WO2020059869A1 - Method for producing lubricant base oil - Google Patents

Method for producing lubricant base oil Download PDF

Info

Publication number
WO2020059869A1
WO2020059869A1 PCT/JP2019/037084 JP2019037084W WO2020059869A1 WO 2020059869 A1 WO2020059869 A1 WO 2020059869A1 JP 2019037084 W JP2019037084 W JP 2019037084W WO 2020059869 A1 WO2020059869 A1 WO 2020059869A1
Authority
WO
WIPO (PCT)
Prior art keywords
base oil
fraction
oil
ethylene
lubricating base
Prior art date
Application number
PCT/JP2019/037084
Other languages
French (fr)
Japanese (ja)
Inventor
冬樹 相田
一生 田川
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to JP2020549154A priority Critical patent/JP7232258B2/en
Publication of WO2020059869A1 publication Critical patent/WO2020059869A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • C10G50/02Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation of hydrocarbon oils for lubricating purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/12Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one polymerisation or alkylation step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils

Definitions

  • the present invention relates to a method for producing a lubricating base oil.
  • Patent Literature 1 discloses a method in which a polymerization reaction of ethylene is performed in an organic solvent in the presence of a Ziegler-based catalyst, and the organic solvent separated by distilling the obtained polymerization reaction product is recycled to the polymerization reaction.
  • a method for producing an ethylene oligomer to be used is described. In the production method, the concentration of an olefin having 3 or more carbon atoms in an organic solvent circulating in a polymerization reaction system is set to 2% by weight or less. .
  • the organic solvent separated from the polymerization reaction product obtained by the ethylene polymerization reaction contains unreacted ethylene, and the organic solvent containing unreacted ethylene is used again as a reaction solvent in the polymerization reaction system.
  • the organic solvent also contains by-products (impurities) such as olefins, and when these impurities are supplied to the polymerization reaction system, the catalyst efficiency of the ethylene polymerization catalyst is reduced, and the intended lubricating oil This may cause a decrease in the base oil yield.
  • An object of the present invention is to provide a new method for producing a lubricating base oil, which can efficiently produce a lubricating base oil.
  • the present inventors have focused on fractions other than the lubricating base oil obtained by the distillation process, which have been of no use except for burning as a fuel in the production of lubricating base oils. did. Then, in the step of producing a lubricating base oil from ethylene oligomers, high-purity ethylene can be regenerated by reusing the fraction corresponding to the above as a part of the raw material oil in the thermal cracking step, and converting it to the polymerization step.
  • the method for producing a lubricating base oil according to the present invention comprises a step of pyrolyzing a feedstock oil, a step of purifying an obtained pyrolyzate to obtain ethylene, and a step of oligomerizing ethylene in the presence of an ethylene polymerization catalyst.
  • the fraction other than the lubricating base oil may be a lighter fraction lighter than the lubricating base oil.
  • a new method for producing a lubricating base oil capable of efficiently producing a lubricating base oil.
  • Example 2 is a result (chromatogram) of electrolytic desorption mass spectrometry (FD-MS) of the isomerized oil obtained in Example 1. It is a flow figure showing an example of a lubricating base oil manufacturing device for carrying out a lubricating base oil manufacturing method concerning one embodiment of the present invention.
  • the method for producing a lubricating base oil comprises a cracking and refining step of thermally cracking a feedstock oil and refining an obtained pyrolyzate to obtain ethylene, and converting ethylene into an oligomer in the presence of an ethylene polymerization catalyst.
  • the decrease in the catalytic efficiency of the ethylene polymerization catalyst is due to the fact that when unreacted ethylene is supplied again to the polymerization reaction system, by-products (impurities) such as olefins other than ethylene are also supplied to the polymerization reaction system. it is conceivable that.
  • a fraction other than the lubricating oil fraction obtained in the first distillation step and / or the lubricating base oil obtained in the second distillation step is returned to the cracking and refining step as a part of the feedstock oil, and the high-purity ethylene obtained in the cracking and refining step is brought into contact with the ethylene polymerization catalyst in the polymerization step, whereby the catalytic activity of the ethylene polymerization catalyst is increased. It is considered that the contamination of impurities that hinder the reaction was suppressed, and as a result, the decrease in the catalytic efficiency of the ethylene polymerization catalyst could be suppressed.
  • a fraction other than the lubricating oil fraction obtained in the first distillation step and / or a fraction other than the lubricating base oil obtained in the second distillation step Can be recycled as a part of the feedstock oil and returned to the cracking and refining process to regenerate ethylene, as well as basic chemicals such as propylene, butadiene, isoprene, cyclopentadiene, benzene, toluene, and xylene. It is also possible to co-produce goods.
  • feedstock such as atmospheric residual oil hydrocracked oil is subjected to hydrocracking / hydroisomerization process
  • the present inventors presume that the reason for obtaining such an effect lies in the specificity of the carbon number distribution of the lubricating base oil obtained by the method for producing a lubricating base oil according to the present embodiment.
  • a raw material wax such as a wax obtained by FT synthesis is usually a hydrocarbon compound having an even number of carbon atoms (a hydrocarbon compound having 2n carbon atoms; n is 1 or more). And the same applies hereinafter) and a hydrocarbon compound having an odd number of carbon atoms (a hydrocarbon compound having 2n + 1 carbon atoms), and the ratio between the two is almost the same.
  • the ethylene oligomer obtained by the production method according to the present embodiment may undergo thermal decomposition accompanying isomerization (for example, formation of 2n-1 carbon paraffins due to isomerization of 2n carbon paraffins).
  • hydrocarbon compounds having an even number of carbon atoms hydrocarbon compounds having a carbon number of 2n
  • the ethylene oligomer obtained by the method for producing a lubricating base oil according to the present embodiment exhibits such a specific carbon number distribution, so that the traction coefficient of the obtained lubricating base oil can be suppressed.
  • the inventors are thinking.
  • the raw oil is thermally cracked, and the obtained thermally cracked product is purified to obtain ethylene.
  • a method of introducing a feedstock oil into a pyrolysis refining device such as a naphtha cracker can be used.
  • the raw material oil to be subjected to thermal cracking includes at least a fraction other than the lubricating oil fraction obtained in the first distillation step and / or a fraction other than the lubricating oil base oil obtained in the second distillation step. Including.
  • the resulting pyrolyzate (cracked oil) may be subjected to a refining process to obtain higher-purity ethylene.
  • the naphtha cracker purification step can be used as it is.
  • the purity of ethylene obtained through the purification step is, for example, preferably 99.0% or more, more preferably 99.5% or more, and still more preferably 99.9% or more.
  • the content of the fraction other than the lubricating oil fraction obtained in the first distillation step and / or the fraction other than the lubricating base oil obtained in the second distillation step contained in the feedstock is not particularly limited. For example, it is preferably 0.01% by mass or more, more preferably 1% by mass or more, and further preferably 10% by mass or more.
  • the upper limit of the content of the fraction contained in the feedstock is also not particularly limited, and is, for example, usually less than 100% by mass, preferably 90% by mass or less, more preferably 80% by mass or less.
  • a base oil (naphtha) usually subjected to thermal cracking can be used without any particular limitation.
  • naphtha it is also possible to use ethane, LPG, kerosene, light oil, and the like.
  • the method of obtaining the cracked oil containing ethylene by pyrolyzing the base oil can be appropriately set according to the composition of the base oil to be subjected to the pyrolysis and the intended performance of the lubricating base oil.
  • the thermal decomposition temperature is preferably from 700 to 1000 ° C.
  • the residence time is preferably from 0.001 to 10 seconds.
  • the product is rapidly cooled and distilled, and in addition to ethylene, C3 components including methane and propylene, C4 components including butadiene, C5 components including isoprene and cyclopentadiene, components such as benzene, toluene, and xylene. It is possible to separate
  • the ethylene obtained in the decomposition and purification step is oligomerized in the presence of an ethylene polymerization catalyst to obtain a polymerization mixture containing an ethylene oligomer.
  • an ethylene polymerization catalyst for example, there is a method of introducing ethylene into a polymerization reactor filled with an ethylene polymerization catalyst.
  • the method of introducing ethylene into the polymerization reactor is not particularly limited.
  • ⁇ -olefins such as propylene and 1-butene may be copolymerized.
  • a solvent is usually used.
  • the solvent include aliphatic hydrocarbon solvents such as butane, pentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, and decalin; and aromatic hydrocarbon solvents such as tetralin, benzene, toluene, and xylene.
  • Solution polymerization, slurry polymerization, and the like can be performed by dissolving an ethylene polymerization catalyst in these solvents.
  • ethylene oligomer Since the ethylene oligomer has an even number of carbons, it is preferable to use a solvent having an odd number of carbons to facilitate separation from the ethylene oligomers.
  • Pentane, heptane, methylcyclohexane, toluene and the like are suitable for the property.
  • the reaction temperature in the polymerization reaction is not particularly limited, but from the viewpoint of catalyst efficiency, for example, preferably -50 ° C to 100 ° C, more preferably -30 ° C to 80 ° C, further preferably -20 ° C to 70 ° C, particularly Preferably between -10 ° C and 60 ° C, very preferably between -5 ° C and 50 ° C, most preferably between 0 and 40 ° C.
  • catalyst efficiency for example, preferably -50 ° C to 100 ° C, more preferably -30 ° C to 80 ° C, further preferably -20 ° C to 70 ° C, particularly Preferably between -10 ° C and 60 ° C, very preferably between -5 ° C and 50 ° C, most preferably between 0 and 40 ° C.
  • reaction pressure is not particularly limited, but is preferably, for example, 100 kPa to 5 MPa.
  • reaction time is not particularly limited, it is, for example, preferably 1 minute to 24 hours, more preferably 5 minutes to 60 minutes, further preferably 10 minutes to 45 minutes, and particularly preferably 20 minutes to 40 minutes. It is of course possible to polymerize for more than 24 hours as long as the catalyst has activity.
  • the ethylene polymerization catalyst is not particularly limited, and examples thereof include a catalyst containing an iron complex represented by the following general formula (1).
  • R represents a hydrocarbyl group having 1 to 6 carbon atoms or an aromatic group having 6 to 12 carbon atoms, and a plurality of Rs in the same molecule may be the same or different.
  • R ' represents a free radical having an oxygen atom and / or a nitrogen atom, and a plurality of R's in the same molecule may be the same or different.
  • Y represents a chlorine atom or a bromine atom.
  • hydrocarbyl group having 1 to 6 carbon atoms examples include an alkyl group having 1 to 6 carbon atoms and an alkenyl group having 2 to 6 carbon atoms.
  • the hydrocarbyl group may be linear, branched or cyclic. Further, the hydrocarbyl group may be a monovalent group in which a linear or branched hydrocarbyl group and a cyclic hydrocarbyl group are bonded.
  • alkyl group having 1 to 6 carbon atoms examples include straight-chain alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group and n-hexyl group; -Propyl group, iso-butyl group, sec-butyl group, tert-butyl group, branched pentyl group (including all structural isomers), branched hexyl group (including all structural isomers), etc.
  • alkenyl group having 2 to 6 carbon atoms examples include linear alkenyl groups having 2 to 6 carbon atoms such as ethenyl group (vinyl group), n-propenyl group, n-butenyl group, n-pentenyl group and n-hexenyl group; carbon such as iso-propenyl group, iso-butenyl group, sec-butenyl group, tert-butenyl group, branched pentenyl group (including all structural isomers), and branched hexenyl group (including all structural isomers)
  • Examples of the aromatic group having 6 to 12 carbon atoms include a phenyl group, a toluyl group, a xylyl group, and a naphthyl group.
  • a plurality of R and R ′ in the same molecule may be the same or different, but may be the same from the viewpoint of simplifying the synthesis of the compound.
  • the free radical having an oxygen atom and / or a nitrogen atom may be a free radical having an oxygen atom and / or a nitrogen atom and having 0 to 6 carbon atoms, for example, a methoxy group, an ethoxy group, an isopropoxy group, a nitro group. And the like.
  • iron complex examples include compounds represented by the following formulas (1a) to (1h). These iron complexes can be used alone or in combination of two or more.
  • a compound constituting a ligand (hereinafter, also referred to as a diimine compound) is, for example, dehydrated and condensed with dibenzoylpyridine and an aniline compound in the presence of an acid. Can be synthesized.
  • a preferred embodiment of the method for producing a diimine compound includes a first step of dissolving 2,6-dibenzoylpyridine, an aniline compound, and an acid in a solvent, and dehydrating and condensing the solvent under reflux with heating, and a reaction mixture after the first step.
  • a separation and purification process for obtaining a diimine compound includes a first step of dissolving 2,6-dibenzoylpyridine, an aniline compound, and an acid in a solvent, and dehydrating and condensing the solvent under reflux with heating, and a reaction mixture after the first step.
  • an organoaluminum compound can be used as the acid used in the first step.
  • the organoaluminum compound include trimethylaluminum, triethylaluminum, tripropylaluminum, triisopropylaluminum, tributylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, diethylaluminum chloride, ethylaluminum dichloride, ethylaluminum sesquichloride, and methylaluminoxane And the like.
  • a protonic acid can be used in addition to the above-mentioned organoaluminum compound.
  • Protic acids are used as acid catalysts that donate protons.
  • the protonic acid used is not particularly limited, but is preferably an organic acid. Examples of such a protonic acid include acetic acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, and paratoluenesulfonic acid.
  • the reaction can be performed in the presence of an adsorbent such as molecular sieves.
  • the amount of the protonic acid added is not particularly limited, and may be a catalytic amount.
  • examples of the solvent used in the first step include a hydrocarbon solvent, an alcohol solvent, and the like.
  • examples of the hydrocarbon solvent include hexane, heptane, octane, benzene, toluene, xylene, cyclohexane, methylcyclohexane and the like.
  • examples of the alcohol-based solvent include methanol, ethanol, isopropyl alcohol and the like.
  • reaction conditions in the first step can be appropriately selected depending on the types and amounts of the starting compound, the acid and the solvent.
  • the separation / purification treatment in the second step is not particularly limited, and examples thereof include silica gel column chromatography and a recrystallization method.
  • the above-mentioned organoaluminum compound is used as the acid, it is preferable to mix the reaction solution with a basic aqueous solution, decompose and remove aluminum, and then purify.
  • the iron complex contains iron as a central metal.
  • the method of mixing the diimine compound and iron is not particularly limited, for example, (I) a method of adding and mixing an iron salt (hereinafter sometimes simply referred to as "salt") to a solution in which the diimine compound is dissolved, (Ii) a method of physically mixing a diimine compound and a salt without using a solvent, And the like.
  • the method for extracting the complex from the mixture of the diimine compound and iron is not particularly limited, for example, (A) a method in which a solvent is distilled off when a solvent is used in the mixture, and a solid is filtered off; (B) a method of filtering off a precipitate generated from the mixture, (C) a method of adding a poor solvent to the mixture, purifying the precipitate, and filtering the precipitate; (D) a method of directly removing the solvent-free mixture, And the like.
  • a washing treatment with a solvent capable of dissolving the unreacted diimine compound a washing treatment with a solvent capable of dissolving the unreacted iron salt, a recrystallization treatment using an appropriate solvent, or the like may be performed.
  • the solvent capable of dissolving the diimine compound include ether, tetrafudrofuran, benzene, toluene, xylene, cyclohexane, methylcyclohexane and the like.
  • the solvent capable of dissolving the iron salt include alcohol solvents such as methanol, ethanol, and isopropanol, and tetrahydrofuran.
  • iron salts include iron (II) chloride, iron (III) chloride, iron (II) bromide, iron (III) bromide, iron (II) acetylacetonate, iron (III) acetylacetonate, Iron (II) acetate, iron (III) acetate and the like can be mentioned. Those having a ligand such as a solvent and water may be used as these salts. Among these, salts of iron (II) are preferred, and iron (II) chloride is more preferred.
  • the solvent for bringing the diimine compound into contact with iron is not particularly limited, and any of a nonpolar solvent and a polar solvent can be used.
  • the nonpolar solvent include hydrocarbon solvents such as hexane, heptane, octane, benzene, toluene, xylene, cyclohexane, and methylcyclohexane.
  • the polar solvent include a polar protic solvent such as an alcohol solvent and a polar aprotic solvent such as tetrahydrofuran.
  • the alcohol solvent include methanol, ethanol, isopropyl alcohol and the like.
  • a hydrocarbon solvent that does not substantially affect olefin polymerization.
  • the mixing ratio of the diimine compound and iron when they are brought into contact is not particularly limited.
  • the molar ratio of the diimine compound / iron is preferably 0.2 / 1 to 5/1, more preferably 0.3 / 1 to 3/1, still more preferably 0.5 / 1 to 2/1, and particularly preferably. It is 1/1.
  • Both of the two imine sites in the diimine compound are preferably E-forms, but may include Z-form diimine compounds as long as they contain E-form diimine compounds. Since a diimine compound containing a Z-form is unlikely to form a complex with a metal, it can be easily removed in a purification step such as solvent washing after forming a complex in the system.
  • the ethylene polymerization catalyst containing the iron complex represented by the general formula (1) may further contain an organoaluminum compound in order to make the polymerization reaction proceed more efficiently.
  • organoaluminum compound include trialkylaluminum, methylaluminoxane and the like.
  • the trialkylaluminum may be a trialkylaluminum having an alkyl group having 10 or less carbon atoms, or may be a trialkylaluminum having an alkyl group having 8 or less carbon atoms.
  • trialkylaluminum examples include trimethylaluminum, triethylaluminum, triisobutylaluminum, tributylaluminum, trihexylaluminum, trioctylaluminum and the like.
  • the trialkylaluminum preferably contains at least one selected from the group consisting of trimethylaluminum, triethylaluminum and triisobutylaluminum, and more preferably contains trimethylaluminum.
  • the content ratio of the iron complex represented by the general formula (1) and the organoaluminum compound is represented by a molar ratio where G is the number of moles of the iron complex and H is the number of moles of aluminum atoms of the organic aluminum compound.
  • G: H 1: 10 to 1: 1000, more preferably 1:10 to 1: 800, still more preferably 1:20 to 1: 600, and particularly preferably 1:20 to 1: 500. You may. Within the above range, it is possible to suppress the increase in cost while exhibiting more sufficient polymerization activity.
  • methylaluminoxane When methylaluminoxane is used as the organoaluminum compound, a commercially available product diluted with a solvent can be used as the methylaluminoxane, and a product obtained by partially hydrolyzing trimethylaluminum in a solvent can also be used. Further, at the time of partial hydrolysis of trimethylaluminum, a modified methylaluminoxane co-hydrolyzed by coexisting a trialkylaluminum other than trimethylaluminum such as triisobutylaluminum can also be used. Further, when unreacted trialkylaluminum remains during the above partial hydrolysis, the unreacted trialkylaluminum may be removed by distillation under reduced pressure or the like. Alternatively, a modified methylaluminoxane obtained by modifying methylaluminoxane with an active proton compound such as phenol or a derivative thereof may be used.
  • the content ratio of trimethylaluminum and methylaluminoxane in the ethylene polymerization catalyst is represented by the molar number of trimethylaluminum H 1 and the molar number of aluminum atoms in methylaluminoxane.
  • H 1 : H 2 100: 1 to 1: 100, more preferably 50: 1 to 1:50, and even more preferably 10: 1 to 1:10.
  • the ethylene polymerization catalyst containing the iron complex represented by the general formula (1) may further contain a boron compound as an optional component.
  • the boron compound has a function as a cocatalyst for further improving the catalytic activity of the iron complex represented by the general formula (1) in the ethylene polymerization reaction.
  • the boron compound examples include an aryl boron compound such as trispentafluorophenylborane. Further, as the boron compound, a boron compound having an anionic species can be used. For example, aryl borates such as tetrakis pentafluorophenyl borate and tetrakis (3, 5-trifluoromethyl phenyl) borate are exemplified.
  • aryl borates include lithium tetrakis pentafluorophenyl borate, sodium tetrakis pentafluorophenyl borate, N, N-dimethylanilinium tetrakis pentafluorophenyl borate, trityl tetrakis pentafluorophenyl borate, lithium tetrakis (3,5-tri Fluoromethylphenyl) borate, sodium tetrakis (3,5-trifluoromethylphenyl) borate, N, N-dimethylaniliniumtetrakis (3,5-trifluoromethylphenyl) borate, trityltetrakis (3,5-trifluoromethyl) Phenyl) borate and the like.
  • N, N-dimethylanilinium tetrakispentafluorophenyl borate, trityl tetrakis pentafluorophenyl borate, N, N-dimethylanilinium tetrakis (3,5-trifluoromethylphenyl) borate or trityl tetrakis (3,5 (Trifluoromethylphenyl) borate is preferred.
  • These boron compounds can be used alone or in combination of two or more.
  • the content ratio of the organic aluminum compound and the boron compound is determined by the molar ratio when the number of moles of the organic aluminum compound is H and the number of moles of the boron compound is J.
  • H: J 1000: 1 to 1: 1, more preferably 800: 1 to 2: 1, and still more preferably 600: 1 to 10: 1.
  • the ethylene polymerization catalyst containing the iron complex represented by the general formula (1) is further represented by the following general formula (2) from the viewpoint of securing more sufficient catalytic efficiency by suppressing the deactivation of the iron complex. (Hereinafter sometimes referred to as a ligand).
  • R ′′ represents a hydrocarbyl group having 1 to 6 carbon atoms or an aromatic group having 6 to 12 carbon atoms, and a plurality of R ′′ s in the same molecule may be the same or different; “′′ Represents a free radical having 0 to 6 carbon atoms having an oxygen atom and / or a nitrogen atom, and a plurality of R ′′ ′′ s in the same molecule may be the same or different.
  • hydrocarbyl group having 1 to 6 carbon atoms examples include an alkyl group having 1 to 6 carbon atoms and an alkenyl group having 2 to 6 carbon atoms.
  • the hydrocarbyl group may be linear, branched or cyclic. Further, the hydrocarbyl group may be a monovalent group in which a linear or branched hydrocarbyl group and a cyclic hydrocarbyl group are bonded.
  • alkyl group having 1 to 6 carbon atoms examples include straight-chain alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group and n-hexyl group; -Propyl group, iso-butyl group, sec-butyl group, tert-butyl group, branched pentyl group (including all structural isomers), branched hexyl group (including all structural isomers), etc.
  • alkenyl group having 2 to 6 carbon atoms examples include linear alkenyl groups having 2 to 6 carbon atoms such as ethenyl group (vinyl group), n-propenyl group, n-butenyl group, n-pentenyl group and n-hexenyl group; carbon such as iso-propenyl group, iso-butenyl group, sec-butenyl group, tert-butenyl group, branched pentenyl group (including all structural isomers), and branched hexenyl group (including all structural isomers)
  • Examples of the aromatic group having 6 to 12 carbon atoms include a phenyl group, a toluyl group, a xylyl group, and a naphthyl group.
  • a plurality of R ′′ and R ′′ ′′ in the same molecule may be the same or different, but may be the same from the viewpoint of simplifying the synthesis of the compound.
  • the free radical having an oxygen atom and / or a nitrogen atom may be a free radical having an oxygen atom and / or a nitrogen atom and having 0 to 6 carbon atoms, for example, a methoxy group, an ethoxy group, an isopropoxy group, a nitro group. And the like.
  • ligands include compounds represented by the following formulas (2a) to (2d). These ligands can be used alone or in combination of two or more.
  • R in the general formula (1), R ′′ in the general formula (2), and R ′ in 1) and R ′′ ′ in general formula (2) may be the same or different, but from the viewpoint of maintaining the same performance as the iron complex represented by general formula (1), Preferably they are identical.
  • the content ratio of the iron complex and the ligand is not particularly limited.
  • the ligand / iron complex ratio is preferably a molar ratio of 1/100 to 100/1, more preferably 1/50 to 50/1, further preferably 1/10 to 10/1, and particularly preferably 1/5. 55/1, very preferably 1/3 to 3/1.
  • the ratio of ligand / iron complex is 1/100 or more, the catalyst efficiency can be increased by suppressing the deactivation of the iron complex.
  • the ratio is 100/1 or less, the effect of adding the ligand is exhibited. Costs can be reduced.
  • the method for producing the above ethylene polymerization catalyst is not particularly limited.
  • the ethylene polymerization catalyst contains the iron complex represented by the above general formula (1) and the organoaluminum compound, the general formula (1)
  • the above-mentioned boron compound and ligand are further included in addition to the iron complex and the organoaluminum compound represented by the general formula (1), all of these components may be brought into contact at once. However, they may be contacted in any order.
  • a solution containing an iron complex represented by the general formula (1) is mixed with a solution containing a boron compound, and then a solution containing a ligand is added. , Mixing and then contacting the organoaluminum compound (I) After mixing the solution containing the iron complex represented by the general formula (1) and the solution containing the organoaluminum compound, a solution containing the boron compound is added, Mixing and then contacting the ligand (J) After mixing the solution containing the iron complex represented by the general formula (1) and the solution containing the organoaluminum compound, the solution containing the ligand is added and mixed.
  • a method of contacting a boron compound K) After mixing a solution containing an iron complex represented by the general formula (1) and a solution containing a ligand, a solution containing an organoaluminum compound is added and mixed, and then the boron compound is mixed.
  • L After mixing a solution containing an iron complex represented by the general formula (1) and a solution containing a ligand, a solution containing a boron compound is added and mixed, and then an organoaluminum compound is brought into contact.
  • Method (M) A method comprising mixing a solution containing a boron compound and a solution containing an organoaluminum compound, adding and mixing a solution containing an iron complex represented by the general formula (1), and then contacting the ligand
  • N A solution containing a boron compound and a solution containing an organoaluminum compound are mixed, a solution containing a ligand is added and mixed, and then an iron complex represented by the general formula (1)
  • O After mixing a solution containing a boron compound and a solution containing a ligand, a solution containing an iron complex represented by the general formula (1) is added and mixed, and then the organoaluminum compound is contacted.
  • Method (P) A method of mixing a solution containing a boron compound and a solution containing a ligand, adding and mixing a solution containing an organoaluminum compound, and then contacting the iron complex represented by the general formula (1)
  • Q A a method of mixing a solution containing an organoaluminum compound and a solution containing a ligand, adding and mixing a solution containing an iron complex represented by the general formula (1), and then contacting the boron compound.
  • a solution containing a boron compound is added, mixed, and then contacted with an iron complex represented by the general formula (1)
  • T organoaluminum compound
  • Ethylene oligomer means a homopolymer of ethylene or a copolymer of ethylene and ⁇ -olefin having a number average molecular weight (Mn) of 10,000 or less.
  • Mn number average molecular weight
  • the Mn of the ethylene oligomer obtained in the polymerization step can be appropriately adjusted according to its use. However, when the ethylene oligomer is used as a raw material such as a lubricating oil, the Mn is preferably 200 to 5000, more preferably 300 to 4000. , 350 to 3000 are more preferred.
  • the dispersity is a ratio between the weight average molecular weight (Mw) and Mn, and is expressed as Mw / Mn. For example, preferably 1.0 to 5.0, more preferably 1.1 to 3.0. 0.
  • the Mn and Mw of the ethylene oligomer can be determined as polystyrene conversion amounts based on a calibration curve created from standard polystyrene using a
  • Ethylene oligomers usually include linear hydrocarbon compounds.
  • the content of the linear hydrocarbon compound in the ethylene oligomer is not particularly limited, but is, for example, preferably 40% by mass or more, more preferably 50% by mass or more, and still more preferably 60% by mass or more based on the total amount of the ethylene oligomer. It is.
  • the upper limit of the content of the linear hydrocarbon compound is not particularly limited, and is, for example, usually 100% by mass or less, preferably 90% by mass or less, and more preferably 85% by mass or less.
  • the content of the hydrocarbon compound having an even number of carbon atoms is preferably 80% by mass or more, more preferably 90% by mass or more, based on the total amount of the ethylene oligomer. From the viewpoint of more effectively improving the viscosity-temperature characteristics and traction coefficient of the obtained isomerized oil, it is more preferable that the isomerized oil does not substantially contain a hydrocarbon compound having an odd number of carbon atoms.
  • the content of the above-mentioned linear hydrocarbon compound means a value obtained by performing a gas chromatography analysis on the ethylene oligomer under the following conditions, and measuring and calculating the ratio of the linear hydrocarbon compound in the total amount of the ethylene oligomer. .
  • a mixed sample of normal paraffin having 5 to 50 carbon atoms was used as a standard sample, and each of the above ratios was the sum of the peak area value corresponding to normal paraffin to the total peak area value of the chromatogram. It is calculated as a percentage.
  • the standard sample was measured when calculating the carbon number.
  • the peak present between the peak corresponding to the distillation time of normal paraffin having n carbon atoms and the peak corresponding to the distillation time of normal paraffin having n-1 carbon atoms is n
  • normal paraffin and non-normal paraffin having the same number of carbon atoms are distinguished from each other.
  • the content of the hydrocarbon compound having an even number of carbon atoms was determined by analyzing the ethylene oligomer contained in the polymerization mixture by electrolytic desorption mass spectrometry under the following conditions, and determining the ethylene content from the mass number of the obtained chromatogram. It means a value obtained by calculating the ratio of the hydrocarbon compound having an even number of carbon atoms in the total amount of the oligomer.
  • Equipment JEOL JMS-T300GC
  • Ionization method FD (Field Desorption)
  • Ion source temperature room temperature
  • Emitter current 6.4 mA / min
  • Spectrum recording interval 0.4 sec
  • Measurement mass range m / z 35 to 1600
  • the polymerization mixture containing the ethylene oligomer obtained in the polymerization step is subjected to the first distillation step described below.However, the ethylene oligomer may be taken out from the obtained polymerization mixture and then subjected to the first distillation step, The mixture may be concentrated and subjected to the first distillation step as a concentrate having an increased concentration of ethylene oligomer. It is preferable to concentrate the polymerization mixture in order not to send a solvent or the like which is not a raw material of the lubricating base oil to the isomerization step described below. Examples of a method of concentrating the polymerization mixture include a method of concentrating the polymerization mixture with a concentrator such as a flash tank.
  • the volatile component obtained by concentrating the polymerization mixture with a concentrator usually contains unreacted ethylene, a polymerization solvent, and other light oligomers.
  • the solvent is preferably recovered by distillation or the like and reused, and the other fractions can be sent to a decomposition purification step to be decomposed into ethylene and reused.
  • the volatile components are ethylene, it can be reused as ethylene without being sent to the decomposition and purification step.
  • impurities such as butene that can be generated by the polymerization reaction are mixed and accumulated in the system.Therefore, when recovering ethylene, it is necessary to discharge a part of the system outside the system and keep the amount of impurities constant. , Leading to stable polymerization. Ethylene containing impurities discharged out of the system can be returned to the decomposition and purification step.
  • First distillation step In the first distillation step, the polymerization mixture is fractionated by distillation into a lubricating oil fraction and a fraction other than the lubricating oil fraction. By passing through the first distillation step, it becomes possible not only to remove excess polymer generated in the above-mentioned polymerization step and to improve the efficiency of the isomerization reaction described later, but also to remove polymerization catalyst residues and the like.
  • the boiling point range of the lubricating oil fraction obtained in the first distillation step is, for example, a fraction having a boiling point range of 250 to 500 ° C. Furthermore, when isomerized oil corresponding to 70 Pale, SAE10, VG6, etc. obtained in each step described later is efficiently obtained, the boiling point range of the lubricating oil fraction obtained in the first distillation step is set as follows. can do. Isomerized oil corresponding to 70 Pale: a fraction having a boiling range of 300 to 460 ° C. Isomerized oil corresponding to SAE10: a fraction having a boiling range of 360 to 500 ° C. Isomerized oil corresponding to VG6: a fraction having a boiling range of 250 to 440 ° C. For example, a boiling point range of 250 to 500 ° C. means that the initial boiling point and end point are in the range of 250 to 500 ° C.
  • the distillation conditions in the first distillation step are not particularly limited as long as the target lubricating oil fraction can be fractionated from the polymerization mixture containing the ethylene oligomer.
  • the first distillation step may be a step of fractionation by vacuum distillation, or may be a step of fractionation by combining atmospheric distillation (or distillation under pressure) and vacuum distillation. Further, for example, it may be fractionated as a single fraction, or may be fractionated as a plurality of fractions according to the viscosity grade.
  • fraction other than the lubricating oil fraction examples include a solvent and a fraction containing unreacted ethylene.
  • Fractions other than the lubricating oil fraction may be purified and reused in the polymerization step, if desired, or may be returned to the decomposition and purification step described above.
  • components other than unreacted ethylene can be returned to the decomposition and purification step, and can also be separated and used as basic chemicals if desired.
  • the lubricating oil fraction is hydroisomerized in the presence of a hydroisomerization catalyst to obtain a reaction mixture containing the isomerized oil.
  • the isomerization step is a step in which an ethylene oligomer is brought into contact with a hydroisomerization catalyst in the presence of hydrogen (molecular hydrogen) to hydroisomerize the ethylene oligomer.
  • the hydroisomerization here includes, in addition to isomerization of normal paraffin to isoparaffin, conversion of olefin to paraffin by hydrogenation and the like.
  • the hydroisomerization catalyst may contain either a crystalline or amorphous material.
  • a crystalline material for example, a molecular sieve having a 10- or 12-membered ring passage mainly containing aluminosilicate (zeolite) or silicoaluminophosphate (SAPO) can be mentioned.
  • zeolite aluminosilicate
  • SAPO silicoaluminophosphate
  • Specific examples of the zeolite include ZSM-22, ZSM-23, ZSM-35, ZSM-48, ZSM-57, ferrierite, ITQ-13, MCM-68, MCM-71 and the like.
  • ECR-42 is an example of an aluminophosphate.
  • molecular sieves include zeolite beta, and MCM-68.
  • the molecular sieve is preferably in the hydrogen form.
  • the reduction of the hydroisomerization catalyst can occur in situ at the time of hydroisomerization, but the hydroisomerization catalyst which has been subjected to a reduction treatment in advance may be subjected to hydroisomerization.
  • amorphous material for the hydroisomerization catalyst examples include alumina doped with a Group 3 metal, fluorinated alumina, silica-alumina, and fluorinated silica-alumina.
  • Preferred embodiments of the hydroisomerization catalyst include those that are bifunctional, ie, equipped with a metal hydrogenation component that is at least one Group 6 metal, at least one Group 8-10 metal, or a mixture thereof.
  • Can be Preferred metals are Group 9-10 noble metals such as Pt, Pd or mixtures thereof.
  • the loading of these metals is preferably 0.1 to 30% by mass based on the total amount of the catalyst.
  • Examples of the method for preparing the catalyst and mounting the metal include an ion exchange method and an impregnation method using a decomposable metal salt.
  • the molecular sieve may be combined with a binder material having heat resistance under hydroisomerization conditions, or may be used without a binder (self-bonding).
  • the binder material include a combination of two components with other metal oxides such as silica, alumina, silica-alumina, silica-titania, magnesia, thoria, zirconia, silica-alumina-tria, silica-alumina-magnesia, etc.
  • inorganic oxides such as combinations of acid components of the oxides.
  • the amount of the molecular sieve in the hydroisomerization catalyst is preferably from 10 to 100% by mass, more preferably from 35 to 100% by mass, based on the total amount of the catalyst.
  • the hydroisomerization catalyst is formed by a method such as spray drying and extrusion.
  • the hydroisomerization catalyst can be used in a sulfided or non-sulfided form, with the sulfided form being preferred.
  • the temperature is preferably 250 ° C. to 400 ° C., more preferably 275 ° C. to 350 ° C.
  • the hydrogen partial pressure is preferably 791 kPa to 20786 kPa (100 psig to 3000 psig), more preferably 1480 kPa to 17339 kPa ( 200 psig ⁇ a 2500psig), 0.1hr -1 ⁇ 10hr -1 liquid hourly space velocity is preferably, more preferably 0.1 hr -1 ⁇ 5 hr -1
  • a hydrogen / oil ratio is preferably 45 m 3 / m 3 ⁇ 1780m 3 / m 3 (250scf / B ⁇ 10000scf / B), and more preferably 89m 3 / m 3 ⁇ 890m 3 / m 3 (500scf / B ⁇ 5000scf / B).
  • the above conditions are merely examples, and it is prefer
  • the reaction mixture obtained in the isomerization step is fractionated by distillation into a lubricating base oil and a fraction other than the lubricating base oil.
  • the fraction other than the lubricating base oil is generally a light fraction lighter than the lubricating base oil and a heavy fraction heavier than the lubricating base oil.
  • Such a fraction may be, for example, a normal pressure distillation (or distillation under pressure) for fractionating a light fraction from a reaction mixture containing the isomerized oil, and a desired lubricating oil base from the bottom oil of the normal pressure distillation. Distillation under reduced pressure to fractionate the oil fraction.
  • the distillation conditions in the second distillation step are not particularly limited as long as the target lubricating base oil can be fractionated from the reaction mixture.
  • the second distillation step may be a step of fractionation by vacuum distillation, or may be a step of fractionation by combining atmospheric distillation (or distillation under pressure) and vacuum distillation.
  • the lubricating base oil may be fractionated as a single fraction, or may be fractionated as a plurality of fractions according to the viscosity grade.
  • a plurality of cut points are set and distillation under reduced pressure is performed to obtain a plurality of lubricating base oil fractions according to the purpose.
  • a kinematic viscosity at 100 ° C. of 2.7 mm 2 / s is set as a target value, and a boiling point range at normal pressure is set.
  • a lubricating base oil corresponding to SAE-10 which is suitable as a lubricating base oil for engine oil meeting API Group III standards.
  • kinematic viscosity at 100 ° C. is preferably 1.5 mm 2 / s or more, more preferably 1.8 mm 2 / S or more.
  • the upper limit of the kinematic viscosity at 100 ° C. is not particularly limited, but is preferably 20 mm 2 / s or less, more preferably 11 mm 2 / s or less, and particularly preferably 5.0 mm 2 / s or less.
  • the kinematic viscosity of the obtained lubricating base oil at 100 ° C is as follows.
  • a lubricating base oil having a kinematic viscosity at 100 ° C. of 1.5 mm 2 / s or more and less than 2.3 mm 2 / s, more preferably 1.8 mm to 2.1 mm 2 / s (II) a kinematic viscosity at 100 ° C.
  • a kinematic viscosity at 100 ° C. is 3.0 ⁇ 20 mm 2 / s, more preferably 3.2 to 11 mm 2 / s, still more preferably 3.5 to 5.0 mm 2 / s, particularly preferably 3.6 to 4.0 mm 2 / s.
  • the viscosity index of the lubricating base oil can be appropriately selected according to its viscosity grade.
  • the viscosity index of the lubricating base oil (I) is preferably 105 to 150, more preferably 110 to 140, and still more preferably 115 to 135.
  • the viscosity index of the lubricating base oil (II) is preferably from 120 to 160, more preferably from 125 to 150, and still more preferably from 130 to 150.
  • the viscosity index of the lubricating base oil (III) is preferably 140 to 180, more preferably 145 to 170, and still more preferably 150 to 165.
  • the density ( ⁇ 15 , unit: g / cm 3 ) of the lubricating base oil at 15 ° C. can be appropriately selected according to its viscosity grade.
  • [rho 15 for the lubricating base oil (I) is preferably from 0.82 g / cm 3 or less, more preferably 0.81 g / cm 3 or less, more preferably 0.80 g / cm 3 or less, particularly preferably 0.79 g / cm 3 or less.
  • [Rho 15 of the lubricating base oils (II) and (III) preferably 0.84 g / cm 3 or less, more preferably 0.83 g / cm 3 or less, more preferably is 0.82 g / cm 3 or less .
  • the pour point of the lubricating base oil can be appropriately selected according to its viscosity grade.
  • the pour point of the lubricating base oil (I) is preferably ⁇ 10 ° C. or lower, more preferably ⁇ 20 ° C. or lower, and still more preferably ⁇ 30 ° C. or lower.
  • the pour point of the lubricating base oil (II) is preferably ⁇ 10 ° C. or lower, more preferably ⁇ 15 ° C. or lower, and still more preferably ⁇ 20 ° C. or lower.
  • the pour point of the lubricating base oil (III) is preferably -10 ° C or lower, more preferably -15 ° C or lower.
  • the cloud point of the lubricating base oil depends on its viscosity grade.
  • the lubricating base oil (I) has a cloud point of preferably -15 ° C or lower, more preferably -17.5 ° C or lower.
  • the cloud point of the lubricating base oil (II) is preferably -10 ° C or lower, more preferably -12.5 ° C or lower.
  • the cloud point of the lubricating base oil (III) is preferably -10 ° C or lower.
  • the carbon number distribution of the hydrocarbon compound contained in the lubricating base oil can be appropriately selected according to its viscosity grade.
  • the carbon number distribution in the lubricating base oil (I) is preferably 10 to 35, more preferably 15 to 30.
  • the carbon number distribution in the lubricating base oil (II) is preferably from 12 to 40, more preferably from 15 to 35.
  • the carbon number distribution in the lubricating base oil (III) is preferably 15 to 50, more preferably 18 to 45.
  • the average carbon number of the hydrocarbon compound contained in the lubricating base oil can be appropriately selected according to its viscosity grade.
  • the average carbon number in the lubricating base oil (I) is preferably 15 to 25, more preferably 18 to 22.
  • the average carbon number in the lubricating base oil (II) is preferably 15 to 30, more preferably 20 to 25.
  • the average carbon number in the lubricating base oil (III) is preferably 20 to 40, more preferably 25 to 30.
  • the lubricating base oil obtained by the method for producing a lubricating base oil according to the present embodiment is obtained from the above-mentioned ethylene oligomer, a hydrocarbon compound having an even number of carbon atoms and an odd number of carbon atoms are used.
  • the balance of the content of hydrocarbon compounds is not uniform.
  • the specific content of the hydrocarbon compound having an even number of carbon atoms is not particularly limited, but based on the total amount of the lubricating base oil, for example, It is preferably at least 60% by mass, more preferably at least 70% by mass, further preferably at least 80% by mass, particularly preferably at least 85% by mass.
  • FIG. 1 is an FD-MS chromatogram of the isomerized oil obtained in Example 1. For example, a peak near MS 338 (C 24 H 50 ) is C24, and a peak near MS 310 (C 22 H 46 ) is C22. And MS324 (C 23 H 48) peak in the vicinity is C23.
  • the average carbon number is determined by adding these neighboring ion intensities to determine the content of each carbon number and dividing them by the total amount. From the start and end of the chromatogram, the carbon number distribution is determined.
  • the content of the hydrocarbon compound having an even number of carbon atoms is determined by analyzing the isomerized oil by mass spectrometry, and measuring and calculating the ratio of the hydrocarbon compound having an even number of carbon atoms in the total amount of the isomerized oil. Means the value of As an analysis method, electrolytic desorption mass spectrometry based on the following conditions can be preferably adopted. (Electrodesorption mass spectrometry conditions) Equipment: JEOL JMS-T300GC Ionization method: FD (Field Desorption) Ion source temperature: room temperature Counter electrode voltage: -10 kV Emitter current: 6.4 mA / min Spectrum recording interval: 0.4 sec Measurement mass range: m / z 35 to 1600
  • the lubricating base oil obtained above can be preferably used as a lubricating base oil for various uses.
  • Specific applications of the lubricating base oil include, for example, lubricating oils used in internal combustion engines such as gasoline engines for passenger cars, gasoline engines for motorcycles, diesel engines, gas engines, engines for gas heat pumps, marine engines, and power generation engines. (Lubricating oil for internal combustion engines), lubricating oil (oil for driving transmission devices) used in drive transmission devices such as automatic transmissions, manual transmissions, continuously variable transmissions, final reduction gears, etc., and hydraulic pressure for shock absorbers, construction machinery, etc.
  • Hydraulic hydraulic oil compressor oil, turbine oil, industrial gear oil, refrigerating machine oil, rust preventive oil, heat transfer oil, gas holder seal oil, bearing oil, paper machine oil, machine tool oil, machine tool oil, sliding guide surface used in equipment Oil, electric insulating oil, cutting oil, press oil, rolling oil, heat treatment oil and the like.
  • the lubricating base oil obtained by the production method according to the present embodiment may be used alone as the lubricating base oil, or the lubricating base oil may be used as one of other base oils. It may be used in combination with two or more species.
  • the ratio of the lubricating base oil obtained by the production method according to the present embodiment to the mixed base oils is preferably 30% by mass, and 50% by mass. More preferably, it is more preferably 70% by mass or more.
  • the other base oil used in combination with the lubricating base oil obtained by the production method according to the present embodiment is not particularly limited, and examples of the mineral base oil include API group I to group III. Mineral oil and the like.
  • each group of API classification means the thing according to the classification of the lubricating oil grade of American Petroleum Institute (API (American @ Pertoleum @ Institute)).
  • Synthetic base oils include poly- ⁇ -olefin or hydride thereof, isobutene oligomer or hydride thereof, isoparaffin, alkylbenzene, alkylnaphthalene, diester (ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditride).
  • the poly- ⁇ -olefin is typically an oligomer or co-oligomer of an ⁇ -olefin having 2 to 32, preferably 6 to 16 carbon atoms (eg, 1-octene oligomer, decene oligomer, ethylene-propylene cooligomer) and the like. Hydride.
  • the method for producing the poly- ⁇ -olefin is not particularly limited.
  • a Friedel-Crafts catalyst containing a complex of aluminum trichloride or boron trifluoride with water, alcohol (ethanol, propanol, butanol, etc.), carboxylic acid or ester and a method of polymerizing an ⁇ -olefin in the presence of a polymerization catalyst such as
  • various additives can be blended with the lubricating base oil obtained by the production method according to the present embodiment or a mixed base oil of the lubricating base oil and another base oil.
  • Such additives are not particularly limited, and any additives conventionally used in the field of lubricating oils can be blended.
  • Specific examples of such lubricating oil additives include antioxidants, ashless dispersants, metal detergents, extreme pressure agents, antiwear agents, viscosity index improvers, pour point depressants, friction modifiers, oil agents , A corrosion inhibitor, a rust inhibitor, a demulsifier, a metal deactivator, a seal swelling agent, an antifoaming agent, and a coloring agent.
  • One of these additives may be used alone, or two or more thereof may be used in combination.
  • the fraction other than the lubricating base oil obtained in the second distillation step includes, for example, a fraction lighter than the lubricating base oil and a fraction heavier than the lubricating base oil. These fractions can be returned to the cracking and refining step and used as feedstock.
  • a fraction other than the lubricating oil fraction obtained in the above-described first distillation step and / or a lubricating base oil obtained in the second distillation step A fraction other than the above is returned to the cracking and refining step as a part of the feedstock oil.
  • the fraction returned to the cracking and refining step is preferably a fraction other than the lubricant base oil obtained in the second distillation step, and the fraction is a lighter fraction lighter than the lubricant base oil. Is more preferable.
  • the fraction other than the lubricating oil fraction obtained in the first distillation step and the fraction other than the lubricating oil base oil obtained in the second distillation step respectively separate the polymerization mixture and the reaction mixture containing the ethylene oligomer. It is obtained by fixing.
  • the ethylene oligomer is a hydrocarbon compound in which most of the constituent hydrocarbon compounds have an even number of carbon atoms. Therefore, in the fraction, the content balance between the hydrocarbon compound having an even number of carbon atoms and the hydrocarbon compound having an odd number of carbon atoms is not uniform.
  • the specific content of the hydrocarbon compound having an even number of carbon atoms is not particularly limited, but based on the total amount of the fraction, for example, preferably 50 It is less than 50% by mass, more preferably 45% by mass or less, and still more preferably 40% by mass or less.
  • FIG. 2 is a flowchart illustrating an example of a lubricating base oil manufacturing apparatus for performing the method of manufacturing a lubricating base oil according to one embodiment of the present invention.
  • the lubricating base oil producing apparatus 100 shown in FIG. 2 is configured to thermally decompose the feedstock introduced from the flow path L1 and to purify the obtained pyrolyzed product to obtain ethylene.
  • a first distillation column 30 for fractionating the polymerization mixture containing the mixture into a lubricating oil fraction and a fraction other than the lubricating oil fraction, and converting the lubricating oil fraction supplied from the first distillation column 30 through the flow path L4 to hydrogen.
  • the second reactor 40 to be isomerized and the isomerized oil (reaction mixture containing the isomerized oil) supplied from the second reactor 40 through the flow path L5 are mixed with the lubricating base oil and the non-lubricating base oil.
  • a flow path L6 for extracting the lubricating base oil obtained in the second distillation column 50 is a fractionated fraction A distilling column 50, a flow path L4 'where a fraction other than the lubricating oil fraction obtained in the first distillation tower 30 is merged with the flow path L1, and / or a lubricating oil base oil obtained in the second distillation tower 50
  • the types of the thermal decomposition purification device 10, the first reactor 20 and the second reactor 40 are not particularly limited.
  • a naphtha cracker is preferably used for the thermal decomposition purification device 10
  • a reactor containing an ethylene polymerization catalyst and a solvent is suitably used for the first reactor 20
  • a second reactor 40 is used for the first reactor 20.
  • a fixed bed flow reactor filled with a hydroisomerization catalyst is preferably used.
  • the lubricating base oil manufacturing apparatus 100 only one pyrolysis purification unit 10, the first reactor 20 and the second reactor 40 are arranged, respectively.
  • the apparatus, the plurality of first reactors for the oligomerization reaction, and the plurality of second reactors for the hydroisomerization may be respectively arranged in series or in parallel. Further, the catalyst bed in the second reactor 40 may be single or plural.
  • the first distillation column 30 for example, a light fraction from the top of the column, a solvent from the middle of the column, a lubricating oil fraction from the bottom of the column, and a heavy fraction from the bottom,
  • the light fraction can be fractionated from the top of the 50 column, the lubricating base oil from the middle of the column, and the heavy fraction from the bottom of the column.
  • the solvent be purified and reused as a polymerization solvent.
  • a plurality of first distillation columns 30 and second distillation columns 50 are provided in the lubricating base oil manufacturing apparatus 100, but depending on the conditions of fractionation, a plurality of first distillation columns 30 and second distillation columns 50 are provided. And the plurality of second distillation columns may be arranged in series or in parallel, respectively.
  • the lubricating base oil manufacturing apparatus 100 is configured to remove unreacted ethylene contained in the polymerization mixture supplied from the first reactor 20 downstream of the first reactor 20 and upstream of the first distillation column 30.
  • a flash tank for recovery may be provided, or a deash tank for removing metal components such as a catalyst and a catalyst activator contained in the polymerization mixture may be provided.
  • the unreacted ethylene recovered in the flash tank may be partially supplied to the pyrolysis purification device 10 or the first reactor 20 in some cases, and may be reused as ethylene.
  • a bleeding step for discharging impurities out of the system may be provided in order to keep the ethylene purity in the recovered ethylene constant.
  • a solvent recovery and purification device may be provided before the first distillation column, and the recovered solvent can be reused as a polymerization reaction solvent.
  • the washed solid was washed with dehydrated diethyl ether, and the solvent was removed to obtain an iron compound.
  • the obtained iron compound was found to have 527.0820 (calculated value: 527.0831) by FD-MS, suggesting the structure of the following iron compound (1a).
  • Example 1 (Heat cracking of feedstock) Hydrocarbons were thermally decomposed using a pyrolyzer (EGA / PY 3030D, Frontier Lab), which is a pyrolysis device, a gas chromatograph device, and a pyrolysis behavior evaluation device with a mass spectrometer.
  • the gas generated by thermal decomposition was collected by a microjet cryotrap while cooling with liquid nitrogen, separated by gas chromatography, and qualitative and quantitative analysis was performed by mass spectrometry.
  • the conditions of the thermal decomposition behavior evaluation device are as follows.
  • the solution (C) containing the ethylene polymerization catalyst prepared in Production Example 3 was added to the above-mentioned autoclave into which dry toluene had been introduced, and commercially available ethylene corresponding to high-purity ethylene purified from the pyrolysis component obtained above (large Nippon Sanso, industrial (> 99.5%)) was continuously introduced at 0 ° C. and 0.2 MPa. After 970 minutes, the introduction of ethylene was stopped, unreacted ethylene was removed, the ethylene in the autoclave was purged with nitrogen, and a very small amount of ethanol was added.
  • the autoclave was opened, the contents were sequentially transferred to a 20 L evaporator, and the solvent was distilled off under reduced pressure to obtain a semi-solid oligomer. Such polymerization was repeated four times.
  • a typical catalyst efficiency (CE) was 68875 ⁇ Poly kg / Fe ⁇ mol.
  • the Mn of the oligomer (WAX1) obtained by mixing the four batches was 510, and the Mw / Mn was 1.7.
  • Table 1 shows the results obtained by gas chromatography analysis and electrolytic desorption mass spectrometry for the content of normal paraffins and the content of hydrocarbon compounds having an even number of carbon atoms (even number of carbon atoms) of WAX1.
  • the isomerized oil 1 obtained above was distilled under reduced pressure to obtain a lubricating base oil 1 equivalent to 70 Pale and a fraction other than the lubricating base oil 1.
  • Table 2 shows the properties of the obtained lubricating base oil 1.
  • “Carbon number distribution”, “Average carbon number” and “Even carbon number content” are obtained by performing gas chromatography analysis on the obtained lubricating base oil 1.
  • the "traction coefficient” is a value measured using a steel ball and a steel disk as test pieces under the conditions of a load of 20 N, a test oil temperature of 25 ° C., a peripheral speed of 0.52 m / s, and a slip rate of 3% ( The same applies hereinafter.)
  • Example 2 The operation up to the oligomerization reaction of ethylene was performed in the same manner as in Example 1 to obtain an oligomer (WAX1). (Distillation of oligomer) 5000 g of the above-mentioned WAX1 was introduced into a 20 L three-necked flask, and the bottom temperature was changed from normal temperature to 380 ° C., the pressure was changed from normal pressure to 29 kPa, and simple distillation was performed to collect a boiling point fraction of 300 to 440 ° C. in terms of normal pressure. .
  • WAX1 distillation of oligomer
  • the autoclave was opened, the contents were transferred to a 200 ml eggplant flask, and the solvent was distilled off under reduced pressure to obtain a semi-solid oligomer.
  • the catalyst efficiency was 7946 kg Olig / Fe mol.
  • Mn of the obtained oligomer was 410, Mw was 740, and Mw / Mn was 1.9.
  • a semi-solid oligomer was obtained by performing the same operation as in Reference Example except that 1-decene (5 ml) was further added to the solution (E).
  • the catalyst efficiency was 5186 kg Olig / Fe mol.
  • Mn of the obtained oligomer was 260, Mw was 550, and Mw / Mn was 2.1. Further, when the obtained oligomer was analyzed using 13 C NMR, it was found that 1-decene was not copolymerized and the product was an ethylene homo-oligomer.
  • the results show that the presence of an olefin such as 1-decene in the oligomerization reaction system reduces the catalytic efficiency of the ethylene polymerization catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided is a method for producing a lubricant base oil, the method comprising: a decomposition-purification step of thermolyzing a feedstock oil and purifying the obtained thermolyzed product to obtain ethylene; a polymerization step of oligomerizing the ethylene in the presence of an ethylene polymerization catalyst to obtain a polymer mixture containing an ethylene oligomer; a first distillation step of distilling the polymer mixture to fractionate the mixture into a lubricant fraction and a fraction other than the lubricant fraction; an isomerization step of hydroisomerizing the lubricant fraction in the presence of a hydroisomerization catalyst to obtain a reaction mixture containing an isomerized oil; and a second distillation step of distilling the reaction mixture to fractionate the mixture into a lubricant base oil and a fraction other than the lubricant base oil. The fraction, other than the lubricant fraction, obtained during the first distillation step and/or the fraction, other than the lubricant base oil, obtained during the second distillation step is/are returned to the decomposition-purification step as part of the feedstock oil.

Description

潤滑油基油の製造方法Manufacturing method of lubricating base oil
 本発明は、潤滑油基油の製造方法に関する。 The present invention relates to a method for producing a lubricating base oil.
 潤滑油基油の原料として用いられるエチレンオリゴマーの製造においては、不純物を含まない高純度のエチレンオリゴマーを得るための方法の開発が進められている。例えば特許文献1には、チーグラー系触媒の存在下、有機溶媒中でエチレンの重合反応を行い、得られた重合反応生成物を蒸留することにより分離された有機溶媒を、重合反応に循環して使用するエチレンオリゴマーの製造方法が記載されており、当該製造方法においては、重合反応系に循環する有機溶媒中における炭素数3以上のオレフィンの濃度を2重量%以下とすることが記載されている。 エ チ レ ン In the production of ethylene oligomer used as a raw material of lubricating base oil, a method for obtaining a high-purity ethylene oligomer containing no impurities is being developed. For example, Patent Literature 1 discloses a method in which a polymerization reaction of ethylene is performed in an organic solvent in the presence of a Ziegler-based catalyst, and the organic solvent separated by distilling the obtained polymerization reaction product is recycled to the polymerization reaction. A method for producing an ethylene oligomer to be used is described. In the production method, the concentration of an olefin having 3 or more carbon atoms in an organic solvent circulating in a polymerization reaction system is set to 2% by weight or less. .
特開2002-255864号公報JP-A-2002-255864
 ところで、潤滑油基油の製造において、重合反応生成物であるエチレンオリゴマーから目的の製品に相当する潤滑油基油を得るためには、蒸留工程、異性化工程等の種々の工程を経る必要がある。そのため、目的とする潤滑油基油の収率を向上させる目的から、エチレンの重合反応触媒を含め、各工程において用いられる触媒の反応効率はできる限り維持されることが望ましい。 By the way, in the production of a lubricating base oil, in order to obtain a lubricating base oil corresponding to a target product from an ethylene oligomer which is a polymerization reaction product, it is necessary to go through various steps such as a distillation step and an isomerization step. is there. Therefore, in order to improve the yield of the target lubricating base oil, it is desirable that the reaction efficiency of the catalyst used in each step, including the ethylene polymerization reaction catalyst, be maintained as much as possible.
 この点、エチレン重合反応によって得られた重合反応生成物から分離された有機溶媒には、未反応のエチレンが含まれており、未反応のエチレンを含む有機溶媒を再度反応溶媒として重合反応系にリサイクルする上記特許文献1に記載された方法によって、確かにある程度高純度のエチレンオリゴマーを得ることができる。しかし、上記有機溶媒にはオレフィン等の副生成物(不純物)も含まれており、この不純物が重合反応系に供給されると、エチレン重合触媒の触媒効率の低下を引き起こし、目的とする潤滑油基油の収率の低下の原因となることがある。 In this regard, the organic solvent separated from the polymerization reaction product obtained by the ethylene polymerization reaction contains unreacted ethylene, and the organic solvent containing unreacted ethylene is used again as a reaction solvent in the polymerization reaction system. By recycling the method described in Patent Document 1, it is possible to obtain an ethylene oligomer having a certain degree of high purity. However, the organic solvent also contains by-products (impurities) such as olefins, and when these impurities are supplied to the polymerization reaction system, the catalyst efficiency of the ethylene polymerization catalyst is reduced, and the intended lubricating oil This may cause a decrease in the base oil yield.
 本発明の目的は、潤滑油基油を効率的に製造することが可能な、新たな潤滑油基油の製造方法を提供することにある。 An object of the present invention is to provide a new method for producing a lubricating base oil, which can efficiently produce a lubricating base oil.
 上記課題を解決するために、本発明者は、これまでの潤滑油基油の製造において、燃料として燃やす以外に利用価値のなかった、蒸留工程により得られる潤滑油基油以外の留分に着目した。そして、エチレンオリゴマーから潤滑油基油を製造する工程において、上記に相当する留分を原料油の一部として熱分解工程に再利用することで、高純度エチレンを再生でき、それを重合工程に利用することで、重合触媒効率の低下を引き起こすオレフィン等の不純物混入を抑制し、潤滑油基油を高収率で製造できることを見出し、本発明を完成するに至った。 In order to solve the above problems, the present inventors have focused on fractions other than the lubricating base oil obtained by the distillation process, which have been of no use except for burning as a fuel in the production of lubricating base oils. did. Then, in the step of producing a lubricating base oil from ethylene oligomers, high-purity ethylene can be regenerated by reusing the fraction corresponding to the above as a part of the raw material oil in the thermal cracking step, and converting it to the polymerization step. It has been found that by using such a compound, it is possible to suppress the contamination of impurities such as olefins, which cause a decrease in the efficiency of the polymerization catalyst, and to produce a lubricating base oil in a high yield, thereby completing the present invention.
 本発明に係る潤滑油基油の製造方法は、原料油を熱分解するとともに、得られた熱分解物を精製してエチレンを得る分解精製工程と、エチレンをエチレン重合触媒の存在下でオリゴマー化してエチレンオリゴマーを含む重合混合物を得る重合工程と、重合混合物を蒸留により潤滑油留分及び潤滑油留分以外の留分にそれぞれ分留する第一の蒸留工程と、潤滑油留分を水素化異性化触媒の存在下で水素化異性化して異性化油を含む反応混合物を得る異性化工程と、反応混合物を蒸留により潤滑油基油及び潤滑油基油以外の留分にそれぞれ分留する第二の蒸留工程と、を備え、第一の蒸留工程で得られた潤滑油留分以外の留分及び/又は第二の蒸留工程で得られた潤滑油基油以外の留分を、原料油の一部として分解精製工程に戻すことを特徴とする。 The method for producing a lubricating base oil according to the present invention comprises a step of pyrolyzing a feedstock oil, a step of purifying an obtained pyrolyzate to obtain ethylene, and a step of oligomerizing ethylene in the presence of an ethylene polymerization catalyst. A polymerization step of obtaining a polymerization mixture containing ethylene oligomer by distillation, a first distillation step of distilling the polymerization mixture into a lubricating oil fraction and a fraction other than the lubricating oil fraction, and hydrogenating the lubricating oil fraction. An isomerization step of hydroisomerizing in the presence of an isomerization catalyst to obtain a reaction mixture containing isomerized oil, and a second step of distilling the reaction mixture into a lubricating base oil and a fraction other than the lubricating base oil by distillation. And a second distillation step, wherein the fraction other than the lubricating oil fraction obtained in the first distillation step and / or the fraction other than the lubricating oil base oil obtained in the second distillation step It is characterized by returning to the decomposition purification process as a part of That.
 特に、第二の蒸留工程で得られた潤滑油基油以外の留分を、原料油の一部として分解精製工程に戻すことが好ましい。 In particular, it is preferable to return the fraction other than the lubricating base oil obtained in the second distillation step to the cracking and refining step as a part of the feed oil.
 潤滑油基油以外の留分は、潤滑油基油より軽質の軽質留分であってもよい。 留 The fraction other than the lubricating base oil may be a lighter fraction lighter than the lubricating base oil.
 本発明によれば、潤滑油基油を効率的に製造することが可能な、新たな潤滑油基油の製造方法が提供される。 According to the present invention, there is provided a new method for producing a lubricating base oil capable of efficiently producing a lubricating base oil.
実施例1で得られた異性化油の電解脱離質量分析(FD-MS)結果(クロマトグラム)である。2 is a result (chromatogram) of electrolytic desorption mass spectrometry (FD-MS) of the isomerized oil obtained in Example 1. 本発明の一実施形態に係る潤滑油基油の製造方法を実施するための、潤滑油基油製造装置の一例を示すフロー図である。It is a flow figure showing an example of a lubricating base oil manufacturing device for carrying out a lubricating base oil manufacturing method concerning one embodiment of the present invention.
 以下、図面を適宜参照しながら、本発明の好適な実施形態について説明する。ただし、本発明は以下の実施形態に何ら限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings as appropriate. However, the present invention is not limited to the following embodiments.
 本実施形態に係る潤滑油基油の製造方法は、原料油を熱分解するとともに、得られた熱分解物を精製してエチレンを得る分解精製工程と、エチレンをエチレン重合触媒の存在下でオリゴマー化してエチレンオリゴマーを含む重合混合物を得る重合工程と、重合混合物を蒸留により潤滑油留分及び潤滑油留分以外の留分にそれぞれ分留する第一の蒸留工程と、潤滑油留分を水素化異性化触媒の存在下で水素化異性化して異性化油を含む反応混合物を得る異性化工程と、反応混合物を蒸留により潤滑油基油及び潤滑油基油以外の留分にそれぞれ分留する蒸留工程と、を備える。また、かかる製造方法では、上記第一の蒸留工程で得られた潤滑油留分以外の留分及び/又は第二の蒸留工程で得られた潤滑油基油以外の留分を、原料油の一部として上記分解精製工程に供給する。 The method for producing a lubricating base oil according to the present embodiment comprises a cracking and refining step of thermally cracking a feedstock oil and refining an obtained pyrolyzate to obtain ethylene, and converting ethylene into an oligomer in the presence of an ethylene polymerization catalyst. A polymerization step of obtaining a polymerization mixture containing ethylene oligomers by distillation, a first distillation step of distilling the polymerization mixture into a lubricating oil fraction and a fraction other than the lubricating oil fraction, and hydrogenating the lubricating oil fraction with hydrogen. An isomerization step of hydroisomerizing in the presence of a hydroisomerization catalyst to obtain a reaction mixture containing an isomerized oil, and distilling the reaction mixture into a lubricating oil base oil and a fraction other than the lubricating oil base oil by distillation, respectively And a distillation step. Further, in such a production method, a fraction other than the lubricating oil fraction obtained in the first distillation step and / or a fraction other than the lubricating oil base oil obtained in the second distillation step are mixed with the base oil. It is supplied as part of the decomposition and purification steps.
 本実施形態に係る製造方法によれば、目的とする潤滑油基油を効率的に製造することが可能となる。このような効果が得られる要因は、未反応のエチレンを再度分解精製工程に戻すことで、再び重合工程の原料として用いることができるのはもちろんであるが、その他の要因として、エチレン重合触媒の触媒効率の低下を抑制することが可能となることが考えられる。その理由を本発明者等は以下のように考えている。 According to the production method according to the present embodiment, it is possible to efficiently produce a target lubricating base oil. The reason why such an effect is obtained is that, of course, unreacted ethylene can be used again as a raw material for the polymerization step by returning it to the decomposition and purification step. It is conceivable that a decrease in catalyst efficiency can be suppressed. The present inventors consider the reason as follows.
 まず、エチレン重合触媒の触媒効率の低下は、未反応のエチレンを再度重合反応系に供給する際に、エチレン以外のオレフィン等の副生成物(不純物)も重合反応系に供給されることによるものと考えられる。これに対し、本実施形態に係る潤滑油基油の製造方法では、第一の蒸留工程で得られた潤滑油留分以外の留分及び/又は第二の蒸留工程で得られた潤滑油基油以外の留分を、原料油の一部として分解精製工程に戻し、分解精製工程により得られた高純度のエチレンを、重合工程においてエチレン重合触媒と接触させることで、エチレン重合触媒の触媒活性を阻害するような不純物の混入が抑えられ、結果としてエチレン重合触媒の触媒効率の低下を抑えることができたものと考えられる。 First, the decrease in the catalytic efficiency of the ethylene polymerization catalyst is due to the fact that when unreacted ethylene is supplied again to the polymerization reaction system, by-products (impurities) such as olefins other than ethylene are also supplied to the polymerization reaction system. it is conceivable that. In contrast, in the method for producing a lubricating base oil according to the present embodiment, a fraction other than the lubricating oil fraction obtained in the first distillation step and / or the lubricating base oil obtained in the second distillation step The fraction other than oil is returned to the cracking and refining step as a part of the feedstock oil, and the high-purity ethylene obtained in the cracking and refining step is brought into contact with the ethylene polymerization catalyst in the polymerization step, whereby the catalytic activity of the ethylene polymerization catalyst is increased. It is considered that the contamination of impurities that hinder the reaction was suppressed, and as a result, the decrease in the catalytic efficiency of the ethylene polymerization catalyst could be suppressed.
 また、本実施形態に係る潤滑油基油の製造方法では、第一の蒸留工程で得られた潤滑油留分以外の留分及び/又は第二の蒸留工程で得られた潤滑油基油以外の留分を、原料油の一部として分解精製工程に戻し、再度分解精製工程に供することで、エチレンを再生できるほか、プロピレン、ブタジエン、イソプレン、シクロペンタジエン、ベンゼン、トルエン、キシレン等の基礎化学品類を併産することも可能である。 In the method for producing a lubricating base oil according to the present embodiment, a fraction other than the lubricating oil fraction obtained in the first distillation step and / or a fraction other than the lubricating base oil obtained in the second distillation step Can be recycled as a part of the feedstock oil and returned to the cracking and refining process to regenerate ethylene, as well as basic chemicals such as propylene, butadiene, isoprene, cyclopentadiene, benzene, toluene, and xylene. It is also possible to co-produce goods.
 さらに、本実施形態に係る潤滑油基油の製造方法においては、上記留分を原料油の一部として分解精製工程に戻すことにより再生した高純度エチレンを原料として用いるため、従来のスラックワックスや常圧残油水素化分解油等の原料油を水素化分解・水素化異性化工程に供する潤滑油基油製造方法と比較して、全工程での潤滑油基油の収率を向上させることが可能であることに加え、得られる潤滑油基油のトラクション係数を抑えることも可能である。このような効果が得られる理由は、本実施形態に係る潤滑油基油の製造方法によって得られる潤滑油基油の炭素数分布の特異性にあると本発明者等は推察する。 Further, in the method for producing a lubricating base oil according to the present embodiment, since the high-purity ethylene regenerated by returning the fraction to a cracking and refining step as a part of the raw material oil is used as a raw material, a conventional slack wax or Improve the yield of lubricating base oil in all processes compared to the method for producing lubricating base oil in which feedstock such as atmospheric residual oil hydrocracked oil is subjected to hydrocracking / hydroisomerization process In addition to the above, it is also possible to suppress the traction coefficient of the obtained lubricating base oil. The present inventors presume that the reason for obtaining such an effect lies in the specificity of the carbon number distribution of the lubricating base oil obtained by the method for producing a lubricating base oil according to the present embodiment.
 すなわち、まず、従来のワックス異性化油の場合、FT合成により得られるワックス等の原料ワックスは、通常、偶数個の炭素数を有する炭化水素化合物(炭素数2nの炭化水素化合物;nは1以上の整数を示す。以下同様である。)と奇数個の炭素数を有する炭化水素化合物(炭素数2n+1の炭化水素化合物)との混合物であり、両者の比率はほぼ同じである。これに対し、本実施形態に係る製造方法で得られたエチレンオリゴマーは、異性化に伴う熱分解(例えば炭素数2nのパラフィンの異性化に伴う炭素数2n-1のパラフィンの生成)が起こり得るものの、その大部分が偶数個の炭素数を有する炭化水素化合物(炭素数2nの炭化水素化合物)であり、偶数個の炭素数を有する炭化水素化合物の割合が大きいという特異な炭素数分布を示す。 That is, first, in the case of a conventional wax isomerized oil, a raw material wax such as a wax obtained by FT synthesis is usually a hydrocarbon compound having an even number of carbon atoms (a hydrocarbon compound having 2n carbon atoms; n is 1 or more). And the same applies hereinafter) and a hydrocarbon compound having an odd number of carbon atoms (a hydrocarbon compound having 2n + 1 carbon atoms), and the ratio between the two is almost the same. In contrast, the ethylene oligomer obtained by the production method according to the present embodiment may undergo thermal decomposition accompanying isomerization (for example, formation of 2n-1 carbon paraffins due to isomerization of 2n carbon paraffins). However, most are hydrocarbon compounds having an even number of carbon atoms (hydrocarbon compounds having a carbon number of 2n), and exhibit a unique carbon number distribution in which the proportion of hydrocarbon compounds having an even number of carbon atoms is large. .
 本実施形態に係る潤滑油基油の製造方法によって得られるエチレンオリゴマーがこのような特異的な炭素数分布を示すことで、得られる潤滑油基油のトラクション係数を抑えることができたものと本発明者等は考えている。 The ethylene oligomer obtained by the method for producing a lubricating base oil according to the present embodiment exhibits such a specific carbon number distribution, so that the traction coefficient of the obtained lubricating base oil can be suppressed. The inventors are thinking.
 以下、各工程について詳細に説明する。
(分解精製工程)
 分解精製工程では、原料油を熱分解するとともに、得られた熱分解物を精製してエチレンを得る。具体的には、ナフサクラッカー等の熱分解精製装置に原料油を導入する方法が挙げられる。熱分解に供される原料油は、後述する、第一の蒸留工程で得られる潤滑油留分以外の留分及び/又は第二の蒸留工程で得られる潤滑油基油以外の留分を少なくとも含む。これらの留分については、後述の第一の蒸留工程及び第二の蒸留工程において詳細に説明する。
Hereinafter, each step will be described in detail.
(Decomposition / purification process)
In the cracking and refining step, the raw oil is thermally cracked, and the obtained thermally cracked product is purified to obtain ethylene. Specifically, a method of introducing a feedstock oil into a pyrolysis refining device such as a naphtha cracker can be used. The raw material oil to be subjected to thermal cracking includes at least a fraction other than the lubricating oil fraction obtained in the first distillation step and / or a fraction other than the lubricating oil base oil obtained in the second distillation step. Including. These fractions will be described in detail in a first distillation step and a second distillation step described below.
 分解精製工程においては、原料油を熱分解した後、得られた熱分解物(分解油)を精製工程に供することで更に高純度のエチレンを得てもよいが、熱分解精製装置として既存のナフサクラッカー等を用いる場合、当該ナフサクラッカーの精製工程をそのまま使用することができる。精製工程を含むことで、更なる高純度のエチレンを得るだけでなく、プロピレン、ブタジエン、イソプレン、シクロペンタジエン、ベンゼン、トルエン、キシレン等の基礎化学品を高純度で得ることが可能である。精製工程を経ることによって得られるエチレンの純度は、例えば、99.0%以上が好ましく、99.5%以上がより好ましく、99.9%以上が更に好ましい。 In the cracking and refining process, after the raw oil is thermally cracked, the resulting pyrolyzate (cracked oil) may be subjected to a refining process to obtain higher-purity ethylene. When a naphtha cracker or the like is used, the naphtha cracker purification step can be used as it is. By including the purification step, it is possible not only to obtain ethylene with higher purity, but also to obtain basic chemicals such as propylene, butadiene, isoprene, cyclopentadiene, benzene, toluene, and xylene with high purity. The purity of ethylene obtained through the purification step is, for example, preferably 99.0% or more, more preferably 99.5% or more, and still more preferably 99.9% or more.
 原料油に含まれる第一の蒸留工程で得られる潤滑油留分以外の留分及び/又は第二の蒸留工程で得られる潤滑油基油以外の留分の含有量には、特に制限はなく、例えば好ましくは0.01質量%以上、より好ましくは1質量%以上、更に好ましくは10質量%以上である。原料油に含まれる留分の含有量の上限についても特に制限はなく、例えば通常100質量%未満、好ましくは90質量%以下、より好ましくは80質量%以下である。なお、熱分解精製装置の安定稼働の観点から、留分の含有量を一定に保った原料油を使用することが好ましい。 The content of the fraction other than the lubricating oil fraction obtained in the first distillation step and / or the fraction other than the lubricating base oil obtained in the second distillation step contained in the feedstock is not particularly limited. For example, it is preferably 0.01% by mass or more, more preferably 1% by mass or more, and further preferably 10% by mass or more. The upper limit of the content of the fraction contained in the feedstock is also not particularly limited, and is, for example, usually less than 100% by mass, preferably 90% by mass or less, more preferably 80% by mass or less. In addition, from the viewpoint of stable operation of the thermal cracking and refining apparatus, it is preferable to use a raw material oil in which the content of the fraction is kept constant.
 上記留分以外に原料油に含まれるものとしては、通常熱分解に供される原料油(ナフサ)を特に制限なく利用することができる。またナフサに加えて、エタン、LPG、灯油、軽油等を使用することも可能である。 原料 As the material contained in the base oil other than the above-mentioned fraction, a base oil (naphtha) usually subjected to thermal cracking can be used without any particular limitation. In addition to naphtha, it is also possible to use ethane, LPG, kerosene, light oil, and the like.
 原料油を熱分解してエチレンを含む分解油を得る方法は、熱分解に供される原料油の組成及び目的とする潤滑油基油の性能に応じて適宜設定することができる。例えば、熱分解温度は好ましくは700~1000℃であり、滞留時間は好ましくは0.001~10秒である。熱分解後は生成物を急冷して蒸留することで、エチレンのほか、メタン、プロピレンを含むC3成分、ブタジエンを含むC4成分、イソプレンやシクロペンタジエンを含むC5成分、ベンゼン、トルエン、キシレン等の成分に分離することが可能である。 方法 The method of obtaining the cracked oil containing ethylene by pyrolyzing the base oil can be appropriately set according to the composition of the base oil to be subjected to the pyrolysis and the intended performance of the lubricating base oil. For example, the thermal decomposition temperature is preferably from 700 to 1000 ° C., and the residence time is preferably from 0.001 to 10 seconds. After pyrolysis, the product is rapidly cooled and distilled, and in addition to ethylene, C3 components including methane and propylene, C4 components including butadiene, C5 components including isoprene and cyclopentadiene, components such as benzene, toluene, and xylene. It is possible to separate
(重合工程)
 重合工程では、上記分解精製工程で得られたエチレンを、エチレン重合触媒の存在下でオリゴマー化してエチレンオリゴマーを含む重合混合物を得る。具体的な一態様としては、例えば、エチレン重合触媒が充填された重合反応装置に、エチレンを導入する方法が挙げられる。エチレンの重合反応装置への導入方法は特に限定されない。なお、本発明の効果を著しく損なわない範囲においては、プロピレン、1-ブテン等のα-オレフィンを共重合してもよい。
(Polymerization step)
In the polymerization step, the ethylene obtained in the decomposition and purification step is oligomerized in the presence of an ethylene polymerization catalyst to obtain a polymerization mixture containing an ethylene oligomer. As a specific embodiment, for example, there is a method of introducing ethylene into a polymerization reactor filled with an ethylene polymerization catalyst. The method of introducing ethylene into the polymerization reactor is not particularly limited. In addition, as long as the effects of the present invention are not significantly impaired, α-olefins such as propylene and 1-butene may be copolymerized.
 また、重合反応の際には、通常、溶媒を用いている。溶媒としては、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン、デカリン等の脂肪族炭化水素系溶媒;テトラリン、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒が挙げられる。これらの溶媒にエチレン重合触媒を溶解して、溶液重合、スラリー重合等を行うことができる。エチレンオリゴマーは偶数個の炭素を持つため、それらとの分離を容易にするために、奇数個の炭素を持った溶媒を使うことが好ましい。ペンタン、ヘプタン、メチルシクロヘキサン、トルエンなどがその性質に合致する。 溶媒 At the time of the polymerization reaction, a solvent is usually used. Examples of the solvent include aliphatic hydrocarbon solvents such as butane, pentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, and decalin; and aromatic hydrocarbon solvents such as tetralin, benzene, toluene, and xylene. Solution polymerization, slurry polymerization, and the like can be performed by dissolving an ethylene polymerization catalyst in these solvents. Since the ethylene oligomer has an even number of carbons, it is preferable to use a solvent having an odd number of carbons to facilitate separation from the ethylene oligomers. Pentane, heptane, methylcyclohexane, toluene and the like are suitable for the property.
 重合反応における反応温度は、特に制限されないが、触媒効率の観点から、例えば、好ましくは-50℃~100℃、より好ましくは-30℃~80℃、更に好ましくは-20℃~70℃、特に好ましくは-10℃~60℃、非常に好ましくは-5℃~50℃、最も好ましくは0~40℃である。反応温度が-50℃以上であれば、触媒活性を維持したまま生成した重合体の析出を抑制することができ、反応温度が100℃以下であれば、触媒の分解を抑制することができる。また、反応圧力についても特に限定されないが、例えば、好ましくは100kPa~5MPaである。反応時間についても特に限定されないが、例えば、好ましくは1分~24時間、より好ましくは5分~60分、更に好ましくは10分~45分、特に好ましくは20分~40分である。触媒の活性がある限り、24時間を超えて重合することももちろん可能である。 The reaction temperature in the polymerization reaction is not particularly limited, but from the viewpoint of catalyst efficiency, for example, preferably -50 ° C to 100 ° C, more preferably -30 ° C to 80 ° C, further preferably -20 ° C to 70 ° C, particularly Preferably between -10 ° C and 60 ° C, very preferably between -5 ° C and 50 ° C, most preferably between 0 and 40 ° C. When the reaction temperature is −50 ° C. or higher, precipitation of the produced polymer can be suppressed while maintaining the catalyst activity, and when the reaction temperature is 100 ° C. or lower, decomposition of the catalyst can be suppressed. Also, the reaction pressure is not particularly limited, but is preferably, for example, 100 kPa to 5 MPa. Although the reaction time is not particularly limited, it is, for example, preferably 1 minute to 24 hours, more preferably 5 minutes to 60 minutes, further preferably 10 minutes to 45 minutes, and particularly preferably 20 minutes to 40 minutes. It is of course possible to polymerize for more than 24 hours as long as the catalyst has activity.
 エチレン重合触媒としては、特に制限されないが、例えば下記一般式(1)で表される鉄錯体を含む触媒が挙げられる。 The ethylene polymerization catalyst is not particularly limited, and examples thereof include a catalyst containing an iron complex represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Rは炭素数1~6のヒドロカルビル基又は炭素数6~12の芳香族基を示し、同一分子中の複数のRは同一でも異なっていてもよい。R’は酸素原子及び/又は窒素原子を有する遊離基を示し、同一分子中の複数のR’は同一でも異なっていてもよい。Yは塩素原子又は臭素原子を示す。 中 In the formula (1), R represents a hydrocarbyl group having 1 to 6 carbon atoms or an aromatic group having 6 to 12 carbon atoms, and a plurality of Rs in the same molecule may be the same or different. R 'represents a free radical having an oxygen atom and / or a nitrogen atom, and a plurality of R's in the same molecule may be the same or different. Y represents a chlorine atom or a bromine atom.
 炭素数1~6のヒドロカルビル基としては、炭素数1~6のアルキル基、炭素数2~6のアルケニル基等が挙げられる。ヒドロカルビル基は、直鎖状、分岐鎖状又は環状のいずれであってもよい。さらに、ヒドロカルビル基は、直鎖状又は分岐鎖状のヒドロカルビル基と環状のヒドロカルビル基とが結合した一価の基であってもよい。 ヒ ド ロ Examples of the hydrocarbyl group having 1 to 6 carbon atoms include an alkyl group having 1 to 6 carbon atoms and an alkenyl group having 2 to 6 carbon atoms. The hydrocarbyl group may be linear, branched or cyclic. Further, the hydrocarbyl group may be a monovalent group in which a linear or branched hydrocarbyl group and a cyclic hydrocarbyl group are bonded.
 炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等の炭素数1~6の直鎖アルキル基;iso-プロピル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、分岐鎖状ペンチル基(全ての構造異性体を含む)、分岐鎖状ヘキシル基(全ての構造異性体を含む)等の炭素数3~6の分岐鎖アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等の炭素数1~6の環状アルキル基などが挙げられる。 Examples of the alkyl group having 1 to 6 carbon atoms include straight-chain alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group and n-hexyl group; -Propyl group, iso-butyl group, sec-butyl group, tert-butyl group, branched pentyl group (including all structural isomers), branched hexyl group (including all structural isomers), etc. A branched alkyl group having 3 to 6 carbon atoms; a cyclic alkyl group having 1 to 6 carbon atoms such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
 炭素数2~6のアルケニル基としては、エテニル基(ビニル基)、n-プロペニル基、n-ブテニル基、n-ペンテニル基、n-ヘキセニル基等の炭素数2~6の直鎖アルケニル基;iso-プロペニル基、iso-ブテニル基、sec-ブテニル基、tert-ブテニル基、分岐鎖ペンテニル基(全ての構造異性体を含む)、分岐鎖ヘキセニル基(全ての構造異性体を含む)等の炭素数2~6の分岐鎖アルケニル基;シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基、シクロヘキサジエニル基等の炭素数2~6の環状アルケニル基などが挙げられる。 Examples of the alkenyl group having 2 to 6 carbon atoms include linear alkenyl groups having 2 to 6 carbon atoms such as ethenyl group (vinyl group), n-propenyl group, n-butenyl group, n-pentenyl group and n-hexenyl group; carbon such as iso-propenyl group, iso-butenyl group, sec-butenyl group, tert-butenyl group, branched pentenyl group (including all structural isomers), and branched hexenyl group (including all structural isomers) A branched alkenyl group having 2 to 6 carbon atoms; a cyclic alkenyl group having 2 to 6 carbon atoms such as a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclopentadienyl group, a cyclohexenyl group, and a cyclohexadienyl group. .
 炭素数6~12の芳香族基としては、フェニル基、トルイル基、キシリル基、ナフチル基等が挙げられる。 芳香 Examples of the aromatic group having 6 to 12 carbon atoms include a phenyl group, a toluyl group, a xylyl group, and a naphthyl group.
 式(1)において、同一分子中の複数のR及びR’は同一又は異なっていてもよいが、化合物の合成を単純化する観点から同一であってもよい。 に お い て In the formula (1), a plurality of R and R ′ in the same molecule may be the same or different, but may be the same from the viewpoint of simplifying the synthesis of the compound.
 酸素原子及び/又は窒素原子を有する遊離基は、酸素原子及び/又は窒素原子を有する炭素数0~6の遊離基であってもよく、例えば、メトキシ基、エトキシ基、イソプロポキシ基、ニトロ基等が挙げられる。 The free radical having an oxygen atom and / or a nitrogen atom may be a free radical having an oxygen atom and / or a nitrogen atom and having 0 to 6 carbon atoms, for example, a methoxy group, an ethoxy group, an isopropoxy group, a nitro group. And the like.
 このような鉄錯体として具体的には、下記式(1a)~(1h)で表される化合物が挙げられる。これら鉄錯体は、1種を単独で、又は2種以上を併用して用いることができる。 と し て Specific examples of such an iron complex include compounds represented by the following formulas (1a) to (1h). These iron complexes can be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(1)で表される鉄錯体において、配位子を構成する化合物(以下、ジイミン化合物ということもある)は、例えば、ジベンゾイルピリジン及びアニリン化合物を、酸の存在下、脱水縮合することで合成することができる。 In the iron complex represented by the general formula (1), a compound constituting a ligand (hereinafter, also referred to as a diimine compound) is, for example, dehydrated and condensed with dibenzoylpyridine and an aniline compound in the presence of an acid. Can be synthesized.
 上記ジイミン化合物の製造方法の好ましい態様は、2,6-ジベンゾイルピリジン、アニリン化合物、及び酸を溶媒に溶解し、溶媒加熱還流下で脱水縮合させる第1工程と、第1工程後の反応混合物について分離・精製処理を行い、ジイミン化合物を得る第2工程と、を備える。 A preferred embodiment of the method for producing a diimine compound includes a first step of dissolving 2,6-dibenzoylpyridine, an aniline compound, and an acid in a solvent, and dehydrating and condensing the solvent under reflux with heating, and a reaction mixture after the first step. A separation and purification process for obtaining a diimine compound.
 第1工程で用いられる酸としては、例えば有機アルミニウム化合物を用いることができる。有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソプロピルアルミニウム、トリブチルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、ジエチルアルミニウムクロライド、エチルアルミニウムジクロライド、エチルアルミニウムセスキクロライド、メチルアルミノキサン等が挙げられる。 酸 As the acid used in the first step, for example, an organoaluminum compound can be used. Examples of the organoaluminum compound include trimethylaluminum, triethylaluminum, tripropylaluminum, triisopropylaluminum, tributylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, diethylaluminum chloride, ethylaluminum dichloride, ethylaluminum sesquichloride, and methylaluminoxane And the like.
 第1工程で用いられる酸としては、上記有機アルミニウム化合物の他に、プロトン酸を用いることもできる。プロトン酸は、プロトンを供与する酸触媒として用いられる。用いるプロトン酸は特に制限されないが、好ましくは有機酸である。このようなプロトン酸としては、例えば、酢酸、トリフルオロ酢酸、メタンスルホン酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸等が挙げられる。これらのプロトン酸を使用する場合、ディーンスタークウォーターセパレーター等で副生する水を除去することが好ましい。また、モレキュラーシーブス等の吸着剤の存在下で反応を行うことも可能である。プロトン酸の添加量は特に制限されず、触媒量であればよい。 プ ロ ト ン As the acid used in the first step, a protonic acid can be used in addition to the above-mentioned organoaluminum compound. Protic acids are used as acid catalysts that donate protons. The protonic acid used is not particularly limited, but is preferably an organic acid. Examples of such a protonic acid include acetic acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, and paratoluenesulfonic acid. When using these protonic acids, it is preferable to remove by-produced water with a Dean-Stark water separator or the like. Further, the reaction can be performed in the presence of an adsorbent such as molecular sieves. The amount of the protonic acid added is not particularly limited, and may be a catalytic amount.
 また、第1工程で用いられる溶媒としては、例えば、炭化水素系溶媒、アルコール系溶媒等が挙げられる。炭化水素系溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン等が挙げられる。アルコール系溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール等が挙げられる。 溶媒 Further, examples of the solvent used in the first step include a hydrocarbon solvent, an alcohol solvent, and the like. Examples of the hydrocarbon solvent include hexane, heptane, octane, benzene, toluene, xylene, cyclohexane, methylcyclohexane and the like. Examples of the alcohol-based solvent include methanol, ethanol, isopropyl alcohol and the like.
 第1工程における反応条件は、原料化合物、酸及び溶媒の種類並びに量に応じて、適宜選択することができる。 反 応 The reaction conditions in the first step can be appropriately selected depending on the types and amounts of the starting compound, the acid and the solvent.
 また、第2工程における分離・精製処理としては、特に制限されず、例えば、シリカゲルカラムクロマトグラフィー、再結晶法等が挙げられる。特に、酸として上述した有機アルミニウム化合物を使用する場合は、反応溶液を塩基性水溶液と混合し、アルミニウムを分解・除去したのち、精製することが好ましい。 分離 In addition, the separation / purification treatment in the second step is not particularly limited, and examples thereof include silica gel column chromatography and a recrystallization method. In particular, when the above-mentioned organoaluminum compound is used as the acid, it is preferable to mix the reaction solution with a basic aqueous solution, decompose and remove aluminum, and then purify.
 上記鉄錯体は、中心金属として鉄を含有する。上記ジイミン化合物と、鉄との混合方法は特に限定されず、例えば、
(i)ジイミン化合物を溶解させた溶液に鉄の塩(以下、単に「塩」ということもある)を添加、混合する方法、
(ii)ジイミン化合物と塩とを、溶媒を用いずに物理的に混合する方法、
などが挙げられる。
The iron complex contains iron as a central metal. The method of mixing the diimine compound and iron is not particularly limited, for example,
(I) a method of adding and mixing an iron salt (hereinafter sometimes simply referred to as "salt") to a solution in which the diimine compound is dissolved,
(Ii) a method of physically mixing a diimine compound and a salt without using a solvent,
And the like.
 また、ジイミン化合物と鉄との混合物から錯体を取り出す方法としては、特に制限されず、例えば、
(a)混合物に溶媒を使用した場合には溶媒を留去し、固形物をろ別する方法、
(b)混合物から生じた沈殿をろ別する方法、
(c)混合物に貧溶媒を加えて沈殿を精製させ、ろ別する方法、
(d)無溶媒混合物をそのまま取り出す方法、
などが挙げられる。この後、未反応のジイミン化合物を溶解可能な溶媒による洗浄処理、未反応の鉄の塩を溶解可能な溶剤による洗浄処理、適当な溶媒を用いた再結晶処理等を施してもよい。ジイミン化合物を溶解可能な溶媒としては、例えば、エーテル、テトラフドロフラン、ベンゼン、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン等が挙げられる。鉄の塩を溶解可能な溶剤としては、アルコール系の溶媒、例えば、メタノール、エタノール、イソプロパノール等が挙げられる他、テトラヒドロフラン等が挙げられる。
Further, the method for extracting the complex from the mixture of the diimine compound and iron is not particularly limited, for example,
(A) a method in which a solvent is distilled off when a solvent is used in the mixture, and a solid is filtered off;
(B) a method of filtering off a precipitate generated from the mixture,
(C) a method of adding a poor solvent to the mixture, purifying the precipitate, and filtering the precipitate;
(D) a method of directly removing the solvent-free mixture,
And the like. Thereafter, a washing treatment with a solvent capable of dissolving the unreacted diimine compound, a washing treatment with a solvent capable of dissolving the unreacted iron salt, a recrystallization treatment using an appropriate solvent, or the like may be performed. Examples of the solvent capable of dissolving the diimine compound include ether, tetrafudrofuran, benzene, toluene, xylene, cyclohexane, methylcyclohexane and the like. Examples of the solvent capable of dissolving the iron salt include alcohol solvents such as methanol, ethanol, and isopropanol, and tetrahydrofuran.
 鉄の塩としては、例えば、塩化鉄(II)、塩化鉄(III)、臭化鉄(II)、臭化鉄(III)、鉄(II)アセチルアセトナート、鉄(III)アセチルアセトナート、酢酸鉄(II)、酢酸鉄(III)等が挙げられる。これらの塩に溶媒、水等の配位子を有するものを用いてもよい。これらの中でも、鉄(II)の塩が好ましく、塩化鉄(II)がより好ましい。 Examples of iron salts include iron (II) chloride, iron (III) chloride, iron (II) bromide, iron (III) bromide, iron (II) acetylacetonate, iron (III) acetylacetonate, Iron (II) acetate, iron (III) acetate and the like can be mentioned. Those having a ligand such as a solvent and water may be used as these salts. Among these, salts of iron (II) are preferred, and iron (II) chloride is more preferred.
 また、ジイミン化合物と鉄とを接触させる溶媒としては、特に制限されず、無極性溶媒及び極性溶媒のいずれも使用できる。無極性溶媒としては、ヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン等の炭化水素系溶媒などが挙げられる。極性溶媒としては、アルコール溶媒等の極性プロトン性溶媒、テトラヒドロフラン等の極性非プロトン性溶媒などが挙げられる。アルコール溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール等が挙げられる。特に混合物をそのまま触媒として使用する場合には、オレフィン重合に実質的に影響がない炭化水素系溶媒を使用することが好ましい。 The solvent for bringing the diimine compound into contact with iron is not particularly limited, and any of a nonpolar solvent and a polar solvent can be used. Examples of the nonpolar solvent include hydrocarbon solvents such as hexane, heptane, octane, benzene, toluene, xylene, cyclohexane, and methylcyclohexane. Examples of the polar solvent include a polar protic solvent such as an alcohol solvent and a polar aprotic solvent such as tetrahydrofuran. Examples of the alcohol solvent include methanol, ethanol, isopropyl alcohol and the like. In particular, when the mixture is used as a catalyst as it is, it is preferable to use a hydrocarbon solvent that does not substantially affect olefin polymerization.
 また、ジイミン化合物と鉄とを接触させる際の両者の混合比は、特に制限されない。ジイミン化合物/鉄のモル比は、好ましくは0.2/1~5/1、より好ましくは0.3/1~3/1、更に好ましくは0.5/1~2/1、特に好ましくは1/1である。 混合 In addition, the mixing ratio of the diimine compound and iron when they are brought into contact is not particularly limited. The molar ratio of the diimine compound / iron is preferably 0.2 / 1 to 5/1, more preferably 0.3 / 1 to 3/1, still more preferably 0.5 / 1 to 2/1, and particularly preferably. It is 1/1.
 ジイミン化合物における二つのイミン部位は、いずれもE体であることが好ましいが、いずれもE体であるジイミン化合物が含まれていれば、Z体を含むジイミン化合物を含んでいてもよい。Z体を含むジイミン化合物は、金属と錯体を形成しにくいことから、系内で錯体を形成させた後、溶媒洗浄等の精製工程で容易に除去することが可能である。 Both of the two imine sites in the diimine compound are preferably E-forms, but may include Z-form diimine compounds as long as they contain E-form diimine compounds. Since a diimine compound containing a Z-form is unlikely to form a complex with a metal, it can be easily removed in a purification step such as solvent washing after forming a complex in the system.
 上記一般式(1)で表される鉄錯体を含むエチレン重合触媒は、重合反応をより効率よく進行させるため、有機アルミニウム化合物を更に含有してもよい。有機アルミニウム化合物としては、例えば、トリアルキルアルミニウム、メチルアルミノキサン等が挙げられる。トリアルキルアルミニウムは、炭素数10以下のアルキル基を有するトリアルキルアルミニウムであってもよく、炭素数8以下のアルキル基を有するトリアルキルアルミニウムであってもよい。このようなトリアルキルアルミニウムとしては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム等が挙げられる。触媒効率をより効果的に向上させる観点から、トリアルキルアルミニウムは、トリメチルアルミニウム、トリエチルアルミニウム及びトリイソブチルアルミニウムからなる群より選ばれる少なくとも1種を含むことが好ましく、トリメチルアルミニウムを含むことがより好ましい。 エ チ レ ン The ethylene polymerization catalyst containing the iron complex represented by the general formula (1) may further contain an organoaluminum compound in order to make the polymerization reaction proceed more efficiently. Examples of the organoaluminum compound include trialkylaluminum, methylaluminoxane and the like. The trialkylaluminum may be a trialkylaluminum having an alkyl group having 10 or less carbon atoms, or may be a trialkylaluminum having an alkyl group having 8 or less carbon atoms. Examples of such a trialkylaluminum include trimethylaluminum, triethylaluminum, triisobutylaluminum, tributylaluminum, trihexylaluminum, trioctylaluminum and the like. From the viewpoint of more effectively improving the catalyst efficiency, the trialkylaluminum preferably contains at least one selected from the group consisting of trimethylaluminum, triethylaluminum and triisobutylaluminum, and more preferably contains trimethylaluminum.
 このとき、一般式(1)で表される鉄錯体と有機アルミニウム化合物との含有割合は、当該鉄錯体のモル数をG、有機アルミニウム化合物のアルミニウム原子のモル数をHとした場合、モル比で、好ましくはG:H=1:10~1:1000、より好ましくは1:10~1:800、更に好ましくは1:20~1:600、特に好ましくは1:20~1:500であってもよい。上記範囲内であれば、より十分な重合活性を発現しつつ、コストアップを抑制することができる。 At this time, the content ratio of the iron complex represented by the general formula (1) and the organoaluminum compound is represented by a molar ratio where G is the number of moles of the iron complex and H is the number of moles of aluminum atoms of the organic aluminum compound. And preferably G: H = 1: 10 to 1: 1000, more preferably 1:10 to 1: 800, still more preferably 1:20 to 1: 600, and particularly preferably 1:20 to 1: 500. You may. Within the above range, it is possible to suppress the increase in cost while exhibiting more sufficient polymerization activity.
 有機アルミニウム化合物としてメチルアルミノキサンを用いる場合、メチルアルミノキサンは、溶媒で希釈された市販品を使用することができる他、溶媒中でトリメチルアルミニウムを部分加水分解したものも使用できる。また、トリメチルアルミニウムの部分加水分解の際に、トリイソブチルアルミニウムのようなトリメチルアルミニウム以外のトリアルキルアルミニウムを共存させ、共部分加水分解した修飾メチルアルミノキサンを使用することもできる。さらに、上記部分加水分解の際に、未反応のトリアルキルアルミニウムが残存している場合には、当該未反応のトリアルキルアルミニウムを、減圧下で留去するなどして除去してもよい。また、メチルアルミノキサンをフェノールやその誘導体等の活性プロトン化合物で変性された変性メチルアルミノキサンを用いてもよい。 (4) When methylaluminoxane is used as the organoaluminum compound, a commercially available product diluted with a solvent can be used as the methylaluminoxane, and a product obtained by partially hydrolyzing trimethylaluminum in a solvent can also be used. Further, at the time of partial hydrolysis of trimethylaluminum, a modified methylaluminoxane co-hydrolyzed by coexisting a trialkylaluminum other than trimethylaluminum such as triisobutylaluminum can also be used. Further, when unreacted trialkylaluminum remains during the above partial hydrolysis, the unreacted trialkylaluminum may be removed by distillation under reduced pressure or the like. Alternatively, a modified methylaluminoxane obtained by modifying methylaluminoxane with an active proton compound such as phenol or a derivative thereof may be used.
 なお、有機アルミニウム化合物として、トリメチルアルミニウム及びメチルアルミノキサンを併用する場合、エチレン重合触媒におけるトリメチルアルミニウムとメチルアルミノキサンとの含有割合は、トリメチルアルミニウムのモル数をH、メチルアルミノキサンにおけるアルミニウム原子のモル数をHとした場合、モル比で、好ましくはH:H=100:1~1:100、より好ましくは50:1~1:50、更に好ましくは10:1~1:10である。上記範囲内であれば、より十分な触媒効率を発現しつつ、コストアップの要因を抑制することができる。 When trimethylaluminum and methylaluminoxane are used in combination as the organoaluminum compound, the content ratio of trimethylaluminum and methylaluminoxane in the ethylene polymerization catalyst is represented by the molar number of trimethylaluminum H 1 and the molar number of aluminum atoms in methylaluminoxane. When H 2 is used, the molar ratio is preferably H 1 : H 2 = 100: 1 to 1: 100, more preferably 50: 1 to 1:50, and even more preferably 10: 1 to 1:10. Within the above range, it is possible to suppress the factor of cost increase while expressing more sufficient catalyst efficiency.
 また、上記一般式(1)で表される鉄錯体を含むエチレン重合触媒は、更に任意の成分として、ホウ素化合物を含んでいてもよい。 The ethylene polymerization catalyst containing the iron complex represented by the general formula (1) may further contain a boron compound as an optional component.
 ホウ素化合物は、エチレン重合反応において、上記一般式(1)で表される鉄錯体の触媒活性を更に向上させる助触媒としての機能を有する。 The boron compound has a function as a cocatalyst for further improving the catalytic activity of the iron complex represented by the general formula (1) in the ethylene polymerization reaction.
 ホウ素化合物としては、例えば、トリスペンタフルオロフェニルボラン等のアリールホウ素化合物が挙げられる。また、ホウ素化合物は、アニオン種を有するホウ素化合物を用いることができる。例えば、テトラキスペンタフルオロフェニルボレート、テトラキス(3,5-トリフルオロメチルフェニル)ボレート等のアリールボレートなどが挙げられる。アリールボレートの具体例としては、リチウムテトラキスペンタフルオロフェニルボレート、ナトリウムテトラキスペンタフルオロフェニルボレート、N,N-ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート、トリチルテトラキスペンタフルオロフェニルボレート、リチウムテトラキス(3,5-トリフルオロメチルフェニル)ボレート、ナトリウムテトラキス(3,5-トリフルオロメチルフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(3,5-トリフルオロメチルフェニル)ボレート、トリチルテトラキス(3,5-トリフルオロメチルフェニル)ボレート等が挙げられる。これらの中でも、N,N-ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート、トリチルテトラキスペンタフルオロフェニルボレート、N,N-ジメチルアニリニウムテトラキス(3,5-トリフルオロメチルフェニル)ボレート又はトリチルテトラキス(3,5-トリフルオロメチルフェニル)ボレートが好ましい。これらホウ素化合物は1種を単独で、又は2種以上を併用して用いることができる。 Examples of the boron compound include an aryl boron compound such as trispentafluorophenylborane. Further, as the boron compound, a boron compound having an anionic species can be used. For example, aryl borates such as tetrakis pentafluorophenyl borate and tetrakis (3, 5-trifluoromethyl phenyl) borate are exemplified. Specific examples of aryl borates include lithium tetrakis pentafluorophenyl borate, sodium tetrakis pentafluorophenyl borate, N, N-dimethylanilinium tetrakis pentafluorophenyl borate, trityl tetrakis pentafluorophenyl borate, lithium tetrakis (3,5-tri Fluoromethylphenyl) borate, sodium tetrakis (3,5-trifluoromethylphenyl) borate, N, N-dimethylaniliniumtetrakis (3,5-trifluoromethylphenyl) borate, trityltetrakis (3,5-trifluoromethyl) Phenyl) borate and the like. Among them, N, N-dimethylanilinium tetrakispentafluorophenyl borate, trityl tetrakis pentafluorophenyl borate, N, N-dimethylanilinium tetrakis (3,5-trifluoromethylphenyl) borate or trityl tetrakis (3,5 (Trifluoromethylphenyl) borate is preferred. These boron compounds can be used alone or in combination of two or more.
 エチレン重合触媒において、有機アルミニウム化合物及びホウ素化合物を併用する場合、有機アルミニウム化合物とホウ素化合物との含有割合は、有機アルミニウム化合物のモル数をH、ホウ素化合物のモル数をJとした場合、モル比で、好ましくはH:J=1000:1~1:1、より好ましくは800:1~2:1、更に好ましくは600:1~10:1である。上記範囲内であれば、より十分な触媒効率を発現しつつ、コストアップを抑制することができる。 In the ethylene polymerization catalyst, when an organic aluminum compound and a boron compound are used in combination, the content ratio of the organic aluminum compound and the boron compound is determined by the molar ratio when the number of moles of the organic aluminum compound is H and the number of moles of the boron compound is J. Preferably, H: J = 1000: 1 to 1: 1, more preferably 800: 1 to 2: 1, and still more preferably 600: 1 to 10: 1. Within the above range, it is possible to suppress the increase in cost while expressing more sufficient catalyst efficiency.
 上記一般式(1)で表される鉄錯体を含むエチレン重合触媒は、鉄錯体の失活を抑制することでより十分な触媒効率を確保する観点から、更に下記一般式(2)で表される化合物(以下、リガンドということもある)を含有してもよい。 The ethylene polymerization catalyst containing the iron complex represented by the general formula (1) is further represented by the following general formula (2) from the viewpoint of securing more sufficient catalytic efficiency by suppressing the deactivation of the iron complex. (Hereinafter sometimes referred to as a ligand).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(2)中、R’’は炭素数1~6のヒドロカルビル基又は炭素数6~12の芳香族基を示し、同一分子中の複数のR’’は同一でも異なっていてもよく、R’’’は酸素原子及び/又は窒素原子を有する炭素数0~6の遊離基を示し、同一分子中の複数のR’’’は同一でも異なっていてもよい。 In the formula (2), R ″ represents a hydrocarbyl group having 1 to 6 carbon atoms or an aromatic group having 6 to 12 carbon atoms, and a plurality of R ″ s in the same molecule may be the same or different; “″ Represents a free radical having 0 to 6 carbon atoms having an oxygen atom and / or a nitrogen atom, and a plurality of R ″ ″ s in the same molecule may be the same or different.
 炭素数1~6のヒドロカルビル基としては、炭素数1~6のアルキル基、炭素数2~6のアルケニル基等が挙げられる。ヒドロカルビル基は、直鎖状、分岐鎖状又は環状のいずれであってもよい。さらに、ヒドロカルビル基は、直鎖状又は分岐鎖状のヒドロカルビル基と環状のヒドロカルビル基とが結合した一価の基であってもよい。 ヒ ド ロ Examples of the hydrocarbyl group having 1 to 6 carbon atoms include an alkyl group having 1 to 6 carbon atoms and an alkenyl group having 2 to 6 carbon atoms. The hydrocarbyl group may be linear, branched or cyclic. Further, the hydrocarbyl group may be a monovalent group in which a linear or branched hydrocarbyl group and a cyclic hydrocarbyl group are bonded.
 炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等の炭素数1~6の直鎖アルキル基;iso-プロピル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、分岐鎖状ペンチル基(全ての構造異性体を含む)、分岐鎖状ヘキシル基(全ての構造異性体を含む)等の炭素数3~6の分岐鎖アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等の炭素数1~6の環状アルキル基などが挙げられる。 Examples of the alkyl group having 1 to 6 carbon atoms include straight-chain alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group and n-hexyl group; -Propyl group, iso-butyl group, sec-butyl group, tert-butyl group, branched pentyl group (including all structural isomers), branched hexyl group (including all structural isomers), etc. A branched alkyl group having 3 to 6 carbon atoms; a cyclic alkyl group having 1 to 6 carbon atoms such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
 炭素数2~6のアルケニル基としては、エテニル基(ビニル基)、n-プロペニル基、n-ブテニル基、n-ペンテニル基、n-ヘキセニル基等の炭素数2~6の直鎖アルケニル基;iso-プロペニル基、iso-ブテニル基、sec-ブテニル基、tert-ブテニル基、分岐鎖ペンテニル基(全ての構造異性体を含む)、分岐鎖ヘキセニル基(全ての構造異性体を含む)等の炭素数2~6の分岐鎖アルケニル基;シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基、シクロヘキサジエニル基等の炭素数2~6の環状アルケニル基などが挙げられる。 Examples of the alkenyl group having 2 to 6 carbon atoms include linear alkenyl groups having 2 to 6 carbon atoms such as ethenyl group (vinyl group), n-propenyl group, n-butenyl group, n-pentenyl group and n-hexenyl group; carbon such as iso-propenyl group, iso-butenyl group, sec-butenyl group, tert-butenyl group, branched pentenyl group (including all structural isomers), and branched hexenyl group (including all structural isomers) A branched alkenyl group having 2 to 6 carbon atoms; a cyclic alkenyl group having 2 to 6 carbon atoms such as a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclopentadienyl group, a cyclohexenyl group, and a cyclohexadienyl group. .
 炭素数6~12の芳香族基としては、フェニル基、トルイル基、キシリル基、ナフチル基等が挙げられる。 芳香 Examples of the aromatic group having 6 to 12 carbon atoms include a phenyl group, a toluyl group, a xylyl group, and a naphthyl group.
 式(2)において、同一分子中の複数のR’’及びR’’’は同一又は異なっていてもよいが、化合物の合成を単純化する観点から同一であってもよい。 In the formula (2), a plurality of R ″ and R ″ ″ in the same molecule may be the same or different, but may be the same from the viewpoint of simplifying the synthesis of the compound.
 酸素原子及び/又は窒素原子を有する遊離基は、酸素原子及び/又は窒素原子を有する炭素数0~6の遊離基であってもよく、例えば、メトキシ基、エトキシ基、イソプロポキシ基、ニトロ基等が挙げられる。 The free radical having an oxygen atom and / or a nitrogen atom may be a free radical having an oxygen atom and / or a nitrogen atom and having 0 to 6 carbon atoms, for example, a methoxy group, an ethoxy group, an isopropoxy group, a nitro group. And the like.
 このようなリガンドとして具体的には、下記式(2a)~(2d)で表される化合物が挙げられる。これらリガンドは、1種を単独で、又は2種以上を併用して用いることができる。 リ ガ ン ド Specific examples of such a ligand include compounds represented by the following formulas (2a) to (2d). These ligands can be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 また、上記一般式(1)で表される鉄錯体及び上記一般式(2)で表される化合物において、一般式(1)のRと一般式(2)のR’’、及び一般式(1)のR’と一般式(2)のR’’’とは、それぞれ同一でも異なっていてもよいが、一般式(1)で表される鉄錯体と同様の性能を維持させる観点から、同一であることが好ましい。 Further, in the iron complex represented by the general formula (1) and the compound represented by the general formula (2), R in the general formula (1), R ″ in the general formula (2), and R ′ in 1) and R ″ ′ in general formula (2) may be the same or different, but from the viewpoint of maintaining the same performance as the iron complex represented by general formula (1), Preferably they are identical.
 本実施形態に係るエチレン重合触媒に上記リガンドが含まれる場合、鉄錯体とリガンドとの含有割合は、特に制限されない。リガンド/鉄錯体の比は、モル比で、好ましくは1/100~100/1、より好ましくは1/50~50/1、更に好ましくは1/10~10/1、特に好ましくは1/5~5/1、非常に好ましくは1/3~3/1である。リガンド/鉄錯体の比が1/100以上であれば、鉄錯体の失活を抑制することで触媒効率を高めることができ、100/1以下であれば、前記リガンドの添加効果を発揮しつつコストを抑えることができる。 場合 When the above-mentioned ligand is contained in the ethylene polymerization catalyst according to the present embodiment, the content ratio of the iron complex and the ligand is not particularly limited. The ligand / iron complex ratio is preferably a molar ratio of 1/100 to 100/1, more preferably 1/50 to 50/1, further preferably 1/10 to 10/1, and particularly preferably 1/5. 55/1, very preferably 1/3 to 3/1. When the ratio of ligand / iron complex is 1/100 or more, the catalyst efficiency can be increased by suppressing the deactivation of the iron complex. When the ratio is 100/1 or less, the effect of adding the ligand is exhibited. Costs can be reduced.
 なお、上記のエチレン重合触媒の製造方法は、特に制限されず、例えば、エチレン重合触媒が、上述した一般式(1)で表される鉄錯体及び有機アルミニウム化合物を含む場合、一般式(1)で表される鉄錯体を含む溶液に有機アルミニウム化合物を含む溶液を添加、混合する方法、及び、有機アルミニウム化合物を含む溶液に一般式(1)で表される鉄錯体を含む溶液を添加、混合する方法等が挙げられる。また、例えば、一般式(1)で表される鉄錯体及び有機アルミニウム化合物の他に、上述したホウ素化合物及びリガンドを更に含む場合には、これらの全ての成分を一括して接触させてもよいし、任意の順序で接触させてもよい。本実施形態に係るエチレン重合触媒の製造方法としては、例えば、
(A)一般式(1)で表される鉄錯体を含む溶液とホウ素化合物を含む溶液とを混合した後、有機アルミニウム化合物を接触させる方法
(B)一般式(1)で表される鉄錯体を含む溶液と有機アルミニウム化合物を含む溶液とを混合した後、ホウ素化合物を接触させる方法
(C)ホウ素化合物を含む溶液と有機アルミニウム化合物を含む溶液とを混合した後、一般式(1)で表される鉄錯体を接触させる方法
(D)一般式(1)で表される鉄錯体を含む溶液とリガンドを含む溶液とを混合した後、有機アルミニウム化合物を接触させる方法
(E)一般式(1)で表される鉄錯体を含む溶液と有機アルミニウム化合物を含む溶液とを混合した後、リガンドを接触させる方法
(F)有機アルミニウム化合物を含む溶液とリガンドを含む溶液とを混合した後、一般式(1)で表される鉄錯体を接触させる方法
(G)一般式(1)で表される鉄錯体を含む溶液とホウ素化合物を含む溶液とを混合した後、有機アルミニウム化合物を含む溶液を添加、混合し、その後リガンドを接触させる方法
(H)一般式(1)で表される鉄錯体を含む溶液とホウ素化合物を含む溶液とを混合した後、リガンドを含む溶液を添加、混合し、その後有機アルミニウム化合物を接触させる方法
(I)一般式(1)で表される鉄錯体を含む溶液と有機アルミニウム化合物を含む溶液とを混合した後、ホウ素化合物を含む溶液を添加、混合し、その後リガンドを接触させる方法
(J)一般式(1)で表される鉄錯体を含む溶液と有機アルミニウム化合物を含む溶液とを混合した後、リガンドを含む溶液を添加、混合し、その後ホウ素化合物を接触させる方法
(K)一般式(1)で表される鉄錯体を含む溶液とリガンドを含む溶液とを混合した後、有機アルミニウム化合物を含む溶液を添加、混合し、その後ホウ素化合物を接触させる方法
(L)一般式(1)で表される鉄錯体を含む溶液とリガンドを含む溶液とを混合した後、ホウ素化合物を含む溶液を添加、混合し、その後有機アルミニウム化合物を接触させる方法
(M)ホウ素化合物を含む溶液と有機アルミニウム化合物を含む溶液とを混合した後、一般式(1)で表される鉄錯体を含む溶液を添加、混合し、その後リガンドを接触させる方法
(N)ホウ素化合物を含む溶液と有機アルミニウム化合物を含む溶液とを混合した後、リガンドを含む溶液を添加、混合し、その後一般式(1)で表される鉄錯体を接触させる方法
(O)ホウ素化合物を含む溶液とリガンドを含む溶液とを混合した後、一般式(1)で表される鉄錯体を含む溶液を添加、混合し、その後有機アルミニウム化合物を接触させる方法
(P)ホウ素化合物を含む溶液とリガンドを含む溶液とを混合した後、有機アルミニウム化合物を含む溶液を添加、混合し、その後一般式(1)で表される鉄錯体を接触させる方法
(Q)有機アルミニウム化合物を含む溶液とリガンドを含む溶液とを混合した後、一般式(1)で表される鉄錯体を含む溶液を添加、混合し、その後ホウ素化合物を接触させる方法
(R)有機アルミニウム化合物を含む溶液とリガンドを含む溶液とを混合した後、ホウ素化合物を含む溶液を添加、混合し、その後一般式(1)で表される鉄錯体を接触させる方法
(S)一般式(1)で表される鉄錯体を含む溶液にホウ素化合物を接触させた後、有機アルミニウム化合物を含む溶液を添加、混合する方法
(T)一般式(1)で表される鉄錯体を含む溶液にホウ素化合物を接触させた後、トリメチルアルミニウムを含む溶液を添加、混合し、メチルアルミノキサンを接触させる方法
などが挙げられる。
The method for producing the above ethylene polymerization catalyst is not particularly limited. For example, when the ethylene polymerization catalyst contains the iron complex represented by the above general formula (1) and the organoaluminum compound, the general formula (1) A method of adding and mixing a solution containing an organoaluminum compound to a solution containing an iron complex represented by the formula, and adding and mixing a solution containing an iron complex represented by the general formula (1) to a solution containing the organoaluminum compound And the like. Further, for example, when the above-mentioned boron compound and ligand are further included in addition to the iron complex and the organoaluminum compound represented by the general formula (1), all of these components may be brought into contact at once. However, they may be contacted in any order. As a method for producing the ethylene polymerization catalyst according to the present embodiment, for example,
(A) A method of mixing a solution containing an iron complex represented by the general formula (1) and a solution containing a boron compound, and then bringing the solution into contact with an organoaluminum compound (B) An iron complex represented by the general formula (1) (C) a method of mixing a solution containing a boron compound and a solution containing an organoaluminum compound, and then contacting the solution containing a boron compound with a solution containing an organoaluminum compound. (D) a method of mixing a solution containing an iron complex represented by the general formula (1) and a solution containing a ligand, and then contacting the solution with an organoaluminum compound (E). A) mixing a solution containing an organoaluminum compound and a solution containing an organoaluminum compound, and then contacting the ligand (F) mixing a solution containing an organoaluminum compound with a solution containing a ligand And then contacting the iron complex represented by the general formula (1) with the solution containing the iron complex represented by the general formula (1) and the boron compound. (H) A solution containing an iron complex represented by the general formula (1) is mixed with a solution containing a boron compound, and then a solution containing a ligand is added. , Mixing and then contacting the organoaluminum compound (I) After mixing the solution containing the iron complex represented by the general formula (1) and the solution containing the organoaluminum compound, a solution containing the boron compound is added, Mixing and then contacting the ligand (J) After mixing the solution containing the iron complex represented by the general formula (1) and the solution containing the organoaluminum compound, the solution containing the ligand is added and mixed. Then, a method of contacting a boron compound (K) After mixing a solution containing an iron complex represented by the general formula (1) and a solution containing a ligand, a solution containing an organoaluminum compound is added and mixed, and then the boron compound is mixed. (L) After mixing a solution containing an iron complex represented by the general formula (1) and a solution containing a ligand, a solution containing a boron compound is added and mixed, and then an organoaluminum compound is brought into contact. Method (M) A method comprising mixing a solution containing a boron compound and a solution containing an organoaluminum compound, adding and mixing a solution containing an iron complex represented by the general formula (1), and then contacting the ligand (N ) A solution containing a boron compound and a solution containing an organoaluminum compound are mixed, a solution containing a ligand is added and mixed, and then an iron complex represented by the general formula (1) (O) After mixing a solution containing a boron compound and a solution containing a ligand, a solution containing an iron complex represented by the general formula (1) is added and mixed, and then the organoaluminum compound is contacted. Method (P) A method of mixing a solution containing a boron compound and a solution containing a ligand, adding and mixing a solution containing an organoaluminum compound, and then contacting the iron complex represented by the general formula (1) (Q A) a method of mixing a solution containing an organoaluminum compound and a solution containing a ligand, adding and mixing a solution containing an iron complex represented by the general formula (1), and then contacting the boron compound. After mixing a solution containing a compound and a solution containing a ligand, a solution containing a boron compound is added, mixed, and then contacted with an iron complex represented by the general formula (1) ( A) contacting a solution containing an iron complex represented by the general formula (1) with a boron compound, then adding and mixing a solution containing an organoaluminum compound (T) iron complex represented by the general formula (1) After contacting the boron compound with the solution containing trimethylaluminum, adding and mixing a solution containing trimethylaluminum, and bringing the solution into contact with methylaluminoxane.
 エチレンオリゴマーとは、数平均分子量(Mn)が10000以下のエチレンの単独重合体又はエチレンとα-オレフィンとの共重合体を意味する。重合工程において得られるエチレンオリゴマーのMnは、その用途に応じて適宜調整することができるが、エチレンオリゴマーを潤滑油等の原料として用いる場合、Mnは200~5000が好ましく、300~4000がより好ましく、350~3000が更に好ましい。また、分散度は、重量平均分子量(Mw)とMnとの比であり、Mw/Mnとして表されるが、例えば、好ましくは1.0~5.0、より好ましくは1.1~3.0である。エチレンオリゴマーのMn及びMwは、例えば、GPC装置を用い、標準ポリスチレンから作成した検量線に基づき、ポリスチレン換算量として求めることができる。 Ethylene oligomer means a homopolymer of ethylene or a copolymer of ethylene and α-olefin having a number average molecular weight (Mn) of 10,000 or less. The Mn of the ethylene oligomer obtained in the polymerization step can be appropriately adjusted according to its use. However, when the ethylene oligomer is used as a raw material such as a lubricating oil, the Mn is preferably 200 to 5000, more preferably 300 to 4000. , 350 to 3000 are more preferred. The dispersity is a ratio between the weight average molecular weight (Mw) and Mn, and is expressed as Mw / Mn. For example, preferably 1.0 to 5.0, more preferably 1.1 to 3.0. 0. For example, the Mn and Mw of the ethylene oligomer can be determined as polystyrene conversion amounts based on a calibration curve created from standard polystyrene using a GPC apparatus.
 エチレンオリゴマーには、通常、直鎖の炭化水素化合物が含まれる。エチレンオリゴマーにおける直鎖の炭化水素化合物の含有量は、特に制限はないが、例えば、エチレンオリゴマー全量基準で、好ましくは40質量%以上、より好ましくは50質量%以上、更に好ましくは60質量%以上である。直鎖の炭化水素化合物の含有量の上限についても特に制限はなく、例えば、通常は100質量%以下、好ましくは90質量%以下、より好ましくは85質量%以下である。 Ethylene oligomers usually include linear hydrocarbon compounds. The content of the linear hydrocarbon compound in the ethylene oligomer is not particularly limited, but is, for example, preferably 40% by mass or more, more preferably 50% by mass or more, and still more preferably 60% by mass or more based on the total amount of the ethylene oligomer. It is. The upper limit of the content of the linear hydrocarbon compound is not particularly limited, and is, for example, usually 100% by mass or less, preferably 90% by mass or less, and more preferably 85% by mass or less.
 エチレンオリゴマー中の炭化水素化合物の構成において、偶数個の炭素数を有する炭化水素化合物の含有量は、エチレンオリゴマー全量基準で、好ましくは80質量%以上、より好ましくは90質量%以上であり、得られる異性化油の粘度-温度特性及びトラクション係数をより効果的に改善できる観点から、奇数個の炭素数を有する炭化水素化合物を実質的に含まないことが更に好ましい。 In the constitution of the hydrocarbon compound in the ethylene oligomer, the content of the hydrocarbon compound having an even number of carbon atoms is preferably 80% by mass or more, more preferably 90% by mass or more, based on the total amount of the ethylene oligomer. From the viewpoint of more effectively improving the viscosity-temperature characteristics and traction coefficient of the obtained isomerized oil, it is more preferable that the isomerized oil does not substantially contain a hydrocarbon compound having an odd number of carbon atoms.
 なお、上記直鎖の炭化水素化合物の含有量は、エチレンオリゴマーについて、以下の条件でガスクロマトグラフィー分析を行い、エチレンオリゴマー全量における直鎖の炭化水素化合物の割合を測定・算出した値を意味する。なお、測定の際には、標準試料として炭素数5~50のノルマルパラフィンの混合試料が用いられ、上記各割合は、クロマトグラムの全ピーク面積値に対するノルマルパラフィンに相当するピーク面積値の合計の割合として求められる。なおここで、同じ炭素数の炭化水素化合物の場合、最も沸点の高い(最も留出時間の長い)炭化水素化合物はノルマルパラフィンであることから、炭素数の算出に際しては、上記標準試料を測定したときのn個の炭素数を有するノルマルパラフィンの留出時間に相当するピークと、n-1個の炭素数を有するノルマルパラフィンの留出時間に相当するピークの間に存在するピークは、n個の炭素数を有する非ノルマルパラフィンに相当するものとし、同じ炭素数におけるノルマルパラフィンと非ノルマルパラフィンとを区別するものとする。
(ガスクロマトグラフィー条件)
 カラム:液相無極性カラム(長さ:25mm、内径:0.3mmφ、液相膜厚:0.1μm)
 昇温条件:50~400℃(昇温速度:10℃/分)
 キャリアガス:ヘリウム(線速度:40cm/分)
 スプリット比:90/l
 試料注入量:0.5μL(二硫化炭素で20倍に希釈した試料の注入量)
 検出器:水素炎イオン化型検出器(FID)
The content of the above-mentioned linear hydrocarbon compound means a value obtained by performing a gas chromatography analysis on the ethylene oligomer under the following conditions, and measuring and calculating the ratio of the linear hydrocarbon compound in the total amount of the ethylene oligomer. . At the time of measurement, a mixed sample of normal paraffin having 5 to 50 carbon atoms was used as a standard sample, and each of the above ratios was the sum of the peak area value corresponding to normal paraffin to the total peak area value of the chromatogram. It is calculated as a percentage. Here, in the case of hydrocarbon compounds having the same carbon number, since the hydrocarbon compound having the highest boiling point (longest distillation time) is normal paraffin, the standard sample was measured when calculating the carbon number. The peak present between the peak corresponding to the distillation time of normal paraffin having n carbon atoms and the peak corresponding to the distillation time of normal paraffin having n-1 carbon atoms is n And normal paraffin and non-normal paraffin having the same number of carbon atoms are distinguished from each other.
(Gas chromatography conditions)
Column: Liquid phase non-polar column (length: 25 mm, inner diameter: 0.3 mmφ, liquid phase film thickness: 0.1 μm)
Heating conditions: 50 to 400 ° C (heating rate: 10 ° C / min)
Carrier gas: helium (linear velocity: 40 cm / min)
Split ratio: 90 / l
Sample injection volume: 0.5 μL (injection volume of sample diluted 20 times with carbon disulfide)
Detector: Flame ionization type detector (FID)
 上記偶数個の炭素数を有する炭化水素化合物の含有量は、重合混合物に含まれるエチレンオリゴマーについて、以下の条件で電解脱離質量分析法による分析を行い、得られたクロマトグラムの質量数からエチレンオリゴマー全量における偶数個の炭素数を有する炭化水素化合物の割合を算出した値を意味する。
(電解脱離質量分析条件)
 装置:JEOL JMS-T300GC
 イオン化法:FD(Field Desorption)
 イオン源温度:室温
 対向電極電圧:-10kV
 エミッタ電流:6.4mA/min
 スペクトル記録間隔:0.4sec
 測定質量範囲:m/z 35~1600
The content of the hydrocarbon compound having an even number of carbon atoms was determined by analyzing the ethylene oligomer contained in the polymerization mixture by electrolytic desorption mass spectrometry under the following conditions, and determining the ethylene content from the mass number of the obtained chromatogram. It means a value obtained by calculating the ratio of the hydrocarbon compound having an even number of carbon atoms in the total amount of the oligomer.
(Electrodesorption mass spectrometry conditions)
Equipment: JEOL JMS-T300GC
Ionization method: FD (Field Desorption)
Ion source temperature: room temperature Counter electrode voltage: -10 kV
Emitter current: 6.4 mA / min
Spectrum recording interval: 0.4 sec
Measurement mass range: m / z 35 to 1600
 重合工程において得られるエチレンオリゴマーを含む重合混合物は後述する第一の蒸留工程に供されるが、得られた重合混合物から、エチレンオリゴマーを取り出して第一の蒸留工程に供してもよいし、重合混合物を濃縮し、エチレンオリゴマーの濃度を高めた濃縮物として第一の蒸留工程に供してもよい。潤滑油基油の原料とならない溶媒等を後述する異性化工程に送らないためにも、重合混合物を濃縮することが好ましい。重合混合物を濃縮する方法としては、例えば、重合混合物をフラッシュ槽等の濃縮器で濃縮する方法等が挙げられる。 The polymerization mixture containing the ethylene oligomer obtained in the polymerization step is subjected to the first distillation step described below.However, the ethylene oligomer may be taken out from the obtained polymerization mixture and then subjected to the first distillation step, The mixture may be concentrated and subjected to the first distillation step as a concentrate having an increased concentration of ethylene oligomer. It is preferable to concentrate the polymerization mixture in order not to send a solvent or the like which is not a raw material of the lubricating base oil to the isomerization step described below. Examples of a method of concentrating the polymerization mixture include a method of concentrating the polymerization mixture with a concentrator such as a flash tank.
 重合混合物を濃縮器等で濃縮することで得られる揮発性成分は、通常、未反応エチレンや重合溶媒、その他軽質オリゴマーを含む。溶媒は蒸留等で回収して再利用することが好ましく、その他の留分は分解精製工程に送って、エチレンへ分解して再利用することも可能である。上記揮発性成分の大部分がエチレンの場合は、分解精製工程に送ることなくエチレンとして再利用することも可能である。その際には重合反応で生成し得るブテン等の不純物が混入して系内に蓄積するため、エチレンを回収する際に一部を系外に排出して、不純物の量を一定に保つことが、安定的な重合につながる。系外に排出された不純物を含むエチレンは、分解精製工程に戻すことも可能である。 揮 発 The volatile component obtained by concentrating the polymerization mixture with a concentrator usually contains unreacted ethylene, a polymerization solvent, and other light oligomers. The solvent is preferably recovered by distillation or the like and reused, and the other fractions can be sent to a decomposition purification step to be decomposed into ethylene and reused. When most of the volatile components are ethylene, it can be reused as ethylene without being sent to the decomposition and purification step. At that time, impurities such as butene that can be generated by the polymerization reaction are mixed and accumulated in the system.Therefore, when recovering ethylene, it is necessary to discharge a part of the system outside the system and keep the amount of impurities constant. , Leading to stable polymerization. Ethylene containing impurities discharged out of the system can be returned to the decomposition and purification step.
(第一の蒸留工程)
 第一の蒸留工程では、上記重合混合物を蒸留により潤滑油留分及び潤滑油留分以外の留分にそれぞれ分留する。第一の蒸留工程を経ることにより、上記重合工程で生成された過度の重合物を取り除き、後述する異性化反応を効率化するだけでなく、重合触媒残渣等も取り除くことが可能となる。
(First distillation step)
In the first distillation step, the polymerization mixture is fractionated by distillation into a lubricating oil fraction and a fraction other than the lubricating oil fraction. By passing through the first distillation step, it becomes possible not only to remove excess polymer generated in the above-mentioned polymerization step and to improve the efficiency of the isomerization reaction described later, but also to remove polymerization catalyst residues and the like.
 第一の蒸留工程により得られる潤滑油留分の沸点範囲としては、例えば、沸点範囲が250~500℃の留分が挙げられる。さらに、後述する各工程で得られる70Pale、SAE10、VG6等に相当する異性化油を効率よく得る場合は、それぞれ第一の蒸留工程により得られる潤滑油留分の沸点範囲を下記のように設定することができる。
 70Paleに相当する異性化油:沸点範囲300~460℃の留分
 SAE10に相当する異性化油:沸点範囲360~500℃の留分
 VG6に相当する異性化油:沸点範囲250~440℃の留分
 なお、例えば、沸点範囲が250~500℃とは、初留点及び終点が250~500℃の範囲内にあることを示す。
The boiling point range of the lubricating oil fraction obtained in the first distillation step is, for example, a fraction having a boiling point range of 250 to 500 ° C. Furthermore, when isomerized oil corresponding to 70 Pale, SAE10, VG6, etc. obtained in each step described later is efficiently obtained, the boiling point range of the lubricating oil fraction obtained in the first distillation step is set as follows. can do.
Isomerized oil corresponding to 70 Pale: a fraction having a boiling range of 300 to 460 ° C. Isomerized oil corresponding to SAE10: a fraction having a boiling range of 360 to 500 ° C. Isomerized oil corresponding to VG6: a fraction having a boiling range of 250 to 440 ° C. For example, a boiling point range of 250 to 500 ° C. means that the initial boiling point and end point are in the range of 250 to 500 ° C.
 第一の蒸留工程における蒸留条件は、エチレンオリゴマーを含む重合混合物から目的の潤滑油留分を分留できる条件であれば特に限定されない。例えば、第一の蒸留工程は、減圧蒸留により分留する工程であってもよく、常圧蒸留(又は加圧下での蒸留)及び減圧蒸留を組み合わせて分留する工程であってもよい。また、例えば、単一の留分として分留されてもよく、粘度グレードに応じた複数の留分として分留されてもよい。 The distillation conditions in the first distillation step are not particularly limited as long as the target lubricating oil fraction can be fractionated from the polymerization mixture containing the ethylene oligomer. For example, the first distillation step may be a step of fractionation by vacuum distillation, or may be a step of fractionation by combining atmospheric distillation (or distillation under pressure) and vacuum distillation. Further, for example, it may be fractionated as a single fraction, or may be fractionated as a plurality of fractions according to the viscosity grade.
 潤滑油留分以外の留分としては、例えば、溶媒、未反応のエチレンを含む留分等が挙げられる。潤滑油留分以外の留分は、所望により精製して重合工程に再利用してもよいし、上述した分解精製工程に戻すこともできる。その他、未反応エチレン以外の成分についても、分解精製工程に戻すことができるほか、所望により分別して基礎化学品として利用することもできる。 留 Examples of the fraction other than the lubricating oil fraction include a solvent and a fraction containing unreacted ethylene. Fractions other than the lubricating oil fraction may be purified and reused in the polymerization step, if desired, or may be returned to the decomposition and purification step described above. In addition, components other than unreacted ethylene can be returned to the decomposition and purification step, and can also be separated and used as basic chemicals if desired.
(異性化工程)
 異性化工程では、潤滑油留分を水素化異性化触媒の存在下で水素化異性化して異性化油を含む反応混合物を得る。異性化工程とは、より具体的には、水素(分子状水素)の存在下、エチレンオリゴマーを水素化異性化触媒に接触させることで、エチレンオリゴマーの水素化異性化を行う工程である。ここでの水素化異性化には、ノルマルパラフィンのイソパラフィンへの異性化の他に、水素添加によるオレフィンのパラフィンへの転化等も含まれる。
(Isomerization step)
In the isomerization step, the lubricating oil fraction is hydroisomerized in the presence of a hydroisomerization catalyst to obtain a reaction mixture containing the isomerized oil. More specifically, the isomerization step is a step in which an ethylene oligomer is brought into contact with a hydroisomerization catalyst in the presence of hydrogen (molecular hydrogen) to hydroisomerize the ethylene oligomer. The hydroisomerization here includes, in addition to isomerization of normal paraffin to isoparaffin, conversion of olefin to paraffin by hydrogenation and the like.
 水素化異性化触媒は、結晶質又は非晶質のいずれの材料を含んでいてもよい。結晶質材料としては、例えば、アルミノシリケート(ゼオライト)又はシリコアルミノホスフェート(SAPO)を主成分とする、10又は12員環通路を有するモレキュラーシーブが挙げられる。ゼオライトの具体例としては、ZSM-22、ZSM-23、ZSM-35、ZSM-48、ZSM-57、フェリエライト、ITQ-13、MCM-68、MCM-71などが挙げられる。また、アルミノホスフェートの例としては、ECR-42が挙げられる。モレキュラーシーブの例としては、ゼオライトベータ、及びMCM-68が挙げられる。これらの中でも、ZSM-48、ZSM-22及びZSM-23から選ばれる1種又は2種以上を用いることが好ましく、ZSM-48が特に好ましい。モレキュラーシーブは好ましくは水素形にある。水素化異性化触媒の還元は、水素化異性化の際にその場で起こり得るが、予め還元処理が施された水素化異性化触媒を水素化異性化に供してもよい。 The hydroisomerization catalyst may contain either a crystalline or amorphous material. As the crystalline material, for example, a molecular sieve having a 10- or 12-membered ring passage mainly containing aluminosilicate (zeolite) or silicoaluminophosphate (SAPO) can be mentioned. Specific examples of the zeolite include ZSM-22, ZSM-23, ZSM-35, ZSM-48, ZSM-57, ferrierite, ITQ-13, MCM-68, MCM-71 and the like. ECR-42 is an example of an aluminophosphate. Examples of molecular sieves include zeolite beta, and MCM-68. Among them, it is preferable to use one or more selected from ZSM-48, ZSM-22 and ZSM-23, and ZSM-48 is particularly preferable. The molecular sieve is preferably in the hydrogen form. The reduction of the hydroisomerization catalyst can occur in situ at the time of hydroisomerization, but the hydroisomerization catalyst which has been subjected to a reduction treatment in advance may be subjected to hydroisomerization.
 また、水素化異性化触媒の非晶質材料としては、3族金属でドープされたアルミナ、フッ化物化アルミナ、シリカ-アルミナ、フッ化物化シリカ-アルミナ等が挙げられる。 非晶 質 Examples of the amorphous material for the hydroisomerization catalyst include alumina doped with a Group 3 metal, fluorinated alumina, silica-alumina, and fluorinated silica-alumina.
 水素化異性化触媒の好ましい態様としては、二官能性、すなわち、少なくとも1つの6族金属、少なくとも1つの8-10族金属、又はそれらの混合物である金属水素添加成分が装着されたものが挙げられる。好ましい金属は、Pt、Pd又はそれらの混合物等の9-10族貴金属である。これらの金属の装着量は、触媒全量を基準として好ましくは0.1~30質量%である。触媒調製及び金属装着方法としては、例えば分解性金属塩を用いるイオン交換法及び含浸法が挙げられる。 Preferred embodiments of the hydroisomerization catalyst include those that are bifunctional, ie, equipped with a metal hydrogenation component that is at least one Group 6 metal, at least one Group 8-10 metal, or a mixture thereof. Can be Preferred metals are Group 9-10 noble metals such as Pt, Pd or mixtures thereof. The loading of these metals is preferably 0.1 to 30% by mass based on the total amount of the catalyst. Examples of the method for preparing the catalyst and mounting the metal include an ion exchange method and an impregnation method using a decomposable metal salt.
 なお、モレキュラーシーブを用いる場合、水素化異性化条件下での耐熱性を有するバインダー材料と複合化してもよく、又はバインダーなし(自己結合)であってもよい。バインダー材料としては、シリカ、アルミナ、シリカ-アルミナ、シリカ-チタニア、マグネシア、トリア、ジルコニア等のような他の金属酸化物との二成分の組合せ、シリカ-アルミナ-トリア、シリカ-アルミナ-マグネシア等のような酸化物の酸成分の組合せなどの無機酸化物が挙げられる。水素化異性化触媒中のモレキュラーシーブの量は、触媒全量を基準として、好ましくは10~100質量%、より好ましくは35~100質量%である。水素化異性化触媒は、噴霧乾燥、押出等の方法によって形成される。水素化異性化触媒は、硫化物又は非硫化物化した態様で使用することができ、硫化物化した態様が好ましい。 In the case of using a molecular sieve, the molecular sieve may be combined with a binder material having heat resistance under hydroisomerization conditions, or may be used without a binder (self-bonding). Examples of the binder material include a combination of two components with other metal oxides such as silica, alumina, silica-alumina, silica-titania, magnesia, thoria, zirconia, silica-alumina-tria, silica-alumina-magnesia, etc. And inorganic oxides such as combinations of acid components of the oxides. The amount of the molecular sieve in the hydroisomerization catalyst is preferably from 10 to 100% by mass, more preferably from 35 to 100% by mass, based on the total amount of the catalyst. The hydroisomerization catalyst is formed by a method such as spray drying and extrusion. The hydroisomerization catalyst can be used in a sulfided or non-sulfided form, with the sulfided form being preferred.
 水素化異性化条件に関し、温度は好ましくは250℃~400℃、より好ましくは275℃~350℃であり、水素分圧は好ましくは791kPa~20786kPa(100psig~3000psig)、より好ましくは1480kPa~17339kPa(200psig~2500psig)であり、液空間速度は好ましくは0.1hr-1~10hr-1、より好ましくは0.1hr-1~5hr-1であり、水素/油比は好ましくは45m/m~1780m/m(250scf/B~10000scf/B)、より好ましくは89m/m~890m/m(500scf/B~5000scf/B)である。なお、上記の条件は一例であり、水素化異性化条件は、原料、触媒、装置等の相違に応じて適宜選定することが好ましい。 Regarding the hydroisomerization conditions, the temperature is preferably 250 ° C. to 400 ° C., more preferably 275 ° C. to 350 ° C., and the hydrogen partial pressure is preferably 791 kPa to 20786 kPa (100 psig to 3000 psig), more preferably 1480 kPa to 17339 kPa ( 200 psig ~ a 2500psig), 0.1hr -1 ~ 10hr -1 liquid hourly space velocity is preferably, more preferably 0.1 hr -1 ~ 5 hr -1, a hydrogen / oil ratio is preferably 45 m 3 / m 3 ~ 1780m 3 / m 3 (250scf / B ~ 10000scf / B), and more preferably 89m 3 / m 3 ~ 890m 3 / m 3 (500scf / B ~ 5000scf / B). Note that the above conditions are merely examples, and it is preferable that the hydroisomerization conditions be appropriately selected according to differences in raw materials, catalysts, equipment, and the like.
 異性化工程を経ることにより、エチレンオリゴマーがイソパラフィンに異性化された異性化油を含む反応混合物を得ることができる。 Through the isomerization step, a reaction mixture containing an isomerized oil in which ethylene oligomer is isomerized to isoparaffin can be obtained.
(第二の蒸留工程)
 第二の蒸留工程では、上記異性化工程で得られた反応混合物を蒸留により潤滑油基油及び潤滑油基油以外の留分にそれぞれ分留する。潤滑油基油以外の留分とは、通常、潤滑油基油より軽質の軽質留分及び潤滑油基油より重質の重質留分である。このような留分は、例えば、異性化油を含む反応混合物から軽質留分を分留する常圧蒸留(又は加圧下での蒸留)と、該常圧蒸留のボトム油から所望の潤滑油基油留分を分留する減圧蒸留と、により行われる。
(Second distillation step)
In the second distillation step, the reaction mixture obtained in the isomerization step is fractionated by distillation into a lubricating base oil and a fraction other than the lubricating base oil. The fraction other than the lubricating base oil is generally a light fraction lighter than the lubricating base oil and a heavy fraction heavier than the lubricating base oil. Such a fraction may be, for example, a normal pressure distillation (or distillation under pressure) for fractionating a light fraction from a reaction mixture containing the isomerized oil, and a desired lubricating oil base from the bottom oil of the normal pressure distillation. Distillation under reduced pressure to fractionate the oil fraction.
 第二の蒸留工程における蒸留条件は、反応混合物から目的の潤滑油基油を分留できる条件であれば特に限定されない。例えば、第二の蒸留工程は、減圧蒸留により分留する工程であってもよく、常圧蒸留(又は加圧下での蒸留)及び減圧蒸留を組み合わせて分留する工程であってもよい。また、潤滑油基油は、単一の留分として分留されてもよく、粘度グレードに応じた複数の留分として分留されてもよい。 The distillation conditions in the second distillation step are not particularly limited as long as the target lubricating base oil can be fractionated from the reaction mixture. For example, the second distillation step may be a step of fractionation by vacuum distillation, or may be a step of fractionation by combining atmospheric distillation (or distillation under pressure) and vacuum distillation. Further, the lubricating base oil may be fractionated as a single fraction, or may be fractionated as a plurality of fractions according to the viscosity grade.
 潤滑油基油の分留においては、複数のカットポイントを設定して減圧蒸留することにより、目的に応じた複数の潤滑油基油留分を得ることができる。例えば、ATFやショックアブソーバーの潤滑油基油として好適な70Paleに相当する潤滑油基油を取得するため、100℃における動粘度2.7mm/sを目標値として、常圧での沸点範囲が330℃~410℃の留分を回収する方法;APIグループIIIの規格を満たすエンジン油の潤滑油基油として好適なSAE-10に相当する潤滑油基油を取得するため、100℃における動粘度4.0mm/sを目標値として、常圧での沸点範囲が410℃~460℃の留分を回収する方法;各種ギアオイルや作動油の潤滑油基油として好適なSAE-20に相当する潤滑油基油を取得するため、100℃における動粘度5.6mm/sを目標値として、常圧での沸点範囲が460℃~500℃の留分を回収する方法;VG6に相当する潤滑油基油を取得するため、100℃における動粘度2.0mm/sを目標値として、沸点範囲が330℃以下の留分を回収する方法等が挙げられる。なお、SAE粘度とは、Society of Automotive Engineersが定めた規格を意味する。 In the fractionation of the lubricating base oil, a plurality of cut points are set and distillation under reduced pressure is performed to obtain a plurality of lubricating base oil fractions according to the purpose. For example, in order to obtain a lubricating base oil equivalent to 70 Pale suitable as a lubricating base oil for ATF and shock absorbers, a kinematic viscosity at 100 ° C. of 2.7 mm 2 / s is set as a target value, and a boiling point range at normal pressure is set. A method for recovering a fraction at 330 ° C. to 410 ° C .; a kinematic viscosity at 100 ° C. to obtain a lubricating base oil corresponding to SAE-10, which is suitable as a lubricating base oil for engine oil meeting API Group III standards. A method of recovering a fraction having a boiling point range of 410 ° C. to 460 ° C. at normal pressure with a target value of 4.0 mm 2 / s; equivalent to SAE-20 suitable as a lubricating base oil for various gear oils and hydraulic oils to obtain a lubricating base oil, as a target value of the kinematic viscosity 5.6 mm 2 / s at 100 ° C., the method boiling range at atmospheric pressure to recover a fraction of 460 ℃ ~ 500 ℃; to VG6 To obtain the equivalent lubricating base oil, as a target value of the kinematic viscosity 2.0 mm 2 / s at 100 ° C., and a method of boiling range to recover a fraction of 330 ° C. or less and the like. The SAE viscosity means a standard defined by Society of Automated Engineers.
 第二の蒸留工程を経て得られた潤滑油基油の粘度グレードについては、特に制限されないが、その100℃における動粘度が、好ましくは1.5mm/s以上、より好ましくは1.8mm/s以上である。一方、100℃における動粘度の上限値も特に制限はないが、好ましくは20mm/s以下、より好ましくは11mm/s以下、特に好ましくは5.0mm/s以下である。 For the second distillation step the viscosity grade of the lubricating base oil obtained through the, is not particularly limited, kinematic viscosity at 100 ° C. is preferably 1.5 mm 2 / s or more, more preferably 1.8 mm 2 / S or more. On the other hand, the upper limit of the kinematic viscosity at 100 ° C. is not particularly limited, but is preferably 20 mm 2 / s or less, more preferably 11 mm 2 / s or less, and particularly preferably 5.0 mm 2 / s or less.
 また、上述したように第二の蒸留工程において複数のカットポイントを設定して目的に応じた複数の潤滑油基油留分を得る場合、得られる潤滑油基油の100℃における動粘度は、好ましくは以下のようなものである。
(I)100℃における動粘度が1.5mm/s以上2.3mm/s未満、より好ましくは1.8mm~2.1mm/sの潤滑油基油
(II)100℃における動粘度が2.3mm/s以上3.0mm/s未満、より好ましくは2.4~2.8mm/sの潤滑油基油
(III)100℃における動粘度が3.0~20mm/s、より好ましくは3.2~11mm/s、更に好ましくは3.5~5.0mm/s、特に好ましくは3.6~4.0mm/sの潤滑油基油
Further, as described above, when obtaining a plurality of lubricating base oil fractions according to the purpose by setting a plurality of cut points in the second distillation step, the kinematic viscosity of the obtained lubricating base oil at 100 ° C. Preferably, it is as follows.
(I) a lubricating base oil having a kinematic viscosity at 100 ° C. of 1.5 mm 2 / s or more and less than 2.3 mm 2 / s, more preferably 1.8 mm to 2.1 mm 2 / s (II) a kinematic viscosity at 100 ° C. There 2.3 mm 2 / s or more 3.0mm less than 2 / s, more preferably 2.4 ~ 2.8mm 2 / s lubricating base oil (III) a kinematic viscosity at 100 ° C. is 3.0 ~ 20 mm 2 / s, more preferably 3.2 to 11 mm 2 / s, still more preferably 3.5 to 5.0 mm 2 / s, particularly preferably 3.6 to 4.0 mm 2 / s.
 潤滑油基油の粘度指数は、その粘度グレードに応じて適宜選択することができる。例えば、上記潤滑油基油(I)の粘度指数は、好ましくは105~150、より好ましくは110~140、更に好ましくは115~135である。上記潤滑油基油(II)の粘度指数は、好ましくは120~160、より好ましくは125~150、更に好ましくは130~150である。上記潤滑油基油(III)の粘度指数は、好ましくは140~180、より好ましくは145~170、更に好ましくは150~165である。粘度指数を上記範囲内とすることにより、優れた粘度-温度特性を確保することができるため、省エネルギー性に優れた潤滑油基油を得ることができる。 粘度 The viscosity index of the lubricating base oil can be appropriately selected according to its viscosity grade. For example, the viscosity index of the lubricating base oil (I) is preferably 105 to 150, more preferably 110 to 140, and still more preferably 115 to 135. The viscosity index of the lubricating base oil (II) is preferably from 120 to 160, more preferably from 125 to 150, and still more preferably from 130 to 150. The viscosity index of the lubricating base oil (III) is preferably 140 to 180, more preferably 145 to 170, and still more preferably 150 to 165. By setting the viscosity index within the above range, excellent viscosity-temperature characteristics can be secured, so that a lubricating base oil excellent in energy saving can be obtained.
 潤滑油基油の15℃における密度(ρ15、単位:g/cm)は、その粘度グレードに応じて適宜選択することができる。例えば、上記潤滑油基油(I)のρ15は、好ましくは0.82g/cm以下、より好ましくは0.81g/cm以下、更に好ましくは0.80g/cm以下、特に好ましくは0.79g/cm以下である。上記潤滑油基油(II)及び(III)のρ15は、好ましくは0.84g/cm以下、より好ましくは0.83g/cm以下、更に好ましくは0.82g/cm以下である。15℃における密度を上記範囲内とすることにより、粘度-温度特性及び熱・酸化安定性、更には揮発防止性及び低温粘度特性に優れる潤滑油基油を得ることができるほか、潤滑油基油に添加剤が配合された場合に、当該添加剤の効き目を十分に確保することができる。 The density (ρ 15 , unit: g / cm 3 ) of the lubricating base oil at 15 ° C. can be appropriately selected according to its viscosity grade. For example, [rho 15 for the lubricating base oil (I) is preferably from 0.82 g / cm 3 or less, more preferably 0.81 g / cm 3 or less, more preferably 0.80 g / cm 3 or less, particularly preferably 0.79 g / cm 3 or less. [Rho 15 of the lubricating base oils (II) and (III), preferably 0.84 g / cm 3 or less, more preferably 0.83 g / cm 3 or less, more preferably is 0.82 g / cm 3 or less . By setting the density at 15 ° C. within the above range, it is possible to obtain a lubricating base oil having excellent viscosity-temperature characteristics and heat / oxidation stability, as well as excellent volatilization prevention properties and low-temperature viscosity characteristics. When an additive is added to the mixture, the effect of the additive can be sufficiently ensured.
 潤滑油基油の流動点は、その粘度グレードに応じて適宜選択することができる。例えば、上記潤滑油基油(I)の流動点は、好ましくは-10℃以下、より好ましくは-20℃以下、更に好ましくは-30℃以下である。上記潤滑油基油(II)の流動点は、好ましくは-10℃以下、より好ましくは-15℃以下、更に好ましくは-20℃以下である。上記潤滑油基油(III)の流動点は、好ましくは-10℃以下、より好ましくは-15℃以下である。潤滑油基油の流動点を上記数値範囲内とすることで、低温流動性を十分に確保でき、省エネルギー性に優れる潤滑油基油を得ることができる。 流動 The pour point of the lubricating base oil can be appropriately selected according to its viscosity grade. For example, the pour point of the lubricating base oil (I) is preferably −10 ° C. or lower, more preferably −20 ° C. or lower, and still more preferably −30 ° C. or lower. The pour point of the lubricating base oil (II) is preferably −10 ° C. or lower, more preferably −15 ° C. or lower, and still more preferably −20 ° C. or lower. The pour point of the lubricating base oil (III) is preferably -10 ° C or lower, more preferably -15 ° C or lower. By setting the pour point of the lubricating base oil within the above numerical range, a low-temperature fluidity can be sufficiently ensured, and a lubricating base oil excellent in energy saving can be obtained.
 潤滑油基油の曇り点は、その粘度グレードにもよるが、例えば、上記潤滑油基油(I)の曇り点は、好ましくは-15℃以下、より好ましくは-17.5℃以下である。上記潤滑油基油(II)の曇り点は、好ましくは-10℃以下、より好ましくは-12.5℃以下である。上記潤滑油基油(III)の曇り点は、好ましくは-10℃以下である。潤滑油基油の曇り点を上記数値範囲内とすることにより、当該潤滑油基油の低温流動性を十分に確保することができるため、省エネルギー性の観点から好ましい。 The cloud point of the lubricating base oil depends on its viscosity grade. For example, the lubricating base oil (I) has a cloud point of preferably -15 ° C or lower, more preferably -17.5 ° C or lower. . The cloud point of the lubricating base oil (II) is preferably -10 ° C or lower, more preferably -12.5 ° C or lower. The cloud point of the lubricating base oil (III) is preferably -10 ° C or lower. By setting the cloud point of the lubricating base oil within the above numerical range, the lubricating base oil can sufficiently secure low-temperature fluidity, which is preferable from the viewpoint of energy saving.
 さらに、潤滑油基油についてガスクロマトグラフィー分析を行った場合、当該潤滑油基油に含まれる炭化水素化合物の炭素数分布は、その粘度グレードに応じて適宜選択することができる。例えば、上記潤滑油基油(I)における炭素数分布は、好ましくは10~35、より好ましくは15~30である。上記潤滑油基油(II)における炭素数分布は、好ましくは12~40、より好ましくは15~35である。上記潤滑油基油(III)における炭素数分布は、好ましくは15~50、より好ましくは18~45である。 Further, when a gas chromatographic analysis is performed on the lubricating base oil, the carbon number distribution of the hydrocarbon compound contained in the lubricating base oil can be appropriately selected according to its viscosity grade. For example, the carbon number distribution in the lubricating base oil (I) is preferably 10 to 35, more preferably 15 to 30. The carbon number distribution in the lubricating base oil (II) is preferably from 12 to 40, more preferably from 15 to 35. The carbon number distribution in the lubricating base oil (III) is preferably 15 to 50, more preferably 18 to 45.
 また、潤滑油基油についてガスクロマトグラフィー分析を行った場合、当該潤滑油基油に含まれる炭化水素化合物の平均炭素数は、その粘度グレードに応じて適宜選択することができる。例えば、上記潤滑油基油(I)における平均炭素数は、好ましくは15~25、より好ましくは18~22である。上記潤滑油基油(II)における平均炭素数は、好ましくは15~30、より好ましくは20~25である。上記潤滑油基油(III)における平均炭素数は、好ましくは20~40、より好ましくは25~30である。炭素数分布及び/又は平均炭素数を上記数値範囲内とすることにより、省エネルギー性に優れる潤滑油基油を得ることができる。 When a gas chromatographic analysis is performed on a lubricating base oil, the average carbon number of the hydrocarbon compound contained in the lubricating base oil can be appropriately selected according to its viscosity grade. For example, the average carbon number in the lubricating base oil (I) is preferably 15 to 25, more preferably 18 to 22. The average carbon number in the lubricating base oil (II) is preferably 15 to 30, more preferably 20 to 25. The average carbon number in the lubricating base oil (III) is preferably 20 to 40, more preferably 25 to 30. By setting the carbon number distribution and / or the average carbon number within the above numerical range, a lubricating base oil having excellent energy saving properties can be obtained.
 本実施形態に係る潤滑油基油の製造方法により得られる潤滑油基油は、上述したエチレンオリゴマーから得られるものであるため、偶数個の炭素数を有する炭化水素化合物と奇数個の炭素数を有する炭化水素化合物の含有バランスが均等ではない。当該潤滑油基油に含まれる炭化水素化合物の構成において、偶数個の炭素数を有する炭化水素化合物の具体的な含有量は特に制限されるものではないが、潤滑油基油全量基準で、例えば、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、特に好ましくは85質量%以上である。 Since the lubricating base oil obtained by the method for producing a lubricating base oil according to the present embodiment is obtained from the above-mentioned ethylene oligomer, a hydrocarbon compound having an even number of carbon atoms and an odd number of carbon atoms are used. The balance of the content of hydrocarbon compounds is not uniform. In the configuration of the hydrocarbon compound contained in the lubricating base oil, the specific content of the hydrocarbon compound having an even number of carbon atoms is not particularly limited, but based on the total amount of the lubricating base oil, for example, It is preferably at least 60% by mass, more preferably at least 70% by mass, further preferably at least 80% by mass, particularly preferably at least 85% by mass.
 上述した炭素数分布及び平均炭素数は、異性化油について、質量分析を行うことにより求められる値である。図1は実施例1で得られた異性化油のFD-MSクロマトグラムであるが、例えばMS338(C2450)付近のピークをC24とし、MS310(C2246)付近のピークをC22とする。MS324(C2348)付近のピークがC23となる。これらの近隣するイオン強度を足し合わせて各炭素数の含有量とし、それらを全体量で割り返すことで平均炭素数を求める。またクロマトグラムの出始めと出終わりから、炭素数分布を求める。 The carbon number distribution and the average carbon number described above are values obtained by performing mass spectrometry on the isomerized oil. FIG. 1 is an FD-MS chromatogram of the isomerized oil obtained in Example 1. For example, a peak near MS 338 (C 24 H 50 ) is C24, and a peak near MS 310 (C 22 H 46 ) is C22. And MS324 (C 23 H 48) peak in the vicinity is C23. The average carbon number is determined by adding these neighboring ion intensities to determine the content of each carbon number and dividing them by the total amount. From the start and end of the chromatogram, the carbon number distribution is determined.
 上記偶数個の炭素数を有する炭化水素化合物の含有量は、異性化油について、質量分析法による分析を行い、異性化油全量における偶数個の炭素数を有する炭化水素化合物の割合を測定・算出した値を意味する。分析手法としては以下の条件に基づく電解脱離質量分析法を好ましく採用できる。
(電解脱離質量分析条件)
 装置:JEOL JMS-T300GC
 イオン化法:FD(Field Desorption)
 イオン源温度:室温
 対向電極電圧:-10kV
 エミッタ電流:6.4mA/min
 スペクトル記録間隔:0.4sec
 測定質量範囲:m/z 35~1600
The content of the hydrocarbon compound having an even number of carbon atoms is determined by analyzing the isomerized oil by mass spectrometry, and measuring and calculating the ratio of the hydrocarbon compound having an even number of carbon atoms in the total amount of the isomerized oil. Means the value of As an analysis method, electrolytic desorption mass spectrometry based on the following conditions can be preferably adopted.
(Electrodesorption mass spectrometry conditions)
Equipment: JEOL JMS-T300GC
Ionization method: FD (Field Desorption)
Ion source temperature: room temperature Counter electrode voltage: -10 kV
Emitter current: 6.4 mA / min
Spectrum recording interval: 0.4 sec
Measurement mass range: m / z 35 to 1600
 上記で得られた潤滑油基油は、種々の用途の潤滑油基油として好ましく用いることができる。潤滑油基油の用途としては、具体的には、乗用車用ガソリンエンジン、二輪車用ガソリンエンジン、ディーゼルエンジン、ガスエンジン、ガスヒートポンプ用エンジン、船舶用エンジン、発電エンジン等の内燃機関に用いられる潤滑油(内燃機関用潤滑油)、自動変速機、手動変速機、無段変速機、終減速機等の駆動伝達装置に用いられる潤滑油(駆動伝達装置用油)、緩衝器、建設機械等の油圧装置に用いられる油圧作動油、圧縮機油、タービン油、工業用ギヤ油、冷凍機油、さび止め油、熱媒体油、ガスホルダーシール油、軸受油、抄紙機用油、工作機械油、すべり案内面油、電気絶縁油、切削油、プレス油、圧延油、熱処理油などが挙げられる。 The lubricating base oil obtained above can be preferably used as a lubricating base oil for various uses. Specific applications of the lubricating base oil include, for example, lubricating oils used in internal combustion engines such as gasoline engines for passenger cars, gasoline engines for motorcycles, diesel engines, gas engines, engines for gas heat pumps, marine engines, and power generation engines. (Lubricating oil for internal combustion engines), lubricating oil (oil for driving transmission devices) used in drive transmission devices such as automatic transmissions, manual transmissions, continuously variable transmissions, final reduction gears, etc., and hydraulic pressure for shock absorbers, construction machinery, etc. Hydraulic hydraulic oil, compressor oil, turbine oil, industrial gear oil, refrigerating machine oil, rust preventive oil, heat transfer oil, gas holder seal oil, bearing oil, paper machine oil, machine tool oil, machine tool oil, sliding guide surface used in equipment Oil, electric insulating oil, cutting oil, press oil, rolling oil, heat treatment oil and the like.
 上記の用途においては、潤滑油基油として、上記本実施形態に係る製造方法で得られた潤滑油基油を単独で用いてもよく、また、当該潤滑油基油を他の基油の1種又は2種以上と併用してもよい。なお、他の基油を併用する場合、それらの混合基油中に占める本実施形態に係る製造方法で得られた潤滑油基油の割合は、30質量%であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。 In the above applications, the lubricating base oil obtained by the production method according to the present embodiment may be used alone as the lubricating base oil, or the lubricating base oil may be used as one of other base oils. It may be used in combination with two or more species. When other base oils are used in combination, the ratio of the lubricating base oil obtained by the production method according to the present embodiment to the mixed base oils is preferably 30% by mass, and 50% by mass. More preferably, it is more preferably 70% by mass or more.
 本実施形態に係る製造方法で得られた潤滑油基油と併用される他の基油としては、特に制限されないが、鉱油系基油としては、例えば、API分類のグループI~グループIIIに分類される鉱油等が挙げられる。なお、API分類の各グループは、米国石油協会(API(American Pertoleum Institute))の潤滑油グレードの分類によるものを意味する。 The other base oil used in combination with the lubricating base oil obtained by the production method according to the present embodiment is not particularly limited, and examples of the mineral base oil include API group I to group III. Mineral oil and the like. In addition, each group of API classification means the thing according to the classification of the lubricating oil grade of American Petroleum Institute (API (American @ Pertoleum @ Institute)).
 また、合成系基油としては、ポリα-オレフィン又はその水素化物、イソブテンオリゴマー又はその水素化物、イソパラフィン、アルキルベンゼン、アルキルナフタレン、ジエステル(ジトリデシルグルタレート、ジ-2-エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ-2-エチルヘキシルセバケート等)、ポリオールエステル(トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール2-エチルヘキサノエート、ペンタエリスリトールペラルゴネート等)、ポリオキシアルキレングリコール、ジアルキルジフェニルエーテル、ポリフェニルエーテル等が挙げられ、中でも、ポリα-オレフィンが好ましい。ポリα-オレフィンとしては、典型的には、炭素数2~32、好ましくは6~16のα-オレフィンのオリゴマー又はコオリゴマー(1-オクテンオリゴマー、デセンオリゴマー、エチレン-プロピレンコオリゴマー等)及びそれらの水素化物が挙げられる。 Synthetic base oils include poly-α-olefin or hydride thereof, isobutene oligomer or hydride thereof, isoparaffin, alkylbenzene, alkylnaphthalene, diester (ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditride). Decyl adipate, di-2-ethylhexyl sebacate, etc.), polyol esters (trimethylolpropane caprylate, trimethylolpropaneperargonate, pentaerythritol 2-ethylhexanoate, pentaerythritol pelargonate, etc.), polyoxyalkylene glycol, dialkyl Examples thereof include diphenyl ether and polyphenyl ether, and among them, poly α-olefin is preferable. The poly-α-olefin is typically an oligomer or co-oligomer of an α-olefin having 2 to 32, preferably 6 to 16 carbon atoms (eg, 1-octene oligomer, decene oligomer, ethylene-propylene cooligomer) and the like. Hydride.
 ポリα-オレフィンの製法は特に制限されないが、例えば、三塩化アルミニウム又は三フッ化ホウ素と、水、アルコール(エタノール、プロパノール、ブタノール等)、カルボン酸又はエステルとの錯体を含むフリーデル・クラフツ触媒のような重合触媒の存在下、α-オレフィンを重合する方法が挙げられる。 The method for producing the poly-α-olefin is not particularly limited. For example, a Friedel-Crafts catalyst containing a complex of aluminum trichloride or boron trifluoride with water, alcohol (ethanol, propanol, butanol, etc.), carboxylic acid or ester And a method of polymerizing an α-olefin in the presence of a polymerization catalyst such as
 また、必要に応じて、本実施形態に係る製造方法で得られた潤滑油基油又は当該潤滑油基油と他の基油との混合基油に、各種添加剤を配合することができる。かかる添加剤としては、特に制限されず、潤滑油の分野で従来使用される任意の添加剤を配合することができる。かかる潤滑油添加剤としては、具体的には、酸化防止剤、無灰分散剤、金属系清浄剤、極圧剤、摩耗防止剤、粘度指数向上剤、流動点降下剤、摩擦調整剤、油性剤、腐食防止剤、防錆剤、抗乳化剤、金属不活性化剤、シール膨潤剤、消泡剤、着色剤などが挙げられる。これらの添加剤は、1種を単独で用いてもよく、また、2種以上を組み合わせて用いてもよい。 各種 Further, if necessary, various additives can be blended with the lubricating base oil obtained by the production method according to the present embodiment or a mixed base oil of the lubricating base oil and another base oil. Such additives are not particularly limited, and any additives conventionally used in the field of lubricating oils can be blended. Specific examples of such lubricating oil additives include antioxidants, ashless dispersants, metal detergents, extreme pressure agents, antiwear agents, viscosity index improvers, pour point depressants, friction modifiers, oil agents , A corrosion inhibitor, a rust inhibitor, a demulsifier, a metal deactivator, a seal swelling agent, an antifoaming agent, and a coloring agent. One of these additives may be used alone, or two or more thereof may be used in combination.
 第二の蒸留工程により得られる潤滑油基油以外の留分は、例えば、潤滑油基油よりも軽質な留分と潤滑油基油よりも重質な留分が挙げられる。これらの留分は、分解精製工程に戻して原料油として利用することもできる。 留 The fraction other than the lubricating base oil obtained in the second distillation step includes, for example, a fraction lighter than the lubricating base oil and a fraction heavier than the lubricating base oil. These fractions can be returned to the cracking and refining step and used as feedstock.
 本実施形態に係る潤滑油基油の製造方法においては、上述した第一の蒸留工程で得られた潤滑油留分以外の留分及び/又は第二の蒸留工程で得られた潤滑油基油以外の留分を、原料油の一部として分解精製工程に戻すことを特徴とする。中でも、分解精製工程に戻す留分は、第二の蒸留工程で得られた潤滑油基油以外の留分であることが好ましく、当該留分が、潤滑油基油よりも軽質の軽質留分であることがより好ましい。 In the method for producing a lubricating base oil according to the present embodiment, a fraction other than the lubricating oil fraction obtained in the above-described first distillation step and / or a lubricating base oil obtained in the second distillation step A fraction other than the above is returned to the cracking and refining step as a part of the feedstock oil. Among them, the fraction returned to the cracking and refining step is preferably a fraction other than the lubricant base oil obtained in the second distillation step, and the fraction is a lighter fraction lighter than the lubricant base oil. Is more preferable.
 第一の蒸留工程で得られた潤滑油留分以外の留分及び第二の蒸留工程で得られた潤滑油基油以外の留分は、それぞれ、エチレンオリゴマーを含む重合混合物及び反応混合物を分留して得られるものである。そして、エチレンオリゴマーは、その構成炭化水素化合物の大部分が偶数個の炭素数を有する炭化水素化合物である。したがって、当該留分は、偶数個の炭素数を有する炭化水素化合物と奇数個の炭素数を有する炭化水素化合物の含有バランスが均等ではない。当該留分に含まれる炭化水素化合物の構成において、偶数個の炭素数を有する炭化水素化合物の具体的な含有量は特に制限されるものではないが、留分全量基準で、例えば、好ましくは50質量%未満、より好ましくは45質量%以下、更に好ましくは40質量%以下である。 The fraction other than the lubricating oil fraction obtained in the first distillation step and the fraction other than the lubricating oil base oil obtained in the second distillation step respectively separate the polymerization mixture and the reaction mixture containing the ethylene oligomer. It is obtained by fixing. The ethylene oligomer is a hydrocarbon compound in which most of the constituent hydrocarbon compounds have an even number of carbon atoms. Therefore, in the fraction, the content balance between the hydrocarbon compound having an even number of carbon atoms and the hydrocarbon compound having an odd number of carbon atoms is not uniform. In the structure of the hydrocarbon compound contained in the fraction, the specific content of the hydrocarbon compound having an even number of carbon atoms is not particularly limited, but based on the total amount of the fraction, for example, preferably 50 It is less than 50% by mass, more preferably 45% by mass or less, and still more preferably 40% by mass or less.
 ここまで、本発明に係る潤滑油基油の製造方法の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、潤滑油基油の製造において一般に採用される種々の工程を適宜備えていてもよい。 So far, the preferred embodiment of the method for producing a lubricating base oil according to the present invention has been described. However, the present invention is not limited to the above-described embodiment, and various types generally employed in the production of a lubricating base oil are described. May be appropriately provided.
 次いで、上記本実施形態に係る潤滑油基油の製造方法を実施するための、潤滑油基油製造装置について説明する。図2は、本発明の一実施形態に係る潤滑油基油の製造方法を実施するための、潤滑油基油製造装置の一例を示すフロー図である。 Next, a description will be given of a lubricating base oil manufacturing apparatus for implementing the method of manufacturing a lubricating base oil according to the present embodiment. FIG. 2 is a flowchart illustrating an example of a lubricating base oil manufacturing apparatus for performing the method of manufacturing a lubricating base oil according to one embodiment of the present invention.
 図2に示される潤滑油基油製造装置100は、流路L1から導入された原料油を熱分解するとともに、得られた熱分解物を精製してエチレンを得る熱分解精製装置10と、熱分解精製装置10から流路L2を通じて供給されるエチレン(エチレンを含む分解油)をオリゴマー化する第1の反応器20と、第1の反応器20から流路L3を通じて供給される、エチレンオリゴマーを含む重合混合物を潤滑油留分及び潤滑油留分以外の留分にそれぞれ分留する第1の蒸留塔30と、第1の蒸留塔30から流路L4を通じて供給される潤滑油留分を水素化異性化する第2の反応器40と、第2の反応器40から流路L5を通じて供給される異性化油(異性化油を含む反応混合物)を潤滑油基油及び潤滑油基油以外の留分にそれぞれ分留する第2の蒸留塔50と、第1の蒸留塔30で得られる潤滑油留分以外の留分を流路L1に合流させる流路L4’及び/又は第2の蒸留塔50で得られる潤滑油基油以外の留分を流路L1に合流させる流路L6’と、第2の蒸留塔50で得られる潤滑油基油を取り出す流路L6と、を備えて構成されている。 The lubricating base oil producing apparatus 100 shown in FIG. 2 is configured to thermally decompose the feedstock introduced from the flow path L1 and to purify the obtained pyrolyzed product to obtain ethylene. A first reactor 20 for oligomerizing ethylene (cracked oil containing ethylene) supplied from the cracking and refining apparatus 10 through a flow path L2; and an ethylene oligomer supplied from the first reactor 20 through a flow path L3. A first distillation column 30 for fractionating the polymerization mixture containing the mixture into a lubricating oil fraction and a fraction other than the lubricating oil fraction, and converting the lubricating oil fraction supplied from the first distillation column 30 through the flow path L4 to hydrogen. The second reactor 40 to be isomerized and the isomerized oil (reaction mixture containing the isomerized oil) supplied from the second reactor 40 through the flow path L5 are mixed with the lubricating base oil and the non-lubricating base oil. The second fractionated fraction A distilling column 50, a flow path L4 'where a fraction other than the lubricating oil fraction obtained in the first distillation tower 30 is merged with the flow path L1, and / or a lubricating oil base oil obtained in the second distillation tower 50 And a flow path L6 for extracting the lubricating base oil obtained in the second distillation column 50.
 熱分解精製装置10、第1の反応器20及び第2の反応器40の形式は特に限定されない。例えば、熱分解精製装置10にはナフサクラッカーが好適に用いられ、第1の反応器20には、エチレン重合触媒と溶媒とを含んだ反応器が好適に用いられ、第2の反応器40には、水素化異性化触媒が充填された固定床流通式反応器が好適に用いられる。なお、潤滑油基油製造装置100において、熱分解精製装置10、第1の反応器20及び第2の反応器40はそれぞれ単数のみ配置されているが、熱分解のための複数の熱分解精製装置、オリゴマー化反応のための複数の第1の反応器及び水素化異性化のための複数の第2の反応器がそれぞれ直列又は並列に配置されたものであってもよい。また、第2の反応器40内の触媒床は単一であっても複数であってもよい。 形式 The types of the thermal decomposition purification device 10, the first reactor 20 and the second reactor 40 are not particularly limited. For example, a naphtha cracker is preferably used for the thermal decomposition purification device 10, a reactor containing an ethylene polymerization catalyst and a solvent is suitably used for the first reactor 20, and a second reactor 40 is used for the first reactor 20. A fixed bed flow reactor filled with a hydroisomerization catalyst is preferably used. In the lubricating base oil manufacturing apparatus 100, only one pyrolysis purification unit 10, the first reactor 20 and the second reactor 40 are arranged, respectively. The apparatus, the plurality of first reactors for the oligomerization reaction, and the plurality of second reactors for the hydroisomerization may be respectively arranged in series or in parallel. Further, the catalyst bed in the second reactor 40 may be single or plural.
 第1の蒸留塔30においては、例えば、塔頂より軽質留分を、塔の中ほどから溶媒を、塔下方から潤滑油留分を、塔底より重質留分を、第2の蒸留塔50の塔頂より軽質留分を、塔の中ほどから潤滑油基油を、塔底より重質留分を、それぞれ分留することができる。なお蒸留塔30で得られる溶媒は、一部又は全部を熱分解装置10に供することもできるが、精製を施して、重合溶媒として再利用することが好ましい。また、潤滑油基油製造装置100においては、第1の蒸留塔30及び第2の蒸留塔50はそれぞれ単数のみ配置されているが、分留の条件に応じて、複数の第1の蒸留塔及び複数の第2の蒸留塔が、それぞれ直列又は並列に配置されたものであってもよい。 In the first distillation column 30, for example, a light fraction from the top of the column, a solvent from the middle of the column, a lubricating oil fraction from the bottom of the column, and a heavy fraction from the bottom, The light fraction can be fractionated from the top of the 50 column, the lubricating base oil from the middle of the column, and the heavy fraction from the bottom of the column. Although a part or all of the solvent obtained in the distillation column 30 can be supplied to the thermal decomposition apparatus 10, it is preferable that the solvent be purified and reused as a polymerization solvent. Further, in the lubricating base oil manufacturing apparatus 100, only one single distillation column 30 and only one second distillation column 50 are arranged, but depending on the conditions of fractionation, a plurality of first distillation columns 30 and second distillation columns 50 are provided. And the plurality of second distillation columns may be arranged in series or in parallel, respectively.
 さらに、潤滑油基油製造装置100は、第1の反応器20の後段で且つ第1の蒸留塔30の前段に、第1の反応器20から供給される重合混合物に含まれる未反応エチレンを回収するためのフラッシュ槽を備えていてもよく、重合混合物に含まれる触媒及び触媒活性化剤等の金属成分などを除去するための脱灰槽を備えていてもよい。フラッシュ槽で回収した未反応エチレンは、場合により一部を熱分解精製装置10又は第1の反応器20に供給され、エチレンとして再利用されてもよい。なお、回収する未反応エチレンの重合反応性を一定に保つ観点から、回収エチレン中のエチレン純度を一定とするため、不純物を系外に排出するブリード工程を備えていてもよい。また、第一の蒸留塔の前に、溶媒回収精製装置を備えていてもよく、回収された溶媒は重合反応溶媒として再利用できる。 Further, the lubricating base oil manufacturing apparatus 100 is configured to remove unreacted ethylene contained in the polymerization mixture supplied from the first reactor 20 downstream of the first reactor 20 and upstream of the first distillation column 30. A flash tank for recovery may be provided, or a deash tank for removing metal components such as a catalyst and a catalyst activator contained in the polymerization mixture may be provided. The unreacted ethylene recovered in the flash tank may be partially supplied to the pyrolysis purification device 10 or the first reactor 20 in some cases, and may be reused as ethylene. From the viewpoint of keeping the polymerization reactivity of the unreacted ethylene to be recovered constant, a bleeding step for discharging impurities out of the system may be provided in order to keep the ethylene purity in the recovered ethylene constant. Further, a solvent recovery and purification device may be provided before the first distillation column, and the recovered solvent can be reused as a polymerization reaction solvent.
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples.
[製造例1:式(2a)で表される化合物の合成]
 2-メチル-4-メトキシアニリン(2.0893g、15.3mmol、東京化成製)と2,6-ジアセチルピリジン(1.2429g、7.6mmol、東京化成製)、モレキュラーシーブ4A(5.0g)、触媒量のパラトルエンスルホン酸を乾燥トルエン(60ml)に分散し、ディーンスタークウォーターセパレーターを利用して、水を除去しながら24時間加熱還流しながら撹拌した。
[Production Example 1: Synthesis of compound represented by formula (2a)]
2-methyl-4-methoxyaniline (2.0893 g, 15.3 mmol, manufactured by Tokyo Chemical Industry), 2,6-diacetylpyridine (1.2429 g, 7.6 mmol, manufactured by Tokyo Chemical Industry), Molecular Sieve 4A (5.0 g) Then, a catalytic amount of p-toluenesulfonic acid was dispersed in dry toluene (60 ml), and the mixture was stirred while heating and refluxing for 24 hours while removing water using a Dean-Stark water separator.
 反応液からモレキュラーシーブをろ過で除き、トルエンで洗浄した。洗浄液とろ過した反応液を混合して濃縮乾固し、粗固体(2.8241g)を得た。ここで得られた粗固体(2g)を秤り取り、無水エタノール(30ml)で洗浄した。エタノール不溶固体をろ別して、その不溶固体を更にエタノールで洗浄した。残存固体を十分に乾燥して下記式(2a)で表される化合物を収率50%で得た。 モ The molecular sieve was removed from the reaction solution by filtration and washed with toluene. The washing liquid and the filtered reaction liquid were mixed and concentrated to dryness to obtain a crude solid (2.8241 g). The crude solid (2 g) obtained here was weighed and washed with absolute ethanol (30 ml). The ethanol-insoluble solid was filtered off, and the insoluble solid was further washed with ethanol. The residual solid was sufficiently dried to obtain a compound represented by the following formula (2a) in a yield of 50%.
 H-NMR(600MHz,CDCl):2.1(s,6H),2.4(s,6H),3.8(s,6H),6.6(m,2H),6.7(m,2H),6.8(m,2H),7.9(m,1H),8.4(m,2H)
 13C-NMR(600MHz,CDCl):16、18,56,116,119,122,125,129,137,138,143,156,167
1 H-NMR (600 MHz, CDCl 3 ): 2.1 (s, 6H), 2.4 (s, 6H), 3.8 (s, 6H), 6.6 (m, 2H), 6.7. (M, 2H), 6.8 (m, 2H), 7.9 (m, 1H), 8.4 (m, 2H)
13 C-NMR (600 MHz, CDCl 3 ): 16, 18, 56, 116, 119, 122, 125, 129, 137, 138, 143, 156, 167
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[製造例2:式(1a)で表される化合物の合成]
 FeCl・4HO(0.2401g、1.2mmol、関東化学製)を脱水テトラヒドロフラン(30ml、アルドリッチ製)に溶解し、先に合成したジイミン化合物(I)(0.4843g、1.2mmol)のテトラヒドロフラン溶液(10ml)を加えた。黄色のジイミン化合物を加えることで、瞬時に暗緑色のテトラヒドロフラン溶液となった。さらに、室温にて2時間撹拌した。反応液から溶媒を蒸発乾固させ、析出した固体を脱水エタノールでろ液に色がなくなるまで洗浄を続けた。さらに洗浄した固体を脱水ジエチルエーテルで洗浄し、溶媒を除去して鉄化合物を得た。得られた鉄化合物は、FD-MSにて527.0820(計算値:527.0831)が得られたことから、下記鉄化合物(1a)の構造を示唆している。
[Production Example 2: Synthesis of compound represented by formula (1a)]
FeCl 2 .4H 2 O (0.2401 g, 1.2 mmol, manufactured by Kanto Chemical) was dissolved in dehydrated tetrahydrofuran (30 ml, manufactured by Aldrich), and the previously synthesized diimine compound (I) (0.4843 g, 1.2 mmol) Of tetrahydrofuran (10 ml) was added. The addition of the yellow diimine compound instantly resulted in a dark green tetrahydrofuran solution. Further, the mixture was stirred at room temperature for 2 hours. The solvent was evaporated from the reaction solution to dryness, and the precipitated solid was washed with dehydrated ethanol until the filtrate was colorless. Further, the washed solid was washed with dehydrated diethyl ether, and the solvent was removed to obtain an iron compound. The obtained iron compound was found to have 527.0820 (calculated value: 527.0831) by FD-MS, suggesting the structure of the following iron compound (1a).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[製造例3:エチレン重合触媒の調製]
 500mlナスフラスコ中で窒素気流下、製造例2で得られた式(1a)で表される化合物(42.2mg)と鉄に対して1当量のトリチルテトラキスペンタフルオロフェニルボレート(73.8mg)を乾燥トルエン200mlに溶解し、溶液(A)とした。溶液(A)に、式(1a)で表される化合物に対して100当量分のトリメチルアルミニウム(TMA)溶液を加え、5分間撹拌して触媒を含む溶液(B)を得た。溶液(B)に更にリガンドとして、製造例1で得られた式(1a)で表される化合物を上記式(2a)で表される化合物に対して0.33当量分加えて、エチレン重合触媒を含む溶液(C)を得た。
[Production Example 3: Preparation of ethylene polymerization catalyst]
Under a nitrogen stream in a 500 ml eggplant flask, the compound represented by the formula (1a) obtained in Production Example 2 (42.2 mg) and one equivalent of trityltetrakispentafluorophenyl borate (73.8 mg) based on iron were added. It was dissolved in 200 ml of dry toluene to obtain a solution (A). A solution of trimethylaluminum (TMA) in an amount of 100 equivalents to the compound represented by the formula (1a) was added to the solution (A), followed by stirring for 5 minutes to obtain a solution (B) containing a catalyst. To the solution (B), a compound represented by the formula (1a) obtained in Production Example 1 was added as a ligand in an amount of 0.33 equivalent to the compound represented by the formula (2a), and then the ethylene polymerization catalyst was added. A solution (C) containing
<潤滑油基油の製造>
[実施例1]
(原料油の熱分解)
 熱分解装置であるパイロライザー(EGA/PY 3030D、フロンティアラボ製)とガスクロマトグラフ装置、及び質量分析装置が付随した熱分解挙動評価装置を用い、炭化水素を熱分解した。熱分解で発生したガスを、液体窒素で冷却しながらマイクロジェットクライオトラップで捕集し、ガスクロマトグラフィーで分離し、質量分析により定性・定量分析を行った。熱分解挙動評価装置の条件は以下のとおりである。
<Manufacture of lubricating base oil>
[Example 1]
(Heat cracking of feedstock)
Hydrocarbons were thermally decomposed using a pyrolyzer (EGA / PY 3030D, Frontier Lab), which is a pyrolysis device, a gas chromatograph device, and a pyrolysis behavior evaluation device with a mass spectrometer. The gas generated by thermal decomposition was collected by a microjet cryotrap while cooling with liquid nitrogen, separated by gas chromatography, and qualitative and quantitative analysis was performed by mass spectrometry. The conditions of the thermal decomposition behavior evaluation device are as follows.
・パイロライザー
 温度:750℃、又は700℃
 滞留時間:1分
・ガスクロマトグラフ装置
 注入口温度:250℃
 昇温:40℃(3分保持)から250℃(20℃/分、30分保持)
 カラム:微極性カラム(5%ジフェニル、95%ジメチルポリシロキサン;長さ:30m、内径:0.25mmφ、液相膜厚:1μm)
 キャリアガス:ヘリウム(1ml/分)
 スプリット比:100/1
・質量分析装置
 スキャン範囲:m/z 10~550
 スキャン速度:2.7スキャン/秒
 イオン源温度:230℃
・ Pyrolyzer temperature: 750 ° C or 700 ° C
Residence time: 1 minute Gas chromatograph Inlet temperature: 250 ° C
Temperature rise: 40 ° C (hold 3 minutes) to 250 ° C (hold 20 ° C / minute, 30 minutes)
Column: Micropolar column (5% diphenyl, 95% dimethylpolysiloxane; length: 30 m, inner diameter: 0.25 mmφ, liquid phase film thickness: 1 μm)
Carrier gas: Helium (1 ml / min)
Split ratio: 100/1
・ Mass spectrometer Scan range: m / z 10 to 550
Scan rate: 2.7 scans / sec Ion source temperature: 230 ° C
 原料油として用いるナフサの代表品としてノルマルオクタン(東京化成製、1.3mg)を750℃で熱分解した。ガスクロマトグラフィーによる分離、質量分析により、メタン、エチレン、プロピレン、1-ブテン、ブタジエン、3-メチル-1-ブテン、2-ペンテン、ピペリレン、イソプレン、シクロペンタジエン、シクロペンテン、ヘキサジエン、1-ヘキセン、シクロヘキサジエン、メチルシクロペンタジエン、ベンゼン等が熱分解成分として検出された。得られたエチレンは7.5%(ガスクロマトグラフィーの面積。以下同じ。)、プロピレンは11.9%、ブタジエンは13.9%であった。 ナ Normal octane (manufactured by Tokyo Chemical Industry, 1.3 mg) was pyrolyzed at 750 ° C. as a typical naphtha used as a feedstock oil. Separation by gas chromatography and mass spectrometry revealed that methane, ethylene, propylene, 1-butene, butadiene, 3-methyl-1-butene, 2-pentene, piperylene, isoprene, cyclopentadiene, cyclopentene, hexadiene, 1-hexene, cyclohexane Hexadiene, methylcyclopentadiene, benzene, etc. were detected as pyrolysis components. The obtained ethylene was 7.5% (gas chromatography area; the same applies hereinafter), propylene was 11.9%, and butadiene was 13.9%.
(エチレンのオリゴマー化反応)
 電磁誘導撹拌機付きの20Lのオートクレーブをあらかじめ減圧下、110℃で充分に乾燥した。次に、窒素気流下で、乾燥トルエン(7.6L)をオートクレーブに導入し、温度を0℃に調整した。
(Ethylene oligomerization reaction)
A 20 L autoclave equipped with an electromagnetic induction stirrer was sufficiently dried at 110 ° C. under reduced pressure in advance. Next, under a nitrogen stream, dry toluene (7.6 L) was introduced into the autoclave, and the temperature was adjusted to 0 ° C.
 製造例3で調製したエチレン重合触媒を含む溶液(C)を乾燥トルエンが導入された上記オートクレーブに加え、上記で得られた熱分解成分から精製された高純度エチレンに相当する市販のエチレン(大陽日酸製、工業用(>99.5%))を、0℃、0.2MPaの条件で連続的に導入した。970分後にエチレンの導入を止め、未反応のエチレンを除去し、窒素でオートクレーブ内のエチレンをパージし、ごく少量のエタノールを加えた。オートクレーブを開放し、内容物を順次20Lのエバポレーターに移して、溶媒を減圧留去することで半固形物のオリゴマーを得た。このような重合を4回繰り返した。代表的な触媒効率(C.E.)は68875 Poly kg/Fe molであった。また、4バッチ分を混合して得られたオリゴマー(WAX1)のMnは510であり、Mw/Mnは1.7であった。WAX1のノルマルパラフィン含有量及び偶数個の炭素数を有する炭化水素化合物の含有量(偶数炭素数含有量)について、ガスクロマトグラフィー分析及び電解脱離質量分析によって得られた結果を表1に示す。 The solution (C) containing the ethylene polymerization catalyst prepared in Production Example 3 was added to the above-mentioned autoclave into which dry toluene had been introduced, and commercially available ethylene corresponding to high-purity ethylene purified from the pyrolysis component obtained above (large Nippon Sanso, industrial (> 99.5%)) was continuously introduced at 0 ° C. and 0.2 MPa. After 970 minutes, the introduction of ethylene was stopped, unreacted ethylene was removed, the ethylene in the autoclave was purged with nitrogen, and a very small amount of ethanol was added. The autoclave was opened, the contents were sequentially transferred to a 20 L evaporator, and the solvent was distilled off under reduced pressure to obtain a semi-solid oligomer. Such polymerization was repeated four times. A typical catalyst efficiency (CE) was 68875 {Poly kg / Fe} mol. The Mn of the oligomer (WAX1) obtained by mixing the four batches was 510, and the Mw / Mn was 1.7. Table 1 shows the results obtained by gas chromatography analysis and electrolytic desorption mass spectrometry for the content of normal paraffins and the content of hydrocarbon compounds having an even number of carbon atoms (even number of carbon atoms) of WAX1.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
(オリゴマーの蒸留)
 20Lの三ツ口フラスコに上記WAX1を9293g導入し、ボトム温度を常温から380℃、圧力を常圧から29kPaとして、常圧換算で250~500℃の沸点留分を採取すべく、単蒸留を行った。7470gの留分(潤滑油留分)が採取でき、残渣(潤滑油留分以外の留分)は1791gであった。潤滑油留分のMnは470であり、Mw/Mnは1.5であった。また、残渣のMnは2000であり、Mw/Mnは1.6であった。
(Distillation of oligomer)
9293 g of the above-mentioned WAX1 was introduced into a 20 L three-necked flask, and the bottom temperature was changed from normal temperature to 380 ° C., the pressure was changed from normal pressure to 29 kPa, and simple distillation was performed to collect a boiling point fraction of 250 to 500 ° C. in terms of normal pressure. . 7,470 g of a fraction (a lubricating oil fraction) was collected, and the residue (a fraction other than the lubricating oil fraction) was 1,791 g. Mn of the lubricating oil fraction was 470, and Mw / Mn was 1.5. In addition, Mn of the residue was 2000, and Mw / Mn was 1.6.
 上記で得られた残渣(0.8mg)を700℃で熱分解した。ガスクロマトグラフィーによる分離、質量分析により、メタン、エチレン、プロピレン、1-ブテン、ブタジエン、2-ペンテン、ピペリレン、イソプレン、シクロペンタジエン、シクロペンテン、ヘキサジエン、1-ヘキセン、シクロヘキサジエン、メチルシクロペンタジエン、ベンゼン等が熱分解成分として検出された。得られたエチレンは6.4%、プロピレンは9.3%、ブタジエンは13.9%であった。オリゴマーの蒸留で得られた潤滑油留分以外の留分は、熱分解に戻すことにより、充分なエチレンを再度回収することが可能であることが示された。 残渣 The residue (0.8 mg) obtained above was pyrolyzed at 700 ° C. Separation by gas chromatography and mass spectrometry revealed that methane, ethylene, propylene, 1-butene, butadiene, 2-pentene, piperylene, isoprene, cyclopentadiene, cyclopentene, hexadiene, 1-hexene, cyclohexadiene, methylcyclopentadiene, benzene, etc. Was detected as a pyrolysis component. The obtained ethylene was 6.4%, propylene was 9.3%, and butadiene was 13.9%. It was shown that a fraction other than the lubricating oil fraction obtained by distillation of the oligomer could be recovered by thermal decomposition to recover sufficient ethylene again.
(水素化異性化反応)
 上記で得られた潤滑油留分を、貴金属含有量0.1~5質量%に調整されたゼオライト系水素化異性化触媒を用いて、反応温度330℃、水素分圧5MPa、空間速度1.0LHSVの条件で水素化異性化し、異性化油1を得た。
(Hydroisomerization reaction)
The lubricating oil fraction obtained above was treated with a zeolite-based hydroisomerization catalyst adjusted to have a noble metal content of 0.1 to 5% by mass at a reaction temperature of 330 ° C., a hydrogen partial pressure of 5 MPa, and a space velocity of 1. Hydroisomerization was performed under the condition of 0 LHSV to obtain isomerized oil 1.
(異性化油の蒸留)
 上記で得られた異性化油1を減圧蒸留することにより、70Pale相当の潤滑油基油1及び当該潤滑油基油1以外の留分を得た。得られた潤滑油基油1の性状を表2に示す。なお、表2中、「炭素数分布」、「平均炭素数」及び「偶数炭素数含有量」は、得られた潤滑油基油1についてガスクロマトグラフィー分析を実施することによって得られたものであり、「トラクション係数」は、試験片として鋼球とスチールディスクを用い、荷重20N、試験油温度25℃、周速0.52m/s、すべり率3%の条件下で測定した値である(以下同様である)。
(Distillation of isomerized oil)
The isomerized oil 1 obtained above was distilled under reduced pressure to obtain a lubricating base oil 1 equivalent to 70 Pale and a fraction other than the lubricating base oil 1. Table 2 shows the properties of the obtained lubricating base oil 1. In Table 2, “Carbon number distribution”, “Average carbon number” and “Even carbon number content” are obtained by performing gas chromatography analysis on the obtained lubricating base oil 1. The "traction coefficient" is a value measured using a steel ball and a steel disk as test pieces under the conditions of a load of 20 N, a test oil temperature of 25 ° C., a peripheral speed of 0.52 m / s, and a slip rate of 3% ( The same applies hereinafter.)
[実施例2]
 エチレンのオリゴマー化反応までの操作を上記実施例1と同様に実施して、オリゴマー(WAX1)を得た。
(オリゴマーの蒸留)
 20Lの三ツ口フラスコに上記WAX1を5000g導入し、ボトム温度を常温から380℃、圧力を常圧から29kPaとして、常圧換算で300~440℃の沸点留分を採取すべく、単蒸留を行った。
[Example 2]
The operation up to the oligomerization reaction of ethylene was performed in the same manner as in Example 1 to obtain an oligomer (WAX1).
(Distillation of oligomer)
5000 g of the above-mentioned WAX1 was introduced into a 20 L three-necked flask, and the bottom temperature was changed from normal temperature to 380 ° C., the pressure was changed from normal pressure to 29 kPa, and simple distillation was performed to collect a boiling point fraction of 300 to 440 ° C. in terms of normal pressure. .
(水素化異性化反応)
 上記で得られた潤滑油留分を、貴金属含有量0.1~5質量%に調整されたゼオライト系水素化異性化触媒を用いて、反応温度330℃、水素分圧5MPa、空間速度1.0LHSVの条件で水素化異性化し、異性化油2を得た。
(Hydroisomerization reaction)
The lubricating oil fraction obtained above was treated with a zeolite-based hydroisomerization catalyst adjusted to have a noble metal content of 0.1 to 5% by mass at a reaction temperature of 330 ° C., a hydrogen partial pressure of 5 MPa, and a space velocity of 1. Hydroisomerization was performed under the condition of 0 LHSV to obtain isomerized oil 2.
(異性化油の蒸留)
 上記で得られた異性化油2を減圧蒸留することにより、VG6相当の潤滑油基油2及び当該潤滑油基油2以外の留分(潤滑油基油2よりも軽質の軽質留分及び潤滑油基油2よりも重質の重質留分)を得た。得られた潤滑油基油2の性状を表2に示す。
(Distillation of isomerized oil)
By distilling the isomerized oil 2 obtained above under reduced pressure, a lubricating base oil 2 equivalent to VG6 and a fraction other than the lubricating base oil 2 (a light fraction lighter than the lubricating base oil 2 and lubricating oil) A heavy fraction heavier than the oil base oil 2) was obtained. Table 2 shows the properties of the obtained lubricating base oil 2.
 上記で得られた軽質留分(0.8mg)を750℃で熱分解した。ガスクロマトグラフィーによる分離、質量分析により、メタン、エチレン、プロピレン、1-ブテン、ブタジエン、2-ペンテン、ピペリレン、イソプレン、シクロペンタジエン、シクロペンテン、ヘキサジエン、1-ヘキセン、シクロヘキサジエン、メチルシクロペンタジエン、ベンゼン等が熱分解成分として検出された。得られたエチレンは10.4%、プロピレンは14.5%、ブタジエンは14.9%であった。異性化油の蒸留により得られた潤滑油基油よりも軽質な軽質留分は、熱分解に戻すことにより、充分なエチレンを再度回収することが可能であることが示された。 (4) The light fraction (0.8 mg) obtained above was pyrolyzed at 750 ° C. Separation by gas chromatography and mass spectrometry revealed that methane, ethylene, propylene, 1-butene, butadiene, 2-pentene, piperylene, isoprene, cyclopentadiene, cyclopentene, hexadiene, 1-hexene, cyclohexadiene, methylcyclopentadiene, benzene, etc. Was detected as a pyrolysis component. The obtained ethylene was 10.4%, propylene was 14.5%, and butadiene was 14.9%. It has been shown that a light fraction lighter than the lubricating base oil obtained by distillation of the isomerized oil can recover sufficient ethylene again by returning to the thermal cracking.
 上記で得られた重質留分(1.2mg)を750℃で熱分解した。ガスクロマトグラフィーによる分離、質量分析により、メタン、エチレン、プロピレン、1-ブテン、ブタジエン、2-ペンテン、ピペリレン、イソプレン、シクロペンタジエン、シクロペンテン、ヘキサジエン、1-ヘキセン、シクロヘキサジエン、メチルシクロペンタジエン、ベンゼン等が熱分解成分として検出された。得られたエチレンは7.6%、プロピレンは11.5%、ブタジエンは15.9%であった。異性化油の蒸留により得られた潤滑油基油よりも重質な重質留分は、熱分解に戻すことにより、充分なエチレンを再度回収することが可能であることが示された。 (4) The heavy fraction (1.2 mg) obtained above was pyrolyzed at 750 ° C. Separation by gas chromatography and mass spectrometry revealed that methane, ethylene, propylene, 1-butene, butadiene, 2-pentene, piperylene, isoprene, cyclopentadiene, cyclopentene, hexadiene, 1-hexene, cyclohexadiene, methylcyclopentadiene, benzene, etc. Was detected as a pyrolysis component. The obtained ethylene was 7.6%, propylene was 11.5%, and butadiene was 15.9%. It was shown that a heavy fraction heavier than the lubricating base oil obtained by distillation of the isomerized oil could be recovered by thermal decomposition to recover sufficient ethylene again.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
(エチレンのオリゴマー化反応におけるオレフィンの影響)
 エチレンのオリゴマー化反応において、オレフィンの存在がエチレン重合触媒の触媒効率に与える影響を調べるため、以下の試験を行った。
(Effect of olefin on ethylene oligomerization reaction)
In the ethylene oligomerization reaction, the following test was conducted in order to examine the effect of the presence of the olefin on the catalytic efficiency of the ethylene polymerization catalyst.
[参考例]
 窒素気流下で、50mLナスフラスコに、式(1a)で表される化合物(1μmol)と、鉄に対して1当量のトリチルテトラキスペンタフルオロフェニルボレートを乾燥トルエン20mlに溶解し、溶液(D)とした。溶液(D)に、式(1a)で表される化合物に対して100当量分のトリメチルアルミニウム(TMA)溶液を加え、5分間撹拌して触媒を含む溶液(E)を得た。あらかじめ減圧下、110℃で充分に乾燥した電磁誘導撹拌機付きの600mLオートクレーブに、窒素気流下で、乾燥トルエン(80mL)を導入し、温度を25℃に調整した。溶液(E)を乾燥トルエンが導入された上記オートクレーブに加え、25℃で0.2MPaのエチレンを連続的に導入した。30分後にエチレンの供給を停止し,未反応のエチレンを除去し、窒素でオートクレーブ内のエチレンをパージし、ごく少量のエタノールを加えた。オートクレーブを開放し、内容物を200mlナスフラスコに移して、溶媒を減圧留去することで、半固形物のオリゴマーを得た。触媒効率は7946kg Olig/Fe molであった。また、得られたオリゴマーのMnは410、Mwは740であり、Mw/Mnは1.9であった。
[Reference example]
Under a nitrogen stream, a compound (1 μmol) represented by the formula (1a) and 1 equivalent of trityltetrakispentafluorophenylborate with respect to iron were dissolved in 20 ml of dry toluene in a 50 mL eggplant flask, and a solution (D) was obtained. did. To the solution (D), a trimethylaluminum (TMA) solution of 100 equivalents to the compound represented by the formula (1a) was added, and the mixture was stirred for 5 minutes to obtain a solution (E) containing a catalyst. Under a nitrogen stream, dry toluene (80 mL) was introduced into a 600 mL autoclave equipped with an electromagnetic induction stirrer which was sufficiently dried at 110 ° C. in advance under reduced pressure, and the temperature was adjusted to 25 ° C. The solution (E) was added to the autoclave into which dry toluene had been introduced, and 0.2 MPa of ethylene was continuously introduced at 25 ° C. After 30 minutes, the supply of ethylene was stopped, unreacted ethylene was removed, the ethylene in the autoclave was purged with nitrogen, and a very small amount of ethanol was added. The autoclave was opened, the contents were transferred to a 200 ml eggplant flask, and the solvent was distilled off under reduced pressure to obtain a semi-solid oligomer. The catalyst efficiency was 7946 kg Olig / Fe mol. Moreover, Mn of the obtained oligomer was 410, Mw was 740, and Mw / Mn was 1.9.
[比較参考例]
 溶液(E)に更に1-デセン(5ml)を加えた以外は、参考例と同様の操作を行って、半固形物のオリゴマーを得た。触媒効率は5186kg Olig/Fe molであった。また、得られたオリゴマーのMnは260、Mwは550であり、Mw/Mnは2.1であった。さらに、得られたオリゴマーを13C NMRを用いて分析したところ、1-デセンは共重合されておらず、生成物はエチレンホモオリゴマーであることが判明した。
[Comparative Reference Example]
A semi-solid oligomer was obtained by performing the same operation as in Reference Example except that 1-decene (5 ml) was further added to the solution (E). The catalyst efficiency was 5186 kg Olig / Fe mol. Further, Mn of the obtained oligomer was 260, Mw was 550, and Mw / Mn was 2.1. Further, when the obtained oligomer was analyzed using 13 C NMR, it was found that 1-decene was not copolymerized and the product was an ethylene homo-oligomer.
 この結果から、オリゴマー化反応系に1-デセン等のオレフィンが存在することで、エチレン重合触媒の触媒効率が低下することが分かる。第一の蒸留工程で得られた潤滑油留分以外の留分や、第二の蒸留工程で得られた潤滑油基油以外の留分を、未反応のエチレンを再び重合工程の原料として用いることを目的として、原料油の一部として用いる場合には、エチレン重合触媒の触媒効率を維持する観点から、分解精製工程に戻すことが肝要であることが示された。 The results show that the presence of an olefin such as 1-decene in the oligomerization reaction system reduces the catalytic efficiency of the ethylene polymerization catalyst. The fraction other than the lubricating oil fraction obtained in the first distillation step, and the fraction other than the lubricating oil base oil obtained in the second distillation step, use unreacted ethylene again as a raw material in the polymerization step For this purpose, when used as a part of feedstock oil, it was shown that it is important to return to the cracking and refining step from the viewpoint of maintaining the catalytic efficiency of the ethylene polymerization catalyst.
 10…熱分解精製装置、20…第1の反応器、30…第1の蒸留塔、40…第2の反応器、50…第2の蒸留塔、100…潤滑油基油製造装置、L1、L2、L3、L4、L4’、L5、L6、L6’…流路。
 
DESCRIPTION OF SYMBOLS 10 ... Pyrolysis refinement apparatus, 20 ... 1st reactor, 30 ... 1st distillation column, 40 ... 2nd reactor, 50 ... 2nd distillation column, 100 ... Lubricating base oil manufacturing apparatus, L1, L2, L3, L4, L4 ′, L5, L6, L6 ′...

Claims (3)

  1.  原料油を熱分解するとともに、得られた熱分解物を精製してエチレンを得る分解精製工程と、
     前記エチレンをエチレン重合触媒の存在下でオリゴマー化してエチレンオリゴマーを含む重合混合物を得る重合工程と、
     前記重合混合物を蒸留により潤滑油留分及び前記潤滑油留分以外の留分にそれぞれ分留する第一の蒸留工程と、
     前記潤滑油留分を水素化異性化触媒の存在下で水素化異性化して異性化油を含む反応混合物を得る異性化工程と、
     前記反応混合物を蒸留により潤滑油基油及び前記潤滑油基油以外の留分にそれぞれ分留する第二の蒸留工程と、を備え、
     前記第一の蒸留工程で得られた前記潤滑油留分以外の留分及び/又は前記第二の蒸留工程で得られた前記潤滑油基油以外の留分を、前記原料油の一部として前記分解精製工程に戻す、潤滑油基油の製造方法。
    A cracking and refining step of pyrolyzing the feedstock oil and refining the obtained pyrolysate to obtain ethylene;
    A polymerization step of oligomerizing the ethylene in the presence of an ethylene polymerization catalyst to obtain a polymerization mixture containing an ethylene oligomer,
    A first distillation step of distilling the polymerization mixture into a lubricating oil fraction and a fraction other than the lubricating oil fraction by distillation, respectively.
    An isomerization step of hydroisomerizing the lubricating oil fraction in the presence of a hydroisomerization catalyst to obtain a reaction mixture containing the isomerized oil;
    A second distillation step of fractionating the reaction mixture into a lubricating base oil and a fraction other than the lubricating base oil by distillation, respectively.
    A fraction other than the lubricating oil fraction obtained in the first distillation step and / or a fraction other than the lubricating oil base oil obtained in the second distillation step, as a part of the base oil A method for producing a lubricating base oil, which is returned to the cracking and refining step.
  2.  前記第二の蒸留工程で得られた前記潤滑油基油以外の留分を、前記原料油の一部として前記分解精製工程に戻す、請求項1に記載の潤滑油基油の製造方法。 The method for producing a lubricating base oil according to claim 1, wherein a fraction other than the lubricating base oil obtained in the second distillation step is returned to the cracking and refining step as a part of the base oil.
  3.  前記潤滑油基油以外の留分が、前記潤滑油基油より軽質の軽質留分である、請求項1又は2に記載の潤滑油基油の製造方法。 The method for producing a lubricating base oil according to claim 1 or 2, wherein the fraction other than the lubricating base oil is a lighter fraction lighter than the lubricating base oil.
PCT/JP2019/037084 2018-09-20 2019-09-20 Method for producing lubricant base oil WO2020059869A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020549154A JP7232258B2 (en) 2018-09-20 2019-09-20 Method for producing lubricating base oil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018176264 2018-09-20
JP2018-176264 2018-09-20

Publications (1)

Publication Number Publication Date
WO2020059869A1 true WO2020059869A1 (en) 2020-03-26

Family

ID=69887147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037084 WO2020059869A1 (en) 2018-09-20 2019-09-20 Method for producing lubricant base oil

Country Status (2)

Country Link
JP (1) JP7232258B2 (en)
WO (1) WO2020059869A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232284A (en) * 2004-02-19 2005-09-02 Japan Energy Corp Method for isomerizing olefin-containing waxy stock oil and method for producing lubricant base oil
JP2009545638A (en) * 2006-07-31 2009-12-24 サウディ ベーシック インダストリーズ コーポレイション Process and plant for oligomerization / polymerization of ethylene and / or alpha olefins
WO2013147178A1 (en) * 2012-03-30 2013-10-03 Jx日鉱日石エネルギー株式会社 Method for producing lubricant base oil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232284A (en) * 2004-02-19 2005-09-02 Japan Energy Corp Method for isomerizing olefin-containing waxy stock oil and method for producing lubricant base oil
JP2009545638A (en) * 2006-07-31 2009-12-24 サウディ ベーシック インダストリーズ コーポレイション Process and plant for oligomerization / polymerization of ethylene and / or alpha olefins
WO2013147178A1 (en) * 2012-03-30 2013-10-03 Jx日鉱日石エネルギー株式会社 Method for producing lubricant base oil

Also Published As

Publication number Publication date
JPWO2020059869A1 (en) 2021-08-30
JP7232258B2 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
RU2518082C2 (en) Low-viscosity oil from oligomers, method of obtaining thereof and thereof-containing composition
US8921291B2 (en) Lubricants from mixed alpha-olefin feeds
US7795484B2 (en) Process for the manufacture of base oil
US8395007B2 (en) Diesel and jet fuels based on the oligomerization of butene
AU2012321290A1 (en) Poly alpha olefin compositions and process to produce poly alpha olefin compositions
EP1920031A1 (en) Lubricants from mixed alpha-olefin feeds
US8168838B2 (en) Hydrocarbon compositions useful as lubricants
US20170226441A1 (en) Method for preparing low-viscosity lubricating polyolefins
FR3021664A1 (en) LOW VISCOSITY LUBRICATING POLYOLEFINS
WO2013162573A1 (en) Diesel and jet fuels based on the oligomerization of butene
US10377960B2 (en) Low viscosity lubricating polyolefins
US9732295B1 (en) Diesel and jet fuels based on the oligomerization of butene
WO2020059869A1 (en) Method for producing lubricant base oil
JP7050544B2 (en) Wax isomerized oil manufacturing method
CN114450262B (en) Method for preparing poly alpha-olefin and analysis method and device thereof
JP7213868B2 (en) wax isomerate oil
JP7050545B2 (en) Wax isomerized oil manufacturing method
RU2781374C1 (en) Method for obtaining the bases of synthetic polyolefin oils

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549154

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862512

Country of ref document: EP

Kind code of ref document: A1