WO2020059792A1 - Composition for nucleic acid amplification reaction - Google Patents

Composition for nucleic acid amplification reaction Download PDF

Info

Publication number
WO2020059792A1
WO2020059792A1 PCT/JP2019/036731 JP2019036731W WO2020059792A1 WO 2020059792 A1 WO2020059792 A1 WO 2020059792A1 JP 2019036731 W JP2019036731 W JP 2019036731W WO 2020059792 A1 WO2020059792 A1 WO 2020059792A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
acid amplification
reaction
amplification reaction
pcr
Prior art date
Application number
PCT/JP2019/036731
Other languages
French (fr)
Japanese (ja)
Inventor
貴圭 肥山
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2020548592A priority Critical patent/JPWO2020059792A1/en
Publication of WO2020059792A1 publication Critical patent/WO2020059792A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a composition and a kit for a nucleic acid amplification reaction, which can improve nucleic acid amplification efficiency and detection sensitivity and can perform efficient nucleic acid amplification, a nucleic acid amplification method, and the like.
  • the present invention relates to a nucleic acid amplification method and a kit capable of efficiently amplifying a long-chain target nucleic acid.
  • Nucleic acid amplification is a technology that amplifies several copies of a target nucleic acid to a level at which it can be visualized, that is, to hundreds of millions or more. It is also widely used in microbial tests and the like.
  • a typical nucleic acid amplification method is PCR (Polymerase Chain Reaction).
  • PCR includes (1) DNA denaturation by heat treatment (dissociation of double-stranded DNA into single-stranded DNA), (2) annealing of primer to single-stranded DNA template, and (3) the above-mentioned primer using DNA polymerase. This is a method of amplifying a target nucleic acid in a sample by repeating the three steps of elongation as one cycle and repeating this cycle.
  • the real-time PCR method can analyze an amplified nucleic acid over time, secure high quantitativeness, and perform highly sensitive detection.
  • it is important to improve the nucleic acid amplification efficiency to increase the quantitativeness and the detection sensitivity.
  • Patent Document 1 the nucleic acid amplification efficiency and detection sensitivity are improved by using a nucleic acid amplification composition characterized by containing a tetramethylammonium-resistant DNA polymerase together with a tetramethylammonium salt having a final concentration of 50 mM or more.
  • a nucleic acid amplification composition characterized by containing a tetramethylammonium-resistant DNA polymerase together with a tetramethylammonium salt having a final concentration of 50 mM or more.
  • Non-Patent Document 1 also describes that a tetramethylammonium salt improves the amplification efficiency and specificity of a nucleic acid amplification reaction.
  • the concentration at which the amplification efficiency is maximum is 5 mM for tetramethylammonium chloride and 10 mM or less for tetramethylammonium acetate, and the concentration at which the specificity is maximum is tetramethylammonium chloride and tetramethylammonium acetate.
  • Ammonium is set to 20 mM.
  • tetramethylammonium salts are also said to inhibit enzymes at high concentrations.
  • tetramethylammonium chloride exceeds 35 mM and tetramethylammonium acetate exceeds 40 mM. And that nucleic acid amplification is inhibited by 90%.
  • melting temperature regulators such as dimethyl sulfoxide (DMSO), betaine derivatives, and ionic liquids have been reported as methods for improving nucleic acid amplification efficiency. All of these are known to improve nucleic acid amplification efficiency by lowering the melting temperature of nucleic acids (Patent Documents 2, 3, and 4).
  • Patent Documents 5 and 6 describe a method in which a glycol is added during a nucleic acid amplification reaction to lower the melting temperature of nucleic acid and suppress nonspecific amplification. However, Patent Documents 5 and 6 do not specifically describe that the use of glycols improves the Ct value and the PCR efficiency.
  • primers are designed so that the length of the amplified chain length (amplified chain length) is smaller than 200 bp (for example, 50 bp or more and less than 200 bp). That is common.
  • the multiplex PCR method is a method in which several primer pairs are used simultaneously in one PCR assay. This method of simultaneously amplifying multiple regions of DNA in a single reaction mixture saves labor, time, and money because it requires minimal sample handling and reduces the risk of cross-contamination.
  • the addition of a plurality of primers causes a problem that a primer dimer is easily formed, which makes it very difficult to design a primer. In such a case, it is assumed that the design site of the primer is limited in order to avoid the primer dimer, and the chain length to be amplified becomes 200 bp or more.
  • the chain length of the amplification product is generally changed for the purpose of distinguishing the Tm value of the amplification product.
  • the chain length to be amplified is 200 bp or more.
  • Non-Patent Document 2 for the purpose of analyzing by fusion curve analysis the velotoxin gene from mixed feces, the Salmonella enterotoxin gene, Shigella ipaH gene, and the product derived from the internal control, the respective amplified products are 171 bp, 264 bp, Primers are designed to be 242 bp and 540 bp.
  • JP 2017-108735 A Japanese Patent No. 4761265 Japanese Patent No. 4300321 JP 2014-27934 A JP 2010-246528 A JP 2010-246529 A
  • nucleic acid amplification method for improving the nucleic acid amplification efficiency and the detection sensitivity has been studied.
  • a decrease in amplification efficiency or sensitivity may be observed, and further improvement is required.
  • the amplification chain length is long, there has been a problem that the amplification efficiency and the detection sensitivity are reduced.
  • one object of the present invention is to provide a composition for a nucleic acid amplification reaction (eg, a PCR reaction composition) that can be amplified with high efficiency in a nucleic acid amplification method.
  • a nucleic acid amplification reaction composition that can maintain highly efficient amplification even when the length of the amplified chain is long.
  • the present inventors have solved the above-mentioned problem and found that a nucleic acid amplification reaction was performed in a reaction solution containing at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol.
  • a nucleic acid amplification reaction was performed in a reaction solution containing at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol.
  • the present inventors have found that it is possible to carry out a PCR reaction with high efficiency even when, for example, amplifying a long target nucleic acid of 200 bp or more, and have accomplished the present invention. This effect is more effective when the reaction is performed using a reaction solution containing a combination of the diol compound and a tetramethylammonium salt.
  • this highly efficient nucleic acid amplification method is remarkable when a Thermus thermophilus-derived DNA polymerase is used as the DNA
  • the outline of the present invention is as follows.
  • [Item 1] A method for amplifying a target nucleic acid having an amplification chain length of 200 bp or more, wherein the reaction comprises at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol.
  • a nucleic acid amplification method comprising performing a nucleic acid amplification reaction in a liquid.
  • the reaction solution further contains a tetramethylammonium salt.
  • [Item 3] The method according to Item 1 or 2, wherein the tetramethylammonium salt is at least one selected from the group consisting of tetramethylammonium acetate, tetramethylammonium chloride, and tetramethylammonium hydroxide.
  • the tetramethylammonium salt is at least one selected from the group consisting of tetramethylammonium acetate, tetramethylammonium chloride, and tetramethylammonium hydroxide.
  • the amplified chain length is from 200 bp to 1000 bp.
  • the amplified chain length is 400 bp or more and 500 bp or less.
  • the nucleic acid amplification reaction is real-time PCR.
  • [Item 7] The method according to any one of Items 1 to 6, wherein the elongation time in the nucleic acid amplification reaction is 60 seconds or less.
  • [Item 8] The method according to any one of Items 1 to 7, wherein the extension time in the nucleic acid amplification reaction is 30 seconds or less.
  • [Item 9] The method according to any one of Items 1 to 8, wherein the reaction solution further contains a DNA polymerase derived from Thermus thermophilus.
  • a composition for a nucleic acid amplification reaction comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol, and a tetramethylammonium salt.
  • [Item 11] The composition for a nucleic acid amplification reaction according to Item 10, wherein the concentration of the diol compound in the reaction solution at the time of the nucleic acid amplification reaction is adjusted to 1 to 20% by volume based on the whole reaction solution.
  • [Item 12] The nucleic acid amplification reaction according to Item 10 or 11, wherein the concentration of the diol compound in the reaction solution at the time of the nucleic acid amplification reaction is adjusted to 3 to 10% by volume based on the entire reaction solution. Composition.
  • Reaction composition [Item 14] The nucleic acid according to any one of Items 10 to 13, wherein the concentration of the tetramethylammonium salt in the reaction solution at the time of the nucleic acid amplification reaction is adjusted to 50 to 200 mM based on the whole reaction solution. Composition for amplification reaction.
  • [Item 15] The composition for a nucleic acid amplification reaction according to any one of Items 10 to 14, further comprising a DNA polymerase derived from Thermus thermophilus.
  • [Item 16] The composition for a nucleic acid amplification reaction according to any one of Items 10 to 15, wherein the nucleic acid amplification reaction is a real-time PCR reaction.
  • [Item 17] The composition for a nucleic acid amplification reaction according to any one of Items 10 to 16, which is used for amplifying a target nucleic acid having an amplification chain length of 200 bp or more.
  • a kit for nucleic acid amplification reaction comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol, and a tetramethylammonium salt.
  • nucleic acid amplification can be performed with high efficiency.
  • INDUSTRIAL APPLICABILITY The present invention is particularly effective in real-time PCR, and is particularly effective when amplifying a target having a long amplification chain length (for example, a target nucleic acid having an amplification chain length of 200 bp or more), which was conventionally difficult to perform efficiently. Is remarkable.
  • FIG. 9 is a diagram showing the results of examining the amplification efficiency of a target having an amplification chain length of 200 bp, 300 bp, and 400 bp by using real-time PCR without adding 1,2-propanediol or by adding 7% by volume. It is a figure which shows the result of having investigated the amplification efficiency of the target which 500 bp of amplification chain lengths added by adding 7 volume% of various diol compounds using real-time PCR method.
  • the present invention relates to a method for amplifying a target nucleic acid having an amplified chain length of 200 bp or more, wherein at least one diol selected from the group consisting of 1,2-propanediol and 1,2-ethanediol
  • a nucleic acid amplification method wherein a nucleic acid amplification reaction is performed in a reaction solution containing a compound.
  • the reaction solution used in the present invention may be, for example, a nucleic acid amplification reaction solution provided as a nucleic acid amplification reaction reagent.
  • the nucleic acid amplification reaction solution may be a reagent which is prepared in advance and can be used as it is during the nucleic acid amplification reaction, or may be a reagent which is prepared before use before the nucleic acid amplification reaction.
  • the nucleic acid amplification reaction solution as described above is also referred to as a nucleic acid amplification reaction composition, and these can be used interchangeably.
  • the nucleic acid amplification reaction solution used in the present invention may be provided in the form of a PCR reagent, a real-time PCR reagent, an RT-PCR reagent, a real-time RT-PCR reagent, or the like.
  • the nucleic acid amplification reaction refers to a reaction for synthesizing a nucleic acid having a sequence complementary to a template nucleic acid in a sequence-dependent manner, and the manner thereof is not particularly limited.
  • Chain reaction (PCR) method Loop-Mediated Isolation Amplification (LAMP) method, Transcription Reversal Transcription Reconciliation Reaction (TRC) method, Amplification of Nucleic Acid Sequence method of Nucleic Acid Sequence method, etc. Method.
  • LAMP Loop-Mediated Isolation Amplification
  • TRC Transcription Reversal Transcription Reconciliation Reaction
  • the present invention can be used for any of the nucleic acid amplification reactions, but is preferably used for a method using a polymerase chain reaction (PCR) method.
  • PCR polymerase chain reaction
  • PCR method examples include not only a normal PCR method but also real-time PCR, RT-PCR (Reverse Transcription PCR), LA-PCR (Long and Accurate PCR), competitive PCR, in situ PCR, RNA-primed PCR, and multiplex PCR.
  • Various PCR methods are known in the art, such as, for example, shuttle PCR, PCR / GC-calmp method, stretch PCR, Alu PCR, megaprimer PCR, Immuno PCR.
  • the present invention can be used for any PCR method known in the art, but is preferably used for a real-time PCR method.
  • the PCR method as described above usually proceeds by repeating each reaction step of heat denaturation, annealing and extension.
  • Thermal denaturation is a step for separating double-stranded DNA
  • annealing is a step of annealing a primer to the separated DNA
  • elongation is a step of synthesizing a complementary strand with a DNA polymerase.
  • the annealing temperature and the extension temperature may be different temperatures or may be the same temperature.
  • the elongation reaction holding time is the holding time obtained by adding the annealing reaction time and the elongation reaction time.
  • the extension reaction holding time is not particularly limited, but may be, for example, 60 seconds or less, preferably 50 seconds or less, more preferably 40 seconds or less, and still more preferably 30 seconds or less.
  • the lower limit of the elongation reaction holding time is not particularly limited as long as the effects of the present invention are exhibited, but may be, for example, 1 second or longer, preferably 5 seconds or longer, more preferably 10 seconds or longer.
  • the holding time may be the same time in all cycles, or may be different.
  • the diol compound is a kind of alcohol (polyol) and is a compound in which one carbon group is present in each of two carbon atoms among carbon atoms forming a chain or cyclic aliphatic hydrocarbon.
  • polyol a compound in which one carbon group is present in each of two carbon atoms among carbon atoms forming a chain or cyclic aliphatic hydrocarbon.
  • glycols ethylene glycol having the simplest structure may be simply referred to as glycol, but here, it refers to the above-mentioned glycols in a broad sense.
  • 1,2-ethanediol and 1,2-propanediol are used as the diol compound.
  • the present inventors surprisingly amplify long-chain target nucleic acids of 200 bp or more (eg, 400-500 bp target nucleic acids) by using 1,2-propanediol and / or 1,2-ethanediol. Even in this case, it has been found for the first time that a decrease in nucleic acid amplification efficiency and detection sensitivity is suppressed, and nucleic acid amplification can be performed efficiently.
  • these diol compounds have different production methods depending on their structures, industrial production methods have been established for all of them, and they are inexpensive and easily available.
  • One of these diol compounds may be used alone, or the effects of the present invention are exhibited even when two or more diol compounds are used in combination. Furthermore, it has also been found that the effect observed when amplifying a long-chain target nucleic acid by 1,2-propanediol and / or 1,2-ethanediol is remarkable when combined with a tetramethylammonium salt. .
  • 1,2-propanediol and / or 1,2-ethanediol that can be used in the present invention has a low viscosity, operability due to the addition of a nucleic acid amplification reaction solution is extremely low. In addition, it is also excellent in that it can be stored for a long time and is stable. In addition, these diol compounds are also advantageous in that they have the effect of lowering the melting temperature of nucleic acids.
  • the concentration of at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol in the reaction solution at the time of the nucleic acid amplification reaction is 1 to 20 vol. %, More preferably 3 to 10% by volume.
  • concentration of these diol compounds in the reaction solution is less than 1% by volume, the effect of improving amplification efficiency and detection sensitivity tends to be small even when combined with, for example, a tetramethylammonium salt.
  • the concentration is higher than 20% by volume, the disadvantage that handling becomes worse is greater than the effect. Therefore, the nucleic acid amplification reaction solution used in the present invention is preferably prepared such that the concentration of the diol compound in the reaction solution at the time of the nucleic acid amplification reaction is within the above range.
  • the nucleic acid amplification reaction solution in the present invention may be, for example, one prepared as a concentrated nucleic acid amplification reaction reagent for storage.
  • a nucleic acid amplification reaction solution may be, for example, a 2 to 10-fold concentrated solution.
  • 1,2-propanediol and / or 1,2-ethanediol are contained in a concentration 2 to 10 times the final concentration in the reaction solution so that the final concentration in the reaction solution of the nucleic acid amplification reaction becomes a preferable concentration. You should let it.
  • the premix reagent is a reagent in which a reaction buffer, a reaction substrate (dNTPs), magnesium ions, a polymerase and the like are mixed in advance.
  • the nucleic acid amplification reaction solution prepared in a concentrated state as described above is suitable when provided as such a premix reagent.
  • the premix reagent may be inferior in stability because various components are preliminarily mixed and stored for a long period of time, but the nucleic acid amplification reaction solution used in the present invention may be in a mixed state for a long time (for example, 1 to 1). It has been found to be stable when stored for more than a month.
  • a method using mass spectrometry, liquid chromatography or gas chromatography, a method using a polyol dehydrogenase, and the like are generally used.
  • the detection and concentration measurement of the diol compound can be performed by a method combining mass spectrometry, liquid chromatography analysis, and gas chromatography analysis.
  • the nucleic acid amplification method of the present invention performs a nucleic acid amplification reaction in the presence of a tetramethylammonium salt in a reaction solution.
  • a nucleic acid amplification reaction in the presence of a tetramethylammonium salt in a reaction solution.
  • any tetramethylammonium salt may be used as long as the effects of the present invention are exhibited.
  • tetramethylammonium salt is tetramethylhydroxide.
  • Ammonium, tetramethylammonium chloride, and tetramethylammonium acetate are used, and more preferably, tetramethylammonium acetate is used.
  • these tetramethylammonium salts have different production methods depending on their structures, industrial production methods have been established for all of them, and they are inexpensive and easily available.
  • One of these tetramethylammonium salts may be used alone, or the effect of the present invention is exerted even when two or more are used in any combination.
  • the concentration of the tetramethylammonium salt in the reaction solution during the nucleic acid amplification reaction is not particularly limited as long as the effects of the present invention are exerted. It is preferably at least 50 mM, more preferably at least 75 mM, further preferably at least 90 mM, particularly preferably at least 100 mM.
  • the upper limit of the concentration of the tetramethylammonium salt is not particularly limited as long as the effects of the present invention are exerted, but as an example, it is preferably 200 mM or less based on the whole reaction solution. Therefore, the nucleic acid amplification reaction solution used in the present invention is preferably prepared such that the concentration of the tetramethylammonium salt in the reaction solution during the nucleic acid amplification reaction is within the above range.
  • the nucleic acid amplification reaction solution when the nucleic acid amplification reaction solution is prepared as, for example, a nucleic acid amplification reaction reagent in a concentrated state for storage, as described above, the nucleic acid amplification reaction solution can be in a 2 to 10-fold concentrated state.
  • the tetramethylammonium salt may be contained at a concentration of 2 to 10 times the final concentration in the reaction solution so that the final concentration in the reaction solution of the nucleic acid amplification reaction becomes a preferable concentration.
  • NMR nuclear magnetic resonance
  • detection and concentration measurement of the diol compound can be performed by liquid chromatography.
  • the mixing ratio of at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol to the tetramethylammonium salt is as follows.
  • the diol compound is preferably 1 to 20% by volume, more preferably 3 to 10% by volume. .
  • the nucleic acid amplification reaction solution (composition for nucleic acid amplification reaction) used in the present invention contains, in addition to the diol compound and the tetramethylammonium salt, a nucleic acid, a DNA polymerase, and a primer that serve as templates.
  • a nucleic acid such as an oligonucleotide, a dideoxynucleoside triphosphate (dNTPs), a reaction buffer, a metal ion (eg, magnesium ion).
  • a DNA polymerase is further included, and a template nucleic acid, a DNA polymerase, an oligonucleotide, and dNTPs are more preferably included, and a template nucleic acid, a DNA polymerase, an oligonucleotide, More preferably, it contains dNTPs and a reaction buffer.
  • the DNA polymerase used in the nucleic acid amplification reaction of the present invention is not particularly limited, but it is preferable to use a DNA polymerase derived from Thermus thermophilus.
  • the DNA polymerase derived from Thermus thermophilus is not limited to a DNA polymerase obtained directly from Thermus thermophilus, and may be a DNA polymerase obtained directly from a mutant strain of Thermus thermophilus, or may be a Thermus thermophilus or a mutant thereof.
  • a DNA polymerase which has been modified by genetic engineering or chemical methods based on the sequence information of a DNA polymerase obtained from the body, and which has substantially the same activity as a DNA polymerase derived from Thermus thermophilus may be used.
  • the DNA polymerase derived from Thermus thermophilus may be a DNA polymerase directly extracted from Thermus thermophilus, or may be a recombinantly produced product thereof in an appropriate expression system.
  • a DNA polymerase mutant refers to, for example, 85% or more, preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more, based on the amino acid sequence of the wild-type DNA polymerase from which it is derived. % Or more, preferably 99% or more, and has the activity of amplifying DNA similarly to wild-type DNA polymerase.
  • the method of calculating the amino acid sequence identity can be performed by any means known in the art. For example, it can be calculated using an analysis tool that is commercially available or available through a telecommunication line (Internet). For example, the homology algorithm BLAST (Basic local alignment search tool) http of the National Center for Biotechnology Information (NCBI) can be used. /// www.
  • the mutant that can be used in the present invention is obtained by substituting, deleting, inserting, and / or adding one or several amino acids in the amino acid sequence of the wild-type DNA polymerase from which the mutant is derived. It may be a polypeptide comprising an amino acid sequence having a "mutated" amino acid sequence and having the activity of amplifying DNA similarly to a wild-type DNA polymerase.
  • the term “one or several” as used herein means, for example, 1 to 80, preferably 1 to 40, more preferably 1 to 10, more preferably 1 to 5, and particularly preferably 1 to 3. Although possible, there is no particular limitation.
  • the nucleic acid amplification reaction solution used in the present invention preferably further contains a fluorescent dye or a fluorescently labeled probe in order to confirm nucleic acid amplification over time.
  • a fluorescent dye or a fluorescent-labeled probe is not particularly limited as long as the effect of the present invention is exerted, and examples thereof include fluorescent dyes such as SYBR GreenI (registered trademark), Eva Green (registered trademark), and Pico Green (registered trademark). It is preferable to include a fluorescently labeled probe.
  • reverse transcriptase is used to efficiently convert RNA to be detected into DNA. It is preferable to further include.
  • the nucleic acid amplification reaction solution used in the present invention preferably contains an anti-DNA polymerase antibody.
  • the anti-DNA polymerase antibody here may be a single kind of monoclonal antibody, a combination of a plurality of monoclonal antibodies, or a polyclonal antibody.
  • a further aspect of the present invention provides a nucleic acid amplification reaction comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol, and a tetramethylammonium salt.
  • the composition for a nucleic acid amplification reaction may be provided as, for example, a reagent for a nucleic acid amplification reaction.
  • the nucleic acid amplification reaction composition may be in the form of a reagent which is prepared in advance and can be used as it is during the nucleic acid amplification reaction, or may be a reagent which is prepared before use before the nucleic acid amplification reaction. .
  • the nucleic acid amplification reaction composition of the present invention can be provided in the form of a PCR reagent, a real-time PCR reagent, an RT-PCR reagent, a real-time RT-PCR reagent, and the like.
  • composition for nucleic acid amplification reaction comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol, and a tetramethylammonium salt.
  • concentration of the component is not particularly limited as long as the effects of the present invention are exhibited.
  • concentration (final concentration) of the diol compound in the reaction solution at the time of the nucleic acid amplification reaction is adjusted to 1 to 20% by volume, preferably 3 to 10% by volume, based on the entire reaction solution.
  • the concentration may be adjusted as follows.
  • the concentration (final concentration) of the tetramethylammonium salt in the reaction solution at the time of the nucleic acid amplification reaction is adjusted to 25 to 400 mM, preferably 50 to 200 mM, based on the entire reaction solution. (For example, a concentration adjusted to be 50 to 100 mM).
  • the type of the tetramethylammonium salt used in the present embodiment is not particularly limited as long as the effects of the present invention are exhibited.
  • a tetramethylammonium salt as described in the method for amplifying the target nucleic acid can be used. .
  • the tetramethylammonium salt is at least one selected from the group consisting of tetramethylammonium acetate, tetramethylammonium chloride, and tetramethylammonium hydroxide.
  • the composition of the present embodiment can further contain optional components, and preferably further contains a DNA polymerase derived from Thermus thermophilus.
  • the composition for nucleic acid amplification of this embodiment is particularly useful when amplifying a long-chain target nucleic acid, which has tended to be difficult to amplify by conventional methods.
  • amplifying a target nucleic acid having an amplified chain length of 200 bp or more Used to The amplification chain length of the target nucleic acid of interest is not particularly limited, but may be preferably 300 bp or more, more preferably 400 bp or more (eg, 500 bp or more, 600 bp or more).
  • the upper limit of the amplified chain length of the target nucleic acid targeted by the present invention is not particularly limited as long as the effects of the present invention are exerted.
  • the upper limit may be 1000 bp or less, or 800 bp or less. May be 500 bp or less.
  • Another aspect of the present invention is to amplify a target nucleic acid having an amplification chain length of 200 bp or more, comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol.
  • Reagent A further embodiment of the present invention is a kit including at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol, and preferably has an amplification chain length of 200 bp or more.
  • This is a kit used for amplifying a target nucleic acid.
  • Such a reagent or kit preferably further includes a tetramethylammonium salt in combination with the diol compound.
  • kits for a nucleic acid amplification reaction comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol, and a tetramethylammonium salt.
  • Kit for example, when the kit of the present invention further contains a tetramethylammonium salt, such a kit for a nucleic acid amplification reaction of the present invention is selected from the group consisting of 1,2-propanediol and 1,2-ethanediol.
  • At least one diol compound and the tetramethylammonium salt may be provided in the same container, or may be provided in separate containers, and may be used by mixing before use. Good.
  • the diol compound and the tetramethylammonium salt may be included in the same container as the methyl ammonium salt, or may be contained in another container. It is preferable that the diol compound and the tetramethylammonium salt are contained in the same container from the viewpoint that the diol compound and the tetramethylammonium salt can be used more easily. It is more preferable to include other components that may be included (for example, a DNA polymerase derived from Thermus thermophilus).
  • the concentration and type of the diol compound and the tetramethylammonium salt used in the above-described kit of the present invention can be the same as those described in the nucleic acid amplification method.
  • the nucleic acid amplification method of the present invention can provide the diol compound in a form such as a reagent or a kit, and optionally a tetramethylammonium salt, for example, in a state containing both, or can be prepared in-house. And can be provided in any form.
  • concentration or type of the diol compound or tetramethylammonium salt used in the method of the present invention as described above may be the same as that described in the nucleic acid amplification method or the reagent or kit for the nucleic acid amplification reaction. .
  • PCR amplification efficiency a technique for evaluating PCR efficiency
  • the PCR efficiency is a value obtained from the slope of the calibration curve, and it is known that when the initial template concentration (Log10) is taken on the X-axis and the Ct value is taken on the Y-axis, the following equation is used.
  • PCR efficiency E 10 [ ⁇ 1 / slope] ⁇ 1
  • This PCR efficiency is ideally closer to 100%, but varies depending on the design of PCR inhibitors and primers. For this reason, 80% to 120% is said to be an appropriate value, and if less than that, it is said that it is usually necessary to review the experimental system.
  • the PCR efficiency can be increased.
  • the PCR efficiency can be 80% to 120%, preferably 85% to 115%, more preferably 90%. 110110%.
  • a calibration curve obtained by a dilution series of a standard sample is used as an absolute quantification method of an unknown sample.
  • the PCR efficiencies of the standard sample and the unknown sample must match, and if they do not match, incorrect results may be given.
  • the Ct value and the PCR efficiency can be improved even when a long target nucleic acid is amplified. Therefore, for example, a multiplex PCR method that amplifies a plurality of target nucleic acids having different amplification product lengths (for example, a multiplex using both long target nucleic acids of 400 bp or more and short target nucleic acids of less than 200 bp as target nucleic acids)
  • a multiplex PCR method that amplifies a plurality of target nucleic acids having different amplification product lengths (for example, a multiplex using both long target nucleic acids of 400 bp or more and short target nucleic acids of less than 200 bp as target nucleic acids)
  • the variation in amplification efficiency due to the difference in the length of the amplification product can be improved, accurate results can be obtained, and a decrease in detection sensitivity of the target DNA can be suppressed.
  • the nucleic acid amplification method, reagent, kit and the like of the present invention are used for amplifying a target nucleic acid having an amplified chain length of 200 bp or more.
  • the amplified chain length of the target nucleic acid of interest is not particularly limited as long as it is 200 bp or more, but may be preferably 300 bp or more, more preferably 400 bp or more (eg, 500 bp or more, 600 bp or more).
  • the upper limit of the amplified chain length of the target nucleic acid targeted by the present invention is not particularly limited as long as the effects of the present invention are exhibited, but may be, for example, 1000 bp or less, or may be 800 bp or less, In certain embodiments, it may further be, for example, 500 bp or less.
  • the PCR efficiency was high under the condition that the amplification chain length was up to 200 bp, but the Ct value and the PCR efficiency decreased as the amplification chain length increased. From these results, it can be seen that the efficiency of the nucleic acid amplification reaction generally decreases when the amplified chain length is 300 bp or more.
  • Example 1 Evaluation of 1,2-propanediol To verify the effect of 1,2-propanediol on the real-time PCR reaction, a real-time PCR reaction was performed without adding 1,2-propanediol or 7% by volume, and the PCR efficiency was evaluated. ⁇ Preparation of reagent for PCR reaction The reagent for PCR reaction used in this example was prepared according to the following formulation. The same forward primer and reverse primer as those used in Reference Example 1 were used.
  • Example 2 Evaluation of diol compound in nucleic acid amplification
  • the diol compound 1,2-propanediol (1,2-propanediol), 1,3-propanediol (1,3-propanediol), 1,2-ethanediol (1,2-ethanediol) , Glycerol and a concentration of 7% by volume each was added to the reaction solution.
  • the primer set of SEQ ID NO: 2 and SEQ ID NO: 6 having an amplified chain length of 500 bp was used, and the other reaction conditions were the same as in Example 1.
  • Example 3 Evaluation of 1,2-propanediol concentration in nucleic acid amplification
  • real-time PCR was performed under various conditions in which 1,2-propanediol was added at various concentrations, and nucleic acid amplification sensitivity and PCR efficiency were evaluated.
  • the primer set of SEQ ID NO: 2 and SEQ ID NO: 6 having an amplified chain length of 500 bp was used, and the other reaction conditions were the same as in Example 1.
  • FIG. 4 shows the results. When 1,2-propanediol was added in an amount of 3% by volume or more, a remarkable effect of improving the Ct value and the PCR efficiency could be obtained.
  • Example 4 Evaluation of tetramethylammonium acetate in nucleic acid amplification
  • TMAA tetramethylammonium acetate
  • Ct value and PCR efficiency were evaluated.
  • the tetramethylammonium acetate concentration was changed to 0, 50, and 100 mM under the condition that 7% by volume of 1,2-propanediol was added, and the condition that neither 1,2-propanediol nor tetramethylammonium acetate was contained.
  • a primer set of SEQ ID NO: 2 and SEQ ID NO: 6 having an amplified chain length of 500 bp was used, and the other reaction conditions were the same as in Example 1. .
  • the present invention can enhance the amplification efficiency and detection sensitivity of a nucleic acid amplification reaction even when, for example, amplifying a long target nucleic acid having a length of 200 bp or more.
  • the nucleic acid can be amplified. Therefore, it is useful not only in the field of life science research, but also in the medical field such as genetic diagnosis and clinical testing, and in microbiological testing of foods and the environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A purpose of the present invention is to provide methods for effectively performing a nucleic acid amplification reaction. Additionally, another purpose of the present invention is to provide nucleic acid amplification methods that are capable of maintaining highly efficient amplification even when a long-chain nucleic acid having a 200 bp or longer amplification chain is targeted. In a specific example, as a method for amplifying a target nucleic acid having a 200 bp or longer amplification chain length, the present invention provides a nucleic acid amplification method characterized by performing a nucleic acid amplification reaction in a reaction solution that includes at least one diol compound selected from the group consisting of 1,2-propandiol and 1,2-ethandiol. In an additional example, the reaction solution further includes a tetramethylammonium salt.

Description

核酸増幅反応用組成物Composition for nucleic acid amplification reaction

 本発明は、核酸増幅効率や検出感度を向上させ、効率的な核酸増幅を行うことができる、核酸増幅反応用の組成物及びキット、並びに核酸増幅方法等に関する。なかでも、長鎖の標的核酸を効率的に増幅することができる、核酸増幅方法及びキット等に関する。

The present invention relates to a composition and a kit for a nucleic acid amplification reaction, which can improve nucleic acid amplification efficiency and detection sensitivity and can perform efficient nucleic acid amplification, a nucleic acid amplification method, and the like. In particular, the present invention relates to a nucleic acid amplification method and a kit capable of efficiently amplifying a long-chain target nucleic acid.

 核酸増幅法は数コピーの標的核酸を可視化可能なレベル、すなわち数億コピー以上に増幅する技術であり、生命科学研究分野のみならず、遺伝子診断、臨床検査といった医療分野、あるいは、食品や環境中の微生物検査等においても、広く用いられている。代表的な核酸増幅法はPCR(Polymerase Chain Reaction)である。PCRは、(1)熱処理によるDNA変性(2本鎖DNAから1本鎖DNAへの解離)、(2)鋳型1本鎖DNAへのプライマーのアニーリング、(3)DNAポリメラーゼを用いた前記プライマーの伸長、という3ステップを1サイクルとし、このサイクルを繰り返すことによって、試料中の標的核酸を増幅する方法である。

Nucleic acid amplification is a technology that amplifies several copies of a target nucleic acid to a level at which it can be visualized, that is, to hundreds of millions or more. It is also widely used in microbial tests and the like. A typical nucleic acid amplification method is PCR (Polymerase Chain Reaction). PCR includes (1) DNA denaturation by heat treatment (dissociation of double-stranded DNA into single-stranded DNA), (2) annealing of primer to single-stranded DNA template, and (3) the above-mentioned primer using DNA polymerase. This is a method of amplifying a target nucleic acid in a sample by repeating the three steps of elongation as one cycle and repeating this cycle.

 また、近年では、PCRの中でも、リアルタイムPCR法が広く実施されるようになってきた。リアルタイムPCR法は、増幅された核酸を経時的に解析することができ、高い定量性を確保し、高感度の検出を行うことができる。このようなリアルタイムPCRを行う際には、核酸増幅効率を向上させることで、定量性と検出感度を高めることが重要である。

In recent years, among PCRs, the real-time PCR method has been widely practiced. The real-time PCR method can analyze an amplified nucleic acid over time, secure high quantitativeness, and perform highly sensitive detection. When performing such real-time PCR, it is important to improve the nucleic acid amplification efficiency to increase the quantitativeness and the detection sensitivity.

 これまでにも、前記核酸増幅法の効率や感度を向上させるために、核酸増幅反応液中に様々な試薬を添加する方法が報告されている。

There have been reported methods for adding various reagents to a nucleic acid amplification reaction solution in order to improve the efficiency and sensitivity of the nucleic acid amplification method.

 例えば、特許文献1では、終濃度が50mM以上のテトラメチルアンモニウム塩と共にテトラメチルアンモニウム耐性DNAポリメラーゼを含むことを特徴とする核酸増幅用組成物を用いることで、核酸増幅効率及び検出感度を向上させ、効果的な核酸増幅を行うことが記載されている。そして非特許文献1にも、テトラメチルアンモニウム塩は核酸増幅反応の増幅効率と特異性を向上させることが記載されている。この非特許文献1の報告によれば、増幅効率が最大となる濃度は塩化テトラメチルアンモニウムが5mM、酢酸テトラメチルアンモニウムが10mM以下、特異性が最大となる濃度は塩化テトラメチルアンモニウム、酢酸テトラメチルアンモニウムともに20mMとされている。さらに、テトラメチルアンモニウム塩は高濃度では酵素を阻害するとも言われており、非特許文献1によると、Taq DNAポリメラーゼを使用した場合、塩化テトラメチルアンモニウムは35mM、酢酸テトラメチルアンモニウムは40mMを超えると核酸増幅が90%阻害されると報告されている。

For example, in Patent Document 1, the nucleic acid amplification efficiency and detection sensitivity are improved by using a nucleic acid amplification composition characterized by containing a tetramethylammonium-resistant DNA polymerase together with a tetramethylammonium salt having a final concentration of 50 mM or more. For effective nucleic acid amplification. Non-Patent Document 1 also describes that a tetramethylammonium salt improves the amplification efficiency and specificity of a nucleic acid amplification reaction. According to the report of Non-Patent Document 1, the concentration at which the amplification efficiency is maximum is 5 mM for tetramethylammonium chloride and 10 mM or less for tetramethylammonium acetate, and the concentration at which the specificity is maximum is tetramethylammonium chloride and tetramethylammonium acetate. Ammonium is set to 20 mM. Furthermore, tetramethylammonium salts are also said to inhibit enzymes at high concentrations. According to Non-Patent Document 1, when Taq DNA polymerase is used, tetramethylammonium chloride exceeds 35 mM and tetramethylammonium acetate exceeds 40 mM. And that nucleic acid amplification is inhibited by 90%.

 更に、例えば、ジメチルスルホキシド(DMSO)、ベタイン誘導体、イオン性液体などの融解温度調整剤が核酸増幅効率を向上させる方法として報告されている。これらはいずれも核酸の融解温度を低下させることで、核酸の増幅効率を向上させることが知られている(特許文献2、3、4)。

Further, for example, melting temperature regulators such as dimethyl sulfoxide (DMSO), betaine derivatives, and ionic liquids have been reported as methods for improving nucleic acid amplification efficiency. All of these are known to improve nucleic acid amplification efficiency by lowering the melting temperature of nucleic acids (Patent Documents 2, 3, and 4).

 また、特許文献5、6では、グリコール類を核酸増幅反応中に添加することによって、核酸の融解温度を低下させ、非特異増幅を抑制する方法が記載されている。しかしながら、特許文献5、6には、グリコール類を用いることにより、Ct値とPCR効率が改善することについては具体的に記載されていない。

Further, Patent Documents 5 and 6 describe a method in which a glycol is added during a nucleic acid amplification reaction to lower the melting temperature of nucleic acid and suppress nonspecific amplification. However, Patent Documents 5 and 6 do not specifically describe that the use of glycols improves the Ct value and the PCR efficiency.

 ところで、プライマーの設計は実験の成功の可否を決める重要な要素である。例えば、リアルタイムPCRでは核酸増幅反応中の増幅効率を高めるために、増幅される鎖長の長さ(増幅鎖長)を200bpより小さなもの(例えば、50bp以上200bp未満)となるようプライマーを設計することが一般的である。

By the way, the design of the primer is an important factor that determines the success or failure of the experiment. For example, in real-time PCR, in order to increase amplification efficiency during a nucleic acid amplification reaction, primers are designed so that the length of the amplified chain length (amplified chain length) is smaller than 200 bp (for example, 50 bp or more and less than 200 bp). That is common.

 しかしながら、非特異増幅やプライマーダイマーの発生などにより、プライマーの設計箇所が制限されることで、増幅鎖長を200bp以上にしなければならない状況が往々にして発生する。このような場合、通常のリアルタイムPCR試薬では核酸増幅効率や検出感度が低下してしまうという問題があった。

However, due to non-specific amplification and the occurrence of primer dimers, the design site of the primer is limited, so that a situation where the amplified chain length must be 200 bp or more often occurs. In such a case, there has been a problem that the nucleic acid amplification efficiency and the detection sensitivity are reduced with a normal real-time PCR reagent.

 更に近年では、遺伝子診断用途や遺伝子検査用途において、マルチプレックスPCR法を用いた解析が行われている。マルチプレックスPCR法とは、数組のプライマー対を、一つのPCRアッセイで同時に用いる方法である。一つの反応混合液中で複数のDNA領域を同時に増幅するこの方法は、サンプルの取り扱いが最小限で済むので、労力や時間、費用が節約でき、またクロスコンタミネーションの危険性を減らすことができるが、一方で、複数のプライマーを添加することによりプライマーダイマーが形成されやすく、プライマーの設計が非常に難しいという課題が生じる。このような場合、プライマーダイマーを避けるためにプライマーの設計箇所が限定されてしまい、増幅する鎖長が200bp以上となってしまうことも想定される。

Furthermore, in recent years, analysis using the multiplex PCR method has been performed in gene diagnosis applications and gene testing applications. The multiplex PCR method is a method in which several primer pairs are used simultaneously in one PCR assay. This method of simultaneously amplifying multiple regions of DNA in a single reaction mixture saves labor, time, and money because it requires minimal sample handling and reduces the risk of cross-contamination. However, on the other hand, the addition of a plurality of primers causes a problem that a primer dimer is easily formed, which makes it very difficult to design a primer. In such a case, it is assumed that the design site of the primer is limited in order to avoid the primer dimer, and the chain length to be amplified becomes 200 bp or more.

 加えて、マルチプレックスPCR法において、反応混合液中で同時に増幅されるDNA領域の各増幅鎖長が異なる場合、増幅産物の長さの違いによって増幅効率のバラつきが発生することが懸念される。それに伴い、正確な定量結果が得られないといった問題や、標的DNAの検出感度の低下といった問題が生じる恐れがある。

In addition, in the multiplex PCR method, when the lengths of the respective amplified chains of the DNA regions that are simultaneously amplified in the reaction mixture are different, there is a concern that the difference in the length of the amplification product may cause variation in amplification efficiency. Accordingly, there is a possibility that an accurate quantification result cannot be obtained, or a problem such as a decrease in target DNA detection sensitivity may occur.

 また、インターカレーター法を用いたマルチプレックスPCR法では、融解曲線解析における増幅産物のTm値を、標的とするDNA領域ごとに変更することによって、標的DNAの有無を判別する手法がとられる。このような場合では、増幅産物のTm値を区別する目的で、増幅産物の鎖長を変更することが一般的に行われる。この際、増幅する鎖長が200bp以上となってしまうことも想定される。例えば、非特許文献2では混合糞便からのベロ毒素遺伝子、サルモネラ属菌エンテロトキシン遺伝子、赤痢菌ipaH遺伝子、内部コントロール由来産物を融解曲線解析にて解析する目的で、それぞれの増幅産物が171bp、264bp、242bp、540bpとなるようにプライマーを設計している。

In the multiplex PCR method using the intercalator method, a method is employed in which the presence or absence of a target DNA is determined by changing the Tm value of an amplification product in a melting curve analysis for each target DNA region. In such a case, the chain length of the amplification product is generally changed for the purpose of distinguishing the Tm value of the amplification product. At this time, it is assumed that the chain length to be amplified is 200 bp or more. For example, in Non-Patent Document 2, for the purpose of analyzing by fusion curve analysis the velotoxin gene from mixed feces, the Salmonella enterotoxin gene, Shigella ipaH gene, and the product derived from the internal control, the respective amplified products are 171 bp, 264 bp, Primers are designed to be 242 bp and 540 bp.

特開2017-108735号公報JP 2017-108735 A 特許4761265号公報Japanese Patent No. 4761265 特許4300321号公報Japanese Patent No. 4300321 特開2014-27934号公報JP 2014-27934 A 特開2010-246528号公報JP 2010-246528 A 特開2010-246529号公報JP 2010-246529 A


 核酸増幅法において、核酸増幅効率及び検出感度を向上させる核酸増幅方法の検討が進められてきた。しかしながら、増幅する核酸配列によっては増幅効率や感度の低下が認められる場合があり、更なる改善が求められている。特に増幅鎖長が長い場合は増幅効率や検出感度が低下してしまうことが問題となっていた。

In the nucleic acid amplification method, a nucleic acid amplification method for improving the nucleic acid amplification efficiency and the detection sensitivity has been studied. However, depending on the nucleic acid sequence to be amplified, a decrease in amplification efficiency or sensitivity may be observed, and further improvement is required. In particular, when the amplification chain length is long, there has been a problem that the amplification efficiency and the detection sensitivity are reduced.

 そこで、本発明は核酸増幅法において、高効率に増幅可能な核酸増幅反応用組成物(例えば、PCR反応組成物)を提供することを一つの目的とする。更には、増幅鎖長が長くなった場合でも、高効率な増幅を維持できる核酸増幅反応組成物の提供を目的とする。

Accordingly, one object of the present invention is to provide a composition for a nucleic acid amplification reaction (eg, a PCR reaction composition) that can be amplified with high efficiency in a nucleic acid amplification method. Still another object of the present invention is to provide a nucleic acid amplification reaction composition that can maintain highly efficient amplification even when the length of the amplified chain is long.

 本発明者らは、上記課題に取り組み、鋭意研究の結果、1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれた少なくとも一つのジオール化合物を含む反応液中で核酸増幅反応を行うことで、例えば、200bp以上の長鎖標的核酸を増幅する場合であっても高効率にPCR反応を実施することが可能であることを見出し、本発明を成すに至った。この効果は、前記ジオール化合物とテトラメチルアンモニウム塩とを組み合わせて含む反応液で行うことで一層効果的となる。更にこの高効率な核酸増幅法は、DNAポリメラーゼとして、Thermus thermophilus由来のDNAポリメラーゼを用いる場合に顕著であることをも見出した。

MEANS TO SOLVE THE PROBLEM As a result of earnest research, the present inventors have solved the above-mentioned problem and found that a nucleic acid amplification reaction was performed in a reaction solution containing at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol. By carrying out, the present inventors have found that it is possible to carry out a PCR reaction with high efficiency even when, for example, amplifying a long target nucleic acid of 200 bp or more, and have accomplished the present invention. This effect is more effective when the reaction is performed using a reaction solution containing a combination of the diol compound and a tetramethylammonium salt. Furthermore, it has been found that this highly efficient nucleic acid amplification method is remarkable when a Thermus thermophilus-derived DNA polymerase is used as the DNA polymerase.

 即ち、本発明の概要は以下の通りである。

 [項1] 200bp以上の増幅鎖長を有する標的核酸を増幅する方法であって、1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれる少なくとも一種類のジオール化合物を含む反応液中で核酸増幅反応を行うことを特徴とする、核酸増幅方法。

 [項2] 前記反応液がテトラメチルアンモニウム塩を更に含む、項1に記載の方法。

 [項3] 前記テトラメチルアンモニウム塩が、酢酸テトラメチルアンモニウム、塩化テトラメチルアンモニウム、及び水酸化テトラメチルアンモニウムからなる群より選ばれる少なくとも一種である、項1又は2に記載の方法。

 [項4] 増幅鎖長が200bp以上1000bp以下である、項1~3のいずれかに記載の方法。

 [項5] 増幅鎖長が400bp以上500bp以下である、項1~4のいずれかに記載の方法。

 [項6] 核酸増幅反応がリアルタイムPCRである、項1~5のいずれかに記載の方法。

 [項7] 核酸増幅反応おける伸長時間が60秒以下である、項1~6のいずれかに記載の方法。

 [項8] 核酸増幅反応における伸長時間が30秒以下である、項1~7のいずれかに記載の方法。

 [項9] 前記反応液がThermus thermophilus由来のDNAポリメラーゼを更に含む、項1~8のいずれかに記載の方法。

 [項10] 1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれる少なくとも一種のジオール化合物と、テトラメチルアンモニウム塩とを含むことを特徴とする核酸増幅反応用組成物。

 [項11] 核酸増幅反応時の反応液中における前記ジオール化合物の濃度が、反応液全体に対して1~20容量%となるように調整された、項10に記載の核酸増幅反応用組成物。

 [項12] 核酸増幅反応時の反応液中における前記ジオール化合物の濃度が、反応液全体に対して3~10容量%となるように調整された、項10又は11に記載の核酸増幅反応用組成物。

 [項13] 前記テトラメチルアンモニウム塩が、酢酸テトラメチルアンモニウム、塩化テトラメチルアンモニウム、及び水酸化テトラメチルアンモニウムからなる群より選ばれる少なくとも一種である、項10~12のいずれかに記載の核酸増幅反応用組成物。

 [項14] 核酸増幅反応時の反応液中における前記テトラメチルアンモニウム塩の濃度が、反応液全体に対して50~200mMとなるように調整された、項10~13のいずれかに記載の核酸増幅反応用組成物。

 [項15] 更に、Thermus thermophilus由来のDNAポリメラーゼを含む、項10~14のいずれかに記載の核酸増幅反応用組成物。

 [項16] 核酸増幅反応がリアルタイムPCR反応である、項10~15のいずれかに記載の核酸増幅反応用組成物。

 [項17] 200bp以上の増幅鎖長を有する標的核酸を増幅するために用いられる、項10~16のいずれかに記載の核酸増幅反応用組成物。

 [項18] 1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれる少なくとも一種類のジオール化合物を含む、200bp以上の増幅鎖長を有する標的核酸を増幅するための試薬。

 [項19] 1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれる少なくとも一種類のジオール化合物を備えた、200bp以上の増幅鎖長を有する標的核酸を増幅するためのキット。

 [項20] 1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれる少なくとも一種のジオール化合物と、テトラメチルアンモニウム塩とを備えた、核酸増幅反応用キット。

 [項21] 200bp以上の増幅鎖長を有する標的核酸を増幅するために用いられる、項20に記載の核酸増幅反応用キット。

That is, the outline of the present invention is as follows.

[Item 1] A method for amplifying a target nucleic acid having an amplification chain length of 200 bp or more, wherein the reaction comprises at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol. A nucleic acid amplification method comprising performing a nucleic acid amplification reaction in a liquid.

[Item 2] The method according to Item 1, wherein the reaction solution further contains a tetramethylammonium salt.

[Item 3] The method according to Item 1 or 2, wherein the tetramethylammonium salt is at least one selected from the group consisting of tetramethylammonium acetate, tetramethylammonium chloride, and tetramethylammonium hydroxide.

[Item 4] The method according to any one of Items 1 to 3, wherein the amplified chain length is from 200 bp to 1000 bp.

[Item 5] The method according to any one of Items 1 to 4, wherein the amplified chain length is 400 bp or more and 500 bp or less.

[Item 6] The method according to any one of Items 1 to 5, wherein the nucleic acid amplification reaction is real-time PCR.

[Item 7] The method according to any one of Items 1 to 6, wherein the elongation time in the nucleic acid amplification reaction is 60 seconds or less.

[Item 8] The method according to any one of Items 1 to 7, wherein the extension time in the nucleic acid amplification reaction is 30 seconds or less.

[Item 9] The method according to any one of Items 1 to 8, wherein the reaction solution further contains a DNA polymerase derived from Thermus thermophilus.

[Item 10] A composition for a nucleic acid amplification reaction comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol, and a tetramethylammonium salt.

[Item 11] The composition for a nucleic acid amplification reaction according to Item 10, wherein the concentration of the diol compound in the reaction solution at the time of the nucleic acid amplification reaction is adjusted to 1 to 20% by volume based on the whole reaction solution. .

[Item 12] The nucleic acid amplification reaction according to Item 10 or 11, wherein the concentration of the diol compound in the reaction solution at the time of the nucleic acid amplification reaction is adjusted to 3 to 10% by volume based on the entire reaction solution. Composition.

[Item 13] The nucleic acid amplification according to any one of Items 10 to 12, wherein the tetramethylammonium salt is at least one selected from the group consisting of tetramethylammonium acetate, tetramethylammonium chloride, and tetramethylammonium hydroxide. Reaction composition.

[Item 14] The nucleic acid according to any one of Items 10 to 13, wherein the concentration of the tetramethylammonium salt in the reaction solution at the time of the nucleic acid amplification reaction is adjusted to 50 to 200 mM based on the whole reaction solution. Composition for amplification reaction.

[Item 15] The composition for a nucleic acid amplification reaction according to any one of Items 10 to 14, further comprising a DNA polymerase derived from Thermus thermophilus.

[Item 16] The composition for a nucleic acid amplification reaction according to any one of Items 10 to 15, wherein the nucleic acid amplification reaction is a real-time PCR reaction.

[Item 17] The composition for a nucleic acid amplification reaction according to any one of Items 10 to 16, which is used for amplifying a target nucleic acid having an amplification chain length of 200 bp or more.

[Item 18] A reagent for amplifying a target nucleic acid having an amplification chain length of 200 bp or more, comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol.

[Item 19] A kit for amplifying a target nucleic acid having an amplification chain length of 200 bp or more, comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol.

[Item 20] A kit for nucleic acid amplification reaction, comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol, and a tetramethylammonium salt.

[Item 21] The kit for a nucleic acid amplification reaction according to Item 20, which is used for amplifying a target nucleic acid having an amplification chain length of 200 bp or more.

 本発明により、高効率に核酸増幅を行うことが可能となる。本発明は、特にリアルタイムPCRにおいて有効であり、なかでも従来、高効率な増幅が難しかった増幅鎖長が長いターゲット(例えば、200bp以上の増幅鎖長を有する標的核酸)を増幅する際に本効果は顕著なものである。

According to the present invention, nucleic acid amplification can be performed with high efficiency. INDUSTRIAL APPLICABILITY The present invention is particularly effective in real-time PCR, and is particularly effective when amplifying a target having a long amplification chain length (for example, a target nucleic acid having an amplification chain length of 200 bp or more), which was conventionally difficult to perform efficiently. Is remarkable.

市販のリアルタイムPCR試薬を用いて、増幅鎖長が200bp、300bp、400bp、500bpとなるターゲットの増幅効率を検討した結果を示す図である。It is a figure which shows the result of having investigated the amplification efficiency of the target which amplification chain length becomes 200bp, 300bp, 400bp, and 500bp using a commercially available real-time PCR reagent. 1,2-プロパンジオールを無添加または7容量%添加し、増幅鎖長が200bp、300bp、400bpとなるターゲットの増幅効率をリアルタイムPCR法を用いて検討した結果を示す図である。FIG. 9 is a diagram showing the results of examining the amplification efficiency of a target having an amplification chain length of 200 bp, 300 bp, and 400 bp by using real-time PCR without adding 1,2-propanediol or by adding 7% by volume. 各種ジオール化合物を7容量%添加し、増幅鎖長が500bpのターゲットの増幅効率をリアルタイムPCR法を用いて検討した結果を示す図である。It is a figure which shows the result of having investigated the amplification efficiency of the target which 500 bp of amplification chain lengths added by adding 7 volume% of various diol compounds using real-time PCR method. 1,2-プロパンジオールを各種濃度で添加し、増幅鎖長が500bpのターゲットの増幅効率をリアルタイムPCR法を用いて検討した結果を示す図である。It is a figure which shows the result of having investigated the amplification efficiency of the target which has added 1,2-propanediol in various concentrations and the amplification chain length is 500 bp using the real-time PCR method. 酢酸テトラメチルアンモニウムの濃度を無添加又は50mM若しくは100mM添加し、増幅鎖長が500bpのターゲットの増幅効率をリアルタイムPCR法で検討した結果を示す図である。It is a figure which shows the result of having investigated the amplification efficiency of the target of 500 bp of amplification chain length by the real-time PCR method, without adding the density | concentration of tetramethylammonium acetate, or adding 50 mM or 100 mM.

 以下、本発明の実施形態を示しつつ、本発明について詳説するが、本発明はこれらに限定されるものではない。なお、本明細書中に記載された非特許文献及び特許文献の全てが、本明細書中において参考として援用される。また本明細書中の「~」は「以上、以下」を意味し、例えば明細書中で「X~Y」と記載されていれば「X以上、Y以下」を示す。また本明細書中の「及び/又は」は、いずれか一方または両方を意味する。

Hereinafter, the present invention will be described in detail while showing embodiments of the present invention, but the present invention is not limited to these. In addition, all of the non-patent documents and patent documents described in this specification are incorporated herein by reference. In addition, “to” in the present specification means “more than or equal to or less”. For example, when “X to Y” is described in the specification, it means “more than X and less than or equal to Y”. Further, “and / or” in the present specification means either one or both.

 本発明は一つの態様として、200bp以上の増幅鎖長を有する標的核酸を増幅する方法であって、1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれる少なくとも一種類のジオール化合物を含む反応液中で核酸増幅反応を行うことを特徴とする、核酸増幅方法を提供する。本発明に用いられる反応液は、例えば、核酸増幅反応用試薬として提供される核酸増幅反応液であり得る。核酸増幅反応液は、予め調製されて核酸増幅反応時にそのまま使用することができる試薬の状態であってもよいし、核酸増幅反応前に用時調製される状態の試薬であってもよい。なお、本明細書では、前記のような核酸増幅反応液を、核酸増幅反応用組成物ともいい、これらは互換可能に使用され得る。例えば、本発明に用いられる核酸増幅反応液は、PCR用試薬、リアルタイムPCR試薬、RT-PCR用試薬、リアルタイムRT-PCR用試薬などの態様で提供されるものであり得る。

In one aspect, the present invention relates to a method for amplifying a target nucleic acid having an amplified chain length of 200 bp or more, wherein at least one diol selected from the group consisting of 1,2-propanediol and 1,2-ethanediol Provided is a nucleic acid amplification method, wherein a nucleic acid amplification reaction is performed in a reaction solution containing a compound. The reaction solution used in the present invention may be, for example, a nucleic acid amplification reaction solution provided as a nucleic acid amplification reaction reagent. The nucleic acid amplification reaction solution may be a reagent which is prepared in advance and can be used as it is during the nucleic acid amplification reaction, or may be a reagent which is prepared before use before the nucleic acid amplification reaction. In the present specification, the nucleic acid amplification reaction solution as described above is also referred to as a nucleic acid amplification reaction composition, and these can be used interchangeably. For example, the nucleic acid amplification reaction solution used in the present invention may be provided in the form of a PCR reagent, a real-time PCR reagent, an RT-PCR reagent, a real-time RT-PCR reagent, or the like.

 本明細書において、核酸増幅反応とは、鋳型の核酸に対し、相補的な配列を持つ核酸を配列依存的に合成する反応を指し、その様式は特に限定されないが、より具体的には、ポリメラーゼ連鎖反応(PCR)法、Loop-Mediated Isothermal Amplification(LAMP)法、Transcriprtion Reverse Transcription Concerted Reaction (TRC)法、Nucleic Acid Sequence-Based Amplification (NASBA)法などの特定の標的配列を指数関数的に増幅する方法をいう。本発明は、そのいずれの核酸増幅反応にも用いられ得るが、好ましくは、ポリメラーゼ連鎖反応(PCR)法を用いた方法に用いられる。

As used herein, the nucleic acid amplification reaction refers to a reaction for synthesizing a nucleic acid having a sequence complementary to a template nucleic acid in a sequence-dependent manner, and the manner thereof is not particularly limited. Chain reaction (PCR) method, Loop-Mediated Isolation Amplification (LAMP) method, Transcription Reversal Transcription Reconciliation Reaction (TRC) method, Amplification of Nucleic Acid Sequence method of Nucleic Acid Sequence method, etc. Method. The present invention can be used for any of the nucleic acid amplification reactions, but is preferably used for a method using a polymerase chain reaction (PCR) method.

 PCR法としては、通常のPCR法のみならず、リアルタイムPCR、RT-PCR(Reverse Transcription PCR)、LA-PCR(Long and Accurate PCR)、競合的PCR、In situ PCR、RNA-primered PCR、multiplex PCR、シャトルPCR、PCR/GC-calmp法、ストレッチPCR、Alu PCR、メガプライマーPCR、Immuno PCR、などの種々のPCR法が当該分野で公知である。本発明は、当該分野で公知の任意のPCR法に用いられ得るが、好ましくは、リアルタイムPCR法に用いられる。

Examples of the PCR method include not only a normal PCR method but also real-time PCR, RT-PCR (Reverse Transcription PCR), LA-PCR (Long and Accurate PCR), competitive PCR, in situ PCR, RNA-primed PCR, and multiplex PCR. Various PCR methods are known in the art, such as, for example, shuttle PCR, PCR / GC-calmp method, stretch PCR, Alu PCR, megaprimer PCR, Immuno PCR. The present invention can be used for any PCR method known in the art, but is preferably used for a real-time PCR method.

 上記のようなPCR法は通常、熱変性、アニーリング及び伸長の各反応ステップを繰り返すことによって進行する。熱変性とは二本鎖DNAを乖離させるためのステップであり、アニーリングは乖離したDNAにプライマーをアニーリングするステップであり、伸長はDNAポリメラーゼにより相補鎖を合成するステップを指す。本発明で行われるPCR法では、アニーリング温度と伸長温度とは異なる温度であってもよいし、同一温度であってもよい。本発明において、アニーリング温度と伸長温度とを同一温度で行う場合は、アニーリング反応を行う時間と伸長反応を行う時間とを合わせた保持時間を伸長反応保持時間とする。伸長反応保持時間は特に限定されないが、例えば60秒以下、好ましくは50秒以下、より好ましくは40秒以下、更に好ましくは30秒以下であり得る。伸長反応保持時間の下限は、本発明の効果を奏する限り特に限定されないが、一例として1秒以上、好ましくは5秒以上、より好ましくは10秒以上であり得る。ここで、保持時間は全てのサイクルで同一時間であっても良いし、異なっていてもよい。

The PCR method as described above usually proceeds by repeating each reaction step of heat denaturation, annealing and extension. Thermal denaturation is a step for separating double-stranded DNA, annealing is a step of annealing a primer to the separated DNA, and elongation is a step of synthesizing a complementary strand with a DNA polymerase. In the PCR method performed in the present invention, the annealing temperature and the extension temperature may be different temperatures or may be the same temperature. In the present invention, when the annealing temperature and the elongation temperature are performed at the same temperature, the elongation reaction holding time is the holding time obtained by adding the annealing reaction time and the elongation reaction time. The extension reaction holding time is not particularly limited, but may be, for example, 60 seconds or less, preferably 50 seconds or less, more preferably 40 seconds or less, and still more preferably 30 seconds or less. The lower limit of the elongation reaction holding time is not particularly limited as long as the effects of the present invention are exhibited, but may be, for example, 1 second or longer, preferably 5 seconds or longer, more preferably 10 seconds or longer. Here, the holding time may be the same time in all cycles, or may be different.

 ジオール化合物とは、アルコールの一種(ポリオール)で、鎖式または環式脂肪族炭化水素を形成する炭素原子のうち、2つの炭素原子にそれぞれ1つずつのヒドロキシ基が存在している化合物であり、グリコール類とも呼ばれる周知の化合物である。なお、最も構造が単純なエチレングリコールを単にグリコールと呼びあらわすこともあるが、ここでは前述の広義でのグリコール類を指す。

The diol compound is a kind of alcohol (polyol) and is a compound in which one carbon group is present in each of two carbon atoms among carbon atoms forming a chain or cyclic aliphatic hydrocarbon. , And glycols. In addition, ethylene glycol having the simplest structure may be simply referred to as glycol, but here, it refers to the above-mentioned glycols in a broad sense.

 本発明では、ジオール化合物として、1,2-エタンジオール、1,2-プロパンジオールが用いられる。本発明者は、驚くべきことに、1,2-プロパンジオール及び/又は1,2-エタンジオールを用いることで、200bp以上の長鎖標的核酸(例えば、400~500bpの標的核酸)を増幅する場合であっても核酸増幅効率や検出感度の低下が抑制され、効率よく核酸増幅できることを初めて見出した。これらのジオール化合物は、構造により製法が異なるものの、いずれも工業的な製造方法が確立されており、安価で容易に入手が可能である。これらのジオール化合物は1種類のみを用いてもよいし、2種類を組み合わせて用いたとしても本発明の効果を奏する。更に、この1,2-プロパンジオール及び/又は1,2-エタンジオールによる長鎖の標的核酸を増幅する場合に認められる効果は、テトラメチルアンモニウム塩と組み合わせた場合に顕著であることも見出した。

In the present invention, 1,2-ethanediol and 1,2-propanediol are used as the diol compound. The present inventors surprisingly amplify long-chain target nucleic acids of 200 bp or more (eg, 400-500 bp target nucleic acids) by using 1,2-propanediol and / or 1,2-ethanediol. Even in this case, it has been found for the first time that a decrease in nucleic acid amplification efficiency and detection sensitivity is suppressed, and nucleic acid amplification can be performed efficiently. Although these diol compounds have different production methods depending on their structures, industrial production methods have been established for all of them, and they are inexpensive and easily available. One of these diol compounds may be used alone, or the effects of the present invention are exhibited even when two or more diol compounds are used in combination. Furthermore, it has also been found that the effect observed when amplifying a long-chain target nucleic acid by 1,2-propanediol and / or 1,2-ethanediol is remarkable when combined with a tetramethylammonium salt. .

 本発明に用いられ得る1,2-プロパンジオール及び/又は1,2-エタンジオールは、粘性が低いため、核酸増幅反応液の添加による操作性の低下がきわめて少ない。また、長期保存が可能で安定的であるという点でも優れた効果を奏するものである。加えて、これらのジオール化合物は、核酸の融解温度を低下させる作用を有するという点でも有益である。

Since 1,2-propanediol and / or 1,2-ethanediol that can be used in the present invention has a low viscosity, operability due to the addition of a nucleic acid amplification reaction solution is extremely low. In addition, it is also excellent in that it can be stored for a long time and is stable. In addition, these diol compounds are also advantageous in that they have the effect of lowering the melting temperature of nucleic acids.

 核酸増幅反応時の反応液中における1,2-プロパンジオール、及び1,2-エタンジオールからなる群より選択される少なくとも一種のジオール化合物の濃度は、反応液全体に対して、1~20容量%が好ましく、3~10容量%であることがより好ましい。反応液中におけるこれらのジオール化合物の濃度が1容量%未満では、例えばテトラメチルアンモニウム塩と組み合わせても、増幅効率や検出感度を向上させる効果が少ない傾向がある。また20容量%より高い濃度の場合、効果の大きさに比べて、ハンドリングが悪くなるというデメリットが大きくなる。従って、本発明に用いられる核酸増幅反応液は、核酸増幅反応時の反応液中における前記ジオール化合物の濃度が上記範囲内となるようにして調製されることが好ましい。

The concentration of at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol in the reaction solution at the time of the nucleic acid amplification reaction is 1 to 20 vol. %, More preferably 3 to 10% by volume. When the concentration of these diol compounds in the reaction solution is less than 1% by volume, the effect of improving amplification efficiency and detection sensitivity tends to be small even when combined with, for example, a tetramethylammonium salt. When the concentration is higher than 20% by volume, the disadvantage that handling becomes worse is greater than the effect. Therefore, the nucleic acid amplification reaction solution used in the present invention is preferably prepared such that the concentration of the diol compound in the reaction solution at the time of the nucleic acid amplification reaction is within the above range.

 本発明における核酸増幅反応液は、例えば保存用のために濃縮状態の核酸増幅反応用試薬として調製されたものであり得る。このような核酸増幅反応液は、例えば2~10倍の濃縮状態のものであり得る。その場合では、核酸増幅反応の反応溶液中における終濃度が好ましい濃度となるよう、1,2-プロパンジオール及び/又は1,2-エタンジオールを反応溶液における終濃度の2~10倍濃度で含有させておけばよい。

The nucleic acid amplification reaction solution in the present invention may be, for example, one prepared as a concentrated nucleic acid amplification reaction reagent for storage. Such a nucleic acid amplification reaction solution may be, for example, a 2 to 10-fold concentrated solution. In such a case, 1,2-propanediol and / or 1,2-ethanediol are contained in a concentration 2 to 10 times the final concentration in the reaction solution so that the final concentration in the reaction solution of the nucleic acid amplification reaction becomes a preferable concentration. You should let it.

 近年、作業性を向上させる目的で、2倍濃度(またはそれ以上の高濃度)のプレミック試薬が好適に使用されている。プレミックス試薬とは反応バッファー、反応基質(dNTPs)、マグネシウムイオン、ポリメラーゼ等をあらかじめ混合した試薬である。上記のような濃縮状態で調製された核酸増幅反応液は、このようなプレミックス試薬として提供される場合に好適である。また、プレミックス試薬は種々の成分を予め混合した状態で長期保存されるため安定性に劣る場合があるが、本発明に用いられる核酸増幅反応液は、混合液状態で長期間(例えば、1ヶ月以上)保存しても安定であることが分かっている。

In recent years, a double concentration (or higher concentration) of a premic reagent has been suitably used for the purpose of improving workability. The premix reagent is a reagent in which a reaction buffer, a reaction substrate (dNTPs), magnesium ions, a polymerase and the like are mixed in advance. The nucleic acid amplification reaction solution prepared in a concentrated state as described above is suitable when provided as such a premix reagent. In addition, the premix reagent may be inferior in stability because various components are preliminarily mixed and stored for a long period of time, but the nucleic acid amplification reaction solution used in the present invention may be in a mixed state for a long time (for example, 1 to 1). It has been found to be stable when stored for more than a month.

 溶液中または固形物中のジオール化合物の検出、濃度測定には、質量分析、液体クロマトグラフィーやガスクロマトグラフィーによる方法や、ポリオール脱水素酵素を用いた方法などが一般的に用いられる。好ましくは、質量分析と液体クロマトグラフィー分析、ガスクロマトグラフィー分析を組み合わせた方法によりジオール化合物の検出及び濃度測定を行うことができる。

For detection and concentration measurement of a diol compound in a solution or a solid, a method using mass spectrometry, liquid chromatography or gas chromatography, a method using a polyol dehydrogenase, and the like are generally used. Preferably, the detection and concentration measurement of the diol compound can be performed by a method combining mass spectrometry, liquid chromatography analysis, and gas chromatography analysis.

 特定の好ましい実施態様において、本発明の核酸増幅方法は、反応液中にテトラメチルアンモニウム塩を更に共存させて核酸増幅反応を行う。このようにテトラメチルアンモニウム塩を更に含む反応液中で核酸増幅反応をさせることで、一層効果的に本発明の効果を得ることが可能となる。

In a specific preferred embodiment, the nucleic acid amplification method of the present invention performs a nucleic acid amplification reaction in the presence of a tetramethylammonium salt in a reaction solution. By performing the nucleic acid amplification reaction in a reaction solution further containing a tetramethylammonium salt, the effects of the present invention can be more effectively obtained.

 本発明に用いられ得るテトラメチルアンモニウム塩は、本発明の効果を奏する限り、いかなるテトラメチルアンモニウム塩を用いても良い。1,2-プロパンジオール及び/又は1,2-エタンジオールと組み合わせて用いた場合により一層高い本発明の効果が得られ易いという観点から、好ましくは、テトラメチルアンモニウム塩としては、水酸化テトラメチルアンモニウム、塩化テトラメチルアンモニウム、酢酸テトラメチルアンモニウムが用いられ、より好ましくは、酢酸テトラメチルアンモニウムが用いられる。これらのテトラメチルアンモニウム塩は、構造により製法が異なるものの、いずれも工業的な製造方法が確立されており、安価で容易に入手が可能である。これらのテトラメチルアンモニウム塩は1種類のみを用いてもよいし、2種類以上を任意に組み合わせて用いたとしても本発明の効果を奏する。

As the tetramethylammonium salt that can be used in the present invention, any tetramethylammonium salt may be used as long as the effects of the present invention are exhibited. From the viewpoint that a higher effect of the present invention can be easily obtained when used in combination with 1,2-propanediol and / or 1,2-ethanediol, preferably, tetramethylammonium salt is tetramethylhydroxide. Ammonium, tetramethylammonium chloride, and tetramethylammonium acetate are used, and more preferably, tetramethylammonium acetate is used. Although these tetramethylammonium salts have different production methods depending on their structures, industrial production methods have been established for all of them, and they are inexpensive and easily available. One of these tetramethylammonium salts may be used alone, or the effect of the present invention is exerted even when two or more are used in any combination.

 本発明において、テトラメチルアンモニウム塩を用いる場合、核酸増幅反応時の反応液中におけるテトラメチルアンモニウム塩の濃度は、本発明の効果を奏する限り特に限定されないが、一例として、反応液全体に対して50mM以上が好ましく、75mM以上がより好ましく、90mM以上が更に好ましく、100mM以上がとりわけ好ましい。一方、テトラメチルアンモニウム塩の上記濃度の上限は、本発明の効果を奏する限り特に限定されないが、一例として、反応液全体に対して200mM以下が好ましい。従って、本発明に用いられる核酸増幅反応液は、核酸増幅反応時の反応液中におけるテトラメチルアンモニウム塩の濃度が上記範囲内となるようにして調製されることが好ましい。

In the present invention, when a tetramethylammonium salt is used, the concentration of the tetramethylammonium salt in the reaction solution during the nucleic acid amplification reaction is not particularly limited as long as the effects of the present invention are exerted. It is preferably at least 50 mM, more preferably at least 75 mM, further preferably at least 90 mM, particularly preferably at least 100 mM. On the other hand, the upper limit of the concentration of the tetramethylammonium salt is not particularly limited as long as the effects of the present invention are exerted, but as an example, it is preferably 200 mM or less based on the whole reaction solution. Therefore, the nucleic acid amplification reaction solution used in the present invention is preferably prepared such that the concentration of the tetramethylammonium salt in the reaction solution during the nucleic acid amplification reaction is within the above range.

 本発明において核酸増幅反応液を、例えば保存用のために濃縮状態の核酸増幅反応用試薬として調製する場合には、上述のように、例えば2~10倍の濃縮状態とすることができる。その場合では、核酸増幅反応の反応溶液中における終濃度が好ましい濃度となるよう、テトラメチルアンモニウム塩を反応溶液における終濃度の2~10倍濃度で含有させておけばよい。

In the present invention, when the nucleic acid amplification reaction solution is prepared as, for example, a nucleic acid amplification reaction reagent in a concentrated state for storage, as described above, the nucleic acid amplification reaction solution can be in a 2 to 10-fold concentrated state. In such a case, the tetramethylammonium salt may be contained at a concentration of 2 to 10 times the final concentration in the reaction solution so that the final concentration in the reaction solution of the nucleic acid amplification reaction becomes a preferable concentration.

 溶液中または固形物中のテトラメチルアンモニウム塩の検出、濃度測定には、NMR(核磁気共鳴)分析、液体クロマトグラフィーによる方法などが一般的に用いられる。好ましくは、液体クロマトグラフィーによりジオール化合物の検出及び濃度測定を行うことができる。

For the detection and concentration measurement of the tetramethylammonium salt in the solution or solid, NMR (nuclear magnetic resonance) analysis, a method by liquid chromatography, and the like are generally used. Preferably, detection and concentration measurement of the diol compound can be performed by liquid chromatography.

 本発明において、テトラメチルアンモニウム塩を用いる場合、1,2-プロパンジオール及び1,2-エタンジオールからなる群より選択される少なくとも一種のジオール化合物と、テトラメチルアンモニウム塩との配合比は、本発明の効果を奏する限り特に限定されないが、一例として、テトラメチルアンモニウム塩が100mMの場合に、前記ジオール化合物が1~20容量%であることが好ましく、3~10容量%であることがより好ましい。このような比率で、両成分を含むことで、より一層効果的に核酸増幅効率を向上させることができ、とりわけ長鎖の標的核酸を増幅する場合の核酸増幅効率を向上させることができる。

In the present invention, when a tetramethylammonium salt is used, the mixing ratio of at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol to the tetramethylammonium salt is as follows. Although not particularly limited as long as the effects of the present invention are exerted, as an example, when the tetramethylammonium salt is 100 mM, the diol compound is preferably 1 to 20% by volume, more preferably 3 to 10% by volume. . By including both components at such a ratio, the nucleic acid amplification efficiency can be more effectively improved, and particularly, the nucleic acid amplification efficiency when amplifying a long-chain target nucleic acid can be improved.

 核酸増幅反応を実施するために、本発明に用いられる核酸増幅反応液(核酸増幅反応用組成物)は、前記ジオール化合物及びテトラメチルアンモニウム塩に加えて、さらに鋳型となる核酸、DNAポリメラーゼ、プライマーとなるオリゴヌクレオチド、ジデオキシヌクレオシド三リン酸(dNTPs)、反応バッファー、金属イオン(例えば、マグネシウムイオン)等を実施する核酸増幅方法により必要に応じて含むことができる。一例として、PCR法を用いた核酸増幅方法においては、DNAポリメラーゼを更に含むことが好ましく、鋳型核酸、DNAポリメラーゼ、オリゴヌクレオチド、及びdNTPsを含むことがより好ましく、鋳型核酸、DNAポリメラーゼ、オリゴヌクレオチド、dNTPs、及び反応バッファーを含むことが更に好ましい。

In order to carry out a nucleic acid amplification reaction, the nucleic acid amplification reaction solution (composition for nucleic acid amplification reaction) used in the present invention contains, in addition to the diol compound and the tetramethylammonium salt, a nucleic acid, a DNA polymerase, and a primer that serve as templates. As necessary, depending on the nucleic acid amplification method used, such as an oligonucleotide, a dideoxynucleoside triphosphate (dNTPs), a reaction buffer, a metal ion (eg, magnesium ion). As an example, in a nucleic acid amplification method using a PCR method, it is preferable that a DNA polymerase is further included, and a template nucleic acid, a DNA polymerase, an oligonucleotide, and dNTPs are more preferably included, and a template nucleic acid, a DNA polymerase, an oligonucleotide, More preferably, it contains dNTPs and a reaction buffer.

 本発明の核酸増幅反応に使用されるDNAポリメラーゼは、特に限定されないが、Thermus thermophilus由来のDNAポリメラーゼを使用することが好ましい。ここで、Thermus thermophilus由来のDNAポリメラーゼとは、Thermus thermophilusから直接得られたDNAポリメラーゼに限定されず、Thermus thermophilusの変異株から直接得られたDNAポリメラーゼであってもよいし、Thermus thermophilus又はその変異体から得られたDNAポリメラーゼの配列情報を元に遺伝子工学的又は化学的等の方法で改変を加え、Thermus thermophilus由来のDNAポリメラーゼと実質的に同等の活性を有するDNAポリメラーゼであってもよい。前記Thermus thermophilus由来のDNAポリメラーゼはThermus thermophilusから直接抽出したものでもよいし、さらにそれを適当な発現系で組換え生産したものでもよい。

The DNA polymerase used in the nucleic acid amplification reaction of the present invention is not particularly limited, but it is preferable to use a DNA polymerase derived from Thermus thermophilus. Here, the DNA polymerase derived from Thermus thermophilus is not limited to a DNA polymerase obtained directly from Thermus thermophilus, and may be a DNA polymerase obtained directly from a mutant strain of Thermus thermophilus, or may be a Thermus thermophilus or a mutant thereof. A DNA polymerase which has been modified by genetic engineering or chemical methods based on the sequence information of a DNA polymerase obtained from the body, and which has substantially the same activity as a DNA polymerase derived from Thermus thermophilus may be used. The DNA polymerase derived from Thermus thermophilus may be a DNA polymerase directly extracted from Thermus thermophilus, or may be a recombinantly produced product thereof in an appropriate expression system.

 本明細書において、DNAポリメラーゼの変異体とは、その由来である野生型DNAポリメラーゼのアミノ酸配列に対して、例えば85%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、なかでも好ましくは99%以上の配列同一性を有し、且つ、野生型DNAポリメラーゼと同様にDNAを増幅する活性を有するものをいう。ここで、アミノ酸配列の同一性を算出する方法としては、当該分野で公知の任意の手段で行うことができる。例えば、市販の又は電気通信回線(インターネット)を通じて利用可能な解析ツールを用いて算出することができ、一例として、全米バイオテクノロジー情報センター(NCBI)の相同性アルゴリズムBLAST(Basic local alignment search tool)http://www.ncbi.nlm.nih.gov/BLAST/においてデフォルト(初期設定)のパラメータを用いることにより、アミノ酸配列の同一性を算出することが可能である。また、本発明に用いられ得る変異体は、その由来である野生型DNAポリメラーゼのアミノ酸配列において、1又は数個のアミノ酸が置換、欠失、挿入、及び/又は付加(以下、これらを纏めて「変異」ともいう)したアミノ酸配列からなるポリペプチドであり、且つ、野生型DNAポリメラーゼと同様にDNAを増幅する活性を有するものであってもよい。ここで1又は数個とは、例えば、1~80個、好ましくは1~40個、よりこのましくは1~10個、さらに好ましくは1~5個、なかでも好ましくは1~3個であり得るが、特に限定されない。

As used herein, a DNA polymerase mutant refers to, for example, 85% or more, preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more, based on the amino acid sequence of the wild-type DNA polymerase from which it is derived. % Or more, preferably 99% or more, and has the activity of amplifying DNA similarly to wild-type DNA polymerase. Here, the method of calculating the amino acid sequence identity can be performed by any means known in the art. For example, it can be calculated using an analysis tool that is commercially available or available through a telecommunication line (Internet). For example, the homology algorithm BLAST (Basic local alignment search tool) http of the National Center for Biotechnology Information (NCBI) can be used. /// www. ncbi. nlm. nih. It is possible to calculate amino acid sequence identity by using default (initial setting) parameters in gov / BLAST /. In addition, the mutant that can be used in the present invention is obtained by substituting, deleting, inserting, and / or adding one or several amino acids in the amino acid sequence of the wild-type DNA polymerase from which the mutant is derived. It may be a polypeptide comprising an amino acid sequence having a "mutated" amino acid sequence and having the activity of amplifying DNA similarly to a wild-type DNA polymerase. The term “one or several” as used herein means, for example, 1 to 80, preferably 1 to 40, more preferably 1 to 10, more preferably 1 to 5, and particularly preferably 1 to 3. Although possible, there is no particular limitation.

 本発明に用いられる核酸増幅反応液は、リアルタイムPCRを行うために用いられる場合には、核酸増幅を経時的に確認するために蛍光色素又は蛍光標識したプローブを更に含むことが好ましい。このような蛍光色素又は蛍光標識したプローブは、本発明の効果を奏する限り特に限定されないが、例えば、SYBR GreenI(登録商標)、Eva Green(登録商標)、PicoGreen(登録商標)などの蛍光色素や、蛍光標識をしたプローブを含むことが好ましい。

When used for performing real-time PCR, the nucleic acid amplification reaction solution used in the present invention preferably further contains a fluorescent dye or a fluorescently labeled probe in order to confirm nucleic acid amplification over time. Such a fluorescent dye or a fluorescent-labeled probe is not particularly limited as long as the effect of the present invention is exerted, and examples thereof include fluorescent dyes such as SYBR GreenI (registered trademark), Eva Green (registered trademark), and Pico Green (registered trademark). It is preferable to include a fluorescently labeled probe.

 本発明に使用される核酸増幅反応液は、RT-PCRやリアルタイムRT-PCRを行うために用いられる場合には、検出対象となるRNAを効率的にDNAに変換するために、逆転写酵素を更に含むことが好ましい。

When the nucleic acid amplification reaction solution used in the present invention is used for performing RT-PCR or real-time RT-PCR, reverse transcriptase is used to efficiently convert RNA to be detected into DNA. It is preferable to further include.

 本発明に用いられる核酸増幅反応液は、ホットスタートPCR法を実施するために用いられる場合には、抗DNAポリメラーゼ抗体を含むことが好ましい。ここでいう抗DNAポリメラーゼ抗体は、単一種のモノクローナル抗体であってもよいし、複数のモノクローナル抗体を組合せて用いてもよいし、ポリクローナル抗体を用いてもよい。

When used for performing a hot start PCR method, the nucleic acid amplification reaction solution used in the present invention preferably contains an anti-DNA polymerase antibody. The anti-DNA polymerase antibody here may be a single kind of monoclonal antibody, a combination of a plurality of monoclonal antibodies, or a polyclonal antibody.

 本発明の更なる態様は、1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれる少なくとも一種のジオール化合物と、テトラメチルアンモニウム塩とを含むことを特徴とする核酸増幅反応用組成物である。ここでいう、核酸増幅反応用組成物は、例えば、核酸増幅反応用試薬として提供されるものであり得る。核酸増幅用反応組成物は、予め調製されて核酸増幅反応時にそのまま使用することができる試薬の状態であってもよいし、核酸増幅反応前に用時調製される状態の試薬であってもよい。例えば、本発明の核酸増幅反応用組成物は、PCR用試薬、リアルタイムPCR試薬、RT-PCR用試薬、リアルタイムRT-PCR用試薬などの態様で提供することができる。

A further aspect of the present invention provides a nucleic acid amplification reaction comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol, and a tetramethylammonium salt. A composition. Here, the composition for a nucleic acid amplification reaction may be provided as, for example, a reagent for a nucleic acid amplification reaction. The nucleic acid amplification reaction composition may be in the form of a reagent which is prepared in advance and can be used as it is during the nucleic acid amplification reaction, or may be a reagent which is prepared before use before the nucleic acid amplification reaction. . For example, the nucleic acid amplification reaction composition of the present invention can be provided in the form of a PCR reagent, a real-time PCR reagent, an RT-PCR reagent, a real-time RT-PCR reagent, and the like.

 1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれる少なくとも一種のジオール化合物と、テトラメチルアンモニウム塩とを含むことを特徴とする本発明の上記核酸増幅反応用組成物における各成分の濃度は、本発明の効果を奏する限り、特に限定されない。例えば、核酸増幅反応時の反応液中における前記ジオール化合物の濃度(終濃度)が反応液全体に対して1~20容量%となるように調整された濃度、好ましくは3~10容量%となるように調整された濃度であり得る。また例えば、核酸増幅反応時の反応液中における前記テトラメチルアンモニウム塩の濃度(終濃度)が反応液全体に対して25~400mMとなるように調整された濃度、好ましくは50~200mMとなるように調整された濃度(一例として、50~100mMとなるように調整された濃度)であり得る。本実施態様で用いられるテトラメチルアンモニウム塩の種類は、本発明の効果を奏する限り特に限定されず、例えば、前記標的核酸を増幅する方法において記載したようなテトラメチルアンモニウム塩を使用することができる。好ましくは、テトラメチルアンモニウム塩は、酢酸テトラメチルアンモニウム、塩化テトラメチルアンモニウム、及び水酸化テトラメチルアンモニウムからなる群より選ばれる少なくとも一種である。本実施態様の組成物は、更に任意の成分を含むことができ、好ましくは、更にThermus thermophilus由来のDNAポリメラーゼを含むことが好適である。

The composition for nucleic acid amplification reaction according to the present invention, comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol, and a tetramethylammonium salt. The concentration of the component is not particularly limited as long as the effects of the present invention are exhibited. For example, the concentration (final concentration) of the diol compound in the reaction solution at the time of the nucleic acid amplification reaction is adjusted to 1 to 20% by volume, preferably 3 to 10% by volume, based on the entire reaction solution. The concentration may be adjusted as follows. Further, for example, the concentration (final concentration) of the tetramethylammonium salt in the reaction solution at the time of the nucleic acid amplification reaction is adjusted to 25 to 400 mM, preferably 50 to 200 mM, based on the entire reaction solution. (For example, a concentration adjusted to be 50 to 100 mM). The type of the tetramethylammonium salt used in the present embodiment is not particularly limited as long as the effects of the present invention are exhibited. For example, a tetramethylammonium salt as described in the method for amplifying the target nucleic acid can be used. . Preferably, the tetramethylammonium salt is at least one selected from the group consisting of tetramethylammonium acetate, tetramethylammonium chloride, and tetramethylammonium hydroxide. The composition of the present embodiment can further contain optional components, and preferably further contains a DNA polymerase derived from Thermus thermophilus.

 本実施態様の核酸増幅用組成物は、従来の方法では増幅が難しい傾向にあった長鎖標的核酸を増幅する際に特に有益であり、例えば、200bp以上の増幅鎖長を有する標的核酸を増幅するために用いられる。対象となる標的核酸の増幅鎖長は特に限定されないが、好ましくは300bp以上、より好ましくは400bp以上(例えば、500bp以上、600bp以上)であり得る。本発明が対象とする標的核酸の増幅鎖長の上限は、本発明の効果を奏する限り特に限定されないが、例えば、1000bp以下であってもよいし、800bp以下であることが好適であり、一例として500bp以下であってもよい。

The composition for nucleic acid amplification of this embodiment is particularly useful when amplifying a long-chain target nucleic acid, which has tended to be difficult to amplify by conventional methods. For example, amplifying a target nucleic acid having an amplified chain length of 200 bp or more Used to The amplification chain length of the target nucleic acid of interest is not particularly limited, but may be preferably 300 bp or more, more preferably 400 bp or more (eg, 500 bp or more, 600 bp or more). The upper limit of the amplified chain length of the target nucleic acid targeted by the present invention is not particularly limited as long as the effects of the present invention are exerted. For example, the upper limit may be 1000 bp or less, or 800 bp or less. May be 500 bp or less.

 本発明の別の態様は、1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれる少なくとも一種類のジオール化合物を含む、200bp以上の増幅鎖長を有する標的核酸を増幅するための試薬である。更なる本発明の態様は、1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれる少なくとも一種類のジオール化合物を備えたキットであり、好ましくは200bp以上の増幅鎖長を有する標的核酸を増幅するために用いられるキットである。このような試薬又はキットは、前記ジオール化合物と組み合わせて、テトラメチルアンモニウム塩を更に含むことが好ましい。本発明の好ましい実施態様の一つは、1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれる少なくとも一種類のジオール化合物と、テトラメチルアンモニウム塩とを備えた、核酸増幅反応用キットである。例えば、本発明の前記キットがテトラメチルアンモニウム塩を更に含む場合、このような本発明の核酸増幅反応用キットは、1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれた少なくとも一つのジオール化合物と、テトラメチルアンモニウム塩とを、同一の容器に含む状態で提供されてもよいし、別々の容器に含む状態で提供され、使用前に混合して用いる態様であってもよい。別々の容器に含む状態で提供される場合、任意に含んでもよい他の成分(例えば、Thermus thermophilus由来のDNAポリメラーゼ)は、前記ジオール化合物と同一の容器に含まれていてもよいし、前記テトラメチルアンモニウム塩と同一の容器に含まれていてもよいし、前記ジオール化合物及び前記テトラメチルアンモニウム塩とは更に別の容器に含まれていてもよい。より簡便に使用することが可能であるという観点からは、同一の容器に前記ジオール化合物及びテトラメチルアンモニウム塩を含むことが好ましく、同一の容器に、前記ジオール化合物、テトラメチルアンモニウム塩、及び任意に含んでもよい他の成分(例えば、Thermus thermophilus由来のDNAポリメラーゼ)を含むことがより好ましい。 上記のような本発明のキットにおいて使用される前記ジオール化合物やテトラメチルアンモニウム塩の濃度や種類等は、上記核酸増幅方法で説明したものと同じであり得る。

Another aspect of the present invention is to amplify a target nucleic acid having an amplification chain length of 200 bp or more, comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol. Reagent. A further embodiment of the present invention is a kit including at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol, and preferably has an amplification chain length of 200 bp or more. This is a kit used for amplifying a target nucleic acid. Such a reagent or kit preferably further includes a tetramethylammonium salt in combination with the diol compound. One preferred embodiment of the present invention provides a nucleic acid amplification reaction comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol, and a tetramethylammonium salt. Kit. For example, when the kit of the present invention further contains a tetramethylammonium salt, such a kit for a nucleic acid amplification reaction of the present invention is selected from the group consisting of 1,2-propanediol and 1,2-ethanediol. At least one diol compound and the tetramethylammonium salt may be provided in the same container, or may be provided in separate containers, and may be used by mixing before use. Good. When provided in a separate container, other components that may optionally be included (eg, a DNA polymerase derived from Thermus thermophilus) may be included in the same container as the diol compound, or may be included in the tetramer. The diol compound and the tetramethylammonium salt may be contained in the same container as the methyl ammonium salt, or may be contained in another container. It is preferable that the diol compound and the tetramethylammonium salt are contained in the same container from the viewpoint that the diol compound and the tetramethylammonium salt can be used more easily. It is more preferable to include other components that may be included (for example, a DNA polymerase derived from Thermus thermophilus). The concentration and type of the diol compound and the tetramethylammonium salt used in the above-described kit of the present invention can be the same as those described in the nucleic acid amplification method.

 本発明の核酸増幅方法は、試薬やキットなどのような態様で前記ジオール化合物、及び任意で含んでいてもよいテトラメチルアンモニウム塩を、例えば、両方含む状態で提供することもできるし、自家調製により提供することもでき、形態を問わない。

 上記のような本発明の方法において使用される前記ジオール化合物やテトラメチルアンモニウム塩の濃度や種類等は、上記核酸増幅方法又は上記核酸増幅反応用の試薬若しくはキットで説明したものと同じであり得る。

The nucleic acid amplification method of the present invention can provide the diol compound in a form such as a reagent or a kit, and optionally a tetramethylammonium salt, for example, in a state containing both, or can be prepared in-house. And can be provided in any form.

The concentration or type of the diol compound or tetramethylammonium salt used in the method of the present invention as described above may be the same as that described in the nucleic acid amplification method or the reagent or kit for the nucleic acid amplification reaction. .

 特定の態様において、リアルタイムPCR法における増幅の効率性を評価する指標としてPCR効率(PCR増幅効率)を評価する手法が用いられる。PCR効率とは検量線の傾き(slope)から求められる値であり、X軸に初期鋳型濃度(Log10)を、Y軸にCt値を取った場合に以下のような数式で求められることが公知の値であるPCR効率E=10[-1/slope]-1 このPCR効率は100%に近い方が理想とされるが、PCR阻害物やプライマーの設計により変動する。そのため、80%~120%が適正値といわれており、満たない場合は実験系の見直しが通常必要と言われている。本発明によれば、このPCR効率を高めることができ、一例として、PCR効率を80%~120%とすることができ、好ましくは85%~115%とすることができ、より好ましくは90%~110%とすることができる。

In a specific embodiment, a technique for evaluating PCR efficiency (PCR amplification efficiency) is used as an index for evaluating the efficiency of amplification in the real-time PCR method. The PCR efficiency is a value obtained from the slope of the calibration curve, and it is known that when the initial template concentration (Log10) is taken on the X-axis and the Ct value is taken on the Y-axis, the following equation is used. PCR efficiency E = 10 [−1 / slope] −1 This PCR efficiency is ideally closer to 100%, but varies depending on the design of PCR inhibitors and primers. For this reason, 80% to 120% is said to be an appropriate value, and if less than that, it is said that it is usually necessary to review the experimental system. According to the present invention, the PCR efficiency can be increased. For example, the PCR efficiency can be 80% to 120%, preferably 85% to 115%, more preferably 90%. 110110%.

 リアルタイムPCR法では未知試料の絶対定量方法として、スタンダードサンプルの希釈系列により得られた検量線を使用する。この場合、スタンダードサンプルと未知試料におけるPCR効率が一致していなければならず、一致していない場合は、誤った結果を与えてしまうことにつながる点に留意しなければならない。

In the real-time PCR method, a calibration curve obtained by a dilution series of a standard sample is used as an absolute quantification method of an unknown sample. In this case, it must be noted that the PCR efficiencies of the standard sample and the unknown sample must match, and if they do not match, incorrect results may be given.

 本発明によれば、長鎖の標的核酸を増幅する場合であっても、Ct値とPCR効率を改善することができる。従って、例えば、増幅産物長が異なる複数の標的核酸を増幅するようなマルチプレックスPCR法(例えば、400bp以上の長鎖標的核酸、及び200bp未満の短鎖標的核酸の両方を標的核酸とするマルチプレックスPCR法等)において、増幅産物の長さの違いによる増幅効率のバラつきが改善され、正確な結果を得ることが可能になり、標的DNAの検出感度低下を抑制することが可能となり得る。

According to the present invention, the Ct value and the PCR efficiency can be improved even when a long target nucleic acid is amplified. Therefore, for example, a multiplex PCR method that amplifies a plurality of target nucleic acids having different amplification product lengths (for example, a multiplex using both long target nucleic acids of 400 bp or more and short target nucleic acids of less than 200 bp as target nucleic acids) In the PCR method or the like), the variation in amplification efficiency due to the difference in the length of the amplification product can be improved, accurate results can be obtained, and a decrease in detection sensitivity of the target DNA can be suppressed.

 好ましい実施態様において、本発明の核酸増幅方法、試薬及びキット等は、200bp以上の増幅鎖長を有する標的核酸を増幅するために用いられる。本実施態様において、対象となる標的核酸の増幅鎖長は200bp以上である限り、特に限定されないが、好ましくは300bp以上、より好ましくは400bp以上(例えば、500bp以上、600bp以上)であり得る。本発明が対象とする標的核酸の増幅鎖長の上限は、本発明の効果を奏する限り特に限定されないが、例えば、1000bp以下であってもよいし、更には800bp以下であってもよいし、特定の態様では更に例えば500bp以下であってもよい。

In a preferred embodiment, the nucleic acid amplification method, reagent, kit and the like of the present invention are used for amplifying a target nucleic acid having an amplified chain length of 200 bp or more. In the present embodiment, the amplified chain length of the target nucleic acid of interest is not particularly limited as long as it is 200 bp or more, but may be preferably 300 bp or more, more preferably 400 bp or more (eg, 500 bp or more, 600 bp or more). The upper limit of the amplified chain length of the target nucleic acid targeted by the present invention is not particularly limited as long as the effects of the present invention are exhibited, but may be, for example, 1000 bp or less, or may be 800 bp or less, In certain embodiments, it may further be, for example, 500 bp or less.

 以下、本発明を実施例に基づき、より詳細に説明する。なお、本発明は実施例に特に限定されるものではない。

Hereinafter, the present invention will be described in more detail based on examples. The present invention is not particularly limited to the examples.

 参考例1 一般的なリアルタイムPCR試薬の評価

 (1)DNAサンプル

 DNAサンプルとして配列番号1に記載する人工合成DNAを使用した。人工合成DNAを10,000,000コピーから10コピーまで、1/10ずつ段階希釈し、鋳型として使用した。

 そして、増幅される鎖長の長さが200bp、300bp、400bp、500bpとなるように配列番号2から6のようにプライマーを設計し、リアルタイムPCR反応によってPCR効率を測定した。配列番号2と3が増幅鎖長が200bpを、配列番号2と4が増幅鎖長300bpを、配列番号2と5が増幅鎖長400bpを、配列番号2と6が増幅鎖長500bpを増幅するためのフォワード及びリバースプライマーにそれぞれ対応する。

 (2)リアルタイムPCR反応

 リアルタイムPCR反応における増幅鎖長の違いによるCt値やPCR効率への影響を評価するために、下記試薬を用いてリアルタイムPCR反応を行い、PCR効率の評価を行った。ここで、PCR反応液に添加するプライマーの濃度条件は、各製品の添付文書の記載に従った。

 ・PowerUpSYBR Green Master Mix(ThermoFisher SCIENTIFIC)

 ・SYBR Premix Ex TaqTM II (Tli RNaseH Plus)(TaKaRa)

 リアルタイムPCR反応はCFX96 Touch Deep wellリアルタイムPCR解析システムを使用し、反応条件は初期変性95℃30秒、PCRサイクル95℃5秒-60℃ 30秒で40サイクル行った。引き続き融解曲線解析を行った。

 (3)結果

 その結果を図1に示す。図1は、各条件で二回実施した平均Ct値と、PCR効率E=10[-1/slope]-1によって求められるPCR効率(%)の値を示す。ここで、Ct値は値が小さいほど増幅効率が高いことを示し、PCR効率の値が100%に近いほどPCR効率が高いことを示す。なお、図面においてNDは検出できなかったことを示す。いずれの試薬でも増幅鎖長が200bpまでの条件では、高いPCR効率を示すが、増幅鎖長が長くなるほどにCt値とPCR効率が低下していく結果となった。この結果から、増幅鎖長が、とりわけ300bp以上となると一般に核酸増幅反応の効率が落ちることが分かる。

Reference Example 1 Evaluation of general real-time PCR reagent

(1) DNA sample

The artificially synthesized DNA described in SEQ ID NO: 1 was used as a DNA sample. The artificially synthesized DNA was serially diluted 1/10 from 10,000,000 copies to 10 copies and used as a template.

Then, primers were designed as in SEQ ID NOs: 2 to 6 so that the lengths of the amplified chain lengths were 200 bp, 300 bp, 400 bp, and 500 bp, and the PCR efficiency was measured by a real-time PCR reaction. SEQ ID Nos. 2 and 3 amplify the amplified chain length of 200 bp, SEQ ID Nos. 2 and 4 amplify the amplified chain length of 300 bp, SEQ ID Nos. 2 and 5 amplify the amplified chain length of 400 bp, and SEQ ID Nos. 2 and 6 amplify the amplified chain length of 500 bp. Respectively corresponding to the forward and reverse primers.

(2) Real-time PCR reaction

In order to evaluate the influence on the Ct value and PCR efficiency due to the difference in the amplified chain length in the real-time PCR reaction, a real-time PCR reaction was performed using the following reagents, and the PCR efficiency was evaluated. Here, the concentration conditions of the primer added to the PCR reaction solution were in accordance with the description of the package insert of each product.

・ PowerUpSYBR Green Master Mix (ThermoFisher SCIENTIFIC)

・ SYBR Premix Ex Taq II (Tli RNaseH Plus) (TaKaRa)

For the real-time PCR reaction, a CFX96 Touch Deep Well real-time PCR analysis system was used, and the reaction conditions were 40 cycles of initial denaturation at 95 ° C for 30 seconds and a PCR cycle of 95 ° C for 5 seconds to 60 ° C for 30 seconds. Subsequently, melting curve analysis was performed.

(3) Result

The result is shown in FIG. FIG. 1 shows the average Ct value performed twice under each condition and the value of the PCR efficiency (%) obtained by the PCR efficiency E = 10 [−1 / slope] −1. Here, the smaller the Ct value, the higher the amplification efficiency, and the closer the PCR efficiency value is to 100%, the higher the PCR efficiency. Note that ND is not detected in the drawing. In any of the reagents, the PCR efficiency was high under the condition that the amplification chain length was up to 200 bp, but the Ct value and the PCR efficiency decreased as the amplification chain length increased. From these results, it can be seen that the efficiency of the nucleic acid amplification reaction generally decreases when the amplified chain length is 300 bp or more.

 実施例1 1,2-プロパンジオール(1,2-propanediol)の評価

 リアルタイムPCR反応における1,2-プロパンジオールの効果を検証するため、1,2-プロパンジオール無添加、または7容量%を添加しリアルタイムPCR反応を行い、PCR効率の評価を行った。

 ・PCR反応用試薬の調製

 本実施例で使用するPCR反応用試薬は、以下の処方に従って調製した。ここで用いたフォワードプライマーとリバースプライマーは、上記参考例1と同じものを使用した。

 10mM Tris-HCl(pH7.5)

 40mM 酢酸カリウム

 3mM 硫酸マグネシウム

 0.3mM dNTPs

 0.3μM フォワードプライマー

 0.3μM リバースプライマー

 0.05U/μL rTthDNAポリメラーゼ(TOYOBO)

 0.4μg 抗Tth抗体(TOYOBO)

 1/20,000 SYBR Green I(登録商標)

 100mM 酢酸テトラメチルアンモニウム

 リアルタイムPCR反応の条件は初期変性95℃30秒、PCRサイクル95℃5秒-60℃ 30秒で40サイクル行った。引き続き融解曲線解析を行った。

 (3)結果

 その結果を図2に示す。1,2-プロパンジオール無添加の条件では、増幅鎖長が200bp、300bpでは増幅が可能であり、PCR効率が85%以上という結果となった。一方で増幅鎖長が400bp、500bpではCt値の低下が見られ、増幅効率が低下していることが明らかとなった。1,2-プロパンジオールを7容量%添加した条件では、増幅鎖長が200bp、300bpにおけるPCR効率の改善が確認された。また、増幅鎖長が400bp、500bpと長い場合でも、Ct値やPCR効率の低下はみられず高い増幅効率を維持することが可能であった。すなわち、増幅鎖長が200~300bpの場合でも1,2-プロパンジオールは優れた効果を示すが、増幅鎖長が長くなるほど、さらに好ましい効果を得ることができることが明らかとなった。

Example 1 Evaluation of 1,2-propanediol

To verify the effect of 1,2-propanediol on the real-time PCR reaction, a real-time PCR reaction was performed without adding 1,2-propanediol or 7% by volume, and the PCR efficiency was evaluated.

・ Preparation of reagent for PCR reaction

The reagent for PCR reaction used in this example was prepared according to the following formulation. The same forward primer and reverse primer as those used in Reference Example 1 were used.

10 mM Tris-HCl (pH 7.5)

40 mM potassium acetate

3 mM magnesium sulfate

0.3 mM dNTPs

0.3μM forward primer

0.3μM reverse primer

0.05 U / μL rTth DNA polymerase (TOYOBO)

0.4 μg anti-Tth antibody (TOYOBO)

1/20000 SYBR Green I (registered trademark)

100 mM tetramethylammonium acetate

The conditions of the real-time PCR reaction were 40 cycles of initial denaturation at 95 ° C. for 30 seconds and PCR cycles of 95 ° C. for 5 seconds to 60 ° C. for 30 seconds. Subsequently, melting curve analysis was performed.

(3) Result

The result is shown in FIG. Under the condition without addition of 1,2-propanediol, amplification was possible when the amplification chain length was 200 bp or 300 bp, and the PCR efficiency was 85% or more. On the other hand, when the amplified chain length was 400 bp or 500 bp, the Ct value was reduced, and it was clear that the amplification efficiency was reduced. Under conditions where 1,2-propanediol was added in an amount of 7% by volume, it was confirmed that the PCR efficiency was improved when the amplified chain length was 200 bp and 300 bp. In addition, even when the amplification chain length was as long as 400 bp or 500 bp, the Ct value and the PCR efficiency did not decrease, and high amplification efficiency could be maintained. That is, even when the amplified chain length is 200 to 300 bp, 1,2-propanediol shows an excellent effect, but it becomes clear that the longer the amplified chain length, the more preferable effects can be obtained.

 実施例2 核酸増幅におけるジオール化合物の評価

 核酸増幅におけるジオール化合物の効果を評価するため、各種ジオール化合物を用いてリアルタイムPCR反応を行い、核酸増幅感度及びPCR効率の評価を行った。具体的には、ジオール化合物として、1,2-プロパンジオール(1,2-propanediol)、1,3-プロパンジオール(1,3-propanediol)、1,2-エタンジオール(1,2-ethanediol)、グリセロール(glycerol)を用い、それぞれ7容量%の濃度を反応溶液に添加した。増幅鎖長が500bpとなる配列番号2と配列番号6のプライマーセットを使用し、その他の反応条件は、実施例1と同じ条件で実施した。

Example 2 Evaluation of diol compound in nucleic acid amplification

To evaluate the effect of the diol compound on nucleic acid amplification, real-time PCR was performed using various diol compounds, and the nucleic acid amplification sensitivity and PCR efficiency were evaluated. Specifically, as the diol compound, 1,2-propanediol (1,2-propanediol), 1,3-propanediol (1,3-propanediol), 1,2-ethanediol (1,2-ethanediol) , Glycerol and a concentration of 7% by volume each was added to the reaction solution. The primer set of SEQ ID NO: 2 and SEQ ID NO: 6 having an amplified chain length of 500 bp was used, and the other reaction conditions were the same as in Example 1.

 その結果を図3に示す。グリセロールを添加した場合にはCt値の上昇(増幅効率の低下)とPCR効率の低下が見られた。1,3-プロパンジオールを添加した場合では、鋳型量が少なくなるにしたがって到達蛍光強度が低くなる傾向が見られ100コピー以下は検出不可となった。一方で、1,2-エタンジオール及び/又は1,2-プロパンジオールを使用した場合にはCt値とPCR効率の改善が見られた。驚くべきことに、類似の化合物であっても効果が異なり、特に長鎖のターゲットを増幅する際に1,2-プロパンジオール及び1,2-エタンジオールでは特に顕著な改善効果が見られた。

The result is shown in FIG. When glycerol was added, an increase in Ct value (a decrease in amplification efficiency) and a decrease in PCR efficiency were observed. When 1,3-propanediol was added, the fluorescence intensity reached tended to decrease as the amount of template decreased, and detection of 100 copies or less was undetectable. On the other hand, when 1,2-ethanediol and / or 1,2-propanediol was used, the Ct value and the PCR efficiency were improved. Surprisingly, similar compounds have different effects, and 1,2-propanediol and 1,2-ethanediol have particularly remarkable improvement effects, especially when amplifying long-chain targets.

 実施例3 核酸増幅における1,2-プロパンジオール濃度の評価

 核酸増幅における1,2-プロパンジオール濃度の効果を評価するため、1,2-プロパンジオールを種々の濃度で添加した各種条件でリアルタイムPCR反応を行い、核酸増幅感度及びPCR効率の評価を行った。増幅鎖長が500bpとなる配列番号2と配列番号6のプライマーセットを使用し、その他の反応条件は実施例1と同じ条件で実施した。

Example 3 Evaluation of 1,2-propanediol concentration in nucleic acid amplification

To evaluate the effect of 1,2-propanediol concentration on nucleic acid amplification, real-time PCR was performed under various conditions in which 1,2-propanediol was added at various concentrations, and nucleic acid amplification sensitivity and PCR efficiency were evaluated. . The primer set of SEQ ID NO: 2 and SEQ ID NO: 6 having an amplified chain length of 500 bp was used, and the other reaction conditions were the same as in Example 1.

 その結果を図4に示す。1,2-プロパンジオールを3容量%以上添加した場合にCt値とPCR効率の顕著な改善効果を得ることができた。

FIG. 4 shows the results. When 1,2-propanediol was added in an amount of 3% by volume or more, a remarkable effect of improving the Ct value and the PCR efficiency could be obtained.

 実施例4 核酸増幅における酢酸テトラメチルアンモニウムの評価

 核酸増幅におけるテトラメチルアンモニウム塩の効果を評価するため、酢酸テトラメチルアンモニウム(tetramethylammoniumacetate(TMAA)無添加又は50、100mMのTMAA添加の条件でリアルタイムPCR反応を行い、Ct値及びPCR効率の評価を行った。1,2-プロパンジオールを7容量%添加した条件下で、酢酸テトラメチルアンモニウム濃度を0、50、100mMと変更した。更に、1,2-プロパンジオールも酢酸テトラメチルアンモニウムも含まない条件下での評価も行った。これらの各条件下で、増幅鎖長が500bpとなる配列番号2と配列番号6のプライマーセットを使用し、その他の反応条件は実施例1と同じ条件で実施した。

Example 4 Evaluation of tetramethylammonium acetate in nucleic acid amplification

In order to evaluate the effect of tetramethylammonium salt on nucleic acid amplification, real-time PCR reaction was performed under the conditions of tetramethylammonium acetate (TMAA) no addition or 50, 100 mM TMAA addition, and Ct value and PCR efficiency were evaluated. The tetramethylammonium acetate concentration was changed to 0, 50, and 100 mM under the condition that 7% by volume of 1,2-propanediol was added, and the condition that neither 1,2-propanediol nor tetramethylammonium acetate was contained. Under these conditions, a primer set of SEQ ID NO: 2 and SEQ ID NO: 6 having an amplified chain length of 500 bp was used, and the other reaction conditions were the same as in Example 1. .

 その結果を図5に示す。1,2-プロパンジオール及び酢酸テトラメチルアンモニウムをいずれも含まない場合、本試験条件下では核酸増幅反応が進行しない結果となった。1,2-プロパンジオールを7容量%含む条件下で核酸増幅反応を行う場合に、酢酸テトラメチルアンモニウムが存在しないと、鋳型量が多い場合はPCR反応が進行するものの、PCR効率が低い結果となった。一方、酢酸テトラメチルアンモニウムの量を50mM添加した条件では、Ct値の改善効果が見られ、酢酸テトラメチルアンモニウムの量を100mM添加した条件では、Ct値の改善に加えてPCR効率も改善されることが明らかとなった。この結果から、1,2-プロパンジオールのみでも核酸増幅反応の効率を改善させる効果があるが、酢酸テトラメチルアンモニウムと1,2-プロパンジオールを組み合わせて使用することで、より好ましい結果を得ることができることが分かる。また、本実施例で調製した酢酸テトラメチルアンモニウム及び1,2-プロパンジオールを含む核酸増幅反応用組成物は、室温下で長期間(3ヶ月)にわたり保存しても安定であり、保存用試薬としても使用可能であった。

The result is shown in FIG. When neither 1,2-propanediol nor tetramethylammonium acetate was contained, the result was that the nucleic acid amplification reaction did not proceed under the test conditions. When a nucleic acid amplification reaction is carried out under a condition containing 1,2-propanediol at 7% by volume, the absence of tetramethylammonium acetate allows the PCR reaction to proceed when the amount of template is large, but results in low PCR efficiency. became. On the other hand, under the condition where the amount of tetramethylammonium acetate was added at 50 mM, the effect of improving the Ct value was observed, and under the condition where the amount of tetramethylammonium acetate was added at 100 mM, the PCR efficiency was improved in addition to the improvement of the Ct value. It became clear. From these results, although 1,2-propanediol alone has the effect of improving the efficiency of the nucleic acid amplification reaction, more favorable results can be obtained by using tetramethylammonium acetate in combination with 1,2-propanediol. You can see that it can be done. The composition for nucleic acid amplification reaction containing tetramethylammonium acetate and 1,2-propanediol prepared in this example is stable even when stored at room temperature for a long period (3 months). Could be used as well.

 なお、上記開示した実施形態及び実施例はすべて例示であり制限的なものではない。また、実施形態及び実施例に開示された内容を組み合わせた実施形態及び実施例も本発明の範囲に含まれる。本発明の技術的範囲は、特許請求の範囲によって有効であり、特許請求の範囲の記載と均等の意味及び範囲内のすべての変更・修正・置き換え等を含むものである。

The embodiments and examples disclosed above are all illustrative and not restrictive. Embodiments and examples in which the contents disclosed in the embodiments and examples are combined are also included in the scope of the present invention. The technical scope of the present invention is valid according to the appended claims, and includes all changes, modifications, replacements, and the like within the meaning and scope equivalent to the description of the appended claims.

 本発明は、例えば200bp以上の長鎖の標的核酸を増幅する場合であっても、核酸増幅反応の増幅効率や検出感度を高めることができ、例えば、長鎖増幅産物であっても効果的に核酸増幅させることを可能とできる。従って、生命科学研究分野のみならず、遺伝子診断、臨床検査といった医療分野、食品や環境の微生物検査等において有用である。

The present invention can enhance the amplification efficiency and detection sensitivity of a nucleic acid amplification reaction even when, for example, amplifying a long target nucleic acid having a length of 200 bp or more. The nucleic acid can be amplified. Therefore, it is useful not only in the field of life science research, but also in the medical field such as genetic diagnosis and clinical testing, and in microbiological testing of foods and the environment.

Claims (21)


  1.  200bp以上の増幅鎖長を有する標的核酸を増幅する方法であって、1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれる少なくとも一種類のジオール化合物を含む反応液中で核酸増幅反応を行うことを特徴とする、核酸増幅方法。

    A method for amplifying a target nucleic acid having an amplification chain length of 200 bp or more, wherein the nucleic acid is contained in a reaction solution containing at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol A nucleic acid amplification method comprising performing an amplification reaction.

  2.  前記反応液がテトラメチルアンモニウム塩を更に含む、請求項1に記載の方法。

    The method according to claim 1, wherein the reaction solution further comprises a tetramethylammonium salt.

  3.  前記テトラメチルアンモニウム塩が、酢酸テトラメチルアンモニウム、塩化テトラメチルアンモニウム、及び水酸化テトラメチルアンモニウムからなる群より選ばれる少なくとも一種である、請求項1又は2に記載の方法。

    The method according to claim 1 or 2, wherein the tetramethylammonium salt is at least one selected from the group consisting of tetramethylammonium acetate, tetramethylammonium chloride, and tetramethylammonium hydroxide.

  4.  増幅鎖長が200bp以上1000bp以下である、請求項1~3のいずれかに記載の方法。

    The method according to any one of claims 1 to 3, wherein the amplified chain length is 200 bp or more and 1000 bp or less.

  5.  増幅鎖長が400bp以上500bp以下である、請求項1~4のいずれかに記載の方法。

    The method according to any one of claims 1 to 4, wherein the amplified chain length is 400 bp or more and 500 bp or less.

  6.  核酸増幅反応がリアルタイムPCRである、請求項1~5のいずれかに記載の方法。

    The method according to any one of claims 1 to 5, wherein the nucleic acid amplification reaction is real-time PCR.

  7.  核酸増幅反応おける伸長時間が60秒以下である、請求項1~6のいずれかに記載の方法。

    The method according to any one of claims 1 to 6, wherein the extension time in the nucleic acid amplification reaction is 60 seconds or less.

  8.  核酸増幅反応における伸長時間が30秒以下である、請求項1~7のいずれかに記載の方法。

    The method according to any one of claims 1 to 7, wherein the elongation time in the nucleic acid amplification reaction is 30 seconds or less.

  9.  前記反応液がThermus thermophilus由来のDNAポリメラーゼを更に含む、請求項1~8のいずれかに記載の方法。

    The method according to any one of claims 1 to 8, wherein the reaction solution further comprises a DNA polymerase derived from Thermus thermophilus.

  10.  1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれる少なくとも一種のジオール化合物と、テトラメチルアンモニウム塩とを含むことを特徴とする核酸増幅反応用組成物。

    A composition for a nucleic acid amplification reaction, comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol, and a tetramethylammonium salt.

  11.  核酸増幅反応時の反応液中における前記ジオール化合物の濃度が、反応液全体に対して1~20容量%となるように調整された、請求項10に記載の核酸増幅反応用組成物。

    11. The composition for a nucleic acid amplification reaction according to claim 10, wherein the concentration of the diol compound in the reaction solution at the time of the nucleic acid amplification reaction is adjusted to 1 to 20% by volume based on the entire reaction solution.

  12.  核酸増幅反応時の反応液中における前記ジオール化合物の濃度が、反応液全体に対して3~10容量%となるように調整された、請求項10又は11に記載の核酸増幅反応用組成物。

    12. The nucleic acid amplification reaction composition according to claim 10, wherein the concentration of the diol compound in the reaction solution at the time of the nucleic acid amplification reaction is adjusted to 3 to 10% by volume based on the entire reaction solution.

  13.  前記テトラメチルアンモニウム塩が、酢酸テトラメチルアンモニウム、塩化テトラメチルアンモニウム、及び水酸化テトラメチルアンモニウムからなる群より選ばれる少なくとも一種である、請求項10~12のいずれかに記載の核酸増幅反応用組成物。

    13. The nucleic acid amplification reaction composition according to claim 10, wherein the tetramethylammonium salt is at least one selected from the group consisting of tetramethylammonium acetate, tetramethylammonium chloride, and tetramethylammonium hydroxide. Stuff.

  14.  核酸増幅反応時の反応液中における前記テトラメチルアンモニウム塩の濃度が、反応液全体に対して50~200mMとなるように調整された、請求項10~13のいずれかに記載の核酸増幅反応用組成物。

    14. The nucleic acid amplification reaction according to claim 10, wherein the concentration of the tetramethylammonium salt in the reaction solution at the time of the nucleic acid amplification reaction is adjusted to 50 to 200 mM with respect to the entire reaction solution. Composition.

  15.  更に、Thermus thermophilus由来のDNAポリメラーゼを含む、請求項10~14のいずれかに記載の核酸増幅反応用組成物。

    15. The composition for a nucleic acid amplification reaction according to claim 10, further comprising a DNA polymerase derived from Thermus thermophilus.

  16.  核酸増幅反応がリアルタイムPCR反応である、請求項10~15のいずれかに記載の核酸増幅反応用組成物。

    The composition for a nucleic acid amplification reaction according to any one of claims 10 to 15, wherein the nucleic acid amplification reaction is a real-time PCR reaction.

  17.  200bp以上の増幅鎖長を有する標的核酸を増幅するために用いられる、請求項10~16のいずれかに記載の核酸増幅反応用組成物。

    The nucleic acid amplification reaction composition according to any one of claims 10 to 16, which is used for amplifying a target nucleic acid having an amplification chain length of 200 bp or more.

  18.  1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれる少なくとも一種類のジオール化合物を含む、200bp以上の増幅鎖長を有する標的核酸を増幅するための試薬。

    A reagent for amplifying a target nucleic acid having an amplification chain length of 200 bp or more, comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol.

  19.  1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれる少なくとも一種類のジオール化合物を備えた、200bp以上の増幅鎖長を有する標的核酸を増幅するためのキット。

    A kit for amplifying a target nucleic acid having an amplification chain length of 200 bp or more, comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol.

  20.  1,2-プロパンジオール及び1,2-エタンジオールからなる群より選ばれる少なくとも一種のジオール化合物と、テトラメチルアンモニウム塩とを備えた、核酸増幅反応用キット。

    A nucleic acid amplification reaction kit comprising at least one diol compound selected from the group consisting of 1,2-propanediol and 1,2-ethanediol, and a tetramethylammonium salt.

  21.  200bp以上の増幅鎖長を有する標的核酸を増幅するために用いられる、請求項20に記載の核酸増幅反応用キット。

    The nucleic acid amplification reaction kit according to claim 20, which is used for amplifying a target nucleic acid having an amplification chain length of 200 bp or more.
PCT/JP2019/036731 2018-09-21 2019-09-19 Composition for nucleic acid amplification reaction WO2020059792A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020548592A JPWO2020059792A1 (en) 2018-09-21 2019-09-19 Composition for nucleic acid amplification reaction

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018176842 2018-09-21
JP2018-176842 2018-09-21
JP2018176841 2018-09-21
JP2018-176841 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020059792A1 true WO2020059792A1 (en) 2020-03-26

Family

ID=69888456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036731 WO2020059792A1 (en) 2018-09-21 2019-09-19 Composition for nucleic acid amplification reaction

Country Status (2)

Country Link
JP (1) JPWO2020059792A1 (en)
WO (1) WO2020059792A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017108736A (en) * 2015-12-11 2017-06-22 東洋紡株式会社 Composition for nucleic acid amplification and method for nucleic acid amplification

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017108736A (en) * 2015-12-11 2017-06-22 東洋紡株式会社 Composition for nucleic acid amplification and method for nucleic acid amplification

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
CHEVET, ERIC ET AL.: "Low concentrations of tetramethylammonium chloride increase yield and specificity of PCR", NUCLEIC ACIDS RESEARCH, vol. 23, no. 16, 1995, pages 3343 - 3344, XP008060132 *
HORAKOBA, HELENA ET AL.: "1,2-propanediol-trehalose mixture as a potent quantitative real-time PCR enhancer", BMC BIOTECHNOLOGY, vol. 11, no. 41, 2011, pages 1 - 16, XP021097758 *
J EAN, AUDREY ET AL.: "Assessing mycoplasma contamination of cell cultures by qPCR using a set of universal primer pairs targeting a 1. 5kb fragment of 16S rRNA genes", PLOS ONE, vol. 12, no. 2, 22 February 2017 (2017-02-22), pages 1 - 22, XP055694055 *
JUSTICE-ALLEN, A. ET AL.: "Detection of multiple Mycoplasma species in bulk tank milk samples using real-time PCR and conventional culture and comparison of test sensitivities", J. DAIRY SCI., vol. 94, no. 7, 2011, pages 3411 - 3419, XP055694043 *
NICOLAS, LUC ET AL.: "Rapid differentiation of Old World Leishmania species by LightCycler Polymerase chain reaction and melting curve analysis", J. MICROBIOLOGICAL METHODS, vol. 51, 2002, pages 295 - 299, XP002528377, DOI: 10.1016/S0167-7012(02)00099-4 *
SAKALAR, ERGUN ET AL.: "Determination of irradiation dose and distinguishing between irradiated and non irradiated fish meat by real-time PCR", FOOD CHEMISTRY, vol. 182, 6 March 2015 (2015-03-06), pages 150 - 155, XP029120581, DOI: 10.1016/j.foodchem.2015.02.143 *
SHAIK, GOUSE M. ET AL.: "Tetraalkylammonium derivatives as real-time PCR enhancers and stabilizers of the qPCR mixtures containing SYBR Green I", NUCLEIC ACIDS RESEARCH, vol. 36, no. 15, 2008, pages e93, XP055068403 *
TAKARA BIO: "Non-official translation: Real-time PCR practice - Primer design guidelines", REAL-TIME PCR EXPERIMENT GUIDE, March 2009 (2009-03-01), pages 1 - 12 *
YANG, JING-IONG ET AL.: "Rapid and Economic DNA Extraction from a Single Salmon Egg for Real-Time PCR Amplification", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 75, no. 10, 7 October 2011 (2011-10-07), pages 2014 - 2017, XP055694058 *
ZHANG, ZHIZHOU ET AL.: "Enhanced amplification of GC-rich DNA with two organic reagents", BENCHMARKS, vol. 47, no. 3, September 2009 (2009-09-01), XP055694036 *

Also Published As

Publication number Publication date
JPWO2020059792A1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
US11091801B2 (en) Compositions, kits and methods for synthesis and/or detection of nucleic acids
JP5945271B2 (en) Helicase-dependent isothermal amplification using nicking enzymes
US20020119464A1 (en) Compositions and methods enabling a totally internally controlled amplification reaction
EP2652154B1 (en) Universal reference dye for quantitative amplification
JP3909010B2 (en) Quantitative multiplex PCR with high dynamic range
EP3460058B1 (en) Method for amplifying cyclic dna
EP2989178B1 (en) Composite visible colorant and method for quantitative amplification
WO2012113780A1 (en) Method for quantifying human dna
JP2010233505A (en) Reagent kit for detecting nucleic acid amplification, having excellent preservation stability
JP2018068317A (en) Kit for quantitative determination method of target nucleic acid
JP6720161B2 (en) Detection kit for a plurality of target nucleic acids and detection method using the same
JP5884869B2 (en) Method for suppressing non-specific reaction in nucleic acid amplification
WO2020059792A1 (en) Composition for nucleic acid amplification reaction
JP6402905B2 (en) Novel method to suppress non-specific reaction of nucleic acid amplification
CN116348614A (en) Switching oligonucleotides
JP6986015B2 (en) Methods and kits for ligating fragmented nucleic acids
JP2021153393A (en) Compositions for nucleic acid amplification reaction
CN113308462B (en) Probe for nucleic acid intramolecular amplification and detection method thereof
Mikawa et al. Single-stranded DNA binding protein facilitates specific enrichment of circular DNA molecules using rolling circle amplification
Ji et al. Principles of nucleic acid-based detection methods
JP2010239880A (en) High speed real time pcr using high speed dna polymerase
JP2017175968A (en) Method of maintaining detectability of pcr reaction solution
JP2006174806A (en) Method for labeling nucleic acid amplified product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548592

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862211

Country of ref document: EP

Kind code of ref document: A1