WO2020059803A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2020059803A1
WO2020059803A1 PCT/JP2019/036778 JP2019036778W WO2020059803A1 WO 2020059803 A1 WO2020059803 A1 WO 2020059803A1 JP 2019036778 W JP2019036778 W JP 2019036778W WO 2020059803 A1 WO2020059803 A1 WO 2020059803A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
battery
negative electrode
Prior art date
Application number
PCT/JP2019/036778
Other languages
French (fr)
Japanese (ja)
Inventor
伸之 岩根
堀内 博志
淳史 黄木
晋 遠藤
将之 井原
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020059803A1 publication Critical patent/WO2020059803A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery.
  • Patent Literature 1 an oxide containing lithium, aluminum, and boron is formed on the surface of a positive electrode active material, and a primary phase of a primary phase is formed at a grain boundary between primary particles existing near the surface of a secondary particle.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery containing aluminum at a higher concentration is described.
  • Li a Co b A c B d O e F f (A is Al or Mg, B is group IV transition elements, 0.90 ⁇ a ⁇ 1.10,0.97 ⁇ b ⁇ 1.00 , 0.0001 ⁇ c ⁇ 0.03, 0.0001 ⁇ d ⁇ 0.03, 1.98 ⁇ e ⁇ 2.02, 0 ⁇ f ⁇ 0.02, 0.0001 ⁇ c + d ⁇ 0.03).
  • the positive electrode active material for a lithium secondary battery which is a particulate positive electrode active material for a lithium ion secondary battery, and in which the element A, the element B, and the fluorine are uniformly present near the surface of the particle, is described. I have.
  • An object of the present invention is to provide a secondary battery capable of suppressing gas generation and improving safety.
  • the present invention provides a positive electrode, a negative electrode, and an electrolytic solution, wherein the positive electrode has positive electrode active material particles containing Al on its surface, and fluorine having a melting point of 152 ° C. or more and 166 ° C. or less. And a ratio y / x of an Al ratio x in an inner region of the positive electrode active material particles and an Al ratio y in a surface region of the positive electrode active material particles is 149% ⁇ y / x. It is a secondary battery that satisfies ⁇ 305%.
  • gas generation can be suppressed, and safety can be improved.
  • FIG. 1 is an exploded perspective view illustrating an example of a configuration of a nonaqueous electrolyte secondary battery according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view taken along the line II-II of FIG. 1. It is a graph which shows an example of a DSC curve of a fluorinated binder.
  • FIG. 6 is a cross-sectional view illustrating an example of a configuration of a nonaqueous electrolyte secondary battery according to a second embodiment of the present invention.
  • FIG. 5 is an enlarged cross-sectional view illustrating a part of the electrode body illustrated in FIG. 4. It is a block diagram showing an example of composition of electronic equipment concerning a 3rd embodiment of the present invention.
  • Embodiments of the present invention will be described in the following order.
  • First Embodiment Example of Laminated Battery
  • Second Embodiment Example of Cylindrical Battery
  • Third embodiment example of electronic device
  • FIG. 1 shows an example of a configuration of a nonaqueous electrolyte secondary battery (hereinafter, simply referred to as “battery”) according to the first embodiment of the present invention.
  • the battery according to the first embodiment is a so-called laminated battery, in which an electrode body 20 to which a positive electrode lead 11 and a negative electrode lead 12 are attached is housed inside a film-shaped exterior material 10, It is possible to reduce the weight and thickness.
  • the positive electrode lead 11 and the negative electrode lead 12 are respectively directed from the inside of the exterior material 10 to the outside, for example, in the same direction.
  • Each of the positive electrode lead 11 and the negative electrode lead 12 is made of, for example, a metal material such as Al, Cu, Ni, or stainless steel, and has a thin plate shape or a mesh shape, respectively.
  • the outer package 10 is made of, for example, a rectangular aluminum laminate film in which a nylon film, an aluminum foil, and a polyethylene film are laminated in this order.
  • the exterior material 10 is disposed, for example, such that the polyethylene film side and the electrode body 20 face each other, and the respective outer edges are adhered to each other by fusion bonding or an adhesive.
  • An adhesive film 13 is inserted between the exterior material 10 and the positive electrode lead 11 and the negative electrode lead 12 to suppress invasion of outside air.
  • the adhesive film 13 is made of a material having adhesiveness to the positive electrode lead 11 and the negative electrode lead 12, for example, a polyolefin resin such as polyethylene, polypropylene, modified polyethylene or modified polypropylene.
  • the packaging material 10 may be made of a laminated film having another structure, a polymer film such as polypropylene, or a metal film, instead of the above-described aluminum laminated film.
  • a polymer film such as polypropylene
  • a metal film instead of the above-described aluminum laminated film.
  • it may be constituted by a laminate film in which a polymer film is laminated on one or both sides of an aluminum film as a core material.
  • FIG. 2 is a cross-sectional view of the electrode body 20 shown in FIG. 1 along the line II-II.
  • the electrode body 20 is of a wound type, and has a configuration in which a long positive electrode 21 and a long negative electrode 22 are laminated via a long separator 23 and wound flat and spirally. The outermost peripheral portion is protected by a protective tape 24.
  • An electrolytic solution as an electrolyte is injected into the exterior material 10 and impregnated in the positive electrode 21, the negative electrode 22, and the separator 23.
  • the positive electrode 21 includes, for example, a positive electrode current collector 21A and positive electrode active material layers 21B provided on both surfaces of the positive electrode current collector 21A.
  • the positive electrode current collector 21A is made of, for example, a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil.
  • the positive electrode current collector 21A may have a plate shape or a mesh shape.
  • the cathode lead 11 may be configured by extending a part of the periphery of the cathode current collector 21A.
  • the positive electrode active material layer 21B contains a positive electrode active material and a binder.
  • the positive electrode active material layer 21B may further include a conductive auxiliary as needed.
  • the positive electrode active material includes positive electrode active material particles containing Al on the surface, and Al is dissolved in the positive electrode active material crystal.
  • the positive electrode active material particles contain Al on the surface, the electrochemical stability of the surface of the positive electrode active material particles is improved, and gas generation can be suppressed. In particular, it is possible to suppress gas generation in a high temperature and high SOC (States of Charge) state.
  • the concentration of Al on the surface of the positive electrode active material particles is higher than the concentration of Al inside the positive electrode active material particles. More specifically, the concentration of the element in the positive electrode active material particles decreases from the surface to the inside of the positive electrode active material particles. In this case, the concentration of the element may gradually change from the surface of the positive electrode active material particles toward the inside, or may change abruptly in a substantially step-like manner.
  • the “surface of the positive electrode active material particles” refers to a region having a depth of 30 nm or less from the outermost surface of the positive electrode active material particles.
  • “inside of the positive electrode active material particles” refers to the center of the positive electrode active material particles.
  • a position at a depth of 100 nm from the outermost surface of the positive electrode active material particles is defined as the inside (center).
  • the “depth from the outermost surface of the positive electrode active material particles” is a sputtering depth in terms of SiO 2 .
  • the sputtering depth in terms of SiO 2 when irradiated with X-rays in the SiO 2 base in the same conditions, something can be sputtered to a depth of nm, refers to the indication that.
  • the ratio y / x of the Al ratio x in the inner region of the positive electrode active material particles and the Al ratio y in the surface region of the positive electrode active material particles is 149% ⁇ y / x ⁇ 305%, preferably 189% ⁇ y / x. ⁇ 305%, more preferably 201% ⁇ y / x ⁇ 263%.
  • the ratio y / x is a parameter representing the uneven distribution ratio of Al on the surface of the positive electrode active material particles. If the ratio y / x is y / x ⁇ 149%, the uneven distribution rate of Al on the surface is too low, and the effect of suppressing gas generation by Al decreases.
  • the ratio y / x is 305% ⁇ y / x, the uneven distribution rate of Al on the surface is too high. Therefore, even if the surface of the positive electrode active material particles is coated with a wide and thin binder film as described later, Cannot suppress the decrease in thermal stability inside the positive electrode active material particles due to the inclusion of Al. Therefore, safety is reduced.
  • the above ratio y / x is measured as follows. First, the cathode 21 is taken out of the battery, washed and dried with dimethyl carbonate (DMC), and then heated and stirred in a solvent in which the binder is soluble (for example, N-methyl-pyrrolidone in the case of PVdF) to remove the binder. While dissolving in the conductive agent, the conductive additive is dispersed in the solvent, and the positive electrode active material is taken out by centrifugation.
  • DMC dimethyl carbonate
  • a solvent in which the binder is soluble for example, N-methyl-pyrrolidone in the case of PVdF
  • the average of the ratio I 3 / I 4 of the Al peak area (integrated intensity) I 3 obtained in this case and the peak area (integrated intensity) I 4 of the transition metal species most contained in the positive electrode active material is defined as the Al ratio y. .
  • the ratio y / x is calculated using the Al ratios x and y obtained as described above.
  • each of the depths of 30 nm and 100 nm is a depth in terms of SiO 2 .
  • the metal species most contained in the positive electrode active material is Ni for NCA, and Co for LCO.
  • Measuring device Quantera SXM, manufactured by ULVAC-PHI, Inc.
  • X-ray source monochromatic Al-K ⁇ (1486.6 eV)
  • X-ray spot diameter 100 ⁇ m
  • Sputtering rate 1.4 nm / min in terms of SiO 2
  • the positive electrode active material particles are primary particles.
  • the positive electrode active material particles can occlude and release lithium as an electrode reactant, and include a lithium transition metal composite oxide having a layered rock salt type crystal structure.
  • the lithium transition metal composite oxide contains, for example, Ni or Co as a main component as a metal element. It is particularly preferable that the lithium transition metal composite oxide contains Ni as a main component as a metal element.
  • the lithium transition metal composite oxide containing Ni as the main component is used, the numerical range of the above ratio y / x is compared with the case where the lithium transition metal composite oxide containing Co as the main component is used. This is because the expression of the effect of improving safety by combination with a fluorine-based binder becomes remarkable.
  • “containing Ni or Co as a main component as a metal element” means that the atomic ratio of Ni or Co is 50% or more with respect to the total amount of the metal elements contained in the lithium transition metal composite oxide. I do.
  • the average composition of the positive electrode active material particles is represented by, for example, the following formula (A).
  • LiNi 1-xyz Co x Al y M1 z O 2 ⁇ (A) (However, M1 is Mn, Mg, B, W, Zr, Ti, P, S, Fe, Si, Cr, Cu, Zn, Ge, Y, Mo, Ag, Ba, In, Sr, Sn, Pb and Sb is at least one selected from the group consisting of Sb, wherein x, y and z are 0.01 ⁇ x ⁇ 0.3, 0.01 ⁇ y ⁇ 0.3, 0 ⁇ z ⁇ 0.05, 1 ⁇ xyz ⁇ 0.5. Note that the composition of lithium varies depending on the state of charge and discharge, and represents a value in a completely discharged state.)
  • the average composition of the positive electrode active material particles is represented, for example, by the following formula (B).
  • M2 is at least one selected from the group consisting of Ni, Mn, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn, Mo, Sn, Ca, Sr and W.
  • r , S, t and u are values in the range of 0.8 ⁇ r ⁇ 1.2, 0 ⁇ s ⁇ 0.5, ⁇ 0.1 ⁇ t ⁇ 0.2, 0 ⁇ u ⁇ 0.1. Note that the composition of lithium differs depending on the state of charge and discharge, and the value of r represents a value in a completely discharged state.
  • the average particle size of the positive electrode active material particles is, for example, a primary particle diameter of 0.3 ⁇ m or more and 0.8 ⁇ m or less. It is.
  • the positive electrode active material particles include a lithium transition metal composite oxide containing Co as a main component as a metal element, the average particle size of the positive electrode active material particles is, for example, 3 ⁇ m or more and 30 ⁇ m or less.
  • the average particle size of the positive electrode active material particles is measured as follows. First, the battery is disassembled, the positive electrode 21 is taken out, the taken out positive electrode 21 is washed with dimethyl carbonate (DMC), and dried, and then, the positive electrode 21 is cut to obtain a sample piece. SEM observation is performed. Then, 30 particles are randomly selected from the photographed SEM image, the area of the particle cross section is measured by image processing, and the particle diameter (diameter) of each particle is obtained assuming that the particle cross section is circular. Finally, the average particle diameter of the 30 measured particles is simply averaged (arithmetic average) to obtain an average particle diameter, which is defined as the average particle diameter of the positive electrode active material particles.
  • DMC dimethyl carbonate
  • the binder includes a fluorine-based binder.
  • the melting point of the fluorine-based binder is from 152 ° C. to 166 ° C., preferably from 152 ° C. to 160 ° C., and more preferably from 152 ° C. to 156 ° C. If the melting point of the fluorine-based binder is less than 152 ° C., the positive electrode active material layer 21B becomes too hard when the positive electrode active material layer 21B is dried (heat treated) in the manufacturing process of the positive electrode 21; becomes difficult.
  • the melting point of the fluorine-based binder exceeds 166 ° C.
  • the binder becomes difficult to flow, and the surface of the positive electrode active material particles is wide and thin. It cannot be coated with a binder film. For this reason, the reaction surface of the positive electrode active material particles with the electrolyte cannot be reduced. Further, it becomes impossible to suppress a decrease in thermal stability inside the positive electrode active material particles due to the inclusion of Al on the surface. Therefore, gas generation cannot be suppressed, and safety cannot be improved.
  • the melting point of the above-mentioned fluorine-based binder is measured as follows. First, the cathode 21 is taken out of the battery, washed and dried with DMC, the cathode current collector 21A is removed, and the binder is dispersed by heating and stirring in an appropriate dispersion medium (eg, N-methylpyrrolidone). Dissolve in the medium. Thereafter, the positive electrode active material is removed by centrifugation, and the supernatant is filtered, and then the binder is removed by evaporation to dryness or reprecipitation in water.
  • an appropriate dispersion medium eg, N-methylpyrrolidone
  • a sample of several to several tens mg was heated at a heating rate of 1 to 10 ° C./min by a differential scanning calorimeter (DSC, for example, Rigaku Thermoplus plus DSC 8230 manufactured by Rigaku Corporation), and then heated at 100 to 250 ° C.
  • DSC differential scanning calorimeter
  • the temperature showing the maximum endothermic amount is defined as the melting point of the fluorine-based binder.
  • the fluorine-based binder is, for example, polyvinylidene fluoride (PVdF).
  • PVdF polyvinylidene fluoride
  • the polyvinylidene fluoride it is preferable to use a homopolymer of vinylidene fluoride (VdF).
  • VdF a copolymer of vinylidene fluoride (VdF) and another monomer can be used.
  • the polyvinylidene fluoride which is a copolymer, swells and dissolves in the electrolytic solution. The characteristics of the positive electrode 21 may be deteriorated because the bonding is easy and the binding force is weak.
  • the polyvinylidene fluoride one obtained by modifying a part of the terminal or the like with a carboxylic acid such as maleic acid may be used.
  • the content of the fluorine-based binder in the positive electrode active material layer 21B is 0.7% by mass to 4.0% by mass, preferably 2.0% by mass to 4.0% by mass, and more preferably 3.0% by mass. % Or more and 4.0% by mass or less.
  • the content of the fluorine-based binder is 0.7% by mass or more, the surface of the positive electrode active material particles can be effectively coated with the binder. Can be reduced. Further, since the surface of the positive electrode active material particles can be effectively coated with the binder as described above, it is possible to effectively suppress a decrease in thermal stability inside the positive electrode active material particles due to the inclusion of Al on the surface. Can also. Therefore, generation of gas can be further suppressed, and safety can be further improved.
  • the content of the above-mentioned fluorine-based binder is measured as follows. First, the cathode 21 is taken out of the battery, washed with DMC, and dried. Next, a sample of several to several tens of mg was subjected to a differential thermal balance (TG-DTA, for example, Rigaku Thermoplus TG8120 manufactured by Rigaku Corporation) at a temperature rising rate of 1 to 5 ° C./min in an air atmosphere at 600 ° C. C., and the content of the fluorine-based binder in the positive electrode active material layer 21B is determined from the weight loss at that time.
  • TG-DTA differential thermal balance
  • the amount of weight loss due to the binder can be determined by isolating the binder as described in the method for measuring the melting point of the binder, performing TG-DTA measurement of the binder alone in an air atmosphere, Can be confirmed by examining how many times they burn.
  • the conductive additive for example, at least one carbon material of graphite, carbon fiber, carbon black, acetylene black, Ketjen black, carbon nanotube, graphene, and the like can be used.
  • the conductive assistant may be any material having conductivity, and is not limited to a carbon material.
  • a metal material or a conductive polymer material may be used as the conductive assistant.
  • the shape of the conductive additive include, but are not limited to, granules, scales, hollows, needles, and cylinders.
  • the negative electrode 22 includes, for example, a negative electrode current collector 22A and negative electrode active material layers 22B provided on both surfaces of the negative electrode current collector 22A.
  • the anode current collector 22A is made of, for example, a metal foil such as a copper foil, a nickel foil, or a stainless steel foil.
  • the negative electrode current collector 22A may have a plate shape or a mesh shape.
  • the negative electrode lead 12 may be configured by extending a part of the peripheral edge of the negative electrode current collector 22A.
  • the anode active material layer 22B includes one or more anode active materials capable of inserting and extracting lithium.
  • the negative electrode active material layer 22B may further include at least one of a binder and a conductive additive as necessary.
  • the electrochemical equivalent of the negative electrode 22 or the negative electrode active material is larger than the electrochemical equivalent of the positive electrode 21.
  • lithium metal does not precipitate on the negative electrode 22 during charging. Is preferred.
  • the negative electrode active material examples include carbon materials such as non-graphitizable carbon, easily graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, organic polymer compound fired bodies, carbon fibers, and activated carbon. Is mentioned.
  • the coke includes pitch coke, needle coke, petroleum coke and the like.
  • An organic polymer compound fired body is obtained by firing a polymer material such as a phenol resin or a furan resin at an appropriate temperature and carbonizing the material, and a part thereof is hardly graphitizable carbon or easily graphitizable carbon. Some are classified as.
  • These carbon materials are preferable because a change in crystal structure that occurs during charge and discharge is very small, a high charge and discharge capacity can be obtained, and good cycle characteristics can be obtained.
  • graphite is preferable because it has a large electrochemical equivalent and can obtain a high energy density.
  • non-graphitizable carbon is preferable because excellent cycle characteristics can be obtained.
  • a material having a low charge / discharge potential specifically, a material having a charge / discharge potential close to lithium metal is preferable because a high energy density of the battery can be easily realized.
  • the negative electrode active material capable of increasing the capacity include a material containing at least one of a metal element and a metalloid element as a constituent element (for example, an alloy, a compound, or a mixture). If such a material is used, a high energy density can be obtained. In particular, when used together with a carbon material, high energy density can be obtained and excellent cycle characteristics can be obtained, which is more preferable.
  • alloys include alloys containing one or more metal elements and one or more metalloid elements in addition to alloys composed of two or more metal elements. Further, a nonmetallic element may be included.
  • the structure includes a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and a structure in which two or more of them coexist.
  • a negative electrode active material for example, a metal element or a metalloid element capable of forming an alloy with lithium is given.
  • a metal element or a metalloid element capable of forming an alloy with lithium.
  • Specific examples include Mg, B, Al, Ti, Ga, In, Si, Ge, Sn, Pb, Bi, Cd, Ag, Zn, Hf, Zr, Y, Pd and Pt. These may be crystalline or amorphous.
  • the negative electrode active material a material containing a metal element or a metalloid element belonging to the group 4B in the short-periodic periodic table as a constituent element is preferable, and a material containing at least one of Si and Sn as a constituent element is more preferable. This is because Si and Sn have a large ability to insert and extract lithium and can obtain a high energy density.
  • Examples of such a negative electrode active material include a simple substance, an alloy, or a compound of Si, a simple substance, an alloy, or a compound of Sn, and a material having at least one or more of them.
  • Si for example, Sn, Ni, Cu, Fe, Co, Mn, Zn, In, Ag, Ti, Ge, Bi, Sb, Nb, Mo, Al
  • second constituent elements other than Si examples include those containing at least one selected from the group consisting of P, Ga, and Cr.
  • Sn for example, as a second constituent element other than Sn, Si, Ni, Cu, Fe, Co, Mn, Zn, In, Ag, Ti, Ge, Bi, Sb, Nb, Mo, Al
  • Examples include those containing at least one selected from the group consisting of P, Ga, and Cr.
  • Examples of the compound of Sn or the compound of Si include those containing O or C as a constituent element. These compounds may contain the second constituent element described above.
  • the Sn-based negative electrode active material contains Co, Sn, and C as constituent elements and has a low crystallinity or an amorphous structure.
  • Other negative electrode active materials include, for example, metal oxides or polymer compounds capable of inserting and extracting lithium.
  • metal oxide include lithium titanium oxide containing Li and Ti, such as lithium titanate (Li 4 Ti 5 O 12 ), iron oxide, ruthenium oxide, and molybdenum oxide.
  • the polymer compound include polyacetylene, polyaniline, and polypyrrole.
  • binder examples include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resin materials as main components. At least one selected from the group consisting of copolymers and the like is used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the separator 23 separates the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass therethrough while preventing current short circuit due to contact between the two electrodes.
  • the separator 23 is made of, for example, polytetrafluoroethylene, a polyolefin resin (such as polypropylene (PP) or polyethylene (PE)), an acrylic resin, a styrene resin, a polyester resin or a nylon resin, or a porous material formed by blending these resins. It may be formed of a porous film, and may have a structure in which two or more of these porous films are laminated.
  • a porous film made of polyolefin is preferable because it has an excellent short circuit prevention effect and can improve the safety of the battery by a shutdown effect.
  • polyethylene is preferable as a material constituting the separator 23 because it can obtain a shutdown effect in the range of 100 ° C. or more and 160 ° C. or less and has excellent electrochemical stability.
  • low-density polyethylene, high-density polyethylene, and linear polyethylene are suitably used because they have an appropriate melting temperature and are easily available.
  • a material obtained by copolymerizing or blending a resin having chemical stability with polyethylene or polypropylene can be used.
  • a non-woven fabric may be used as the separator 23.
  • Aramid fiber, glass fiber, polyolefin fiber, polyethylene terephthalate (PET) fiber, nylon fiber, or the like can be used as the fiber constituting the nonwoven fabric. Further, these two or more kinds of fibers may be mixed to form a nonwoven fabric.
  • the separator 23 may have a configuration including a base material and a surface layer provided on one or both surfaces of the base material.
  • the surface layer includes electrically insulating inorganic particles, and a resin material that binds the inorganic particles to the surface of the base material and binds the inorganic particles to each other.
  • This resin material may be, for example, fibrillated and have a three-dimensional network structure in which a plurality of fibrils are connected.
  • the inorganic particles are supported on the resin material having the three-dimensional network structure.
  • the resin material may bind the surface of the base material or the inorganic particles without fibrillation. In this case, higher binding properties can be obtained.
  • the base material is a porous film composed of an insulating film that transmits lithium ions and has a predetermined mechanical strength. Since the electrolyte solution is held in the pores of the base material, the base material has resistance to the electrolyte solution. , High reactivity, low reactivity, and difficulty in expanding.
  • the above-described resin material or nonwoven fabric forming the separator 23 can be used.
  • the inorganic particles include at least one selected from the group consisting of metal oxides, metal nitrides, metal carbides, metal sulfides, and the like.
  • the metal oxide include aluminum oxide (alumina, Al 2 O 3 ), boehmite (hydrated aluminum oxide), magnesium oxide (magnesia, MgO), titanium oxide (titania, TiO 2 ), and zirconium oxide (zirconia, ZrO 2). ), Silicon oxide (silica, SiO 2 ) or yttrium oxide (yttria, Y 2 O 3 ) or the like can be suitably used.
  • silicon nitride Si 3 N 4
  • aluminum nitride AlN
  • boron nitride BN
  • titanium nitride TiN
  • metal carbide silicon carbide (SiC) or boron carbide (B 4 C)
  • metal sulfide barium sulfate (BaSO 4 ) or the like can be suitably used.
  • alumina titania (especially those having a rutile structure), silica or magnesia, and more preferably to use alumina.
  • the inorganic particles are made of a porous aluminosilicate such as zeolite (M 2 / n O.Al 2 O 3 .xSiO 2 .yH 2 O, M is a metal element, x ⁇ 2, y ⁇ 0); Salts, minerals such as barium titanate (BaTiO 3 ) or strontium titanate (SrTiO 3 ) may be included.
  • the inorganic particles have oxidation resistance and heat resistance, and the surface layer on the side facing the positive electrode containing the inorganic particles has strong resistance to an oxidizing environment near the positive electrode during charging.
  • the shape of the inorganic particles is not particularly limited, and any of a spherical shape, a plate shape, a fibrous shape, a cubic shape, and a random shape can be used.
  • the particle size of the inorganic particles is preferably in the range of 1 nm to 10 ⁇ m. If the thickness is less than 1 nm, it is difficult to obtain, and if the thickness is more than 10 ⁇ m, the distance between the electrodes becomes large, so that a sufficient amount of active material cannot be obtained in a limited space, and the battery capacity is reduced.
  • the resin material constituting the surface layer examples include fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene, fluorine-containing rubbers such as vinylidene fluoride-tetrafluoroethylene copolymer and ethylene-tetrafluoroethylene copolymer, and styrene.
  • fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene
  • fluorine-containing rubbers such as vinylidene fluoride-tetrafluoroethylene copolymer and ethylene-tetrafluoroethylene copolymer
  • styrene examples include polystyrene.
  • -Butadiene copolymer or hydride thereof acrylonitrile-butadiene copolymer or hydride thereof, acrylonitrile-butadiene-styrene copolymer or hydride thereof, methacrylate-acrylate copolymer, styrene-acrylate Copolymers, acrylonitrile-acrylate copolymers, rubbers such as ethylene propylene rubber, polyvinyl alcohol, polyvinyl acetate, etc., ethyl cellulose, methyl cellulose, hydroxyethyl cellulose, carboxymethyl Cellulose derivatives such as cellulose, polyphenylene ether, polysulfone, polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide such as wholly aromatic polyamide (aramid), polyamideimide, polyacrylonitrile, polyvinyl alcohol, polyether, acrylic resin Alternatively, a resin having high heat resistance such as polyester having at least one
  • resin materials may be used alone or as a mixture of two or more.
  • a fluororesin such as polyvinylidene fluoride is preferable, and from the viewpoint of heat resistance, it is preferable to contain aramid or polyamideimide.
  • a slurry composed of a matrix resin, a solvent, and inorganic particles is applied on a substrate (porous film), and the slurry is passed through a poor solvent for the matrix resin and a solvent-friendly bath of the solvent.
  • a method of phase separation and then drying can be used.
  • the inorganic particles described above may be contained in a porous film as a substrate. Further, the surface layer may not include the inorganic particles, and may be formed only of the resin material.
  • the electrolyte is a so-called non-aqueous electrolyte, and includes an organic solvent (non-aqueous solvent) and an electrolyte salt dissolved in the organic solvent.
  • the electrolytic solution may contain a known additive in order to improve battery characteristics. Note that, instead of the electrolytic solution, an electrolytic layer containing the electrolytic solution and a polymer compound serving as a holder for holding the electrolytic solution may be used. In this case, the electrolyte layer may be in a gel state.
  • a cyclic carbonate such as ethylene carbonate or propylene carbonate can be used, and it is preferable to use one of ethylene carbonate and propylene carbonate, particularly a mixture of both. This is because the cycle characteristics can be further improved.
  • organic solvent it is preferable to use a mixture of chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and methylpropyl carbonate in addition to these cyclic carbonates. This is because high ionic conductivity can be obtained.
  • the organic solvent further contains 2,4-difluoroanisole or vinylene carbonate. This is because 2,4-difluoroanisole can further improve the discharge capacity, and vinylene carbonate can further improve the cycle characteristics. Therefore, it is preferable to use a mixture of these, because the discharge capacity and cycle characteristics can be further improved.
  • organic solvents include butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, and 4-methyl-1,3 -Dioxolan, methyl acetate, methyl propionate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropironitrile, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N- Examples thereof include dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, dimethylsulfoxide, and trimethyl phosphate.
  • the electrolyte further contains a halogenated carbonate represented by the following formula (1) as an additive from the viewpoint of improving cycle characteristics.
  • a halogenated carbonate represented by the following formula (1) as an additive from the viewpoint of improving cycle characteristics.
  • the consumption of the halogenated carbonate in the positive electrode 21 is suppressed by Al contained in the surface of the positive electrode active material particles and the binder film covering the surface of the positive electrode active material particles widely and thinly. As a result, more of the halogenated carbonate is consumed by the negative electrode 22, and the effect of improving the cycle characteristics by the halogenated carbonate becomes remarkable.
  • R1 to R4 are each independently a hydrogen group, a halogen group, an alkyl group or a halogenated alkyl group, provided that at least one of R1 to R4 is a halogen group or a halogenated alkyl group.
  • the halogen group is preferably a fluorine group, and the halogenated alkyl group is preferably a fluorinated alkyl group.
  • Examples of the halogenated carbonate represented by the formula (1) include 4-fluoro-1,3-dioxolan-2-one, 4-chloro-1,3-dioxolan-2-one, and 4,5-difluoro -1,3-dioxolan-2-one, tetrafluoro-1,3-dioxolan-2-one, 4-chloro-5-fluoro-1,3-dioxolan-2-one, 4,5-dichloro-1, 3-oxolan-2-one, tetrachloro-1,3-dioxolan-2-one, 4,5-bistrifluoromethyl-1,3-dioxolan-2-one, 4-trifluoromethyl-1,3-dioxolan -2-one, 4,5-difluoro-4,5-dimethyl-1,3-dioxolan-2-one, 4,4-difluoro-5-methyl-1,3-dioxolan-2-one
  • 4-fluoro-1,3-dioxolan-2-one or 4,5-difluoro-1,3-dioxolan-2-one is preferred. This is because it is easily available and a high effect can be obtained.
  • the lower limit of the content of the halogenated carbonate represented by the formula (1) in the electrolytic solution is preferably 0.01% by mass or more, more preferably 1% by mass or more, and still more preferably 3% by mass or more. It is. When the lower limit of the content of the halogenated carbonate is 0.01% by mass or more, the charge / discharge cycle characteristics can be particularly improved.
  • the upper limit of the content of the halogenated carbonate represented by the formula (1) in the electrolytic solution is preferably 6% by mass or less, more preferably 5% by mass or less, and even more preferably 4% by mass or less. . When the upper limit of the content of the halogenated carbonate is 6% by mass or less, an increase in gas generation due to the addition of the halogenated carbonate can be suppressed.
  • the content of the halogenated carbonate is determined as follows. First, the battery is disassembled under an inert atmosphere such as a glove box, and an electrolyte component is extracted using DMC or a heavy solvent. Next, GC-MS (Gas-Chromatograph-Mass-Spectrometry) measurement and ICP (Inductively-Coupled-Plasma) measurement are performed on the obtained extract to determine the content of the halogenated carbonate in the electrolytic solution.
  • GC-MS Gas-Chromatograph-Mass-Spectrometry
  • ICP Inductively-Coupled-Plasma
  • Examples of the electrolyte salt include a lithium salt, and one kind may be used alone, or two or more kinds may be used in combination.
  • the lithium salt LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiB (C 6 H 5) 4, LiCH 3 SO 3, LiCF 3 SO 3, LiN (SO 2 CF 3) 2, LiC (SO 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 , LiCl, lithium difluoro [oxolate-O, O ′] borate, lithium bisoxalate borate, or LiBr.
  • LiPF 6 is preferable because high ion conductivity can be obtained and cycle characteristics can be further improved.
  • the positive electrode 21 is manufactured as follows. First, for example, a positive electrode mixture is prepared by mixing a positive electrode active material, a binder, and a conductive auxiliary, and the positive electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) to form a paste. A positive electrode mixture slurry is prepared. Next, the positive electrode mixture slurry is applied to the positive electrode current collector 21A, the solvent is dried, and compression molding is performed by a roll press or the like to form the positive electrode active material layer 21B, and the positive electrode 21 is obtained.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode active material particles include a lithium transition metal composite oxide containing Ni as a metal element as a main component
  • the positive electrode active material particles are produced, for example, as follows. First, nickel sulfate, cobalt sulfate, and ammonium hydroxide are dissolved in water and co-precipitated to produce nickel and cobalt hydroxides. Next, a lithium compound such as lithium carbonate and lithium hydroxide and an aluminum compound such as aluminum hydroxide are added to the obtained hydroxide to prepare a precursor. When other additional elements are added, they are added at this stage. Thereafter, the obtained precursor is baked in a temperature range of, for example, 500 ° C. to 700 ° C. while changing the time conditions, so that the ratio y / x is in the range of 149% ⁇ y / x ⁇ 305%. Active material particles are obtained. The longer the firing time and the higher the temperature, the more Al diffuses into the crystal.
  • the positive electrode active material particles include a lithium transition metal composite oxide containing Co as a main component as a metal element
  • the positive electrode active material particles are produced, for example, as follows. First, cobalt sulfate and ammonium hydroxide are dissolved in water and coprecipitated to produce a cobalt hydroxide. Next, a lithium compound such as lithium carbonate and lithium hydroxide and an aluminum compound such as aluminum hydroxide are added to the obtained hydroxide to prepare a precursor. When other additional elements are added, they are added at this stage. Thereafter, the obtained precursor is baked in a temperature range of, for example, 600 ° C. to 800 ° C. while changing the time conditions, so that the ratio y / x is within a range of 149% ⁇ y / x ⁇ 305%. Active material particles are obtained. The longer the firing time and the higher the temperature, the more Al diffuses into the crystal.
  • the negative electrode 22 is manufactured as follows. First, for example, a negative electrode mixture is prepared by mixing a negative electrode active material and a binder, and this negative electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to prepare a paste-like negative electrode mixture slurry. I do. Next, the negative electrode mixture slurry is applied to the negative electrode current collector 22A, the solvent is dried, and compression molding is performed by a roll press or the like to form the negative electrode active material layer 22B, and the negative electrode 22 is obtained.
  • a negative electrode mixture is prepared by mixing a negative electrode active material and a binder, and this negative electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to prepare a paste-like negative electrode mixture slurry. I do.
  • the negative electrode mixture slurry is applied to the negative electrode current collector 22A, the solvent is dried, and compression molding is performed by a roll press or the like to form the negative electrode active material layer 22B, and the negative electrode 22 is
  • the wound electrode body 20 is manufactured as follows. First, the cathode lead 11 is attached to one end of the cathode current collector 21A by welding, and the anode lead 12 is attached to one end of the anode current collector 22A by welding. Next, the positive electrode 21 and the negative electrode 22 are wound around a flat core with a separator 23 interposed therebetween, and are wound many times in the longitudinal direction. Get.
  • the exterior body 10 seals the electrode body 20 as follows. First, the electrode body 20 is sandwiched between the package members 10, and the outer peripheral edge portion excluding one side is heat-fused into a bag shape, and is housed inside the package member 10. At that time, an adhesive film 13 is inserted between the positive electrode lead 11 and the negative electrode lead 12 and the exterior material 10. Note that the adhesive film 13 may be attached to each of the positive electrode lead 11 and the negative electrode lead 12 in advance. Next, after injecting the electrolytic solution into the exterior material 10 from one side of the unfused part, one side of the unfused part is heat-sealed in a vacuum atmosphere to be sealed. Thus, the batteries shown in FIGS. 1 and 2 are obtained.
  • the positive electrode active material layer 21B includes a positive electrode active material layer containing Al-containing positive electrode active material particles and a fluorine-based binder having a melting point of 152 ° C. or more and 166 ° C. or less. .
  • the ratio y / x of the Al ratio x in the inner region of the positive electrode active material particles and the Al ratio y in the surface region of the positive electrode active material particles satisfies 149% ⁇ y / x ⁇ 305%.
  • Al can be unevenly distributed on the surface of the positive electrode active material particles in an appropriate amount, and the surface of the positive electrode active material particles can be covered with a wide and thin binder film. Therefore, gas generation, that is, battery swelling can be suppressed, and safety can be improved. In particular, gas generation at high temperature and high SOC, that is, battery swelling can be suppressed.
  • FIG. 4 shows an example of a configuration of a secondary battery according to the second embodiment of the present invention.
  • the battery according to the second embodiment is a so-called cylindrical type, and a pair of a band-shaped positive electrode 51 and a band-shaped negative electrode 52 are provided inside a substantially hollow cylindrical battery can (exterior material) 41 with a separator 53. And has a wound electrode body 50 after lamination.
  • the battery can 41 is made of nickel-plated iron or aluminum or the like, and has one end closed and the other end open.
  • An electrolytic solution as a liquid electrolyte is injected into the battery can 41, and is impregnated in the positive electrode 51, the negative electrode 52, and the separator 53.
  • a pair of insulating plates 42 and 43 are respectively arranged perpendicular to the winding peripheral surface so as to sandwich the electrode body 50.
  • the electrolyte is the same as the electrolyte in the first embodiment.
  • a battery cover 44 At the open end of the battery can 41, a battery cover 44, a safety valve mechanism 45 provided inside the battery cover 44, and a thermal resistance element (Positive Temperature Coefficient; PTC element) 46 are disposed via a sealing gasket 47. It is attached by being caulked. Thereby, the inside of the battery can 41 is sealed.
  • the battery lid 44 is made of, for example, the same material as the battery can 41.
  • the safety valve mechanism 45 is electrically connected to the battery cover 44. When the internal pressure of the battery becomes higher than a predetermined value due to an internal short circuit or external heating, the disk plate 45A is inverted and the battery cover 44 and the electrode are connected. The electrical connection with the body 50 is cut off.
  • the sealing gasket 47 is made of, for example, an insulating material, and its surface is coated with asphalt.
  • a center pin 54 is inserted into the center of the electrode body 50.
  • the positive electrode 51 of the electrode body 50 is connected to a positive electrode lead 55 made of aluminum or the like, and the negative electrode 52 is connected to a negative electrode lead 56 made of nickel or the like.
  • the positive electrode lead 55 is electrically connected to the battery cover 44 by welding to the safety valve mechanism 45, and the negative electrode lead 56 is welded to and electrically connected to the battery can 41.
  • FIG. 5 is a cross-sectional view showing an enlarged part of the electrode body shown in FIG.
  • the positive electrode 51 includes a positive electrode current collector 51A and positive electrode active material layers 51B provided on both surfaces of the positive electrode current collector 51A.
  • the negative electrode 52 includes a negative electrode current collector 52A and negative electrode active material layers 52B provided on both surfaces of the negative electrode current collector 52A.
  • the configurations of the positive electrode current collector 51A, the positive electrode active material layer 51B, the negative electrode current collector 52A, the negative electrode active material layer 52B, and the separator 53 are respectively the positive electrode current collector 21A, the positive electrode active material layer 21B, and the negative electrode in the first embodiment. The same applies to the current collector 22A, the negative electrode active material layer 22B, and the separator 53.
  • FIG. 6 shows an example of the configuration of an electronic device 400 according to the third embodiment of the present invention.
  • the electronic device 400 includes an electronic circuit 401 of the electronic device main body and the battery pack 300.
  • Battery pack 300 is electrically connected to electronic circuit 401 via positive electrode terminal 331a and negative electrode terminal 331b.
  • the electronic device 400 may have a configuration in which the battery pack 300 is detachable.
  • Examples of the electronic device 400 include a notebook personal computer, a tablet computer, a mobile phone (for example, a smartphone), a portable information terminal (Personal Digital Assistants: PDA), a display device (LCD (Liquid Crystal Display), and an EL (Electro Luminescence).
  • a notebook personal computer for example, a tablet computer
  • a mobile phone for example, a smartphone
  • a portable information terminal Personal Digital Assistants: PDA
  • a display device LCD (Liquid Crystal Display)
  • EL Electro Luminescence
  • imaging device eg, digital still camera, digital video camera, etc.
  • audio equipment eg, portable audio player
  • game equipment e.g., cordless phone handset, electronic book, electronic dictionary, radio, headphone, navigation System, memory card, pacemaker, hearing aid, power tool, electric shaver, refrigerator, air conditioner, TV, stereo, water heater, microwave oven, dishwasher, washing machine, dryer, lighting equipment, toy, medical equipment, robot Load conditioners, although traffic signals and the like, without such limited thereto.
  • the electronic circuit 401 includes, for example, a CPU (Central Processing Unit), a peripheral logic unit, an interface unit, a storage unit, and the like, and controls the entire electronic device 400.
  • a CPU Central Processing Unit
  • the battery pack 300 includes an assembled battery 301 and a charge / discharge circuit 302. Battery pack 300 may further include an exterior material (not shown) that accommodates assembled battery 301 and charge / discharge circuit 302 as necessary.
  • the assembled battery 301 is configured by connecting a plurality of secondary batteries 301a in series and / or in parallel.
  • the plurality of secondary batteries 301a are connected in, for example, n parallel and m series (n and m are positive integers).
  • FIG. 6 shows an example in which six rechargeable batteries 301a are connected in two parallel and three series (2P3S).
  • the battery according to the above-described first or second embodiment is used as the secondary battery 301a.
  • the battery pack 300 includes an assembled battery 301 including a plurality of secondary batteries 301a.
  • the battery pack 300 includes a single secondary battery 301a instead of the assembled battery 301. May be adopted.
  • the charging / discharging circuit 302 is a control unit that controls charging / discharging of the battery pack 301. Specifically, at the time of charging, the charge / discharge circuit 302 controls charging of the battery pack 301. On the other hand, at the time of discharging (that is, at the time of using the electronic device 400), the charging / discharging circuit 302 controls discharging to the electronic device 400.
  • the exterior material for example, a case made of a metal, a polymer resin, or a composite material thereof can be used.
  • the composite material include a laminate in which a metal layer and a polymer resin layer are laminated.
  • the ratio y / x, the melting point of the fluorine-based binder, and the content of FEC (halogenated carbonate) were determined by the measurement method described in the first embodiment. is there.
  • a positive electrode was produced as follows. 96 parts by mass of LiNi 0.7 Co 0.2 Al 0.1 O 2 as a positive electrode active material, 2 parts by mass of polyvinylidene fluoride having a melting point of 166 ° C. as a binder (homopolymer of vinylidene fluoride), and 2 parts by mass of Ketjen black as a conductive aid Are mixed to form a positive electrode mixture, and this positive electrode mixture is dispersed in an organic solvent (N-methyl-2-pyrrolidone: NMP) to obtain a paste-like positive electrode mixture slurry.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode active materials (1) to (5) having different ratios y / x were used as the positive electrode active materials. Subsequently, the positive electrode mixture slurry was applied to the positive electrode current collector (aluminum foil) using a coating device, and then dried to form a positive electrode active material layer. Finally, the positive electrode active material layer was compression-molded using a press.
  • a negative electrode was manufactured as follows. First, a negative electrode mixture was prepared by mixing 96% by mass of artificial graphite powder as a negative electrode active material and 4% by mass of polyvinylidene fluoride (PVdF) as a binder. Then, the negative electrode mixture was mixed with an organic solvent (N-methyl- 2-pyrrolidone: NMP) to give a paste-like negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry was applied to the negative electrode current collector (copper foil) using a coating device and then dried. Finally, the negative electrode active material layer was compression molded using a press.
  • PVdF polyvinylidene fluoride
  • EC ethylene carbonate
  • PC propylene carbonate
  • DEC diethyl carbonate
  • the battery was assembled as follows. First, a positive electrode and a negative electrode obtained as described above are laminated through a separator made of a microporous polyethylene stretched film, a negative electrode, a separator, a positive electrode, and a separator in this order, and are wound many times to form a jelly roll type. Was obtained. Next, the wound electrode body was sandwiched between a pair of insulating plates, the inner wall was housed in a nickel-plated iron battery can, the negative electrode lead was welded to the bottom of the can, and the positive electrode lead was welded to the safety valve mechanism.
  • Examples 4 and 5, Comparative Example 1 In the manufacturing process of the positive electrode, as shown in Table 1, as in Example 1, except that polyvinylidene fluoride (homopolymer of vinylidene fluoride) having a melting point of 152 ° C, 160 ° C, or 175 ° C was used as a binder. I got a battery.
  • polyvinylidene fluoride homopolymer of vinylidene fluoride
  • Comparative Example 2 As shown in Table 1, a positive electrode was produced in the same manner as in Example 1 except that polyvinylidene fluoride having a melting point of 145 ° C. (homopolymer of vinylidene fluoride) was used as a binder. )There has occurred. Therefore, in Comparative Example 2, it was difficult to manufacture the battery.
  • Examples 6 to 8, Comparative Example 6 In the preparation process of the electrolytic solution, as shown in Table 2, the FEC content was adjusted so that the FEC content in the electrolytic solution in the completed battery was 0.01% by mass, 3% by mass, 6% by mass, and 10% by mass. A battery was obtained in the same manner as in Example 1, except that the amount was adjusted and added to the electrolytic solution.
  • Example 7 As shown in Table 2, a battery was obtained in the same manner as in Example 2 except that polyvinylidene fluoride having a melting point of 175 ° C. (homopolymer of vinylidene fluoride) was used as a binder in the process of manufacturing the positive electrode.
  • polyvinylidene fluoride having a melting point of 175 ° C. homopolymer of vinylidene fluoride
  • Example 9 As shown in Table 3, a battery was obtained in the same manner as in Example 1 except that the positive electrode active material (6) was used as the positive electrode active material in the process of manufacturing the positive electrode.
  • Comparative Example 8 As shown in Table 3, a battery was obtained in the same manner as in Comparative Example 4, except that polyvinylidene fluoride having a melting point of 175 ° C. (homopolymer of vinylidene fluoride) was used as a binder in the process of manufacturing the positive electrode.
  • polyvinylidene fluoride having a melting point of 175 ° C. homopolymer of vinylidene fluoride
  • Heating limit temperature A battery charged with CCCV (Constant Current / Constant Voltage) for 4 hours at 0.5 C and 4.5 V was placed in an oven and heated at a specified temperature. After the sample reached the specified temperature, the temperature of the thermostat was maintained for 1 hour, and it was confirmed whether or not the battery would run out of heat. This procedure was repeated while increasing the specified temperature until thermal runaway was confirmed. The upper limit temperature at which thermal runaway was not confirmed was defined as the heating limit temperature.
  • Table 1 shows the configurations and evaluation results of the batteries of Examples 1 to 5 and Comparative Examples 1 to 4.
  • Table 2 shows the configurations and evaluation results of the batteries of Examples 1, 6 to 8, and Comparative Examples 5 to 7.
  • Table 3 shows the configurations and evaluation results of the batteries of Examples 1 and 9 and Comparative Examples 8 and 9.
  • the positive electrode includes a positive electrode active material layer including positive electrode active material particles containing Al on the surface and a fluorine-based binder having a melting point of 152 ° C. or more and 166 ° C. or less, and an Al ratio x in an internal region of the positive electrode active material particles.
  • the ratio y / x of the Al ratio y in the surface region of the active material particles satisfies 149% ⁇ y / x ⁇ 305%, the voltage cutoff time can be lengthened and the heating limit temperature can be reduced. Can be improved. Therefore, gas generation can be suppressed, and safety can be improved.
  • the content of FEC contained in the electrolytic solution is preferably 0.01% by mass or more, more preferably 1% by mass or more, and still more preferably 3% by mass or more.
  • the content of FEC contained in the electrolyte is preferably 6%. % By mass or less.
  • the cut-off time exceeds 50 hours.
  • Table 3 shows the following. That is, when the melting point and the ratio y / x of the binder are defined in the above range in the battery using NCA as the positive electrode active material, the melting point and the ratio y / x of the binder in the battery using LCO as the positive electrode active material are set as described above.
  • the effect of improving the heating limit temperature that is, the effect of improving safety, is more remarkable than in the case where the range is specified.
  • Reference Signs List 10 exterior material 11, 55 positive electrode lead 12, 56 negative electrode lead 13 adhesive film 20, 50 electrode body 21, 51 positive electrode 21A, 51A positive electrode current collector 21B, 51B positive electrode active material layer 22, 52 negative electrode 22A, 52A negative electrode current collector 22B, 52B Negative electrode active material layer 23, 53 Separator 24 Protective tape 41 Battery can 42, 43 Insulating plate 44 Battery cover 45 Safety valve mechanism 45A Disk plate 46 Thermal resistance element 47 Gasket 54 Center pin 300 Battery pack 400 Electronic device

Abstract

This secondary battery is provided with a positive electrode, a negative electrode, and an electrolyte. The positive electrode is provided with a positive electrode active material layer which includes: positive electrode active material particles including Al on the surfaces; and a fluorine-based binder having a melting point in the range of 152-166˚C inclusive. The ratio y/x of the ratio y of Al in surface regions of the positive electrode active material particles, to the ratio x of Al in internal regions of the positive electrode active material particles satisfies the expression 149%≤y/x≤305%.

Description

二次電池Rechargeable battery
 本発明は、二次電池に関する。 The present invention relates to a secondary battery.
 二次電池の特性は、使用する正極活物質に大きく左右されるため、正極活物質について種々の技術が検討されている。例えば正極活物質粒子表面を改質する技術が検討されている。 (4) Since the characteristics of the secondary battery largely depend on the positive electrode active material to be used, various technologies for the positive electrode active material are being studied. For example, a technique for modifying the surface of the positive electrode active material particles has been studied.
 特許文献1では、正極活物質の表面に、リチウム、アルミニウムおよびホウ素を含有する酸化物が形成されており、二次粒子の表面近傍に存在する一次粒子同士の粒界に、一次粒子の母相よりも高濃度でアルミニウムを含有する非水電解質二次電池用正極活物質が記載されている。 In Patent Literature 1, an oxide containing lithium, aluminum, and boron is formed on the surface of a positive electrode active material, and a primary phase of a primary phase is formed at a grain boundary between primary particles existing near the surface of a secondary particle. A positive electrode active material for a non-aqueous electrolyte secondary battery containing aluminum at a higher concentration is described.
 特許文献2では、LiaCobcdef(AはAlまたはMg、Bは4族遷移元素、0.90≦a≦1.10、0.97≦b≦1.00、0.0001≦c≦0.03、0.0001≦d≦0.03、1.98≦e≦2.02、0≦f≦0.02、0.0001≦c+d≦0.03)で表される粒子状のリチウムイオン二次電池用正極活物質であり、かつ、元素A、元素Bおよびフッ素が粒子の表面近傍に均一に存在しているリチウム二次電池用正極材料が記載されている。 In Patent Document 2, Li a Co b A c B d O e F f (A is Al or Mg, B is group IV transition elements, 0.90 ≦ a ≦ 1.10,0.97 ≦ b ≦ 1.00 , 0.0001≤c≤0.03, 0.0001≤d≤0.03, 1.98≤e≤2.02, 0≤f≤0.02, 0.0001≤c + d≤0.03). The positive electrode active material for a lithium secondary battery, which is a particulate positive electrode active material for a lithium ion secondary battery, and in which the element A, the element B, and the fluorine are uniformly present near the surface of the particle, is described. I have.
特開2015-76336号公報JP-A-2015-76336 国際公開第2004-30126号パンフレットWO 2004-30126 pamphlet
 近年では、二次電池は多様な電子機器に使用されるようになっているため、電池のガス発生を抑制することができ、かつ、安全性を向上することができる技術が望まれている。 In recent years, secondary batteries have been used in a variety of electronic devices. Therefore, there is a need for a technology capable of suppressing gas generation of batteries and improving safety.
 本発明の目的は、ガス発生を抑制することができ、かつ、安全性を向上することができる二次電池を提供することにある。 目的 An object of the present invention is to provide a secondary battery capable of suppressing gas generation and improving safety.
 上述の課題を解決するために、本発明は、正極と、負極と、電解液とを備え、正極が、表面にAlを含む正極活物質粒子と、融点が152℃以上166℃以下であるフッ素系バインダーとを含む正極活物質層を備え、正極活物質粒子の内部領域におけるAl比率xと、正極活物質粒子の表面領域におけるAl比率yとの比率y/xが、149%≦y/x≦305%を満たす二次電池である。 In order to solve the above-mentioned problems, the present invention provides a positive electrode, a negative electrode, and an electrolytic solution, wherein the positive electrode has positive electrode active material particles containing Al on its surface, and fluorine having a melting point of 152 ° C. or more and 166 ° C. or less. And a ratio y / x of an Al ratio x in an inner region of the positive electrode active material particles and an Al ratio y in a surface region of the positive electrode active material particles is 149% ≦ y / x. It is a secondary battery that satisfies ≦ 305%.
 本発明によれば、ガス発生を抑制することができ、かつ、安全性を向上することができる。 According to the present invention, gas generation can be suppressed, and safety can be improved.
本発明の第1の実施形態に係る非水電解質二次電池の構成の一例を示す分解斜視図である。FIG. 1 is an exploded perspective view illustrating an example of a configuration of a nonaqueous electrolyte secondary battery according to a first embodiment of the present invention. 図1のII-II線に沿った断面図である。FIG. 2 is a sectional view taken along the line II-II of FIG. 1. フッ素系バインダーのDSC曲線の一例を示すグラフである。It is a graph which shows an example of a DSC curve of a fluorinated binder. 本発明の第2の実施形態に係る非水電解質二次電池の構成の一例を示す断面図である。FIG. 6 is a cross-sectional view illustrating an example of a configuration of a nonaqueous electrolyte secondary battery according to a second embodiment of the present invention. 図4に示した電極体の一部を拡大して表す断面図である。FIG. 5 is an enlarged cross-sectional view illustrating a part of the electrode body illustrated in FIG. 4. 本発明の第3の実施形態に係る電子機器の構成の一例を示すブロック図である。It is a block diagram showing an example of composition of electronic equipment concerning a 3rd embodiment of the present invention.
 本発明の実施形態について以下の順序で説明する。
1 第1の実施形態(ラミネート型電池の例)
2 第2の実施形態(円筒型電池の例)
3 第3の実施形態(電子機器の例)
Embodiments of the present invention will be described in the following order.
1 First Embodiment (Example of Laminated Battery)
2. Second Embodiment (Example of Cylindrical Battery)
3. Third embodiment (example of electronic device)
<1 第1の実施形態>
[電池の構成]
 図1は、本発明の第1の実施形態に係る非水電解質二次電池(以下単に「電池」という。)の構成の一例を示す。第1の実施形態に係る電池は、いわゆるラミネート型電池であり、正極リード11および負極リード12が取り付けられた電極体20をフィルム状の外装材10の内部に収容したものであり、小型化、軽量化および薄型化が可能となっている。
<1 First embodiment>
[Configuration of Battery]
FIG. 1 shows an example of a configuration of a nonaqueous electrolyte secondary battery (hereinafter, simply referred to as “battery”) according to the first embodiment of the present invention. The battery according to the first embodiment is a so-called laminated battery, in which an electrode body 20 to which a positive electrode lead 11 and a negative electrode lead 12 are attached is housed inside a film-shaped exterior material 10, It is possible to reduce the weight and thickness.
 正極リード11および負極リード12は、それぞれ、外装材10の内部から外部に向かい、例えば同一方向に導出されている。正極リード11および負極リード12は、例えば、Al、Cu、Niまたはステンレス鋼等の金属材料によりそれぞれ構成されており、それぞれ薄板状または網目状とされている。 (4) The positive electrode lead 11 and the negative electrode lead 12 are respectively directed from the inside of the exterior material 10 to the outside, for example, in the same direction. Each of the positive electrode lead 11 and the negative electrode lead 12 is made of, for example, a metal material such as Al, Cu, Ni, or stainless steel, and has a thin plate shape or a mesh shape, respectively.
 外装材10は、例えば、ナイロンフィルム、アルミニウム箔およびポリエチレンフィルムをこの順に貼り合わせた矩形状のアルミラミネートフィルムにより構成されている。外装材10は、例えば、ポリエチレンフィルム側と電極体20とが対向するように配設されており、各外縁部が融着または接着剤により互いに密着されている。外装材10と正極リード11および負極リード12との間には、外気の侵入を抑制するための密着フィルム13が挿入されている。密着フィルム13は、正極リード11および負極リード12に対して密着性を有する材料、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンまたは変性ポリプロピレン等のポリオレフィン樹脂により構成されている。 The outer package 10 is made of, for example, a rectangular aluminum laminate film in which a nylon film, an aluminum foil, and a polyethylene film are laminated in this order. The exterior material 10 is disposed, for example, such that the polyethylene film side and the electrode body 20 face each other, and the respective outer edges are adhered to each other by fusion bonding or an adhesive. An adhesive film 13 is inserted between the exterior material 10 and the positive electrode lead 11 and the negative electrode lead 12 to suppress invasion of outside air. The adhesive film 13 is made of a material having adhesiveness to the positive electrode lead 11 and the negative electrode lead 12, for example, a polyolefin resin such as polyethylene, polypropylene, modified polyethylene or modified polypropylene.
 なお、外装材10は、上述したアルミラミネートフィルムに代えて、他の構造を有するラミネートフィルム、ポリプロピレン等の高分子フィルムまたは金属フィルムにより構成されていてもよい。あるいは、アルミニウム製フィルムを心材として、その片面または両面に高分子フィルムを積層したラミネートフィルムにより構成されていてもよい。 The packaging material 10 may be made of a laminated film having another structure, a polymer film such as polypropylene, or a metal film, instead of the above-described aluminum laminated film. Alternatively, it may be constituted by a laminate film in which a polymer film is laminated on one or both sides of an aluminum film as a core material.
 図2は、図1に示した電極体20のII-II線に沿った断面図である。電極体20は、巻回型のものであり、長尺状を有する正極21と負極22とを長尺状を有するセパレータ23を介して積層し、扁平状かつ渦巻状に巻回した構成を有しており、最外周部は保護テープ24により保護されている。外装材10の内部には、電解質としての電解液が注入され、正極21、負極22およびセパレータ23に含浸されている。 FIG. 2 is a cross-sectional view of the electrode body 20 shown in FIG. 1 along the line II-II. The electrode body 20 is of a wound type, and has a configuration in which a long positive electrode 21 and a long negative electrode 22 are laminated via a long separator 23 and wound flat and spirally. The outermost peripheral portion is protected by a protective tape 24. An electrolytic solution as an electrolyte is injected into the exterior material 10 and impregnated in the positive electrode 21, the negative electrode 22, and the separator 23.
 以下、電池を構成する正極21、負極22、セパレータ23および電解液について順次説明する。 Hereinafter, the positive electrode 21, the negative electrode 22, the separator 23, and the electrolyte constituting the battery will be sequentially described.
(正極)
 正極21は、例えば、正極集電体21Aと、正極集電体21Aの両面に設けられた正極活物質層21Bとを備える。正極集電体21Aは、例えば、アルミニウム箔、ニッケル箔またはステンレス箔等の金属箔により構成されている。正極集電体21Aが、板状または網目状を有していてもよい。正極集電体21Aの周縁の一部を延設することにより正極リード11を構成するようにしてもよい。正極活物質層21Bは、正極活物質およびバインダーを含む。正極活物質層21Bは、必要に応じて導電助剤をさらに含んでいてもよい。
(Positive electrode)
The positive electrode 21 includes, for example, a positive electrode current collector 21A and positive electrode active material layers 21B provided on both surfaces of the positive electrode current collector 21A. The positive electrode current collector 21A is made of, for example, a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil. The positive electrode current collector 21A may have a plate shape or a mesh shape. The cathode lead 11 may be configured by extending a part of the periphery of the cathode current collector 21A. The positive electrode active material layer 21B contains a positive electrode active material and a binder. The positive electrode active material layer 21B may further include a conductive auxiliary as needed.
(正極活物質)
 正極活物質は、表面にAlを含む正極活物質粒子を含み、Alは正極活物質結晶内に固溶している。正極活物質粒子が表面にAlを含むことで、正極活物質粒子の表面の電気化学的安定性が向上し、ガス発生を抑制することができる。特に高温かつ高SOC(States Of Charge)の状態でのガス発生を抑制することができる。正極活物質粒子の表面におけるAlの濃度が、正極活物質粒子の内部におけるAlの濃度に比べて高くなっている。より具体的には、正極活物質粒子における元素の濃度が、正極活物質粒子の表面から内部に向かって減少している。この場合、元素の濃度は、正極活物質粒子の表面から内部に向かって徐々に変化していてもよいし、ほぼステップ状等に急激に変化していてもよい。
(Positive electrode active material)
The positive electrode active material includes positive electrode active material particles containing Al on the surface, and Al is dissolved in the positive electrode active material crystal. When the positive electrode active material particles contain Al on the surface, the electrochemical stability of the surface of the positive electrode active material particles is improved, and gas generation can be suppressed. In particular, it is possible to suppress gas generation in a high temperature and high SOC (States of Charge) state. The concentration of Al on the surface of the positive electrode active material particles is higher than the concentration of Al inside the positive electrode active material particles. More specifically, the concentration of the element in the positive electrode active material particles decreases from the surface to the inside of the positive electrode active material particles. In this case, the concentration of the element may gradually change from the surface of the positive electrode active material particles toward the inside, or may change abruptly in a substantially step-like manner.
 本発明において、“正極活物質粒子の表面”とは、正極活物質粒子の最表面から深さ30nm以下の領域のことをいう。一方、“正極活物質粒子の内部”とは、正極活物質粒子の中心のことをいうが、本発明では便宜的に正極活物質粒子の最表面から100nmの深さの位置を内部(中心)とみなす。また、本発明において、“正極活物質粒子の最表面からの深さ”とは、SiO2換算でのスパッタリング深さである。SiO2換算でのスパッタリング深さとは、同じ条件でSiO2基盤にX線を照射した際、何nmの深さまでスパッタできるか、という指標のことをいう。 In the present invention, the “surface of the positive electrode active material particles” refers to a region having a depth of 30 nm or less from the outermost surface of the positive electrode active material particles. On the other hand, “inside of the positive electrode active material particles” refers to the center of the positive electrode active material particles. In the present invention, for convenience, a position at a depth of 100 nm from the outermost surface of the positive electrode active material particles is defined as the inside (center). Consider In the present invention, the “depth from the outermost surface of the positive electrode active material particles” is a sputtering depth in terms of SiO 2 . The sputtering depth in terms of SiO 2, when irradiated with X-rays in the SiO 2 base in the same conditions, something can be sputtered to a depth of nm, refers to the indication that.
 正極活物質粒子の内部領域におけるAl比率xと、正極活物質粒子の表面領域におけるAl比率yとの比率y/xが、149%≦y/x≦305%、好ましくは189%≦y/x≦305%、より好ましくは201%≦y/x≦263%を満たす。比率y/xは、正極活物質粒子の表面におけるAlの偏在率を表すパラメータである。比率y/xがy/x<149%であると、表面におけるAlの偏在率が低すぎるため、Alによるガス発生の抑制効果が低下する。一方、比率y/xが305%<y/xであると、表面におけるAlの偏在率が高すぎるため、後述するように正極活物質粒子の表面を広く薄いバインダー膜で被覆しても、表面にAlを含むことによる正極活物質粒子内部の熱安定性の低下を抑制できなくなる。したがって、安全性が低下する。 The ratio y / x of the Al ratio x in the inner region of the positive electrode active material particles and the Al ratio y in the surface region of the positive electrode active material particles is 149% ≦ y / x ≦ 305%, preferably 189% ≦ y / x. ≦ 305%, more preferably 201% ≦ y / x ≦ 263%. The ratio y / x is a parameter representing the uneven distribution ratio of Al on the surface of the positive electrode active material particles. If the ratio y / x is y / x <149%, the uneven distribution rate of Al on the surface is too low, and the effect of suppressing gas generation by Al decreases. On the other hand, if the ratio y / x is 305% <y / x, the uneven distribution rate of Al on the surface is too high. Therefore, even if the surface of the positive electrode active material particles is coated with a wide and thin binder film as described later, Cannot suppress the decrease in thermal stability inside the positive electrode active material particles due to the inclusion of Al. Therefore, safety is reduced.
 上記の比率y/xは、次のようにして測定される。まず、電池から正極21を取り出し、ジメチルカーボネート(DMC)で洗浄、乾燥させたのち、バインダーが可溶の溶媒(例えばPVdFの場合はN-メチル-ピロリドン)中で加熱攪拌することによりバインダーを溶媒中に溶解すると共に、導電助剤を溶媒中に分散させ、遠心分離により正極活物質を取り出す。 比率 The above ratio y / x is measured as follows. First, the cathode 21 is taken out of the battery, washed and dried with dimethyl carbonate (DMC), and then heated and stirred in a solvent in which the binder is soluble (for example, N-methyl-pyrrolidone in the case of PVdF) to remove the binder. While dissolving in the conductive agent, the conductive additive is dispersed in the solvent, and the positive electrode active material is taken out by centrifugation.
 次に、X線光電子分光分析法(XPS)にて正極活物質粒子の最表面から深さ100±5nmの範囲内までスパッタした試料を3サンプル作製し、それぞれの試料に対し、上記100±5nm範囲内のそれぞれ異なる深さ三点で測定した際に得られるAlピーク面積(積分強度)I1と当該活物質に最も多く含まれる遷移金属種のピーク面積(積分強度)I2の比率I1/I2の平均をAl比率xとする。また、XPSにて正極活物質粒子の最表面から深さ30±5nmまでスパッタした試料を3サンプル作製し、それぞれの試料に対し、上記30±5nm範囲内のそれぞれ異なる深さ三点で測定した際に得られるAlピーク面積(積分強度)I3と当該正極活物質に最も多く含まれる遷移金属種のピーク面積(積分強度)I4の比率I3/I4の平均をAl比率yとする。最後に、上述のようにして求めたAl比率x、yを用いて比率y/xを算出する。ここで、深さ30nm、100nmはいずれも、SiO2換算の深さである。正極活物質に最も多く含まれる金属種はNCAの場合はNiであり、LCOの場合はCoである。 Next, three samples were prepared by sputtering from the outermost surface of the positive electrode active material particles to a depth of 100 ± 5 nm by X-ray photoelectron spectroscopy (XPS). The ratio I 1 of the Al peak area (integrated intensity) I 1 obtained when measuring at three different depths within the range and the peak area (integrated intensity) I 2 of the transition metal species most contained in the active material. The average of / I 2 is defined as Al ratio x. In addition, three samples were prepared by sputtering from the outermost surface of the positive electrode active material particles to a depth of 30 ± 5 nm by XPS, and each sample was measured at three different depths within the above 30 ± 5 nm range. The average of the ratio I 3 / I 4 of the Al peak area (integrated intensity) I 3 obtained in this case and the peak area (integrated intensity) I 4 of the transition metal species most contained in the positive electrode active material is defined as the Al ratio y. . Finally, the ratio y / x is calculated using the Al ratios x and y obtained as described above. Here, each of the depths of 30 nm and 100 nm is a depth in terms of SiO 2 . The metal species most contained in the positive electrode active material is Ni for NCA, and Co for LCO.
 以下に、XPSに用いた測定装置および測定条件を示す。
 測定装置:アルバック・ファイ株式会社製、Quantera SXM
 X線源:単色化Al-Kα(1486.6eV)
 X線スポット径:100μm
 スパッタ速度:SiO2換算で1.4nm/min
The measurement apparatus and measurement conditions used for XPS are shown below.
Measuring device: Quantera SXM, manufactured by ULVAC-PHI, Inc.
X-ray source: monochromatic Al-Kα (1486.6 eV)
X-ray spot diameter: 100 μm
Sputtering rate: 1.4 nm / min in terms of SiO 2
 正極活物質粒子は、一次粒子である。正極活物質粒子は、電極反応物質であるリチウムを吸蔵および放出することが可能であり、層状岩塩型結晶構造を有するリチウム遷移金属複合酸化物を含む。リチウム遷移金属複合酸化物は、例えば、金属元素としてNiまたはCoを主成分として含む。リチウム遷移金属複合酸化物は、金属元素としてNiを主成分として含むことが特に好ましい。Niを主成分として含むリチウム遷移金属複合酸化物を用いた場合には、Coを主成分として含むリチウム遷移金属複合酸化物を用いた場合に比べて、上記比率y/xの数値範囲と後述するフッ素系バインダーとの組み合わせによる安全性向上の効果の発現が、顕著になるからである。ここで、“金属元素としてNiまたはCoを主成分として含む”とは、リチウム遷移金属複合酸化物に含まれる金属元素の総量に対してNiまたはCoの原子比率が50%以上であることを意味する。 The positive electrode active material particles are primary particles. The positive electrode active material particles can occlude and release lithium as an electrode reactant, and include a lithium transition metal composite oxide having a layered rock salt type crystal structure. The lithium transition metal composite oxide contains, for example, Ni or Co as a main component as a metal element. It is particularly preferable that the lithium transition metal composite oxide contains Ni as a main component as a metal element. When the lithium transition metal composite oxide containing Ni as the main component is used, the numerical range of the above ratio y / x is compared with the case where the lithium transition metal composite oxide containing Co as the main component is used. This is because the expression of the effect of improving safety by combination with a fluorine-based binder becomes remarkable. Here, “containing Ni or Co as a main component as a metal element” means that the atomic ratio of Ni or Co is 50% or more with respect to the total amount of the metal elements contained in the lithium transition metal composite oxide. I do.
 正極活物質粒子が、金属元素としてNiを主成分として含むリチウム遷移金属複合酸化物を含む場合、当該正極活物質粒子の平均組成は、例えば下記の式(A)で表される。
 LiNi1-x-y-zCoxAlyM1z2 ・・・(A)
(但し、M1は、Mn、Mg、B、W、Zr、Ti、P、S、Fe、Si、Cr、Cu、Zn、Ge、Y、Mo、Ag、Ba、In、Sr、Sn、PbおよびSbからなる群より選ばれる少なくとも1種である。x、yおよびzが、0.01≦x≦0.3、0.01≦y≦0.3、0≦z≦0.05、1-x-y-z≧0.5を満たす。なお、リチウムの組成は充放電の状態によって異なり、完全放電状態における値を表している。)
When the positive electrode active material particles include a lithium transition metal composite oxide containing Ni as a main component as a metal element, the average composition of the positive electrode active material particles is represented by, for example, the following formula (A).
LiNi 1-xyz Co x Al y M1 z O 2 ··· (A)
(However, M1 is Mn, Mg, B, W, Zr, Ti, P, S, Fe, Si, Cr, Cu, Zn, Ge, Y, Mo, Ag, Ba, In, Sr, Sn, Pb and Sb is at least one selected from the group consisting of Sb, wherein x, y and z are 0.01 ≦ x ≦ 0.3, 0.01 ≦ y ≦ 0.3, 0 ≦ z ≦ 0.05, 1− xyz ≧ 0.5. Note that the composition of lithium varies depending on the state of charge and discharge, and represents a value in a completely discharged state.)
 正極活物質粒子が、金属元素としてCoを主成分として含むリチウム遷移金属複合酸化物を含む場合、当該正極活物質粒子の平均組成は、例えば下記の式(B)で表される。
 LirCo(1-s)M2s(2-t)u ・・・(B)
(但し、M2は、Ni、Mn、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Mo、Sn、Ca、SrおよびWからなる群より選ばれる少なくとも1種である。r、s、tおよびuは、0.8≦r≦1.2、0≦s<0.5、-0.1≦t≦0.2、0≦u≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、rの値は完全放電状態における値を表している。)
When the positive electrode active material particles include a lithium transition metal composite oxide containing Co as a main component as a metal element, the average composition of the positive electrode active material particles is represented, for example, by the following formula (B).
Li r Co (1-s) M2 s O (2-t) Fu ... (B)
(However, M2 is at least one selected from the group consisting of Ni, Mn, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn, Mo, Sn, Ca, Sr and W. r , S, t and u are values in the range of 0.8 ≦ r ≦ 1.2, 0 ≦ s <0.5, −0.1 ≦ t ≦ 0.2, 0 ≦ u ≦ 0.1. Note that the composition of lithium differs depending on the state of charge and discharge, and the value of r represents a value in a completely discharged state.)
 正極活物質粒子が、金属元素としてNiを主成分として含むリチウム遷移金属複合酸化物を含む場合、当該正極活物質粒子の平均粒径は、例えば、一次粒子径が0.3μm以上0.8μm以下である。正極活物質粒子が、金属元素としてCoを主成分として含むリチウム遷移金属複合酸化物を含む場合、当該正極活物質粒子の平均粒径は、例えば、3μm以上30μm以下である。 When the positive electrode active material particles include a lithium transition metal composite oxide containing Ni as a main component as a metal element, the average particle size of the positive electrode active material particles is, for example, a primary particle diameter of 0.3 μm or more and 0.8 μm or less. It is. When the positive electrode active material particles include a lithium transition metal composite oxide containing Co as a main component as a metal element, the average particle size of the positive electrode active material particles is, for example, 3 μm or more and 30 μm or less.
 正極活物質粒子の平均粒径は、次のようにして測定される。まず、電池を解体し正極21を取り出し、取り出した正極21をジメチルカーボネート(DMC)で洗浄し、乾燥させたのち、この正極21を裁断して試料片を採取し、この試料片に対して断面SEM観察を実施する。そして、撮影したSEM像から無作為に30個の粒子を選び出し、粒子断面の面積を画像処理により測定し、粒子の断面が円形状と仮定して各粒子の粒径(直径)を求める。最後に、測定した30個の粒子の粒径を単純に平均(算術平均)して平均粒径を求め、これを正極活物質粒子の平均粒径とする。 平均 The average particle size of the positive electrode active material particles is measured as follows. First, the battery is disassembled, the positive electrode 21 is taken out, the taken out positive electrode 21 is washed with dimethyl carbonate (DMC), and dried, and then, the positive electrode 21 is cut to obtain a sample piece. SEM observation is performed. Then, 30 particles are randomly selected from the photographed SEM image, the area of the particle cross section is measured by image processing, and the particle diameter (diameter) of each particle is obtained assuming that the particle cross section is circular. Finally, the average particle diameter of the 30 measured particles is simply averaged (arithmetic average) to obtain an average particle diameter, which is defined as the average particle diameter of the positive electrode active material particles.
(バインダー)
 バインダーは、フッ素系バインダーを含む。フッ素系バインダーの融点は、152℃以上166℃以下、好ましくは152℃以上160℃以下、より好ましくは152℃以上156℃以下である。フッ素系バインダーの融点が152℃未満であると、正極21の作製工程において正極活物質層21Bを乾燥(熱処理)した際に、正極活物質層21Bが硬くなりすぎるため、正極21を加工することが困難となる。一方、フッ素系バインダーの融点が166℃を超えると、正極21の作製工程において正極活物質層21Bを乾燥(熱処理)した際に、バインダーが流動しにくくなり、正極活物質粒子の表面を広く薄いバインダー膜で被覆することができなくなる。このため、正極活物質粒子の電解液との反応面を低減することができなくなる。また、表面にAlを含むことによる正極活物質粒子内部の熱安定性の低下を抑制することもできなくなる。したがって、ガス発生を抑制することができなくなると共に、安全性を向上することもできなくなる。
(binder)
The binder includes a fluorine-based binder. The melting point of the fluorine-based binder is from 152 ° C. to 166 ° C., preferably from 152 ° C. to 160 ° C., and more preferably from 152 ° C. to 156 ° C. If the melting point of the fluorine-based binder is less than 152 ° C., the positive electrode active material layer 21B becomes too hard when the positive electrode active material layer 21B is dried (heat treated) in the manufacturing process of the positive electrode 21; Becomes difficult. On the other hand, when the melting point of the fluorine-based binder exceeds 166 ° C., when the positive electrode active material layer 21 </ b> B is dried (heat treated) in the manufacturing process of the positive electrode 21, the binder becomes difficult to flow, and the surface of the positive electrode active material particles is wide and thin. It cannot be coated with a binder film. For this reason, the reaction surface of the positive electrode active material particles with the electrolyte cannot be reduced. Further, it becomes impossible to suppress a decrease in thermal stability inside the positive electrode active material particles due to the inclusion of Al on the surface. Therefore, gas generation cannot be suppressed, and safety cannot be improved.
 上記のフッ素系バインダーの融点は、次のようにして測定される。まず、電池から正極21を取り出し、DMCで洗浄、乾燥させたのち、正極集電体21Aを取り除き、適切な分散媒(例えばN-メチルピロリドン等)中で加熱、撹拌することで、バインダーを分散媒中に溶解させる。その後、遠心分離によって正極活物質を取り除き、上澄み液を濾過したのち、蒸発乾固または水中で再沈殿することで、バインダーを取り出すことができる。 融 点 The melting point of the above-mentioned fluorine-based binder is measured as follows. First, the cathode 21 is taken out of the battery, washed and dried with DMC, the cathode current collector 21A is removed, and the binder is dispersed by heating and stirring in an appropriate dispersion medium (eg, N-methylpyrrolidone). Dissolve in the medium. Thereafter, the positive electrode active material is removed by centrifugation, and the supernatant is filtered, and then the binder is removed by evaporation to dryness or reprecipitation in water.
 次に、示差走査熱量計(DSC 例えば株式会社リガク製 Rigaku Thermo plus DSC8230)により数~数十mgのサンプルを1~10℃/minの昇温速度で加温していき、100℃~250℃までの温度範囲に現れる吸熱ピーク(図3参照)のうち、最大吸熱量を示した温度をフッ素系バインダーの融点とする。 Next, a sample of several to several tens mg was heated at a heating rate of 1 to 10 ° C./min by a differential scanning calorimeter (DSC, for example, Rigaku Thermoplus plus DSC 8230 manufactured by Rigaku Corporation), and then heated at 100 to 250 ° C. Of the endothermic peaks appearing in the temperature range up to (see FIG. 3), the temperature showing the maximum endothermic amount is defined as the melting point of the fluorine-based binder.
 フッ素系バインダーは、例えば、ポリフッ化ビニリデン(PVdF)である。ポリフッ化ビニリデンとしては、フッ化ビニリデン(VdF)の単独重合体(ホモポリマー)を用いることが好ましい。ポリフッ化ビニリデンとして、フッ化ビニリデン(VdF)とその他の単量体との共重合体(コポリマー)を用いることも可能であるが、共重合体であるポリフッ化ビニリデンは、電解液に膨潤および溶解しやすく、結着力が弱いため、正極21の特性が低下する虞がある。ポリフッ化ビニリデンとしては、その末端等の一部をマレイン酸等のカルボン酸で変性したものを用いてもよい。 The fluorine-based binder is, for example, polyvinylidene fluoride (PVdF). As the polyvinylidene fluoride, it is preferable to use a homopolymer of vinylidene fluoride (VdF). As the polyvinylidene fluoride, a copolymer of vinylidene fluoride (VdF) and another monomer can be used. However, the polyvinylidene fluoride, which is a copolymer, swells and dissolves in the electrolytic solution. The characteristics of the positive electrode 21 may be deteriorated because the bonding is easy and the binding force is weak. As the polyvinylidene fluoride, one obtained by modifying a part of the terminal or the like with a carboxylic acid such as maleic acid may be used.
 正極活物質層21B中におけるフッ素系バインダーの含有量が、0.7質量%以上4.0質量%以下、好ましくは2.0質量%以上4.0質量%以下、より好ましくは3.0質量%以上4.0質量%以下である。フッ素系バインダーの含有量が0.7質量%以上であると、バインダーにより正極活物質粒子の表面を効果的に被覆することができるので、正極活物質粒子の電解液との反応面を効果的に低減することができる。また、上述のようにバインダーにより正極活物質粒子の表面を効果的に被覆することができることで、表面にAlを含むことによる正極活物質粒子内部の熱安定性の低下を効果的に抑制することもできる。したがって、ガス発生をさらに抑制することができ、かつ、安全性をさらに向上することができる。一方、バインダーの含有量が4.0質量%以下であると、正極活物質粒子表面の露出割合の低下により、Liイオンの拡散経路が低下し、負荷特性が悪化することを抑制することができる。また、充放電サイクル時に電池の内部抵抗の上昇を抑え、充放電サイクル特性の低下を抑制することもできる。 The content of the fluorine-based binder in the positive electrode active material layer 21B is 0.7% by mass to 4.0% by mass, preferably 2.0% by mass to 4.0% by mass, and more preferably 3.0% by mass. % Or more and 4.0% by mass or less. When the content of the fluorine-based binder is 0.7% by mass or more, the surface of the positive electrode active material particles can be effectively coated with the binder. Can be reduced. Further, since the surface of the positive electrode active material particles can be effectively coated with the binder as described above, it is possible to effectively suppress a decrease in thermal stability inside the positive electrode active material particles due to the inclusion of Al on the surface. Can also. Therefore, generation of gas can be further suppressed, and safety can be further improved. On the other hand, when the content of the binder is 4.0% by mass or less, a decrease in the exposure ratio of the surface of the positive electrode active material particles causes a decrease in the diffusion path of Li ions, thereby suppressing deterioration in load characteristics. . In addition, it is possible to suppress an increase in internal resistance of the battery during a charge / discharge cycle, and to suppress a decrease in charge / discharge cycle characteristics.
 上記のフッ素系バインダーの含有量は、次のようにして測定される。まず、電池から正極21を取り出し、DMCで洗浄、乾燥させる。次に、数~数十mgのサンプルを示差熱天秤装置(TG-DTA 例えば株式会社リガク製Rigaku Thermo plus TG8120)を用い、1~5℃/minの昇温速度で、空気雰囲気下にて600℃まで加熱し、その際の重量減少量から、正極活物質層21B中におけるフッ素系バインダーの含有量を求める。なお、バインダーに起因する重量減少量であるか否かは、上述のバインダーの融点の測定方法で説明したようにしてバインダーを単離し、バインダーのみのTG-DTA測定を空気雰囲気下で行い、バインダーが何度で燃焼するかを調べることにより確認可能である。 含有 The content of the above-mentioned fluorine-based binder is measured as follows. First, the cathode 21 is taken out of the battery, washed with DMC, and dried. Next, a sample of several to several tens of mg was subjected to a differential thermal balance (TG-DTA, for example, Rigaku Thermoplus TG8120 manufactured by Rigaku Corporation) at a temperature rising rate of 1 to 5 ° C./min in an air atmosphere at 600 ° C. C., and the content of the fluorine-based binder in the positive electrode active material layer 21B is determined from the weight loss at that time. The amount of weight loss due to the binder can be determined by isolating the binder as described in the method for measuring the melting point of the binder, performing TG-DTA measurement of the binder alone in an air atmosphere, Can be confirmed by examining how many times they burn.
(導電助剤)
 導電助剤としては、例えば、黒鉛、炭素繊維、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブおよびグラフェン等のうちの少なくとも1種の炭素材料を用いることができる。なお、導電助剤は導電性を有する材料であればよく、炭素材料に限定されるものではない。例えば、導電助剤として金属材料または導電性高分子材料等を用いるようにしてもよい。また、導電助剤の形状としては、例えば粒状、鱗片状、中空状、針状または筒状等が挙げられるが、特にこれらの形状に限定されるものではない。
(Conduction aid)
As the conductive additive, for example, at least one carbon material of graphite, carbon fiber, carbon black, acetylene black, Ketjen black, carbon nanotube, graphene, and the like can be used. Note that the conductive assistant may be any material having conductivity, and is not limited to a carbon material. For example, a metal material or a conductive polymer material may be used as the conductive assistant. Examples of the shape of the conductive additive include, but are not limited to, granules, scales, hollows, needles, and cylinders.
(負極)
 負極22は、例えば、負極集電体22Aと、負極集電体22Aの両面に設けられた負極活物質層22Bとを備える。負極集電体22Aは、例えば、銅箔、ニッケル箔またはステンレス箔等の金属箔により構成されている。負極集電体22Aが、板状または網目状を有していてもよい。負極集電体22Aの周縁の一部を延設することにより負極リード12を構成するようにしてもよい。負極活物質層22Bは、リチウムを吸蔵および放出することが可能な1種または2種以上の負極活物質を含む。負極活物質層22Bは、必要に応じてバインダーおよび導電助剤のうちの少なくとも1種をさらに含んでいてもよい。
(Negative electrode)
The negative electrode 22 includes, for example, a negative electrode current collector 22A and negative electrode active material layers 22B provided on both surfaces of the negative electrode current collector 22A. The anode current collector 22A is made of, for example, a metal foil such as a copper foil, a nickel foil, or a stainless steel foil. The negative electrode current collector 22A may have a plate shape or a mesh shape. The negative electrode lead 12 may be configured by extending a part of the peripheral edge of the negative electrode current collector 22A. The anode active material layer 22B includes one or more anode active materials capable of inserting and extracting lithium. The negative electrode active material layer 22B may further include at least one of a binder and a conductive additive as necessary.
 なお、この電池では、負極22または負極活物質の電気化学当量が、正極21の電気化学当量よりも大きくなっており、理論上、充電の途中において負極22にリチウム金属が析出しないようになっていることが好ましい。 In this battery, the electrochemical equivalent of the negative electrode 22 or the negative electrode active material is larger than the electrochemical equivalent of the positive electrode 21. In theory, lithium metal does not precipitate on the negative electrode 22 during charging. Is preferred.
(負極活物質)
 負極活物質としては、例えば、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維または活性炭等の炭素材料が挙げられる。このうち、コークス類には、ピッチコークス、ニードルコークスまたは石油コークス等がある。有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂等の高分子材料を適当な温度で焼成して炭素化したものをいい、一部には難黒鉛化性炭素または易黒鉛化性炭素に分類されるものもある。これら炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好なサイクル特性を得ることができるので好ましい。特に黒鉛は、電気化学当量が大きく、高いエネルギー密度を得ることができ好ましい。また、難黒鉛化性炭素は、優れたサイクル特性が得られるので好ましい。さらにまた、充放電電位が低いもの、具体的には充放電電位がリチウム金属に近いものが、電池の高エネルギー密度化を容易に実現することができるので好ましい。
(Negative electrode active material)
Examples of the negative electrode active material include carbon materials such as non-graphitizable carbon, easily graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, organic polymer compound fired bodies, carbon fibers, and activated carbon. Is mentioned. Among them, the coke includes pitch coke, needle coke, petroleum coke and the like. An organic polymer compound fired body is obtained by firing a polymer material such as a phenol resin or a furan resin at an appropriate temperature and carbonizing the material, and a part thereof is hardly graphitizable carbon or easily graphitizable carbon. Some are classified as. These carbon materials are preferable because a change in crystal structure that occurs during charge and discharge is very small, a high charge and discharge capacity can be obtained, and good cycle characteristics can be obtained. Particularly, graphite is preferable because it has a large electrochemical equivalent and can obtain a high energy density. Further, non-graphitizable carbon is preferable because excellent cycle characteristics can be obtained. Furthermore, a material having a low charge / discharge potential, specifically, a material having a charge / discharge potential close to lithium metal is preferable because a high energy density of the battery can be easily realized.
 また、高容量化が可能な他の負極活物質としては、金属元素および半金属元素のうちの少なくとも1種を構成元素(例えば、合金、化合物または混合物)として含む材料も挙げられる。このような材料を用いれば、高いエネルギー密度を得ることができるからである。特に、炭素材料と共に用いるようにすれば、高エネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるのでより好ましい。なお、本発明において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体、共晶(共融混合物)、金属間化合物またはそれらのうちの2種以上が共存するものがある。 Other examples of the negative electrode active material capable of increasing the capacity include a material containing at least one of a metal element and a metalloid element as a constituent element (for example, an alloy, a compound, or a mixture). If such a material is used, a high energy density can be obtained. In particular, when used together with a carbon material, high energy density can be obtained and excellent cycle characteristics can be obtained, which is more preferable. In the present invention, alloys include alloys containing one or more metal elements and one or more metalloid elements in addition to alloys composed of two or more metal elements. Further, a nonmetallic element may be included. The structure includes a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and a structure in which two or more of them coexist.
 このような負極活物質としては、例えば、リチウムと合金を形成することが可能な金属元素または半金属元素が挙げられる。具体的には、Mg、B、Al、Ti、Ga、In、Si、Ge、Sn、Pb、Bi、Cd、Ag、Zn、Hf、Zr、Y、PdまたはPtが挙げられる。これらは結晶質のものでもアモルファスのものでもよい。 As such a negative electrode active material, for example, a metal element or a metalloid element capable of forming an alloy with lithium is given. Specific examples include Mg, B, Al, Ti, Ga, In, Si, Ge, Sn, Pb, Bi, Cd, Ag, Zn, Hf, Zr, Y, Pd and Pt. These may be crystalline or amorphous.
 負極活物質としては、短周期型周期表における4B族の金属元素または半金属元素を構成元素として含むものが好ましく、より好ましいのはSiおよびSnの少なくとも一方を構成元素として含むものである。SiおよびSnは、リチウムを吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができるからである。このような負極活物質としては、例えば、Siの単体、合金または化合物や、Snの単体、合金または化合物や、それらの1種または2種以上を少なくとも一部に有する材料が挙げられる。 As the negative electrode active material, a material containing a metal element or a metalloid element belonging to the group 4B in the short-periodic periodic table as a constituent element is preferable, and a material containing at least one of Si and Sn as a constituent element is more preferable. This is because Si and Sn have a large ability to insert and extract lithium and can obtain a high energy density. Examples of such a negative electrode active material include a simple substance, an alloy, or a compound of Si, a simple substance, an alloy, or a compound of Sn, and a material having at least one or more of them.
 Siの合金としては、例えば、Si以外の第2の構成元素として、Sn、Ni、Cu、Fe、Co、Mn、Zn、In、Ag、Ti、Ge、Bi、Sb、Nb、Mo、Al、P、GaおよびCrからなる群より選ばれる少なくとも1種を含むものが挙げられる。Snの合金としては、例えば、Sn以外の第2の構成元素として、Si、Ni、Cu、Fe、Co、Mn、Zn、In、Ag、Ti、Ge、Bi、Sb、Nb、Mo、Al、P、GaおよびCrからなる群より選ばれる少なくとも1種を含むものが挙げられる。 As an alloy of Si, for example, Sn, Ni, Cu, Fe, Co, Mn, Zn, In, Ag, Ti, Ge, Bi, Sb, Nb, Mo, Al, as second constituent elements other than Si, Examples include those containing at least one selected from the group consisting of P, Ga, and Cr. As an alloy of Sn, for example, as a second constituent element other than Sn, Si, Ni, Cu, Fe, Co, Mn, Zn, In, Ag, Ti, Ge, Bi, Sb, Nb, Mo, Al, Examples include those containing at least one selected from the group consisting of P, Ga, and Cr.
 Snの化合物またはSiの化合物としては、例えば、OまたはCを構成元素として含むものが挙げられる。これらの化合物は、上述した第2の構成元素を含んでいてもよい。 Examples of the compound of Sn or the compound of Si include those containing O or C as a constituent element. These compounds may contain the second constituent element described above.
 中でも、Sn系の負極活物質としては、Coと、Snと、Cとを構成元素として含み、結晶性の低いまたは非晶質な構造を有していることが好ましい。 Above all, it is preferable that the Sn-based negative electrode active material contains Co, Sn, and C as constituent elements and has a low crystallinity or an amorphous structure.
 その他の負極活物質としては、例えば、リチウムを吸蔵および放出することが可能な金属酸化物または高分子化合物等も挙げられる。金属酸化物としては、例えば、チタン酸リチウム(Li4Ti512)等のLiとTiとを含むリチウムチタン酸化物、酸化鉄、酸化ルテニウムまたは酸化モリブデン等が挙げられる。高分子化合物としては、例えば、ポリアセチレン、ポリアニリンまたはポリピロール等が挙げられる。 Other negative electrode active materials include, for example, metal oxides or polymer compounds capable of inserting and extracting lithium. Examples of the metal oxide include lithium titanium oxide containing Li and Ti, such as lithium titanate (Li 4 Ti 5 O 12 ), iron oxide, ruthenium oxide, and molybdenum oxide. Examples of the polymer compound include polyacetylene, polyaniline, and polypyrrole.
(バインダー)
 バインダーとしては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、スチレンブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)等の樹脂材料、ならびにこれら樹脂材料を主体とする共重合体等からなる群より選ばれる少なくとも1種が用いられる。
(binder)
Examples of the binder include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resin materials as main components. At least one selected from the group consisting of copolymers and the like is used.
(導電助剤)
 導電助剤としては、正極活物質層21Bと同様のものを用いることができる。
(Conduction aid)
As the conductive auxiliary, the same as the positive electrode active material layer 21B can be used.
(セパレータ)
 セパレータ23は、正極21と負極22とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータ23は、例えば、ポリテトラフルオロエチレン、ポリオレフィン樹脂(ポリプロピレン(PP)またはポリエチレン(PE)等)、アクリル樹脂、スチレン樹脂、ポリエステル樹脂またはナイロン樹脂、または、これらの樹脂をブレンドした樹脂からなる多孔質膜によって構成されており、これらの2種以上の多孔質膜を積層した構造とされていてもよい。
(Separator)
The separator 23 separates the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass therethrough while preventing current short circuit due to contact between the two electrodes. The separator 23 is made of, for example, polytetrafluoroethylene, a polyolefin resin (such as polypropylene (PP) or polyethylene (PE)), an acrylic resin, a styrene resin, a polyester resin or a nylon resin, or a porous material formed by blending these resins. It may be formed of a porous film, and may have a structure in which two or more of these porous films are laminated.
 中でも、ポリオレフィン製の多孔質膜は短絡防止効果に優れ、かつシャットダウン効果による電池の安全性向上を図ることができるので好ましい。特にポリエチレンは、100℃以上160℃以下の範囲内においてシャットダウン効果を得ることができ、かつ電気化学的安定性にも優れているので、セパレータ23を構成する材料として好ましい。その中でも、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレンは溶融温度が適当であり、入手が容易なので好適に用いられる。他にも、化学的安定性を備えた樹脂を、ポリエチレンまたはポリプロピレンと共重合またはブレンド化した材料を用いることができる。あるいは、多孔質膜は、ポリプロピレン層と、ポリエチレン層と、ポリプロピレン層を順次に積層した3層以上の構造を有していてもよい。例えば、PP/PE/PPの三層構造とし、PPとPEの質量比[wt%]が、PP:PE=60:40~75:25とすることが望ましい。あるいは、コストの観点から、PPが100wt%またはPEが100wt%の単層基材とすることもできる。セパレータ23の作製方法としては、湿式、乾式を問わない。 Above all, a porous film made of polyolefin is preferable because it has an excellent short circuit prevention effect and can improve the safety of the battery by a shutdown effect. In particular, polyethylene is preferable as a material constituting the separator 23 because it can obtain a shutdown effect in the range of 100 ° C. or more and 160 ° C. or less and has excellent electrochemical stability. Among them, low-density polyethylene, high-density polyethylene, and linear polyethylene are suitably used because they have an appropriate melting temperature and are easily available. Alternatively, a material obtained by copolymerizing or blending a resin having chemical stability with polyethylene or polypropylene can be used. Alternatively, the porous membrane may have a structure of three or more layers in which a polypropylene layer, a polyethylene layer, and a polypropylene layer are sequentially laminated. For example, a three-layer structure of PP / PE / PP is preferable, and the mass ratio [wt%] of PP and PE is preferably set to PP: PE = 60: 40 to 75:25. Alternatively, from the viewpoint of cost, a single-layer substrate having 100 wt% of PP or 100 wt% of PE can be used. The method for producing the separator 23 may be either a wet method or a dry method.
 セパレータ23としては、不織布を用いてもよい。不織布を構成する繊維としては、アラミド繊維、ガラス繊維、ポリオレフィン繊維、ポリエチレンテレフタレート(PET)繊維、またはナイロン繊維等を用いることができる。また、これら2種以上の繊維を混合して不織布としてもよい。 不 織布 A non-woven fabric may be used as the separator 23. Aramid fiber, glass fiber, polyolefin fiber, polyethylene terephthalate (PET) fiber, nylon fiber, or the like can be used as the fiber constituting the nonwoven fabric. Further, these two or more kinds of fibers may be mixed to form a nonwoven fabric.
 セパレータ23は、基材と、基材の片面または両面に設けられた表面層を備える構成を有していてもよい。表面層は、電気的な絶縁性を有する無機粒子と、無機粒子を基材の表面に結着すると共に、無機粒子同士を結着する樹脂材料とを含む。この樹脂材料は、例えば、フィブリル化し、複数のフィブリルが繋がった三次元的なネットワーク構造を有していてもよい。無機粒子は、この三次元的なネットワーク構造を有する樹脂材料に担持されている。また、樹脂材料はフィブリル化せずに基材の表面や無機粒子同士を結着してもよい。この場合、より高い結着性を得ることができる。上述のように基材の片面または両面に表面層を設けることで、セパレータ23の耐酸化性、耐熱性および機械強度を高めることができる。 The separator 23 may have a configuration including a base material and a surface layer provided on one or both surfaces of the base material. The surface layer includes electrically insulating inorganic particles, and a resin material that binds the inorganic particles to the surface of the base material and binds the inorganic particles to each other. This resin material may be, for example, fibrillated and have a three-dimensional network structure in which a plurality of fibrils are connected. The inorganic particles are supported on the resin material having the three-dimensional network structure. In addition, the resin material may bind the surface of the base material or the inorganic particles without fibrillation. In this case, higher binding properties can be obtained. By providing a surface layer on one or both surfaces of the base material as described above, the oxidation resistance, heat resistance, and mechanical strength of the separator 23 can be increased.
 基材は、リチウムイオンを透過し、所定の機械的強度を有する絶縁性の膜から構成される多孔質膜であり、基材の空孔には電解液が保持されるため、電解液に対する耐性が高く、反応性が低く、膨張しにくいという特性を有することが好ましい。 The base material is a porous film composed of an insulating film that transmits lithium ions and has a predetermined mechanical strength. Since the electrolyte solution is held in the pores of the base material, the base material has resistance to the electrolyte solution. , High reactivity, low reactivity, and difficulty in expanding.
 基材を構成する材料としては、上述したセパレータ23を構成する樹脂材料や不織布を用いることができる。 樹脂 As a material forming the base material, the above-described resin material or nonwoven fabric forming the separator 23 can be used.
 無機粒子は、金属酸化物、金属窒化物、金属炭化物および金属硫化物等からなる群より選ばれる少なくとも1種を含む。金属酸化物としては、酸化アルミニウム(アルミナ、Al23)、ベーマイト(水和アルミニウム酸化物)、酸化マグネシウム(マグネシア、MgO)、酸化チタン(チタニア、TiO2)、酸化ジルコニウム(ジルコニア、ZrO2)、酸化ケイ素(シリカ、SiO2)または酸化イットリウム(イットリア、Y23)等を好適に用いることができる。金属窒化物としては、窒化ケイ素(Si34)、窒化アルミニウム(AlN)、窒化硼素(BN)または窒化チタン(TiN)等を好適に用いることができる。金属炭化物としては、炭化ケイ素(SiC)または炭化ホウ素(B4C)等を好適に用いることができる。金属硫化物としては、硫酸バリウム(BaSO4)等を好適に用いることができる。上述の金属酸化物の中でも、アルミナ、チタニア(特にルチル型構造を有するもの)、シリカまたはマグネシアを用いることが好ましく、アルミナを用いることがより好ましい。 The inorganic particles include at least one selected from the group consisting of metal oxides, metal nitrides, metal carbides, metal sulfides, and the like. Examples of the metal oxide include aluminum oxide (alumina, Al 2 O 3 ), boehmite (hydrated aluminum oxide), magnesium oxide (magnesia, MgO), titanium oxide (titania, TiO 2 ), and zirconium oxide (zirconia, ZrO 2). ), Silicon oxide (silica, SiO 2 ) or yttrium oxide (yttria, Y 2 O 3 ) or the like can be suitably used. As the metal nitride, silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), boron nitride (BN), titanium nitride (TiN), or the like can be preferably used. As the metal carbide, silicon carbide (SiC) or boron carbide (B 4 C) can be preferably used. As the metal sulfide, barium sulfate (BaSO 4 ) or the like can be suitably used. Among the above metal oxides, it is preferable to use alumina, titania (especially those having a rutile structure), silica or magnesia, and more preferably to use alumina.
 また、無機粒子が、ゼオライト(M2/nO・Al23・xSiO2・yH2O、Mは金属元素、x≧2、y≧0)等の多孔質アルミノケイ酸塩、層状ケイ酸塩、チタン酸バリウム(BaTiO3)またはチタン酸ストロンチウム(SrTiO3)等の鉱物を含むようにしてもよい。無機粒子は耐酸化性および耐熱性を備えており、無機粒子を含有する正極対向側面の表面層は、充電時の正極近傍における酸化環境に対しても強い耐性を有する。無機粒子の形状は特に限定されるものではなく、球状、板状、繊維状、キュービック状およびランダム形状等のいずれも用いることができる。 Further, the inorganic particles are made of a porous aluminosilicate such as zeolite (M 2 / n O.Al 2 O 3 .xSiO 2 .yH 2 O, M is a metal element, x ≧ 2, y ≧ 0); Salts, minerals such as barium titanate (BaTiO 3 ) or strontium titanate (SrTiO 3 ) may be included. The inorganic particles have oxidation resistance and heat resistance, and the surface layer on the side facing the positive electrode containing the inorganic particles has strong resistance to an oxidizing environment near the positive electrode during charging. The shape of the inorganic particles is not particularly limited, and any of a spherical shape, a plate shape, a fibrous shape, a cubic shape, and a random shape can be used.
 無機粒子の粒径は、1nm以上10μm以下の範囲内であることが好ましい。1nmより小さいと入手が困難であり、10μmより大きいと電極間距離が大きくなり、限られたスペースで活物質充填量が十分得られず電池容量が低下してしまうからである。 粒径 The particle size of the inorganic particles is preferably in the range of 1 nm to 10 μm. If the thickness is less than 1 nm, it is difficult to obtain, and if the thickness is more than 10 μm, the distance between the electrodes becomes large, so that a sufficient amount of active material cannot be obtained in a limited space, and the battery capacity is reduced.
 表面層を構成する樹脂材料としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等の含フッ素樹脂、フッ化ビニリデン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体等の含フッ素ゴム、スチレン-ブタジエン共重合体またはその水素化物、アクリロニトリル-ブタジエン共重合体またはその水素化物、アクリロニトリル-ブタジエン-スチレン共重合体またはその水素化物、メタクリル酸エステル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニル等のゴム類、エチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、全芳香族ポリアミド(アラミド)等のポリアミド、ポリアミドイミド、ポリアクリロニトリル、ポリビニルアルコール、ポリエーテル、アクリル酸樹脂またはポリエステル等の融点およびガラス転移温度の少なくとも一方が180℃以上の高い耐熱性を有する樹脂等が挙げられる。これら樹脂材料は、単独で用いてもよいし、2種以上を混合して用いてもよい。中でも、耐酸化性および柔軟性の観点からは、ポリフッ化ビニリデン等のフッ素系樹脂が好ましく、耐熱性の観点からは、アラミドまたはポリアミドイミドを含むことが好ましい。 Examples of the resin material constituting the surface layer include fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene, fluorine-containing rubbers such as vinylidene fluoride-tetrafluoroethylene copolymer and ethylene-tetrafluoroethylene copolymer, and styrene. -Butadiene copolymer or hydride thereof, acrylonitrile-butadiene copolymer or hydride thereof, acrylonitrile-butadiene-styrene copolymer or hydride thereof, methacrylate-acrylate copolymer, styrene-acrylate Copolymers, acrylonitrile-acrylate copolymers, rubbers such as ethylene propylene rubber, polyvinyl alcohol, polyvinyl acetate, etc., ethyl cellulose, methyl cellulose, hydroxyethyl cellulose, carboxymethyl Cellulose derivatives such as cellulose, polyphenylene ether, polysulfone, polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide such as wholly aromatic polyamide (aramid), polyamideimide, polyacrylonitrile, polyvinyl alcohol, polyether, acrylic resin Alternatively, a resin having high heat resistance such as polyester having at least one of a melting point and a glass transition temperature of 180 ° C. or more may be used. These resin materials may be used alone or as a mixture of two or more. Above all, from the viewpoint of oxidation resistance and flexibility, a fluororesin such as polyvinylidene fluoride is preferable, and from the viewpoint of heat resistance, it is preferable to contain aramid or polyamideimide.
 表面層の形成方法としては、例えば、マトリックス樹脂、溶媒および無機粒子からなるスラリーを基材(多孔質膜)上に塗布し、マトリックス樹脂の貧溶媒且つ上記溶媒の親溶媒浴中を通過させて相分離させ、その後、乾燥させる方法を用いることができる。 As a method for forming the surface layer, for example, a slurry composed of a matrix resin, a solvent, and inorganic particles is applied on a substrate (porous film), and the slurry is passed through a poor solvent for the matrix resin and a solvent-friendly bath of the solvent. A method of phase separation and then drying can be used.
 なお、上述した無機粒子は、基材としての多孔質膜に含有されていてもよい。また、表面層が無機粒子を含まず、樹脂材料のみにより構成されていてもよい。 The inorganic particles described above may be contained in a porous film as a substrate. Further, the surface layer may not include the inorganic particles, and may be formed only of the resin material.
(電解液)
 電解液は、いわゆる非水電解液であり、有機溶媒(非水溶媒)と、この有機溶媒に溶解された電解質塩とを含んでいる。電解液が、電池特性を向上するために、公知の添加剤を含んでいてもよい。なお、電解液に代えて、電解液と、この電解液を保持する保持体となる高分子化合物とを含む電解質層を用いるようにしてもよい。この場合、電解質層は、ゲル状となっていてもよい。
(Electrolyte)
The electrolyte is a so-called non-aqueous electrolyte, and includes an organic solvent (non-aqueous solvent) and an electrolyte salt dissolved in the organic solvent. The electrolytic solution may contain a known additive in order to improve battery characteristics. Note that, instead of the electrolytic solution, an electrolytic layer containing the electrolytic solution and a polymer compound serving as a holder for holding the electrolytic solution may be used. In this case, the electrolyte layer may be in a gel state.
 有機溶媒としては、炭酸エチレンまたは炭酸プロピレン等の環状の炭酸エステルを用いることができ、炭酸エチレンおよび炭酸プロピレンのうちの一方、特に両方を混合して用いることが好ましい。サイクル特性をさらに向上させることができるからである。 環状 As the organic solvent, a cyclic carbonate such as ethylene carbonate or propylene carbonate can be used, and it is preferable to use one of ethylene carbonate and propylene carbonate, particularly a mixture of both. This is because the cycle characteristics can be further improved.
 有機溶媒としては、また、これらの環状の炭酸エステルに加えて、炭酸ジエチル、炭酸ジメチル、炭酸エチルメチルまたは炭酸メチルプロピル等の鎖状の炭酸エステルを混合して用いることが好ましい。高いイオン伝導性を得ることができるからである。 As the organic solvent, it is preferable to use a mixture of chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and methylpropyl carbonate in addition to these cyclic carbonates. This is because high ionic conductivity can be obtained.
 有機溶媒としては、さらにまた、2,4-ジフルオロアニソールまたは炭酸ビニレンを含むこと好ましい。2,4-ジフルオロアニソールは放電容量をさらに向上させることができ、また、炭酸ビニレンはサイクル特性をさらに向上させることができるからである。よって、これらを混合して用いれば、放電容量およびサイクル特性をさらに向上させることができるので好ましい。 It is preferable that the organic solvent further contains 2,4-difluoroanisole or vinylene carbonate. This is because 2,4-difluoroanisole can further improve the discharge capacity, and vinylene carbonate can further improve the cycle characteristics. Therefore, it is preferable to use a mixture of these, because the discharge capacity and cycle characteristics can be further improved.
 これらの他にも、有機溶媒としては、炭酸ブチレン、γ-ブチロラクトン、γ-バレロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、酢酸メチル、プロピオン酸メチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピロニトリル、N,N-ジメチルフォルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、ジメチルスルフォキシドまたはリン酸トリメチル等が挙げられる。 Besides these, organic solvents include butylene carbonate, γ-butyrolactone, γ-valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, and 4-methyl-1,3 -Dioxolan, methyl acetate, methyl propionate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropironitrile, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N- Examples thereof include dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, dimethylsulfoxide, and trimethyl phosphate.
 なお、これらの有機溶媒の少なくとも一部の水素をフッ素で置換した化合物は、組み合わせる電極の種類によっては、電極反応の可逆性を向上させることができる場合があるので、好ましい場合もある。 Note that compounds in which at least part of hydrogen in these organic solvents has been replaced with fluorine may be preferable because the reversibility of the electrode reaction can be improved depending on the type of electrode to be combined.
 電解液は、サイクル特性向上の観点から、添加剤として下記の式(1)で表されるハロゲン化炭酸エステルをさらに含むことが好ましい。正極活物質粒子の表面に含まれるAlと、正極活物質粒子の表面を広く薄く被覆するバインダー膜とにより、正極21における上記ハロゲン化炭酸エステルの消費が抑えられる。その結果、より多くの上記ハロゲン化炭酸エステルが負極22で消費されるため、上記ハロゲン化炭酸エステルによるサイクル特性向上効果の発現が顕著になる。
Figure JPOXMLDOC01-appb-C000002
(式中、R1~R4は、それぞれ独立して、水素基、ハロゲン基、アルキル基またはハロゲン化アルキル基である。但し、R1~R4のうちの少なくとも1つは、ハロゲン基またはハロゲン化アルキル基である。ハロゲン基は、フッ素基であることが好ましい。また、ハロゲン化アルキル基は、フッ化アルキル基であることが好ましい。)
It is preferable that the electrolyte further contains a halogenated carbonate represented by the following formula (1) as an additive from the viewpoint of improving cycle characteristics. The consumption of the halogenated carbonate in the positive electrode 21 is suppressed by Al contained in the surface of the positive electrode active material particles and the binder film covering the surface of the positive electrode active material particles widely and thinly. As a result, more of the halogenated carbonate is consumed by the negative electrode 22, and the effect of improving the cycle characteristics by the halogenated carbonate becomes remarkable.
Figure JPOXMLDOC01-appb-C000002
(Wherein R1 to R4 are each independently a hydrogen group, a halogen group, an alkyl group or a halogenated alkyl group, provided that at least one of R1 to R4 is a halogen group or a halogenated alkyl group. The halogen group is preferably a fluorine group, and the halogenated alkyl group is preferably a fluorinated alkyl group.)
 式(1)で表されるハロゲン化炭酸エステルとしては、例えば、4-フルオロ-1,3-ジオキソラン-2-オン、4-クロロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オン、テトラフルオロ-1,3-ジオキソラン-2-オン、4-クロロ-5-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジクロロ-1,3-オキソラン-2-オン、テトラクロロ-1,3-ジオキソラン-2-オン、4,5-ビストリフルオロメチル-1,3-ジオキソラン-2-オン、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-4,5-ジメチル-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-5-メチル-1,3-ジオキソラン-2-オン、4-エチル-5,5-ジフルオロ-1,3-ジオキソラン-2-オン、4-フルオロ-5-トリフルオロメチル-1,3-ジオキソラン-2-オン、4-メチル-5-トリフルオロメチル-1,3-ジオキソラン-2-オン、4-フルオロ-4,5-ジメチル-1,3-ジオキソラン-2-オン、5-(1,1-ジフルオロエチル)-4,4-ジフルオロ-1,3-ジオキソラン-2-オン、4,5-ジクロロ-4,5-ジメチル-1,3-ジオキソラン-2-オン、4-エチル-5-フルオロ-1,3-ジオキソラン-2-オン、4-エチル-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4-エチル-4,5,5-トリフルオロ-1,3-ジオキソラン-2-オン、4-フルオロ-4-メチル-1,3-ジオキソラン-2-オン等である。これらは単独でもよいし、複数種が混合されてもよい。 Examples of the halogenated carbonate represented by the formula (1) include 4-fluoro-1,3-dioxolan-2-one, 4-chloro-1,3-dioxolan-2-one, and 4,5-difluoro -1,3-dioxolan-2-one, tetrafluoro-1,3-dioxolan-2-one, 4-chloro-5-fluoro-1,3-dioxolan-2-one, 4,5-dichloro-1, 3-oxolan-2-one, tetrachloro-1,3-dioxolan-2-one, 4,5-bistrifluoromethyl-1,3-dioxolan-2-one, 4-trifluoromethyl-1,3-dioxolan -2-one, 4,5-difluoro-4,5-dimethyl-1,3-dioxolan-2-one, 4,4-difluoro-5-methyl-1,3-dioxolan-2-one, 4-ethyl 5,5-difluoro-1,3-dioxolan-2-one, 4-fluoro-5-trifluoromethyl-1,3-dioxolan-2-one, 4-methyl-5-trifluoromethyl-1,3- Dioxolan-2-one, 4-fluoro-4,5-dimethyl-1,3-dioxolan-2-one, 5- (1,1-difluoroethyl) -4,4-difluoro-1,3-dioxolan-2 -One, 4,5-dichloro-4,5-dimethyl-1,3-dioxolan-2-one, 4-ethyl-5-fluoro-1,3-dioxolan-2-one, 4-ethyl-4,5 -Difluoro-1,3-dioxolan-2-one, 4-ethyl-4,5,5-trifluoro-1,3-dioxolan-2-one, 4-fluoro-4-methyl-1,3-dioxolan- 2-on, etc.These may be used alone or in combination of two or more.
 中でも、4-フルオロ-1,3-ジオキソラン-2-オンまたは4,5-ジフルオロ-1,3-ジオキソラン-2-オンが好ましい。容易に入手可能であると共に、高い効果が得られるからである。 Among them, 4-fluoro-1,3-dioxolan-2-one or 4,5-difluoro-1,3-dioxolan-2-one is preferred. This is because it is easily available and a high effect can be obtained.
 電解液中における、式(1)で表されるハロゲン化炭酸エステルの含有量の下限値は、好ましくは0.01質量%以上、より好ましくは1質量%以上、さらにより好ましくは3質量%以上である。ハロゲン化炭酸エステルの含有量の下限値が0.01質量%以上であると、充放電サイクル特性を特に向上することができる。電解液中における、式(1)で表されるハロゲン化炭酸エステルの含有量の上限値は、好ましくは6質量%以下、より好ましくは5質量%以下、さらにより好ましくは4質量%以下である。ハロゲン化炭酸エステルの含有量の上限値が6質量%以下であると、ハロゲン化炭酸エステルの添加によるガス発生の増加を抑制することができる。 The lower limit of the content of the halogenated carbonate represented by the formula (1) in the electrolytic solution is preferably 0.01% by mass or more, more preferably 1% by mass or more, and still more preferably 3% by mass or more. It is. When the lower limit of the content of the halogenated carbonate is 0.01% by mass or more, the charge / discharge cycle characteristics can be particularly improved. The upper limit of the content of the halogenated carbonate represented by the formula (1) in the electrolytic solution is preferably 6% by mass or less, more preferably 5% by mass or less, and even more preferably 4% by mass or less. . When the upper limit of the content of the halogenated carbonate is 6% by mass or less, an increase in gas generation due to the addition of the halogenated carbonate can be suppressed.
 上記のハロゲン化炭酸エステルの含有量は、次のようにして求められる。まず、電池をグローブボックス等の不活性雰囲気下にて解体し、DMCや重溶媒等を用いて電解液成分を抽出する。次に、得られた抽出液にGC-MS(Gas Chromatograph-Mass Spectrometry)測定およびICP(Inductively Coupled Plasma)測定を実施することにより、電解液中におけるハロゲン化炭酸エステルの含有量を求める。 含有 The content of the halogenated carbonate is determined as follows. First, the battery is disassembled under an inert atmosphere such as a glove box, and an electrolyte component is extracted using DMC or a heavy solvent. Next, GC-MS (Gas-Chromatograph-Mass-Spectrometry) measurement and ICP (Inductively-Coupled-Plasma) measurement are performed on the obtained extract to determine the content of the halogenated carbonate in the electrolytic solution.
 電解質塩としては、例えばリチウム塩が挙げられ、1種を単独で用いてもよく、2種以上を混合して用いてもよい。リチウム塩としては、LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C654、LiCH3SO3、LiCF3SO3、LiN(SO2CF32、LiC(SO2CF33、LiAlCl4、LiSiF6、LiCl、ジフルオロ[オキソラト-O,O']ホウ酸リチウム、リチウムビスオキサレートボレート、またはLiBr等が挙げられる。中でも、LiPF6は高いイオン伝導性を得ることができると共に、サイクル特性をさらに向上させることができるので好ましい。 Examples of the electrolyte salt include a lithium salt, and one kind may be used alone, or two or more kinds may be used in combination. The lithium salt, LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiB (C 6 H 5) 4, LiCH 3 SO 3, LiCF 3 SO 3, LiN (SO 2 CF 3) 2, LiC (SO 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 , LiCl, lithium difluoro [oxolate-O, O ′] borate, lithium bisoxalate borate, or LiBr. Above all, LiPF 6 is preferable because high ion conductivity can be obtained and cycle characteristics can be further improved.
[電池の動作]
 上述の構成を有する電池では、充電を行うと、例えば、正極活物質層21Bからリチウムイオンが放出され、電解液を介して負極活物質層22Bに吸蔵される。また、放電を行うと、例えば、負極活物質層22Bからリチウムイオンが放出され、電解液を介して正極活物質層21Bに吸蔵される。
[Battery operation]
In the battery having the above structure, when charged, for example, lithium ions are released from the positive electrode active material layer 21B and occluded in the negative electrode active material layer 22B via the electrolytic solution. Further, when discharging is performed, for example, lithium ions are released from the negative electrode active material layer 22B and occluded in the positive electrode active material layer 21B via the electrolytic solution.
[電池の製造方法]
 次に、本発明の第1の実施形態に係る電池の製造方法の一例について説明する。
[Battery manufacturing method]
Next, an example of the method for manufacturing the battery according to the first embodiment of the present invention will be described.
(正極の作製工程)
 正極21を次にようにして作製する。まず、例えば、正極活物質と、バインダーと、導電助剤とを混合して正極合剤を調製し、この正極合剤をN-メチル-2-ピロリドン(NMP)等の溶剤に分散させてペースト状の正極合剤スラリーを作製する。次に、この正極合剤スラリーを正極集電体21Aに塗布し溶剤を乾燥させ、ロールプレス機等により圧縮成型することにより正極活物質層21Bを形成し、正極21を得る。
(Preparation process of positive electrode)
The positive electrode 21 is manufactured as follows. First, for example, a positive electrode mixture is prepared by mixing a positive electrode active material, a binder, and a conductive auxiliary, and the positive electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) to form a paste. A positive electrode mixture slurry is prepared. Next, the positive electrode mixture slurry is applied to the positive electrode current collector 21A, the solvent is dried, and compression molding is performed by a roll press or the like to form the positive electrode active material layer 21B, and the positive electrode 21 is obtained.
 なお、正極活物質粒子が、金属元素としてNiを主成分として含むリチウム遷移金属複合酸化物を含む場合、当該正極活物質粒子は、例えば以下のようにして作製される。まず、硫酸ニッケル、硫酸コバルト、水酸化アンモニウムを水に溶解し、共沈させてニッケル、コバルトの水酸化物を生成する。次に、得られた水酸化物に炭酸リチウム、水酸化リチウム等のリチウム化合物と、水酸化アルミニウム等のアルミニウム化合物を添加し、前駆体を作製する。また他の添加元素を加える場合はこの段階で添加する。その後、得られた前駆体を例えば500℃~700℃の温度範囲で、時間条件を変化させながら焼成することにより、比率y/xが149%≦y/x≦305%の範囲内である正極活物質粒子が得られる。なお、焼成の時間が長いほど、また温度が高いほどAlは結晶内部にまで拡散する。 When the positive electrode active material particles include a lithium transition metal composite oxide containing Ni as a metal element as a main component, the positive electrode active material particles are produced, for example, as follows. First, nickel sulfate, cobalt sulfate, and ammonium hydroxide are dissolved in water and co-precipitated to produce nickel and cobalt hydroxides. Next, a lithium compound such as lithium carbonate and lithium hydroxide and an aluminum compound such as aluminum hydroxide are added to the obtained hydroxide to prepare a precursor. When other additional elements are added, they are added at this stage. Thereafter, the obtained precursor is baked in a temperature range of, for example, 500 ° C. to 700 ° C. while changing the time conditions, so that the ratio y / x is in the range of 149% ≦ y / x ≦ 305%. Active material particles are obtained. The longer the firing time and the higher the temperature, the more Al diffuses into the crystal.
 また、正極活物質粒子が、金属元素としてCoを主成分として含むリチウム遷移金属複合酸化物を含む場合、当該正極活物質粒子は、例えば以下のようにして作製される。まず、硫酸コバルト、水酸化アンモニウムを水に溶解し、共沈させてコバルトの水酸化物を生成する。次に、得られた水酸化物に炭酸リチウム、水酸化リチウム等のリチウム化合物と、水酸化アルミニウム等のアルミニウム化合物を添加し、前駆体を作製する。また他の添加元素を加える場合はこの段階で添加する。その後、得られた前駆体を例えば600℃~800℃の温度範囲で、時間条件を変化させながら焼成することにより、比率y/xが149%≦y/x≦305%の範囲内である正極活物質粒子が得られる。なお、焼成の時間が長いほど、また温度が高いほどAlは結晶内部にまで拡散する。 In the case where the positive electrode active material particles include a lithium transition metal composite oxide containing Co as a main component as a metal element, the positive electrode active material particles are produced, for example, as follows. First, cobalt sulfate and ammonium hydroxide are dissolved in water and coprecipitated to produce a cobalt hydroxide. Next, a lithium compound such as lithium carbonate and lithium hydroxide and an aluminum compound such as aluminum hydroxide are added to the obtained hydroxide to prepare a precursor. When other additional elements are added, they are added at this stage. Thereafter, the obtained precursor is baked in a temperature range of, for example, 600 ° C. to 800 ° C. while changing the time conditions, so that the ratio y / x is within a range of 149% ≦ y / x ≦ 305%. Active material particles are obtained. The longer the firing time and the higher the temperature, the more Al diffuses into the crystal.
(負極の作製工程)
 負極22を次のようにして作製する。まず、例えば、負極活物質と、バインダーとを混合して負極合剤を調製し、この負極合剤をN-メチル-2-ピロリドン等の溶剤に分散させてペースト状の負極合剤スラリーを作製する。次に、この負極合剤スラリーを負極集電体22Aに塗布し溶剤を乾燥させ、ロールプレス機等により圧縮成型することにより負極活物質層22Bを形成し、負極22を得る。
(Negative electrode fabrication process)
The negative electrode 22 is manufactured as follows. First, for example, a negative electrode mixture is prepared by mixing a negative electrode active material and a binder, and this negative electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to prepare a paste-like negative electrode mixture slurry. I do. Next, the negative electrode mixture slurry is applied to the negative electrode current collector 22A, the solvent is dried, and compression molding is performed by a roll press or the like to form the negative electrode active material layer 22B, and the negative electrode 22 is obtained.
(電極体の作製工程)
 巻回型の電極体20を次のようにして作製する。まず、正極集電体21Aの一方の端部に正極リード11を溶接により取り付けると共に、負極集電体22Aの一方の端部に負極リード12を溶接により取り付ける。次に、正極21と負極22とをセパレータ23を介して扁平状の巻芯の周囲に巻き付けて、長手方向に多数回巻回したのち、最外周部に保護テープ24を接着して電極体20を得る。
(Production process of electrode body)
The wound electrode body 20 is manufactured as follows. First, the cathode lead 11 is attached to one end of the cathode current collector 21A by welding, and the anode lead 12 is attached to one end of the anode current collector 22A by welding. Next, the positive electrode 21 and the negative electrode 22 are wound around a flat core with a separator 23 interposed therebetween, and are wound many times in the longitudinal direction. Get.
(封止工程)
 外装材10により電極体20を次のようにして封止する。まず、電極体20を外装材10に挟み、一辺を除く外周縁部を熱融着して袋状とし、外装材10の内部に収納する。その際、正極リード11および負極リード12と外装材10との間に密着フィルム13を挿入する。なお、正極リード11、負極リード12にそれぞれ密着フィルム13を予め取り付けておいてもよい。次に、未融着の一辺から電解液を外装材10の内部に注入したのち、未融着の一辺を真空雰囲気下で熱融着して密封する。以上により、図1、図2に示した電池が得られる。
(Sealing process)
The exterior body 10 seals the electrode body 20 as follows. First, the electrode body 20 is sandwiched between the package members 10, and the outer peripheral edge portion excluding one side is heat-fused into a bag shape, and is housed inside the package member 10. At that time, an adhesive film 13 is inserted between the positive electrode lead 11 and the negative electrode lead 12 and the exterior material 10. Note that the adhesive film 13 may be attached to each of the positive electrode lead 11 and the negative electrode lead 12 in advance. Next, after injecting the electrolytic solution into the exterior material 10 from one side of the unfused part, one side of the unfused part is heat-sealed in a vacuum atmosphere to be sealed. Thus, the batteries shown in FIGS. 1 and 2 are obtained.
[効果]
 第1の実施形態に係る電池では、正極活物質層21Bが、表面にAlを含む正極活物質粒子と、融点が152℃以上166℃以下であるフッ素系バインダーとを含む正極活物質層を備える。また、正極活物質粒子の内部領域におけるAl比率xと、正極活物質粒子の表面領域におけるAl比率yとの比率y/xが、149%≦y/x≦305%を満たす。これにより、Alを正極活物質粒子の表面に適切な量偏在させることができ、かつ、正極活物質粒子の表面を広く薄いバインダー膜で被覆することができる。したがって、ガス発生、すなわち電池膨れを抑制することができ、かつ、安全性を向上することができる。特に高温かつ高SOCの状態でのガス発生、すなわち電池膨れを抑制することができる。
[effect]
In the battery according to the first embodiment, the positive electrode active material layer 21B includes a positive electrode active material layer containing Al-containing positive electrode active material particles and a fluorine-based binder having a melting point of 152 ° C. or more and 166 ° C. or less. . The ratio y / x of the Al ratio x in the inner region of the positive electrode active material particles and the Al ratio y in the surface region of the positive electrode active material particles satisfies 149% ≦ y / x ≦ 305%. Thereby, Al can be unevenly distributed on the surface of the positive electrode active material particles in an appropriate amount, and the surface of the positive electrode active material particles can be covered with a wide and thin binder film. Therefore, gas generation, that is, battery swelling can be suppressed, and safety can be improved. In particular, gas generation at high temperature and high SOC, that is, battery swelling can be suppressed.
<2 第2の実施形態>
[電池の構成]
 図4は、本発明の第2の実施形態に係る二次電池の構成の一例を示す。第2の実施形態に係る電池は、いわゆる円筒型といわれるものであり、ほぼ中空円柱状の電池缶(外装材)41の内部に、一対の帯状の正極51と帯状の負極52とがセパレータ53を介して積層後、巻回された電極体50を有している。電池缶41は、ニッケルのめっきがされた鉄またはアルミニウム等により構成されており、一端部が閉鎖され他端部が開放されている。電池缶41の内部には、液状の電解質としての電解液が注入され、正極51、負極52およびセパレータ53に含浸されている。また、電極体50を挟むように巻回周面に対して垂直に一対の絶縁板42、43がそれぞれ配置されている。電解液は、第1の実施形態における電解液と同様である。
<2 Second Embodiment>
[Configuration of Battery]
FIG. 4 shows an example of a configuration of a secondary battery according to the second embodiment of the present invention. The battery according to the second embodiment is a so-called cylindrical type, and a pair of a band-shaped positive electrode 51 and a band-shaped negative electrode 52 are provided inside a substantially hollow cylindrical battery can (exterior material) 41 with a separator 53. And has a wound electrode body 50 after lamination. The battery can 41 is made of nickel-plated iron or aluminum or the like, and has one end closed and the other end open. An electrolytic solution as a liquid electrolyte is injected into the battery can 41, and is impregnated in the positive electrode 51, the negative electrode 52, and the separator 53. In addition, a pair of insulating plates 42 and 43 are respectively arranged perpendicular to the winding peripheral surface so as to sandwich the electrode body 50. The electrolyte is the same as the electrolyte in the first embodiment.
 電池缶41の開放端部には、電池蓋44と、この電池蓋44の内側に設けられた安全弁機構45および熱感抵抗素子(Positive Temperature Coefficient;PTC素子)46とが、封口ガスケット47を介してかしめられることにより取り付けられている。これにより、電池缶41の内部は密閉されている。電池蓋44は、例えば、電池缶41と同様の材料により構成されている。安全弁機構45は、電池蓋44と電気的に接続されており、内部短絡あるいは外部からの加熱等により電池の内圧が一定以上となった場合に、ディスク板45Aが反転して電池蓋44と電極体50との電気的接続を切断するようになっている。封口ガスケット47は、例えば、絶縁材料により構成されており、表面にはアスファルトが塗布されている。 At the open end of the battery can 41, a battery cover 44, a safety valve mechanism 45 provided inside the battery cover 44, and a thermal resistance element (Positive Temperature Coefficient; PTC element) 46 are disposed via a sealing gasket 47. It is attached by being caulked. Thereby, the inside of the battery can 41 is sealed. The battery lid 44 is made of, for example, the same material as the battery can 41. The safety valve mechanism 45 is electrically connected to the battery cover 44. When the internal pressure of the battery becomes higher than a predetermined value due to an internal short circuit or external heating, the disk plate 45A is inverted and the battery cover 44 and the electrode are connected. The electrical connection with the body 50 is cut off. The sealing gasket 47 is made of, for example, an insulating material, and its surface is coated with asphalt.
 電極体50の中心には、例えばセンターピン54が挿入されている。電極体50の正極51にはアルミニウム等よりなる正極リード55が接続されており、負極52にはニッケル等よりなる負極リード56が接続されている。正極リード55は安全弁機構45に溶接されることにより電池蓋44と電気的に接続されており、負極リード56は電池缶41に溶接され電気的に接続されている。 例 え ば For example, a center pin 54 is inserted into the center of the electrode body 50. The positive electrode 51 of the electrode body 50 is connected to a positive electrode lead 55 made of aluminum or the like, and the negative electrode 52 is connected to a negative electrode lead 56 made of nickel or the like. The positive electrode lead 55 is electrically connected to the battery cover 44 by welding to the safety valve mechanism 45, and the negative electrode lead 56 is welded to and electrically connected to the battery can 41.
 図5は、図4に示した電極体の一部を拡大して表す断面図である。正極51は、正極集電体51Aと、正極集電体51Aの両面に設けられた正極活物質層51Bとを備える。負極52は、負極集電体52Aと、負極集電体52Aの両面に設けられた負極活物質層52Bとを備える。正極集電体51A、正極活物質層51B、負極集電体52A、負極活物質層52Bおよびセパレータ53の構成はそれぞれ、第1の実施形態における正極集電体21A、正極活物質層21B、負極集電体22A、負極活物質層22Bおよびセパレータ53と同様である。 FIG. 5 is a cross-sectional view showing an enlarged part of the electrode body shown in FIG. The positive electrode 51 includes a positive electrode current collector 51A and positive electrode active material layers 51B provided on both surfaces of the positive electrode current collector 51A. The negative electrode 52 includes a negative electrode current collector 52A and negative electrode active material layers 52B provided on both surfaces of the negative electrode current collector 52A. The configurations of the positive electrode current collector 51A, the positive electrode active material layer 51B, the negative electrode current collector 52A, the negative electrode active material layer 52B, and the separator 53 are respectively the positive electrode current collector 21A, the positive electrode active material layer 21B, and the negative electrode in the first embodiment. The same applies to the current collector 22A, the negative electrode active material layer 22B, and the separator 53.
[効果]
 第2の実施形態に係る電池では、上述の第1の実施形態と同様に、ガス発生を抑制することができ、かつ、安全性を向上することができる。また、高温かつ高SOCの状態において、ガス発生により、電池の内圧が、安全弁機構45が作動するような高圧になることを抑制することができる。
[effect]
In the battery according to the second embodiment, gas generation can be suppressed, and safety can be improved, as in the first embodiment. Further, in the state of high temperature and high SOC, it is possible to suppress the internal pressure of the battery from becoming high enough to operate the safety valve mechanism 45 due to gas generation.
<3 第3の実施形態>
 第3の実施形態では、上述の第1または第2の実施形態に係る電池を備える電子機器について説明する。
<3 Third Embodiment>
In the third embodiment, an electronic device including the battery according to the first or second embodiment will be described.
 図6は、本発明の第3の実施形態に係る電子機器400の構成の一例を示す。電子機器400は、電子機器本体の電子回路401と、電池パック300とを備える。電池パック300は、正極端子331aおよび負極端子331bを介して電子回路401に対して電気的に接続されている。電子機器400は、電池パック300を着脱自在な構成を有していてもよい。 FIG. 6 shows an example of the configuration of an electronic device 400 according to the third embodiment of the present invention. The electronic device 400 includes an electronic circuit 401 of the electronic device main body and the battery pack 300. Battery pack 300 is electrically connected to electronic circuit 401 via positive electrode terminal 331a and negative electrode terminal 331b. The electronic device 400 may have a configuration in which the battery pack 300 is detachable.
 電子機器400としては、例えば、ノート型パーソナルコンピュータ、タブレット型コンピュータ、携帯電話(例えばスマートフォン等)、携帯情報端末(Personal Digital Assistants:PDA)、表示装置(LCD(Liquid Crystal Display)、EL(Electro Luminescence)ディスプレイ、電子ペーパ等)、撮像装置(例えばデジタルスチルカメラ、デジタルビデオカメラ等)、オーディオ機器(例えばポータブルオーディオプレイヤー)、ゲーム機器、コードレスフォン子機、電子書籍、電子辞書、ラジオ、ヘッドホン、ナビゲーションシステム、メモリーカード、ペースメーカー、補聴器、電動工具、電気シェーバー、冷蔵庫、エアコン、テレビ、ステレオ、温水器、電子レンジ、食器洗い器、洗濯機、乾燥器、照明機器、玩具、医療機器、ロボット、ロードコンディショナー、信号機等が挙げられるが、これに限定されるものでなない。 Examples of the electronic device 400 include a notebook personal computer, a tablet computer, a mobile phone (for example, a smartphone), a portable information terminal (Personal Digital Assistants: PDA), a display device (LCD (Liquid Crystal Display), and an EL (Electro Luminescence). A) Display, electronic paper, etc.), imaging device (eg, digital still camera, digital video camera, etc.), audio equipment (eg, portable audio player), game equipment, cordless phone handset, electronic book, electronic dictionary, radio, headphone, navigation System, memory card, pacemaker, hearing aid, power tool, electric shaver, refrigerator, air conditioner, TV, stereo, water heater, microwave oven, dishwasher, washing machine, dryer, lighting equipment, toy, medical equipment, robot Load conditioners, although traffic signals and the like, without such limited thereto.
(電子回路)
 電子回路401は、例えば、CPU(Central Processing Unit)、周辺ロジック部、インターフェース部および記憶部等を備え、電子機器400の全体を制御する。
(Electronic circuit)
The electronic circuit 401 includes, for example, a CPU (Central Processing Unit), a peripheral logic unit, an interface unit, a storage unit, and the like, and controls the entire electronic device 400.
(電池パック)
 電池パック300は、組電池301と、充放電回路302とを備える。電池パック300が、必用に応じて組電池301および充放電回路302を収容する外装材(図示せず)をさらに備えるようにしてもよい。
(Battery pack)
The battery pack 300 includes an assembled battery 301 and a charge / discharge circuit 302. Battery pack 300 may further include an exterior material (not shown) that accommodates assembled battery 301 and charge / discharge circuit 302 as necessary.
 組電池301は、複数の二次電池301aを直列および/または並列に接続して構成されている。複数の二次電池301aは、例えばn並列m直列(n、mは正の整数)に接続される。なお、図6では、6つの二次電池301aが2並列3直列(2P3S)に接続された例が示されている。二次電池301aとしては、上述の第1または第2の実施形態に係る電池が用いられる。 The assembled battery 301 is configured by connecting a plurality of secondary batteries 301a in series and / or in parallel. The plurality of secondary batteries 301a are connected in, for example, n parallel and m series (n and m are positive integers). FIG. 6 shows an example in which six rechargeable batteries 301a are connected in two parallel and three series (2P3S). The battery according to the above-described first or second embodiment is used as the secondary battery 301a.
 ここでは、電池パック300が、複数の二次電池301aにより構成される組電池301を備える場合について説明するが、電池パック300が、組電池301に代えて1つの二次電池301aを備える構成を採用してもよい。 Here, a case will be described where the battery pack 300 includes an assembled battery 301 including a plurality of secondary batteries 301a. However, the battery pack 300 includes a single secondary battery 301a instead of the assembled battery 301. May be adopted.
 充放電回路302は、組電池301の充放電を制御する制御部である。具体的には、充電時には、充放電回路302は、組電池301に対する充電を制御する。一方、放電時(すなわち電子機器400の使用時)には、充放電回路302は、電子機器400に対する放電を制御する。 The charging / discharging circuit 302 is a control unit that controls charging / discharging of the battery pack 301. Specifically, at the time of charging, the charge / discharge circuit 302 controls charging of the battery pack 301. On the other hand, at the time of discharging (that is, at the time of using the electronic device 400), the charging / discharging circuit 302 controls discharging to the electronic device 400.
 外装材としては、例えば、金属、高分子樹脂またはこれらの複合材料等より構成されるケースを用いることができる。複合材料としては、例えば、金属層と高分子樹脂層とが積層された積層体が挙げられる。 ケ ー ス As the exterior material, for example, a case made of a metal, a polymer resin, or a composite material thereof can be used. Examples of the composite material include a laminate in which a metal layer and a polymer resin layer are laminated.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
 以下の実施例および比較例における比率y/x、フッ素系バインダーの融点およびFEC(ハロゲン化炭酸エステル)の含有量は、上述の第1の実施形態にて説明した測定方法により求められたものである。 In the following Examples and Comparative Examples, the ratio y / x, the melting point of the fluorine-based binder, and the content of FEC (halogenated carbonate) were determined by the measurement method described in the first embodiment. is there.
(正極活物質(1)~(5)の製造方法)
 まず、硫酸ニッケル、硫酸コバルト、水酸化アンモニウムを水に溶解し、共沈させてニッケル、コバルトの水酸化物を生成した。次に、得られた水酸化物に炭酸リチウムと、水酸化アルミニウムを添加し、前駆体を作製した。その後、得られた前駆体を500℃~700℃の温度範囲で、温度および時間条件を変化させながら焼成することで、比率y/x(Al偏在率)の変化した正極活物質(1)~(5)(LiNi0.7Co0.2Al0.12)を得た。
(Method of producing positive electrode active materials (1) to (5))
First, nickel sulfate, cobalt sulfate and ammonium hydroxide were dissolved in water and co-precipitated to produce nickel and cobalt hydroxides. Next, lithium carbonate and aluminum hydroxide were added to the obtained hydroxide to prepare a precursor. Thereafter, the obtained precursor is baked in a temperature range of 500 ° C. to 700 ° C. while changing the temperature and time conditions, whereby the positive electrode active material (1) to which the ratio y / x (Al uneven distribution ratio) is changed is (5) (LiNi 0.7 Co 0.2 Al 0.1 O 2 ) was obtained.
(正極活物質(6)~(7)の製造方法)
 まず、硫酸コバルト、水酸化アンモニウムを水に溶解し、共沈させてコバルトの水酸化物を生成した。次に、得られた水酸化物に炭酸リチウムと、水酸化アルミニウムを添加し、前駆体を作製した。その後、得られた前駆体を600℃~800℃の温度範囲で、温度および時間条件を変化させながら焼成することで、比率y/x(Al偏在率)の変化した正極活物質(6)~(7)(LiCo0.98Al0.022)を得た。
(Method for producing positive electrode active materials (6) and (7))
First, cobalt sulfate and ammonium hydroxide were dissolved in water and co-precipitated to produce cobalt hydroxide. Next, lithium carbonate and aluminum hydroxide were added to the obtained hydroxide to prepare a precursor. Thereafter, the obtained precursor is fired in a temperature range of 600 ° C. to 800 ° C. while changing the temperature and time conditions, whereby the ratio y / x (Al uneven distribution ratio) of the positive electrode active material (6) to (7) (LiCo 0.98 Al 0.02 O 2 ) was obtained.
[実施例1~3、比較例3、4]
(正極の作製工程)
 正極を次のようにして作製した。正極活物質としてLiNi0.7Co0.2Al0.1296質量部と、バインダーとして融点が166℃のポリフッ化ビニリデン(フッ化ビニリデンのホモポリマー)2質量部と、導電助剤としてケッチェンブラック2質量部とを混合することにより正極合剤としたのち、この正極合剤を有機溶剤(N-メチル-2-ピロリドン:NMP)に分散させて、ペースト状の正極合剤スラリーとした。なお、正極活物質としては、表1に示すように、比率y/xが異なる正極活物質(1)~(5)を用いた。続いて、コーティング装置を用いて正極集電体(アルミニウム箔)に正極合剤スラリーを塗布してから乾燥させて、正極活物質層を形成した。最後に、プレス機を用いて正極活物質層を圧縮成型した。
[Examples 1 to 3, Comparative Examples 3 and 4]
(Preparation process of positive electrode)
A positive electrode was produced as follows. 96 parts by mass of LiNi 0.7 Co 0.2 Al 0.1 O 2 as a positive electrode active material, 2 parts by mass of polyvinylidene fluoride having a melting point of 166 ° C. as a binder (homopolymer of vinylidene fluoride), and 2 parts by mass of Ketjen black as a conductive aid Are mixed to form a positive electrode mixture, and this positive electrode mixture is dispersed in an organic solvent (N-methyl-2-pyrrolidone: NMP) to obtain a paste-like positive electrode mixture slurry. As shown in Table 1, the positive electrode active materials (1) to (5) having different ratios y / x were used as the positive electrode active materials. Subsequently, the positive electrode mixture slurry was applied to the positive electrode current collector (aluminum foil) using a coating device, and then dried to form a positive electrode active material layer. Finally, the positive electrode active material layer was compression-molded using a press.
(負極の作製工程)
 負極を次のようにして作製した。まず、負極活物質として人造黒鉛粉末96質量%と、バインダーとしてポリフッ化ビニリデン(PVdF)4質量%とを混合することにより負極合剤としたのち、この負極合剤を有機溶剤(N-メチル-2-ピロリドン:NMP)に分散させて、ペースト状の負極合剤スラリーとした。続いて、コーティング装置を用いて負極集電体(銅箔)に負極合剤スラリーを塗布してから乾燥させた。最後に、プレス機を用いて負極活物質層を圧縮成型した。
(Negative electrode fabrication process)
A negative electrode was manufactured as follows. First, a negative electrode mixture was prepared by mixing 96% by mass of artificial graphite powder as a negative electrode active material and 4% by mass of polyvinylidene fluoride (PVdF) as a binder. Then, the negative electrode mixture was mixed with an organic solvent (N-methyl- 2-pyrrolidone: NMP) to give a paste-like negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry was applied to the negative electrode current collector (copper foil) using a coating device and then dried. Finally, the negative electrode active material layer was compression molded using a press.
(電解液の調製工程)
 電解液を次のようにして調製した。まず、炭酸エチレン(EC)と炭酸プロピレン(PC)と炭酸ジエチル(DEC)とを、質量比でEC:PC:DEC=15:15:70となるようにして混合して混合溶媒を調製した。続いて、この混合溶媒に、電解質塩として六フッ化リン酸リチウム(LiPF6)を1mol/lとなるように溶解させて電解液を調製した。次に、完成電池における電解液中の4-フルオロ-1,3-ジオキソラン-2-オン(FEC)の含有量が1質量%となるように、FECの量を調整して電解液に添加した。
(Step of preparing electrolyte solution)
An electrolyte was prepared as follows. First, a mixed solvent was prepared by mixing ethylene carbonate (EC), propylene carbonate (PC), and diethyl carbonate (DEC) in a mass ratio of EC: PC: DEC = 15: 15: 70. Subsequently, in this mixed solvent, lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt was dissolved at a concentration of 1 mol / l to prepare an electrolyte solution. Next, the amount of FEC was adjusted and added to the electrolyte solution so that the content of 4-fluoro-1,3-dioxolan-2-one (FEC) in the electrolyte solution in the completed battery was 1% by mass. .
(電池の組み立て工程)
 電池を次のようにして組み立てた。まず、上述のようにして得られた正極と負極とを微多孔性ポリエチレン延伸フィルムよりなるセパレータを介して、負極、セパレータ、正極、セパレータの順に積層し、多数回巻回することによりジェリーロール型の巻回電極体を得た。次に、一対の絶縁板で巻回電極体を挟み、内壁をNiめっきした鉄製の電池缶に収容し、負極リードを缶底に溶接し、正極リードを安全弁機構に溶接した。その後、電解液を減圧方式にて電池缶内に注入した後、安全弁機構、PTC素子および電池蓋を固定し、外径(直径)18.20mm、高さ65mmの円筒型の電池を得た。
(Battery assembly process)
The battery was assembled as follows. First, a positive electrode and a negative electrode obtained as described above are laminated through a separator made of a microporous polyethylene stretched film, a negative electrode, a separator, a positive electrode, and a separator in this order, and are wound many times to form a jelly roll type. Was obtained. Next, the wound electrode body was sandwiched between a pair of insulating plates, the inner wall was housed in a nickel-plated iron battery can, the negative electrode lead was welded to the bottom of the can, and the positive electrode lead was welded to the safety valve mechanism. Then, after injecting the electrolyte into the battery can by a reduced pressure method, the safety valve mechanism, the PTC element and the battery lid were fixed, and a cylindrical battery having an outer diameter (diameter) of 18.20 mm and a height of 65 mm was obtained.
[実施例4、5、比較例1]
 正極の作製工程において、表1に示すように、バインダーとして融点が152℃、160℃、175℃のポリフッ化ビニリデン(フッ化ビニリデンのホモポリマー)を用いたこと以外は実施例1と同様にして電池を得た。
[Examples 4 and 5, Comparative Example 1]
In the manufacturing process of the positive electrode, as shown in Table 1, as in Example 1, except that polyvinylidene fluoride (homopolymer of vinylidene fluoride) having a melting point of 152 ° C, 160 ° C, or 175 ° C was used as a binder. I got a battery.
[比較例2]
 表1に示すように、バインダーとして融点が145℃のポリフッ化ビニリデン(フッ化ビニリデンのホモポリマー)を用いたこと以外は実施例1と同様にして正極を作製したところ、加工不良(塗工不良)が発生した。このため、比較例2では、電池の作製が困難であった。
[Comparative Example 2]
As shown in Table 1, a positive electrode was produced in the same manner as in Example 1 except that polyvinylidene fluoride having a melting point of 145 ° C. (homopolymer of vinylidene fluoride) was used as a binder. )There has occurred. Therefore, in Comparative Example 2, it was difficult to manufacture the battery.
[実施例6~8、比較例6]
 電解液の調製工程において、表2に示すように、完成電池における電解液中のFECの含有量が0.01質量%、3質量%、6質量%、10質量%となるように、FECの量を調整して電解液に添加したこと以外は実施例1と同様にして電池を得た。
[Examples 6 to 8, Comparative Example 6]
In the preparation process of the electrolytic solution, as shown in Table 2, the FEC content was adjusted so that the FEC content in the electrolytic solution in the completed battery was 0.01% by mass, 3% by mass, 6% by mass, and 10% by mass. A battery was obtained in the same manner as in Example 1, except that the amount was adjusted and added to the electrolytic solution.
[比較例5]
 電解液の調製工程において、表2に示すように、電解液にFECを添加しなかったこと以外は実施例1と同様にして電池を得た。
[Comparative Example 5]
As shown in Table 2, in the preparation process of the electrolyte solution, a battery was obtained in the same manner as in Example 1 except that FEC was not added to the electrolyte solution.
[比較例7]
 正極の作製工程において、表2に示すように、バインダーとして融点が175℃のポリフッ化ビニリデン(フッ化ビニリデンのホモポリマー)を用いたこと以外は実施例2と同様にして電池を得た。
[Comparative Example 7]
As shown in Table 2, a battery was obtained in the same manner as in Example 2 except that polyvinylidene fluoride having a melting point of 175 ° C. (homopolymer of vinylidene fluoride) was used as a binder in the process of manufacturing the positive electrode.
[実施例9]
 正極の作製工程において、表3に示すように、正極活物質として正極活物質(6)を用いたこと以外は実施例1と同様にして電池を得た。
[Example 9]
As shown in Table 3, a battery was obtained in the same manner as in Example 1 except that the positive electrode active material (6) was used as the positive electrode active material in the process of manufacturing the positive electrode.
[比較例8]
 正極の作製工程において、表3に示すように、バインダーとして融点が175℃のポリフッ化ビニリデン(フッ化ビニリデンのホモポリマー)を用いたこと以外は比較例4と同様にして電池を得た。
[Comparative Example 8]
As shown in Table 3, a battery was obtained in the same manner as in Comparative Example 4, except that polyvinylidene fluoride having a melting point of 175 ° C. (homopolymer of vinylidene fluoride) was used as a binder in the process of manufacturing the positive electrode.
[比較例9]
 正極の作製工程において、表3に示すように、正極活物質として正極活物質(7)を用いたこと、およびバインダーとして融点が175℃のポリフッ化ビニリデン(フッ化ビニリデンのホモポリマー)を用いたこと以外は実施例1と同様にして電池を得た。
[Comparative Example 9]
As shown in Table 3, in the manufacturing process of the positive electrode, the positive electrode active material (7) was used as the positive electrode active material, and polyvinylidene fluoride (homopolymer of vinylidene fluoride) having a melting point of 175 ° C. was used as the binder. A battery was obtained in the same manner as in Example 1 except for the above.
[評価]
 上述のようにして得られた電池に対して以下の評価を行った。
[Evaluation]
The following evaluation was performed on the battery obtained as described above.
(加熱限界温度)
 0.5C、4.5Vで4h、CCCV(Constant Current/Constant Voltage)充電した電池をオーブンに入れ規定温度で加熱した。サンプルが規定温度に到達した後、1時間恒温槽温度を保持し、電池が熱暴走するかしないかを確認した。この手順を規定温度を上げながら熱暴走が確認されるまで繰り返し、熱暴走が確認されなかった上限の温度を加熱限界温度とした。
(Heating limit temperature)
A battery charged with CCCV (Constant Current / Constant Voltage) for 4 hours at 0.5 C and 4.5 V was placed in an oven and heated at a specified temperature. After the sample reached the specified temperature, the temperature of the thermostat was maintained for 1 hour, and it was confirmed whether or not the battery would run out of heat. This procedure was repeated while increasing the specified temperature until thermal runaway was confirmed. The upper limit temperature at which thermal runaway was not confirmed was defined as the heating limit temperature.
(遮断時間)
 所定の充電電圧+100mVの条件で充電した電池を90℃の恒温槽に保存し、発生ガスにより安全弁が開き電圧遮断するまでの時間を測定した。
(Interruption time)
The battery charged under the condition of a predetermined charging voltage +100 mV was stored in a thermostat at 90 ° C., and the time required until the safety valve was opened by the generated gas and the voltage was cut off was measured.
(サイクル特性)
 1Cの充電電流で4.2Vに到達した後、0.05Cまで電流を絞ることにより充電したのち、3Vを終始電圧とし1Cの放電電流で放電した。この充放電サイクルを繰り返し、放電容量が1サイクル目の放電容量に対して80%に低下するまでのサイクル数を計測した。
(Cycle characteristics)
After reaching 4.2 V at a charging current of 1 C, the battery was charged by reducing the current to 0.05 C, and then discharged at a discharging current of 1 C with 3 V as the initial voltage. This charge / discharge cycle was repeated, and the number of cycles until the discharge capacity was reduced to 80% of the discharge capacity in the first cycle was measured.
 表1は、実施例1~5、比較例1~4の電池の構成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000003
Table 1 shows the configurations and evaluation results of the batteries of Examples 1 to 5 and Comparative Examples 1 to 4.
Figure JPOXMLDOC01-appb-T000003
 表2は、実施例1、6~8、比較例5~7の電池の構成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000004
Table 2 shows the configurations and evaluation results of the batteries of Examples 1, 6 to 8, and Comparative Examples 5 to 7.
Figure JPOXMLDOC01-appb-T000004
 表3は、実施例1、9、比較例8、9の電池の構成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000005
Table 3 shows the configurations and evaluation results of the batteries of Examples 1 and 9 and Comparative Examples 8 and 9.
Figure JPOXMLDOC01-appb-T000005
 表1から以下のことがわかる。すなわち、正極が、表面にAlを含む正極活物質粒子と、融点が152℃以上166℃以下であるフッ素系バインダーとを含む正極活物質層を備え、正極活物質粒子の内部領域におけるAl比率xと、活物質粒子の表面領域におけるAl比率yとの比率y/xが、149%≦y/x≦305%を満たすことで、電圧遮断時間を長くすることができ、かつ、加熱限界温度を向上することができる。したがって、ガス発生を抑制することができ、かつ、安全性を向上することができる。 Table 1 shows the following. That is, the positive electrode includes a positive electrode active material layer including positive electrode active material particles containing Al on the surface and a fluorine-based binder having a melting point of 152 ° C. or more and 166 ° C. or less, and an Al ratio x in an internal region of the positive electrode active material particles. When the ratio y / x of the Al ratio y in the surface region of the active material particles satisfies 149% ≦ y / x ≦ 305%, the voltage cutoff time can be lengthened and the heating limit temperature can be reduced. Can be improved. Therefore, gas generation can be suppressed, and safety can be improved.
 表2から以下のことがわかる。すなわち、サイクル特性を向上する観点からすると、電解液に含まれるFECの含有量が、好ましくは0.01質量%以上、より好ましくは1質量%以上、さらにより好ましくは3質量%以上である。また、FEC添加による電圧遮断時間の大幅な短縮を抑制する観点からすると、すなわちFEC添加によるガス発生の大幅な増加を抑制する観点からすると、電解液に含まれるFECの含有量が、好ましくは6質量%以下である。なお、遮断時間が50hを超えるようにすることが、電池の性能上好ましい。 Table 2 shows the following. That is, from the viewpoint of improving the cycle characteristics, the content of FEC contained in the electrolytic solution is preferably 0.01% by mass or more, more preferably 1% by mass or more, and still more preferably 3% by mass or more. Further, from the viewpoint of suppressing a significant shortening of the voltage interruption time due to the addition of FEC, that is, from the viewpoint of suppressing a significant increase in gas generation due to the addition of FEC, the content of FEC contained in the electrolyte is preferably 6%. % By mass or less. In addition, it is preferable in terms of battery performance that the cut-off time exceeds 50 hours.
 また、バインダーの融点および比率y/xを上記範囲に規定した電池に対して、FECを添加することで、特にサイクル特性を向上することができる(実施例1、比較例7参照)。これは、バインダーの融点および比率y/xを上記範囲に規定した電池では、正極21におけるFECの消費が抑えられるためと考えられる。 サ イ ク ル Further, by adding FEC to the battery in which the melting point of the binder and the ratio y / x are specified in the above ranges, particularly the cycle characteristics can be improved (see Example 1 and Comparative Example 7). This is considered to be because the FEC consumption in the positive electrode 21 is suppressed in the battery in which the melting point of the binder and the ratio y / x are defined in the above ranges.
 表3から以下のことがわかる。すなわち、正極活物質としてNCAを用いた電池においてバインダーの融点および比率y/xを上記範囲に規定した場合には、正極活物質としてLCOを用いた電池においてバインダーの融点および比率y/xを上記範囲に規定した場合に比べて、加熱限界温度を向上する効果、すなわち安全性を向上する効果の発現が顕著である。 Table 3 shows the following. That is, when the melting point and the ratio y / x of the binder are defined in the above range in the battery using NCA as the positive electrode active material, the melting point and the ratio y / x of the binder in the battery using LCO as the positive electrode active material are set as described above. The effect of improving the heating limit temperature, that is, the effect of improving safety, is more remarkable than in the case where the range is specified.
 以上、本発明の実施形態について具体的に説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。 Although the embodiments of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments, and various modifications based on the technical idea of the present invention are possible.
 例えば、上述の実施形態において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。 For example, the configurations, methods, steps, shapes, materials, numerical values, and the like mentioned in the above-described embodiments are merely examples, and if necessary, use different configurations, methods, steps, shapes, materials, numerical values, and the like. Is also good.
 また、上述の実施形態の構成、方法、工程、形状、材料および数値等は、本発明の主旨を逸脱しない限り、互いに組み合わせることが可能である。 The configurations, methods, steps, shapes, materials, numerical values, and the like of the above-described embodiments can be combined with each other without departing from the gist of the present invention.
 10  外装材
 11、55  正極リード
 12、56  負極リード
 13  密着フィルム
 20、50  電極体
 21、51  正極
 21A、51A  正極集電体
 21B、51B  正極活物質層
 22、52  負極
 22A、52A  負極集電体
 22B、52B  負極活物質層
 23、53  セパレータ
 24  保護テープ
 41  電池缶
 42、43  絶縁板
 44  電池蓋
 45  安全弁機構
 45A  ディスク板
 46  熱感抵抗素子
 47  ガスケット
 54  センターピン
 300  電池パック
 400  電子機器
Reference Signs List 10 exterior material 11, 55 positive electrode lead 12, 56 negative electrode lead 13 adhesive film 20, 50 electrode body 21, 51 positive electrode 21A, 51A positive electrode current collector 21B, 51B positive electrode active material layer 22, 52 negative electrode 22A, 52A negative electrode current collector 22B, 52B Negative electrode active material layer 23, 53 Separator 24 Protective tape 41 Battery can 42, 43 Insulating plate 44 Battery cover 45 Safety valve mechanism 45A Disk plate 46 Thermal resistance element 47 Gasket 54 Center pin 300 Battery pack 400 Electronic device

Claims (3)

  1.  正極と、負極と、電解液とを備え、
     前記正極が、表面にAlを含む正極活物質粒子と、融点が152℃以上166℃以下であるフッ素系バインダーとを含む正極活物質層を備え、
     前記正極活物質粒子の内部領域におけるAl比率xと、前記正極活物質粒子の表面領域におけるAl比率yとの比率y/xが、149%≦y/x≦305%を満たす二次電池。
    Comprising a positive electrode, a negative electrode, and an electrolytic solution,
    The positive electrode includes a positive electrode active material layer including positive electrode active material particles containing Al on the surface and a fluorine-based binder having a melting point of 152 ° C. or more and 166 ° C. or less,
    A secondary battery in which a ratio y / x of an Al ratio x in an inner region of the positive electrode active material particles and an Al ratio y in a surface region of the positive electrode active material particles satisfies 149% ≦ y / x ≦ 305%.
  2.  前記電解液が、下記の式(1)で表されるハロゲン化炭酸エステルをさらに含み、
     前記電解液中における前記ハロゲン化炭酸エステルの含有量が、0.01質量%以上6質量%以下である請求項1に記載の二次電池。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1~R4は、それぞれ独立して、水素基、ハロゲン基、アルキル基またはハロゲン化アルキル基である。但し、R1~R4のうちの少なくとも1つは、ハロゲン基またはハロゲン化アルキル基である。)
    The electrolyte further includes a halogenated carbonate represented by the following formula (1),
    The secondary battery according to claim 1, wherein the content of the halogenated carbonate in the electrolytic solution is 0.01% by mass or more and 6% by mass or less.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R1 to R4 are each independently a hydrogen group, a halogen group, an alkyl group or a halogenated alkyl group, provided that at least one of R1 to R4 is a halogen group or a halogenated alkyl group. Is.)
  3.  前記正極活物質粒子の平均組成が、下記の式(A)で表される請求項1に記載の二次電池。
     LiNi1-x-y-zCoxAlyz2 ・・・(A)
    (但し、x、yおよびzが、0.01≦x≦0.3、0.01≦y≦0.3、0≦z≦0.05、1-x-y-z≧0.5を満たす。Mは、Mn、Mg、B、W、Zr、Ti、P、S、Fe、Si、Cr、Cu、Zn、Ge、Y、Mo、Ag、Ba、In、Sr、Sn、PbおよびSbからなる群より選ばれる少なくとも1種である。)
    The secondary battery according to claim 1, wherein the average composition of the positive electrode active material particles is represented by the following formula (A).
    LiNi 1-xyz Co x Al y M z O 2 ··· (A)
    (Provided that x, y, and z are 0.01 ≦ x ≦ 0.3, 0.01 ≦ y ≦ 0.3, 0 ≦ z ≦ 0.05, 1−x−y−z ≧ 0.5) M is Mn, Mg, B, W, Zr, Ti, P, S, Fe, Si, Cr, Cu, Zn, Ge, Y, Mo, Ag, Ba, In, Sr, Sn, Pb and Sb. At least one selected from the group consisting of
PCT/JP2019/036778 2018-09-19 2019-09-19 Secondary battery WO2020059803A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-175043 2018-09-19
JP2018175043 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020059803A1 true WO2020059803A1 (en) 2020-03-26

Family

ID=69888458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036778 WO2020059803A1 (en) 2018-09-19 2019-09-19 Secondary battery

Country Status (1)

Country Link
WO (1) WO2020059803A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021220744A1 (en) * 2020-04-28 2021-11-04
WO2021220745A1 (en) * 2020-04-28 2021-11-04 株式会社村田製作所 Secondary battery
JPWO2021220743A1 (en) * 2020-04-28 2021-11-04
WO2022213677A1 (en) * 2021-04-07 2022-10-13 广东邦普循环科技有限公司 Recycling method for controlling particle size of aluminum slag and application of recycling method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270180A (en) * 2001-03-08 2002-09-20 Mitsubishi Cable Ind Ltd Positive electrode active material composition, positive electrode plate with usage of the same, and lithium secondary battery
JP2003017055A (en) * 2001-07-02 2003-01-17 Toyota Central Res & Dev Lab Inc Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and manufacturing method thereof
JP2010170741A (en) * 2009-01-20 2010-08-05 Panasonic Corp Manufacturing method of cathode active material for nonaqueous electrolyte secondary battery
JP2014086221A (en) * 2012-10-22 2014-05-12 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2016031881A (en) * 2014-07-30 2016-03-07 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
JP2016139583A (en) * 2015-01-29 2016-08-04 輔仁大學學校財團法人輔仁大學 Metal gradient dope positive electrode material for lithium ion battery
KR20180055379A (en) * 2016-11-17 2018-05-25 주식회사 엘지화학 Positive Electrode Active Material Particle Comprising Core Part Having Lithium Cobalt Oxide and Concentration Gradient Part Having Concentration Gradient of Metal Element and Method for Manufacturing the Same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270180A (en) * 2001-03-08 2002-09-20 Mitsubishi Cable Ind Ltd Positive electrode active material composition, positive electrode plate with usage of the same, and lithium secondary battery
JP2003017055A (en) * 2001-07-02 2003-01-17 Toyota Central Res & Dev Lab Inc Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and manufacturing method thereof
JP2010170741A (en) * 2009-01-20 2010-08-05 Panasonic Corp Manufacturing method of cathode active material for nonaqueous electrolyte secondary battery
JP2014086221A (en) * 2012-10-22 2014-05-12 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2016031881A (en) * 2014-07-30 2016-03-07 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
JP2016139583A (en) * 2015-01-29 2016-08-04 輔仁大學學校財團法人輔仁大學 Metal gradient dope positive electrode material for lithium ion battery
KR20180055379A (en) * 2016-11-17 2018-05-25 주식회사 엘지화학 Positive Electrode Active Material Particle Comprising Core Part Having Lithium Cobalt Oxide and Concentration Gradient Part Having Concentration Gradient of Metal Element and Method for Manufacturing the Same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021220744A1 (en) * 2020-04-28 2021-11-04
WO2021220744A1 (en) * 2020-04-28 2021-11-04 株式会社村田製作所 Positive electrode for secondary battery, and secondary battery
WO2021220745A1 (en) * 2020-04-28 2021-11-04 株式会社村田製作所 Secondary battery
JPWO2021220743A1 (en) * 2020-04-28 2021-11-04
JPWO2021220745A1 (en) * 2020-04-28 2021-11-04
WO2021220743A1 (en) * 2020-04-28 2021-11-04 株式会社村田製作所 Positive electrode for secondary battery, and secondary battery
JP7276603B2 (en) 2020-04-28 2023-05-18 株式会社村田製作所 secondary battery
JP7276602B2 (en) 2020-04-28 2023-05-18 株式会社村田製作所 Positive electrode for secondary battery and secondary battery
JP7334857B2 (en) 2020-04-28 2023-08-29 株式会社村田製作所 Positive electrode for secondary battery and secondary battery
WO2022213677A1 (en) * 2021-04-07 2022-10-13 广东邦普循环科技有限公司 Recycling method for controlling particle size of aluminum slag and application of recycling method
GB2620313A (en) * 2021-04-07 2024-01-03 Guangdong Brunp Recycling Technology Co Ltd Recycling method for controlling particle size of aluminum slag and application of recycling method

Similar Documents

Publication Publication Date Title
JP6123858B2 (en) Nonaqueous electrolyte secondary battery and separator
WO2020059803A1 (en) Secondary battery
JP2009117159A (en) Positive electrode and lithium ion secondary battery
JP2020077611A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP6992897B2 (en) Positive electrode active material and battery
JP2008135279A (en) Positive electrode active material, non-aqueous electrolyte secondary battery using this, and manufacturing method of positive electrode active material
CN110890525B (en) Positive active material for lithium secondary battery and lithium secondary battery including the same
US20210043941A1 (en) Battery
JP2011154963A (en) Nonaqueous electrolyte battery
US20210210789A1 (en) Secondary battery
WO2019208806A1 (en) Battery
JP6855882B2 (en) Positive electrode and lithium ion secondary battery
US11929485B2 (en) Secondary battery
JPWO2020065832A1 (en) Conductive material, positive electrode and secondary battery
WO2021241027A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP7143943B2 (en) Negative electrode active material, negative electrode and secondary battery
WO2020059874A1 (en) Secondary battery
CN110915039B (en) Positive electrode active material, positive electrode, battery pack, electronic device, electric vehicle, power storage device, and power system
US20150118542A1 (en) Method for preparing lithium secondary battery and lithium secondary battery prepared therefrom
US20210159540A1 (en) Nonaqueous electrolyte secondary battery
CN112204794B (en) Nonaqueous electrolyte secondary battery
WO2020059802A1 (en) Secondary battery
JP2011086468A (en) Nonaqueous electrolyte battery
WO2020218019A1 (en) Negative electrode active material, negative electrode and secondary battery
WO2020059873A1 (en) Secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP