chelating agent is improved, and not only the content of the chelating agent in the polymer in the obtained water-absorbent resin is increased, but also the L value of the initial coloring of the obtained water-absorbent resin is increased. Increase and the YI value decreases.
 重合時の単量体または乾燥前の含水ゲルにキレート剤を添加することで、乾燥工程以降の吸水性樹脂(特に最終製品の吸水性樹脂)の重合体内部に、キレート剤を均一に配合させることができる。乾燥工程以後、さらには表面架橋工程またはそれ以降の工程においてキレート剤を添加することにより、吸水性樹脂の表面に選択的にキレート剤が配合される。本発明の方法では、重合体内部にもキレート剤を配合することにより、さらにキレート剤の効果を高めることができる。今回、多くのキレート剤を重合に使用すると、得られた吸水性樹脂の初期着色が悪化することが判明したが、本発明では係る問題もなく、吸水性樹脂の内部にまでキレート剤を均一に配合させることができる。 By adding a chelating agent to the monomer at the time of polymerization or the hydrogel before drying, the chelating agent is uniformly blended into the polymer of the water-absorbing resin (particularly, the water-absorbing resin of the final product) after the drying step. be able to. The chelating agent is selectively added to the surface of the water-absorbent resin by adding the chelating agent after the drying step and further in the surface cross-linking step or subsequent steps. In the method of the present invention, the effect of the chelating agent can be further enhanced by blending the chelating agent inside the polymer. This time, when many chelating agents were used for polymerization, it was found that the initial coloring of the obtained water-absorbent resin was deteriorated, but in the present invention, there was no problem, and the chelating agent was uniformly dispersed inside the water-absorbent resin. Can be blended.
 上述した重合工程においてキレート剤を添加する場合は、その他の添加剤と同様に、単量体水溶液中に添加することができる。 場合 When a chelating agent is added in the above-mentioned polymerization step, it can be added to the aqueous monomer solution as in the case of other additives.
 また、上述したゲル粉砕工程においてキレート剤を添加する場合は、その他の添加剤と同様に、含水ゲル状重合体に添加・混練してゲル粉砕することもできる。具体的には、含水ゲル状重合体がゲル粉砕装置内に滞留している間に、当該装置内に、キレート剤を含む水溶液を供給することができる。また、含水ゲル状重合体に、キレート剤を含む水溶液を予め添加してゲル粉砕装置に投入してもよい。これらキレート剤の添加の時期は、適宜組み合わせてもよい。 In addition, when a chelating agent is added in the above-mentioned gel pulverizing step, similarly to the other additives, gel pulverization can be performed by adding and kneading to the hydrogel polymer. Specifically, an aqueous solution containing a chelating agent can be supplied into the gel crusher while the hydrogel polymer is retained in the gel crusher. Alternatively, an aqueous solution containing a chelating agent may be added in advance to the hydrogel polymer and charged into the gel pulverizer. The timing of adding these chelating agents may be appropriately combined.
 本発明において好適に用いられるキレート剤としては、高分子または非高分子のキレート剤、より好ましくは非高分子のキレート剤、さらに好ましくは分子量1000以下の非高分子のキレート剤が挙げられる。 キ As the chelating agent suitably used in the present invention, a high-molecular or non-polymer chelating agent, more preferably a non-polymer chelating agent, further preferably a non-polymer chelating agent having a molecular weight of 1,000 or less can be mentioned.
 本発明で使用されるキレート剤としては、具体的には、アミノ多価カルボン酸、有機多価リン酸(特にアミノ多価リン酸)、無機多価リン酸、およびトロポロン誘導体が挙げられる。これら化合物からなる群より選択される少なくとも一種のキレート剤が、本発明で使用される。なお、上記「多価」とは、一分子内に複数の官能基を有していることを指し、好ましくは2~30個、より好ましくは3~20個、さらに好ましくは4~10個の官能基を有していることを指す。 キ Specific examples of the chelating agent used in the present invention include amino polyvalent carboxylic acid, organic polyvalent phosphoric acid (particularly, amino polyvalent phosphoric acid), inorganic polyvalent phosphoric acid, and tropolone derivatives. At least one chelating agent selected from the group consisting of these compounds is used in the present invention. The term “polyvalent” refers to having a plurality of functional groups in one molecule, preferably 2 to 30, more preferably 3 to 20, and still more preferably 4 to 10. Refers to having a functional group.
 上記アミノ多価カルボン酸としては、具体的には、イミノ2酢酸、ヒドロキシエチルイミノ2酢酸、ニトリロ3酢酸、ニトリロ3プロピオン酸、エチレンジアミン4酢酸、ジエチレントリアミン5酢酸(DTPA)、トリエチレンテトラミン6酢酸(TTHA)、trans -1,2-ジアミノシクロヘキサン4酢酸、N,N-ビス(2-ヒドロキシエチル)グリシン、ジアミノプロパノール4酢酸、エチレンジアミン2プロピオン酸、N-ヒドロキシエチルエチレンジアミン3酢酸、グリコールエーテルジアミン4酢酸、ジアミノプロパン4酢酸、N,N’-ビス(2-ヒドロキシベンジル)エチレンジアミン-N,N’-2酢酸、1,6-ヘキサメチレンジアミン-N,N,N’,N’-4酢酸およびこれらの塩等が挙げられる。 As the amino polycarboxylic acid, specifically, imino diacetic acid, hydroxyethyl imino diacetic acid, nitrilotriacetic acid, nitrilotripropionic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid (DTPA), triethylenetetramine hexaacetic acid ( TTHA), trans -1,2-diaminocyclohexane tetraacetic acid, N, N-bis (2-hydroxyethyl) glycine, diaminopropanol tetraacetic acid, ethylenediamine-2-propionic acid, N-hydroxyethylethylenediamine triacetic acid, glycol ether diamine tetraacetic acid , Diaminopropanetetraacetic acid, N, N'-bis (2-hydroxybenzyl) ethylenediamine-N, N'-2acetic acid, 1,6-hexamethylenediamine-N, N, N ', N'-4acetic acid and these And the like.
 上記有機多価リン酸としては、具体的には、ニトリロ酢酸-ジ(メチレンホスフィン酸)、ニトリロジ酢酸-(メチレンホスフィン酸)、ニトリロ酢酸-β-プロピオン酸-メチレンホスホン酸、ニトリロトリス(メチレンホスホン酸)、1-ヒドロキシエチリデンジホスホン酸、アミノ多価リン酸等が挙げられる。 Specific examples of the organic polyvalent phosphoric acid include nitriloacetic acid-di (methylenephosphinic acid), nitriloacetic acid- (methylenephosphinic acid), nitriloacetic acid-β-propionic acid-methylenephosphonic acid, and nitrilotris (methylenephosphonic acid). Acid), 1-hydroxyethylidene diphosphonic acid, amino polyphosphoric acid and the like.
 上記アミノ多価リン酸としては、具体的には、エチレンジアミン-N,N’-ジ(メチレンホスフィン酸)、エチレンジアミンテトラ(メチレンホスフィン酸)、シクロヘキサンジアミンテトラ(メチレンホスホン酸)、エチレンジアミン-N,N’-ジ酢酸-N,N’-ジ(メチレンホスホン酸)、エチレンジアミン-N,N’-ジ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ポリメチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エチレンジアミンテトラメチレンホスホン酸(EDTMP)およびこれらの塩等が挙げられる。 Specific examples of the amino polyvalent phosphoric acid include ethylenediamine-N, N′-di (methylenephosphinic acid), ethylenediaminetetra (methylenephosphinic acid), cyclohexanediaminetetra (methylenephosphonic acid), ethylenediamine-N, N '-Diacetic acid-N, N'-di (methylene phosphonic acid), ethylenediamine-N, N'-di (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), polymethylenediaminetetra (methylenephosphonic acid), diethylenetriamine Penta (methylene phosphonic acid), ethylenediaminetetramethylene phosphonic acid (EDTMP), and salts thereof.
 上記無機多価リン酸としては、具体的には、ピロリン酸、トリポリリン酸およびこれらの塩等が挙げられる。 Specific examples of the inorganic polyvalent phosphoric acid include pyrophosphoric acid, tripolyphosphoric acid, and salts thereof.
 上記トロポロン誘導体としては、具体的には、トロポロン、β-ツヤプリシン、γ-ツヤプリシン等が挙げられる。 Specific examples of the tropolone derivative include tropolone, β-thiaprisin, γ-thiaprisin, and the like.
 これらの中でも、アミノ多価カルボン酸系キレート剤および/またはアミノ多価リン酸系キレート剤が好ましい。具体的には、アミノ多価カルボン酸系キレート剤としては、具体的には、エチレンジアミン4酢酸、ジエチレントリアミン5酢酸およびトリエチレンテトラアミン6酢酸、並びにこれらの金属塩、例えば、ナトリウム塩、カリウム塩等が挙げられる。また、アミノ多価リン酸系キレート剤としては、具体的には、エチレンジアミンテトラメチレンホスホン酸が挙げられる。 中 で も Among these, an amino polycarboxylic acid chelating agent and / or an amino polyphosphoric acid chelating agent are preferable. Specifically, as the amino polycarboxylic acid chelating agent, specifically, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid and triethylenetetraaminehexaacetic acid, and metal salts thereof, for example, sodium salt, potassium salt and the like Is mentioned. Specific examples of the amino polyvalent phosphoric acid chelating agent include ethylenediaminetetramethylenephosphonic acid.
 本発明では係る手法で、重合体内部に、均一にキレート剤を含む吸水性樹脂が得られる。但し、吸水性樹脂の劣化や着色は、粒子表面において行われ易い。このため、本発明ではさらに乾燥工程以降の工程で吸水性樹脂にキレート剤を添加することで粒子表面により多くのキレート剤を配合すること、即ち、キレート剤を複数回添加することによって、吸水性樹脂の表面および内部にキレート剤を含み、表面に存在するキレート剤の量が、内部に存在するキレート剤の量よりも多くなるように、濃度勾配を形成することがより好ましい。乾燥工程以降の工程で添加するキレート剤の種類や添加量は、乾燥工程よりも前の工程で添加するキレート剤の種類や添加量と同じであってもよく、異なっていてもよいが、上述した種類や添加量であることが好ましい。また、キレート剤は、キレート剤のみで単量体または含水ゲル状重合体に添加してもよく、キレート剤を溶液(特に水溶液)にして単量体または含水ゲル状重合体に添加してもよい。 で は According to the present invention, a water-absorbent resin containing a chelating agent uniformly in a polymer can be obtained by such a technique. However, the deterioration and coloring of the water-absorbing resin are easily performed on the particle surface. Therefore, in the present invention, by adding a chelating agent to the surface of the particles by adding a chelating agent to the water-absorbing resin in a step after the drying step, that is, by adding the chelating agent a plurality of times, the water absorbing It is more preferable to include a chelating agent on the surface and inside of the resin, and to form a concentration gradient such that the amount of the chelating agent present on the surface is greater than the amount of the chelating agent present inside. The type and amount of the chelating agent to be added in the steps after the drying step may be the same as or different from the type and the amount of the chelating agent to be added in the step before the drying step. It is preferable to use the following types and addition amounts. Further, the chelating agent may be added to the monomer or the hydrogel polymer only with the chelating agent, or may be added to the monomer or the hydrogel polymer in the form of a solution (particularly an aqueous solution). Good.
 (重合方法)
 本発明に係るキレート剤を含む吸水性樹脂の製造方法において、その重合方法は、気相中の噴霧/液滴重合や逆相懸濁重合で直接、粒子状の含水ゲル状重合体を得てもよいが、得られる吸水性樹脂の通液性(SFC)および吸水速度(FSR)並びに重合制御の容易性等の観点から、水溶液重合が採用される。
(Polymerization method)
In the method for producing a water-absorbent resin containing a chelating agent according to the present invention, the polymerization method comprises directly obtaining a particulate hydrogel polymer by spray / droplet polymerization or reverse phase suspension polymerization in the gas phase. From the viewpoint of the liquid permeability (SFC) and water absorption rate (FSR) of the obtained water-absorbent resin, ease of polymerization control, etc., aqueous solution polymerization is adopted.
 当該水溶液重合は、タンク式(サイロ式)やベルト式の無攪拌重合で含水ゲル状重合体を得て、別途ゲル粉砕を行ってもよく、ニーダー重合のように重合工程の途中でゲル粉砕を行って粒子状の含水ゲル状重合体を得てもよいが、重合制御の容易性の観点から、好ましくはニーダー重合またはベルト重合が採用される。また、生産性の観点から、好ましくは連続水溶液重合、さらに好ましくは高濃度連続水溶液重合が採用される。なお、攪拌重合とは、含水ゲル状重合体(特に重合率10モル%以上、さらには50モル%以上の含水ゲル状重合体)を攪拌、特に攪拌および細分化しながら重合することを意味する。また、無攪拌重合の前後において、単量体水溶液(重合率が0~10モル%未満)を適宜攪拌してもよい。 In the aqueous solution polymerization, a hydrogel polymer may be obtained by a tank type (silo type) or belt type non-stirring polymerization, and may be separately subjected to gel pulverization. The reaction may be carried out to obtain a particulate hydrogel polymer, but from the viewpoint of easy control of polymerization, preferably, kneader polymerization or belt polymerization is employed. Further, from the viewpoint of productivity, continuous aqueous solution polymerization, more preferably, high-concentration continuous aqueous solution polymerization is employed. In addition, stirring polymerization means that a hydrogel polymer (especially, a hydrogel polymer having a polymerization rate of 10 mol% or more, more preferably 50 mol% or more) is polymerized while being stirred, particularly with stirring and fragmentation. Before and after the non-stirring polymerization, the aqueous monomer solution (polymerization rate: 0 to less than 10 mol%) may be appropriately stirred.
 上記連続水溶液重合として、例えば、米国特許第6987171号、同第6710141号等に記載の連続ニーダー重合や、米国特許第4893999号、同第6241928号、米国特許出願公開第2005/215734号等に記載の連続ベルト重合が挙げられる。これらの水溶液重合によって、高生産性で吸水性樹脂を製造することができる。 Examples of the continuous aqueous solution polymerization include continuous kneader polymerization described in U.S. Patent Nos. 6,987,171 and 6,710,141 and U.S. Patent Nos. 4,893,999 and 6,241,928, and U.S. Patent Application Publication No. 2005 / 215,734. Continuous belt polymerization. By such aqueous solution polymerization, a water-absorbent resin can be produced with high productivity.
 本発明においては、高濃度重合により、含水ゲル状重合体の固形分濃度を高めて、乾燥工程を短時間にすることで、乾燥時のキレート剤の分解を抑制することができる。具体的には、単量体濃度(固形分)を35重量%以上とすることが好ましく、40重量%以上がより好ましく、45重量%以上(上限は飽和濃度)がさらに好ましい。 In the present invention, the decomposition of the chelating agent during drying can be suppressed by increasing the solid content concentration of the hydrogel polymer by high concentration polymerization and shortening the drying step. Specifically, the monomer concentration (solid content) is preferably 35% by weight or more, more preferably 40% by weight or more, and even more preferably 45% by weight or more (the upper limit is the saturation concentration).
 また、過硫酸塩の分解(半減期)は、温度、時間およびpHに依存するため、本発明では過硫酸塩を使用する場合、高温開始重合を行い、乾燥工程前の過硫酸塩をより低減しておくことで、乾燥時のキレート剤の分解を抑制することができる。具体的には、高温開始重合においては、重合開始温度を30℃以上とすることが好ましく、35℃以上がより好ましく、40℃以上がさらに好ましく、50℃以上(上限は沸点)が特に好ましい。重合ピーク温度は、通常、80~130℃が好ましく、高温重合である沸点~120℃がさらに好ましい。さらに、高濃度・高温開始重合は、これらを組み合わせた重合であり、重合時に単量体水溶液が沸騰状態になり易く、水等の溶媒が蒸発するので高固形分の含水ゲル状重合体が得られる。 In addition, since the decomposition (half-life) of persulfate depends on temperature, time and pH, when persulfate is used in the present invention, high temperature initiation polymerization is performed to further reduce persulfate before the drying step. By doing so, the decomposition of the chelating agent during drying can be suppressed. Specifically, in the high temperature initiation polymerization, the polymerization initiation temperature is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, still more preferably 40 ° C. or higher, and particularly preferably 50 ° C. or higher (the upper limit is the boiling point). The polymerization peak temperature is usually preferably from 80 to 130 ° C., more preferably from the boiling point of high-temperature polymerization to 120 ° C. In addition, high-concentration, high-temperature initiation polymerization is a combination of these, and the aqueous monomer solution tends to boil during the polymerization, and a solvent such as water evaporates, so that a high-solids hydrogel polymer is obtained. Can be
 単量体水溶液中の固形分(単量体とグラフト成分の合計濃度)に対する、含水ゲル状重合体の固形分の上昇幅〔=(含水ゲル状重合体の固形分[質量%])-(単量体水溶液中の固形分[質量%])〕は、1%以上が好ましく、3%以上がより好ましく、5%以上がさらに好ましい。上昇幅の上限値は、重合制御の容易さの観点から、15%以下である。また、含水ゲル状重合体の固形分は、好ましくは40~75質量%であり、より好ましくは45~70質量%であり、さらに好ましくは50~65質量%である。このように重合で高固形分の含水ゲル状重合体が得られると、乾燥工程でキレート剤の分解が少なくなるので、キレート剤の残存率が向上する。但し、含水ゲル状重合体の固形分が75質量%を超えると、得られる吸水性樹脂の物性が悪化するおそれがある。本発明では、さらに上述した発泡剤や気泡を導入することによって発泡重合とする形態も好ましい。即ち、本発明における重合は、好ましくは発泡重合または沸騰重合である。含水ゲル状重合体が少なくとも気泡を含むことで、吸水速度の向上のみならず、乾燥速度も向上させることができ、乾燥工程後のキレート剤の含有率(残存率)も高めることができる。 Increase in the solid content of the hydrogel polymer relative to the solid content (the total concentration of the monomer and the graft component) in the aqueous monomer solution [= (solid content of hydrogel polymer [% by mass]) − ( 1% or more is preferable, 3% or more is more preferable, and 5% or more is more preferable. The upper limit of the increase is not more than 15% from the viewpoint of easy control of polymerization. The solid content of the hydrogel polymer is preferably from 40 to 75% by mass, more preferably from 45 to 70% by mass, and still more preferably from 50 to 65% by mass. When a high solids hydrogel polymer is obtained by polymerization as described above, the decomposition of the chelating agent in the drying step is reduced, and the residual ratio of the chelating agent is improved. However, when the solid content of the hydrogel polymer exceeds 75% by mass, the physical properties of the obtained water-absorbing resin may be deteriorated. In the present invention, a mode in which foaming polymerization is carried out by further introducing the above-mentioned foaming agent and bubbles is also preferable. That is, the polymerization in the present invention is preferably foam polymerization or boiling polymerization. When the hydrogel polymer contains at least air bubbles, not only the water absorption rate can be improved but also the drying rate can be improved, and the content (residual rate) of the chelating agent after the drying step can be increased.
 さらに、本発明で見出された乾燥工程でのキレート剤の特異的な減少の機構において、その反応機構は定かではないものの、「過硫酸塩のラジカルは、重合時には単量体と優先的に反応するが、重合後の含水ゲル状重合体に残存する単量体(残存モノマー)は数%以下と少量であるため、また、乾燥時は重合時よりも高温でかつ固形分の割合が高いため、乾燥工程では重合後に残存している過硫酸塩がキレート剤と優先的に反応する」と推定される。従来技術では含水ゲル状重合体中の残存モノマーが1000ppm以下になることが好ましいとされていた(米国特許514906号、米国特許453323号、欧州特許530438号)。しかしながら、本発明においては、重合後の重合率を100%にする必要はなく、むしろ乾燥工程前の含水ゲル状重合体に残存モノマーが0.1質量%以上、さらには0.5~10質量%、0.5~5重量%、0.5~3重量%程度で含有されていることが好ましい。重合工程においてキレート剤をほぼ100%残存させるには、前記推定機構から、重合工程終了時点で未反応の単量体を十分残存させるために重合時間は短いほうが好ましい。即ち、本発明は、好ましくは重合時間が60分間以下、10分間以下、5分間以下、3分間以下の短時間重合に適用される(重合時間の下限値は1秒間、さらには10秒間以上)。 Furthermore, in the mechanism of the specific reduction of the chelating agent in the drying step found in the present invention, although the reaction mechanism is not clear, `` radicals of persulfate preferentially occur with monomers during polymerization. Reacts, but the amount of monomer (residual monomer) remaining in the hydrogel polymer after polymerization is as small as a few percent or less, and the temperature during drying is higher than that during polymerization and the proportion of solids is higher. Therefore, in the drying step, the persulfate remaining after the polymerization reacts preferentially with the chelating agent ". In the prior art, it was considered that the residual monomer in the hydrogel polymer was preferably 1000 ppm or less (US Pat. No. 514906, US Pat. No. 453323, European Patent 530438). However, in the present invention, it is not necessary to make the conversion after polymerization 100%. Rather, the residual monomer is 0.1% by mass or more, and more preferably 0.5 to 10% by mass, in the hydrogel polymer before the drying step. %, About 0.5 to 5% by weight, and about 0.5 to 3% by weight. In order to allow almost 100% of the chelating agent to remain in the polymerization step, it is preferable from the above estimation mechanism that the polymerization time be short in order to sufficiently leave unreacted monomer at the end of the polymerization step. That is, the present invention is preferably applied to short-time polymerization in which the polymerization time is 60 minutes or less, 10 minutes or less, 5 minutes or less, 3 minutes or less (the lower limit of the polymerization time is 1 second, and more preferably 10 seconds or more). .
 従って、過硫酸塩の低減、および、単量体の残存の両立のために、重合条件としては、重合開始温度30℃以上(さらには上記範囲)、重合ピーク温度80~130℃(さらには上記範囲)、重合時間60分間以下(さらには上記範囲)の高温開始短時間重合が特に好ましく、さらに単量体濃度が35重量%以上(さらには上記範囲)である高濃度・高温開始短時間重合が最も好ましい。 Therefore, in order to reduce the persulfate salt and to keep the residual monomer, the polymerization conditions include a polymerization initiation temperature of 30 ° C. or higher (further in the above range) and a polymerization peak temperature of 80 to 130 ° C. Range), high-temperature short-time polymerization with a polymerization time of 60 minutes or less (and further in the above range) is particularly preferable, and high-concentration and high-temperature short-time polymerization in which the monomer concentration is 35% by weight or more (and further in the above range). Is most preferred.
 上記高濃度・高温開始短時間重合については、米国特許第6906159号、同第7091253号等に開示されているが、当該重合方法によって、白色度の高い吸水性樹脂が得られ、さらに工業的なスケールでの生産が容易なため、好ましい。 The high-concentration, high-temperature-initiated short-time polymerization is disclosed in U.S. Pat. Nos. 6,906,159 and 7,091,253, and the like. This is preferable because production on a scale is easy.
 従って、本発明に係る製造方法における重合方法は、1ライン当りの生産量が多い巨大スケールでの製造装置に好ましく適用される。なお、上記生産量としては、0.5t/hr以上が好ましく、1t/hr以上がより好ましく、5t/hr以上がさらに好ましく、10t/hr以上が特に好ましい。 Therefore, the polymerization method in the production method according to the present invention is preferably applied to a large-scale production apparatus having a large production volume per line. The production amount is preferably 0.5 t / hr or more, more preferably 1 t / hr or more, still more preferably 5 t / hr or more, and particularly preferably 10 t / hr or more.
 また、上記重合は、空気雰囲気下でも実施できるが、着色防止の観点から水蒸気、窒素やアルゴン等の不活性ガス雰囲気(例えば、酸素濃度1容積%以下)下で実施することが好ましい。さらには単量体または単量体を含む溶液中の溶存酸素を不活性ガスで置換(脱気)(例えば、酸素1mg/L未満)した後に、重合することが好ましい。このような脱気を行っても単量体の安定性に優れ、重合前のゲル化が起らず、より高物性で高白色の吸水性樹脂を提供することができる。 Further, the above polymerization can be carried out in an air atmosphere, but is preferably carried out in an atmosphere of an inert gas such as steam, nitrogen or argon (for example, an oxygen concentration of 1% by volume or less) from the viewpoint of preventing coloration. Furthermore, it is preferable to carry out polymerization after replacing (degassing) the dissolved oxygen in the monomer or the solution containing the monomer with an inert gas (for example, less than 1 mg / L of oxygen). Even if such degassing is performed, the stability of the monomer is excellent, gelation before polymerization does not occur, and a water absorbing resin having higher physical properties and higher whiteness can be provided.
 (2-2)ゲル粉砕工程
 本工程は、上述した重合中または重合後の含水ゲル状重合体を細分化して、粒子状の含水ゲル状重合体を得る工程である。なお、下記(2-4)粉砕工程・分級工程での「粉砕」と区別して、本工程は「ゲル粉砕」という。
(2-2) Gel pulverizing step This step is a step of obtaining a particulate hydrogel polymer by fragmenting the hydrogel polymer during or after the polymerization described above. This step is referred to as “gel pulverization” in distinction from “pulverization” in the following (2-4) pulverization step / classification step.
 本発明では、重合工程の途中および/または後のゲル粉砕工程で、または、重合工程で直接、粒子状の含水ゲル状重合体を得るが、目的のゲル粒子径への制御のし易さから、重合工程の途中および/または後のゲル粉砕工程で粒子状の含水ゲル状重合体を得ることがより好ましい。 In the present invention, a particulate hydrogel polymer is obtained in the gel pulverizing step during and / or after the polymerization step, or directly in the polymerization step. It is more preferable to obtain a particulate hydrogel polymer in the gel pulverizing step during and / or after the polymerization step.
 (ゲル粉砕機)
 本工程で使用される重合時または重合後のゲル粉砕装置としては、特に限定されず、バッチ型または連続型の双腕型ニーダー等、複数の回転攪拌翼を備えたゲル粉砕機や、1軸押出機、2軸押出機、ミートチョッパー、特にスクリュー型押出機等が挙げられる。
(Gel crusher)
The gel crusher used during or after polymerization used in this step is not particularly limited, and a gel crusher equipped with a plurality of rotary stirring blades, such as a batch-type or continuous-type double-arm kneader, or a single-shaft crusher may be used. An extruder, a twin-screw extruder, a meat chopper, especially a screw type extruder and the like can be mentioned.
 中でも、ケーシングの一方の端部に多孔板が設置されたスクリュー型押出機が好ましく、具体的には、例えば、特開2000-63527号公報やWO2011/126079に開示されたスクリュー型押出機が挙げられる。 Among them, a screw type extruder in which a perforated plate is provided at one end of the casing is preferable, and specific examples include a screw type extruder disclosed in JP-A-2000-63527 and WO2011 / 126079. Can be
 (ゲル粉砕領域)
 本発明において上記ゲル粉砕は、重合工程の途中および/または後に行われ、より好ましくは重合工程後の含水ゲル状重合体に対して行われるが、ニーダー重合等、重合中にゲル粉砕を行う形態の場合、単量体水溶液が「十分にゲル化」した状態をもって、ゲル粉砕工程とする。
(Gel crushing area)
In the present invention, the gel pulverization is performed during and / or after the polymerization step, and more preferably is performed on the hydrogel polymer after the polymerization step. In this case, the state in which the aqueous monomer solution is "sufficiently gelled" is defined as a gel pulverizing step.
 例えば、ニーダー重合を採用する場合、重合時間の経過とともに単量体水溶液が含水ゲル状重合体に変化していく。即ち、重合開始時の単量体水溶液の攪拌領域、重合途中での一定粘度を有する低重合度の含水ゲル状重合体の攪拌領域、重合の進行に伴い一部の含水ゲル状重合体のゲル粉砕開始領域、そして、重合後半または終盤でのゲル粉砕領域が連続的に行われる。従って、重合開始時の「単量体水溶液の攪拌」と終盤での「ゲル粉砕」とを明確に区別するため、「十分にゲル化」した状態をもって判断する。 For example, when kneader polymerization is employed, the aqueous monomer solution changes into a hydrogel polymer as the polymerization time elapses. That is, the stirring region of the aqueous monomer solution at the start of the polymerization, the stirring region of the low-polymerized hydrogel polymer having a constant viscosity during the polymerization, the gel of a part of the hydrogel polymer as the polymerization proceeds. The pulverization start area and the gel pulverization area at the latter or late stage of polymerization are continuously performed. Therefore, in order to clearly distinguish between “stirring of the aqueous monomer solution” at the start of the polymerization and “gel pulverization” at the end, the judgment is made based on the state of “sufficiently gelled”.
 上記「十分にゲル化」とは、重合温度が最大となった時点(重合ピーク温度)以降において、せん断力をかけて含水ゲル状重合体を細分化できる状態のことをいう。或いは、単量体水溶液中のモノマーの重合率(別称;転化率。重合率は含水ゲル状重合体のpH滴定から算出されるポリマー量と、残存モノマー量とから算出される。)が好ましくは90モル%以上、より好ましくは93モル%以上、さらに好ましくは95モル%以上、特に好ましくは97モル%以上となった時点以降において、せん断力をかけて含水ゲル状重合体を細分化できる状態のことをいう。即ち、本発明のゲル粉砕工程において、モノマーの重合率が上記範囲である含水ゲル状重合体がゲル粉砕される。なお、上記重合ピーク温度を示さない重合反応の場合(例えば、常に一定温度で重合が進行する場合や重合温度が上昇し続ける場合等)、上記モノマーの重合率をもって、「十分にゲル化」を規定する。 The term “sufficiently gelled” refers to a state in which the hydrogel polymer can be finely divided by applying a shearing force after the time when the polymerization temperature reaches a maximum (polymerization peak temperature). Alternatively, the polymerization rate of the monomer in the monomer aqueous solution (also known as a conversion rate; the polymerization rate is preferably calculated from the amount of the polymer calculated from the pH titration of the hydrogel polymer and the amount of the remaining monomer) is preferable. A state where the hydrogel polymer can be finely divided by applying a shearing force after 90 mol% or more, more preferably 93 mol% or more, still more preferably 95 mol% or more, and particularly preferably 97 mol% or more. Means That is, in the gel pulverizing step of the present invention, a hydrogel polymer having a monomer polymerization rate within the above range is gel-pulverized. In the case of a polymerization reaction that does not show the above-mentioned polymerization peak temperature (for example, when the polymerization always proceeds at a constant temperature or when the polymerization temperature keeps increasing), “sufficient gelation” is performed with the polymerization rate of the monomer. Stipulate.
 また、上記重合工程がベルト重合の場合、ゲル粉砕を行う前に、重合工程の途中および/または後の含水ゲル状重合体、好ましくは重合工程後の含水ゲル状重合体を、数10cm程度の大きさに切断または粗砕することができる。この操作によって、ゲル粉砕装置に含水ゲル状重合体を充填し易くなり、ゲル粉砕工程をより円滑に実施することができる。なお、上記切断または粗砕する手段としては、含水ゲル状重合体を練らないように切断または粗砕できる手段が好ましく、例えば、ギロチンカッター等が挙げられる。また、上記切断または粗砕で得られる含水ゲル状重合体の大きさや形状は、ゲル粉砕装置に充填できればよく、特に限定されない。 When the polymerization step is a belt polymerization, before the gel pulverization, a hydrogel polymer in the middle and / or after the polymerization step, preferably a hydrogel polymer after the polymerization step is reduced to about several tens cm. Can be cut or crushed to size. By this operation, it becomes easy to fill the hydrogel polymer into the gel pulverizer, and the gel pulverization step can be performed more smoothly. The means for cutting or crushing is preferably a means capable of cutting or crushing the hydrogel polymer without kneading, for example, a guillotine cutter or the like. The size and shape of the hydrogel polymer obtained by cutting or crushing are not particularly limited as long as they can be filled in a gel crusher.
 (水の使用)
 本発明のゲル粉砕工程において、含水ゲル状重合体に水を添加してゲル粉砕することもできる。なお、本発明において、「水」は固体、液体、気体の何れかの形態を採ることとする。
(Use of water)
In the gel pulverizing step of the present invention, water can be added to the hydrogel polymer to carry out gel pulverization. Note that, in the present invention, “water” takes any form of solid, liquid, and gas.
 上記水の添加について、添加方法や添加時期に制限はなく、含水ゲル状重合体がゲル粉砕装置内に滞留している間に装置内に水が供給されればよい。また、含水ゲル状重合体に水を予め添加してゲル粉砕装置に投入してもよい。さらに、上記水は「水単独」に限らず、他の添加剤(例えば、界面活性剤、中和用塩基、架橋剤等)や水以外の溶媒を加えてもよい。但し、この場合、水の含有量を90~100重量%とすることが好ましく、99~100重量%がより好ましく、実質100重量%がさらに好ましい。 There is no limitation on the method of addition and the timing of the addition of the water, and the water may be supplied into the gel crusher while the hydrated gel polymer remains in the gel crusher. Alternatively, water may be added in advance to the hydrogel polymer and charged into the gel pulverizer. Further, the water is not limited to “water alone”, and other additives (for example, a surfactant, a neutralizing base, a crosslinking agent, and the like) and a solvent other than water may be added. However, in this case, the content of water is preferably from 90 to 100% by weight, more preferably from 99 to 100% by weight, even more preferably substantially 100% by weight.
 本発明において、上記水は、固体、液体、気体の何れの形態でも使用することができるが、取り扱い性の観点から、液体および/または気体が好ましい。水の供給量としては、含水ゲル状重合体100重量部に対して、0~25重量部が好ましく、0~15重量部、0~10重量部、0~4重量部、0~2重量部の順により好ましい。上記水の供給量が25重量部を超える場合、含水ゲル状重合体の粒子径の制御が困難になったり、乾燥時間が長くなってキレート剤の残存量が低下したり、乾燥時に未乾燥物が生成したりする等の不具合が生じるおそれがある。また、乾燥効率の観点から、本工程での水の供給量は、上記重合工程で蒸発した溶媒、特に蒸発した水の量を超えないことが好ましい。 に お い て In the present invention, the water can be used in any form of solid, liquid, and gas, but liquid and / or gas is preferable from the viewpoint of handleability. The amount of water to be supplied is preferably 0 to 25 parts by weight, preferably 0 to 15 parts by weight, 0 to 10 parts by weight, 0 to 4 parts by weight, 0 to 2 parts by weight based on 100 parts by weight of the hydrogel polymer. Are more preferable. When the supply amount of water is more than 25 parts by weight, it becomes difficult to control the particle size of the hydrogel polymer, the drying time becomes longer, the remaining amount of the chelating agent decreases, May be generated. From the viewpoint of drying efficiency, it is preferable that the supply amount of water in this step does not exceed the amount of the solvent evaporated in the polymerization step, particularly, the amount of evaporated water.
 上記水を液体で供給する場合、供給時の温度は10~100℃が好ましく、40~100℃がより好ましい。また、水を気体で供給する場合、供給時の温度は100~220℃が好ましく、100~160℃がより好ましく、100~130℃がさらに好ましい。なお、水を気体で供給するとき、その調製方法については特に限定されず、例えば、ボイラーの加熱によって発生する水蒸気を利用する方法、超音波で水を振動させて、水表面から発生する気体状の水を利用する方法等が挙げられる。本発明において、水を気体で供給する場合、大気圧より高圧の水蒸気が好ましく、ボイラーで発生する水蒸気がより好ましい。 供給 す る When the water is supplied as a liquid, the temperature during the supply is preferably 10 to 100 ° C, more preferably 40 to 100 ° C. When water is supplied as a gas, the temperature during the supply is preferably 100 to 220 ° C., more preferably 100 to 160 ° C., and further preferably 100 to 130 ° C. When water is supplied as a gas, the preparation method is not particularly limited. For example, a method using water vapor generated by heating a boiler, a method in which water is vibrated by ultrasonic waves, and a gas state generated from the water surface is used. And the like utilizing water. In the present invention, when water is supplied as a gas, steam having a pressure higher than the atmospheric pressure is preferable, and steam generated in a boiler is more preferable.
 (添加剤の使用)
 上述したように、含水ゲル状重合体に水を添加してゲル粉砕することが好ましいが、水以外に他の添加剤や中和剤等を含水ゲル状重合体に添加・混練してゲル粉砕することもでき、こうして得られた吸水性樹脂を改質してもよい。具体的には、ゲル粉砕時に、上記(2-1)で述べた塩基性物質を含む水溶液(例えば、10~50重量%の水酸化ナトリウム水溶液)を添加して中和(特に前述した中和率の範囲内)してもよいし、吸水性樹脂微粉(0.1~30重量%(対樹脂固形分))を添加して微粉リサイクルを行ってもよい。さらに、重合開始剤を0.001~3重量%(対樹脂固形分)、ゲル粉砕時に添加・混合して、残存モノマーを低減させてもよい。
(Use of additives)
As described above, it is preferable to add water to the hydrogel polymer and pulverize the gel.However, in addition to water, other additives and a neutralizing agent are added to the hydrogel polymer and kneaded. The water absorbent resin thus obtained may be modified. Specifically, at the time of gel pulverization, an aqueous solution containing a basic substance described in the above (2-1) (for example, a 10 to 50% by weight aqueous sodium hydroxide solution) is added to neutralize (particularly the neutralization described above). %), Or fine powder may be recycled by adding fine water-absorbent resin powder (0.1 to 30% by weight (based on resin solid content)). Further, 0.001 to 3% by weight (based on resin solids) of a polymerization initiator may be added and mixed during gel pulverization to reduce residual monomers.
 (ゲル粉砕後の粒子状の含水ゲル状重合体の物性)
 (a)粒度
 本発明では、上記粒子状の含水ゲル状重合体の重量平均粒子径(D50)を1mm以下とすることが必須であり、従来のゲル粉砕よりも粒子が細かくなるようにゲル粉砕を行う。
(Physical properties of particulate hydrogel polymer after gel pulverization)
(A) Particle Size In the present invention, it is essential that the weight-average particle size (D50) of the above-mentioned particulate hydrogel polymer is 1 mm or less, and gel pulverization is performed so that the particles are finer than conventional gel pulverization. I do.
 上記重合工程で得られた含水ゲル状重合体は、上述した本発明のゲル粉砕が適用されるゲル粉砕機(ニーダー、ミートチョパー、スクリュー型押出機等)を用いて粉砕され粒子状にされる。なお、ゲル粒子径は分級や調合等によって制御することができるが、好ましくは本発明のゲル粉砕によってゲル粒子径が制御される。 The hydrogel polymer obtained in the above polymerization step is pulverized into particles by using a gel pulverizer (kneader, meat chopper, screw type extruder, etc.) to which the above-described gel pulverization of the present invention is applied. . The gel particle size can be controlled by classification, preparation, etc., but preferably the gel particle size is controlled by the gel pulverization of the present invention.
 上記ゲル粉砕後の粒子状の含水ゲル状重合体の重量平均粒子径(D50)(篩分級で規定)は、1mm以下であり、10μm~1mm、20μm~1mm、40μm~1mm、50μm~900μmの順により好ましい。また、重量平均粒子径の上限値は、800μm以下、700μm以下、600μm以下の順にさらに好ましい。重量平均粒子径の下限値は、100μm以上、200μm以上の順にさらに好ましい。なお、本発明においては、重量平均粒子径の上限値と下限値はどのような組み合わせであっても好ましい。上記ゲル粒子径は、WO2011/126079に記載の手法で測定することができる。 The weight-average particle diameter (D50) (defined by sieve classification) of the particulate hydrogel polymer after gel pulverization is 1 mm or less, and is 10 μm to 1 mm, 20 μm to 1 mm, 40 μm to 1 mm, 50 μm to 900 μm. More preferred in order. In addition, the upper limit of the weight average particle diameter is more preferably 800 μm or less, 700 μm or less, and 600 μm or less. The lower limit of the weight average particle diameter is more preferably 100 μm or more and 200 μm or more. In the present invention, the upper limit and the lower limit of the weight average particle diameter may be in any combination. The gel particle diameter can be measured by the method described in WO2011 / 126079.
 重量平均粒子径が1mmを超える場合、続く乾燥工程において、キレート剤が減少し易く、キレート剤の添加量に見合ったキレート効果が得られないため好ましくない。一方、重量平均粒子径が10μm未満であると、ゲル層全体が乾燥され難くなる。また、乾燥後の粉砕によって多量の微粉が生成し、粒度制御が困難となるだけでなく、通液性(SFC)等の物性が低下するおそれがある。 (4) When the weight average particle size exceeds 1 mm, the amount of the chelating agent tends to decrease in the subsequent drying step, and the chelating effect corresponding to the amount of the chelating agent cannot be obtained. On the other hand, when the weight average particle diameter is less than 10 μm, it becomes difficult to dry the entire gel layer. In addition, pulverization after drying generates a large amount of fine powder, which makes it difficult not only to control the particle size but also to deteriorate physical properties such as liquid permeability (SFC).
 なお、含水ゲル状重合体の重量平均粒子径を10μm未満にまでゲル粉砕または重合するには、通常のゲル粉砕操作や重合操作だけでは達成が困難で、別途、特殊な操作、例えば、粉砕後のゲルの分級(例えば、特開平6-107800号公報等)や、ゲル粉砕前の重合時の粒度制御(例えば、逆相懸濁重合でのシャープな粒度のゲル粒子を得る手法;欧州特許第0349240号等)を必要とする。従って、ゲル粉砕に加えて、上述したような特殊な手法の付加は、重合や分級に多量の界面活性剤や有機溶媒が必要となったり、生産性の低下(コストアップ)や物性の悪化(残存モノマーの増加や微粉の増加)等を招いたりする場合があり、新たな問題点が生じるおそれがある。このため、重量平均粒子径が10μm未満の粒子状の含水ゲル状重合体とすることは困難である場合がある。 In addition, it is difficult to achieve gel crushing or polymerization of the hydrogel polymer to a weight-average particle diameter of less than 10 μm by ordinary gel crushing operation or polymerization operation alone. Separate special operations, for example, after crushing (For example, JP-A-6-107800) and particle size control during polymerization before gel pulverization (for example, a method of obtaining gel particles of sharp particle size in reverse phase suspension polymerization; European Patent No. No. 0349240). Therefore, in addition to the gel pulverization, the addition of the special method as described above requires a large amount of a surfactant or an organic solvent for polymerization and classification, decreases productivity (increases costs) and deteriorates physical properties ( (Residual monomer increase and fine powder increase), which may cause new problems. For this reason, it may be difficult to obtain a particulate hydrogel polymer having a weight average particle diameter of less than 10 μm.
 (b)ゲル粉砕後のゲルCRC
 本発明において、ゲル粉砕後における粒子状の含水ゲル状重合体のゲルCRCは、10~35g/gが好ましく、10~32g/gがより好ましく、15~30g/gがさらに好ましい。なお、ゲル粉砕後のゲルCRCは、ゲル粉砕前のゲルCRCに対して-1~+3g/gとされることが好ましく、0.1~2g/gがより好ましく、0.3~1.5g/gがさらに好ましい。なお、ゲル粉砕時に架橋剤の使用等によってゲルCRCを減少させてもよいが、上記範囲でゲルCRCを上昇させることが好ましい。
(B) Gel CRC after gel pulverization
In the present invention, the gel CRC of the particulate hydrogel polymer after gel pulverization is preferably from 10 to 35 g / g, more preferably from 10 to 32 g / g, even more preferably from 15 to 30 g / g. The gel CRC after gel pulverization is preferably -1 to +3 g / g, more preferably 0.1 to 2 g / g, and more preferably 0.3 to 1.5 g, relative to the gel CRC before gel pulverization. / G is more preferred. In addition, the gel CRC may be reduced by using a cross-linking agent at the time of gel pulverization, but it is preferable to increase the gel CRC within the above range.
 (c)ゲル粉砕後のゲルExt
 本発明において、ゲル粉砕後における粒子状の含水ゲル状重合体のゲルExtは、0.1~20重量%が好ましく、0.1~10重量%がより好ましく、0.1~8重量%がさらに好ましく、0.1~5重量%が特に好ましい。また、ゲル粉砕後の粒子状の含水ゲル状重合体のゲルExt増加量(ゲル粉砕前のゲルExtに対する増加量)は、5重量%以下が好ましく、4重量%以下がより好ましく、3重量%以下がさらに好ましく、2重量%以下が特に好ましく、1重量%以下が最も好ましい。また、下限値はマイナス(例えば、-3.0重量%、さらには-1.0重量%)でもよいが、通常は0重量%以上、好ましくは0.1重量%以上、より好ましくは0.2重量%以上、さらに好ましくは0.3重量%以上である。具体的には、好ましくは0~5.0重量%、より好ましくは0.1~3.0重量%等、上述した上限値と下限値の任意の範囲内となるように、ゲルExtを増加するまでゲル粉砕すればよい。なお、ゲル粉砕時に架橋剤の使用等によってゲルExtを減少させてもよいが、上記範囲でゲルExtを上昇させることが好ましい。ここで、ゲルExt増加量の有効数字は小数点以下1桁であるが、例えば、5重量%と5.0重量%は同義語として扱う。
(C) Gel Ext after gel pulverization
In the present invention, the gel Ext of the particulate hydrogel polymer after gel pulverization is preferably 0.1 to 20% by weight, more preferably 0.1 to 10% by weight, and 0.1 to 8% by weight. More preferred is 0.1 to 5% by weight. Further, the increase amount of the gel Ext of the particulate hydrogel polymer after gel pulverization (the increase amount relative to the gel Ext before gel pulverization) is preferably 5% by weight or less, more preferably 4% by weight or less, and 3% by weight. The following is more preferred, the content is particularly preferably 2% by weight or less, and most preferably 1% by weight or less. The lower limit may be minus (for example, -3.0% by weight, or even -1.0% by weight), but is usually 0% by weight or more, preferably 0.1% by weight or more, and more preferably 0.1% by weight or more. It is at least 2% by weight, more preferably at least 0.3% by weight. Specifically, the gel Ext is increased so as to fall within the arbitrary range of the above-mentioned upper limit and lower limit, such as preferably 0 to 5.0% by weight, more preferably 0.1 to 3.0% by weight. The gel may be crushed until it is done. The gel Ext may be reduced by using a cross-linking agent at the time of gel pulverization, but it is preferable to increase the gel Ext within the above range. Here, the effective number of the increase amount of the gel Ext is one digit after the decimal point. For example, 5% by weight and 5.0% by weight are treated as synonyms.
 (d)ゲル粉砕後の水可溶分の重量平均分子量
 本発明において、ゲル粉砕後の含水ゲル状重合体の、水可溶分の重量平均分子量の増加量として、下限値は、10,000Da以上が好ましく、20,000Da以上がより好ましく、30,000Da以上がさらに好ましい。また、上限値は、500,000Da以下が好ましく、400,000Da以下がより好ましく、250,000Da以下がさらに好ましく、100,000Da以下が特に好ましい。例えば本発明において、ゲル粉砕前の含水ゲル状重合体に対する、ゲル粉砕後の粒子状の含水ゲル状重合体の、水可溶分の重量平均分子量の増加量は、10,000~500,000Daであることが好ましく、好ましくは20,000~400,000Da、より好ましくは30,000~250,000Da、さらに好ましくは100,000Da以下である。
(D) Weight average molecular weight of water-soluble component after pulverization of gel In the present invention, the lower limit of the weight-average molecular weight of the water-soluble component of the hydrogel polymer after gel pulverization is 10,000 Da. Or more, more preferably 20,000 Da or more, and even more preferably 30,000 Da or more. Further, the upper limit is preferably 500,000 Da or less, more preferably 400,000 Da or less, further preferably 250,000 Da or less, and particularly preferably 100,000 Da or less. For example, in the present invention, the increase in the weight average molecular weight of the water-soluble portion of the particulate hydrogel polymer after gel pulverization relative to the hydrogel polymer before gel pulverization is 10,000 to 500,000 Da. It is preferably 20,000 to 400,000 Da, more preferably 30,000 to 250,000 Da, and further preferably 100,000 Da or less.
 (e)ゲル粉砕後の樹脂固形分
 本発明において、ゲル粉砕後の粒子状の含水ゲル状重合体の樹脂固形分は、物性の観点から、好ましくは40~75質量%であり、より好ましくは45~70質量%であり、さらに好ましくは50~65質量%である。ゲル粉砕後の粒子状の含水ゲル状重合体の樹脂固形分を上記範囲とすることで、乾燥によるCRCの上昇が制御し易く、また、乾燥によるダメージ(水可溶分の増加等)が少なく、さらに、キレート剤の分解が少なくなり残存率が向上するため、好ましい。なお、ゲル粉砕後の樹脂固形分は、ゲル粉砕前の樹脂固形分や必要により添加する水、さらにはゲル粉砕時の加熱による水分蒸発等によって、適宜制御することができる。
(E) Resin solid content after gel pulverization In the present invention, the resin solid content of the particulate hydrogel polymer after gel pulverization is preferably from 40 to 75% by mass, more preferably from the viewpoint of physical properties. The content is 45 to 70% by mass, and more preferably 50 to 65% by mass. By setting the resin solid content of the particulate hydrogel polymer after gel pulverization within the above range, the increase in CRC due to drying is easy to control, and the damage due to drying (such as an increase in water-soluble components) is reduced. Further, it is preferable because the decomposition of the chelating agent is reduced and the residual ratio is improved. The resin solid content after gel pulverization can be appropriately controlled by the resin solid content before gel pulverization, water to be added as necessary, and further, evaporation of water due to heating during gel pulverization.
 (測定点数)
 上記ゲル粉砕前の含水ゲル状重合体或いはゲル粉砕後の粒子状の含水ゲル状重合体の物性を評価するには、製造装置から必要量および頻度でサンプリングおよび測定を行う必要がある。本発明では、ゲル粉砕前の含水ゲル状重合体の、水可溶分の重量平均分子量を基準にして評価を行うが、この値が十分に平均化された数値となるようにする必要がある。そこで、例えば、連続ニーダーやミートチョッパー等による連続式のゲル粉砕で吸水性樹脂の生産量が1~20t/hrまたは1~10t/hrの場合、含水ゲル状重合体100kg毎に2点以上、合計で少なくとも10点以上のサンプリングおよび測定を行えばよく、また、バッチ式のゲル粉砕(例えば、バッチ式ニーダー)の場合、バッチサンプルから少なくとも10点以上のサンプリングおよび測定を行い、粒子状の含水ゲル状重合体の物性を評価すればよい。
(Number of measurement points)
In order to evaluate the physical properties of the hydrogel polymer before the gel pulverization or the particulate hydrogel polymer after the gel pulverization, it is necessary to perform sampling and measurement at a required amount and frequency from the production apparatus. In the present invention, the hydrogel polymer before gel pulverization is evaluated based on the weight-average molecular weight of the water-soluble component, but it is necessary that this value be a sufficiently averaged value. . Therefore, for example, when the production amount of the water-absorbent resin is 1 to 20 t / hr or 1 to 10 t / hr by continuous gel pulverization using a continuous kneader or meat chopper, two or more points are obtained for every 100 kg of the hydrogel polymer. At least 10 points or more may be sampled and measured in total, and in the case of batch-type gel pulverization (for example, a batch-type kneader), at least 10 points or more are sampled and measured from a batch sample to obtain particulate water-containing powder. The physical properties of the gel polymer may be evaluated.
 (2-3)乾燥工程
 本工程は、上記ゲル粉砕工程において上記特定の粒子径となるように粉砕された粒子状の含水ゲル状重合体を乾燥させて、乾燥重合体を得る工程である。以下、本発明で好ましく適用される乾燥方法について説明する。
(2-3) Drying Step This step is a step of drying the particulate hydrogel polymer pulverized to the specific particle size in the gel pulverizing step to obtain a dry polymer. Hereinafter, a drying method preferably applied in the present invention will be described.
 本発明では、上記キレート剤を含む粒子状の含水ゲルが乾燥される。キレート剤を含む吸水性樹脂の製造方法では、重合時や乾燥工程終了以降においてキレート剤は実質的に減少せず、残存する過硫酸塩によって乾燥工程時にキレート剤が分解されることが見出された。よって、吸水性樹脂内部にキレート剤を含有させるには、乾燥工程時に残存する過硫酸塩の量を低く制御することが好ましい。さらに、キレート剤の分解を抑制するには、乾燥工程において急速乾燥することが好ましい。従って、本発明においては、含水ゲル状重合体の粒子径を小さく、具体的には粒子状の含水ゲル状重合体の重量平均粒子径(D50)を1mm以下に制御し、乾燥時間20分間以下で、固形分が80重量%以上となるまで乾燥させることが特に好ましい。但し、上記乾燥時間は、固形分が80重量%以上となるまでの時間を指す。上記の手法により、キレート剤の残存率が向上し、得られる吸水性樹脂中の重合体内部のキレート剤量が増加するのみならず、得られた吸水性樹脂の初期着色のL値が増加し、YI値が低下する。 In the present invention, the particulate hydrogel containing the chelating agent is dried. In the method for producing a water-absorbent resin containing a chelating agent, it has been found that the chelating agent does not substantially decrease at the time of polymerization or after completion of the drying step, and the chelating agent is decomposed during the drying step by remaining persulfate. Was. Therefore, in order to contain a chelating agent inside the water-absorbing resin, it is preferable to control the amount of persulfate remaining in the drying step to be low. Further, in order to suppress the decomposition of the chelating agent, it is preferable to perform rapid drying in the drying step. Therefore, in the present invention, the particle diameter of the hydrogel polymer is reduced, specifically, the weight average particle diameter (D50) of the particulate hydrogel polymer is controlled to 1 mm or less, and the drying time is 20 minutes or less. It is particularly preferable to dry until the solid content becomes 80% by weight or more. However, the drying time refers to the time until the solid content becomes 80% by weight or more. By the above method, the residual ratio of the chelating agent is improved, and not only the amount of the chelating agent inside the polymer in the obtained water-absorbent resin is increased, but also the L value of the initial coloring of the obtained water-absorbent resin is increased. , YI values decrease.
 本発明に係る方法2においては、乾燥工程に供される粒子状の含水ゲル状重合体中における過硫酸塩の含有量は、具体的には、重合時の単量体に対して0.04モル%以下、0.035モル%以下、0.03モル%以下、0.025モル%以下、0.02モル%以下、0.015モル%以下の順に好ましい。過硫酸塩の添加量の下限値は0モル%であり、重合時に不使用または乾燥工程前までに完全に消費されている場合である。但し、過硫酸塩は残存モノマーの低減に有効であるため、乾燥時における残存モノマーを低減する観点から、過硫酸塩は0.0001モル%以上、好ましくは0.001モル%以上、より好ましくは0.01モル%以上となる量で、上記単量体水溶液または上記含水ゲル状重合体に含まれていることが望ましい。上記の手法により、キレート剤の残存率が向上し、得られる吸水性樹脂中の重合体内部のキレート剤量が増加するのみならず、得られた吸水性樹脂の初期着色のL値が増加し、YI値が低下する。なお、本発明においては、過硫酸塩の添加量の上限値と下限値はどのような組み合わせであっても好ましい。含水ゲル状重合体中における過硫酸塩の含有量は、WO2007/116778に記載の手法で測定することができる。 In the method 2 according to the present invention, the content of the persulfate in the particulate hydrogel polymer subjected to the drying step is specifically 0.04 to the monomer at the time of polymerization. It is preferable in the order of mol% or less, 0.035 mol% or less, 0.03 mol% or less, 0.025 mol% or less, 0.02 mol% or less, and 0.015 mol% or less. The lower limit of the amount of persulfate added is 0 mol%, which means that it is not used during polymerization or is completely consumed before the drying step. However, since the persulfate is effective in reducing the residual monomer, the persulfate is 0.0001 mol% or more, preferably 0.001 mol% or more, more preferably, from the viewpoint of reducing the residual monomer during drying. It is desirable that the amount is contained in the monomer aqueous solution or the hydrogel polymer in an amount of 0.01 mol% or more. By the above method, the residual ratio of the chelating agent is improved, and not only the amount of the chelating agent inside the polymer in the obtained water-absorbent resin is increased, but also the L value of the initial coloring of the obtained water-absorbent resin is increased. , YI values decrease. In the present invention, the upper and lower limits of the amount of persulfate to be added may be in any combination. The persulfate content in the hydrogel polymer can be measured by the method described in WO2007 / 116778.
 また、本発明に係る方法2においては、乾燥工程に供される粒子状の含水ゲル状重合体のキレート剤の含有量(対含水ゲル状重合体の固形分)は、10ppm以上であり、40ppm以上、60ppm以上、100ppm以上、200ppm以上、250ppm以上、500ppm以上、600ppm以上の順に好ましい。また、キレート剤の効果(例;着色防止、劣化防止等)およびコストの観点から、キレート剤の含有量の上限値は、含水ゲル状重合体の固形分に対して、1%以下、8000ppm以下、6000ppm以下、5000ppm以下の順に好ましい。なお、本発明においては、キレート剤の含有量の上限値と下限値はどのような組み合わせであっても好ましい。また、上記キレート剤の含有量は、混合後の単量体および重合体のカルボキシ基との塩交換は考慮せずに、キレート剤として添加する時の有姿の重量ppm濃度を示す。 In the method 2 according to the present invention, the content of the chelating agent of the particulate hydrogel polymer (based on the solid content of the hydrogel polymer) provided in the drying step is 10 ppm or more, and 40 ppm or more. The above is preferred in the order of at least 60 ppm, at least 100 ppm, at least 200 ppm, at least 250 ppm, at least 500 ppm, and at least 600 ppm. In addition, from the viewpoint of the effects of the chelating agent (eg, prevention of coloring, prevention of deterioration, etc.) and cost, the upper limit of the content of the chelating agent is 1% or less and 8000 ppm or less based on the solid content of the hydrogel polymer. 6000 ppm or less and 5000 ppm or less are preferred. In the present invention, the upper limit and the lower limit of the content of the chelating agent may be in any combination. In addition, the content of the above chelating agent indicates the apparent weight ppm concentration when added as a chelating agent without considering salt exchange with the carboxy group of the monomer and the polymer after mixing.
 (乾燥装置)
 乾燥工程で使用される乾燥装置としては、乾燥速度の観点から熱風伝熱型乾燥機(以下、「熱風乾燥機」という)が好ましい。即ち、乾燥形式としては、熱風乾燥が好ましい。当該熱風乾燥機として、通気ベルト(バンド)式、通気回路式、通気縦型式、平行流ベルト(バンド)式、通気トンネル式、通気溝型攪拌式、流動層式、気流式、噴霧式等の熱風乾燥機が挙げられる。本発明では、物性制御の観点から通気ベルト式熱風乾燥機が好ましい。
(Drying device)
As a drying device used in the drying step, a hot air heat transfer type dryer (hereinafter, referred to as “hot air dryer”) is preferable from the viewpoint of a drying speed. That is, hot air drying is preferable as the drying method. Examples of the hot air dryer include a ventilation belt (band) type, a ventilation circuit type, a vertical ventilation type, a parallel flow belt (band) type, a ventilation tunnel type, a ventilation groove type stirring type, a fluidized bed type, an air flow type, a spray type and the like. A hot air dryer is mentioned. In the present invention, a ventilation belt type hot air dryer is preferable from the viewpoint of physical property control.
 係る通気ベルト式熱風乾燥機を使用する場合、乾燥の均一性および通液性等の物性の観点から、当該乾燥機で使用される熱風の風向は、通気ベルト上に積層され静置された含水ゲル状重合体層に対して垂直方向(例えば、上下方向の併用、または上向き方向、下向き方向)であることが好ましい。なお、上記「垂直方向」とは、ゲル層(パンチングメタルや金属網上に積層された厚さ10~300mmの粒子状の含水ゲル状重合体)に対して、上下(ゲル層の上から下、或いはゲル層の下から上)に通気する状態を指し、上下方向に通気する限り厳密な垂直方向に限定されない。例えば、斜め方向の熱風を用いてもよく、この場合、垂直方向に対して30°以内であり、好ましくは20°以内、より好ましくは10°以内、さらに好ましくは5°以内、特に好ましくは0°の熱風が用いられる。 When using such a ventilation belt type hot air dryer, from the viewpoint of physical properties such as uniformity of drying and liquid permeability, the wind direction of the hot air used in the dryer is a water-containing layer which is laminated on the ventilation belt and allowed to stand still. It is preferable that the direction is perpendicular to the gel polymer layer (for example, both in the vertical direction or in the upward and downward directions). The “vertical direction” refers to the vertical direction (from the top to the bottom of the gel layer) with respect to the gel layer (a particulate hydrogel polymer having a thickness of 10 to 300 mm laminated on a punching metal or metal net). Or, a state in which air is passed from the bottom to the top of the gel layer), and is not limited to a strictly vertical direction as long as air is passed in the vertical direction. For example, hot air in an oblique direction may be used. In this case, it is within 30 ° with respect to the vertical direction, preferably within 20 °, more preferably within 10 °, even more preferably within 5 °, and particularly preferably 0 °. ° hot air is used.
 以下、本発明の乾燥工程における乾燥条件等について述べる。下記の乾燥条件で乾燥を行うことによって、得られる乾燥重合体を表面処理した吸水性樹脂の通液性および吸水速度を向上させることができる。 乾燥 Hereinafter, drying conditions and the like in the drying step of the present invention will be described. By performing drying under the following drying conditions, it is possible to improve the liquid permeability and the water absorption rate of the water-absorbent resin whose surface is treated with the obtained dried polymer.
 (乾燥温度)
 本発明の乾燥工程での乾燥温度は、80℃以上であり、100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることが特に好ましい。また、乾燥温度は、200℃以下であり、190℃以下であることが好ましく、180℃以下であることがより好ましい。本発明においては、乾燥温度の上限値と下限値はどのような組み合わせであっても好ましい。乾燥温度が80℃未満であると、好適な樹脂固形分(含水率)が得られるまでの乾燥時間が長くなり、キレート剤の分解率が高まるため好ましくない。また、未乾燥物が生成し、後の粉砕工程時に詰まりが生じ得る。乾燥温度が200℃を超えると、キレート剤が分解され易いため好ましくない。なお、乾燥温度とは、直接加熱の場合には乾燥に用いる熱媒の温度を指し、熱風乾燥の場合には乾燥に用いる熱風の温度を指し、間接加熱の場合には乾燥に用いる伝熱面の温度を指す。
(Drying temperature)
The drying temperature in the drying step of the present invention is 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and particularly preferably 150 ° C. or higher. Further, the drying temperature is 200 ° C. or lower, preferably 190 ° C. or lower, more preferably 180 ° C. or lower. In the present invention, any combination of the upper limit and the lower limit of the drying temperature is preferable. If the drying temperature is lower than 80 ° C., the drying time until a suitable resin solid content (moisture content) is obtained is long, and the decomposition rate of the chelating agent is undesirably increased. In addition, undried matter may be generated, and clogging may occur in a subsequent pulverizing step. When the drying temperature exceeds 200 ° C., the chelating agent is easily decomposed, which is not preferable. The drying temperature refers to the temperature of the heating medium used for drying in the case of direct heating, the temperature of hot air used for drying in the case of hot air drying, and the heat transfer surface used for drying in the case of indirect heating. Refers to the temperature of
 (乾燥時間)
 本発明の乾燥工程での乾燥時間は、固形分が80重量%以上となるまでの時間を指し、20分間以下であり、18分間以下、15分間以下、12分間以下の順に好ましい。乾燥時間の下限値は、乾燥効率を考慮して1分間程度である。また、キレート剤の分解は、主に、固形分が80重量%となるまでの乾燥段階で起こることが見出された。さらに、本発明における全乾燥時間は、60分間以下であることが好ましく、50分間以下、40分間以下の順により好ましい。乾燥時間が短いと、未乾燥物が生成し、後の粉砕工程時に詰まりが生じ得る。全乾燥時間が60分間を超えると、キレート剤の分解率が高まるため好ましくない。なお、本発明においては、水分の蒸発が実質的に始まっていなくても、つまり、乾燥機中で粒子状の含水ゲル状重合体を加熱して昇温させている段階も、乾燥工程に含まれることとする。乾燥時間の開始は、含水ゲル状重合体を乾燥機内に入れた時点であり、全乾燥時間とは、含水ゲル状重合体を乾燥機内に入れてから、含水ゲル状重合体が乾燥され、乾燥機外に取り出されるまでの時間である。
(Drying time)
The drying time in the drying step of the present invention refers to the time until the solid content becomes 80% by weight or more, and is preferably 20 minutes or less, more preferably 18 minutes or less, 15 minutes or less, and 12 minutes or less. The lower limit of the drying time is about 1 minute in consideration of the drying efficiency. It has also been found that the decomposition of the chelating agent occurs mainly in the drying stage until the solids content reaches 80% by weight. Further, the total drying time in the present invention is preferably 60 minutes or less, more preferably 50 minutes or less, and more preferably 40 minutes or less. If the drying time is short, undried matter is generated, and clogging may occur during the subsequent pulverization step. If the total drying time exceeds 60 minutes, the rate of decomposition of the chelating agent is undesirably increased. In the present invention, even if the evaporation of water has not substantially started, that is, the step of heating the particulate hydrogel polymer in a dryer to raise the temperature is also included in the drying step. Shall be taken. The start of the drying time is when the hydrogel polymer is placed in the dryer, and the total drying time is after the hydrogel polymer is placed in the dryer, and the hydrogel polymer is dried and dried. It is the time until it is taken out of the machine.
 また、上記重合工程から排出された含水ゲル状重合体が乾燥工程に導入されるまでの時間、および含水ゲル状重合体の温度、即ち、含水ゲル状重合体が重合機出口から乾燥機入口まで移動する時間、および乾燥機入口に移動したときの含水ゲル状重合体の温度は、吸水性樹脂の着色防止およびキレート剤の残存率の向上の観点から、具体的には、80℃以下で30分間以内、90℃以下で20分間以内、100℃以下で10分間以内、110℃で5分間以内という組み合わせが好ましい。なお、実験室レベルでは、重合工程で得られた含水ゲル状重合体を、一旦、40℃以下まで冷却し、長時間置いた後に、乾燥工程に導入することもできる。 Further, the time until the hydrogel polymer discharged from the polymerization step is introduced into the drying step, and the temperature of the hydrogel polymer, that is, the hydrogel polymer is from the outlet of the polymerizer to the inlet of the dryer. From the viewpoint of preventing the coloring of the water-absorbent resin and improving the residual ratio of the chelating agent, the temperature for moving and the temperature of the hydrogel polymer at the time of moving to the dryer entrance are specifically 30 ° C. or lower. It is preferable to use a combination of not more than 90 minutes, not more than 20 minutes at 90 ° C, not more than 10 minutes at not more than 100 ° C, and not more than 5 minutes at 110 ° C. At the laboratory level, the hydrogel polymer obtained in the polymerization step can be once cooled to 40 ° C. or lower, left for a long time, and then introduced into the drying step.
 (樹脂固形分)
 上記ゲル粉砕工程で得られた粒子状の含水ゲルは、上述した乾燥工程で乾燥され、乾燥重合体とされる。乾燥重合体の乾燥減量(粉末または粒子1gを180℃で3時間加熱して測定)から求められる樹脂固形分は、好ましくは80重量%以上であり、より好ましくは85~99重量%であり、さらに好ましくは90~98重量%である。
(Resin solids)
The particulate hydrogel obtained in the above-mentioned gel pulverizing step is dried in the above-mentioned drying step to be a dried polymer. The resin solid content determined from the loss on drying of the dried polymer (measured by heating 1 g of powder or particles at 180 ° C. for 3 hours) is preferably 80% by weight or more, more preferably 85 to 99% by weight, More preferably, it is 90 to 98% by weight.
 (風速)
 本発明の乾燥工程において、上記通気乾燥機、特にベルト型乾燥機での熱風の風速は、垂直方向(上下方向)に、0.8~2.5m/sであることが好ましく、1.0~2.0m/sがより好ましい。上記風速を上記範囲とすることで、得られる乾燥重合体の含水率を所望の範囲に制御し易くなる。上記風速が2.5m/sを超える場合、乾燥期間中に粒子状の含水ゲル状重合体が舞い上がる等の問題が生じ得る。
(wind speed)
In the drying step of the present invention, the velocity of the hot air in the through-air dryer, particularly the belt-type dryer, is preferably 0.8 to 2.5 m / s in the vertical direction (vertical direction), and is 1.0 to 2.5 m / s. 2.02.0 m / s is more preferable. By setting the above-mentioned wind speed in the above range, it is easy to control the water content of the obtained dried polymer to a desired range. If the wind speed exceeds 2.5 m / s, problems such as the soaking of the particulate hydrogel polymer during the drying period may occur.
 なお、上記風速の制御は、本発明の効果を損なわない範囲で行えばよく、例えば、乾燥時間の70%以上、好ましくは90%以上、さらに好ましくは95%以上の範囲で制御すればよい。また、上記風速は、通気ベルト型乾燥機を例として、水平移動するバンド面に対して垂直方向に通過する熱風の平均流速で表す。従って、熱風の平均流速は、当該通気ベルト乾燥機に送風される風量を通気ベルトの面積で除すればよい。 The wind speed may be controlled within a range that does not impair the effects of the present invention. For example, the wind speed may be controlled within a range of 70% or more of the drying time, preferably 90% or more, and more preferably 95% or more. In addition, the above-mentioned wind speed is represented by an average flow velocity of hot air passing in a direction perpendicular to a horizontally moving band surface, taking a ventilation belt type dryer as an example. Therefore, the average flow velocity of the hot air may be obtained by dividing the amount of air blown to the ventilation belt dryer by the area of the ventilation belt.
 (熱風の露点)
 本発明の乾燥工程において、上記通気ベルト型乾燥機で用いられる熱風は、少なくとも水蒸気を含有し、かつ露点が30~100℃であることが好ましく、30~80℃であることがより好ましい。熱風の露点やさらに好ましくはゲル粒子径を上記範囲に制御することで、残存モノマーを低減することができ、さらに、乾燥重合体の嵩比重の低下を防止することができる。なお、上記露点は、粒子状の含水ゲル状重合体の含水率が少なくとも10重量%以上、好ましくは20重量%以上の時点での値とする。
(Dew point of hot air)
In the drying step of the present invention, the hot air used in the ventilation belt type dryer preferably contains at least water vapor and has a dew point of 30 to 100 ° C, more preferably 30 to 80 ° C. By controlling the dew point of hot air and more preferably the gel particle diameter in the above range, the amount of residual monomer can be reduced, and further, a decrease in the bulk specific gravity of the dried polymer can be prevented. The dew point is a value at the time when the water content of the particulate hydrogel polymer is at least 10% by weight or more, preferably 20% by weight or more.
 さらに、本発明の乾燥工程において、残存モノマー、吸水性能および着色防止等の観点から、乾燥機出口付近(または、乾燥の終期;例えば、乾燥時間の50%以降)の露点より、乾燥機入口付近(または、乾燥の初期;例えば、乾燥時間の50%以前)の露点が高いことが好ましい。具体的には、露点が好ましくは10~50℃、より好ましくは15~40℃高い熱風を粒子状の含水ゲル状重合体に接触させることが好ましい。露点を上記範囲に制御することで、乾燥重合体の嵩比重の低下を防止することができる。 Further, in the drying step of the present invention, from the viewpoint of residual monomers, water absorption performance, prevention of coloring, and the like, the dew point near the dryer outlet (or at the end of drying; for example, 50% or more of the drying time) is closer to the dryer inlet. Preferably, the dew point is high (or early in the drying; for example, before 50% of the drying time). Specifically, it is preferable to contact hot air having a dew point of preferably 10 to 50 ° C., more preferably 15 to 40 ° C., with the particulate hydrogel polymer. By controlling the dew point within the above range, a decrease in the bulk specific gravity of the dried polymer can be prevented.
 本発明の乾燥工程において、粒子状の含水ゲル状重合体を乾燥する場合、当該粒子状の含水ゲル状重合体は通気ベルト型乾燥機のベルト上に、層状となるように連続的に供給され、熱風乾燥される。このとき使用される通気ベルト型乾燥機のベルトの幅は、特に限定されないが、0.5m以上が好ましく、1m以上がより好ましい。また、上限値は10m以下が好ましく、5m以下がより好ましい。さらに、ベルトの長さは20m以上が好ましく、40m以上がより好ましい。また、上限値は100m以下が好ましく、50m以下がより好ましい。 In the drying step of the present invention, when drying the particulate hydrogel polymer, the particulate hydrogel polymer is continuously supplied in a layer form on a belt of a ventilation belt type dryer. , Hot air dried. The width of the belt of the ventilation belt type dryer used at this time is not particularly limited, but is preferably 0.5 m or more, more preferably 1 m or more. Further, the upper limit is preferably 10 m or less, more preferably 5 m or less. Further, the length of the belt is preferably 20 m or more, and more preferably 40 m or more. The upper limit is preferably 100 m or less, more preferably 50 m or less.
 また、ベルト上の粒子状の含水ゲル状重合体の層長(ゲル層の厚さ)は、本発明の課題解決の観点から、10~300mmが好ましく、50~200mmがより好ましく、80~150mmがさらに好ましく、90~110mmが特に好ましい。 The layer length (thickness of the gel layer) of the particulate hydrogel polymer on the belt is preferably 10 to 300 mm, more preferably 50 to 200 mm, and more preferably 80 to 150 mm from the viewpoint of solving the problems of the present invention. Is more preferable, and 90 to 110 mm is particularly preferable.
 また、ベルト上での粒子状の含水ゲル状重合体の移動速度は、ベルト幅、ベルト長、生産量、乾燥時間等により適宜設定すればよいが、ベルト駆動装置の負荷、耐久性等の観点から、0.3~5m/minが好ましく、0.5~2.5m/minがより好ましく、0.5~2m/minがさらに好ましく、0.7~1.5m/minが特に好ましい。 Further, the moving speed of the particulate hydrogel polymer on the belt may be appropriately set according to the belt width, the belt length, the production amount, the drying time, etc., but from the viewpoint of the load of the belt driving device, durability and the like. From this, it is preferably 0.3 to 5 m / min, more preferably 0.5 to 2.5 m / min, further preferably 0.5 to 2 m / min, and particularly preferably 0.7 to 1.5 m / min.
 (2-4)粉砕工程、分級工程
 本発明に係るキレート剤を含む吸水性樹脂の製造方法は、上記乾燥工程で得られた乾燥重合体を、粉砕・分級する粉砕工程および分級工程をさらに含んでもよい。本工程は、上記(2-2)ゲル粉砕工程とは、粉砕時の樹脂固形分、特に粉砕対象物が乾燥工程を経ている点(好ましくは、上記樹脂固形分まで乾燥)で異なる。また、粉砕工程後に得られる吸水性樹脂を粉砕物と称することもある。
(2-4) Pulverizing Step and Classifying Step The method for producing a water-absorbent resin containing a chelating agent according to the present invention further includes a pulverizing step and a classifying step of pulverizing and classifying the dried polymer obtained in the drying step. May be. This step is different from the above-mentioned (2-2) gel pulverizing step in that the resin solid content at the time of pulverization, particularly the point that the object to be pulverized has undergone a drying step (preferably, the resin solid content is dried). Further, the water-absorbing resin obtained after the pulverizing step may be referred to as a pulverized product.
 上記乾燥工程で得られた乾燥重合体を、そのまま吸水性樹脂として使用することもできるが、後述する表面処理工程、特に表面架橋工程での物性向上のため、特定の粒度に制御することが好ましい。粒度制御は、本粉砕工程、分級工程に限らず、重合工程、微粉回収工程、造粒工程等で適宜実施することができる。 The dried polymer obtained in the drying step can be used as it is as a water-absorbing resin, but it is preferable to control the particle size to a specific particle size in order to improve the physical properties in the surface treatment step described below, particularly in the surface crosslinking step. . The particle size control is not limited to the main pulverization step and the classification step, but can be appropriately performed in the polymerization step, the fine powder recovery step, the granulation step, and the like.
 粉砕工程で使用することができる粉砕機は、特に限定されないが、例えば、振動ミル、ロールグラニュレーター、ナックルタイプ粉砕機、ロールミル、高速回転式粉砕機(ピンミル、ハンマーミル、スクリューミル)、円筒状ミキサー等を挙げることができる。これらの中でも、粒度制御の観点から、多段のロールミルまたはロールグラニュレーターを使用することが好ましい。 The pulverizer that can be used in the pulverization step is not particularly limited. For example, a vibration mill, a roll granulator, a knuckle-type pulverizer, a roll mill, a high-speed rotary pulverizer (pin mill, hammer mill, screw mill), cylindrical A mixer etc. can be mentioned. Among them, it is preferable to use a multi-stage roll mill or roll granulator from the viewpoint of particle size control.
 本分級工程は、以下の粒度となるように分級操作をするが、表面架橋を行う場合には、分級操作は表面架橋工程前に実施するのが好ましく(第1分級工程)、さらに表面架橋後にも分級操作(第2分級工程)を実施してもよい。また、第1分級工程は、通常、粉砕工程の後に実施されるものの、粉砕工程の前にさらに分級工程を実施してもよい。なお、分級後の吸水性樹脂粒子の重量平均粒子径(D50)等は、特に限定されず、用途に応じて適宜に調整することができる。例えば、衛生材料として用いる場合、分級後の吸水性樹脂粒子の重量平均粒子径(D50)は、200~800μmが好ましく、200~600μmがより好ましく、300~500μmがさらに好ましい。また、粒子径が850~150μmの粒子の割合は、90重量%以上であることが好ましく、95重量%以上であることがより好ましく、97重量%以上であることがさらに好ましい。なお、最終製品としての吸水性樹脂も粒子状であることが好ましく、上記粒子径の範囲が適用される。 In this classification step, the classification operation is performed so as to have the following particle size. In the case where the surface cross-linking is performed, the classification operation is preferably performed before the surface cross-linking step (first classification step), and further after the surface cross-linking. A classification operation (second classification step) may also be performed. In addition, the first classification step is usually performed after the pulverizing step, but may be further performed before the pulverizing step. The weight-average particle size (D50) of the water-absorbent resin particles after classification is not particularly limited, and can be appropriately adjusted according to the application. For example, when used as a sanitary material, the weight-average particle size (D50) of the classified water-absorbent resin particles is preferably 200 to 800 μm, more preferably 200 to 600 μm, and further preferably 300 to 500 μm. Further, the proportion of particles having a particle diameter of 850 to 150 μm is preferably 90% by weight or more, more preferably 95% by weight or more, and even more preferably 97% by weight or more. Note that the water-absorbent resin as the final product is also preferably in the form of particles, and the above-described range of the particle diameter is applied.
 (2-5)表面処理工程
 本発明に係るキレート剤を含む吸水性樹脂の製造方法は、物性制御のために表面処理工程をさらに含むことが好ましい。表面処理工程は、公知の表面架橋剤および表面架橋方法を用いて行う表面架橋工程を含み、さらに必要に応じてその他の添加工程を含む。本発明では、表面架橋やその加熱工程ではキレート剤が減少しないことが見出された。
(2-5) Surface Treatment Step The method for producing a water-absorbent resin containing a chelating agent according to the present invention preferably further includes a surface treatment step for controlling physical properties. The surface treatment step includes a surface cross-linking step performed using a known surface cross-linking agent and a surface cross-linking method, and further includes other addition steps as necessary. In the present invention, it has been found that the chelating agent does not decrease in the surface crosslinking or heating step.
 (表面架橋剤)
 本発明で用いることのできる表面架橋剤としては、種々の有機または無機表面架橋剤を例示することができるが、好ましくは有機表面架橋剤を使用することができる。物性面で好ましくは、表面架橋剤として、多価アルコール化合物、エポキシ化合物、多価アミン化合物またはそのハロエポキシ化合物との縮合物、オキサゾリン化合物、(モノ、ジ、またはポリ)オキサゾリジノン化合物、アルキレンカーボネート化合物であり、特に高温での反応が必要な、多価アルコール化合物、アルキレンカーボネート化合物、オキサゾリジノン化合物からなる脱水反応性架橋剤を使用することができる。脱水反応性架橋剤を使用しない場合、より具体的には、米国特許第6228930号、同第6071976号、同第6254990号等に例示されている化合物を挙げることができる。当該化合物としては、例えば、モノ,ジ,トリ,テトラまたはプロピレングリコール、1,3-プロパンジオール、グリセリン、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ソルビトール等の多価アルコール化合物;エチレングリコールジグリシジルエーテルやグリシドール等のエポキシ化合物;エチレンカボネート等のアルキレンカーボネート化合物;オキセタン化合物;2-イミダゾリジノンのような環状尿素化合物等が挙げられる。
(Surface cross-linking agent)
As the surface cross-linking agent that can be used in the present invention, various organic or inorganic surface cross-linking agents can be exemplified, and preferably, an organic surface cross-linking agent can be used. In terms of physical properties, the surface crosslinking agent is preferably a polyhydric alcohol compound, an epoxy compound, a polyvalent amine compound or a condensate thereof with a haloepoxy compound, an oxazoline compound, a (mono, di, or poly) oxazolidinone compound, or an alkylene carbonate compound. In particular, a dehydration-reactive cross-linking agent comprising a polyhydric alcohol compound, an alkylene carbonate compound, and an oxazolidinone compound, which requires a reaction at a high temperature, can be used. When the dehydration-reactive cross-linking agent is not used, more specifically, compounds exemplified in U.S. Pat. Nos. 6,228,930, 6,071,976 and 6,254,990 can be exemplified. Such compounds include, for example, mono, di, tri, tetra or propylene glycol, 1,3-propanediol, glycerin, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, Polyhydric alcohol compounds such as 6-hexanediol and sorbitol; epoxy compounds such as ethylene glycol diglycidyl ether and glycidol; alkylene carbonate compounds such as ethylene carbonate; oxetane compounds; and cyclic urea compounds such as 2-imidazolidinone. No.
 (溶媒等)
 表面架橋剤の使用量は、吸水性樹脂粒子100重量部に対して、好ましくは0.001~10重量部、より好ましくは0.01~5重量部程度で適宜決定される。表面架橋剤に合わせて、水が好ましく使用される。使用される水の量は、吸水性樹脂粒子100重量部に対して、好ましくは0.5~20重量部、より好ましくは0.5~10重量部の範囲である。無機表面架橋剤と有機表面架橋剤とを併用する場合も、吸水性樹脂粒子100重量部に対して、それぞれ、好ましくは0.001~10重量部、より好ましくは0.01~5重量で併用される。
(Solvent, etc.)
The amount of the surface cross-linking agent to be used is appropriately determined, preferably in the range of about 0.001 to 10 parts by weight, more preferably about 0.01 to 5 parts by weight, based on 100 parts by weight of the water absorbent resin particles. Water is preferably used according to the surface crosslinking agent. The amount of water used is preferably 0.5 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the water absorbent resin particles. When the inorganic surface cross-linking agent and the organic surface cross-linking agent are used in combination, the amount is preferably 0.001 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the water absorbent resin particles. Is done.
 また、このとき、親水性有機溶媒を使用してもよく、その使用量は、吸水性樹脂粒子100重量部に対して、好ましくは0~10重量部、より好ましくは0~5重量部の範囲である。また、吸水性樹脂粒子への架橋剤溶液の混合に際し、本発明の効果を妨げない範囲、例えば、好ましくは0~10重量部、より好ましくは0~5重量部、さらにより好ましくは0~1重量部で、水不溶性微粒子粉体や界面活性剤を共存させてもよい。用いられる界面活性剤やその使用量は米国特許7473739号等に例示されている。 At this time, a hydrophilic organic solvent may be used, and the amount of the organic solvent is preferably from 0 to 10 parts by weight, more preferably from 0 to 5 parts by weight, based on 100 parts by weight of the water-absorbing resin particles. It is. When mixing the crosslinking agent solution with the water-absorbent resin particles, the effect of the present invention is not impaired, for example, preferably 0 to 10 parts by weight, more preferably 0 to 5 parts by weight, and still more preferably 0 to 1 part by weight. In parts by weight, a water-insoluble fine particle powder and a surfactant may coexist. The surfactant used and the amount used are exemplified in U.S. Pat. No. 7,473,739.
 (混合)
 上記表面架橋剤溶液を吸水性樹脂粒子に混合すると、表面架橋剤溶液中の水等により吸水性樹脂粒子は膨潤する。当該膨潤した吸水性樹脂粒子は、加熱により乾燥される。このとき、加熱温度としては80~220℃であることが好ましい。また、加熱時間は10~120分間であることが好ましい。
(mixture)
When the surface crosslinking agent solution is mixed with the water-absorbing resin particles, the water-absorbing resin particles swell due to water or the like in the surface crosslinking agent solution. The swollen water-absorbent resin particles are dried by heating. At this time, the heating temperature is preferably from 80 to 220 ° C. The heating time is preferably from 10 to 120 minutes.
 また、表面架橋剤の混合には、縦型または横型の高速回転攪拌型の混合機が好適に使用される。当該混合機の回転数は100~10000rpmが好ましく、300~2000rpmが好ましい。また、滞留時間は180秒間以内が好ましく、0.1~60秒間がより好ましく、1~30秒間がさらに好ましい。 縦 In addition, a vertical or horizontal high-speed stirring type mixer is preferably used for mixing the surface crosslinking agent. The rotation speed of the mixer is preferably 100 to 10000 rpm, and more preferably 300 to 2000 rpm. Further, the residence time is preferably within 180 seconds, more preferably 0.1 to 60 seconds, further preferably 1 to 30 seconds.
 (その他の表面架橋方法)
 本発明で用いられる表面架橋方法として、上記の表面架橋剤を用いる表面架橋に替えて、ラジカル重合開始剤を用いる表面架橋方法(米国特許第4783510号、国際公開第2006/062258号)や、吸水性樹脂の表面で単量体を重合する表面架橋方法(米国出願公開第2005/048221号、同第2009/0239966号、国際公開第2009/048160号)を用いてもよい。
(Other surface cross-linking methods)
As the surface cross-linking method used in the present invention, a surface cross-linking method using a radical polymerization initiator (US Pat. No. 4,783,510, WO 2006/062258) instead of the surface cross-linking using the surface cross-linking agent, and water absorption A surface cross-linking method of polymerizing a monomer on the surface of a conductive resin (US Patent Application Publication Nos. 2005/048221, 2009/0239966, and International Publication No. 2009/048160) may be used.
 上記表面架橋方法において、好ましく用いられるラジカル重合開始剤は過硫酸塩であり、任意に好ましく用いられる単量体としてアクリル酸(塩)や上述した表面架橋剤があり、好ましく用いられる溶媒として水があり、これらが吸水性樹脂の表面に添加された後、活性エネルギー線(特に紫外線)や加熱によって、吸水性樹脂表面で架橋重合またはラジカル重合開始剤での架橋反応を行うことで表面架橋が行われる。 In the above surface cross-linking method, the radical polymerization initiator preferably used is persulfate, and arbitrarily preferably used monomers include acrylic acid (salt) and the above-described surface cross-linking agent, and water is preferably used as a solvent. After these are added to the surface of the water-absorbent resin, surface crosslinking is performed by performing a cross-linking polymerization or a cross-linking reaction with a radical polymerization initiator on the surface of the water-absorbent resin by active energy rays (especially ultraviolet rays) or heating. Will be
 (イオン結合性表面架橋剤)
 本発明では、上述した表面架橋工程と同時または別途に、多価金属塩、カチオン性ポリマーまたは無機微粒子の何れか1つ以上を添加する添加工程をさらに含んでもよい。即ち、上記有機表面架橋剤以外に無機表面架橋剤を使用または併用して通液性・吸水速度等を向上させてもよい。無機表面架橋剤は、上記有機表面架橋剤と同時または別途使用することができる。使用される無機表面架橋剤としては、2価以上、好ましくは3価若しくは4価の多価金属の塩(有機塩または無機塩)または水酸化物を例示することができる。使用することができる多価金属としてはアルミニウム、ジルコニウム等が挙げられ、具体的には、乳酸アルミニウムや硫酸アルミニウムが挙げられる。好ましくは硫酸アルミニウムを含む水溶液である。
(Ion-binding surface cross-linking agent)
The present invention may further include an addition step of adding at least one of a polyvalent metal salt, a cationic polymer, and inorganic fine particles simultaneously with or separately from the above-described surface crosslinking step. That is, in addition to the organic surface cross-linking agent, an inorganic surface cross-linking agent may be used or used in combination to improve the liquid permeability and the water absorption rate. The inorganic surface crosslinking agent can be used simultaneously with or separately from the organic surface crosslinking agent. Examples of the inorganic surface cross-linking agent to be used include salts (organic salts or inorganic salts) or hydroxides of divalent or higher, preferably trivalent or tetravalent polyvalent metals. Examples of the polyvalent metal that can be used include aluminum and zirconium, and specifically, aluminum lactate and aluminum sulfate. Preferably, it is an aqueous solution containing aluminum sulfate.
 (2-6)その他の工程(微粉リサイクル工程等)
 上記工程以外に、必要により、蒸発モノマーのリサイクル工程、造粒工程、微粉除去工程、微粉リサイクル工程等を設けてもよく、経時色調の安定性効果やゲル劣化防止等のために、上記各工程の何れか一部または全部に、以下の添加剤を必要により使用してもよい。即ち、水溶性または水不溶性のポリマー、滑剤、消臭剤、抗菌剤、水、界面活性剤、水不溶性微粒子、酸化防止剤、還元剤等を、吸水性樹脂に対して、好ましくは0~30重量%、より好ましくは0.01~10重量%を添加混合することができる。これらの添加剤は、表面処理剤として使用することもできる。
(2-6) Other processes (fine powder recycling process, etc.)
In addition to the above steps, if necessary, a recycling step of the evaporated monomer, a granulation step, a fine powder removing step, a fine powder recycling step, and the like may be provided. The following additives may be used, if necessary, for any or all of them. That is, a water-soluble or water-insoluble polymer, a lubricant, a deodorant, an antibacterial agent, water, a surfactant, water-insoluble fine particles, an antioxidant, a reducing agent, and the like are preferably added to the water-absorbing resin in an amount of 0 to 30. % By weight, more preferably 0.01 to 10% by weight. These additives can also be used as a surface treatment agent.
 また、本発明の製造方法において、微粉リサイクル工程を含むことができる。当該微粉リサイクル工程とは、乾燥工程および必要により粉砕工程、分級工程で発生する微粉(特に粒子径150μm以下の粉体を70重量%以上含む微粉)を分離した後、そのままの状態で、或いは水和して、重合工程や乾燥工程にリサイクルする工程をいい、米国特許出願公開第2006/247351号や米国特許第6228930号等に記載された方法を適用することができる。 製造 Further, the production method of the present invention can include a fine powder recycling step. The fine powder recycling process is a process in which fine powder (especially fine powder containing 70% by weight or more of powder having a particle diameter of 150 μm or less) generated in a drying step and, if necessary, a crushing step and a classifying step is separated and is used as it is or in water. It refers to a step of recycle to a polymerization step and a drying step, and a method described in U.S. Patent Application Publication No. 2006/247351 or U.S. Patent No. 6,228,930 can be applied.
 さらに、目的に応じて、酸化剤、酸化防止剤、水、多価金属化合物、シリカや金属石鹸等の水不溶性無機または有機粉末、消臭剤、抗菌剤、高分子ポリアミン、パルプや熱可塑性繊維等を吸水性樹脂中に0~3重量%、好ましくは0~1重量%添加してもよい。 Furthermore, depending on the purpose, oxidizing agents, antioxidants, water, polyvalent metal compounds, water-insoluble inorganic or organic powders such as silica and metal soap, deodorants, antibacterial agents, high-molecular polyamines, pulp and thermoplastic fibers And the like may be added to the water-absorbent resin in an amount of 0 to 3% by weight, preferably 0 to 1% by weight.
 〔3〕吸水性樹脂
 本発明は、上述した本発明に係る製造方法により得られる、キレート剤を含む吸水性樹脂を提供する。以下、本発明に係るキレート剤を含む吸水性樹脂の各種物性について説明する。
[3] Water-absorbing resin The present invention provides a water-absorbing resin containing a chelating agent, which is obtained by the above-described production method according to the present invention. Hereinafter, various physical properties of the water-absorbing resin containing the chelating agent according to the present invention will be described.
 本発明に係る製造方法により得られる、キレート剤を含む吸水性樹脂は、好ましくはポリアクリル酸(塩)系架橋重合体吸水性樹脂である。 水性 The water-absorbing resin containing a chelating agent obtained by the production method according to the present invention is preferably a polyacrylic acid (salt) -based crosslinked polymer water-absorbing resin.
 (吸水性樹脂のキレート剤の残存量(C1)、含有量(C2)、残存率)
 吸水性樹脂のキレート剤の残存量(C1)は、混合後の単量体および重合体のカルボキシ基との塩交換は考慮せずに、中和塩型キレート剤は塩型として、酸型キレート剤は酸型としての添加時の有姿での残存量を示す。一方、吸水性樹脂のキレート剤の含有量(C2)は、酸型キレート剤としての含有量を表す。つまり、キレート剤が酸型の場合は、キレート剤の残存量(C1)と同じであり、キレート剤が塩型の場合は、同じキレート剤の酸型として濃度を計算する。具体的には、キレート剤の含有量(C2)は、「キレート剤の残存量(C1)×酸型の分子量/キレート剤の添加時の有姿の分子量」にて算出する。
(Remaining amount (C1), content (C2), remaining ratio of chelating agent of water-absorbing resin)
The residual amount (C1) of the chelating agent of the water-absorbing resin is determined by taking into account the salt exchange with the carboxy group of the monomer and polymer after mixing, the neutralized salt type chelating agent as a salt type, and the acid type chelating agent. The agent shows the remaining amount as it is when added as an acid form. On the other hand, the content (C2) of the chelating agent of the water-absorbing resin indicates the content as an acid-type chelating agent. That is, when the chelating agent is in the acid form, the amount is the same as the remaining amount (C1) of the chelating agent, and when the chelating agent is in the salt form, the concentration is calculated as the acid form of the same chelating agent. Specifically, the content (C2) of the chelating agent is calculated by “the remaining amount of the chelating agent (C1) × the molecular weight of the acid form / the molecular weight at the time of adding the chelating agent”.
 キレート剤の残存率(%)は、「{(キレート剤の残存量(C1)[ppm])/(キレート剤の添加量[ppm])}×100」にて算出する。 The remaining rate (%) of the chelating agent is calculated by “{(remaining amount of chelating agent (C1) [ppm]) / (adding amount of chelating agent [ppm])} × 100”.
 本発明に係る吸水性樹脂におけるキレート剤の残存量(C1)および含有量(C2)は、着色防止および劣化防止等の観点から、10ppm以上、40ppm以上、60ppm以上、100ppm以上、200ppm以上、250ppm以上、500ppm以上、600ppm以上の順に好ましい。また、本発明に係る吸水性樹脂におけるキレート剤の残存量(C1)および含有量(C2)の上限値は、キレート剤の効果(着色防止、劣化防止等)およびコストの観点から、1重量%以下、8000ppm以下、6000ppm以下、5000ppm以下の順に好ましい。 The residual amount (C1) and content (C2) of the chelating agent in the water-absorbent resin according to the present invention are 10 ppm or more, 40 ppm or more, 60 ppm or more, 100 ppm or more, 200 ppm or more, 250 ppm from the viewpoint of prevention of coloring and deterioration prevention. More preferably, the order is 500 ppm or more and 600 ppm or more. Further, the upper limit of the remaining amount (C1) and the content (C2) of the chelating agent in the water-absorbing resin according to the present invention is 1% by weight from the viewpoint of the effect (prevention of coloring, deterioration prevention, etc.) and cost of the chelating agent. Hereinafter, 8000 ppm or less, 6000 ppm or less, and 5000 ppm or less are preferable.
 また、本発明に係る吸水性樹脂において、キレート剤の残存率は、好ましくは50%以上であり、より好ましくは60%以上である。 In the water-absorbent resin according to the present invention, the residual ratio of the chelating agent is preferably 50% or more, and more preferably 60% or more.
 なお、キレート剤の残存率とは、吸水性樹脂の製造工程におけるキレート剤の添加量[ppm](対重合時の単量体または対含水ゲル状重合体の固形分)に対する、吸水性樹脂におけるキレート剤の残存量(C1)[ppm]の比率[%]である。また、キレート剤の残存率は、最終製品のキレート剤の含有量と、キレート剤に由来する分解物の量(ppm)をキレート剤の含有量に換算した量との和に対する、最終製品のキレート剤の含有量の比率から求めてもよい。 The residual ratio of the chelating agent is defined as the amount of the chelating agent added to the water-absorbent resin in the production process [ppm] (based on the solid content of the monomer at the time of polymerization or the solid content of the hydrogel polymer). It is the ratio [%] of the remaining amount (C1) [ppm] of the chelating agent. Further, the residual rate of the chelating agent is defined as the chelating agent content of the final product with respect to the sum of the content of the chelating agent in the final product and the amount obtained by converting the amount (ppm) of the decomposition product derived from the chelating agent into the content of the chelating agent. It may be determined from the ratio of the contents of the agent.
 (吸水性樹脂の初期色調)
 本発明に係る吸水性樹脂は、紙オムツ等の衛生材料向けに好適に使用することができる吸水性樹脂であり、白色粉末であることが好ましい。本発明に係る吸水性樹脂は、分光式色差計によるハンターLab表色系測定において、初期色調(別称「初期着色」ともいう)のL値(Lightness :明度指数)が少なくとも85、さらには89以上、好ましくは90以上を示すことが好ましい。なお、L値の上限は、通常、100であるが、粉末で85ならば、衛生材料等の製品において色調による問題が発生しない。
(Initial color tone of water absorbent resin)
The water-absorbing resin according to the present invention is a water-absorbing resin that can be suitably used for sanitary materials such as disposable diapers, and is preferably a white powder. The water-absorbent resin according to the present invention has an L value (Lightness: lightness index) of an initial color tone (also referred to as “initial coloring”) of at least 85, and more preferably 89 or more, in a Hunter Lab color system measurement using a spectral colorimeter. , Preferably 90 or more. The upper limit of the L value is usually 100, but if the value is 85 for powder, no problem due to the color tone occurs in products such as sanitary materials.
 なお、初期色調とは、吸水性樹脂製造後の色調であるが、一般的には工場出荷前に測定される色調とされる。また、例えば、30℃以下、相対湿度50%RHの雰囲気下での保存であれば、製造後、1年間以内に測定される値である。 Note that the initial color tone is a color tone after the production of the water-absorbent resin, but is generally a color tone measured before shipment from the factory. Further, for example, in the case of storage in an atmosphere of 30 ° C. or lower and a relative humidity of 50% RH, the value is measured within one year after production.
 また、本発明に係る吸水性樹脂は、初期色調のYI値(黄色度;イエローネスインデックス)が0~13、0~10、0~9、0~7、0~5、0~3の順に好ましく、殆ど黄ばみがない。 The water-absorbent resin according to the present invention has an initial color tone YI value (yellowness; yellowness index) of 0 to 13, 0 to 10, 0 to 9, 0 to 7, 0 to 5, and 0 to 3 in this order. Preferably, there is almost no yellowing.
 本発明の一態様において、上述した本発明に係るキレート剤を含む吸水性樹脂の製造方法であって、上記重合工程で使用される重合開始剤中の過硫酸塩が0~0.04モル%(対重合時の単量体)であり(但し、過硫酸塩0モル%(不使用)の場合は他の重合開始剤を必須に使用)、乾燥工程より前の工程でキレート剤を上記単量体水溶液または上記含水ゲル状重合体に合計10ppm以上(対重合時の単量体または対含水ゲル状重合体の固形分)添加し、上記粒子状の含水ゲル状重合体の重量平均粒子径(D50)を1mm以下とし、上記乾燥工程では、固形分が80重量%以上となるまでの乾燥時間を20分間以下とする製造方法により、最終製品として、キレート剤の残存量(C1)が10ppm以上であり、初期色調のL値が85以上であり、YI値が13以下である吸水性樹脂を製造することができる。 In one embodiment of the present invention, there is provided a method for producing a water-absorbent resin containing the chelating agent according to the present invention, wherein the persulfate in the polymerization initiator used in the polymerization step is 0 to 0.04 mol%. (In the case of 0 mol% of persulfate (not used), another polymerization initiator is indispensable), and the chelating agent is used in the step before the drying step. A total of 10 ppm or more (solid content of the monomer at the time of polymerization or the solid content of the hydrogel polymer) is added to the aqueous polymer solution or the hydrogel polymer, and the weight average particle diameter of the particulate hydrogel polymer is increased. (D50) is set to 1 mm or less, and in the drying step, the remaining amount of the chelating agent (C1) is 10 ppm as a final product by a manufacturing method in which the drying time until the solid content becomes 80% by weight or more is 20 minutes or less. The L value of the initial color tone is 85 A top, it is possible to produce a water-absorbent resin YI value is 13 or less.
 さらなる本発明の一態様において、上述した本発明に係るキレート剤を含む吸水性樹脂の製造方法であって、上記重合工程で使用される重合開始剤中の過硫酸塩が0~0.015モル%(対重合時の単量体)であり(但し、過硫酸塩0モル%(不使用)の場合は他の重合開始剤を必須に使用)、乾燥工程より前の工程でキレート剤を上記単量体水溶液または上記含水ゲル状重合体に合計200ppm以上(対重合時の単量体または対含水ゲル状重合体の固形分)添加し、上記粒子状の含水ゲル状重合体の重量平均粒子径(D50)を1mm以下とし、上記乾燥工程では、固形分が80重量%以上となるまでの乾燥時間を20分間以下とする製造方法により、最終製品として、キレート剤の残存量(C1)が200ppm以上であり、初期色調のL値が89以上であり、YI値が10以下である吸水性樹脂を製造することができる。 In a further aspect of the present invention, there is provided a method for producing a water-absorbent resin containing a chelating agent according to the present invention as described above, wherein the persulfate in the polymerization initiator used in the polymerization step is 0 to 0.015 mol. % (Based on the monomer at the time of polymerization) (however, in the case of 0 mol% of persulfate (not used), another polymerization initiator is indispensably used). A total of 200 ppm or more (solid content of the monomer at the time of polymerization or the solid content of the hydrogel polymer) was added to the aqueous monomer solution or the hydrogel polymer, and the weight average particle of the particulate hydrogel polymer was added. The diameter (D50) is set to 1 mm or less, and in the drying step, the remaining amount of the chelating agent (C1) is determined as a final product by a manufacturing method in which the drying time until the solid content becomes 80% by weight or more is 20 minutes or less. 200ppm or more, initial color L value is not less 89 or more, YI value can be produced water-absorbent resin is 10 or less.
 さらなる本発明の一態様において、キレート剤の含有量(C2)が200ppm以上(さらには上記範囲)であり、初期色調のL値が89以上(さらには上記範囲)であり、YI値が10以下(さらには上記範囲)であるポリアクリル酸(塩)系吸水性樹脂を提供する。 In a further embodiment of the present invention, the content (C2) of the chelating agent is 200 ppm or more (further in the above range), the L value of the initial color tone is 89 or more (further in the above range), and the YI value is 10 or less. (Furthermore, the present invention provides a polyacrylic acid (salt) -based water-absorbent resin having the above range).
 さらなる本発明の一態様においては、上記吸水性樹脂において、表面および内部にキレート剤を含み、表面に存在するキレート剤の量が、内部に存在するキレート剤の量よりも多い吸水性樹脂を提供する。 According to a further aspect of the present invention, there is provided a water-absorbent resin, wherein the water-absorbent resin contains a chelating agent on the surface and inside, and the amount of the chelating agent present on the surface is larger than the amount of the chelating agent present inside. I do.
 (吸水性樹脂の形状)
 本発明の吸水性樹脂の形状は、粉末として取り扱えるのであれば特に限定されるものではないが、不定形破砕状であることが好ましい。なお、不定形破砕状とは、含水ゲル状重合体または乾燥重合体を破砕することによって得られる、形状が一定でない粒子形状である。
(Shape of water absorbent resin)
The shape of the water-absorbent resin of the present invention is not particularly limited as long as it can be handled as a powder, but is preferably an irregular crushed shape. The amorphous crushed shape is a particle shape having an irregular shape obtained by crushing a hydrogel polymer or a dried polymer.
 (吸水性樹脂の粒子径)
 本発明の吸水性樹脂の重量平均粒子径(D50)は、200~800μmが好ましく、200~600μmがより好ましく、300~500μmがさらに好ましい。また、粒子径が850~150μmの粒子の割合は、90重量%以上であることが好ましく、95重量%以上であることがより好ましく、97重量%以上であることがさらに好ましい。本発明の吸水性樹脂は、上記粒子径であることにより、取り扱いが容易であり、衛生材料等で吸水性能を発揮しやすい。
(Particle size of water absorbent resin)
The weight average particle size (D50) of the water absorbent resin of the present invention is preferably from 200 to 800 μm, more preferably from 200 to 600 μm, and still more preferably from 300 to 500 μm. Further, the proportion of particles having a particle diameter of 850 to 150 μm is preferably 90% by weight or more, more preferably 95% by weight or more, and even more preferably 97% by weight or more. The water-absorbent resin of the present invention having the above-mentioned particle size is easy to handle, and easily exhibits water-absorbing performance with sanitary materials and the like.
 (吸水性樹脂の無加圧下吸水倍率)
 キレート剤の効果(例;着色防止、劣化防止等)をより顕著に発現させるために、本発明に係る吸水性樹脂の無加圧下吸水倍率(CRC)は、高い方が好ましく、好ましくは15g/g以上、より好ましくは25g/g以上、さらに好ましくは30g/g以上、特に好ましくは33g/g以上に制御される。CRCの上限値は、他の物性(例えば、加圧下吸水倍率(AAP))とのバランスの観点から、好ましくは60g/g以下、より好ましくは50g/g以下、さらに好ましくは45g/g以下である。CRCは、重合時または表面架橋時の架橋密度で制御することができる。
(Water absorption ratio of water absorbent resin under no pressure)
In order to more remarkably exhibit the effects of the chelating agent (eg, prevention of coloration, prevention of deterioration, etc.), the water absorption capacity under no pressure (CRC) of the water-absorbent resin according to the present invention is preferably higher, more preferably 15 g / g. g or more, more preferably 25 g / g or more, further preferably 30 g / g or more, and particularly preferably 33 g / g or more. The upper limit of the CRC is preferably 60 g / g or less, more preferably 50 g / g or less, and still more preferably 45 g / g or less, from the viewpoint of balance with other physical properties (for example, absorbency against pressure (AAP)). is there. CRC can be controlled by the crosslinking density at the time of polymerization or surface crosslinking.
 なお、CRCが15g/g未満の場合には、吸水性樹脂の架橋密度が高いため、キレート剤による劣化防止効果が表れ難い。また、当該吸水性樹脂を紙オムツ等の衛生材料に使用すると、吸水効率が悪くなるため、好ましくない。 If the CRC is less than 15 g / g, the cross-linking density of the water-absorbent resin is high, so that the effect of preventing deterioration by the chelating agent is difficult to appear. In addition, when the water-absorbing resin is used as a sanitary material such as a disposable diaper, the water-absorbing efficiency deteriorates, which is not preferable.
 (吸水性樹脂の加圧下吸水倍率)
 本発明に係る吸水性樹脂の加圧下吸水倍率(AAP(0.7psi))は、好ましくは15g/g以上、より好ましくは20g/g以上、さらに好ましくは23g/g以上に制御される。AAP(0.7psi)の上限値は、他の物性(例えば、無加圧下吸水倍率(CRC))とのバランスの観点から、好ましくは40g/g以下、より好ましくは35g/g以下、さらに好ましくは33g/g以下である。AAP(0.7psi)は、表面架橋時の架橋密度で制御することができる。
(Water absorption under pressure of water absorbent resin)
The water absorption capacity under pressure (AAP (0.7 psi)) of the water-absorbent resin according to the present invention is controlled to preferably 15 g / g or more, more preferably 20 g / g or more, and further preferably 23 g / g or more. The upper limit of AAP (0.7 psi) is preferably 40 g / g or less, more preferably 35 g / g or less, and still more preferably from the viewpoint of balance with other physical properties (for example, water absorption capacity under no pressure (CRC)). Is 33 g / g or less. AAP (0.7 psi) can be controlled by the crosslinking density at the time of surface crosslinking.
 (加圧下吸水倍率と無加圧下吸水倍率との比)
 本発明に係る吸水性樹脂の加圧下吸水倍率と無加圧下吸水倍率との比(AAP(0.7psi)/CRC)は、0.5以上、0.6以上、0.7以上、0.8以上、0.9以上の順に好ましい。AAP(0.7psi)/CRCの上限は、1.5以下、1.2以下、1.0以下程度である。CRCは遠心分離で膨潤後にゲル間の隙間水を除去するのに対して、AAP(0.7psi)は隙間水を含んだ吸水倍率であるため、AAP(0.7psi)がCRCを上回るケースもあるが、上限は通常、前記範囲である。
(Ratio between water absorption capacity under pressure and water absorption capacity under no pressure)
The ratio of the water absorption capacity under pressure to the water absorption capacity under no pressure (AAP (0.7 psi) / CRC) of the water-absorbent resin according to the present invention is 0.5 or more, 0.6 or more, 0.7 or more, and 0. 8 or more, preferably 0.9 or more. The upper limit of AAP (0.7 psi) / CRC is about 1.5 or less, 1.2 or less, and about 1.0 or less. While CRC removes interstitial water between gels after swelling by centrifugation, AAP (0.7 psi) has a water absorption capacity that includes interstitial water, so AAP (0.7 psi) may exceed CRC. However, the upper limit is usually within the above range.
 〔4〕吸水性樹脂の用途
 本発明に係る製造方法で得られる吸水性樹脂の用途は特に限定されないが、好ましくは紙オムツ、生理用ナプキン、失禁パット等の吸収性物品に使用される。本発明に係る製造方法で得られる吸水性樹脂は、これまで原料由来の臭気や着色等が問題になっていた高濃度オムツ(紙オムツ1枚当りの吸水性樹脂使用量が多い紙オムツ)、特に上記吸収性物品の吸収体上層部に使用した場合に、優れた性能を発揮する。紙オムツの吸収体中に含まれる吸水性樹脂の割合は、50重量%以上、さらには60重量%以上、70重量%以上、80重量%以上、90重量%以上の順に好ましい。
[4] Use of Water Absorbent Resin The use of the water absorbent resin obtained by the production method according to the present invention is not particularly limited, but it is preferably used for absorbent articles such as paper diapers, sanitary napkins, incontinence pads, and the like. The water-absorbent resin obtained by the production method according to the present invention is a high-concentration diaper (a paper diaper that uses a large amount of the water-absorbent resin per paper diaper), in which odors and coloring derived from raw materials have been a problem. Particularly, when used in the upper layer portion of the absorbent article, excellent performance is exhibited. The proportion of the water-absorbing resin contained in the absorbent body of the disposable diaper is preferably at least 50% by weight, more preferably at least 60% by weight, at least 70% by weight, at least 80% by weight, and at least 90% by weight.
 〔5〕従来技術との相違
 本発明者らは、上述したように、単量体を重合して得られる含水ゲル状重合体の乾燥工程において、乾燥工程より前の工程で添加されたキレート剤が特異的に減少することを見出した。そして、本発明者らは、乾燥工程でのキレート剤の減少の原因が、含水ゲル状重合体に残存する重合開始剤(特に過硫酸塩)であることを見出した。本発明は、課題を解決するために、重合時または乾燥前の重合開始剤中の過硫酸塩を制御し(0.04モル%以下)、さらに乾燥前のゲル粒子径および乾燥条件を制御して乾燥工程でのキレート剤の分解を抑えることを特徴としている。
[5] Difference from conventional art As described above, the present inventors have found that a chelating agent added in a step prior to a drying step in a drying step of a hydrogel polymer obtained by polymerizing a monomer. Was found to decrease specifically. The present inventors have found that the cause of the decrease in the chelating agent in the drying step is a polymerization initiator (particularly, persulfate) remaining in the hydrogel polymer. In order to solve the problem, the present invention controls persulfate in a polymerization initiator at the time of polymerization or before drying (0.04 mol% or less), and further controls gel particle diameter and drying conditions before drying. Of the chelating agent in the drying step.
 上述した特許文献1~23には、吸水性樹脂の製造工程でのキレート剤の使用に関して記載されている。吸水性樹脂の重合開始剤として、過硫酸塩は最も汎用であり、上記特許文献1~23にも重合開始剤として過硫酸塩が記載されている。しかし、上記特許文献1~23には、過硫酸塩によるキレート剤の分解はおろか、本願において指摘している課題および課題を解決する手段に関する記載は一切無い。 特許 The above-mentioned Patent Documents 1 to 23 disclose the use of a chelating agent in the process of producing a water absorbent resin. Persulfates are the most widely used polymerization initiators for water-absorbing resins, and Patent Documents 1 to 23 also disclose persulfates as polymerization initiators. However, in Patent Documents 1 to 23 described above, there is no description about the problems pointed out in the present application and means for solving the problems, let alone decomposition of the chelating agent by persulfate.
 なお、本発明で見出された乾燥工程でのキレート剤の特異的な減少の機構において、その反応機構は定かではないものの、「過硫酸塩のラジカルは、重合時には単量体と優先的に反応するが、重合後の含水ゲルに残存する単量体(残存モノマー)は数%以下と少量であるため、また乾燥時は重合時よりも高温でかつ固形分が高いため、乾燥工程では重合後に残存している過硫酸塩がキレート剤と反応する」と推定される。 In the mechanism of the specific reduction of the chelating agent in the drying step found in the present invention, although the reaction mechanism is not clear, `` radicals of persulfate preferentially form monomers during polymerization. It reacts, but the monomer (residual monomer) remaining in the hydrogel after polymerization is as small as several percent or less, and the temperature is higher and the solid content is higher during the drying than during the polymerization. The remaining persulfate later reacts with the chelating agent. "
 課題を解決する手段は、後述する実施例でさらに詳細に説明する。本発明においては、重合開始剤中の過硫酸塩を0~0.04モル%(対重合時の単量体)(0モル%は、重合時に不使用または乾燥工程前までに完全に消費されている場合を指す)に低減し、さらに乾燥前のゲル粒子径および乾燥条件を制御することにより、乾燥工程でのキレート剤の分解を抑えることができるので、後述する実施例に限定されず、課題を解決することができる。 手段 Means for solving the problem will be described in more detail in embodiments described later. In the present invention, the persulfate in the polymerization initiator is 0 to 0.04 mol% (based on the monomer at the time of polymerization) (0 mol% is not used during the polymerization or is completely consumed before the drying step. By decomposing the chelating agent in the drying step by controlling the gel particle diameter and the drying conditions before drying, so that the present invention is not limited to the examples described below. The problem can be solved.
 本発明の特許請求の範囲や実施例に記載の諸物性は、特に記載のない限り、室温(20~25℃)、湿度50RH%の条件下で、EDANA法および以下の測定法に従って求めた。さらに、実施例および比較例に提示される電気機器は、200Vまたは100V、60Hzの電源を使用した。なお、便宜上「リットル」を「L」、「重量%」を「wt%」と記すことがある。 諸 Unless otherwise specified, various physical properties described in the claims and examples of the present invention were determined at room temperature (20 to 25 ° C) and a humidity of 50 RH% according to the EDANA method and the following measurement methods. Furthermore, the electric devices presented in the examples and comparative examples used a power supply of 200 V or 100 V, 60 Hz. For convenience, "liter" may be referred to as "L" and "wt%" may be referred to as "wt%".
 (a)重量平均粒子径(D50)
 WO2011/126079に準じて、含水ゲル状重合体の重量平均粒子径(D50)は以下の方法で測定した。
(A) Weight average particle size (D50)
According to WO2011 / 126079, the weight average particle diameter (D50) of the hydrogel polymer was measured by the following method.
 即ち、温度20~25℃の含水ゲル状重合体(固形分;α重量%)20gを、0.08重量%エマール20C(界面活性剤、花王株式会社製)を含む20重量%塩化ナトリウム水溶液(以下、「エマール水溶液」と称する)500g中に添加して分散液とし、長さ50mm×直径7mmのスターラーチップを用いて300rpmで60分間攪拌した(高さ21cm、直径8cmの円柱のポリプロピレン製 約1.14L容器を使用)。 That is, 20 g of a hydrogel polymer (solid content: α wt%) at a temperature of 20 to 25 ° C. is mixed with a 20 wt% aqueous sodium chloride solution containing 0.08 wt% emal 20C (surfactant, manufactured by Kao Corporation) (Hereinafter referred to as "emar aqueous solution") was added to 500 g to form a dispersion, and the mixture was stirred at 300 rpm for 60 minutes using a stirrer chip having a length of 50 mm and a diameter of 7 mm (a cylinder made of polypropylene having a height of 21 cm and a diameter of 8 cm). 1.14 L container is used).
 攪拌終了後、回転盤の上に設置したJIS標準の篩(直径21cm、篩の目開き;8mm/4mm/2mm/1mm/0.60mm/0.30mm/0.15mm/0.075mm)の中央部に、上記分散液を投入した。エマール水溶液100gを使用して全含水ゲル状重合体を篩上に洗い出した後、上部からエマール水溶液6000gを、篩を手で回転させながら(20rpm)、30cmの高さからシャワー(孔72個開き、液量;6.0[L/min])を使って注水範囲(50cm)が篩全体に行き渡るよう満遍なく注ぎ、含水ゲル状重合体を分級した。分級した一段目の篩上の含水ゲル状重合体を約2分間水切り後、秤量した。二段目以降の篩についても同様の操作で分級し、水切り後にそれぞれの篩の上に残留した、含水ゲル状重合体を秤量した。 After completion of the stirring, the center of a JIS standard sieve (diameter: 21 cm, sieve opening: 8 mm / 4 mm / 2 mm / 1 mm / 0.60 mm / 0.30 mm / 0.15 mm / 0.075 mm) placed on a rotating disk The above-mentioned dispersion liquid was added to the part. After washing out all the hydrogel polymer on the sieve using 100 g of the Emal aqueous solution, 6000 g of the Emal aqueous solution was showered from the top with a height of 30 cm (72 holes) while rotating the sieve by hand (20 rpm). , Liquid volume: 6.0 [L / min]), and the mixture was poured evenly so that a water injection range (50 cm 2 ) was distributed over the entire sieve, and the hydrogel polymer was classified. The classified hydrogel polymer on the first-stage sieve was drained for about 2 minutes and weighed. The second and subsequent sieves were classified in the same manner, and the water-containing gel polymer remaining on each sieve after draining was weighed.
 各篩の上に残留した含水ゲル状重合体の重量から下記式(1)より、重量%割合を算出した。水切り後の篩の目開きは下記の式(2)に従い、含水ゲル状重合体の粒度分布を対数確率紙にプロットした。このグラフから残留百分率が50重量%に相当する粒子径を、含水ゲル状重合体の重量平均粒子径(D50)として読み取った。
X[%]=(w/W)×100 ・・・式(1)
R(α)[mm]=(20/w)1/3×r ・・・式(2)
 ここで、
 X;分級、水切り後に各篩上に残留した含水ゲルの重量% [%]
 w;分級、水切り後に各篩上に残留した含水ゲルのそれぞれの重量 [g]
 W;分級、水切り後に各篩上に残留した含水ゲルの総重量 [g]
 R(α);固形分α重量%の含水ゲルに換算したときの篩の目開き [mm]
 r;20重量%塩化ナトリウム水溶液中で膨潤した含水ゲルが分級された篩の目開き [mm]
である。
From the weight of the hydrogel polymer remaining on each sieve, the percentage by weight was calculated from the following formula (1). According to the following formula (2), the particle size distribution of the hydrogel polymer was plotted on log probability paper according to the following formula (2). From this graph, the particle diameter corresponding to the residual percentage of 50% by weight was read as the weight average particle diameter (D50) of the hydrogel polymer.
X [%] = (w / W) × 100 (1)
R (α) [mm] = (20 / w) 1/3 × r (2)
here,
X:% by weight of hydrogel remaining on each sieve after classification and drainage [%]
w: Weight of each hydrogel remaining on each sieve after classification and drainage [g]
W: Total weight of hydrogel remaining on each sieve after classification and drainage [g]
R (α); sieve opening when converted to a hydrogel having a solid content of α wt% [mm]
r: Mesh size of the sieve from which the hydrogel swelled in a 20% by weight aqueous sodium chloride solution was classified [mm]
It is.
 (b)キレート剤の残存量(C1)および残存率、キレート剤の含有量(C2)
 特許文献11(国際公開第2015/053372号パンフレット)に記載の手法で、吸水性樹脂中のキレート剤の残存量(C1)を抽出し、分析した。
(B) Residual amount of chelating agent (C1) and residual ratio, content of chelating agent (C2)
The remaining amount (C1) of the chelating agent in the water-absorbent resin was extracted and analyzed by the method described in Patent Document 11 (International Publication No. WO 2015/053372).
 具体的には、粒子状の吸水性樹脂1gを生理食塩水(0.9重量%の塩化ナトリウム水溶液)100gに添加し、室温下で1時間攪拌(攪拌回転数:500±50rpm)することで、キレート剤を生理食塩水に抽出した。 Specifically, 1 g of the particulate water-absorbing resin is added to 100 g of physiological saline (a 0.9% by weight aqueous solution of sodium chloride), and the mixture is stirred at room temperature for 1 hour (stirring speed: 500 ± 50 rpm). The chelating agent was extracted into physiological saline.
 その後、吸水性樹脂の膨潤したゲルを濾紙(No.2/JIS P 3801で規定する保留粒子径;5μm/トーヨー濾紙株式会社製)を用いて濾過した。 (5) Thereafter, the swollen gel of the water-absorbent resin was filtered using filter paper (retained particle size specified by JIS P # 3801; 5 μm / manufactured by Toyo Filter Paper Co., Ltd.).
 次いで、得られた濾液を、HPLCサンプル前処理用フィルター(クロマトディスク25A/水系タイプ、ポアサイズ;0.45μm/倉敷紡績株式会社製)に通過させ、高速液体クロマトグラフィー(HPLC)を用いて、濾液中のキレート剤の含有量を測定した。 Next, the obtained filtrate was passed through a filter for HPLC sample pretreatment (Chromatodisk 25A / water-based type, pore size: 0.45 μm / manufactured by Kurashiki Spinning Co., Ltd.), and the filtrate was subjected to high-performance liquid chromatography (HPLC). The content of the chelating agent therein was measured.
 粒子状の吸水性樹脂中のキレート剤の含有量は、既知濃度のモノマー標準液を測定して得られた検量線を外部標準として、粒子状の吸水性樹脂の生理食塩水に対する希釈率を考慮して求めた。そして、HPLCの測定条件は、キレート剤の種類によって適宜変更した。具体的には、ジエチレントリアミン5酢酸(DTPA)、エチレンジアミン4酢酸(EDTA)、およびニトリロ3酢酸(NTA)に関しては下記測定条件1に従い、エチレンジアミンテトラ(メチレンホスホン酸)(EDTMP)に関しては下記測定条件2に従い、それぞれ定量を行った。 The content of the chelating agent in the particulate water-absorbent resin is determined by taking into account the dilution ratio of the particulate water-absorbent resin to physiological saline using the calibration curve obtained by measuring a standard solution of known concentration as an external standard. I asked. The HPLC measurement conditions were appropriately changed depending on the type of the chelating agent. Specifically, the following measurement conditions 1 were used for diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), and nitrilotriacetic acid (NTA), and the following measurement conditions 2 were used for ethylenediaminetetra (methylenephosphonic acid) (EDTMP). Quantification was performed according to the above.
 測定条件1:
 <溶離液>;0.4モル/Lのミョウバン水溶液0.3ml、0.1Nの水酸化カリウム水溶液450ml、0.4モル/Lの水酸化テトラn-ブチルアンモニウム水溶液3ml、硫酸3ml、エチレングリコール1.5ml、およびイオン交換水2550mlの混合溶液
 <カラム>;LichroCART 250-4 Superspher 100 RP-18e(4μm)(メルク株式会社製)
 <カラム温度>;23±2℃
 <流量>;1ml/min
 <検出器>;UV、波長258nm。
Measurement condition 1:
<Eluent>; 0.3 ml of 0.4 mol / L alum aqueous solution, 450 ml of 0.1 N potassium hydroxide aqueous solution, 3 ml of 0.4 mol / L aqueous solution of tetra-n-butylammonium hydroxide, 3 ml of sulfuric acid, ethylene glycol Mixed solution of 1.5 ml and ion-exchanged water 2550 ml <Column>; LichroCART 250-4 Superspher 100 RP-18e (4 μm) (Merck Co., Ltd.)
<Column temperature>; 23 ± 2 ° C
<Flow rate>; 1 ml / min
<Detector>; UV, wavelength 258 nm.
 測定条件2:
 <溶離液>;0.003モル/Lの硫酸水溶液
 <カラム>;Shodex IC NI-424(昭和電工株式会社製)
 <カラム温度>;40℃
 <流量>;1ml/min
 <検出器>;RI
 上記キレート剤の含有量は含水率の影響を受けるため、本発明では、含水率補正した値であり、吸水性樹脂固形分100重量部当たりに換算した値である。
Measurement condition 2:
<Eluent>; 0.003 mol / L aqueous sulfuric acid solution <Column>; Shodex IC NI-424 (manufactured by Showa Denko KK)
<Column temperature>; 40 ° C
<Flow rate>; 1 ml / min
<Detector>; RI
Since the content of the chelating agent is affected by the water content, in the present invention, the content is a value corrected for the water content, and is a value converted per 100 parts by weight of the water-absorbent resin solids.
 添加するキレート剤がアニオン型の場合には、便宜上、添加したキレート剤の塩が塩交換されることなく、吸水性樹脂中においても存在していると見なす。 When the chelating agent to be added is of an anionic type, for convenience, it is considered that the salt of the added chelating agent is present in the water-absorbent resin without salt exchange.
 キレート剤の含有量(C2)は、キレート剤が酸型の場合は、キレート剤の残存量(C1)と同じである。キレート剤が塩型の場合は、同じキレート剤の酸型として濃度を計算する。すなわち、キレート剤の含有量(C2)は「キレート剤の残存量(C1)×酸型の分子量/キレート剤の添加時の有姿の分子量」にて算出した。 含有 The content (C2) of the chelating agent is the same as the remaining amount of the chelating agent (C1) when the chelating agent is of the acid type. If the chelating agent is in salt form, the concentration is calculated as the acid form of the same chelating agent. That is, the content (C2) of the chelating agent was calculated by “the remaining amount of the chelating agent (C1) × the molecular weight of the acid form / the apparent molecular weight when the chelating agent was added”.
 キレート剤の残存率(%)は、「{(キレート剤の残存量[ppm])/(キレート剤の添加量[ppm])}×100」にて算出した。 The remaining ratio (%) of the chelating agent was calculated by “{(remaining amount of chelating agent [ppm]) / (addition amount of chelating agent [ppm])} × 100”.
 (c)吸水性樹脂の着色評価(表面色評価)
 吸水性樹脂の着色評価は、日本電色工業株式会社製の分光式色差計SZ-Σ80COLOR MEASURING SYSTEMを用いて行った。測定の設定条件は、反射測定が選択され、内径30mmで且つ高さ12mmである付属の粉末・ペースト試料台が用いられ、標準として粉末・ペースト用標準丸白板No.2が用いられ、30Φ投光パイプが用いられた。備え付けの試料台に約5gの吸水性樹脂を充填した。この充填は、備え付け試料台を約6割程度充填する状態であった。室温(20~25℃)および湿度50RH%の条件下で、上記分光式色差計にて表面のハンターLab表色系におけるL値(Lightness:明度指数)およびYI値(黄色度;イエローネスインデックス)を測定した。この値を、「初期着色」とする。
(C) Coloring evaluation of water-absorbent resin (surface color evaluation)
The coloring of the water-absorbent resin was evaluated using a spectroscopic color difference meter SZ- # 80COLOR MEASURING SYSTEM manufactured by Nippon Denshoku Industries Co., Ltd. As the measurement setting conditions, reflection measurement was selected, an attached powder / paste sample table having an inner diameter of 30 mm and a height of 12 mm was used, and a standard round white plate No. for powder / paste was used as a standard. 2 was used and a 30Φ floodlight pipe was used. The provided sample stage was filled with about 5 g of the water-absorbing resin. In this filling, about 60% of the provided sample stage was filled. Under the conditions of room temperature (20 to 25 ° C.) and a humidity of 50 RH%, the L value (Lightness: lightness index) and the YI value (yellowness; yellowness index) in the Hunter Lab color system on the surface are measured by the above-mentioned spectroscopic colorimeter. Was measured. This value is referred to as “initial coloring”.
 続いて、上記ペースト試料台に約5gの吸水性樹脂を充填し、70±1℃、相対湿度65±1%の雰囲気に調整した恒温恒湿機(エスペック株式会社製、品名:小型環境試験器、形式SH-641)中に吸水性樹脂を充填したペースト試料台を7日間曝露した。この曝露が、7日間着色促進試験である。曝露後、上記分光式色差計にて表面のハンターLab表色系におけるL値(Lightness)、YI値(黄色度)を測定した。この測定値を、「経時着色(70±1℃、相対湿度65±1%、7日間)」とする。L値は高い程良く、また、YI値は小さいほど、低着色で実質白色に近づくことを示す。 Subsequently, the paste sample table was filled with about 5 g of a water-absorbent resin and adjusted to an atmosphere of 70 ± 1 ° C. and a relative humidity of 65 ± 1% (product name: small environmental tester manufactured by Espec Corporation). , Type SH-641) filled with a water-absorbent resin was exposed for 7 days. This exposure is a 7-day color acceleration test. After the exposure, the L value (Lightness) and the YI value (yellowness) in the Hunter Lab color system on the surface were measured by the above-mentioned spectral colorimeter. This measured value is referred to as “coloring with time (70 ± 1 ° C., relative humidity 65 ± 1%, 7 days)”. The higher the L value, the better, and the lower the YI value, the lower the coloration and the closer to substantially white.
 (d)含水ゲル中の固形分に対する過硫酸塩の量
 WO2007/116778に記載の手法で、含水ゲル中の固形分に対する過硫酸塩の量を測定した。
(D) Amount of persulfate based on solid content in hydrogel The amount of persulfate based on solid content in the hydrogel was measured by the method described in WO2007 / 116778.
 具体的には、容量260mlの蓋付ポリプロピレン製容器に、サンプルである含水ゲル3gおよび5重量%塩化ナトリウム水溶液100g(ゲルが膨潤して攪拌できない場合、塩濃度または水溶液の量は適宜調整される)を入れ、室温下に遮光し、テフロン(登録商標)コートされた25mmのスターラーを用いて500rpmで攪拌した。2時間経過後、該溶液を取り出し、フィルター(ジーエルサイエンス社製、GLクロマトディスク、水系25A、孔径0.45μm)に通過させた。その溶液5.00gをスクリューキャップ付ガラス製サンプル瓶(容量50ml、直径35mm、高さ約80mm)に入れた。その後、直ちに44重量%ヨウ化カリウム水溶液0.50gを加えて、室温下で遮光して攪拌した。1時間経過後、その溶液をプラスチック製の1cmセルに移し、分光光度計(日立レシオビーム分光光度計U-1100形)を用いて、吸光度(測定波長;350nm)を測定した(5重量%塩化ナトリウム水溶液5gに44重量%ヨウ化カリウム水溶液0.50gを加えた水溶液(ブランク)の吸光度を0とした)。また、それぞれ過硫酸塩を0ppm(添加せず)、5ppm、10ppm、15ppm、20ppm含有する5重量%塩化ナトリウム水溶液を作製し、上記操作によって吸光度を求め、検量線を作成した。そして、得られたサンプルの吸光度および検量線から、サンプルの含水ゲル中の過硫酸塩の量(ppm)を算出した。さらに計算によって過硫酸塩の量(モル%)を求めた。 Specifically, 3 g of a hydrogel and 100 g of a 5% by weight aqueous solution of sodium chloride (if the gel swells and cannot be stirred) are placed in a 260 ml-capacity polypropylene container with a lid, and the salt concentration or the amount of the aqueous solution is appropriately adjusted. ) Was placed under light shielding at room temperature, and the mixture was stirred at 500 rpm using a 25 mm stirrer coated with Teflon (registered trademark). After a lapse of 2 hours, the solution was taken out and passed through a filter (GL Science, GL chromatodisk, aqueous 25A, pore size 0.45 μm). 5.00 g of the solution was put into a glass sample bottle with a screw cap (capacity 50 ml, diameter 35 mm, height about 80 mm). Then, immediately, 0.50 g of a 44% by weight aqueous solution of potassium iodide was added, and the mixture was stirred at room temperature while shielding light. After 1 hour, the solution was transferred to a plastic 1 cm cell, and the absorbance (measurement wavelength; 350 nm) was measured using a spectrophotometer (Hitachi Ratio Beam Spectrophotometer U-1100) (5% by weight chloride). The absorbance of an aqueous solution (blank) obtained by adding 0.50 g of a 44% by weight aqueous solution of potassium iodide to 5 g of an aqueous sodium solution was set to 0). In addition, 5 wt% aqueous sodium chloride solutions containing 0 ppm (not added), 5 ppm, 10 ppm, 15 ppm, and 20 ppm of persulfate were prepared, and the absorbance was determined by the above operation to prepare a calibration curve. Then, the amount (ppm) of persulfate in the hydrogel of the sample was calculated from the absorbance of the obtained sample and the calibration curve. Further, the amount (mol%) of the persulfate was determined by calculation.
 なお、乾燥後の吸水性樹脂に関しても、同様の方法で過硫酸塩の量を測定することができる。また、測定限界は、ポリマー量や感度等によって適宜決定される。本発明の含水ゲルおよび吸水性樹脂の場合では、通常、検出限界は0.5ppmであり、検出限界未満はN.D.(Non-Detactable)と表記する。 In addition, the amount of persulfate can be measured in the same manner for the water-absorbent resin after drying. The measurement limit is appropriately determined depending on the amount of polymer, sensitivity, and the like. In the case of the hydrogel and the water-absorbent resin of the present invention, the detection limit is usually 0.5 ppm, and below the detection limit is expressed as ND (Non-Detactable).
 (e)吸水性樹脂の固形分
 吸水性樹脂において、180℃で揮発しない成分が占める割合を固形分として表す。固形分と含水率との関係は、以下の通りである;
 固形分(質量%)=100-含水率(質量%)
 固形分の測定方法は、以下の通りである。
(E) Solid Content of Water Absorbent Resin In the water absorbent resin, the ratio occupied by components that do not volatilize at 180 ° C. is represented as solid content. The relationship between solids and moisture content is as follows:
Solid content (% by mass) = 100-water content (% by mass)
The method for measuring the solid content is as follows.
 底面の直径が約5cmのアルミニウム製カップ(質量W0)に、約1gの吸水性樹脂を量り取り(質量W1)、180℃の無風乾燥機内に3時間静置して、乾燥させた。乾燥後の「アルミニウム製カップ+吸水性樹脂」の質量(W2)を測定し、下記式
 固形分(質量%)=((W2-W0)/W1)×100
によって固形分を求めた。
About 1 g of the water-absorbing resin was weighed and placed in an aluminum cup (mass W0) having a bottom diameter of about 5 cm (mass W1), and left standing in a windless drier at 180 ° C. for 3 hours to dry. The mass (W2) of the “aluminum cup + water-absorbent resin” after drying was measured, and the solid content (% by mass) = ((W2−W0) / W1) × 100
To determine the solids content.
 なお、ブロック状の乾燥重合体は、様々な位置からサンプルを5点取得し、粒子径が5mm以下になるように砕いてから測定し、平均値を採用した。 ブ ロ ッ ク In addition, as for the block-shaped dry polymer, five samples were obtained from various positions, crushed so that the particle diameter became 5 mm or less, measured, and the average value was adopted.
 (f)含水ゲル状重合体の固形分
 上記「吸水性樹脂の固形分」の測定方法と同様の方法で、粒子状の含水ゲル状重合体の固形分を測定した。但し、含水ゲル状重合体の量を約2g、乾燥温度を180℃、乾燥時間を24時間に、それぞれ変更した。
(F) Solid content of hydrogel polymer The solid content of the particulate hydrogel polymer was measured in the same manner as in the above-mentioned method of measuring “solid content of water-absorbent resin”. However, the amount of the hydrogel polymer was changed to about 2 g, the drying temperature was changed to 180 ° C., and the drying time was changed to 24 hours.
 (g)CRC(ERT441.2-02)
 「CRC」は、Centrifuge Retention Capacity (遠心分離機保持容量)の略称であり、無加圧下吸水倍率(以下、「吸水倍率」と称することもある)を意味する。具体的には、不織布袋中の0.200gの吸水性樹脂を、大過剰の0.9重量%塩化ナトリウム水溶液に対して30分間自由膨潤させた後、さらに遠心分離機で水切りした後の吸水倍率(単位;[g/g])を測定した。
(G) CRC (ERT441.2-02)
“CRC” is an abbreviation of Centrifuge Retention Capacity (centrifuge retention capacity), and means a non-pressurized water absorption capacity (hereinafter sometimes referred to as “water absorption capacity”). Specifically, 0.200 g of the water-absorbent resin in the non-woven fabric bag was freely swelled in a large excess of 0.9% by weight aqueous sodium chloride solution for 30 minutes, and then drained with a centrifuge. Magnification (unit: [g / g]) was measured.
 (h)AAP(0.7psi)(ERT442.2-02)
 「AAP」は、Absorption Against Pressure の略称であり、加圧下吸水倍率を意味する。AAP(0.7psi)は、0.900gの吸水性樹脂を、0.9重量%塩化ナトリウム水溶液に対して1時間、4.83kPa(0.7psi、49[g/cm])での荷重下で膨潤させた後の吸水倍率(単位;[g/g])を測定した。
(H) AAP (0.7 psi) (ERT442.2-02)
“AAP” is an abbreviation for Absorption Against Pressure, and means the water absorption capacity under pressure. AAP (0.7 psi) is a method in which 0.900 g of a water-absorbing resin is applied to a 0.9% by weight aqueous sodium chloride solution for 1 hour at 4.83 kPa (0.7 psi, 49 [g / cm 2 ]). The water absorption capacity (unit: [g / g]) after swelling was measured.
 (i)残存モノマー(ERT410.2-02)
 吸水性樹脂1.0gを0.9重量%塩化ナトリウム水溶液200mlに添加し、35mmのスターラーチップを用いて500rpmで1時間攪拌した後の溶解したモノマー量(単位;ppm)を、HPLC(高速液体クロマトグラフィー)を用いて測定した。なお、含水ゲル状重合体の残存モノマーは、試料を2g、攪拌時間を3時間にそれぞれ変更して測定を行い、得られた測定値を含水ゲル状重合体の樹脂固形分当りの重量に換算した値(単位;ppm)とした。
(I) Residual monomer (ERT410.2-02)
1.0 g of a water-absorbing resin was added to 200 ml of a 0.9% by weight aqueous sodium chloride solution, and stirred for 1 hour at 500 rpm using a 35 mm stirrer chip. (Chromatography). The residual monomer of the hydrogel polymer was measured by changing the sample to 2 g and the stirring time to 3 hours, and converting the measured value to the weight of the hydrogel polymer per solid resin. (Unit: ppm).
 [実施例1]
 キレート剤(DTPA)=1000ppm、過硫酸塩(NaPS)=0.04モル%、ゲル粒子径=958μm(約0.9mm)の条件で、吸水性樹脂を製造した。
[Example 1]
A water-absorbing resin was produced under the conditions of a chelating agent (DTPA) = 1000 ppm, persulfate (NaPS) = 0.04 mol%, and a gel particle size = 958 µm (about 0.9 mm).
 (重合工程)
 アクリル酸(288.24g)に、内部架橋剤であるポリエチレングリコールジアクリレート(数平均分子量;523)(1.67g、上記アクリル酸に対して0.08モル%)、および、キレート剤である10重量%ジエチレントリアミン5酢酸(DTPA)・5ナトリウム水溶液(3.52g、単量体に対して1000ppm)を添加した溶液(A)と、48.5重量%の水酸化ナトリウム水溶液(240.82g)を50℃に調温した脱イオン水(281.58g)で希釈した溶液(B)とを、容量1.5L、内径80mmのポリプロピレン製の容器にそれぞれ調製した。
(Polymerization step)
To acrylic acid (288.24 g), polyethylene glycol diacrylate (number average molecular weight; 523) (1.67 g, 0.08 mol% based on the above acrylic acid) as an internal crosslinking agent, and 10 as a chelating agent A solution (A) to which a 5% by weight aqueous solution of diethylenetriaminepentaacetic acid (DTPA) · 5 sodium (3.52 g, 1000 ppm based on the monomer) was added, and a 48.5% by weight aqueous solution of sodium hydroxide (240.82 g) were added. The solution (B) diluted with deionized water (281.58 g) adjusted to 50 ° C. was prepared in a polypropylene container having a capacity of 1.5 L and an inner diameter of 80 mm.
 マグネチックスターラーを用いて上記溶液(A)を攪拌しながら、上記溶液(B)を加えて混合することで、溶液(C)を調製した。 The solution (B) was added and mixed while stirring the solution (A) using a magnetic stirrer to prepare a solution (C).
 なお、溶液(C)の温度は、混合の過程で発生した中和熱および溶解熱によって、101.7℃まで上昇した。 (4) The temperature of the solution (C) rose to 101.7 ° C. due to the heat of neutralization and the heat of dissolution generated during the mixing.
 その後、上記溶液(C)の攪拌を継続し、溶液(C)の温度が95℃となった時点で、溶液(C)に、重合開始剤として10重量%の過硫酸ナトリウム水溶液(NaPS;3.81g、上記アクリル酸に対して0.04モル%、キレート剤に対する過硫酸塩のモル比;2.3)を加えて、約3秒間攪拌し、単量体水溶液(1)とした。単量体水溶液(1)の中和率は73モル%、単量体濃度は43重量%であった。 Thereafter, stirring of the solution (C) was continued, and when the temperature of the solution (C) reached 95 ° C., a 10% by weight aqueous solution of sodium persulfate (NaPS; 3%) was added to the solution (C) as a polymerization initiator. 0.81 g, 0.04 mol% based on the acrylic acid, and a molar ratio of persulfate to the chelating agent; 2.3) were added, and the mixture was stirred for about 3 seconds to obtain a monomer aqueous solution (1). The neutralization ratio of the aqueous monomer solution (1) was 73 mol%, and the monomer concentration was 43% by weight.
 次に、上記単量体水溶液(1)をステンレス製バット型容器に、大気開放系で流し込んだ。なお、当該ステンレス製バット型容器は、底面の大きさが250mm×250mm、上面の大きさが640mm×640mm、高さが50mm、中心断面が台形状であり、内面にシリコーンシートを貼付した容器であった。また、当該ステンレス製バット型容器は、100℃に加熱されたホットプレート(NEO HOTPLATE H1-1000、株式会社井内盛栄堂製)上に載置し、プレヒートしておいた。 (5) Next, the monomer aqueous solution (1) was poured into a stainless steel vat-type container in an atmosphere open system. The stainless steel bat type container is a container having a bottom surface size of 250 mm × 250 mm, an upper surface size of 640 mm × 640 mm, a height of 50 mm, a trapezoidal center cross section, and a silicone sheet attached to the inner surface. there were. The stainless steel bat type container was placed on a hot plate (NEO HOTPLATE H1-1000, manufactured by Iuchi Seieido Co., Ltd.) heated to 100 ° C. and preheated.
 上記単量体水溶液(1)を上記ステンレス製バット型容器に流し込んだ後、約5秒後に重合反応が開始した。 (4) After the monomer aqueous solution (1) was poured into the stainless steel vat-type container, a polymerization reaction started about 5 seconds later.
 当該重合反応は、水蒸気を発生しながら上方に向かって単量体水溶液(1)が四方八方に膨張、発泡しながら進行した後、ステンレス製バット型容器の底面より若干大きいサイズにまで、得られた含水ゲル状重合体(1)が収縮して終了した。なお、当該重合反応(膨張、収縮)は約1分間以内に終了したが、その後、3分間はステンレス製バット型容器内に含水ゲル状重合体(1)を保持した。当該重合反応(沸騰重合)によって、気泡を含む含水ゲル状重合体(1)を得た。 In the polymerization reaction, after the aqueous monomer solution (1) expands and foams in all directions upward while generating water vapor, the polymerization reaction proceeds to a size slightly larger than the bottom surface of the stainless steel vat container. The hydrogel polymer (1) thus shrunk was completed. The polymerization reaction (expansion and shrinkage) was completed within about 1 minute, but after that, the hydrogel polymer (1) was held in the stainless steel bat type container for 3 minutes. By the polymerization reaction (boiling polymerization), a hydrogel polymer (1) containing bubbles was obtained.
 (ゲル粉砕工程)
 次に、上記重合反応で得られた含水ゲル状重合体(1)を16等分した後、孔径11mmの多孔板を有する卓上型ミートチョッパー(MEAT-CHOPPER TYPE:12VR-400KSOX、飯塚工業株式会社製)を用い、含水ゲル状重合体の投入と同時に約100℃に調温した脱イオン水50g/minを添加しながらゲル粉砕を行った。得られたゲルをさらに卓上型ミートチョッパーに投入して2回目のゲル粉砕を行い、粒子状の含水ゲル状重合体(1)とした。なお、2回目以降のゲル粉砕において、脱イオン水の添加は行わなかった。
(Gel crushing process)
Next, after dividing the hydrogel polymer (1) obtained by the above polymerization reaction into 16 equal parts, a tabletop meat chopper (MEAT-CHOPER TYPE: 12VR-400KSOX, Iizuka Kogyo Co., Ltd.) having a perforated plate having a hole diameter of 11 mm. The gel was pulverized while adding 50 g / min of deionized water adjusted to about 100 ° C. simultaneously with the introduction of the hydrogel polymer. The obtained gel was further charged into a tabletop meat chopper and subjected to a second gel pulverization to obtain a particulate hydrogel polymer (1). Note that, in the second and subsequent gel pulverizations, no deionized water was added.
 上記ゲル粉砕で得られた粒子状の含水ゲル状重合体(1)は、重量平均粒子径(D50)が958μmであった。また、粒子状の含水ゲル状重合体(1)の残存モノマーは、1.1重量%であった。 粒子 The particulate hydrogel polymer (1) obtained by the above gel pulverization had a weight average particle size (D50) of 958 μm. The residual monomer of the particulate hydrogel polymer (1) was 1.1% by weight.
 (乾燥工程)
 次に、上記粒子状の含水ゲル状重合体(1)を目開き300μm(50メッシュ)の金網上に広げて載せ、熱風乾燥機内に入れた。
(Drying process)
Next, the particulate hydrogel polymer (1) was spread and placed on a wire mesh having a mesh size of 300 μm (50 mesh) and placed in a hot-air dryer.
 その後、160℃の熱風を30分間通気させることで当該粒子状の含水ゲル状重合体(1)を乾燥し、粒子状の乾燥重合体(1)を得た。 (4) Thereafter, the particulate hydrogel polymer (1) was dried by passing hot air at 160 ° C. for 30 minutes to obtain a particulate dried polymer (1).
 (粉砕・分級工程)
 続いて、当該乾燥重合体(1)をロールミル(WML型ロール粉砕機、有限会社井ノ口技研社製)に投入して粉砕し、その後、目開き850μmおよび150μmの二種類のJIS標準篩を用いて分級することで、不定形破砕状の吸水性樹脂(1)を得た。
(Pulverization / classification process)
Subsequently, the dried polymer (1) was put into a roll mill (WML-type roll grinder, manufactured by Inoguchi Giken Co., Ltd.) and pulverized, and thereafter, using two kinds of JIS standard sieves having openings of 850 μm and 150 μm. By classifying, an amorphous crushed water-absorbent resin (1) was obtained.
 上記一連の操作で得られた不定形破砕状の吸水性樹脂(1)は、CRCが28.9g/gであった。 不 The amorphous crushed water-absorbent resin (1) obtained by the above series of operations had a CRC of 28.9 g / g.
 (表面架橋工程)
 次に、エチレングリコールジグリシジルエーテル(商品名:デナコールEX-810、ナガセケムテックス社製、0.05重量部)、プロピレングリコール(1重量部)、脱イオン水(3.0重量部)およびイソプロピルアルコール(1重量部)からなる表面架橋剤溶液(1)(5.05重量部)を、上記不定形破砕状の吸水性樹脂(1)(100重量部)に添加し、均一になるまで混合することで、加湿混合物(1)を得た。続いて、当該加湿混合物(1)をステンレス製の容器(幅約22cm、奥行き約28cm、高さ約5cm)に均一に入れ、180℃で40分間加熱処理し、表面架橋された吸水性樹脂(1)を得た。
(Surface crosslinking process)
Next, ethylene glycol diglycidyl ether (trade name: Denacol EX-810, manufactured by Nagase ChemteX Corporation, 0.05 parts by weight), propylene glycol (1 part by weight), deionized water (3.0 parts by weight), and isopropyl A surface crosslinking agent solution (1) (5.05 parts by weight) composed of alcohol (1 part by weight) is added to the irregularly crushed water-absorbent resin (1) (100 parts by weight), and mixed until uniform. By doing so, a humidified mixture (1) was obtained. Subsequently, the humidified mixture (1) was uniformly placed in a stainless steel container (about 22 cm in width, about 28 cm in depth, about 5 cm in height), and was heat-treated at 180 ° C. for 40 minutes to obtain a surface-crosslinked water-absorbent resin ( 1) was obtained.
 その後、表面架橋された吸水性樹脂(1)を目開きが850μmのJIS標準篩を通過させることで、最終製品である吸水性樹脂(1)を得た。得られた最終製品である吸水性樹脂(1)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 (5) Thereafter, the surface-crosslinked water-absorbent resin (1) was passed through a JIS standard sieve having openings of 850 μm to obtain a water-absorbent resin (1) as a final product. The water-absorbent resin (1) as the final product obtained was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [実施例2]
 実施例1の重合開始剤の添加量を低減(NaPS=0.04モル%→0.015モル%);
 上記実施例1において、重合工程の重合開始剤(10重量%過硫酸ナトリウム水溶液)の添加量を、1.43g(アクリル酸に対して0.015モル%)にしたこと以外は、実施例1と同様にして、吸水性樹脂(2)を製造した。
[Example 2]
The amount of the polymerization initiator added in Example 1 was reduced (NaPS = 0.04 mol% → 0.015 mol%);
Example 1 Example 1 was repeated except that the amount of the polymerization initiator (10% by weight aqueous sodium persulfate solution) in the polymerization step was changed to 1.43 g (0.015 mol% based on acrylic acid). In the same manner as in the above, water-absorbent resin (2) was produced.
 ゲル粉砕工程で得られた粒子状の含水ゲル状重合体(2)は、重量平均粒子径(D50)が942μmであった。また、不定形破砕状の吸水性樹脂(2)は、CRCが28.8g/gであった。 The particulate hydrogel polymer (2) obtained in the gel pulverizing step had a weight average particle size (D50) of 942 μm. The irregularly crushed water-absorbent resin (2) had a CRC of 28.8 g / g.
 次いで、実施例1と同様に表面架橋して、最終製品である吸水性樹脂(2)を得た。得られた最終製品である吸水性樹脂(2)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。また、初期着色のYI値と、経時着色のYI値との差(経時YI値-初期YI値)を算出した。算出結果を以下の表3に示す。 Next, surface cross-linking was performed in the same manner as in Example 1 to obtain a water absorbent resin (2) as a final product. The resulting water-absorbent resin (2) as the final product was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below. Further, a difference between the YI value of the initial coloring and the YI value of the temporal coloring (the temporal YI value−the initial YI value) was calculated. The calculation results are shown in Table 3 below.
 [実施例3]
 実施例1のゲル粒子径を変更(約0.9mm→約0.5mm);
 上記実施例1において、ゲル粒子径を変更するために、ゲル粉砕工程における2回目のゲル粉砕後、得られたゲルをさらに卓上型ミートチョッパーに投入して3回目のゲル粉砕を行ったこと以外は、実施例1と同様にして、吸水性樹脂(3)を製造した。
[Example 3]
Changing the gel particle diameter of Example 1 (from about 0.9 mm to about 0.5 mm);
In the above Example 1, except that after the second gel pulverization in the gel pulverization step, the obtained gel was further charged into a tabletop meat chopper to perform the third gel pulverization in order to change the gel particle diameter. In the same manner as in Example 1, a water absorbent resin (3) was produced.
 ゲル粉砕工程で得られた粒子状の含水ゲル状重合体(3)は、重量平均粒子径(D50)が514μm(約0.5mm)であった。また、不定形破砕状の吸水性樹脂(3)は、CRCが28.3g/gであった。 粒子 The particulate hydrogel polymer (3) obtained in the gel pulverizing step had a weight average particle size (D50) of 514 μm (about 0.5 mm). Further, the amorphous crushed water-absorbent resin (3) had a CRC of 28.3 g / g.
 次いで、実施例1と同様に表面架橋して、最終製品である吸水性樹脂(3)を得た。得られた最終製品である吸水性樹脂(3)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, surface cross-linking was performed in the same manner as in Example 1 to obtain a water absorbent resin (3) as a final product. The water-absorbent resin (3) obtained as the final product was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [実施例4]
 実施例1の重合開始剤の種類を変更(NaPS→アゾ重合開始剤);
 上記実施例1において、重合開始剤を、アゾ重合開始剤である10重量%の2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド水溶液(商品名;和光純薬V-50)4.34g(アクリル酸に対して0.04モル%)に変更したこと以外は、実施例1と同様にして、吸水性樹脂(4)を製造した。
[Example 4]
Changing the type of polymerization initiator in Example 1 (NaPS → azo polymerization initiator);
3. In Example 1, the polymerization initiator was changed to an aqueous solution of 10% by weight of 2,2′-azobis (2-methylpropionamidine) dihydrochloride (trade name; Wako Pure Chemical V-50), which is an azo polymerization initiator. A water-absorbent resin (4) was produced in the same manner as in Example 1, except that the amount was changed to 34 g (0.04 mol% based on acrylic acid).
 ゲル粉砕工程で得られた粒子状の含水ゲル状重合体(4)は、重量平均粒子径(D50)が971μmであった。また、不定形破砕状の吸水性樹脂(4)は、CRCが30.0/gであった。 The particulate hydrogel polymer (4) obtained in the gel pulverizing step had a weight average particle size (D50) of 971 μm. In addition, the amorphous crushed water-absorbent resin (4) had a CRC of 30.0 / g.
 次いで、実施例1と同様に表面架橋して、最終製品である吸水性樹脂(4)を得た。得られた最終製品である吸水性樹脂(4)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, the surface was crosslinked in the same manner as in Example 1 to obtain a water absorbent resin (4) as a final product. The resulting water-absorbent resin (4) as the final product was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [実施例5]
 実施例1のキレート剤を変更(DTPA→EDTMP);
 上記実施例1において、キレート剤を、10重量%エチレンジアミンテトラメチレンホスホン酸(EDTMP)・5ナトリウム水溶液(3.52g、単量体に対して1000ppm)に変更したこと以外は、実施例1と同様にして、吸水性樹脂(5)を製造した。
[Example 5]
Changing the chelating agent of Example 1 (DTPA → EDTMP);
Same as Example 1 except that the chelating agent was changed to a 10% by weight aqueous solution of ethylenediaminetetramethylenephosphonic acid (EDTMP) · 5 sodium (3.52 g, 1000 ppm based on monomer). Thus, a water-absorbing resin (5) was produced.
 ゲル粉砕工程で得られた粒子状の含水ゲル状重合体(5)は、重量平均粒子径(D50)が964μm(約0.9mm)であった。また、不定形破砕状の吸水性樹脂(5)は、CRCが28.5g/gであった。 粒子 The particulate hydrogel polymer (5) obtained in the gel pulverizing step had a weight average particle size (D50) of 964 μm (about 0.9 mm). In addition, the amorphous crushed water-absorbent resin (5) had a CRC of 28.5 g / g.
 次いで、実施例1と同様に表面架橋して、最終製品である吸水性樹脂(5)を得た。得られた最終製品である吸水性樹脂(5)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, the surface was crosslinked in the same manner as in Example 1 to obtain a water absorbent resin (5) as a final product. The resulting water-absorbent resin (5) as the final product was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [実施例6]
 実施例5の重合開始剤の添加量を低減(NaPS=0.04モル%→0.015モル%);
 上記実施例5において、重合工程の重合開始剤(10重量%過硫酸ナトリウム水溶液)の添加量を、1.43g(アクリル酸に対して0.015モル%)にしたこと以外は、実施例5と同様にして、吸水性樹脂(6)を製造した。
[Example 6]
The amount of the polymerization initiator added in Example 5 was reduced (NaPS = 0.04 mol% → 0.015 mol%);
Example 5 Example 5 was repeated except that the amount of the polymerization initiator (10% by weight aqueous sodium persulfate solution) in the polymerization step was changed to 1.43 g (0.015 mol% based on acrylic acid). In the same manner as in the above, water-absorbent resin (6) was produced.
 ゲル粉砕工程で得られた粒子状の含水ゲル状重合体(6)は、重量平均粒子径(D50)が923μmであった。また、不定形破砕状の吸水性樹脂(6)は、CRCが29.3g/gであった。 The particulate hydrogel polymer (6) obtained in the gel pulverizing step had a weight average particle diameter (D50) of 923 μm. In addition, the amorphous crushed water-absorbent resin (6) had a CRC of 29.3 g / g.
 次いで、実施例1と同様に表面架橋して、最終製品である吸水性樹脂(6)を得た。得られた最終製品である吸水性樹脂(6)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, surface cross-linking was performed in the same manner as in Example 1 to obtain a water absorbent resin (6) as a final product. The resulting water-absorbent resin (6) as the final product was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [実施例7]
 実施例5の重合開始剤の種類を変更(過硫酸塩→アゾ重合開始剤);
 上記実施例5において、重合開始剤を、アゾ重合開始剤である10重量%の2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド水溶液(V-50)4.34g(アクリル酸に対して0.04モル%)に変更したこと以外は、実施例5と同様にして、吸水性樹脂(7)を製造した。
[Example 7]
Changing the type of polymerization initiator of Example 5 (persulfate → azo polymerization initiator);
In Example 5, 4.34 g of a 10% by weight aqueous solution of 2,2′-azobis (2-methylpropionamidine) dihydrochloride (V-50), which is an azo polymerization initiator, was used in Example 5 (based on acrylic acid). Water-absorbent resin (7) was produced in the same manner as in Example 5, except that the water-absorbent resin (7) was changed to 0.04 mol%).
 ゲル粉砕工程で得られた粒子状の含水ゲル状重合体(7)は、重量平均粒子径(D50)が933μmであった。また、不定形破砕状の吸水性樹脂(7)は、CRCが29.1g/gであった。 粒子 The particulate hydrogel polymer (7) obtained in the gel pulverizing step had a weight average particle size (D50) of 933 μm. In addition, the amorphous crushed water-absorbent resin (7) had a CRC of 29.1 g / g.
 次いで、実施例1と同様に表面架橋して、最終製品である吸水性樹脂(7)を得た。得られた最終製品である吸水性樹脂(7)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, surface cross-linking was performed in the same manner as in Example 1 to obtain a water absorbent resin (7) as a final product. The resulting water-absorbent resin (7) as the final product was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [実施例8]
 実施例5の重合開始剤を変更(過硫酸塩→UV重合開始剤でのUV重合);
 上記実施例5において、重合工程の重合開始剤(10重量%過硫酸ナトリウム水溶液)をUV重合開始剤に変更し、その添加量を0.04モル%としてUV重合を行ったこと以外は、実施例5と同様にして、吸水性樹脂(8)を製造した。
Example 8
Changing the polymerization initiator of Example 5 (persulfate → UV polymerization with UV polymerization initiator);
The procedure of Example 5 was repeated except that the polymerization initiator (10% by weight aqueous sodium persulfate solution) in the polymerization step was changed to a UV polymerization initiator, and the amount added was 0.04 mol% to perform UV polymerization. In the same manner as in Example 5, a water absorbent resin (8) was produced.
 以下、UV重合を行う重合工程について説明する。 重合 Hereinafter, the polymerization step of performing UV polymerization will be described.
 (重合工程)
 アクリル酸(285.30g)に、内部架橋剤であるポリエチレングリコールジアクリレート(数平均分子量;523)(上記アクリル酸に対して0.08モル%)、キレート剤である10重量%エチレンジアミンテトラメチレンホスホン酸(EDTMP)・5ナトリウム水溶液 (3.52g、単量体に対して1000ppm)、および、UV重合開始剤である10重量%のIRGACURE(登録商標;BASF製: 1-ヒドロキシ シクロヘキシル フェニル ケトン)184 アクリル酸溶液3.27g(上記アクリル酸に対して0.04モル%)を添加した溶液(A)と、48.5重量%の水酸化ナトリウム水溶液(240.82g)を50℃に調温した脱イオン水(285.06g)で希釈した溶液(B)とを、容量1.5L、内径80mmのポリプロピレン製の容器にそれぞれ調製した。
(Polymerization step)
To acrylic acid (285.30 g), polyethylene glycol diacrylate (number average molecular weight; 523) (0.08 mol% based on the above acrylic acid) as an internal crosslinking agent, and 10% by weight ethylenediaminetetramethylene phosphone as a chelating agent Acid (EDTMP) · 5 sodium aqueous solution (3.52 g, 1000 ppm based on monomer) and 10% by weight of IRGACURE (registered trademark; manufactured by BASF: 1-hydroxycyclohexyl phenyl ketone) as a UV polymerization initiator 184 A solution (A) to which 3.27 g of an acrylic acid solution (0.04 mol% based on the above acrylic acid) was added, and a 48.5% by weight aqueous sodium hydroxide solution (240.82 g) were adjusted to 50 ° C. A solution (B) diluted with deionized water (285.06 g) was mixed with a polyp having a capacity of 1.5 L and an inner diameter of 80 mm. They were prepared pyrene-made container.
 マグネチックスターラーを用いて上記溶液(A)を攪拌しながら、上記溶液(B)を加えて混合することで、溶液(C)を調製し、単量体水溶液(8)とした。 (4) While stirring the solution (A) using a magnetic stirrer, the solution (B) was added and mixed to prepare a solution (C), which was used as a monomer aqueous solution (8).
 なお、単量体水溶液(8)の温度は、混合の過程で発生した中和熱および溶解熱によって、101.9℃まで上昇した。単量体水溶液(8)の中和率は73モル%、単量体濃度は43重量%であった。 (4) The temperature of the aqueous monomer solution (8) rose to 101.9 ° C. due to heat of neutralization and heat of dissolution generated during the mixing process. The neutralization ratio of the aqueous monomer solution (8) was 73 mol%, and the monomer concentration was 43% by weight.
 次に、単量体水溶液(8)の温度が95℃となった時点で、ステンレス製バット型容器に単量体水溶液(8)を注ぎ込むと同時に、ステンレス製バット型容器の底面から高さ600mmの位置に設置された紫外線照射装置(トスキュア 401;型名:HC-04131-B;ランプ:H400L/2;ハリソン東芝ライティング株式会社製)によって、単量体水溶液(8)に紫外線を照射した。 Next, when the temperature of the aqueous monomer solution (8) reaches 95 ° C., the aqueous monomer solution (8) is poured into the stainless steel vat-shaped container, and at the same time, a height of 600 mm from the bottom surface of the stainless steel vat-shaped container. The monomer aqueous solution (8) was irradiated with ultraviolet rays by an ultraviolet irradiation device (Toskure # 401; Model name: HC-04131-B; Lamp: H400L / 2; manufactured by Harrison Toshiba Lighting Co., Ltd.) installed at the position of (1).
 なお、当該ステンレス製バット型容器は、底面の大きさが250mm×250mm、上面の大きさが640mm×640mm、高さが50mm、中心断面が台形状であり、内面にシリコーンシートを貼付した容器であった。また、当該ステンレス製バット型容器は、100℃に加熱されたホットプレート(NEO HOTPLATE H1-1000、株式会社井内盛栄堂製)上に載置し、プレヒートしておいた。 The stainless steel bat type container is a container having a bottom surface size of 250 mm × 250 mm, an upper surface size of 640 mm × 640 mm, a height of 50 mm, a trapezoidal center cross section, and a silicone sheet attached to the inner surface. there were. The stainless steel bat type container was placed on a hot plate (NEO HOTPLATE H1-1000, manufactured by Iuchi Seieido Co., Ltd.) heated to 100 ° C. and preheated.
 上記単量体水溶液(8)を上記ステンレス製バット型容器に流し込んだ後、約7秒後に重合反応が開始した。 {Circle around (7)} After the monomer aqueous solution (8) was poured into the stainless steel vat type container, a polymerization reaction started about 7 seconds later.
 当該重合(静置水溶液重合)反応は、水蒸気を発生しながら進行した。重合は約1分以内にピーク温度となった(重合ピーク温度:102℃)。3分後、紫外線の照射を停止し、気泡を含む含水ゲル状重合体(8)を得た。 The polymerization (static solution polymerization) proceeded while generating steam. The polymerization reached a peak temperature within about 1 minute (polymerization peak temperature: 102 ° C.). After 3 minutes, the irradiation of ultraviolet rays was stopped to obtain a hydrogel polymer (8) containing bubbles.
 (ゲル粉砕工程以降)
 ゲル粉砕工程以降の工程は、実施例1と同様に行った。これにより、吸水性樹脂(8)を製造した。
(After the gel crushing process)
The steps after the gel pulverizing step were performed in the same manner as in Example 1. Thus, a water absorbent resin (8) was produced.
 ゲル粉砕工程で得られた粒子状の含水ゲル状重合体(8)は、重量平均粒子径(D50)が917μmであった。また、不定形破砕状の吸水性樹脂(8)は、CRCが28.0g/gであった。 粒子 The particulate hydrogel polymer (8) obtained in the gel pulverizing step had a weight average particle size (D50) of 917 μm. Further, the amorphous crushed water-absorbent resin (8) had a CRC of 28.0 g / g.
 次いで、実施例1と同様に表面架橋して、最終製品である吸水性樹脂(8)を得た。得られた最終製品である吸水性樹脂(8)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, the surface was crosslinked in the same manner as in Example 1 to obtain a water absorbent resin (8) as a final product. The resulting water-absorbent resin (8) as the final product was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [比較例1]
 実施例1の重合開始剤の添加量を変更(NaPS=0.04モル%→0.05モル%);
 上記実施例1において、重合工程の重合開始剤(10重量%過硫酸ナトリウム水溶液)の添加量を、4.8g(アクリル酸に対して0.05モル%)にしたこと以外は、実施例1と同様にして、比較吸水性樹脂(1)を製造した。
[Comparative Example 1]
The amount of the polymerization initiator added in Example 1 was changed (NaPS = 0.04 mol% → 0.05 mol%);
Example 1 Example 1 was repeated except that the amount of the polymerization initiator (10% by weight aqueous sodium persulfate solution) in the polymerization step was changed to 4.8 g (0.05 mol% based on acrylic acid). Comparative Water Absorbent Resin (1) was produced in the same manner as in Example 1.
 ゲル粉砕工程で得られた粒子状の比較含水ゲル状重合体(1)は、重量平均粒子径(D50)が900μmであった。また、不定形破砕状の比較吸水性樹脂(1)は、CRCが28.8g/gであった。 粒子 The particulate comparative hydrogel polymer (1) obtained in the gel pulverizing step had a weight average particle diameter (D50) of 900 µm. In addition, the irregularly crushed comparative water-absorbent resin (1) had a CRC of 28.8 g / g.
 次いで、実施例1と同様に表面架橋して、最終製品である比較吸水性樹脂(1)を得た。得られた比較吸水性樹脂(1)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, surface cross-linking was performed in the same manner as in Example 1 to obtain a comparative water-absorbent resin (1) as a final product. The comparative water absorbent resin (1) obtained was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [比較例2]
 実施例1のゲル粒子径を変更(約0.9mm→5mm以上);
 上記実施例1において、ゲル粒子径を変更するために、ゲル粉砕工程におけるゲル粉砕を1回にしたこと以外は、実施例1と同様にして、比較吸水性樹脂(2)を製造した。
[Comparative Example 2]
Changing the gel particle diameter of Example 1 (about 0.9 mm → 5 mm or more);
A comparative water-absorbent resin (2) was produced in the same manner as in Example 1 except that the gel pulverizing step was performed only once in order to change the gel particle diameter.
 ゲル粉砕工程で得られた粒子状の比較含水ゲル状重合体(2)は、重量平均粒子径(D50)が5000μm(5mm)以上であった。また、不定形破砕状の比較吸水性樹脂(2)は、CRCが27.1g/gであった。 粒子 The particulate hydrogel polymer (2) obtained in the gel pulverizing step had a weight average particle diameter (D50) of 5000 μm (5 mm) or more. The amorphous crushed comparative water absorbent resin (2) had a CRC of 27.1 g / g.
 次いで、実施例1と同様に表面架橋して、最終製品である比較吸水性樹脂(2)を得た。得られた比較吸水性樹脂(2)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。また、初期着色のYI値と、経時着色のYI値との差(経時YI値-初期YI値)を算出した。算出結果を以下の表3に示す。 Next, surface cross-linking was performed in the same manner as in Example 1 to obtain a comparative water-absorbent resin (2) as a final product. The comparative water absorbent resin (2) obtained was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below. Further, a difference between the YI value of the initial coloring and the YI value of the temporal coloring (the temporal YI value−the initial YI value) was calculated. The calculation results are shown in Table 3 below.
 [比較例3]
 実施例5のゲル粒子径を変更(約0.9mm→5mm以上);
 上記実施例5において、ゲル粒子径を変更するために、ゲル粉砕工程におけるゲル粉砕を1回にしたこと以外は、実施例5と同様にして、比較吸水性樹脂(3)を製造した。
[Comparative Example 3]
Changing the gel particle diameter of Example 5 (from about 0.9 mm to 5 mm or more);
A comparative water-absorbent resin (3) was produced in the same manner as in Example 5 except that the gel pulverizing step was performed once in order to change the gel particle diameter.
 ゲル粉砕工程で得られた粒子状の比較含水ゲル状重合体(3)は、重量平均粒子径(D50)が5000μm(5mm)以上であった。また、不定形破砕状の比較吸水性樹脂(3)は、CRCが27.2g/gであった。 粒子 The particulate hydrogel polymer (3) obtained in the gel pulverizing step had a weight average particle diameter (D50) of 5000 μm (5 mm) or more. The amorphous crushed comparative water-absorbent resin (3) had a CRC of 27.2 g / g.
 次いで、実施例1と同様に表面架橋して、最終製品である比較吸水性樹脂(3)を得た。得られた比較吸水性樹脂(3)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, surface cross-linking was performed in the same manner as in Example 1 to obtain a comparative water-absorbent resin (3) as a final product. The comparative water absorbent resin (3) obtained was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [実施例9]
 実施例1のキレート剤の添加量を変更(DTPA=1000ppm→300ppm);
 上記実施例1において、DTPA・5ナトリウムの添加量を、単量体に対して300ppm(キレート剤に対する過硫酸塩のモル比;7.7)にしたこと以外は、実施例1と同様にして、吸水性樹脂(9)を製造した。
[Example 9]
The amount of the chelating agent added in Example 1 was changed (DTPA = 1000 ppm → 300 ppm);
In the same manner as in Example 1 except that the amount of DTPA / 5 sodium added was 300 ppm based on the monomer (the molar ratio of persulfate to the chelating agent: 7.7). And a water-absorbing resin (9).
 ゲル粉砕工程で得られた粒子状の含水ゲル状重合体(9)は、重量平均粒子径(D50)が922μmであった。また、不定形破砕状の吸水性樹脂(9)は、CRCが29.8g/gであった。 The particulate hydrogel polymer (9) obtained in the gel pulverizing step had a weight average particle size (D50) of 922 μm. In addition, the amorphous crushed water-absorbent resin (9) had a CRC of 29.8 g / g.
 次いで、実施例1と同様に表面架橋して、最終製品である吸水性樹脂(9)を得た。得られた最終製品である吸水性樹脂(9)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, surface cross-linking was performed in the same manner as in Example 1 to obtain a water absorbent resin (9) as a final product. The water-absorbent resin (9) as the final product obtained was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [実施例10]
 実施例1のキレート剤の添加量を変更(DTPA=1000ppm→50ppm);
 上記実施例1において、DTPA・5ナトリウムの添加量を、単量体に対して50ppm(キレート剤に対する過硫酸塩のモル比;46.3)にしたこと以外は、実施例1と同様にして、吸水性樹脂(10)を製造した。
[Example 10]
The amount of the chelating agent added in Example 1 was changed (DTPA = 1000 ppm → 50 ppm);
In the above-mentioned Example 1, DTPA-5 sodium was added in the same manner as in Example 1 except that the addition amount of the monomer was 50 ppm relative to the monomer (the molar ratio of the persulfate to the chelating agent; 46.3). And a water-absorbing resin (10).
 ゲル粉砕工程で得られた粒子状の含水ゲル状重合体(10)は、重量平均粒子径(D50)が950μmであった。また、不定形破砕状の吸水性樹脂(10)は、CRCが30.3g/gであった。 The particulate hydrogel polymer (10) obtained in the gel pulverizing step had a weight average particle size (D50) of 950 μm. In addition, the amorphous crushed water-absorbent resin (10) had a CRC of 30.3 g / g.
 次いで、実施例1と同様に表面架橋して、最終製品である吸水性樹脂(10)を得た。得られた最終製品である吸水性樹脂(10)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, surface cross-linking was performed in the same manner as in Example 1 to obtain a water absorbent resin (10) as a final product. The water-absorbent resin (10) as the final product obtained was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [実施例11]
 実施例1のキレート剤の添加量を変更(DTPA=1000ppm→50ppm)、および、二種類の重合開始剤を併用;
 上記実施例1において、DTPA・5ナトリウムの添加量を、単量体に対して50ppmにするとともに、重合工程の重合開始剤(10重量%過硫酸ナトリウム水溶液)の添加量を、1.43g(アクリル酸に対して0.015モル%)にし、さらに、アゾ重合開始剤として10重量%の2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド水溶液(V-50)2.71g(アクリル酸に対して0.025モル%)を併用したこと以外は、実施例1と同様にして、吸水性樹脂(11)を製造した。
[Example 11]
The addition amount of the chelating agent of Example 1 was changed (DTPA = 1000 ppm → 50 ppm), and two kinds of polymerization initiators were used in combination;
In Example 1 described above, the addition amount of DTPA · 5 sodium was set to 50 ppm with respect to the monomer, and the addition amount of the polymerization initiator (10% by weight aqueous sodium persulfate solution) was 1.43 g ( 0.015 mol% with respect to acrylic acid), and 2.71 g of an aqueous solution of 2,2'-azobis (2-methylpropionamidine) dihydrochloride (V-50) (10% by weight) as an azo polymerization initiator (acrylic). Water-absorbent resin (11) was produced in the same manner as in Example 1 except that 0.025 mol% of the acid was used in combination.
 ゲル粉砕工程で得られた粒子状の含水ゲル状重合体(11)は、重量平均粒子径(D50)が919μmであった。また、不定形破砕状の吸水性樹脂(11)は、CRCが30.1g/gであった。 The particulate hydrogel polymer (11) obtained in the gel pulverizing step had a weight average particle size (D50) of 919 μm. Further, the amorphous crushed water-absorbent resin (11) had a CRC of 30.1 g / g.
 次いで、実施例1と同様に表面架橋して、最終製品である吸水性樹脂(11)を得た。得られた最終製品である吸水性樹脂(11)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, the surface was crosslinked in the same manner as in Example 1 to obtain a water absorbent resin (11) as a final product. The resulting water-absorbent resin (11) as the final product was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [実施例12]
 実施例1の乾燥温度および乾燥時間を変更(160℃→120℃,30分間→120分間);
 上記実施例1において、乾燥工程の乾燥温度および乾燥時間を120℃,120分間(120℃の熱風を120分間通気)に変更したこと以外は、実施例1と同様にして、吸水性樹脂(12)を製造した。
[Example 12]
Changing the drying temperature and drying time in Example 1 (160 ° C. → 120 ° C., 30 minutes → 120 minutes);
In the above Example 1, except that the drying temperature and the drying time in the drying step were changed to 120 ° C. for 120 minutes (hot air of 120 ° C. was passed for 120 minutes), the water absorbing resin (12 ) Manufactured.
 ゲル粉砕工程で得られた粒子状の含水ゲル状重合体(12)は、重量平均粒子径(D50)が937μmであった。また、不定形破砕状の吸水性樹脂(12)は、CRCが26.3g/g、固形分が94.3%であった。 The particulate hydrogel polymer (12) obtained in the gel pulverizing step had a weight average particle size (D50) of 937 μm. The irregularly crushed water-absorbent resin (12) had a CRC of 26.3 g / g and a solid content of 94.3%.
 次いで、実施例1と同様に表面架橋して、最終製品である吸水性樹脂(12)を得た。得られた最終製品である吸水性樹脂(12)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, the surface was crosslinked in the same manner as in Example 1 to obtain a water absorbent resin (12) as a final product. The water-absorbent resin (12) as the final product obtained was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [実施例13]
 実施例1の乾燥温度およびゲル粒子径を変更(160℃→120℃,約0.9mm→約0.5mm);
 上記実施例1において、ゲル粒子径を変更するために、ゲル粉砕工程における2回目のゲル粉砕後、得られたゲルをさらに卓上型ミートチョッパーに投入して3回目のゲル粉砕を行ったこと、並びに、乾燥工程の乾燥温度を120℃(120℃の熱風を30分間通気)に変更したこと以外は、実施例1と同様にして、吸水性樹脂(13)を製造した。
Example 13
Changing the drying temperature and gel particle diameter of Example 1 (160 ° C. → 120 ° C., about 0.9 mm → about 0.5 mm);
In Example 1 above, in order to change the gel particle diameter, after the second gel pulverization in the gel pulverization step, the obtained gel was further charged into a tabletop meat chopper to perform the third gel pulverization, In addition, a water-absorbent resin (13) was produced in the same manner as in Example 1 except that the drying temperature in the drying step was changed to 120 ° C. (hot air of 120 ° C. was passed for 30 minutes).
 ゲル粉砕工程で得られた粒子状の含水ゲル状重合体(13)は、重量平均粒子径(D50)が510μm(約0.5mm)であった。また、不定形破砕状の吸水性樹脂(13)は、CRCが26.4g/g、固形分が93.4%であった。 粒子 The particulate hydrogel polymer (13) obtained in the gel pulverizing step had a weight average particle diameter (D50) of 510 μm (about 0.5 mm). In addition, the amorphous crushed water-absorbent resin (13) had a CRC of 26.4 g / g and a solid content of 93.4%.
 次いで、実施例1と同様に表面架橋して、最終製品である吸水性樹脂(13)を得た。得られた最終製品である吸水性樹脂(13)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, surface cross-linking was performed in the same manner as in Example 1 to obtain a water absorbent resin (13) as a final product. The water-absorbent resin (13) obtained as the final product was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [比較例4]
 実施例1の乾燥温度および乾燥時間、並びにゲル粒子径を変更(160℃→120℃,30分間→180分間,約0.9mm→5mm以上);
 上記実施例1において、ゲル粒子径を変更するために、ゲル粉砕工程におけるゲル粉砕を1回にしたこと、並びに、乾燥工程の乾燥温度および乾燥時間を120℃,180分間(120℃の熱風を180分間通気)に変更したこと以外は、実施例1と同様にして、比較吸水性樹脂(4)を製造した。
[Comparative Example 4]
Changing the drying temperature and drying time of Example 1 and the gel particle diameter (160 ° C. → 120 ° C., 30 minutes → 180 minutes, about 0.9 mm → 5 mm or more);
In Example 1 described above, in order to change the gel particle diameter, the gel pulverization in the gel pulverization step was performed once, and the drying temperature and the drying time in the drying step were set to 120 ° C. for 180 minutes (hot air of 120 ° C.). A comparative water-absorbent resin (4) was produced in the same manner as in Example 1, except that the air flow was changed to 180 minutes.
 ゲル粉砕工程で得られた粒子状の比較含水ゲル状重合体(4)は、重量平均粒子径(D50)が5000μm(5mm)以上であった。また、不定形破砕状の比較吸水性樹脂(4)は、CRCが24.4g/g、固形分が91.5%であった。 粒子 The particulate hydrogel polymer (4) obtained in the gel pulverizing step had a weight average particle diameter (D50) of 5000 μm (5 mm) or more. In addition, the amorphous crushed comparative water-absorbent resin (4) had a CRC of 24.4 g / g and a solid content of 91.5%.
 次いで、実施例1と同様に表面架橋して、最終製品である比較吸水性樹脂(4)を得た。得られた比較吸水性樹脂(4)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, surface cross-linking was performed in the same manner as in Example 1 to obtain a comparative water-absorbent resin (4) as a final product. The comparative water absorbent resin (4) obtained was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [比較例5]
 実施例1の乾燥温度および乾燥時間、並びにゲル粒子径を変更(160℃→150℃,30分間→180分間,約0.9mm→1.2~1.6cm);
 上記実施例1において、ゲル粒子径を変更するために、ゲル粉砕工程におけるゲル粉砕として、はさみを用いて含水ゲル状重合体を切断し、一辺が1.2~1.6cmの大きさの比較含水ゲル状重合体とした。そして、乾燥工程の乾燥温度および乾燥時間を150℃,180分間(150℃の熱風を180分間通気)に変更したこと以外は、実施例1と同様にして、比較吸水性樹脂(5)を製造した。
[Comparative Example 5]
Changing the drying temperature and drying time of Example 1 and the gel particle size (160 ° C. → 150 ° C., 30 minutes → 180 minutes, about 0.9 mm → 1.2 to 1.6 cm);
In Example 1, in order to change the gel particle diameter, the hydrogel polymer was cut using scissors as the gel pulverization in the gel pulverization step, and the size of each side was 1.2 to 1.6 cm. It was a hydrogel polymer. Then, a comparative water-absorbent resin (5) was produced in the same manner as in Example 1 except that the drying temperature and the drying time in the drying step were changed to 150 ° C. for 180 minutes (hot air at 150 ° C. was passed for 180 minutes). did.
 ゲル粉砕工程で得られた粒子状の比較含水ゲル状重合体(5)は、重量平均粒子径(D50)が1.2~1.6cmであった。また、不定形破砕状の比較吸水性樹脂(5)は、CRCが31.6g/gであった。 比較 The particulate hydrogel polymer (5) obtained in the gel pulverizing step had a weight average particle size (D50) of 1.2 to 1.6 cm. In addition, the comparative crushed amorphous water-absorbent resin (5) had a CRC of 31.6 g / g.
 次いで、実施例1と同様に表面架橋して、最終製品である比較吸水性樹脂(5)を得た。得られた比較吸水性樹脂(5)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, surface cross-linking was performed in the same manner as in Example 1 to obtain a comparative water-absorbent resin (5) as a final product. The obtained comparative water absorbent resin (5) was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [実施例14]
 実施例1のキレート剤を変更(DTPA→EDTA);
 上記実施例1において、キレート剤を、10重量%エチレンジアミン4酢酸(EDTA)・4ナトリウム水溶液(3.52g、単量体に対して1000ppm)に変更したこと以外は、実施例1と同様にして、吸水性樹脂(14)を製造した。
[Example 14]
Changing the chelating agent of Example 1 (DTPA → EDTA);
In the same manner as in Example 1, except that the chelating agent was changed to a 10% by weight aqueous solution of ethylenediaminetetraacetic acid (EDTA) · 4 sodium (3.52 g, 1000 ppm with respect to the monomer). And a water-absorbing resin (14).
 ゲル粉砕工程で得られた粒子状の含水ゲル状重合体(14)は、重量平均粒子径(D50)が955μm(約0.9mm)であった。また、不定形破砕状の吸水性樹脂(14)は、CRCが29.2g/gであった。 粒子 The particulate hydrogel polymer (14) obtained in the gel pulverizing step had a weight average particle size (D50) of 955 μm (about 0.9 mm). Further, the amorphous crushed water-absorbent resin (14) had a CRC of 29.2 g / g.
 次いで、実施例1と同様に表面架橋して、最終製品である吸水性樹脂(14)を得た。得られた最終製品である吸水性樹脂(14)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, surface cross-linking was performed in the same manner as in Example 1 to obtain a water absorbent resin (14) as a final product. The water-absorbent resin (14) as the final product obtained was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [実施例15]
 実施例14の重合開始剤の添加量を低減(NaPS=0.04モル%→0.015モル%);
 上記実施例14において、重合工程の重合開始剤(10重量%過硫酸ナトリウム水溶液)の添加量を、1.43g(アクリル酸に対して0.015モル%)にしたこと以外は、実施例14と同様にして、吸水性樹脂(15)を製造した。
[Example 15]
The amount of the polymerization initiator added in Example 14 was reduced (NaPS = 0.04 mol% → 0.015 mol%);
Example 14 Example 14 was repeated except that the addition amount of the polymerization initiator (10% by weight aqueous sodium persulfate solution) in the polymerization step was changed to 1.43 g (0.015 mol% based on acrylic acid). In the same manner as in the above, water-absorbent resin (15) was produced.
 ゲル粉砕工程で得られた粒子状の含水ゲル状重合体(15)は、重量平均粒子径(D50)が930μmであった。また、不定形破砕状の吸水性樹脂(15)は、CRCが29.5g/gであった。 The particulate hydrogel polymer (15) obtained in the gel pulverizing step had a weight average particle size (D50) of 930 μm. Further, the amorphous crushed water-absorbent resin (15) had a CRC of 29.5 g / g.
 次いで、実施例1と同様に表面架橋して、最終製品である吸水性樹脂(15)を得た。得られた最終製品である吸水性樹脂(15)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, the surface was crosslinked in the same manner as in Example 1 to obtain a water absorbent resin (15) as a final product. The water-absorbent resin (15) obtained as the final product was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [実施例16]
 実施例1のキレート剤を変更(DTPA→NTA);
 上記実施例1において、キレート剤を、10重量%ニトリロ3酢酸(NTA)・3ナトリウム水溶液(3.52g、単量体に対して1000ppm)に変更したこと以外は、実施例1と同様にして、吸水性樹脂(16)を製造した。
[Example 16]
Changing the chelating agent of Example 1 (DTPA → NTA);
In the same manner as in Example 1, except that the chelating agent was changed to a 10% by weight nitrilotriacetic acid (NTA) · trisodium aqueous solution (3.52 g, 1000 ppm with respect to the monomer). And a water-absorbing resin (16).
 ゲル粉砕工程で得られた粒子状の含水ゲル状重合体(16)は、重量平均粒子径(D50)が943μm(約0.9mm)であった。また、不定形破砕状の吸水性樹脂(16)は、CRCが29.1g/gであった。 粒子 The particulate hydrogel polymer (16) obtained in the gel pulverizing step had a weight average particle diameter (D50) of 943 μm (about 0.9 mm). In addition, the amorphous crushed water-absorbent resin (16) had a CRC of 29.1 g / g.
 次いで、実施例1と同様に表面架橋して、最終製品である吸水性樹脂(16)を得た。得られた最終製品である吸水性樹脂(16)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, the surface was crosslinked in the same manner as in Example 1 to obtain a water absorbent resin (16) as a final product. The water-absorbent resin (16) obtained as the final product was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [比較例6]
 実施例14の重合開始剤の添加量を変更(NaPS=0.04モル%→0.05モル%);
 上記実施例14において、重合工程の重合開始剤(10重量%過硫酸ナトリウム水溶液)の添加量を、4.8g(アクリル酸に対して0.05モル%)にしたこと以外は、実施例14と同様にして、比較吸水性樹脂(6)を製造した。
[Comparative Example 6]
The amount of the polymerization initiator added in Example 14 was changed (NaPS = 0.04 mol% → 0.05 mol%);
Example 14 Example 14 was repeated except that the amount of the polymerization initiator (10% by weight aqueous solution of sodium persulfate) in the polymerization step was changed to 4.8 g (0.05 mol% based on acrylic acid). In the same manner as in the above, a comparative water absorbent resin (6) was produced.
 ゲル粉砕工程で得られた粒子状の比較含水ゲル状重合体(6)は、重量平均粒子径(D50)が929μmであった。また、不定形破砕状の比較吸水性樹脂(6)は、CRCが29.5g/gであった。 The particulate comparative hydrogel polymer (6) obtained in the gel pulverizing step had a weight average particle diameter (D50) of 929 µm. In addition, the amorphous crushed comparative water-absorbent resin (6) had a CRC of 29.5 g / g.
 次いで、実施例1と同様に表面架橋して、最終製品である比較吸水性樹脂(6)を得た。得られた比較吸水性樹脂(6)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 Next, surface cross-linking was performed in the same manner as in Example 1 to obtain a comparative water-absorbent resin (6) as a final product. The comparative water absorbent resin (6) obtained was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [実施例17]
 以下、実施例17および比較例7では、重合工程およびゲル粉砕工程を同時に行った。
[Example 17]
Hereinafter, in Example 17 and Comparative Example 7, the polymerization step and the gel pulverization step were performed simultaneously.
 (重合およびゲル粉砕工程)
 内容積10Lのシグマ型羽根を2本有する双腕型のジャケット付きステンレス製ニーダーに蓋を付けて形成した反応器に、アクリル酸425.2g、37重量%のアクリル酸ナトリウム水溶液4499.5g、純水513.65g、ポリエチレングリコールジアクリレート(分子量523)11.1gを投入して反応液とした後、窒素ガス雰囲気下で20分間脱気した。続いて、10重量%の過硫酸ナトリウム水溶液16.5g(対単量体0.03モル%)および0.1重量%のL-アスコルビン酸水溶液23.6gをそれぞれ別個に、上記反応液を攪拌しながら添加したところ、約3分後に重合が開始し、そして、生成した含水ゲル状架橋重合体(17)を解砕しながら25~95℃で重合した。
(Polymerization and gel crushing process)
A reactor formed by attaching a lid to a double-armed jacketed stainless steel kneader having two sigma-type blades having an inner volume of 10 L, 425.2 g of acrylic acid, 4499.5 g of a 37% by weight aqueous solution of sodium acrylate, and pure After 513.65 g of water and 11.1 g of polyethylene glycol diacrylate (molecular weight: 523) were added to prepare a reaction solution, the mixture was degassed for 20 minutes in a nitrogen gas atmosphere. Subsequently, 16.5 g of a 10% by weight aqueous solution of sodium persulfate (0.03 mol% with respect to the monomer) and 23.6 g of a 0.1% by weight aqueous solution of L-ascorbic acid were separately stirred, and the reaction solution was stirred. After about 3 minutes, polymerization started, and polymerization was carried out at 25 to 95 ° C. while crushing the formed hydrogel crosslinked polymer (17).
 重合開始から70分間経過後に、20重量%ジエチレントリアミン5酢酸3ナトリウム10.5g(対単量体でキレート剤1000ppm)を添加し、重合開始から100分間経過後に、含水ゲル状架橋重合体(17)を反応器から取り出した。なお、得られた粒子状の含水ゲル状重合体(17)は、重量平均粒子径(D50)が479μmであった。 70 minutes after the start of the polymerization, 10.5 g of 20% by weight of trisodium diethylenetriaminepentaacetate (1000 ppm of the chelating agent based on the monomer) was added, and after 100 minutes from the start of the polymerization, the hydrogel crosslinked polymer (17) Was removed from the reactor. In addition, the obtained particulate hydrogel polymer (17) had a weight average particle size (D50) of 479 μm.
 (乾燥・粉砕・分級工程)
 上記細粒化された含水ゲル状架橋重合体(17)を、目開き300μm(50メッシュ)の金網上に広げ、熱風乾燥機内に入れた。その後、170℃の熱風を30分間通気させることで当該粒子状の含水ゲル状重合体(17)を乾燥し、粒子状の乾燥重合体(17)を得た。続いて、当該乾燥重合体(17)をロールミル(WML型ロール粉砕機、有限会社井ノ口技研社製)に投入して粉砕し、その後、目開き850μmおよび150μmの二種類のJIS標準篩を用いて分級することで、不定形破砕状の吸水性樹脂(17)を得た。また、不定形破砕状の吸水性樹脂(17)は、CRCが31.8g/gであった。
(Drying / crushing / classifying process)
The finely divided hydrogel crosslinked polymer (17) was spread on a metal mesh having a mesh size of 300 μm (50 mesh) and placed in a hot air drier. Then, the particulate hydrogel polymer (17) was dried by passing hot air at 170 ° C. for 30 minutes to obtain a particulate dry polymer (17). Subsequently, the dried polymer (17) was put into a roll mill (WML type roll pulverizer, manufactured by Inoguchi Giken Co., Ltd.) and pulverized. By classifying, an amorphous crushed water-absorbent resin (17) was obtained. In addition, the amorphous crushed water-absorbent resin (17) had a CRC of 31.8 g / g.
 (表面架橋工程)
 次に、不定形破砕状の吸水性樹脂(17)100重量部について、上記実施例1と同じ組成の表面架橋剤溶液(1)(5.05重量部)を混合することで、加湿混合物(17)を得た。続いて、実施例1と同様に180℃で40分間加熱処理し、表面架橋された吸水性樹脂(17)を得た。その後、表面架橋された吸水性樹脂(17)を目開きが850μmのJIS標準篩を通過させることで、最終製品である吸水性樹脂(17)を得た。得られた最終製品である吸水性樹脂(17)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。
(Surface crosslinking process)
Next, 100 parts by weight of the irregularly crushed water-absorbing resin (17) was mixed with the surface cross-linking agent solution (1) (5.05 parts by weight) having the same composition as in Example 1 to obtain the humidified mixture ( 17) was obtained. Then, it heat-processed at 180 degreeC for 40 minutes like Example 1, and obtained the water absorbent resin (17) surface-crosslinked. Thereafter, the surface-crosslinked water-absorbent resin (17) was passed through a JIS standard sieve having openings of 850 μm to obtain a water-absorbent resin (17) as a final product. The water-absorbent resin (17) as the final product obtained was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [比較例7]
 実施例17の重合開始剤の添加量を変更(NaPS=0.05モル%→0.03モル%);
 上記実施例17の重合工程において、重合開始剤である10重量%の過硫酸ナトリウム水溶液の添加量を、16.5g(対単量体0.03モル%)から28.3g(対単量体0.05モル%)に増量した以外は、実施例17と同様にして重合を行った。実施例17と同様に約3分後に重合が開始し、そして、生成した比較含水ゲル状架橋重合体(7)を解砕しながら25~95℃で重合した。以下、重合開始から70分後に、実施例17と同様にキレート剤を1000ppm添加して、重合開始から100分間経過後に比較含水ゲル状架橋重合体(7)(重量平均粒子径(D50)が494μm)を反応器から取り出した。
[Comparative Example 7]
The amount of the polymerization initiator added in Example 17 was changed (NaPS = 0.05 mol% → 0.03 mol%);
In the polymerization step of Example 17, the amount of the 10% by weight aqueous solution of sodium persulfate, which is a polymerization initiator, was changed from 16.5 g (0.03 mol% based on monomer) to 28.3 g (based on monomer). Polymerization was carried out in the same manner as in Example 17 except that the amount was increased to 0.05 mol%). As in Example 17, polymerization started after about 3 minutes, and the resulting comparative hydrogel crosslinked polymer (7) was polymerized at 25 to 95 ° C. while crushing. After 70 minutes from the start of the polymerization, a chelating agent was added at 1000 ppm in the same manner as in Example 17, and after 100 minutes from the start of the polymerization, the comparative hydrogel crosslinked polymer (7) (the weight average particle diameter (D50) was 494 μm) ) Was removed from the reactor.
 次いで、実施例17と同様に乾燥して粒子状の比較乾燥重合体(7)を得た後、粉砕および分級することで、850~150μmの不定形破砕状の比較吸水性樹脂(7)を得た。 Next, after drying in the same manner as in Example 17 to obtain a comparative dry polymer (7) in the form of particles, it is pulverized and classified to obtain a comparative crushed amorphous water-absorbent resin (7) having a size of 850 to 150 μm. Obtained.
 不定形破砕状の比較吸水性樹脂(7)について、実施例17と同様に表面架橋することにより、表面架橋された比較吸水性樹脂(7)を得た。次いで、実施例17と同様に850μmのJIS標準篩を通過させることで、最終製品である比較吸水性樹脂(7)を得た。得られた最終製品である比較吸水性樹脂(7)を分析した。製造条件を以下の表1に、分析結果を以下の表2に示す。 比較 Surface-crosslinked comparative water-absorbent resin (7) was obtained by subjecting the amorphous crushed comparative water-absorbent resin (7) to surface cross-linking in the same manner as in Example 17. Next, by passing through a 850 μm JIS standard sieve as in Example 17, a comparative water-absorbent resin (7) as a final product was obtained. The resulting final product, comparative water absorbent resin (7), was analyzed. The manufacturing conditions are shown in Table 1 below, and the analysis results are shown in Table 2 below.
 [比較例8]
 国際公開第2011/040530号パンフレット(特許文献17)の実施例1-8に記載の方法に準じて、比較吸水性樹脂(8)を得た。得られた最終製品である比較吸水性樹脂(8)を分析した。分析結果を以下の表3に示す。製造条件および分析結果を以下の表1~3に示す。
[Comparative Example 8]
A comparative water-absorbent resin (8) was obtained according to the method described in Example 1-8 of International Publication No. 2011/040530 (Patent Document 17). The resulting final product, comparative water-absorbent resin (8), was analyzed. The analysis results are shown in Table 3 below. The manufacturing conditions and analysis results are shown in Tables 1 to 3 below.
 [比較例9]
 国際公開第2014/054656号パンフレット(特許文献23)の実施例2-23に記載の方法に準じて、比較吸水性樹脂(9)を得た。得られた最終製品である比較吸水性樹脂(9)を分析した。製造条件および分析結果を以下の表1~3に示す。
[Comparative Example 9]
Comparative water-absorbent resin (9) was obtained according to the method described in Example 2-23 of International Publication WO 2014/054656 (Patent Document 23). The resulting final product, comparative water-absorbent resin (9), was analyzed. The manufacturing conditions and analysis results are shown in Tables 1 to 3 below.
 [比較例10]
 国際公開第2014/054656号パンフレット(特許文献23)の実施例2-24に記載の方法に準じて、比較吸水性樹脂(10)を得た。得られた最終製品である比較吸水性樹脂(10)を分析した。製造条件および分析結果を以下の表1、2、4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[Comparative Example 10]
A comparative water-absorbent resin (10) was obtained according to the method described in Example 2-24 of International Publication WO2014 / 054656 (Patent Document 23). The resulting final product, comparative water-absorbent resin (10), was analyzed. The production conditions and analysis results are shown in Tables 1, 2, and 4 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 なお、表1には示していないが、各実施例および各比較例の上記重合工程後の含水ゲル中のキレート剤の量、および上記ゲル粉砕工程後の含水ゲル中のキレート剤の量は、単量体に対して1000ppm添加した量の97%~ほぼ100%残存していた。従って、実質的に、重合工程やゲル粉砕工程でのキレート剤の減少は見られなかった。 Although not shown in Table 1, the amount of the chelating agent in the hydrogel after the polymerization step in each of the Examples and Comparative Examples, and the amount of the chelating agent in the hydrogel after the gel pulverizing step are as follows: 97% to almost 100% of the amount of 1000 ppm added to the monomer remained. Therefore, substantially no decrease in the chelating agent was observed in the polymerization step or the gel pulverizing step.
 また、160℃の熱風を30分間通気させた後、粉砕して得た(表面架橋工程前の)吸水性樹脂中または比較吸水性樹脂中のキレート剤の量と、表面架橋工程において180℃で40分間加熱処理し、表面架橋された吸水性樹脂中または比較吸水性樹脂中のキレート剤の量とを比較したが、両者に差は生じなかった。従って、180℃で表面架橋工程を行っても、キレート剤の減少は見られなかった。 Further, after passing hot air of 160 ° C. for 30 minutes, the amount of the chelating agent in the water-absorbent resin or the comparative water-absorbent resin (before the surface cross-linking step) obtained by pulverization and the temperature of 180 ° C. The heat treatment was performed for 40 minutes, and the amount of the chelating agent in the surface-crosslinked water-absorbent resin or the comparative water-absorbent resin was compared, but no difference was found between the two. Therefore, even when the surface crosslinking step was performed at 180 ° C., no decrease in the chelating agent was observed.
 (まとめ)
 表1~表4から、以下のことが分かる。
(Summary)
Tables 1 to 4 show the following.
 (1)キレート剤(DTPA)およびゲル粒子径が同一であり、重合開始剤(過硫酸塩;NaPS)の添加量を変更した、実施例1,2と比較例1との対比、並びに、キレート剤(EDTMP)およびゲル粒子径が同一であり、重合開始剤(過硫酸塩;NaPS)の添加量を変更した、実施例5,6の結果から、過硫酸塩(NaPS)の量を0.04モル%以下にすることで、乾燥工程後の(さらには最終製品の)吸水性樹脂中のキレート剤の残存量が50%以上に向上することが分かる。さらに、本発明に係る製造方法により、キレート剤の含有量が増加する上に、得られた吸水性樹脂の初期着色のL値が増加し、YI値が低下することが分かる。 (1) Comparison between Examples 1 and 2 and Comparative Example 1 in which the chelating agent (DTPA) and the gel particle diameter are the same and the amount of the polymerization initiator (persulfate; NaPS) is changed, and the chelate According to the results of Examples 5 and 6 in which the agent (EDTMP) and the gel particle diameter were the same and the amount of the polymerization initiator (persulfate; NaPS) was changed, the amount of persulfate (NaPS) was 0.1%. It can be seen that the content of the chelating agent in the water-absorbent resin after the drying step (and further in the final product) is improved to 50% or more by setting the content to 04 mol% or less. Further, it can be seen that the production method according to the present invention increases the content of the chelating agent, increases the L value of the initial coloring of the obtained water-absorbent resin, and decreases the YI value.
 (2)キレート剤(DTPA)、ゲル粒子径、および重合開始剤の添加量(0.04モル%)が同一であり、重合開始剤の種類を変更した、実施例1,4の結果、並びに、キレート剤(EDTMP)、ゲル粒子径、および重合開始剤の添加量(0.04モル%)が同一であり、重合開始剤の種類を変更した、実施例5,7,8の結果から、過硫酸塩(NaPS)と比較してアゾ重合開始剤やUV重合開始剤では、乾燥工程後の(さらには最終製品の)吸水性樹脂中のキレート剤の残存量が100%近くまで格段に向上することが分かる。さらに、係る重合開始剤では、キレート剤の含有量が増加する上に、得られた吸水性樹脂の初期着色のL値が増加し、YI値が低下することが分かる(実施例7,8ではL値=91、YI値=2)。 (2) The results of Examples 1 and 4, wherein the chelating agent (DTPA), the gel particle diameter, and the amount of the polymerization initiator (0.04 mol%) were the same, and the type of the polymerization initiator was changed, and , The chelating agent (EDTMP), the gel particle diameter, and the addition amount of the polymerization initiator (0.04 mol%) were the same, and the type of the polymerization initiator was changed. From the results of Examples 5, 7, and 8, Compared with persulfate (NaPS), the azo polymerization initiator and UV polymerization initiator significantly improve the residual amount of the chelating agent in the water-absorbing resin after the drying step (and even the final product) to nearly 100%. You can see that Furthermore, in such a polymerization initiator, it can be seen that, in addition to the increase in the content of the chelating agent, the L value of the initial coloring of the obtained water-absorbent resin increases and the YI value decreases (in Examples 7 and 8, L value = 91, YI value = 2).
 (3)キレート剤(DTPA)および重合開始剤が同一であり、ゲル粒子径を変更した、実施例1,3と比較例2との対比、キレート剤(EDTMP)および重合開始剤が同一であり、ゲル粒子径を変更した、実施例5と比較例3との対比の結果から、ゲル粒子径をより小さくすることにより、乾燥工程後の(さらには最終製品の)吸水性樹脂中のキレート剤の残存量が格段に向上することが分かる。さらに、本発明に係る製造方法により、キレート剤の含有量が増加する上に、得られた吸水性樹脂の初期着色のL値が増加することが分かる(同じキレート剤でL値が1ポイント向上)。また、重合開始剤の添加量(0.04モル%)およびキレート剤の添加量、ゲル粒子径が同一である、比較例2および比較例5の対比の結果から、乾燥時の固形分80%の達成時間が速くなるほど、キレート剤の残存率が向上し、初期着色のL値が増加することが分かる。本発明に係る製造方法では、ゲル粒子径が小さく、乾燥時の固形分80%の達成時間が速くなるほど、L値が増加することが分かる。 (3) Comparison between Examples 1 and 3 and Comparative Example 2 in which the chelating agent (DTPA) and the polymerization initiator were the same and the gel particle diameter was changed, and the chelating agent (EDTMP) and the polymerization initiator were the same From the result of comparison between Example 5 and Comparative Example 3 in which the gel particle diameter was changed, the chelating agent in the water-absorbent resin after the drying step (and further of the final product) was obtained by making the gel particle diameter smaller. It can be seen that the residual amount of is significantly improved. Furthermore, it can be seen that the production method according to the present invention increases the content of the chelating agent and also increases the L value of the initial coloring of the obtained water-absorbent resin (the same chelating agent improves the L value by one point). ). Also, from the comparison results of Comparative Example 2 and Comparative Example 5 in which the amount of the polymerization initiator added (0.04 mol%), the amount of the chelating agent added, and the gel particle diameter were the same, the solid content when dried was 80%. It can be seen that as the time for achieving the above becomes shorter, the residual ratio of the chelating agent is improved, and the L value of the initial coloring is increased. In the production method according to the present invention, it can be seen that the L value increases as the gel particle diameter is smaller and the time to achieve a solid content of 80% upon drying is faster.
 (4)重合開始剤およびその添加量(0.04モル%)が同一であり、キレート剤(DTPA)の添加量を変更した、実施例1(単量体に対して1000ppm;0.0173モル%),実施例9(単量体に対して300ppm;0.0052モル%)、実施例10(単量体に対して50ppm;0.0009モル%)の結果から、キレート剤に対する過硫酸塩のモル比が2.3から7.7、さらに46.3と大きくなるに従い、最終製品の吸水性樹脂中のキレート剤の残存量が50%から39%、さらに30%に低下することが分かる。 (4) Example 1 (1000 ppm based on monomer; 0.0173 mol, in which the polymerization initiator and the amount added (0.04 mol%) were the same and the amount added of the chelating agent (DTPA) was changed. %), Example 9 (300 ppm based on the monomer; 0.0052 mol%), and Example 10 (50 ppm based on the monomer; 0.0009 mol%) show that the persulfate for the chelating agent was used. It can be seen that as the molar ratio increases from 2.3 to 7.7 and further to 46.3, the residual amount of the chelating agent in the water absorbent resin of the final product decreases from 50% to 39% and further to 30%. .
 (5)重合開始剤の添加量(0.04モル%)およびキレート剤の添加量(50ppm)が同一である、実施例10,11の結果から、重合開始剤の添加量が同一である場合、過硫酸塩(NaPS)のみを用いるよりも、過硫酸塩とアゾ重合開始剤とを併用した方が、最終製品の吸水性樹脂中のキレート剤の残存量が15%から30%に向上することが分かる。さらに、係る重合開始剤は、キレート剤の含有量が増加する上に、得られた吸水性樹脂の初期着色のYI値が低下することが分かる(YI=11がYI=6に低下)。 (5) From the results of Examples 10 and 11 that the addition amount of the polymerization initiator (0.04 mol%) and the addition amount of the chelating agent (50 ppm) are the same, the case where the addition amount of the polymerization initiator is the same When the persulfate and the azo polymerization initiator are used in combination, the residual amount of the chelating agent in the water-absorbing resin of the final product is improved from 15% to 30%, compared to using only the persulfate (NaPS). You can see that. Further, it can be seen that, with such a polymerization initiator, the content of the chelating agent increases and the YI value of the initial coloring of the obtained water-absorbent resin decreases (YI = 11 decreases to YI = 6).
 (6)キレート剤(DTPA)およびその添加量(0.0173mol%)が同一であり、重合開始剤の添加量、およびゲル粒子径を変更した、実施例2(0.015モル%;942μm)と比較例2(0.04モル%;≧5000μm)との対比の結果から、キレート剤に対する過硫酸塩のモル比、および、ゲル粒子径を小さくすることにより、最終製品の吸水性樹脂中のキレート剤の残存量が格段に向上し、さらに、初期着色および経時着色のYI値が低下し、特に、経時着色に対する耐性が向上することが分かる。 (6) Example 2 (0.015 mol%; 942 μm) in which the chelating agent (DTPA) and its addition amount (0.0173 mol%) were the same, and the addition amount of the polymerization initiator and the gel particle diameter were changed. From the results of comparison with Comparative Example 2 (0.04 mol%; ≧ 5000 μm), the molar ratio of the persulfate to the chelating agent and the gel particle diameter were reduced, so that the water absorption resin in the final product was reduced. It can be seen that the residual amount of the chelating agent is remarkably improved, and the YI values of the initial coloring and the coloring with the lapse of time are reduced, and in particular, the resistance to the coloring with the lapse of time is improved.
 (7)キレート剤(DTPA)量が同一で、重合開始剤中の過硫酸塩量が異なる実施例2、比較例2および比較例9の対比の結果から、重合開始剤の添加量を0.04モル%以下に制御することで、キレート剤の残存率が高くなり、初期着色および経時着色のL値が増加し、YI値が低下することが分かる。 (7) From the results of comparison of Example 2, Comparative Example 2 and Comparative Example 9 with the same amount of chelating agent (DTPA) and different amounts of persulfate in the polymerization initiator, the addition amount of the polymerization initiator was set to 0.1. It can be seen that when the content is controlled to not more than 04 mol%, the residual ratio of the chelating agent is increased, the L value of the initial coloring and the coloring over time is increased, and the YI value is decreased.
 また、比較例8は、実施例2より、重合時のキレート剤の添加量が少なく、重合開始剤の過硫酸塩の添加量が多い。そのため、キレート剤の残存率が減少し、初期着色(L値、YI値)が悪化することが分かる。 比較 Comparative Example 8 has a smaller amount of the chelating agent added during the polymerization and a larger amount of the persulfate as the polymerization initiator than Example 2. Therefore, it can be seen that the residual ratio of the chelating agent decreases and the initial coloring (L value, YI value) deteriorates.
 (8)重合工程において添加されたキレート剤の量が同一である実施例10、11と比較例10との対比の結果から、過硫酸塩(NaPS)の量を0.04モル%以下に制御することで、初期着色のL値が増加し、YI値が低下することが分かる。 (8) From the result of comparison between Examples 10 and 11 and Comparative Example 10 in which the amount of the chelating agent added in the polymerization step is the same, the amount of persulfate (NaPS) is controlled to 0.04 mol% or less. By doing so, it is understood that the L value of the initial coloring increases and the YI value decreases.
 〔実施例18〕
 実施例1で得られた吸水性樹脂(1)100重量部に、1重量%DTPA・5ナトリウム水溶液1重量部を添加し、内部にキレート剤501ppmを含み、さらに表面にキレート剤100ppmを含む、吸水性樹脂(18)を得た。後から添加したキレート剤のほぼ全量が、吸水性樹脂(18)の表面近傍に含有されており、吸水性樹脂(18)のキレート剤の含有量は、約100ppm増加していた。吸水性樹脂(18)のCRCおよびAAP(0.7psi)は、吸水性樹脂(1)とほぼ同程度(添加水1%に相当する低下)であった。
[Example 18]
To 100 parts by weight of the water-absorbent resin (1) obtained in Example 1, 1 part by weight of a 1% by weight DTPA · 5 sodium aqueous solution was added, and the inside thereof contained 501 ppm of a chelating agent, and further contained 100 ppm of a chelating agent on the surface. Water-absorbing resin (18) was obtained. Almost all of the chelating agent added later was contained near the surface of the water absorbent resin (18), and the content of the chelating agent in the water absorbent resin (18) was increased by about 100 ppm. The CRC and AAP (0.7 psi) of the water absorbent resin (18) were almost the same as those of the water absorbent resin (1) (decrease corresponding to 1% of added water).
 〔実施例19~21〕
 実施例18と同様にして、実施例2~4で得られた吸水性樹脂(2)~(4)のそれぞれについて、吸水性樹脂100重量部に対し、1重量%DTPA・5ナトリウム水溶液1重量部を添加し、吸水性樹脂(19)~(21)を得た。吸水性樹脂(19)~(21)は、それぞれ、内部に吸水性樹脂(2)~(4)と同量のキレート剤を含み、さらに、表面にキレート剤100ppmを含んでいた。後から添加したキレート剤のほぼ全量が、吸水性樹脂(19)~(21)の表面近傍に含有されており、吸水性樹脂(19)~(21)のキレート剤の含有量は、それぞれ、約100ppm増加していた。吸水性樹脂(19)~(21)のCRCおよびAAP(0.7psi)は、吸水性樹脂(2)~(4)とほぼ同程度(添加水1%に相当する低下)であった。
[Examples 19 to 21]
In the same manner as in Example 18, for each of the water-absorbent resins (2) to (4) obtained in Examples 2 to 4, 1% by weight of a 1% by weight DTPA / 5 sodium aqueous solution was added to 100 parts by weight of the water-absorbent resin. Was added to obtain water-absorbing resins (19) to (21). Each of the water-absorbent resins (19) to (21) contained the same amount of the chelating agent as the water-absorbent resins (2) to (4), respectively, and further contained 100 ppm of the chelating agent on the surface. Almost all of the chelating agent added later is contained in the vicinity of the surface of the water-absorbing resins (19) to (21), and the content of the chelating agent in the water-absorbing resins (19) to (21) is It increased by about 100 ppm. The CRC and AAP (0.7 psi) of the water absorbent resins (19) to (21) were almost the same as those of the water absorbent resins (2) to (4) (decrease corresponding to 1% of added water).
 (参考例1)
 実施例1(過硫酸塩0.04モル%)の上記重合工程、および比較例1(過硫酸塩0.05%)の上記重合工程で得られた各含水ゲル中のキレート剤の量および過硫酸塩の量を測定した。その結果、何れの含水ゲルにも過硫酸塩は約82%残存し、またキレート剤はほぼ100%残存していた。従って、乾燥前の過硫酸塩の量(0.04モル%以下、さらには0.035モル%以下)が、キレート剤の残存量に重要な影響を与えることが分かった。
(Reference Example 1)
The amount and amount of the chelating agent in each hydrogel obtained in the above polymerization step of Example 1 (0.04 mol% of persulfate) and the above polymerization step of Comparative Example 1 (0.05% of persulfate). The amount of sulfate was measured. As a result, about 82% of the persulfate remained in each of the hydrogels, and almost 100% of the chelating agent remained. Therefore, it was found that the amount of persulfate before drying (0.04 mol% or less, further 0.035 mol% or less) has an important effect on the remaining amount of the chelating agent.
 (参考例2)
 実施例1(過硫酸塩0.04モル%)の上記乾燥工程後および表面架橋工程後のキレート剤の残存量を測定した。その結果、実質的に、乾燥工程のみでキレート剤が減少していることが分かった。
(Reference Example 2)
The remaining amount of the chelating agent of Example 1 (0.04 mol% of persulfate) after the drying step and after the surface crosslinking step was measured. As a result, it was found that the chelating agent was substantially reduced only in the drying step.
 (参考例3)
 キレート剤(DTPA)自体の耐熱性を確認するため、キレート剤(DTPA)を、実施例1の上記乾燥工程における乾燥条件で加熱した。しかしながら、実質的に、キレート剤の減少は見られなかった。
(Reference Example 3)
In order to confirm the heat resistance of the chelating agent (DTPA) itself, the chelating agent (DTPA) was heated under the drying conditions in the drying step of Example 1. However, substantially no decrease in the chelating agent was observed.
 (参考例4)
 キレート剤(DTPA)自体の耐熱性を確認するため、キレート剤(DTPA)のみを含む水溶液を、80℃で加熱した。しかしながら、実質的に、キレート剤の減少は見られなかった。
(Reference Example 4)
In order to confirm the heat resistance of the chelating agent (DTPA) itself, an aqueous solution containing only the chelating agent (DTPA) was heated at 80 ° C. However, substantially no decrease in the chelating agent was observed.
 (参考例5)
 参考例4で作製したキレート剤(DTPA)のみを含む水溶液に、キレート剤に対して実施例1と同様のモル比(キレート剤に対する過硫酸塩のモル比;2.3)となるように、過硫酸塩を添加して、80℃で加熱した。その結果、キレート剤の残存率は13%となり、キレート剤が過硫酸塩で減少することが確認された。さらに水溶液はわずかに褐色に着色していた。
(Reference Example 5)
In the aqueous solution containing only the chelating agent (DTPA) prepared in Reference Example 4, the same molar ratio as the chelating agent as in Example 1 (molar ratio of persulfate to the chelating agent; 2.3) was used. Persulfate was added and heated at 80 ° C. As a result, the residual ratio of the chelating agent was 13%, and it was confirmed that the chelating agent was reduced by the persulfate. Further, the aqueous solution was slightly colored brown.
 (参考例6)
 参考例4で作製したキレート剤(DTPA)のみを含む水溶液に、キレート剤に対して実施例8と同様のモル比(キレート剤に対するUV重合開始剤のモル比;2.3)となるように、光重合開始剤を添加して、80℃でUV照射を行った。その結果、キレート剤の残存率は98%であり、実質的に、キレート剤の減少は見られなかった。
(Reference Example 6)
In the aqueous solution containing only the chelating agent (DTPA) prepared in Reference Example 4, the same molar ratio as the chelating agent as in Example 8 (molar ratio of UV polymerization initiator to chelating agent; 2.3) was used. , A photopolymerization initiator was added, and UV irradiation was performed at 80 ° C. As a result, the residual ratio of the chelating agent was 98%, and no substantial decrease in the chelating agent was observed.
 (参考例7)
 0.1~1重量%のアクリル酸ナトリウム水溶液中で、キレート剤に対する過硫酸塩のモル比が2.3となるように、DTPAおよび過硫酸塩を添加し、80℃で加熱した。その結果、キレート剤の残存率は、アクリル酸ナトリウム濃度が上がるほど向上した。
(Reference Example 7)
DTPA and persulfate were added in a 0.1 to 1% by weight aqueous solution of sodium acrylate so that the molar ratio of persulfate to chelating agent was 2.3, and the mixture was heated at 80 ° C. As a result, the residual ratio of the chelating agent was improved as the concentration of sodium acrylate was increased.
 (まとめ)
 参考例1~参考例6の結果から、乾燥工程において、含水ゲルに残存する過硫酸塩が、キレート剤を特異的に分解することが分かった。それゆえ、本発明によって課題を解決することができることが分かった。参考例7の結果から、一定量以上の残存モノマーの存在が、乾燥後のキレート剤の残存率に寄与することが分かる。この機構は、過硫酸塩が、キレート剤に比べて、残存モノマーとより反応し易いためであると推測される。
(Summary)
From the results of Reference Examples 1 to 6, it was found that in the drying step, the persulfate remaining in the hydrogel specifically decomposed the chelating agent. Therefore, it was found that the present invention can solve the problem. From the results of Reference Example 7, it can be seen that the presence of a certain amount or more of the residual monomer contributes to the residual ratio of the chelating agent after drying. This mechanism is presumed to be due to the fact that persulfate reacts more easily with the residual monomer than the chelating agent.
 そして、上述した実施例および表1~表4に示すように、本発明の製造方法により得られる吸水性樹脂は、乾燥工程前に添加されたキレート剤に関して、高いキレート剤の残存率を示し、最終製品である吸水性樹脂中に十分量のキレート剤が残存していた。そのため、吸水性樹脂の粒子表面および内部にキレート剤を配合することができ、キレート剤の耐着色作用により、最終製品である吸水性樹脂は低いYI値を示し、良好な白色度を示した。 And, as shown in the above-mentioned Examples and Tables 1 to 4, the water-absorbent resin obtained by the production method of the present invention shows a high chelating agent residual ratio with respect to the chelating agent added before the drying step, A sufficient amount of the chelating agent remained in the water absorbent resin as the final product. Therefore, a chelating agent can be blended on the surface and inside of the particles of the water-absorbing resin, and due to the coloring resistance of the chelating agent, the water-absorbing resin as a final product exhibited a low YI value and exhibited good whiteness.
 本発明の製造方法により製造された吸水性樹脂は、紙オムツ、生理用ナプキンおよび医療用保血剤等の衛生用品に有用である。また、ペット尿吸収剤、携帯トイレの尿ゲル化剤および青果物等の鮮度保持剤、肉類および魚介類のドリップ吸収剤、保冷剤、使い捨てカイロ、電池用ゲル化剤、植物や土壌等の保水剤、結露防止剤、止水剤やパッキング剤、並びに人工雪等の種々の用途にも使用することができる。 The water-absorbent resin produced by the production method of the present invention is useful for sanitary articles such as disposable diapers, sanitary napkins, and medical blood retention agents. In addition, pet urine absorbents, urine gelling agents for portable toilets and freshness preserving agents for fruits and vegetables, drip absorbents for meat and seafood, cooling agents, disposable warmers, gelling agents for batteries, water retaining agents for plants and soil, etc. It can also be used in various applications such as anti-condensation agents, water blocking agents and packing agents, and artificial snow.

Claims (22)

  1.  単量体および重合開始剤を含む単量体水溶液を重合させて含水ゲル状重合体を得る重合工程と、
     必要により、重合工程の途中および/または後に含水ゲル状重合体を粉砕するゲル粉砕工程と、
     得られた粒子状の含水ゲル状重合体を乾燥させて、粒子状の乾燥重合体を得る乾燥工程と、
    を含む、吸水倍率(CRC)が15g/g以上でかつキレート剤を含む吸水性樹脂の製造方法であって、
     上記重合工程で使用される過硫酸塩が0~0.04モル%(対重合時の単量体)であり(但し、過硫酸塩0モル%(不使用)の場合は他の重合開始剤を必須に使用)、
     乾燥工程より前の工程でキレート剤を上記単量体水溶液または上記含水ゲル状重合体に合計10ppm以上(対重合時の単量体または対含水ゲル状重合体の固形分)添加し、
     上記粒子状の含水ゲル状重合体の重量平均粒子径(D50)を1mm以下とし、
     上記乾燥工程では、固形分が80重量%以上となるまでの乾燥時間を20分間以下とする、キレート剤を含む吸水性樹脂の製造方法。
    A polymerization step of polymerizing an aqueous monomer solution containing a monomer and a polymerization initiator to obtain a hydrogel polymer,
    A gel pulverizing step of pulverizing the hydrogel polymer during and / or after the polymerization step, if necessary;
    A drying step of drying the obtained particulate hydrogel polymer to obtain a particulate dry polymer,
    A method for producing a water-absorbent resin having a water absorption capacity (CRC) of 15 g / g or more and containing a chelating agent, comprising:
    The persulfate used in the above polymerization step is 0 to 0.04 mol% (based on the monomer at the time of polymerization) (however, when the persulfate is 0 mol% (unused), another polymerization initiator is used). Is required),
    In a step prior to the drying step, a chelating agent is added to the aqueous monomer solution or the hydrogel polymer in a total amount of 10 ppm or more (solid content of the monomer at the time of polymerization or hydrogel polymer),
    The weight average particle diameter (D50) of the particulate hydrogel polymer is 1 mm or less,
    In the above drying step, a method for producing a water-absorbent resin containing a chelating agent, wherein the drying time until the solid content becomes 80% by weight or more is 20 minutes or less.
  2.  単量体および重合開始剤を含む単量体水溶液を重合させて含水ゲル状重合体を得る重合工程と、
     必要により、重合工程の途中および/または後に含水ゲル状重合体を粉砕するゲル粉砕工程と、
     得られた粒子状の含水ゲル状重合体を乾燥させて、粒子状の乾燥重合体を得る乾燥工程と、
    を含む、吸水倍率(CRC)が15g/g以上でかつキレート剤を含む吸水性樹脂の製造方法であって、
     上記乾燥工程では、キレート剤を10ppm以上(対含水ゲル状重合体の固形分)、過硫酸塩を0~0.04モル%(対重合時の単量体)含む、重量平均粒子径(D50)が1mm以下の粒子状の含水ゲル状重合体を、乾燥時間20分間以下で、固形分が80重量%以上となるまで乾燥させる、キレート剤を含む吸水性樹脂の製造方法。
     但し、上記乾燥時間は、固形分が80重量%以上となるまでの時間を指す。
    A polymerization step of polymerizing an aqueous monomer solution containing a monomer and a polymerization initiator to obtain a hydrogel polymer,
    A gel pulverizing step of pulverizing the hydrogel polymer during and / or after the polymerization step, if necessary;
    A drying step of drying the obtained particulate hydrogel polymer to obtain a particulate dry polymer,
    A method for producing a water-absorbent resin having a water absorption capacity (CRC) of 15 g / g or more and containing a chelating agent, comprising:
    In the drying step, a weight average particle diameter (D50) containing 10 ppm or more of the chelating agent (based on the solid content of the hydrogel polymer) and 0 to 0.04 mol% of the persulfate (based on the monomer at the time of polymerization) is used. A) producing a water-absorbent resin containing a chelating agent, wherein the particulate hydrogel polymer having a particle size of 1 mm or less is dried for a drying time of 20 minutes or less until the solid content becomes 80% by weight or more.
    However, the drying time refers to a time until the solid content becomes 80% by weight or more.
  3.  重合工程から乾燥工程前までにおける過硫酸塩の添加量が、合計で0~0.04モル%(対重合時の単量体)である、請求項1または2に記載の製造方法。 (3) The production method according to (1) or (2), wherein the total amount of the persulfate added from the polymerization step to before the drying step is 0 to 0.04 mol% (based on the monomer at the time of polymerization).
  4.  上記乾燥工程では、150~200℃の熱風乾燥を行う、請求項1~3の何れか一項に記載の製造方法。 (4) The production method according to any one of (1) to (3), wherein in the drying step, hot air drying at 150 to 200 ° C. is performed.
  5.  上記キレート剤が、アミノ多価カルボン酸系キレート剤およびアミノ多価リン酸系キレート剤からなる群より選択される少なくとも一種である、請求項1~4の何れか一項に記載の製造方法。 (5) The method according to any one of (1) to (4), wherein the chelating agent is at least one selected from the group consisting of an amino polycarboxylic acid chelating agent and an amino polyphosphoric acid chelating agent.
  6.  含水ゲル状重合体を、上記ゲル粉砕工程において粒子状とする、請求項1~5の何れか一項に記載の製造方法。 (6) The production method according to any one of (1) to (5), wherein the hydrogel polymer is formed into particles in the gel pulverizing step.
  7.  乾燥工程前までの工程でのキレート剤の添加量が、合計で60ppm~1%(対重合時の単量体または対含水ゲル状重合体の固形分)である、請求項1~6の何れか一項に記載の製造方法。 The method according to any one of claims 1 to 6, wherein a total amount of the chelating agent added in the steps before the drying step is 60 ppm to 1% (solid content of the monomer at the time of polymerization or solid content of the hydrogel polymer). The production method according to claim 1.
  8.  重合が、水溶液重合である、請求項1~7の何れか一項に記載の製造方法。 (8) The production method according to any one of (1) to (7), wherein the polymerization is aqueous solution polymerization.
  9.  重合が、発泡重合または沸騰重合であり、含水ゲル状重合体が気泡を含む、請求項1~8の何れか一項に記載の製造方法。 The production method according to any one of claims 1 to 8, wherein the polymerization is foaming polymerization or boiling polymerization, and the hydrogel polymer contains bubbles.
  10.  重合が、重合開始温度30℃以上、重合ピーク温度80~130℃、重合時間60分間以下の高温開始短時間重合である、請求項1~9の何れか一項に記載の製造方法。 (10) The production method according to any one of (1) to (9), wherein the polymerization is a high-temperature-initiated short-time polymerization in which the polymerization initiation temperature is 30 ° C. or higher, the polymerization peak temperature is 80 to 130 ° C., and the polymerization time is 60 minutes or less.
  11.  さらに、乾燥工程の後に、吸水性樹脂の表面架橋工程を含む、請求項1~10の何れか一項に記載の製造方法。 (11) The production method according to any one of (1) to (10), further comprising a step of cross-linking the surface of the water-absorbent resin after the drying step.
  12.  さらに、乾燥工程以降の工程で、吸水性樹脂にキレート剤を添加する工程を含む、請求項1~11の何れか一項に記載の製造方法。 The method according to any one of claims 1 to 11, further comprising a step of adding a chelating agent to the water-absorbent resin in the steps after the drying step.
  13.  乾燥前の含水ゲル状重合体が残存モノマーを0.1重量%以上含む、請求項1~12の何れか一項に記載の製造方法。 The process according to any one of claims 1 to 12, wherein the hydrogel polymer before drying contains 0.1% by weight or more of residual monomers.
  14.  重合工程で用いる単量体がアクリル酸(塩)を含み、上記アクリル酸(塩)の含有量が、上記重合工程で用いる総単量体(内部架橋剤を除く)に対して、50~100モル%であり、
     上記キレート剤を含む吸水性樹脂は、キレート剤の残存量(C1)が10ppm以上であり、初期色調のL値が85以上であり、YI値が13以下であるポリアクリル酸(塩)系吸水性樹脂である、請求項1~13の何れか一項に記載の製造方法。
    The monomer used in the polymerization step contains acrylic acid (salt), and the content of the acrylic acid (salt) is 50 to 100 with respect to the total monomers (excluding the internal crosslinking agent) used in the polymerization step. Mole%,
    The water-absorbent resin containing the chelating agent has a polyacrylic acid (salt) -based water absorption in which the remaining amount (C1) of the chelating agent is 10 ppm or more, the L value of the initial color tone is 85 or more, and the YI value is 13 or less. 14. The production method according to claim 1, which is a conductive resin.
  15.  上記キレート剤を含む吸水性樹脂は、キレート剤の残存量(C1)が200ppm以上であり、初期色調のL値が89以上であり、YI値が10以下である、請求項1~14の何れか一項に記載の製造方法。 The water-absorbing resin containing a chelating agent according to any one of claims 1 to 14, wherein the remaining amount (C1) of the chelating agent is 200 ppm or more, the L value of the initial color tone is 89 or more, and the YI value is 10 or less. The production method according to claim 1.
  16.  キレート剤の含有量(C2)が200ppm以上であり、初期色調のL値が89以上であり、YI値が10以下である、ポリアクリル酸(塩)系吸水性樹脂。 (4) A polyacrylic acid (salt) -based water-absorbent resin having a chelating agent content (C2) of 200 ppm or more, an initial color tone L value of 89 or more, and a YI value of 10 or less.
  17.  無加圧下吸水倍率(CRC)が25g/g以上であり、加圧下吸水倍率(AAP(0.7psi))が15g/g以上であり、加圧下吸水倍率と無加圧下吸水倍率との比(AAP(0.7psi)/CRC)が0.5以上である、請求項16に記載の吸水性樹脂。 The water absorption capacity under pressure (CRC) is 25 g / g or more, the water absorption capacity under pressure (AAP (0.7 psi)) is 15 g / g or more, and the ratio of the water absorption capacity under pressure to the water absorption capacity under no pressure ( The water-absorbent resin according to claim 16, wherein AAP (0.7 psi) / CRC is 0.5 or more.
  18.  アクリル酸(塩)を総単量体(内部架橋剤を除く)の50~100モル%、
     内部架橋剤を単量体に対して0.001~5モル%、および、
     過硫酸塩を単量体に対して0~0.04モル%含む単量体水溶液から得られるポリアクリル酸(塩)系架橋重合体を含む、請求項16または17に記載の吸水性樹脂。
    Acrylic acid (salt) is 50-100 mol% of the total monomer (excluding the internal crosslinking agent),
    0.001 to 5 mol% of the internal crosslinking agent based on the monomer, and
    The water-absorbent resin according to claim 16 or 17, comprising a polyacrylic acid (salt) -based crosslinked polymer obtained from a monomer aqueous solution containing 0 to 0.04 mol% of a persulfate based on the monomer.
  19.  単量体および重合開始剤を含む単量体水溶液を重合させて得られた含水ゲル状重合体を、必要により重合途中および/または重合後にゲル粉砕し、得られた粒子状の含水ゲル状重合体を乾燥させて得られるキレート剤を含む吸水性樹脂であって、
     乾燥工程より前の工程でキレート剤を上記単量体水溶液または上記含水ゲル状重合体に合計10ppm以上(対重合時の単量体または対含水ゲル状重合体の固形分)を添加する、請求項16~18の何れか一項に記載の吸水性樹脂。
    The hydrogel polymer obtained by polymerizing the monomer aqueous solution containing the monomer and the polymerization initiator is subjected to gel pulverization during and / or after the polymerization, if necessary, and the resulting particulate hydrogel weight is obtained. A water-absorbing resin containing a chelating agent obtained by drying the coalescence,
    In a step prior to the drying step, a total of 10 ppm or more (solid content of the monomer at the time of polymerization or the solid content of the hydrogel polymer) of the chelating agent is added to the aqueous monomer solution or the hydrogel polymer. Item 19. The water-absorbent resin according to any one of Items 16 to 18.
  20.  不定形破砕状である、請求項16~19の何れか一項に記載の吸水性樹脂。 水性 The water-absorbent resin according to any one of claims 16 to 19, which is in an irregular crushed shape.
  21.  キレート剤の残存率が50%以上である、請求項16~20の何れか一項に記載の吸水性樹脂。 The water-absorbent resin according to any one of claims 16 to 20, wherein the residual ratio of the chelating agent is 50% or more.
  22.  表面および内部にキレート剤を含み、表面に存在するキレート剤の量が、内部に存在するキレート剤の量よりも多い、請求項16~21の何れか一項に記載の吸水性樹脂。 The water-absorbent resin according to any one of claims 16 to 21, comprising a chelating agent on the surface and inside, wherein the amount of the chelating agent present on the surface is larger than the amount of the chelating agent present inside.
PCT/JP2019/037091 2018-09-21 2019-09-20 Production method of water absorbing resin including chelating agent WO2020059871A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980061281.2A CN112714770B (en) 2018-09-21 2019-09-20 Method for producing water-absorbent resin containing chelating agent
KR1020217011184A KR102562511B1 (en) 2018-09-21 2019-09-20 Manufacturing method of absorbent polymer containing chelating agent
JP2020549156A JP7064614B2 (en) 2018-09-21 2019-09-20 Method for manufacturing a water-absorbent resin containing a chelating agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018177808 2018-09-21
JP2018-177808 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020059871A1 true WO2020059871A1 (en) 2020-03-26

Family

ID=69887307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037091 WO2020059871A1 (en) 2018-09-21 2019-09-20 Production method of water absorbing resin including chelating agent

Country Status (4)

Country Link
JP (1) JP7064614B2 (en)
KR (1) KR102562511B1 (en)
CN (1) CN112714770B (en)
WO (1) WO2020059871A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022169227A1 (en) * 2021-02-03 2022-08-11 주식회사 엘지화학 Method for preparing super absorbent polymer
JP7128978B1 (en) 2022-03-30 2022-08-31 Sdpグローバル株式会社 Method for producing water absorbent resin composition, water absorbent resin composition, absorbent body using the same, and absorbent article
WO2023276925A1 (en) * 2021-06-28 2023-01-05 Sdpグローバル株式会社 Water-absorbing resin composition, absorber and absorbent article obtained using same, and method for producing water-absorbing resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045498A (en) * 2004-07-07 2006-02-16 Nippon Shokubai Co Ltd Water-absorbing resin composition and method for producing the same
JP2009520834A (en) * 2005-12-22 2009-05-28 株式会社日本触媒 Water-absorbent resin composition, method for producing the same, and absorbent article
WO2009133664A1 (en) * 2008-04-30 2009-11-05 三洋化成工業株式会社 Resin composition, method for producing a liquid-absorbing resin and liquid-absorbing resin film
JP2010522255A (en) * 2007-03-23 2010-07-01 エボニック ストックハウゼン,インコーポレイティド High transmittance and high absorbency polymer composition
JP2011178969A (en) * 2010-03-04 2011-09-15 San-Dia Polymer Ltd Absorbent resin particle and method for producing the same
JP2012012482A (en) * 2010-06-30 2012-01-19 Nippon Shokubai Co Ltd Polyacrylic acid ammonium salt-based water-absorbing resin and its manufacturing method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU663336B2 (en) 1991-09-09 1995-10-05 Dow Chemical Company, The Superabsorbent polymers and process for producing
JP2912800B2 (en) 1993-09-14 1999-06-28 株式会社ピーエフユー Certificate issuing device with copy protection
KR100468831B1 (en) 1998-07-07 2005-03-16 삼성에스디아이 주식회사 Plasma display panel and method of manufacturing the same
KR20000038407A (en) 1998-12-07 2000-07-05 이기운 Game machine using micro-robot
JP2003206381A (en) 2002-01-15 2003-07-22 Sumitomo Seika Chem Co Ltd Discoloration prevention method for water-absorbent resin
JP3939988B2 (en) 2002-01-16 2007-07-04 住友精化株式会社 Method for producing water absorbent resin
EP1900755B1 (en) 2005-07-04 2011-10-19 Sumitomo Seika Chemicals Co., Ltd. Process for production of water-absorbing resin
WO2008090961A1 (en) 2007-01-24 2008-07-31 Nippon Shokubai Co., Ltd. Particulate water-absorbent polymer and process for production thereof
SA08290402B1 (en) 2007-07-04 2014-05-22 نيبون شوكوباي كو. ، ليمتد Particulate Water Absorbing Agent and Manufacturing Method of Same
JP5785087B2 (en) 2009-09-30 2015-09-24 株式会社日本触媒 Particulate water absorbing agent and method for producing the same
EP2371869A1 (en) 2010-03-30 2011-10-05 Evonik Stockhausen GmbH A process for the production of a superabsorbent polymer
WO2014054656A1 (en) 2012-10-01 2014-04-10 株式会社日本触媒 Dust-reducing agent comprising multiple metal compound, water absorbent containing multiple metal compound and method for manufacturing same
WO2015053372A1 (en) 2013-10-09 2015-04-16 株式会社日本触媒 Particulate water absorber comprising water-absorbing resin as main component and process for manufacturing same
KR102402261B1 (en) * 2014-03-03 2022-05-26 가부시키가이샤 닛폰 쇼쿠바이 Method for producing polyacrylic acid (salt)-based water-absorbable resin
JP5766344B1 (en) 2014-07-11 2015-08-19 住友精化株式会社 Water absorbent resin and absorbent article
JP7150701B2 (en) 2016-08-10 2022-10-11 ビーエーエスエフ ソシエタス・ヨーロピア Method for manufacturing high absorber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045498A (en) * 2004-07-07 2006-02-16 Nippon Shokubai Co Ltd Water-absorbing resin composition and method for producing the same
JP2009520834A (en) * 2005-12-22 2009-05-28 株式会社日本触媒 Water-absorbent resin composition, method for producing the same, and absorbent article
JP2010522255A (en) * 2007-03-23 2010-07-01 エボニック ストックハウゼン,インコーポレイティド High transmittance and high absorbency polymer composition
WO2009133664A1 (en) * 2008-04-30 2009-11-05 三洋化成工業株式会社 Resin composition, method for producing a liquid-absorbing resin and liquid-absorbing resin film
JP2011178969A (en) * 2010-03-04 2011-09-15 San-Dia Polymer Ltd Absorbent resin particle and method for producing the same
JP2012012482A (en) * 2010-06-30 2012-01-19 Nippon Shokubai Co Ltd Polyacrylic acid ammonium salt-based water-absorbing resin and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022169227A1 (en) * 2021-02-03 2022-08-11 주식회사 엘지화학 Method for preparing super absorbent polymer
EP4166599A4 (en) * 2021-02-03 2024-01-17 Lg Chemical Ltd Method for preparing super absorbent polymer
WO2023276925A1 (en) * 2021-06-28 2023-01-05 Sdpグローバル株式会社 Water-absorbing resin composition, absorber and absorbent article obtained using same, and method for producing water-absorbing resin composition
WO2023276930A1 (en) * 2021-06-28 2023-01-05 Sdpグローバル株式会社 Water-absorbing resin composition, absorbent and absorbent article each including same, and method for producing water-absorbing resin composition
JP7128978B1 (en) 2022-03-30 2022-08-31 Sdpグローバル株式会社 Method for producing water absorbent resin composition, water absorbent resin composition, absorbent body using the same, and absorbent article
JP2023147658A (en) * 2022-03-30 2023-10-13 Sdpグローバル株式会社 Method of manufacturing water-absorbent resin composition, water-absorbent resin composition, absorber using the same, and absorbent article

Also Published As

Publication number Publication date
CN112714770B (en) 2023-03-28
JPWO2020059871A1 (en) 2021-08-30
KR20210058928A (en) 2021-05-24
KR102562511B1 (en) 2023-08-03
JP7064614B2 (en) 2022-05-10
CN112714770A (en) 2021-04-27

Similar Documents

Publication Publication Date Title
JP5616437B2 (en) Method for producing polyacrylic acid (salt) water-absorbing resin powder
JP6457067B2 (en) Polyacrylic acid (salt) water-absorbing resin powder, method for producing the same, and method for evaluating the same
EP1903062B1 (en) Water-absorbent resin, hydropolymer process for producing them, and uses of them
JP6093751B2 (en) Method for producing polyacrylic acid (salt) water absorbent resin powder and polyacrylic acid (salt) water absorbent resin powder
CN109608661B (en) Gel crushing device, method for producing polyacrylic acid (salt) -based water-absorbent resin powder, and water-absorbent resin powder
JP5989913B2 (en) Gel pulverizer, polyacrylic acid (salt) water-absorbing resin powder production method, and water-absorbing resin powder
JP6151790B2 (en) Particulate water-absorbing agent mainly composed of water-absorbing resin and method for producing the same
JP7016798B2 (en) Manufacturing method of water absorbent
KR102195097B1 (en) Polyacrylate super-absorbent polymer and manufacturing method therefor
JP4805490B2 (en) Method for producing water absorbent resin
JP5587348B2 (en) Method for producing water absorbent resin
JP7064614B2 (en) Method for manufacturing a water-absorbent resin containing a chelating agent
WO2020189539A1 (en) Method for producing particulate water absorbent
JP2016112475A (en) Water-absorbing agent containing poly(meth)acrylate-based water-absorbing resin as main component and method for producing the same
WO2022163849A1 (en) Method for producing water-absorbent resin
JP2018065905A (en) Method for producing polyacrylic acid (salt)-based water-absorbing resin powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549156

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217011184

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19862513

Country of ref document: EP

Kind code of ref document: A1