JP2016139583A - Metal gradient dope positive electrode material for lithium ion battery - Google Patents

Metal gradient dope positive electrode material for lithium ion battery Download PDF

Info

Publication number
JP2016139583A
JP2016139583A JP2015015556A JP2015015556A JP2016139583A JP 2016139583 A JP2016139583 A JP 2016139583A JP 2015015556 A JP2015015556 A JP 2015015556A JP 2015015556 A JP2015015556 A JP 2015015556A JP 2016139583 A JP2016139583 A JP 2016139583A
Authority
JP
Japan
Prior art keywords
positive electrode
metal
electrode material
nickel
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015015556A
Other languages
Japanese (ja)
Other versions
JP6034413B2 (en
Inventor
茂煌 劉
Mao Huang Liu
茂煌 劉
健▲ウン▼ 任
Chien Wen Jen
健▲ウン▼ 任
信達 黄
Hsin Ta Huang
信達 黄
▲ツォン▼閔 林
Cong Min Lin
▲ツォン▼閔 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fu Jen Catholic University
Original Assignee
Fu Jen Catholic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fu Jen Catholic University filed Critical Fu Jen Catholic University
Priority to JP2015015556A priority Critical patent/JP6034413B2/en
Publication of JP2016139583A publication Critical patent/JP2016139583A/en
Application granted granted Critical
Publication of JP6034413B2 publication Critical patent/JP6034413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a metal gradient dope positive electrode material for a lithium ion battery.SOLUTION: A metal gradient dope positive electrode material for a lithium ion battery is an active unit of positive electrode material powder which contains a hexagonal crystal positive electrode main body and modified metal, and comprises, as main component, any type oxide of single metal of nickel or cobalt, two kinds of metal of nickel and cobalt, nickel and magnesium or cobalt and magnesium, or three kinds of metal of nickel, cobalt and magnesium. The modified metal is an active metal element different from nickel, cobalt and manganese. Particularly, the modified metal relatively concentrates on the surface of the positive electrode material powder, and gradually decreases to a core, whereby the modified metal forms a continuous concentration gradient dope distribution and has no boundary and no divided layer in the material powder. The modified metal has a relatively high concentration on the surface of the positive electrode material powder, the reactivity of the surface of the positive material to electrolyte liquid is lowered, the stability and safety of a lithium ion battery are enhanced, the material amount of the modified metal is small and the energy density and the use-life can be increased.SELECTED DRAWING: Figure 1

Description

本発明は一種のリチウムイオン電池の金属勾配ドープ正極材料に係り、特に、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、チタン(Ti)、ケイ素(Si)、及びスズ(Sn)のいずれか一種類の修飾元素を、連続濃度勾配分布方式で六方晶正極材料構造内にドープすることで、材料の静電容量、使用寿命と安全性を改善し、それにより正極材料の高エネルギー化を増進するものに関する。   The present invention relates to a kind of metal gradient doped positive electrode material for lithium ion batteries, and in particular, magnesium (Mg), calcium (Ca), strontium (Sr), boron (B), aluminum (Al), gallium (Ga), indium. By doping one of the modifier elements (In), titanium (Ti), silicon (Si), and tin (Sn) into the hexagonal positive electrode material structure in a continuous concentration gradient distribution method, The present invention relates to a device that improves electric capacity, service life and safety, and thereby promotes higher energy of a positive electrode material.

近年、日増しに厳重になる地球温暖化現象及び石油の漸減するエネルギー資源危機に伴い、人類はより省エネで、炭素を減らせ、環境保護の電動車両を発展させる必要に迫られている。高い安全性と高いエネルギー密度を有して電動車両で使用できるリチウムイオン電池を研究開発することは、現在環境保護と省エネ領域において尤も重要な一環である。米国、欧州、日本、韓国、中国大陸と台湾は、いずれもすでに積極的に電動車と動力リチウムイオン電池の技術の研究開発、量産製造に積極的にとりくんでいる。また、3C消費性電子産業の勃興発展により、スマートホンとタブレットPCはすでに尤もホットな製品となっており、人々は随時随所で無線オンライン、オーディオビデオ放送、及びクラウドデータ受信等のモバイルスマート化機能を実行でき、これにより、3C電子製品の電源使用時間を延長する必要に迫られている。これにより、高エネルギー密度を具えたリチウムイオン電池を開発して、電動車と3C製品に応用できるようにする必要があるが、リチウムイオン電池のエネルギー密度は電池の採用する電極活性材料と関係があり、そのうち正極材料は尤も鍵となる。   In recent years, with the global warming phenomenon becoming increasingly severe and the energy resource crisis of petroleum gradually decreasing, mankind has been forced to develop more energy-saving, carbon-reduced, and environmentally-friendly electric vehicles. Researching and developing lithium-ion batteries that can be used in electric vehicles with high safety and high energy density is now an extremely important part of environmental protection and energy saving. The United States, Europe, Japan, South Korea, Mainland China and Taiwan have all been actively engaged in R & D and mass production of electric vehicle and power lithium-ion battery technologies. In addition, with the rise of 3C consumer electronics industry, smart phones and tablet PCs are already hot products, and people can use mobile smart functions such as wireless online, audio video broadcasting, and cloud data reception at any time. Therefore, it is necessary to extend the power usage time of the 3C electronic product. As a result, it is necessary to develop a lithium ion battery having a high energy density so that it can be applied to electric vehicles and 3C products. The energy density of a lithium ion battery is related to the electrode active material adopted by the battery. Yes, the positive electrode material is the key.

正極材料のリチウムイオン電池の性能に対する影響は甚だ大きく、これにより、正極材料の選択は、低コスト、高容量、高サイクル寿命、及び大電流充放電能力が良好であること等の要求のほか、より重要であることは、材料自身が良好な熱安定性を具えて電池の安全性を増加できることであり、数多くの正極材料中、六方晶正極材料は比較的高いエネルギー密度を具え、これにより広く研究、重視されている。リチウムイオン電池の正極材料中、リチウムコバルト酸化物(LiCoO2)の発展は最も長く、また現在市場で比較的常用されている六方晶正極材料(一元正極材料)である。ただし、Coは戦略物資で、価格は高く、取得が容易でなく且つ毒性を有することから、エネルギー密度が高く、コストが比較的低く、且つ比較的毒性のないリチウムニッケル酸化物(LiNiO2)がリチウムコバルト酸化物(LiCoO2)の代りに研究されるようになった。ただし、リチウムニッケル酸化物(LiNiO2)六方晶正極材料(一元性正極材料)はまた合成計量が困難で、熱安定性が低く且つ構造安定性が不良である等の問題を有しており、これらの問題を改善するために、Coを 添加してLiNiO2中の一部のNiと置換することで、LiNiO2の構造安定性を増加する。これにより、LiNixCo1-x2六方晶正極材料(二元正極材料 )が出現し、それは、LiCoO2よりも高い静電容量(実際の静電容量>180mAhg-1)を有し、且つLiNiO2よりも良好な熱安定性を有し、次世代リチウムイオン電池の鍵となる正極材料である。二元正極材料は多くの長所を有するものの、市場の材料コストを考慮して、三元六方晶正極材料(LiNiXCoyMn1-X-y2)が発展した。三元材料は二元材料に較べて静電容量が低いものの、Mnを添加して置換することで材料コストを下げることができ、また材料構造の安定性と安全性を増加できる。 The influence of the positive electrode material on the performance of the lithium-ion battery is very large, and as a result, the selection of the positive electrode material has requirements such as low cost, high capacity, high cycle life, and high current charge / discharge capability, More importantly, the material itself has good thermal stability and can increase the safety of the battery. Among many positive electrode materials, the hexagonal positive electrode material has a relatively high energy density, which Research is emphasized. Among the positive electrode materials for lithium ion batteries, lithium cobalt oxide (LiCoO 2 ) has been the longest developed and is a hexagonal positive electrode material (single positive electrode material) that is relatively commonly used in the market today. However, Co is a strategic material, high in price, not easy to acquire and toxic. Therefore, lithium nickel oxide (LiNiO 2 ) having high energy density, relatively low cost, and relatively non-toxicity is used. It has been studied instead of lithium cobalt oxide (LiCoO 2 ). However, lithium nickel oxide (LiNiO 2 ) hexagonal positive electrode material (unitary positive electrode material) also has problems such as difficulty in synthesis measurement, low thermal stability and poor structural stability, to improve these problems, the addition of Co by replacing a part of Ni in LiNiO 2, to increase the structural stability of LiNiO 2. This gives rise to the LiNi x Co 1-x O 2 hexagonal positive electrode material (binary positive electrode material), which has a higher capacitance (actual capacitance> 180 mAhg −1 ) than LiCoO 2 , Moreover, it has better thermal stability than LiNiO 2 and is a positive electrode material that is the key to the next-generation lithium ion battery. Although two source primary electrode material has many advantages, in view of the material cost of the market, ternary hexagonal AkiraTadashikyoku material (LiNi X Co y Mn 1- Xy O 2) was developed. Although the ternary material has a lower capacitance than the binary material, it can reduce the material cost by adding and replacing Mn, and can increase the stability and safety of the material structure.

現在業界は、高エネルギー密度の正極材料に対して主要な二つの開発方向を有しており、その一つは材料自身の高静電容量をアップすることを前提に、ニッケル(Ni)を主要成分とする二元と三元正極材料を採用することで、もう一つは、正極材料作業電圧(4.2Vより大きい)をアップして材料の静電容量を増加することである。   The industry currently has two major development directions for high energy density cathode materials, one of which is nickel (Ni), assuming that the high capacitance of the material itself is increased. By adopting binary and ternary positive electrode materials as components, the other is to increase the positive electrode material working voltage (greater than 4.2V) and increase the capacitance of the material.

六方晶リチウムイオン電池正極材料は比較的高い静電容量を有し、リチウムイオン電池正極材料の中で最も広く使用されているが、六方晶リチウムイオン電池正極材料の粉体表面は電解液と容易に反応を発生し、材料寿命が短くなり、且つ使用上、安全性の心配がある。   Hexagonal lithium ion battery positive electrode material has a relatively high capacitance and is the most widely used lithium ion battery positive electrode material. The material life is shortened, and there is a concern about safety in use.

周知の技術中、六方晶リチウムイオン電池正極材料の安定性をアップするため、多くの研究者は材料構造中に、比較的安定した修飾物質を添加し、それにより正極材料表面の安定性をアップし、そのうち、使用される修飾物質は六方晶正極材料主体を非構成のニッケル(Ni)、コバルト(Co)、マンガン(Mn)の三種類の活性金属元素である。   To improve the stability of hexagonal lithium-ion battery cathode materials in a well-known technology, many researchers add relatively stable modifiers in the material structure, thereby increasing the stability of the cathode material surface. Among them, the modifiers used are three kinds of active metal elements, nickel (Ni), cobalt (Co), and manganese (Mn), which are mainly composed of a hexagonal positive electrode material.

具体的には、常用される修飾方法には、材料表面修飾法と金属ドープ修飾法の二種類がある。   Specifically, there are two types of modification methods commonly used: a material surface modification method and a metal dope modification method.

材料表面修飾法に関しては、正極材料の外部を一層のナノサイズの非電気化学活性物質で被覆し、これにより正極材料表面の電解液との反応性を低減し、材料の使用寿命をアップする。しかし、材料全体を均一にナノサイズの保護層で被覆させる必要があり、技術上、一定の難度があり且つコントロールが容易でなく、このため大幅に産業上の利用性が低減する。   With respect to the material surface modification method, the outside of the positive electrode material is coated with a single nano-sized non-electrochemically active substance, thereby reducing the reactivity with the electrolyte on the surface of the positive electrode material and increasing the service life of the material. However, it is necessary to uniformly coat the entire material with a nano-sized protective layer, which is technically difficult and difficult to control, which greatly reduces industrial applicability.

金属ドープ法は、正極材料構造中に均一に非電気化学活性の金属をドープすることで、材料構造自身の安定性をアップするが、もし顕著に材料表面の電解液との反応を抑制しようとするなら、高剤量の修飾物質をドープする必要があり、これは材料の静電容量の大幅な減少をもたらし得て、却って材料自身の高エネルギー密度の特徴を失わせてしまう。   The metal doping method improves the stability of the material structure itself by uniformly doping a non-electrochemically active metal in the positive electrode material structure, but if it attempts to significantly suppress the reaction with the electrolyte on the material surface If so, it is necessary to dope a high dosage of modifier, which can result in a significant reduction in the capacitance of the material, which in turn causes the high energy density characteristics of the material to be lost.

このため、一種の、リチウムイオン電池の新規な金属勾配ドープ正極材料であって、材料修飾により材料の安定性と安全性をアップできると共に、材料のエネルギー密度上の性能も考慮し、高静電容量と高い安全性を共に考慮したリチウムイオン電池の製作を達成でき、上述の周知の技術の問題を解決するものが必要とされている。   For this reason, it is a kind of new metal gradient doped positive electrode material for lithium-ion batteries, and the material modification can improve the stability and safety of the material, and also consider the energy density performance of the material, What is needed is a solution that can achieve the production of a lithium ion battery that takes both capacity and high safety into account, and that solves the above-mentioned problems of the known technology.

本発明は一種のリチウムイオン電池の金属勾配ドープ正極材料を提供し、その材料粉体は、六方晶正極材料主体及び六方晶正極材料主体に濃度勾配ドープされる修飾金属で構成されて界面を有さず分層を有さない粉体構造であり、金属勾配ドープリチウムイオン電池正極材料全体剤量は、化学式 f mol% doped LizNiaCobMnc2を用いて表示でき、そのうち、LizNiaCobMnc2は六方晶正極材料主体を表示し、Mは修飾金属を表示し、且つ修飾金属のモル含有量は六方晶正極材料中のニッケル、コバルト及びマンガンの総モル含有量の0.5%以上であり、且つ六方晶正極材料中のニッケル、コバルト及びマンガンの総モル含有量の10%以下であり、並びに、0.5%(a+b+c)≦f≦10%(a+b+c)を用いて表示され得る。 The present invention provides a kind of metal gradient doped positive electrode material for lithium ion batteries, and the material powder is composed mainly of a hexagonal positive electrode material and a modified metal that is mainly doped with a concentration gradient of the hexagonal positive electrode material and has an interface. a powder structure without the layer separation without the metal gradient doped lithium ion battery positive electrode material total agent amount may be displayed by using the formula f mol% doped Li z Ni a Co b Mn c O 2, of which, Li z Ni a Co b Mn c O 2 represents the main component of the hexagonal positive electrode material, M represents the modified metal, and the molar content of the modified metal is the total mol of nickel, cobalt and manganese in the hexagonal positive electrode material. 0.5% or more of the content and 10% or less of the total molar content of nickel, cobalt and manganese in the hexagonal positive electrode material, and 0.5% (a + b + c) ≦ f ≦ 10% ( a + + C) may be displayed using.

上述のリチウムイオン電池の金属勾配ドープ正極材料が含有する六方晶正極材料主体は、ニッケル、コバルト単一金属或いはニッケルとコバルト、ニッケルとマンガン、コバルトとマンガンの二種類の金属或いはニッケルとコバルトとマンガンの三種類の金属の、任意のいずれかの形式の酸化物で構成された正極材料活性ユニットとされ得て、並びに化学式LizNiaCobMnc2で表示され、その化学剤量範囲は、{0.9≦z≦1.2;a+b+c=1;0≦a≦1;0≦b≦1;0≦c≦0.6}を満足し、修飾金属はマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、チタン(Ti)、ケイ素(Si)、及びスズ(Sn)のうちの一種類の金属元素或いは類金属元素とされ、且つ修飾金属は正極材料粉体の表面に比較的集中し、並びにコアに向けて連続性の濃度逓減を現出し、連続濃度勾配ドープ分布を形成する。リチウムイオン電池の金属勾配ドープ正極材料粉体表面は濃度が比較的高い修飾金属を有し、材料の電解液に対する反応性が効果的に下げられ、これにより全体のリチウムイオン電池の操作安定性及び安全性が向上される。特に、低い剤量の修飾金属を使用するだけで効果を達成でき、周知の技術中の、過多の修飾金属をドープすることにより大幅に静電容量が下がる問題を防止でき、ひいては全体のリチウムイオン電池のエネルギー密度を増加し、使用寿命を延長できる。 The hexagonal positive electrode material mainly contained in the metal gradient doped positive electrode material of the lithium ion battery described above is nickel, cobalt single metal or nickel and cobalt, nickel and manganese, cobalt and manganese, two kinds of metals or nickel, cobalt and manganese. A positive electrode material active unit composed of any type of oxides of the three types of metals, and represented by the chemical formula Li z Ni a Co b Mn c O 2 , and its chemical dosage range Satisfies {0.9 ≦ z ≦ 1.2; a + b + c = 1; 0 ≦ a ≦ 1; 0 ≦ b ≦ 1; 0 ≦ c ≦ 0.6}, and the modified metals are magnesium (Mg), calcium (Ca), strontium (Sr), boron (B), aluminum (Al), gallium (Ga), indium (In), titanium (Ti), silicon (Si), and tin (Sn) One kind of metal element or similar metal element, and the modified metal is relatively concentrated on the surface of the positive electrode material powder, and the continuity concentration gradually decreases toward the core. Form. The metal gradient doped positive electrode material powder surface of the lithium ion battery has a relatively high concentration of the modified metal, effectively reducing the reactivity of the material to the electrolyte, thereby improving the overall operational stability of the lithium ion battery and Safety is improved. In particular, the effect can be achieved only by using a low amount of the modified metal, and it is possible to prevent the problem that the capacitance is greatly lowered by doping an excessive amount of the modified metal in the well-known technique, and as a result, the entire lithium ion The battery energy density can be increased and the service life can be extended.

具体的には、本発明の正極材料は比較的低い剤量の修飾金属を使用することで、電解液に対する反応性を低くする特徴のほか、良好な電気化学特性と熱安定性を共に有し、大幅にリチウムイオン電池の全体操作効率をアップし、使用寿命を延長し、並びに産業上の利用性をアップする。   Specifically, the positive electrode material of the present invention has both good electrochemical characteristics and thermal stability, in addition to the feature of reducing the reactivity to the electrolyte by using a relatively low amount of the modified metal. , Greatly increase the overall operation efficiency of the lithium ion battery, extend the service life, and improve the industrial utility.

本発明の実施例のリチウムイオン電池の金属勾配ドープ正極材料の構造表示図である。It is a structure display figure of the metal gradient dope positive electrode material of the lithium ion battery of the Example of this invention. 本発明の第1実施例のAl(GD)−LNCOの材料表面形態及びアルミニウム元素分布比率グラフである。It is a material surface form and aluminum element distribution ratio graph of Al (GD) -LNCO of the 1st example of the present invention. 本発明の第1実施例及び第1比較例の充放電曲線図である。It is a charging / discharging curve figure of 1st Example of this invention and a 1st comparative example. 本発明の第1実施例及び第1比較例の各種電流の充放電曲線図である。It is a charging / discharging curve figure of the various electric current of 1st Example of this invention and a 1st comparative example. 本発明の第1実施例及び第1比較例のサイクル寿命曲線図である。It is a cycle life curve figure of the 1st example of the present invention, and the 1st comparative example. 本発明の第1実施例及び第1比較例のDSC試験図である。It is a DSC test figure of the 1st example and 1st comparative example of the present invention. 本発明の第2実施例のMg(GD)−LNCMOの材料表面形態及びマグネシウム元素分布比率グラフである。It is a material surface form and magnesium element distribution ratio graph of Mg (GD) -LNCMO of 2nd Example of this invention. 本発明の第2実施例及び第2比較例の充放電曲線図である。It is a charging / discharging curve figure of 2nd Example of this invention, and a 2nd comparative example. 本発明の第2実施例及び第2比較例の各種電流の充放電曲線図である。It is a charging / discharging curve figure of the various electric current of 2nd Example of this invention, and a 2nd comparative example. 本発明の第2実施例及び第2比較例のサイクル寿命曲線図である。It is a cycle life curve figure of the 2nd example of the present invention, and the 2nd comparative example. 本発明の第2実施例及び第2比較例のDSC試験図である。It is a DSC test figure of 2nd Example of this invention, and a 2nd comparative example.

以下に本発明の技術内容、構造特徴、達成する目的及び作用効果について、以下に例を挙げ並びに図面を組み合わせて詳細に説明する。   The technical contents, structural features, objects to be achieved, and operational effects of the present invention will be described in detail below with reference to examples and drawings.

図1を参照されたい。図1は本発明の実施例のリチウムイオン電池の金属勾配ドープ正極材料の構造表示図である。図1に示されるように、本発明のリチウムイオン電池の金属勾配ドープ正極材料1は粉体とされ、且つ全体上、六方晶正極材料主体及び六方晶正極材料に連続濃度勾配ドープされた修飾金属を含み、粉体内部は無界面で無分層であり、リチウムイオン電池の金属勾配ドープ正極材料剤量は、化学式 f mol% dopedLizNiaCobMnc2 を用いて表示でき、そのうち、LizNiaCobMnc2は六方晶正極材料主体を表示し、Mは修飾金属を表示し、且つ修飾金属のモル含有量は六方晶正極材料中のニッケル、コバルト及びマンガンの総モル含有量の0.5%以上であり、且つ六方晶正極材料中のニッケル、コバルト及びマンガンの総モル含有量の10%以下であり、0.5%(a+b+c)≦f≦10%(a+b+c)を用いて表示され得る。 Please refer to FIG. FIG. 1 is a structural display diagram of a metal gradient doped positive electrode material of a lithium ion battery according to an embodiment of the present invention. As shown in FIG. 1, the metal gradient-doped positive electrode material 1 of the lithium ion battery of the present invention is a powder, and the modified metal is a hexagonal positive electrode material mainly and a hexagonal positive electrode material that is continuously doped with a gradient concentration. wherein the powder inside is no minute layer with no interface, metal gradient doped cathode material agent of the lithium-ion battery, can be displayed by using the formula f mol% dopedLi z Ni a Co b Mn c O 2, of which , Li z Ni a Co b Mn c O 2 represents the main component of the hexagonal positive electrode material, M represents the modified metal, and the molar content of the modified metal is the total of nickel, cobalt and manganese in the hexagonal positive electrode material. 0.5% or more of the molar content and 10% or less of the total molar content of nickel, cobalt and manganese in the hexagonal positive electrode material, 0.5% (a + b + c) ≦ f ≦ 10% (a + b + c) ) Can be displayed.

上述のリチウムイオン電池の金属勾配ドープ正極材料が含有する六方晶正極材料主体は、ニッケル、コバルト単一金属或いはニッケルとコバルト、ニッケルとマンガン、コバルトとマンガンの二種類の金属或いはニッケルとコバルトとマンガンの三種類の金属の、任意のいずれかの形式の酸化物で構成された正極材料活性ユニットとされ得て、並びに化学式LizNiaCobMnc2で表示され、その化学剤量範囲は、{0.9≦z≦1.2;a+b+c=1;0≦a≦1;0≦b≦1;0≦c≦0.6}を満足し、その濃度勾配を以てドープされた修飾金属は連続逓減の分布方式で六方晶正極材料主体中にドープされ、特に、修飾金属はニッケル(Ni)、コバルト(Co)、マンガン(Mn)の三つの活性金属元素とは異なる金属元素であり且つ電解液に対して比較的不活性の金属である。 The hexagonal positive electrode material mainly contained in the above-described metal gradient doped positive electrode material of lithium ion battery is nickel, cobalt single metal or nickel and cobalt, nickel and manganese, cobalt and manganese, two kinds of metals or nickel, cobalt and manganese A positive electrode material active unit composed of any type of oxides of the three types of metals, and represented by the chemical formula Li z Ni a Co b Mn c O 2 , and its chemical dosage range Satisfies the following conditions: {0.9 ≦ z ≦ 1.2; a + b + c = 1; 0 ≦ a ≦ 1; 0 ≦ b ≦ 1; 0 ≦ c ≦ 0.6} and is doped with the concentration gradient Is doped in the main material of hexagonal positive electrode in a continuously decreasing distribution system, and in particular, the modified metal is a metal element different from the three active metal elements of nickel (Ni), cobalt (Co), and manganese (Mn). It is a relatively inert metal with respect to the and and electrolyte.

比較的好ましい修飾金属は、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、チタン(Ti)、ケイ素(Si)、及びスズ(Sn)のうちの一種類の金属或いはこれらに類する金属元素とされる。特に、修飾金属は六方晶正極材料粉体の表面Aに集中するようにドープされ、並びに六方晶正極材料粉体のコアBに向けて連続逓減し、修飾金属濃度逓減の方向は図中のCに示されるようであり、これにより必要な連続濃度勾配分布を形成する。   Relatively preferred modified metals are magnesium (Mg), calcium (Ca), strontium (Sr), boron (B), aluminum (Al), gallium (Ga), indium (In), titanium (Ti), silicon (Si ) And tin (Sn), or a metal element similar to these metals. In particular, the modified metal is doped so as to concentrate on the surface A of the hexagonal positive electrode material powder, and continuously decreases toward the core B of the hexagonal positive electrode material powder, and the direction of decreasing the concentration of the modified metal is C in the figure. This forms the required continuous concentration gradient distribution.

このほか、本発明のリチウムイオン電池の金属勾配ドープ正極材料の空間群はR−3mとされ、その粉体粒径D50は0.5〜25μmの間であり、金属勾配濃度は材料中で粉体粒径の半分で変化し、すなわち、約0.25〜12.5μmの変化区間とされる。特に、本発明の正極材料のタップ密度(tap−density)は、少なくとも1.5gcm-3以上とされ、且つその表面面積は0.1〜25m2-1の間とされる。 In addition, the space group of the metal gradient doped positive electrode material of the lithium ion battery of the present invention is R-3m, the powder particle diameter D50 is between 0.5 and 25 μm, and the metal gradient concentration is powder in the material. It changes at half of the body particle size, that is, a change interval of about 0.25 to 12.5 μm. In particular, the tap density of the positive electrode material of the present invention is at least 1.5 gcm −3 or more, and the surface area is between 0.1 and 25 m 2 g −1 .

以下に実施例と比較例を以て、並びに物理及び電気化学特性分析を以て、本発明の改善された性能を明らかにする。   The improved performance of the present invention will be elucidated below with examples and comparative examples, as well as with physical and electrochemical property analyses.

[実施例1]
1.アルミニウム勾配ドープのリチウムニッケルコバルト酸化物正極材料の合成:
化学共沈殿法を利用して球状ニッケルコバルト水酸化物(Ni0.82Co0.18(OH)2)を合成し、さらに水酸化リチウムを加えて混合し、リチウム塩とニッケルコバルト金属含有量の剤量比を1.02:1.00とし、この混合物を酸素ガス雰囲気下で、750℃で10時間焼成してLiNi0.82Co0.182正極材料(LNCO)を得る。さらにリチウムニッケルコバルト酸化物(LNCO)を反応タンク中に入れ、共沈殿法を使用し、適量の水酸化アルミニウムに均一にリチウムニッケルコバルト酸化物表面を被覆させた後、酸素ガス雰囲気中で750℃で3時間焼成しアルミニウム金属勾配ドープのリチウムニッケルコバルト酸化物正極材料(表示符号:Al(GD)−LNCO)を得る。
[Example 1]
1. Synthesis of aluminum gradient doped lithium nickel cobalt oxide cathode material:
Spherical nickel cobalt hydroxide (Ni 0.82 Co 0.18 (OH) 2 ) was synthesized using the chemical coprecipitation method, and lithium hydroxide was added and mixed. The dose ratio of lithium salt to nickel cobalt metal content 1.02: 1.00, and this mixture is fired at 750 ° C. for 10 hours in an oxygen gas atmosphere to obtain a LiNi 0.82 Co 0.18 O 2 positive electrode material (LNCO). Further, lithium nickel cobalt oxide (LNCO) was placed in the reaction tank, and the coprecipitation method was used to uniformly coat the surface of the lithium nickel cobalt oxide with an appropriate amount of aluminum hydroxide, followed by 750 ° C. in an oxygen gas atmosphere. To obtain an aluminum metal gradient-doped lithium nickel cobalt oxide positive electrode material (designated code: Al (GD) -LNCO).

2.ボタン型電池の製造と試験:
正極極板の製作:正極材料として、石墨:カーボンブラック:PVdF(polyvinylidene fluoride)=90:6:4の比例で計り取り、その後、一定比率のNMPを加えて均一に混合してスラリーとなし、150μmナイフを利用してスラリーをアルミ箔(18μm)上に塗布する。極板を先に加熱プラットフォームで加熱乾燥させ、さらに真空加熱乾燥し、NMP溶剤を除去する。電池組立前に、極板を先に圧延し、さらに極板を裁断して直径約12mmのコイン型極板となす。リチウム金属を負極とし、Al(GD)−LNCO極板を正極とし、電解質溶液は1M LiPF6を、ECとDMCの体積比1:1の混合溶剤に溶かしたものとする。充放電範囲をそれぞれ2.8−4.3Vと2.8−4.5Vとし、充放電電流を0.1Cとし、Al(GD)−LNCO正極材料の各種電気化学特性を測定する。さらに、充放電範囲をそれぞれ2.8−4.3Vと2.8−4.5Vとし、各種充放電電流(C−rate)で、Al(GD)−LNCO正極材料の各種電気化学特性を測定する。
2. Manufacturing and testing of button-type batteries:
Production of positive electrode plate: As a positive electrode material, graphite: carbon black: PVdF (polyvinylidene fluoride) = 90: 6: 4 is measured in proportion, and then a certain ratio of NMP is added and mixed uniformly to form a slurry. The slurry is applied on aluminum foil (18 μm) using a 150 μm knife. The electrode plate is first heat-dried on a heating platform, and further vacuum-heated to remove the NMP solvent. Before battery assembly, the electrode plate is first rolled, and the electrode plate is further cut into a coin-type electrode plate having a diameter of about 12 mm. Assume that lithium metal is used as a negative electrode, an Al (GD) -LNCO electrode plate is used as a positive electrode, and 1 M LiPF 6 is dissolved in a mixed solvent of EC and DMC in a volume ratio of 1: 1. The charge / discharge ranges are set to 2.8-4.3V and 2.8-4.5V, respectively, the charge / discharge current is set to 0.1C, and various electrochemical characteristics of the Al (GD) -LNCO positive electrode material are measured. Furthermore, charge / discharge ranges were set to 2.8-4.3V and 2.8-4.5V, respectively, and various electrochemical characteristics of Al (GD) -LNCO positive electrode materials were measured at various charge / discharge currents (C-rate). To do.

3.Al(GD)−LNCO正極材料の示差走査熱量計(DSC)測定:
ボタン型電池を構成し、4.3Vまで充電し、鉗子を用いてボタン型電池を分解し、正極極板を取り出し、並びに正極材料を削ぎ取り、3mgの正極材料を取ってアルミ坩堝に入れ、並びに3μL電解液を加え、さらにアルミ坩堝をかしめ接合しシールし、5℃ min-1の加熱速度とし、測定器の走査温度範囲は180−280℃とする。
3. Differential scanning calorimetry (DSC) measurement of Al (GD) -LNCO positive electrode material:
Configure the button type battery, charge to 4.3V, disassemble the button type battery with forceps, take out the positive electrode plate, scrape the positive electrode material, take 3 mg of the positive electrode material, put it in the aluminum crucible, In addition, 3 μL electrolytic solution is added, and an aluminum crucible is further caulked and bonded, and the heating rate is 5 ° C. min −1 , and the scanning temperature range of the measuring device is 180-280 ° C.

[比較例1]
本実施例の比較に用いる比較例1、すなわち、未修飾のリチウムニッケルコバルト酸化物正極材料(符号LNCOで表示される)は、その合成方法が以下のとおりである。すなわち、化学共沈殿法を利用して球状ニッケルコバルト水酸化物(Ni0.82Co0.18(OH)2)を合成し、さらに水酸化リチウムを加えて混合し、リチウム塩とニッケルコバルト金属含有量の剤量比を1.02:1.00とし、この混合物を酸素ガス雰囲気下で、750℃で13時間焼成してLiNi0.82Co0.182正極材料(LNCO)を得る。後続のボタン型リチウム電池の製造と試験は実施例Al(GD)−LNCOと同じであり、LNCO正極材料の示差走査熱量計(DSC)測定も実施例Al(GD)−LNCOと同じである。
[Comparative Example 1]
The synthesis method of Comparative Example 1 used for the comparison of this example, that is, an unmodified lithium nickel cobalt oxide positive electrode material (indicated by the symbol LNCO) is as follows. That is, spherical nickel cobalt hydroxide (Ni 0.82 Co 0.18 (OH) 2 ) is synthesized using a chemical coprecipitation method, lithium hydroxide is added and mixed, and the lithium salt and nickel cobalt metal content agent are mixed. The quantity ratio is 1.02: 1.00, and this mixture is fired at 750 ° C. for 13 hours in an oxygen gas atmosphere to obtain a LiNi 0.82 Co 0.18 O 2 positive electrode material (LNCO). Subsequent button-type lithium batteries were manufactured and tested in the same manner as Example Al (GD) -LNCO, and differential scanning calorimetry (DSC) measurements of the LNCO positive electrode material were also the same as in Example Al (GD) -LNCO.

実施例1及び比較例1の試験結果はそれぞれ以下のようであり、試験結果は図2から図6に示されるとおりである。   The test results of Example 1 and Comparative Example 1 are as follows, and the test results are as shown in FIGS.

物理特性分析に関して、誘導結合プラズマ発光分光分析(ICP/OES)とエネルギー分散型X線分析(EDS)を使用して、実施例Al(GD)−LNCOの正極材料に対して全体、表面及び断面の元素定量分析を行う。ICP/OESでアルミニウム元素のリチウムニッケルコバルト酸化物全体へのドープのモル比率は2.55%である。図2(a)はAl(GD)−LNCO正極材料の表面形態とされ、図2(b)はAl(GD)−LNCO正極材料表面のアルミニウム元素分布図であり、Al(GD)−LNCO正極材料表面に確実に高剤量のアルミニウム元素が存在することを示す。このほか、図2(c)はAl(GD)−LNCO正極材料の断面形態を示し、Al(GD)−LNCO材料粉体中には界面がなく、且つ分層の構造がないことを示し、図2(d)は材料破断面のアルミニウム元素分布比率定量分析グラフであり、Al(GD)−LNCO材料表面のアルミニウム元素ドープ比率が8.48%とされ、Al(GD)−LNCO材料内部の表面からの距離が8.5μmの部分のアルミニウム元素ドープモル比率は0.83%に下がり、且つAl(GD)−LNCO正極材料のアルミニウム元素分布は表面からコアに向けて連続勾配逓減の分布を呈する。   For physical property analysis, the whole, surface and cross-section for the positive electrode material of Example Al (GD) -LNCO using inductively coupled plasma emission spectroscopy (ICP / OES) and energy dispersive X-ray analysis (EDS) Quantitative elemental analysis. In ICP / OES, the molar ratio of the doping of the aluminum element to the entire lithium nickel cobalt oxide is 2.55%. 2A is a surface form of the Al (GD) -LNCO positive electrode material, and FIG. 2B is an aluminum element distribution map on the surface of the Al (GD) -LNCO positive electrode material, and the Al (GD) -LNCO positive electrode. It shows that a high amount of aluminum element is surely present on the material surface. In addition, FIG. 2 (c) shows a cross-sectional form of the Al (GD) -LNCO positive electrode material, showing that there is no interface and no layered structure in the Al (GD) -LNCO material powder, FIG. 2D is a quantitative analysis graph of the aluminum element distribution ratio on the material fracture surface, where the aluminum element doping ratio on the surface of the Al (GD) -LNCO material is 8.48%, and the inside of the Al (GD) -LNCO material. The aluminum element doping molar ratio in the portion whose distance from the surface is 8.5 μm is reduced to 0.83%, and the aluminum element distribution of the Al (GD) -LNCO positive electrode material exhibits a continuously decreasing gradient from the surface toward the core. .

電気化学特性分析に関しては、本実施例のAl(GD)−LNCOと比較例1のLNCO材料の電気化学特性の差異は、図3中の材料充放電(0.1C)の充放電曲線特性を比較することで、明らかに見て取れる。電圧範囲2.8−4.3Vの間では、実施例のAl(GD)−LNCOの放電静電容量は182.7mAhg-1であり、不可逆の静電容量は33.2mAhg-1であり、もし、電圧範囲を2.8−4.5Vの間に引き上げると、実施例のAl(GD)−LNCOの放電静電容量は197.8mAhg-1となり、不可逆の静電容量は54.3mAhg-1とされる。 Regarding the electrochemical property analysis, the difference in the electrochemical property between the Al (GD) -LNCO of this example and the LNCO material of Comparative Example 1 is the charge / discharge curve property of the material charge / discharge (0.1C) in FIG. By comparing, it can be clearly seen. In the voltage range 2.8-4.3V, the discharge capacitance of the Al (GD) -LNCO of the example is 182.7 mAhg −1 and the irreversible capacitance is 33.2 mAhg −1 . If the voltage range is raised to 2.8-4.5 V, the discharge capacitance of Al (GD) -LNCO of the example is 197.8 mAhg −1 and the irreversible capacitance is 54.3 mAhg −. 1

このほか、図4は本発明の実施例1及び比較例1の異なる放電電流条件に変更したときの充放電曲線図である。そのうち、定電流充放電条件は、充電0.2C、放電0.5C〜7Cに設定され、作業電圧は2.8〜4.3Vの間である。図中、明らかに観察されることは、実施例のAl(GD)−LNCOは比較的高い放電電圧プラットフォームを有し、すなわち、7Cの放電電流下で、82.06%の高い静電容量を保有し、比較例1のLNCOは僅かに71.10%の静電容量が残るにすぎない。   In addition, FIG. 4 is a charge / discharge curve diagram when the discharge current conditions are changed to those in Example 1 and Comparative Example 1 of the present invention. Among them, the constant current charge / discharge conditions are set to charge 0.2C, discharge 0.5C to 7C, and the working voltage is between 2.8 to 4.3V. It is clearly observed in the figure that the example Al (GD) -LNCO has a relatively high discharge voltage platform, ie, a high capacitance of 82.06% under a discharge current of 7C. The LNCO of Comparative Example 1 only has a capacitance of 71.10%.

図5の本発明の実施例1及び比較例1のサイクル寿命曲線図には、0.5Cの定電流で電圧範囲2.8−4.3Vの間で、材料に対して70回の充放電を行ない、計算して実施例Al(GD)−LNCOがなおも原静電容量の91.11%を維持していることが分かり、比較例1のLNCOは僅かに原静電容量の85.75%しか残っていない。もし電圧範囲を2.8−4.5Vに改め、並びに0.5C定電流で材料に対して充放電を行ない、40回の充放電試験を行うと、計算によれば実施例Al(GD)−LNCOはなおも原静電容量の89.98%の静電容量を維持し、比較例1のLNCOは原静電容量の79.23%しか残っていないことが分かる。   The cycle life curves of Example 1 of the present invention and Comparative Example 1 in FIG. 5 show that the material is charged and discharged 70 times in a voltage range of 2.8-4.3 V at a constant current of 0.5 C. And calculated that the example Al (GD) -LNCO still maintains 91.11% of the original capacitance, while the LNCO of Comparative Example 1 has a slightly lower 85. Only 75% remains. If the voltage range is changed to 2.8-4.5 V, the material is charged / discharged at a constant current of 0.5 C, and 40 charge / discharge tests are performed, the calculation results in Example Al (GD). It can be seen that -LNCO still maintains a capacitance of 89.98% of the original capacitance, while LNCO of Comparative Example 1 remains only 79.23% of the original capacitance.

これにより、以上の結果を総合すると、実施例Al(GD)−LNCOは確実に比較例1のLNCOに較べて優れた電気化学特性を有することが証明され得る。   Thus, when the above results are combined, it can be proved that the example Al (GD) -LNCO surely has superior electrochemical characteristics as compared with the LNCO of Comparative Example 1.

さらに図6を参照されたい。本実施例1及び比較例1の示差走査熱量計(DSC)測定図であり、図示されるように、比較例1の放熱分解温度は約214.3℃であり、しかし実施例Al(GD)−LNCOは明らかに引き上げられた分解温度を有し、その放熱分解温度は約229.9℃まで引き上げられ、且つ放熱量は855.06Jg-1より591.76Jg-1に下がり、これにより実施例Al(GD)−LNCOは比較的良好な熱安定性を有することが証明された。 See further FIG. FIG. 3 is a differential scanning calorimeter (DSC) measurement diagram of Example 1 and Comparative Example 1; as shown, the heat dissociation temperature of Comparative Example 1 is about 214.3 ° C., but Example Al (GD) -LNCO has a clearly increased decomposition temperature, its heat dissociation temperature is increased to about 229.9 ° C., and the heat dissipation is reduced from 855.06 Jg −1 to 591.76 Jg −1 , thereby Al (GD) -LNCO has proven to have a relatively good thermal stability.

[実施例2]
1.マグネシウム勾配ドープのリチウムニッケルコバルトマンガン酸化物正極材料の合成:
化学共沈殿法を利用して球状ニッケルコバルトマンガン水酸化物(Ni0.51Co0.29Mn0.20(OH)2)を合成した後、まず球状ニッケルコバルトマンガン水酸化物を酸素ガス雰囲気下で600℃で10時間焼結し、球状ニッケルコバルトマンガン酸化物を得た後、さらに水酸化リチウムを加えて混合し、リチウム塩とニッケルコバルトマンガン金属含有量の剤量比を1.02:1.00とし、この混合物を酸素ガス雰囲気下で、850℃で18時間焼成してLiNi0.51Co0.29Mn0.202正極材料(LNCMO)を得る。さらにリチウムニッケルコバルトマンガン酸化物(LNCMO)を反応タンク中に入れ、共沈殿法を使用し、適量の水酸化マグネシウムに均一にリチウムニッケルコバルトマンガン酸化物表面を被覆させた後、酸素ガス雰囲気中で850℃で2時間焼成しマグネシウム勾配ドープのリチウムニッケルコバルトマンガン酸化物正極材料(表示符号はMg(GD)−LNCMO)を得る。
[Example 2]
1. Synthesis of magnesium gradient doped lithium nickel cobalt manganese oxide cathode material:
After synthesizing spherical nickel cobalt manganese hydroxide (Ni 0.51 Co 0.29 Mn 0.20 (OH) 2 ) using a chemical coprecipitation method, first, spherical nickel cobalt manganese hydroxide is synthesized at 600 ° C. under an oxygen gas atmosphere. After sintering for a while to obtain spherical nickel cobalt manganese oxide, lithium hydroxide was further added and mixed, and the dose ratio of lithium salt to nickel cobalt manganese metal content was set to 1.02: 1.00. The mixture is calcined at 850 ° C. for 18 hours under an oxygen gas atmosphere to obtain a LiNi 0.51 Co 0.29 Mn 0.20 O 2 positive electrode material (LNCMO). Further, lithium nickel cobalt manganese oxide (LNCMO) is put in a reaction tank, and after coprecipitation is used, the lithium nickel cobalt manganese oxide surface is uniformly coated on a suitable amount of magnesium hydroxide, and then in an oxygen gas atmosphere. Calcination is performed at 850 ° C. for 2 hours to obtain a magnesium gradient-doped lithium nickel cobalt manganese oxide positive electrode material (indicated by Mg (GD) -LNCMO).

2.ボタン型電池の製造と試験:
正極極板の製作:正極材料として、石墨:カーボンブラック:PVdF(polyvinylidene fluoride)=91:6:3の比例で計り取り、その後、一定比率のNMPを加えて均一に混合してスラリーとなし、150μmナイフを利用してスラリーをアルミ箔(18μm)上に塗布する。極板を先に加熱プラットフォームで加熱乾燥させ、さらに真空加熱乾燥し、NMP溶剤を除去する。電池組立前に、極板を先に圧延し、さらに極板を裁断して直径約12mmのコイン型極板となす。リチウム金属を負極とし、Mg(GD)−LNCMO極板を正極とし、電解質溶液は1M LiPF6をECとDMCの体積比1:1の混合溶剤に溶したものとする。充放電範囲をそれぞれ2.8−4.3Vと2.8−4.5Vとし、各種充放電電流(C−rate)で、Mg(GD)−LNCMO正極材料の各種電気化学特性を測定する。
2. Manufacturing and testing of button-type batteries:
Production of positive electrode plate: As a positive electrode material, graphite: carbon black: PVdF (polyvinylidene fluoride) = 91: 6: 3 is measured in proportion, and then a certain ratio of NMP is added and mixed uniformly to form a slurry. The slurry is applied on aluminum foil (18 μm) using a 150 μm knife. The electrode plate is first heat-dried on a heating platform, and further vacuum-heated to remove the NMP solvent. Before battery assembly, the electrode plate is first rolled, and the electrode plate is further cut into a coin-type electrode plate having a diameter of about 12 mm. The lithium metal is used as the negative electrode, the Mg (GD) -LNCMO electrode plate is used as the positive electrode, and the electrolyte solution is prepared by dissolving 1M LiPF 6 in a mixed solvent of EC and DMC in a volume ratio of 1: 1. The charge / discharge ranges are 2.8-4.3V and 2.8-4.5V, respectively, and various electrochemical characteristics of the Mg (GD) -LNCMO positive electrode material are measured at various charge / discharge currents (C-rate).

3.Mg(GD)−LNCMO正極材料の示差走査熱量計(DSC)測定:
ボタン型電池を構成し、4.5Vまで充電し、鉗子を用いてボタン型電池を分解し、正極極板を取り出し、並びに正極材料を削ぎ取り、3mgの正極材料を取ってアルミ坩堝に入れ、並びに3μL電解液を加え、さらにアルミ坩堝をかしめ接合しシールし、5℃ min-1の加熱速度とし、測定器の走査温度範囲は220−300℃とする。
3. Differential scanning calorimetry (DSC) measurement of Mg (GD) -LNCMO positive electrode material:
Configure the button type battery, charge to 4.5V, disassemble the button type battery with forceps, take out the positive electrode plate, scrape the positive electrode material, take 3 mg of the positive electrode material, put it in the aluminum crucible, In addition, 3 μL electrolyte is added, and an aluminum crucible is caulked and sealed, and the heating rate is 5 ° C. min −1 , and the scanning temperature range of the measuring device is 220-300 ° C.

[比較例2]
比較例2は、すなわち、未修飾のリチウムニッケルコバルトマンガン酸化物正極材料(符号LNCMOで表示される)は、その合成方法が以下のとおりである。すなわち、化学共沈殿法を利用して球状ニッケルコバルトマンガン水酸化物(Ni0.51Co0.29Mn0.20(OH)2)を合成し、球状ニッケルコバルトマンガン水酸化物を酸素雰囲気下で600℃の温度で10時間焼成し、球状ニッケルコバルトマンガン酸化物を得る。さらに水酸化リチウムを加えて混合し、リチウム塩とニッケルコバルトマンガン含有量の剤量比を1.02:1.00とし、この混合物を酸素ガス雰囲気下で、850℃で20時間焼成してLiNi0.51Co0.29Mn0.202正極材料(LNCMO)を得る。後続のボタン型リチウム電池の製造と試験は実施例Mg(GD)−LNCMOと同じであり、LNCMO正極材料の示差走査熱量計(DSC)測定も実施例Mg(GD)−LNCMOと同じである。
[Comparative Example 2]
In Comparative Example 2, that is, an unmodified lithium nickel cobalt manganese oxide positive electrode material (indicated by symbol LNCMO), the synthesis method is as follows. That is, spherical nickel cobalt manganese hydroxide (Ni 0.51 Co 0.29 Mn 0.20 (OH) 2 ) was synthesized using a chemical coprecipitation method, and the spherical nickel cobalt manganese hydroxide was synthesized at a temperature of 600 ° C. in an oxygen atmosphere. Sinter for 10 hours to obtain spherical nickel cobalt manganese oxide. Further, lithium hydroxide was added and mixed, and the dose ratio of lithium salt to nickel cobalt manganese content was set to 1.02: 1.00. This mixture was calcined at 850 ° C. for 20 hours in an oxygen gas atmosphere, and LiNi. 0.51 Co 0.29 Mn 0.20 O 2 cathode material (LNCMO) is obtained. Subsequent button-type lithium batteries are manufactured and tested in the same manner as Example Mg (GD) -LNCMO, and differential scanning calorimetry (DSC) measurements of the LNCMO cathode material are also the same as Example Mg (GD) -LNCMO.

実施例2及び比較例2の試験結果はそれぞれ以下のようであり、試験結果は図7から図11に示されるとおりである。   The test results of Example 2 and Comparative Example 2 are as follows, and the test results are as shown in FIGS.

物理特性分析に関して、誘導結合プラズマ発光分光分析(ICP/OES)とエネルギー分散型X線分析(EDS)を使用して、実施例Mg(GD)−LNCMOの正極材料に対して全体、表面及び断面の元素定量分析を行う。ICP/OESで測定したマグネシウム元素のリチウムニッケルコバルトマンガン酸化物全体へのドープのモル比率は1.7%である。図7(a)はMg(GD)−LNCMO正極材料の表面形態とされ、図7(b)はMg(GD)−LNCMO正極材料表面のマグネシウム元素分布図であり、Mg(GD)−LNCMO正極材料表面に確実に高剤量のマグネシウム元素が存在することを示す。このほか、図7(c)はMg(GD)−LNCMO正極材料の断面形態を示し、Mg(GD)−LNCMO材料粉体中には界面がなく、且つ分層の構造がないことを示し、図7(d)は材料破断面のマグネシウム元素分布比率定量分析グラフであり、Mg(GD)−LNCMO材料表面のマグネシウム元素ドープ比率が2.5%とされ、Mg(GD)−LNCMO材料内部の表面からの距離が6.5μmの部分のマグネシウム元素ドープモル比率は0.5%に下がり、且つMg(GD)−LNCMO正極材料のマグネシウム元素分布は表面からコアに向けて連続勾配逓減の分布を呈する。   For physical property analysis, inductively coupled plasma emission spectroscopy (ICP / OES) and energy dispersive X-ray analysis (EDS) are used for the cathode material of Example Mg (GD) -LNCMO as a whole, surface and cross section. Quantitative elemental analysis. The molar ratio of the magnesium element to the entire lithium nickel cobalt manganese oxide measured by ICP / OES is 1.7%. 7A is a surface form of the Mg (GD) -LNCMO positive electrode material, and FIG. 7B is a magnesium element distribution diagram on the surface of the Mg (GD) -LNCMO positive electrode material. Mg (GD) -LNCMO positive electrode It shows that a high amount of magnesium element is surely present on the material surface. In addition, FIG. 7C shows a cross-sectional form of the Mg (GD) -LNCMO positive electrode material, showing that there is no interface and no layered structure in the Mg (GD) -LNCMO material powder, FIG. 7 (d) is a quantitative analysis graph of the magnesium element distribution ratio on the material fracture surface, where the magnesium element doping ratio on the surface of the Mg (GD) -LNCMO material is 2.5%, and the Mg (GD) -LNCMO material inside The magnesium element doping molar ratio of the portion whose distance from the surface is 6.5 μm is reduced to 0.5%, and the magnesium element distribution of the Mg (GD) -LNCMO positive electrode material exhibits a decreasing gradient from the surface toward the core. .

電気化学特性分析に関しては、本実施例のMg(GD)−LNCMOと比較例2のLNCMO材料の電気化学特性の差異は、図8中の材料充放電(0.1C)の充放電曲線特性を比較することで、明らかに見て取れる。電圧範囲2.8−4.3Vの間では、実施例のMg(GD)−LNCMOの放電静電容量は160.3mAhg-1であり、不可逆の静電容量は30.2mAhg-1であり、もし、電圧範囲が2.8−4.5Vの間であると、実施例のMg(GD)−LNCMOの放電静電容量は189.9mAhg-1となり、不可逆の静電容量は29.2mAhg-1とされる。さらに、図9の各種充放電曲線図から分かるように、定電流条件が充電0.2C及び放電0.5C−7Cであると、作業電圧が2.8−4.3Vの間のとき、実施例のMg(GD)−LNCMOは比較的高い放電電圧プラットフォームを有し、すなわち、7Cの放電電流下で、すなわち78.4%の高い静電容量を保有できるが、比較例2のLNCMOは72.5%の静電容量しか残っていない。 Regarding the electrochemical property analysis, the difference between the electrochemical properties of the Mg (GD) -LNCMO of this example and the LNCMO material of Comparative Example 2 is the charge / discharge curve property of the material charge / discharge (0.1C) in FIG. By comparing, it can be clearly seen. In the voltage range 2.8-4.3 V, the discharge capacitance of the Mg (GD) -LNCMO of the example is 160.3 mAhg −1 and the irreversible capacitance is 30.2 mAhg −1 . If the voltage range is between 2.8 and 4.5 V, the discharge capacitance of Mg (GD) -LNCMO in the example is 189.9 mAhg −1 and the irreversible capacitance is 29.2 mAhg −. 1 Furthermore, as can be seen from the various charge / discharge curve diagrams of FIG. 9, when the constant current condition is charge 0.2C and discharge 0.5C-7C, the working voltage is between 2.8-4.3V. The example Mg (GD) -LNCMO has a relatively high discharge voltage platform, ie it can have a high capacitance of 78.4% under a discharge current of 7C, ie 78.4%, while the LNCMO of Comparative Example 2 is 72 Only 5% capacitance remains.

さらに図10のサイクル寿命曲線図に示されるように、0.5Cの定電流で電圧範囲2.8−4.3Vの間で、材料に対して70回の充放電を行なったところ、計算により実施例Mg(GD)−LNCMOがなおも原静電容量の91.7%を維持していることが分かり、比較例2のLNCMOは僅かに原静電容量の83.6%しか残っていない。もし電圧範囲を2.8−4.5Vに改め、並びに0.5Cの定電流で材料に対して充放電を行ない、70回の充放電試験を行うと、計算によれば実施例Mg(GD)−LNCMOはなおも原静電容量の86.7%の静電容量を維持し、比較例2のLNCMOは原静電容量の71.3%しか残っていないことが分かる。   Further, as shown in the cycle life curve diagram of FIG. 10, the material was charged and discharged 70 times in the voltage range of 2.8 to 4.3 V at a constant current of 0.5 C. It can be seen that the example Mg (GD) -LNCMO still maintains 91.7% of the original capacitance, and the LNCMO of Comparative Example 2 remains only 83.6% of the original capacitance. . If the voltage range is changed to 2.8-4.5V, the material is charged / discharged at a constant current of 0.5C, and the charge / discharge test is performed 70 times, the calculation results in the example Mg (GD ) -LNCMO still maintains a capacitance of 86.7% of the original capacitance, and it can be seen that LNCMO of Comparative Example 2 remains only 71.3% of the original capacitance.

以上の結果を総合すると、実施例Mg(GD)−LNCMOは確実に比較例2のLNCMOに較べて優れた電気化学特性を有することが証明され得る。   Taking the above results together, it can be proved that the example Mg (GD) -LNCMO surely has superior electrochemical properties as compared with the LNCMO of Comparative Example 2.

さらに図11を参照されたい。それは本実施例2及び比較例2の示差走査熱量計(DSC)測定図であり、図示されるように、比較例2のLNCMOの放熱分解温度は約254℃であるが、実施例Mg(GD)−LNCMOは明らかに引き上げられた分解温度を有し、その放熱分解温度は約266℃まで引き上げられ、且つ放熱量は227.3Jg-1より115.9Jg-1に下がり、これにより実施例Mg(GD)−LNCMOは比較的良好な熱安定性を有することが証明された。 See further FIG. It is a differential scanning calorimeter (DSC) measurement diagram of the present Example 2 and Comparative Example 2. As shown in the figure, the heat dissipation decomposition temperature of LNCMO of Comparative Example 2 is about 254 ° C., but Example Mg (GD ) -LNCMO has an apparently increased decomposition temperature, its heat dissociation decomposition temperature is increased to about 266 ° C., and the heat dissipation amount is reduced from 227.3 Jg −1 to 115.9 Jg −1 , thus (GD) -LNCMO has been shown to have relatively good thermal stability.

全体的には、本発明の正極材料を利用して製造されたリチウム二次電池は任意の円形及び方形のステンレス、アルミ及びアルミ合金缶外装のリチウム電池を含み得て、また、任意のアルミ箔パウチ熱圧シール方式で包装された高分子リチウム電池及び関係外装設計のリチウム電池に適用され、これにより電池の安全性と静電容量をアップできる。   In general, the lithium secondary battery manufactured using the positive electrode material of the present invention can include any circular and square stainless steel, aluminum and aluminum alloy can-covered lithium batteries, and any aluminum foil. It can be applied to polymer lithium batteries packaged with a pouch hot-pressure sealing method and lithium batteries with a related exterior design, thereby improving battery safety and capacitance.

以上をまとめると、本発明の特徴は、濃度勾配を有するよう金属がドープされた六方晶正極材料を提供し、粉体表面上の比較的高い金属ドープ濃度を利用して材料の電解液に対する反応性を低減し、またコアに向けて連続して漸次低減する金属ドープ濃度により、ドープ金属の総含有量を減らし、高電圧下で材料の高い静電容量、使用寿命を共に考慮し、並びに使用上の安全性を改善し、正極材料の高エネルギー化による実用性と産業上の利用性を増し、リチウム電池製作に必要な正極極板への応用に非常に適合する。   In summary, the features of the present invention provide a hexagonal positive electrode material doped with metal to have a concentration gradient, and the reaction of the material to the electrolyte using a relatively high metal doping concentration on the powder surface. The metal doping concentration that reduces the properties and continuously and gradually decreases toward the core, reduces the total content of the doped metal, considers both the high capacitance and service life of the material under high voltage, and use Improves the above safety, increases the practicality and industrial applicability by increasing the energy of the positive electrode material, and is very suitable for application to the positive electrode plate necessary for lithium battery fabrication.

以上は本発明の好ましい実施例の説明に過ぎず、並びに本発明を限定するものではなく、本発明に提示の精神より逸脱せずに完成されるその他の同等の効果の修飾或いは置換は、いずれも本発明の権利請求範囲内に属する。   The foregoing is only a description of the preferred embodiment of the present invention, and is not intended to limit the present invention. Other equivalent effect modifications or substitutions that may be accomplished without departing from the spirit of the present invention are not Are also within the scope of the claims of the present invention.

1 リチウムイオン電池の金属勾配ドープ正極材料
A 表面
B コア
C 修飾金属濃度低減方向
1 Lithium-ion battery metal gradient doped cathode material A Surface B Core C Modified metal concentration reduction direction

Claims (7)

リチウムイオン電池の金属勾配ドープ正極材料であって、粉体とされてリチウムイオン電池に使用され、六方晶正極材料主体及び修飾金属を包含し、該修飾金属は、連続濃度勾配分布し該六方晶正極材料主体中にドープされ、該リチウムイオン電池の金属勾配ドープ正極材料の全体の組成は化学式 f mol% doped LizNiaCobMnc2と表示され、そのうち、LizNiaCobMnc2は六方晶正極材料主体を表示し、該六方晶正極材料主体はリチウムと、ニッケル、コバルトの単一金属、或いはニッケルとコバルト、ニッケルとマンガン、コバルトとマンガンの二種類の金属、或いはニッケルとコバルトとマンガンの三種類の金属の任意の形式の酸化物で組成された正極材料活性ユニットを含み、該化学式中のa、b、c、zの化学剤量範囲は、それぞれ0.9≦z≦1.2、a+b+c=1、0≦a≦1、0≦b≦1、0≦c≦0.6とされ、Mは該修飾金属或いは類金属元素とされ、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、チタン(Ti)、ケイ素(Si)、及びスズ(Sn)のうちの少なくとも一種類とされ、且つ該修飾金属或いは該類金属元素のモル含有量はfで表示され、該六方晶正極材料中のニッケル、コバルト及びマンガンの総モル含有量の0.5%以上であると共に、該六方晶正極材料中のニッケル、コバルト及びマンガンの総モル含有量の10%以下であり、0.5%(a+b+c)≦f≦10%(a+b+c)で表示されることを特徴とする、リチウムイオン電池の金属勾配ドープ正極材料。 A metal gradient-doped positive electrode material for a lithium ion battery, used as a powder in a lithium ion battery, comprising a hexagonal positive electrode material main body and a modified metal, wherein the modified metal has a continuous concentration gradient distribution and the hexagonal crystal The overall composition of the metal gradient-doped positive electrode material of the lithium ion battery, doped into the main body of the positive electrode material, is represented by the chemical formula f mol% doped Li z Ni a Co b Mn c O 2 , of which Li z Ni a Co b Mn c O 2 represents a hexagonal positive electrode material main body, the hexagonal positive electrode material main body is lithium and nickel, a single metal of cobalt, or nickel and cobalt, nickel and manganese, cobalt and manganese, Or a positive electrode material active unit composed of an oxide of any type of three metals of nickel, cobalt and manganese, wherein a, b in the chemical formula The chemical agent amount ranges of c and z are 0.9 ≦ z ≦ 1.2, a + b + c = 1, 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 0.6, respectively. Modified metal or similar metal element, magnesium (Mg), calcium (Ca), strontium (Sr), boron (B), aluminum (Al), gallium (Ga), indium (In), titanium (Ti), silicon (Si) and at least one of tin (Sn), and the molar content of the modified metal or the similar metal element is denoted by f, and the nickel, cobalt, and manganese in the hexagonal positive electrode material 0.5% or more of the total molar content, 10% or lower of the total molar content of nickel, cobalt and manganese in the hexagonal positive electrode material, 0.5% (a + b + c) ≦ f ≦ 10% Displayed as (a + b + c) A metal gradient doped positive electrode material for a lithium ion battery. 請求項1記載のリチウムイオン電池の金属勾配ドープ正極材料において、該粉体中に界面を有さず、分層の構造も有さないことを特徴とする、リチウムイオン電池の金属勾配ドープ正極材料。   The metal gradient doped positive electrode material for a lithium ion battery according to claim 1, wherein the powder has no interface and no layered structure. . 請求項1記載のリチウムイオン電池の金属勾配ドープ正極材料において、該修飾金属の、該粉体の表面の濃度は該粉体のコアの修飾金属の濃度より大きく、該修飾金属の濃度は該粉体の表面より該粉体のコアの方向に向けて連続勾配を呈して逓減し、該粉体の表面のニッケル、コバルト、マンガン金属元素の全体化学剤量は該コアのニッケル、コバルト、マンガン金属元素の全体化学剤量より少なく、ニッケル、コバルト、マンガン金属元素の濃度は該粉体の表面より該粉体のコアの方向に連続勾配を呈して増加することを特徴とする、リチウムイオン電池の金属勾配ドープ正極材料。   2. The metal gradient doped positive electrode material for a lithium ion battery according to claim 1, wherein the concentration of the modified metal on the surface of the powder is higher than the concentration of the modified metal in the core of the powder, and the concentration of the modified metal is the powder. The total chemical amount of nickel, cobalt, and manganese metal elements on the surface of the powder decreases from the body surface toward the core of the powder. The amount of nickel, cobalt, and manganese metal elements is less than the total chemical amount of the element, and the concentration of nickel, cobalt, and manganese metal elements increases in a continuous gradient from the surface of the powder toward the core of the powder. Metal gradient doped cathode material. 請求項1記載のリチウムイオン電池の金属勾配ドープ正極材料において、R−3m空間群を具えたことを特徴とする、リチウムイオン電池の金属勾配ドープ正極材料。   2. The metal gradient doped positive electrode material for lithium ion batteries according to claim 1, comprising an R-3m space group. 請求項1記載のリチウムイオン電池の金属勾配ドープ正極材料において、該粉体顆粒の平均粒径(D50)は0.5〜25μmの範囲内であることを特徴とする、リチウムイオン電池の金属勾配ドープ正極材料。 In the metal gradient doping positive electrode material of the lithium ion battery of claim 1, wherein the average particle size of the powder granules (D 50) is being in the range of 0.5 to 25, and lithium-ion batteries Gradient doped cathode material. 請求項1記載のリチウムイオン電池の金属勾配ドープ正極材料において、該粉体のタップ密度は少なくとも1.5g cm-3以上であることを特徴とする、リチウムイオン電池の金属勾配ドープ正極材料。 2. The metal gradient doped positive electrode material for lithium ion batteries according to claim 1, wherein the powder has a tap density of at least 1.5 g cm −3 or more. 請求項1記載のリチウムイオン電池の金属勾配ドープ正極材料において、該粉体の比表面積は、0.1〜25m2-1の範囲内であることを特徴とする、リチウムイオン電池の金属勾配ドープ正極材料。 2. The metal gradient-doped positive electrode material for a lithium ion battery according to claim 1, wherein the specific surface area of the powder is in the range of 0.1 to 25 m 2 g −1. Doped cathode material.
JP2015015556A 2015-01-29 2015-01-29 Metal gradient doped cathode material for lithium ion battery Active JP6034413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015015556A JP6034413B2 (en) 2015-01-29 2015-01-29 Metal gradient doped cathode material for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015015556A JP6034413B2 (en) 2015-01-29 2015-01-29 Metal gradient doped cathode material for lithium ion battery

Publications (2)

Publication Number Publication Date
JP2016139583A true JP2016139583A (en) 2016-08-04
JP6034413B2 JP6034413B2 (en) 2016-11-30

Family

ID=56560359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015015556A Active JP6034413B2 (en) 2015-01-29 2015-01-29 Metal gradient doped cathode material for lithium ion battery

Country Status (1)

Country Link
JP (1) JP6034413B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107265519A (en) * 2017-06-23 2017-10-20 海南大学 A kind of application for the method and its presoma for improving lithium ion cell positive gradient distributed material precursor synthesis particle size uniformity
CN108269997A (en) * 2016-12-31 2018-07-10 北京当升材料科技股份有限公司 A kind of lithium ion battery gradient anode material and preparation method thereof
CN109626447A (en) * 2018-12-13 2019-04-16 南开大学 Nickelic anode material for lithium-ion batteries of a kind of concentration gradient magnesium doping and preparation method thereof
WO2020059803A1 (en) * 2018-09-19 2020-03-26 株式会社村田製作所 Secondary battery
KR20200067009A (en) * 2018-12-03 2020-06-11 주식회사 엘지화학 Positive electrode active material for secondary battery, method for manufacturing the same, positive electrode for secondary battery and lithium secondary battery comprising the same
WO2021025479A1 (en) * 2019-08-07 2021-02-11 주식회사 엘 앤 에프 Secondary battery active material
CN113299902A (en) * 2021-05-24 2021-08-24 南开大学 Preparation of concentration gradient magnesium-doped lithium-rich manganese-based oxide positive electrode material and application of concentration gradient magnesium-doped lithium-rich manganese-based oxide positive electrode material in lithium battery
CN114551863A (en) * 2022-04-21 2022-05-27 浙江帕瓦新能源股份有限公司 Precursor material with element concentration gradient distribution, preparation method thereof and positive electrode material
JP2022534939A (en) * 2019-05-28 2022-08-04 ビーワイディー カンパニー リミテッド Cathode materials for composite lithium-ion batteries, lithium-ion batteries and automobiles
WO2022198852A1 (en) * 2021-03-25 2022-09-29 宁德新能源科技有限公司 Positive electrode active material, electrochemical device using positive electrode active material, and electronic device
JP2022553638A (en) * 2020-07-14 2022-12-26 蜂巣能源科技股▲ふん▼有限公司 Gradient-Doped Cobalt-Free Cathode Materials, Methods for Their Preparation, Cathodes for Lithium Ion Batteries and Lithium Batteries
WO2022268022A1 (en) * 2021-06-23 2022-12-29 湖南长远锂科股份有限公司 High-nickel positive electrode material and preparation method therefor
CN116092615A (en) * 2023-04-06 2023-05-09 宁德时代新能源科技股份有限公司 Method and device for determining distribution trend of doping element
CN116314731A (en) * 2023-05-24 2023-06-23 浙江帕瓦新能源股份有限公司 Sodium ion battery anode material, precursor thereof, preparation method and application
WO2023226554A1 (en) * 2022-05-26 2023-11-30 广东邦普循环科技有限公司 High-voltage lithium nickel cobalt manganese oxide positive electrode material, and preparation method therefor and use thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196063A (en) * 1999-10-26 2001-07-19 Sumitomo Chem Co Ltd Active material for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2003257434A (en) * 2002-03-05 2003-09-12 Toshiba Corp Nonaqueous electrolyte battery
JP2004006277A (en) * 2002-03-28 2004-01-08 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP2007018985A (en) * 2005-07-11 2007-01-25 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2010170741A (en) * 2009-01-20 2010-08-05 Panasonic Corp Manufacturing method of cathode active material for nonaqueous electrolyte secondary battery
JP2010211925A (en) * 2009-03-06 2010-09-24 Panasonic Corp Positive electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2011028976A (en) * 2009-07-24 2011-02-10 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte battery
WO2011043296A1 (en) * 2009-10-05 2011-04-14 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
JP2011129498A (en) * 2009-11-18 2011-06-30 Sony Corp Positive electrode active material and nonaqueous electrolyte secondary battery
WO2013145913A1 (en) * 2012-03-26 2013-10-03 ソニー株式会社 Positive electrode active substance, positive electrode, secondary cell, cell pack, electric vehicle, power storage system, electric tool, and electronic equipment
JP2014220261A (en) * 2005-05-17 2014-11-20 ソニー株式会社 Positive electrode active material for secondary batteries, positive electrode for secondary batteries, and secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196063A (en) * 1999-10-26 2001-07-19 Sumitomo Chem Co Ltd Active material for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2003257434A (en) * 2002-03-05 2003-09-12 Toshiba Corp Nonaqueous electrolyte battery
JP2004006277A (en) * 2002-03-28 2004-01-08 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP2014220261A (en) * 2005-05-17 2014-11-20 ソニー株式会社 Positive electrode active material for secondary batteries, positive electrode for secondary batteries, and secondary battery
JP2007018985A (en) * 2005-07-11 2007-01-25 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2010170741A (en) * 2009-01-20 2010-08-05 Panasonic Corp Manufacturing method of cathode active material for nonaqueous electrolyte secondary battery
JP2010211925A (en) * 2009-03-06 2010-09-24 Panasonic Corp Positive electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2011028976A (en) * 2009-07-24 2011-02-10 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte battery
WO2011043296A1 (en) * 2009-10-05 2011-04-14 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
JP2011129498A (en) * 2009-11-18 2011-06-30 Sony Corp Positive electrode active material and nonaqueous electrolyte secondary battery
WO2013145913A1 (en) * 2012-03-26 2013-10-03 ソニー株式会社 Positive electrode active substance, positive electrode, secondary cell, cell pack, electric vehicle, power storage system, electric tool, and electronic equipment

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108269997A (en) * 2016-12-31 2018-07-10 北京当升材料科技股份有限公司 A kind of lithium ion battery gradient anode material and preparation method thereof
CN108269997B (en) * 2016-12-31 2019-08-30 北京当升材料科技股份有限公司 A kind of lithium ion battery gradient anode material and preparation method thereof
CN107265519A (en) * 2017-06-23 2017-10-20 海南大学 A kind of application for the method and its presoma for improving lithium ion cell positive gradient distributed material precursor synthesis particle size uniformity
CN107265519B (en) * 2017-06-23 2019-01-25 海南大学 A kind of application for improving lithium ion cell positive gradient distribution material precursor and synthesizing the method and its presoma of particle size uniformity
WO2020059803A1 (en) * 2018-09-19 2020-03-26 株式会社村田製作所 Secondary battery
KR102533811B1 (en) 2018-12-03 2023-05-19 주식회사 엘지에너지솔루션 Positive electrode active material for secondary battery, method for manufacturing the same, positive electrode for secondary battery and lithium secondary battery comprising the same
KR20200067009A (en) * 2018-12-03 2020-06-11 주식회사 엘지화학 Positive electrode active material for secondary battery, method for manufacturing the same, positive electrode for secondary battery and lithium secondary battery comprising the same
CN109626447A (en) * 2018-12-13 2019-04-16 南开大学 Nickelic anode material for lithium-ion batteries of a kind of concentration gradient magnesium doping and preparation method thereof
JP7426414B2 (en) 2019-05-28 2024-02-01 ビーワイディー カンパニー リミテッド Cathode materials for composite lithium-ion batteries, lithium-ion batteries and cars
JP2022534939A (en) * 2019-05-28 2022-08-04 ビーワイディー カンパニー リミテッド Cathode materials for composite lithium-ion batteries, lithium-ion batteries and automobiles
WO2021025479A1 (en) * 2019-08-07 2021-02-11 주식회사 엘 앤 에프 Secondary battery active material
JP7368613B2 (en) 2020-07-14 2023-10-24 蜂巣能源科技股▲ふん▼有限公司 Gradient doped cobalt-free cathode material and its preparation method
JP2022553638A (en) * 2020-07-14 2022-12-26 蜂巣能源科技股▲ふん▼有限公司 Gradient-Doped Cobalt-Free Cathode Materials, Methods for Their Preparation, Cathodes for Lithium Ion Batteries and Lithium Batteries
WO2022198852A1 (en) * 2021-03-25 2022-09-29 宁德新能源科技有限公司 Positive electrode active material, electrochemical device using positive electrode active material, and electronic device
CN113299902B (en) * 2021-05-24 2022-07-22 南开大学 Preparation of concentration gradient magnesium-doped lithium-rich manganese-based oxide positive electrode material and application of concentration gradient magnesium-doped lithium-rich manganese-based oxide positive electrode material in lithium battery
CN113299902A (en) * 2021-05-24 2021-08-24 南开大学 Preparation of concentration gradient magnesium-doped lithium-rich manganese-based oxide positive electrode material and application of concentration gradient magnesium-doped lithium-rich manganese-based oxide positive electrode material in lithium battery
WO2022268022A1 (en) * 2021-06-23 2022-12-29 湖南长远锂科股份有限公司 High-nickel positive electrode material and preparation method therefor
CN114551863A (en) * 2022-04-21 2022-05-27 浙江帕瓦新能源股份有限公司 Precursor material with element concentration gradient distribution, preparation method thereof and positive electrode material
WO2023226554A1 (en) * 2022-05-26 2023-11-30 广东邦普循环科技有限公司 High-voltage lithium nickel cobalt manganese oxide positive electrode material, and preparation method therefor and use thereof
CN116092615A (en) * 2023-04-06 2023-05-09 宁德时代新能源科技股份有限公司 Method and device for determining distribution trend of doping element
CN116092615B (en) * 2023-04-06 2023-08-29 宁德时代新能源科技股份有限公司 Method and device for determining distribution trend of doping element
CN116314731A (en) * 2023-05-24 2023-06-23 浙江帕瓦新能源股份有限公司 Sodium ion battery anode material, precursor thereof, preparation method and application
CN116314731B (en) * 2023-05-24 2023-08-15 浙江帕瓦新能源股份有限公司 Sodium ion battery anode material, precursor thereof, preparation method and application

Also Published As

Publication number Publication date
JP6034413B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6034413B2 (en) Metal gradient doped cathode material for lithium ion battery
Kim et al. Improvement of high-voltage cycling behavior of surface-modified Li [Ni1∕ 3Co1∕ 3Mn1∕ 3] O2 cathodes by fluorine substitution for Li-ion batteries
JP6524651B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
CA2748800C (en) Positive electrode materials combining high safety and high power in a li rechargeable battery
US9090481B2 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
WO2018043669A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
CN105870402A (en) Metal gradient doped lithium battery positive electrode material
JP5843753B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US20170077496A1 (en) Metal gradient-doped cathode material for lithium batteries and its production method
Yoon et al. Improved performances of Li [Ni0. 65Co0. 08Mn0. 27] O2 cathode material with full concentration gradient for Li-Ion batteries
JP2012238581A (en) Positive electrode active material for nonaqueous electrolyte secondary battery
JP2016115658A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
CN108091857A (en) A kind of lithium ion-electron mixed conductor is modified tertiary cathode material and preparation method
JP5606654B2 (en) Lithium metal composite oxide
TW201351760A (en) Lithium nickel cobalt manganese cathode material powder
Ghosh et al. Improved electrochemical performance of Li2MnSiO4/C composite synthesized by combustion technique
JP2016103477A (en) Positive electrode material for sodium secondary battery
TWI670893B (en) Precursors for lithium transition metal oxide cathode materials for rechargeable batteries
CN108352564A (en) Non-aqueous electrolyte secondary battery
Yoon et al. Low temperature electrochemical properties of Li [NixCoyMn1-xy] O2 cathode materials for lithium-ion batteries
Sun et al. Synthesis and electrochemical performances of Y-doped lithium-rich layered Li [Li0. 2Ni0. 2Mn0. 6] O2 cathode material
Huang et al. Insight into the capacity decay mechanism of cycled LiNi0. 5Co0. 2Mn0. 3O2 cathodes via in situ x-ray diffraction
CA2947003A1 (en) Positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery
Wu et al. Effect of Cu substitution on structures and electrochemical properties of Li [NiCo 1− x Cu x Mn] 1/3 O 2 as cathode materials for lithium ion batteries
JP6582750B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161027

R150 Certificate of patent or registration of utility model

Ref document number: 6034413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250