CN113308462B - A probe for intramolecular amplification of nucleic acid and its detection method - Google Patents
A probe for intramolecular amplification of nucleic acid and its detection method Download PDFInfo
- Publication number
- CN113308462B CN113308462B CN202010121899.8A CN202010121899A CN113308462B CN 113308462 B CN113308462 B CN 113308462B CN 202010121899 A CN202010121899 A CN 202010121899A CN 113308462 B CN113308462 B CN 113308462B
- Authority
- CN
- China
- Prior art keywords
- probe
- region
- nucleic acid
- amplification
- precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000523 sample Substances 0.000 title claims abstract description 164
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 118
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 116
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 116
- 238000003199 nucleic acid amplification method Methods 0.000 title claims abstract description 101
- 230000003321 amplification Effects 0.000 title claims abstract description 99
- 238000001514 detection method Methods 0.000 title claims abstract description 38
- 239000002243 precursor Substances 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 36
- 230000009471 action Effects 0.000 claims abstract description 10
- 108020004635 Complementary DNA Proteins 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 57
- 239000002773 nucleotide Substances 0.000 claims description 57
- 125000003729 nucleotide group Chemical group 0.000 claims description 56
- 108020004414 DNA Proteins 0.000 claims description 24
- 230000000295 complement effect Effects 0.000 claims description 24
- 239000003153 chemical reaction reagent Substances 0.000 claims description 19
- 239000012634 fragment Substances 0.000 claims description 17
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 claims description 12
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical group C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 claims description 12
- 229960003237 betaine Drugs 0.000 claims description 12
- 238000003786 synthesis reaction Methods 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 238000010494 dissociation reaction Methods 0.000 claims description 7
- 230000005593 dissociations Effects 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 7
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 6
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 5
- 102100034343 Integrase Human genes 0.000 claims description 4
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims description 4
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 claims description 3
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 238000010839 reverse transcription Methods 0.000 claims description 3
- 102000053602 DNA Human genes 0.000 claims description 2
- 108060002716 Exonuclease Proteins 0.000 claims description 2
- 239000012445 acidic reagent Substances 0.000 claims description 2
- 102000013165 exonuclease Human genes 0.000 claims description 2
- 230000005758 transcription activity Effects 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 23
- 241000124740 Bocaparvovirus Species 0.000 description 19
- 108091091807 let-7a stem-loop Proteins 0.000 description 18
- 108091057746 let-7a-4 stem-loop Proteins 0.000 description 18
- 108091028376 let-7a-5 stem-loop Proteins 0.000 description 18
- 108091024393 let-7a-6 stem-loop Proteins 0.000 description 18
- 108091091174 let-7a-7 stem-loop Proteins 0.000 description 18
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 9
- 238000003752 polymerase chain reaction Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 108091073704 let-7c stem-loop Proteins 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- 230000010076 replication Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000002795 fluorescence method Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 4
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 4
- 238000007397 LAMP assay Methods 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 230000002779 inactivation Effects 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 108091007780 MiR-122 Proteins 0.000 description 3
- 238000004737 colorimetric analysis Methods 0.000 description 3
- 239000013068 control sample Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000003753 real-time PCR Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 102000004594 DNA Polymerase I Human genes 0.000 description 2
- 108010017826 DNA Polymerase I Proteins 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- DEGAKNSWVGKMLS-UHFFFAOYSA-N calcein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(CN(CC(O)=O)CC(O)=O)=C(O)C=C1OC1=C2C=C(CN(CC(O)=O)CC(=O)O)C(O)=C1 DEGAKNSWVGKMLS-UHFFFAOYSA-N 0.000 description 2
- 238000002038 chemiluminescence detection Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 238000000835 electrochemical detection Methods 0.000 description 2
- 238000007834 ligase chain reaction Methods 0.000 description 2
- 210000005228 liver tissue Anatomy 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 108091008104 nucleic acid aptamers Proteins 0.000 description 2
- 229960002378 oftasceine Drugs 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 238000005382 thermal cycling Methods 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- JFJNVIPVOCESGZ-UHFFFAOYSA-N 2,3-dipyridin-2-ylpyridine Chemical compound N1=CC=CC=C1C1=CC=CN=C1C1=CC=CC=N1 JFJNVIPVOCESGZ-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- 108091033409 CRISPR Proteins 0.000 description 1
- 238000010354 CRISPR gene editing Methods 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- CGNLCCVKSWNSDG-UHFFFAOYSA-N SYBR Green I Chemical compound CN(C)CCCN(CCC)C1=CC(C=C2N(C3=CC=CC=C3S2)C)=C2C=CC=CC2=[N+]1C1=CC=CC=C1 CGNLCCVKSWNSDG-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- OHDRQQURAXLVGJ-HLVWOLMTSA-N azane;(2e)-3-ethyl-2-[(e)-(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound [NH4+].[NH4+].S/1C2=CC(S([O-])(=O)=O)=CC=C2N(CC)C\1=N/N=C1/SC2=CC(S([O-])(=O)=O)=CC=C2N1CC OHDRQQURAXLVGJ-HLVWOLMTSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 101150025688 ggact gene Proteins 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000001046 green dye Substances 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N hydrogen peroxide Substances OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000011901 isothermal amplification Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6848—Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
一种核酸分子内扩增的探针及检测方法,本发明之核酸分子内扩增的探针,至少含有(5’)a‑b‑a‑c‑a*(3’)五个区,含有两个相同的a区,一个在5’末端,一个在中间;b区和两个a区相连,其中一个a区在5’末端和b区5’端相连,另一个a区和c区的5’端相连,c区和a*区的5’端相连,a*区是a区的互补核苷酸序列并在探针的3’末端;探针在聚合酶作用下,以自身为模板和引物,进行核酸分子内扩增。本发明将模板和引物设计在一条分子内,并且以同一模板实现核酸分子内扩增,有效避免假阳性的问题。本发明还包括利用探针、探针前体对靶标核酸的检测方法。该方法能检测单碱基差异,抗干扰能力强,具有广阔的市场前景。
A probe for intramolecular amplification of nucleic acid and a detection method, the probe for intramolecular amplification of nucleic acid of the present invention contains at least five regions of (5') a-b-a-c-a* (3'), Contains two identical a-regions, one at the 5' end and one in the middle; the b-region is connected to two a-regions, one of which is connected at the 5'-end to the 5'-end of the b-region, and the other a-region and c-region The 5' end of the c region is connected to the 5' end of the a* region, and the a* region is the complementary nucleotide sequence of the a region and is at the 3' end of the probe; the probe is under the action of polymerase. Templates and primers for intramolecular amplification of nucleic acids. In the present invention, the template and the primer are designed in one molecule, and the nucleic acid intramolecular amplification is realized by the same template, which effectively avoids the problem of false positives. The present invention also includes a method for detecting target nucleic acid using probes and probe precursors. The method can detect single base differences, has strong anti-interference ability, and has broad market prospects.
Description
技术领域technical field
本发明属于分子生物学技术领域中的核酸扩增方法,具体涉及一种核酸分子内扩增的探针及检测方法。The invention belongs to a nucleic acid amplification method in the technical field of molecular biology, and in particular relates to a probe for intramolecular amplification of nucleic acid and a detection method.
背景技术Background technique
当今,以核酸扩增为核心的分子诊断及检测技术已成为学术界和产业界的热点。目前,一系列核酸扩增技术相继被开发研制。这些技术按照是否需要精准控温可以分为两种类型,第一类是变温扩增,主要包括聚合酶链式反应(PCR)和连接酶链式反应(LCR)的控温扩增。在这些扩增方法中,新合成序列的数量通过重复的热循环增加,但是需要特殊的比较昂贵的热循环设备。第二种类型在恒温条件下累积特定序列,如链替代扩增(SDA)、滚环扩增(RCA)、转录依赖的扩增系统(TAS)、依赖于核酸序列的扩增(NASBA)、依赖解旋酶基因扩增(HDA)、单引物等温扩增技术(SPIA)、自主序列复制(3SR)、环介导恒温扩增技术(LAMP)、 CRISPR链取代扩增技术(CRISDA)等等。上述基于变温和恒温的扩增技术,模板在引物介导下,进行指数或非指数扩增,实现特定序列扩增目的。他们基本包括两个阶段:(1)靶标信号转换过程。通过各种引物(如PCR引物、LAMP引物、 RCA连接片段等),将靶标信号转换为模板信号;(2)扩增过程。模板在引物介导下,进行指数或非指数扩增,实现特定序列扩增目的。这些扩增技术每一种都有自己的创新,有效实现将特定的序列进行重复扩增的目的。目前已有扩增技术具有将单个靶标分子扩增百万倍进行灵敏检测的能力,但是,目前面临的更严峻的问题是:核酸扩增过程中带来的假阳性危险。假阳性产生的主要原因在核酸扩增的第二个阶段,扩增过程阶段。主要有两个方面的原因:(1)扩增反应是模板分子和引物分子之间的反应。由于扩增产量与加入的引物量呈正相关。在扩增体系中,往往会加入比模板多的引物分子。多余游离的引物分子可能发生反应形成二聚体,出现假阳性。(2)扩增所用模板是不同的。是以不断新生成的产物为模板进行指数或线性复制。在复制过程,尤其是扩增初期,一个错配都可能级联式放大,出现假阳性。Today, molecular diagnosis and detection technology with nucleic acid amplification as the core has become a hot spot in academia and industry. At present, a series of nucleic acid amplification technologies have been developed one after another. These technologies can be divided into two types according to whether precise temperature control is required. The first type is variable temperature amplification, mainly including polymerase chain reaction (PCR) and ligase chain reaction (LCR) temperature-controlled amplification. In these amplification methods, the number of newly synthesized sequences is increased by repeated thermal cycling, but requires special and relatively expensive thermal cycling equipment. The second type accumulates specific sequences under isothermal conditions, such as strand displacement amplification (SDA), rolling circle amplification (RCA), transcription-dependent amplification system (TAS), nucleic acid sequence-dependent amplification (NASBA), Helicase-dependent gene amplification (HDA), single-primer isothermal amplification (SPIA), autonomous sequence replication (3SR), loop-mediated isothermal amplification (LAMP), CRISPR strand displacement amplification (CRISDA), etc. . In the above-mentioned amplification technology based on variable temperature and constant temperature, the template performs exponential or non-exponential amplification under the mediation of primers to achieve the purpose of specific sequence amplification. They basically include two stages: (1) target signal conversion process. Through various primers (such as PCR primers, LAMP primers, RCA ligation fragments, etc.), the target signal is converted into a template signal; (2) Amplification process. Under the mediation of primers, the template performs exponential or non-exponential amplification to achieve the purpose of specific sequence amplification. Each of these amplification techniques has its own innovation, which effectively achieves the purpose of repeating amplification of specific sequences. At present, the existing amplification technology has the ability to amplify a single target molecule millions of times for sensitive detection. However, the more serious problem currently faced is: the risk of false positives in the process of nucleic acid amplification. The main cause of false positives is the second stage of nucleic acid amplification, the amplification process stage. There are two main reasons: (1) The amplification reaction is a reaction between a template molecule and a primer molecule. Since the amplification yield is positively correlated with the amount of primers added. In the amplification system, more primer molecules than the template are often added. Excess free primer molecules may react to form dimers, resulting in false positives. (2) The templates used for amplification are different. Exponential or linear replication is performed using the constantly newly generated product as a template. During the replication process, especially in the early stage of amplification, a mismatch may cascade and cause false positives.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是,解决现有核酸扩增技术中所存在的不足,提供一种核酸分子内扩增的探针及检测方法,有效降低现有核酸扩增中带来的假阳性问题。The technical problem to be solved by the present invention is to solve the deficiencies in the existing nucleic acid amplification technology, and to provide a probe and detection method for intramolecular amplification of nucleic acid, which can effectively reduce the false positives caused by the existing nucleic acid amplification. question.
本发明解决其技术问题采用的技术方案为:The technical scheme adopted by the present invention to solve its technical problems is:
本发明之核酸分子内扩增的探针,探针的核苷酸序列至少含有 (5’)a-b-a-c-a*(3’)五个区,含有两个相同的a区,一个在5’末端,一个在中间;b区和两个a区相连,其中一个a区在5’末端和b区5’端相连,另一个a区和c区的5’端相连,c区和a*区的5’端相连,a*区是a区的互补核苷酸序列并在探针的3’末端。(1)探针是一条3’端凹陷,且5’末端含有与茎部核苷酸序列相同的核苷酸序列的游离核苷酸。探针呈茎环结构,其中,3’末端的a*区序列与探针中间的a区序列互补配对形成茎部,c区序列形成环部,5’末端的a区和b区没有互补配对的核苷酸,处于游离状态,形成探针的尾部;(2) 探针在聚合酶作用下,以自身为模板和引物,进行核酸分子内扩增。In the probe for intramolecular amplification of nucleic acid of the present invention, the nucleotide sequence of the probe contains at least five regions (5')a-b-a-c-a*(3'), and contains two identical a regions, one at the 5' end and one at the 5' end. In the middle; the b region is connected to two a regions, one of the a regions is connected to the 5' end of the b region at the 5' end, the other a region is connected to the 5' end of the c region, and the c region is connected to the 5' end of the a* region. End-to-end, the a* region is the complementary nucleotide sequence of the a region and is at the 3' end of the probe. (1) The probe is a free nucleotide whose 3' end is recessed and whose 5' end contains the same nucleotide sequence as the stem nucleotide sequence. The probe has a stem-loop structure, in which the a* region sequence at the 3' end is complementary to the a region sequence in the middle of the probe to form a stem portion, the c region sequence forms a loop portion, and the a region and b region at the 5' end have no complementary pairing. (2) Under the action of polymerase, the probe uses itself as a template and primer to perform intramolecular amplification of nucleic acid.
探针在聚合酶的作用下,以自身为模板和引物,进行核酸分子内扩增;具体步骤如下:Under the action of polymerase, the probe uses itself as a template and primer to carry out intramolecular amplification of nucleic acid; the specific steps are as follows:
(1)探针在聚合酶的作用下,以其自身5’端未发生互补配对的a区和b 区为模板,而以3’端a*区的3’末端为合成起点,合成其自身的互补链;(1) Under the action of polymerase, the probe uses the a region and the b region without complementary pairing at the 5' end as the template, and the 3' end of the a* region at the 3' end as the synthesis starting point to synthesize its own the complementary strand;
(2)步骤(1)得到的聚合产物在反应温度下发生动态解离并自身退火,再次形成探针结构,即3’端凹陷,且5’端含有与茎部a区相同核苷酸的游离核苷酸,此时新生成的探针结构的环部比初始发夹结构的环部多了一段特定的核苷酸序列b*-a*;(2) The polymer product obtained in step (1) undergoes dynamic dissociation and self-annealing at the reaction temperature, forming a probe structure again, that is, the 3' end is recessed, and the 5' end contains the same nucleotide as the stem a region. Free nucleotides, at this time, the loop portion of the newly generated probe structure has a specific nucleotide sequence b*-a* more than the loop portion of the original hairpin structure;
(3)步骤(1)(2)反复循环,发夹结构环部不断扩大,得到核酸扩增产物,实现核酸扩增。(3) Steps (1) and (2) are repeatedly cycled, and the loop portion of the hairpin structure is continuously expanded to obtain a nucleic acid amplification product, thereby realizing nucleic acid amplification.
本发明探针的合成方法有多种。可由公司直接合成,可由核酸连接片段在靶标核酸存在的条件下连接而成,也可由探针前体在靶标核酸存在的条件下延伸而成。探针前体和形成探针的核酸连接片段有多种。There are various methods for synthesizing the probes of the present invention. It can be directly synthesized by the company, and can be formed by connecting nucleic acid linking fragments in the presence of target nucleic acid, or by extending probe precursors in the presence of target nucleic acid. There are a variety of probe precursors and nucleic acid ligation fragments that form probes.
探针前体是形成探针方式中的一种,探针前体的核苷酸序列至少含有 (5’)a-b-a-c(3’)四个区,其含有两个相同的a区,一个a区在5’末端和b 区的5’端相连,另一个a区和c区的的5’端相连,b区和两个a区相连,c 区在3’末端。(1)a区是该前体延伸合成产物的3’末端区域互补的核苷酸序列,b区是连接两个a区的核苷酸序列,c区是和靶标核酸互补配对的核苷酸序列;(2)在有靶标核酸存在时,前体c区聚合延伸形成a*区,形成的c+a*在反应温度下与靶标核酸动态解离;(3)前体延伸形成的a*区与前体原有a区序列发生折叠互补配对,形成探针,即3’端凹陷,且5’含有与茎部核苷酸序列相同的核苷酸序列的游离核苷酸。The probe precursor is one of the ways to form the probe. The nucleotide sequence of the probe precursor contains at least four regions (5') a-b-a-c (3'), which contains two identical a regions and one a region. The 5' end is connected to the 5' end of the b region, another a region is connected to the 5' end of the c region, the b region is connected to the two a regions, and the c region is connected to the 3' end. (1) The a region is the nucleotide sequence complementary to the 3' end region of the precursor extension synthesis product, the b region is the nucleotide sequence connecting the two a regions, and the c region is the nucleotide sequence that is complementary to the target nucleic acid. Sequence; (2) In the presence of target nucleic acid, the precursor c region is polymerized and extended to form a* region, and the formed c+a* is dynamically dissociated from the target nucleic acid at the reaction temperature; (3) The a* formed by the extension of the precursor The region and the original a region sequence of the precursor are folded and complementary to form a probe, that is, the 3' end is recessed, and the 5' contains free nucleotides of the same nucleotide sequence as the stem nucleotide sequence.
本发明之核酸分子内扩增的探针前体,至少含有(5’)a-b-a-c(3’)四个区,也就是说此前体不仅仅局限于这四个区,也可含有多个信号检测方式的核苷酸序列,在此设计下,该核酸分子内扩增产物有多重检测方式,检测更简便,操作更方便。The probe precursor for intramolecular amplification of the nucleic acid of the present invention contains at least four regions (5') a-b-a-c (3'), that is to say, the precursor is not limited to these four regions, but can also contain multiple signal detection regions. Under this design, the nucleic acid intramolecular amplification product has multiple detection methods, the detection is simpler, and the operation is more convenient.
本发明之核酸分子内扩增的的探针,至少含有(5’)a-b-a-c-a*(3’)五个区,也就是说此探针不仅仅局限于这五个区,也可含有多个信号检测方式的核苷酸序列,在此设计下,该核酸分子内扩增产物有多重检测方式,检测更简便,操作更方便。The probe amplified in the nucleic acid molecule of the present invention contains at least five regions of (5')a-b-a-c-a*(3'), that is to say, the probe is not limited to these five regions, and can also contain multiple signals The nucleotide sequence of the detection method, under this design, the nucleic acid intramolecular amplification product has multiple detection methods, the detection is simpler, and the operation is more convenient.
本发明之利用探针、探针前体对靶标核酸的检测方法,包括以下步骤:The method for detecting target nucleic acid using probes and probe precursors of the present invention comprises the following steps:
(1)探针前体(5’)a-b-a-c(3’)的3’端c区与靶标核酸近5’端的区域 c*区退火;(1) The 3'-end c region of the probe precursor (5') a-b-a-c (3') is annealed to the c* region of the target nucleic acid near the 5' end;
(2)聚合酶以退火后的前体的c区3’末端为合成起点,以靶标核酸未发生互补配对的a区为模板,进行合成反应;(2) The polymerase uses the 3' end of the annealed precursor c region as the synthesis starting point, and uses the a region of the target nucleic acid without complementary pairing as the template to carry out the synthesis reaction;
(3)步骤(2)产生的前体延伸产物可以在反应温度下自身退火并和靶标核酸发生动态解离,形成探针,即3’端凹陷,且5’含有与茎部核苷酸序列相同的核苷酸序列的游离核苷酸;(3) The precursor extension product generated in step (2) can self-anneal at the reaction temperature and dynamically dissociate from the target nucleic acid to form a probe, that is, the 3' end is recessed, and the 5' contains a nucleotide sequence related to the stem Free nucleotides of the same nucleotide sequence;
(4)步骤(3)形成的探针,在聚合酶的作用下,以其自身5’端未发生互补配对的a区和b区为模板,而以3’端a*区的3’末端为合成起点,合成其自身的互补链;(4) The probe formed in step (3), under the action of polymerase, uses the a region and the b region without complementary pairing at the 5' end of itself as the template, and the 3' end of the a* region at the 3' end is used as the template. For the synthesis starting point, synthesize its own complementary strand;
(5)步骤(4)得到的聚合产物在反应温度下发生动态解离并自身退火,再次形成探针结构,即3’端凹陷,且5’端含有与茎部a区相同核苷酸的游离核苷酸,此时新生成的探针结构的环部比初始发夹结构的环部多了一段特定的核苷酸序列(b*-a*)。(5) The polymer product obtained in step (4) undergoes dynamic dissociation and self-annealing at the reaction temperature, forming a probe structure again, that is, the 3' end is recessed, and the 5' end contains the same nucleotide as the stem a region. For free nucleotides, the loop portion of the newly generated probe structure has a specific nucleotide sequence (b*-a*) more than the loop portion of the original hairpin structure.
(6)步骤(4)(5)反复循环,发夹结构环部不断扩大,得到核酸扩增产物,实现核酸扩增;(6) Steps (4) and (5) are repeatedly circulated, and the loop portion of the hairpin structure is continuously expanded to obtain nucleic acid amplification products, thereby realizing nucleic acid amplification;
(7)加入的核酸试剂检测到扩增产物,可判断靶标核酸的存在。(7) The presence of the target nucleic acid can be determined by detecting the amplified product by the added nucleic acid reagent.
本发明之探针前体,在靶标核酸的存在下,通过反应生成探针,探针一方面模板和引物在同一分子内部,在聚合酶的作用下,以其自身5’端为模板,而以 3’端为引物,发生分子内聚合反应,另一方面使得每次核酸复制都基于同一模板,避免传统核酸扩增反应过程中引物二聚体和扩增模板不同带来的假阳性问题。The probe precursor of the present invention generates a probe through a reaction in the presence of a target nucleic acid. On the one hand, the template and the primer of the probe are in the same molecule. Under the action of the polymerase, the 5' end of the probe is used as a template, Using the 3' end as a primer, an intramolecular polymerization reaction occurs. On the other hand, each nucleic acid replication is based on the same template, avoiding the false positive problem caused by different primer-dimers and amplification templates in the traditional nucleic acid amplification reaction process.
本发明中的靶标核酸核苷酸序列可为DNA或RNA。The target nucleic acid nucleotide sequence in the present invention may be DNA or RNA.
当核苷酸序列为DNA分子时,所述聚合酶为具有链置换活性的、但是没有外切酶活性的聚合酶。如Bst DNA聚合酶、Bsm DNA聚合酶、Bsu DNA聚合酶、Klenow 片段3’-5’exo-聚合酶、DNA聚合酶I、反转录酶、phi29DNA聚合酶、或其他类似功能的聚合酶中的一种。When the nucleotide sequence is a DNA molecule, the polymerase is a polymerase with strand displacement activity, but without exonuclease activity. Such as Bst DNA polymerase, Bsm DNA polymerase, Bsu DNA polymerase, Klenow fragment 3'-5'exo-polymerase, DNA polymerase I, reverse transcriptase, phi29 DNA polymerase, or other polymerases with similar functions a kind of.
当核苷酸序列为RNA分子时,所述聚合酶为逆转录酶或具有逆转录活性的聚合酶。When the nucleotide sequence is an RNA molecule, the polymerase is a reverse transcriptase or a polymerase having reverse transcription activity.
进一步的,利用探针、探针前体对靶标核酸的检测方法中,可在体系中加入核酸解链试剂促进核酸动态解离,使双链核苷酸变为单链核苷酸。如甜菜碱、甲酰胺、二甲基亚砜、脯氨酸等。Further, in the method for detecting target nucleic acid using probes and probe precursors, a nucleic acid melting reagent can be added to the system to promote dynamic dissociation of nucleic acids, so that double-stranded nucleotides are changed into single-stranded nucleotides. Such as betaine, formamide, dimethyl sulfoxide, proline, etc.
利用探针、探针前体对靶标核酸的检测方法中,基于加入核酸试剂检测扩增产物。核酸试剂包括荧光检测试剂、比色检测试剂、电化学检测试剂、化学发光检测试剂等。In the method for detecting target nucleic acid using probes and probe precursors, amplification products are detected based on the addition of nucleic acid reagents. Nucleic acid reagents include fluorescent detection reagents, colorimetric detection reagents, electrochemical detection reagents, chemiluminescence detection reagents, and the like.
所述荧光检测试剂包括能嵌入DNA发光的试剂,如Eva Green、溴化乙锭、 SYBRGreen I、SYBR Green II、GoodView等,也包括标记有荧光基团和淬灭基团的荧光共振能量转移法、分子信标、核酸适配体或核酸适体等。The fluorescent detection reagents include reagents that can intercalate DNA to emit light, such as Eva Green, ethidium bromide, SYBR Green I, SYBR Green II, GoodView, etc., and also include fluorescence resonance energy transfer methods labeled with fluorescent groups and quenching groups. , molecular beacons, nucleic acid aptamers or nucleic acid aptamers, etc.
所述荧光检测可以利用能保持恒定温度和荧光扫描的仪器进行检测,如岛津2700荧光光谱仪器;也可以用现有的PCR仪器在恒定温度下进行反应,如伯乐 CFX96荧光定量PCR仪器。The fluorescence detection can be performed by using an instrument that can maintain a constant temperature and fluorescence scanning, such as Shimadzu 2700 fluorescence spectrometer; or can use an existing PCR instrument to perform the reaction at a constant temperature, such as Biole CFX96 fluorescence quantitative PCR instrument.
所述比色检测试剂包括钙黄绿素比色、纳米金比色、ABTS比色等能发生颜色变化的试剂。The colorimetric detection reagents include calcein colorimetric, nano-gold colorimetric, ABTS colorimetric and other reagents that can change color.
所述电化学检测试剂包括利用电化学手段进行寡核苷酸的检测,如辣根过氧化物酶电化学体系、三联吡啶钌电化学体系等。The electrochemical detection reagents include detection of oligonucleotides by electrochemical means, such as horseradish peroxidase electrochemical system, ruthenium terpyridine electrochemical system, and the like.
所述化学发光检测试剂包括钌联吡啶+TPA体系、吖啶脂类-过氧化氢体系等。The chemiluminescence detection reagents include ruthenium bipyridine+TPA system, acridine lipid-hydrogen peroxide system and the like.
本说明书所用术语“解离”是指双链核苷酸变为单链核苷酸的过程。The term "dissociation" as used in this specification refers to the process by which double-stranded nucleotides become single-stranded nucleotides.
本说明书中中所用术语“自身折叠互补配对”是指寡核苷酸自身含有互补配对的核苷酸序列,自身发生碱基互补配对。The term "self-folding complementary pairing" used in the present specification refers to the oligonucleotide itself containing complementary paired nucleotide sequences, and self-complementary base pairing occurs.
本说明书所用术语“发夹”结构也称为“茎环”结构,是指一种寡核苷酸分子,其可形成一种包括双链区域(茎部)的二级结构,所述的双链区域由该寡核苷酸分子内部的两个区域形成,其还包括至少一个“环”结构,即非互补的核苷酸分子(单链区域)。The term "hairpin" structure, also referred to as "stem-loop" structure, as used herein, refers to an oligonucleotide molecule that forms a secondary structure comprising a double-stranded region (stem), the double-stranded The stranded region is formed by two regions within the oligonucleotide molecule, which also include at least one "loop" structure, ie, a non-complementary nucleotide molecule (single-stranded region).
本说明书所用术语“3’凹陷”是指发夹结构的两个末端,3’末端和5’末端,其中3’末端核苷酸序列参与形成茎部,无游离核苷酸,而5’末端具有游离核苷酸,整个发夹呈3’末端凹陷状。The term "3' recess" as used in this specification refers to the two ends of the hairpin structure, the 3' end and the 5' end, wherein the 3' end nucleotide sequence participates in forming the stem without free nucleotides, and the 5' end With free nucleotides, the entire hairpin is recessed at the 3' end.
本说明书所用术语“游离核苷酸”是指未发生互补配对的单链核苷酸。The term "free nucleotides" as used herein refers to single-stranded nucleotides that have not undergone complementary pairing.
本发明的探针前体或核酸连接片段可制成试剂盒。The probe precursor or nucleic acid linking fragment of the present invention can be made into a kit.
一种试剂盒,其中含探针前体或核酸连接片段,在靶标核酸存在的情况下,生成探针,并自我复制,产生检测信号。试剂盒能够检测出单碱基差异,抗干扰能力强,能有效避免假阳性的问题。A kit, which contains probe precursors or nucleic acid linking fragments, in the presence of target nucleic acid, generates probes, and self-replicates to generate detection signals. The kit can detect single base differences, has strong anti-interference ability, and can effectively avoid the problem of false positives.
本发明有如下优点:The present invention has the following advantages:
(1)探针在聚合酶的作用下,以其自身5’端未发生互补配对的a区和b 区为模板,而以3’端a*区为引物,发生分子内聚合反应,没有引物二聚体产生风险,特异性更高;(1) Under the action of the polymerase, the probe uses the a region and the b region without complementary pairing at its 5' end as a template, and uses the a* region at the 3' end as a primer, an intramolecular polymerization reaction occurs, and there is no primer. The risk of dimerization is higher, and the specificity is higher;
(2)探针以其自身为模板和引物发生分子内聚合反应,这种单链复制模式,在复制过程始终以同一模板进行复制,复制精准性更好;(2) The probe uses itself as the template and the primer to undergo intramolecular polymerization reaction. This single-stranded replication mode is always replicated with the same template during the replication process, and the replication accuracy is better;
(3)在检测过程中仅需要一条探针前体(或可以形成探针的核酸连接片段),无需现有技术中LAMP法所述的4条引物,实验设计简单,投入成本低。(3) In the detection process, only one probe precursor (or a nucleic acid connecting fragment that can form a probe) is required, and the four primers described in the LAMP method in the prior art are not required, the experimental design is simple, and the input cost is low.
综上所述,本发明提供了新的核酸分子内扩增的探针及探针前体、核酸连接片段、扩增方法,能够检测出单碱基差异,抗干扰能力强,能有效避免假阳性的问题。该方法可以应用在所有需要核酸扩增的领域,具有广阔的市场前景和较大的经济、社会效益,适于大范围推广应用。In summary, the present invention provides a new probe for intramolecular amplification of nucleic acid, probe precursor, nucleic acid ligation fragment, and amplification method, which can detect single-base differences, have strong anti-interference ability, and can effectively avoid false positives. Positive question. The method can be applied in all fields requiring nucleic acid amplification, has broad market prospects and great economic and social benefits, and is suitable for wide-scale popularization and application.
附图说明Description of drawings
图1为本发明核酸分子内扩增原理图;1 is a schematic diagram of the nucleic acid intramolecular amplification of the present invention;
图2为本发明实施例1检测结果的荧光信号图;Fig. 2 is the fluorescence signal diagram of the detection result of Example 1 of the present invention;
图3为本发明实施例1检测结果的电泳信号图;Fig. 3 is the electrophoresis signal diagram of the detection result of Example 1 of the present invention;
图4为本发明实施例1检测结果的AFM图;Fig. 4 is the AFM diagram of the detection result of the embodiment of the
图5为本发明实施例2甜菜碱检测结果的荧光信号图;Fig. 5 is the fluorescence signal diagram of the test result of betaine in the embodiment of the
图6为本发明实施例3比色法检测结果的荧光信号图;Fig. 6 is the fluorescence signal diagram of the colorimetric detection result of
图7为本发明实施例4荧光法检测结果的荧光信号图;Fig. 7 is the fluorescence signal diagram of the fluorescence method detection result of Example 4 of the present invention;
图8为本发明实施例5荧光法检测结果的荧光信号图;Fig. 8 is the fluorescence signal diagram of the detection result of the fluorescence method in Example 5 of the present invention;
图9为本发明实施例6荧光法检测结果的荧光信号图;Fig. 9 is the fluorescence signal diagram of the fluorescence method detection result of Example 6 of the present invention;
图10为本发明实施例7荧光法检测结果的荧光信号图;Fig. 10 is the fluorescence signal diagram of the detection result of the fluorescence method in Example 7 of the present invention;
具体实施方式Detailed ways
下面结合具体实施例和附图对本发明做进一步详细说明。The present invention will be further described in detail below with reference to specific embodiments and accompanying drawings.
在实施例中的基础反应液,是指扩增反应的反应液,其中各物质及浓度为:200mmol/L三(羟甲基)氨基甲烷(pH 8.8),100mmol/L氯化钾,100mmol/L 硫酸铵,20mmol/L硫酸镁,1%(v/v)吐温20,1xEva Green染料,4mmol/L氯化镁,0.4mmol/L dNTPs,8U BstDNA聚合酶,1.4mol/L甜菜碱。The basic reaction solution in the embodiment refers to the reaction solution of the amplification reaction, wherein each substance and concentration are: 200mmol/L tris(hydroxymethyl)aminomethane (pH 8.8), 100mmol/L potassium chloride, 100mmol/L L ammonium sulfate, 20mmol/
实施例1、验证方法的可行性及其原理的正确性Example 1. The feasibility of the verification method and the correctness of its principle
本实施例是设计发明内容中所记载的含有(5’)a-b-a-c-a*(3’)五个区的探针序列后由公司直接合成,进行核酸分子内扩增反应(图1),通过荧光信号验证方法、电泳结果验证方法和原子力显微镜结果验证方法三种方式,来验证方法的可行性和原理的正确性。本实施例合成的探针序列为 (AGAGGTAGTACTAGTACTCAAGAGGTAGTACTAGTAAGTTGCCTTCAGAACTCTACTACTACTAGT ACTACCTCT,即SEQ ID NO.1)。同时还合成了探针的对照序列1和对照序列2,对照序列1(序列为 AGAGGTAGTACTAGTACTCAAGAGGTAGTACTAGTAAGTTGCCTTCAGAACTCTACTACTACTTCAAC TAGGACT,即SEQ ID NO.2),与探针序列(5’)a-b-a-c-a*(3’)相比,对照序列 1是3’端的a*核苷酸序列被换为其他核苷酸序列;对照序列2(序列为 TCTGCAAGTAGCTGTAGTCAAGAGGTAGTACTAGTAAGTTGCCTTCAGAACTCTACTACTACTAGTAC TACCTCT,即SEQ IDNO.3),与探针序列(5’)a-b-a-c-a*(3’)相比,对照序列 2是5’末端的a被换为其他核苷酸序列。具体过程如下:In this example, the probe sequence containing the five regions (5')a-b-a-c-a*(3') described in the content of the invention was designed and synthesized directly by the company, and the nucleic acid intramolecular amplification reaction was performed (Figure 1). Verification method, electrophoresis result verification method and atomic force microscope result verification method are used to verify the feasibility of the method and the correctness of the principle. The sequence of the probe synthesized in this example is (AGAGGTAGTACTAGTACTCAAGAGGTAGTACTAGTAAGTTGCCTTCAGAACTCTACTACTACTAGT ACTACCTCT, namely SEQ ID NO. 1). At the same time, the
一、进行分子内核酸扩增1. Intramolecular nucleic acid amplification
1)配制23uL的基础反应液;1) prepare 23uL of basic reaction solution;
2)取2ul的400nmol/L的探针或对照序列1、对照序列2,分别加入步骤1)配制的基础反应液中,使最终反应液体积为25uL,混匀反应液;2) Take 2ul of 400nmol/L probe or
3)利用恒温设施(如水浴锅,PCR仪等),在65℃进行恒温扩增反应,反应时间为2小时。3) Use constant temperature facilities (such as water bath, PCR instrument, etc.) to carry out constant temperature amplification reaction at 65°C, and the reaction time is 2 hours.
4)85℃灭活,终止扩增反应,得到扩增产物。4) Inactivation at 85°C to terminate the amplification reaction to obtain an amplification product.
①通过荧光信号检测扩增产物。利用岛津2700荧光光谱仪检测其荧光强度,结果显示(如图2),从图中可以看出,本实施例设计合成的探针样品有显著荧光信号,而对照序列1(即图中对照探针1)和对照序列2(即图中对照探针2) 荧光信号上升不明显。说明本实施例设计合成的探针样品中有大量核酸产生,样品进行了有效扩增。而没有3’凹陷的茎部和5’末端没有与茎部相同核苷酸的对照序列1和对照序列2,其扩增都不能有效进行反应,从而验证了实验的原理。①Detect the amplified product by fluorescence signal. The fluorescence intensity was detected by using a Shimadzu 2700 fluorescence spectrometer, and the results were shown (as shown in Figure 2). As can be seen from the figure, the probe samples designed and synthesized in this example had significant fluorescence signals, while the control sequence 1 (that is, the control probe in the figure) Needle 1) and the control sequence 2 (ie, the
②通过电泳检测扩增产物。配制6%变性聚丙烯酰胺凝胶,电压100V,电泳时间80分钟,银染染色,检测结果如图3显示。图中泳道从左到右依次是条带 1为对照序列1样品条带,条带3是探针样品条带,条带4是对照序列2样品条带,条带2是2000bp DNA Marker条带,可以看出,探针样品在聚合酶作用下扩增产生很多条产物,片段大小在60nt到几千nt不等,在泳道中成像弥漫状排列。而对照序列1和对照序列2都没有明显的条带,说明探针样品进行了有效扩增,而对照序列1和对照序列2没有进行扩增,验证了实验的原理。②Detect the amplified product by electrophoresis. A 6% denaturing polyacrylamide gel was prepared, the voltage was 100V, the electrophoresis time was 80 minutes, and the detection results were shown in Figure 3. The swimming lanes in the figure are from left to right:
③通过原子力显微镜检测扩增产物。将1ul探针样品的扩增产物滴加到云母片上进行观察,通过原子力显微镜直接观察扩增产物,结果如图4所示。从图中可以看出,有大量长短不同的核酸片段出现,在显示的视野中,比较长的核酸片段达到1000nt以上。实验表明探针以自身为模板和引物有效进行了分子内核酸扩增,形成了长的扩增产物,从而验证了实验的原理。③ Detection of amplified products by atomic force microscope. The amplification product of 1 ul of the probe sample was added dropwise to the mica sheet for observation, and the amplification product was directly observed by atomic force microscope. The results are shown in FIG. 4 . It can be seen from the figure that a large number of nucleic acid fragments of different lengths appear, and in the displayed field of view, the relatively long nucleic acid fragments reach more than 1000 nt. Experiments show that the probe can effectively carry out intramolecular nucleic acid amplification with itself as a template and primer, and form a long amplification product, thus verifying the principle of the experiment.
实施例2Example 2
核酸解链试剂对核酸分子内扩增反应体系的影响由于核酸解链试剂具有促进核酸动态解离的作用,使双链核苷酸变为单链核苷酸,首先,为了验证甜菜碱对本发明是否有促进作用,在本实施实例中分别加入不同浓度的甜菜碱进行验证,采用探针(序列:AGAGGTAGTACTAGTACTCAAGAGGTAGTACTAGTAAGTTGCCTTCAGAACTCTACTACTACTAGTAC TACCTCT,即SEQID NO.1),进行分子内核酸扩增。具体步骤如下:Influence of nucleic acid melting reagents on nucleic acid intramolecular amplification reaction system Since nucleic acid melting reagents have the effect of promoting the dynamic dissociation of nucleic acids, making double-stranded nucleotides into single-stranded nucleotides, first, in order to verify the effect of betaine on the present invention Whether there is a promoting effect, in this example, betaine of different concentrations was added to verify, and a probe (sequence: AGAGGTAGTACTAGTACTCAAGAGGTAGTACTAGTAAGTTGCCTTCAGAACTCTACTACTACTAGTAC TACCTCT, i.e. SEQID NO.1) was used to carry out intramolecular nucleic acid amplification. Specific steps are as follows:
1)配制23uL的反应液,除不加甜菜碱外,其他组分与基础反应液相同。在配制的反应液中加入400nmol/L探针。1) To prepare 23uL of reaction solution, except that betaine is not added, other components are the same as the basic reaction solution. Add 400 nmol/L probe to the prepared reaction solution.
2)取2ul甜菜碱加入步骤1)配置的反应液中,分别配置甜菜碱终浓度为0mol/L,0.66mol/L,1mol/L,1.4mol/L,1.8mol/L,2.2mol/L的反应液,混匀;2) Take 2ul betaine and add it to the reaction solution configured in step 1), and configure the final concentrations of betaine to be 0mol/L, 0.66mol/L, 1mol/L, 1.4mol/L, 1.8mol/L, 2.2mol/L respectively. The reaction solution, mix well;
3)利用恒温设施(如水浴锅,PCR仪等),在65℃进行恒温扩增反应,反应时间为2小时。3) Use constant temperature facilities (such as water bath, PCR instrument, etc.) to carry out constant temperature amplification reaction at 65°C, and the reaction time is 2 hours.
4)85℃灭活,终止扩增反应,得到扩增产物。4) Inactivation at 85°C to terminate the amplification reaction to obtain an amplification product.
利用岛津2700荧光光谱仪检测其荧光强度,结果如图5所示,结果表明:加入不同浓度的甜菜碱对反应有一定的影响,从扩增结果可以看出,加入 0.6-1.4mol/L的甜菜碱能明显加快反应速度。The fluorescence intensity was detected by Shimadzu 2700 fluorescence spectrometer. The results are shown in Figure 5. The results show that the addition of different concentrations of betaine has a certain effect on the reaction. It can be seen from the amplification results that the addition of 0.6-1.4mol/L betaine Betaine can significantly speed up the reaction.
同样的,我们发现甲酰胺、二甲基亚砜、脯氨酸等核酸解链试剂能明显加快反应速度。Similarly, we found that nucleic acid melting reagents such as formamide, dimethyl sulfoxide, and proline can significantly speed up the reaction.
实施例3Example 3
本实施例通过探针前体形成探针,运用核酸分子内扩增的比色法,检测待测样品中是否含有特定DNA靶标核酸(以DNA病毒博卡病毒为例)。In this example, a probe is formed from a probe precursor, and a colorimetric method of nucleic acid intramolecular amplification is used to detect whether the sample to be tested contains a specific DNA target nucleic acid (taking the DNA virus Boca virus as an example).
本实施例利用博卡病毒探针前体(序列: GCCGGCAGACTTTACTTTTTTTTTTTTTTGCCGGCAGACTCCAATATGTCTGCCGGC,即SEQ ID NO.4),博卡病毒样品1(序列:GCCGGCAGACATATTGGATTCCAAGATGGCGTCTGTACAACC, 即SEQ ID NO.5),博卡病毒对照序列样品 2(AGCTGCAGATGAGTTGGATTGGAAGAACCCGTGTGTTGTACA,即SEQ ID NO.6)。空白对照样品3(用水代替检测核酸序列)检验通过比色法检测DNA靶标核酸的能力。This example uses the boca virus probe precursor (sequence: GCCGGCAGACTTTACTTTTTTTTTTTTTTGCCGGCAGACTCCAATATGTCTGCCGGC, namely SEQ ID NO. 4), boca virus sample 1 (sequence: GCCGGCAGACATATTGGATTCCAAGATGGCGTCTGTACAACC, namely SEQ ID NO. 5), boca virus control sequence sample 2 ( AGCTGCAGATGAGTTGGATTGGAAGAACCCGTGTGTTGTACA, ie SEQ ID NO. 6). Blank control sample 3 (with water instead of detecting nucleic acid sequences) was tested for the ability to detect DNA target nucleic acids by colorimetry.
具体步骤如下:Specific steps are as follows:
1)配制23uL的基础反应液,其中加入2.5umol/L钙黄素绿,1.5mmol/L氯化锰,和400nmol/L博卡病毒探针前体;1) prepare 23uL of basic reaction solution, add 2.5umol/L calcein green, 1.5mmol/L manganese chloride, and 400nmol/L boca virus probe precursor;
2)分别取2ul 400nmol/L的博卡病毒靶标(博卡病毒样品1)、对照序列样品(博卡病毒对照序列样品2)、阴性样品(空白对照样品3),分别加入步骤1)的反应液中,混匀;2) Take 2ul 400nmol/L of Boca virus target (Boca virus sample 1), control sequence sample (Boca virus control sequence sample 2), and negative sample (blank control sample 3), respectively, and add the reaction in step 1). liquid, mix well;
3)利用恒温设施(如水浴锅,PCR仪等),在65℃反应,反应时间为2小时。3) Use constant temperature facilities (such as water bath, PCR instrument, etc.) to react at 65°C, and the reaction time is 2 hours.
4)85℃灭活,终止扩增反应,得到扩增产物。4) Inactivation at 85°C to terminate the amplification reaction to obtain an amplification product.
检测结果见图6。在第一个加博卡病毒靶标的1号样品,出现明显的绿色荧光,而对照序列样品(博卡病毒对照序列样品2)及阴性样品(空白对照样品3) 没有明显的荧光信号出现。通过比色法,运用核酸分子内扩增方法检测待测样品中含有DNA病毒博卡病毒。The test results are shown in Figure 6. In the first sample of Boca virus target No. 1, obvious green fluorescence appeared, while the control sequence sample (Boca virus control sequence sample 2) and the negative sample (blank control sample 3) had no obvious fluorescence signal. The DNA virus Bocavirus was detected in the sample to be tested by colorimetric method using nucleic acid intramolecular amplification method.
实施例4Example 4
通过探针前体形成探针,运用核酸分子内扩增的荧光共振能量转移法方法,检测待测样品中是否含有特定DNA靶标(以DNA病毒博卡病毒为例)。A probe is formed from a probe precursor, and the fluorescence resonance energy transfer method of intramolecular amplification of nucleic acid is used to detect whether the sample to be tested contains a specific DNA target (take the DNA virus Boca virus as an example).
本实验利用博卡病毒探针前体(序列: GCCGGCAGACTTTACTTAAGCTGCGGATGCTTGCCGGCAGACTCCAATATGTCTGCCGGC,即SEQ ID NO.4),博卡病毒样品1(序列:GCCGGCAGACATATTGGATTCCAAGATGGCGTCTGTACAACC, 即SEQ ID NO.5),博卡病毒对照序列样品 2(AGCTGCAGATGAGTTGGATTGGAAGAACCCGTGTGTTGTACA,即SEQ ID NO.6),荧光共振能量转移探针1(序列:CGGATGCTTGCCGGCAGA-FAM即SEQ ID NO.7,与扩增后探针b区序列部分互补),荧光共振能量转移探针2(序列:BHQ1-TCTGCCGGCAA, 即SEQ ID NO.8,与荧光共振能量转移探针1部分互补)检验通过荧光共振能量转移法检测DNA靶标核酸的能力。具体步骤如下:In this experiment, boca virus probe precursor (sequence: GCCGGCAGACTTTACTTAAGCTGCGGATGCTTGCCGGCAGACTCCAATATGTCTGCCGGC, namely SEQ ID NO. 4), boca virus sample 1 (sequence: GCCGGCAGACATATTGGATTCCAAGATGGCGTCTGTACAACC, namely SEQ ID NO. 5), boca virus control sequence sample 2 (AGCTGCAGATGAGTTGGATTGGAAGAACCCGTGTGTTGTACAACC) , namely SEQ ID NO.6), fluorescence resonance energy transfer probe 1 (sequence: CGGATGCTTGCCGGCAGA-FAM, namely SEQ ID NO.7, partially complementary to the amplified probe b region sequence), fluorescence resonance energy transfer probe 2 ( Sequence: BHQ1-TCTGCCGGCAA, ie SEQ ID NO. 8, partially complementary to FRET probe 1) to examine the ability to detect DNA target nucleic acid by FRET. Specific steps are as follows:
1)配制23uL的基础反应液,在其中加入400nmol/L博卡病毒探针前体, 800nmol/L荧光共振能量转移探针1、800nmol/L荧光共振能量转移探针2;1) Prepare 23uL of basic reaction solution, add 400nmol/L bocavirus probe precursor, 800nmol/
2)分别取2ul 400nmol/L的博卡病毒靶标和对照序列(博卡病毒对照序列样品2),分别加入步骤1)的反应液中,混匀;2) respectively take 2ul 400nmol/L Boca virus target and control sequence (Boca virus control sequence sample 2), respectively add it to the reaction solution of step 1), and mix well;
3)利用恒温设施(如水浴锅,PCR仪等),在65℃进行恒温扩增反应,反应时间为2小时。3) Use constant temperature facilities (such as water bath, PCR instrument, etc.) to carry out constant temperature amplification reaction at 65°C, and the reaction time is 2 hours.
4)85℃灭活,终止扩增反应,得到扩增产物。4) Inactivation at 85°C to terminate the amplification reaction to obtain an amplification product.
在没有靶标核酸存在时,荧光共振能量转移探针1和2互相靠近,荧光被熄灭,当有靶标核酸存在时,荧光共振能量转移探针1与扩增产物特异结合,荧光共振能量转移探针的荧光被释放,荧光信号上升。利用岛津2700荧光光谱仪检测其荧光强度结果图7。从图中可以看出,博卡病毒样品(DNA virus)有明显荧光信号强度,而对照序列样品(NTC)没有明显荧光信号强度。In the absence of the target nucleic acid, the fluorescence resonance energy transfer probes 1 and 2 are close to each other, and the fluorescence is extinguished. The fluorescence is released and the fluorescence signal rises. The fluorescence intensity was detected by Shimadzu 2700 fluorescence spectrometer as shown in Figure 7. It can be seen from the figure that the Boca virus sample (DNA virus) has obvious fluorescence signal intensity, while the control sequence sample (NTC) has no obvious fluorescence signal intensity.
实施例5Example 5
通过探针前体形成探针,运用核酸分子内扩增的荧光法方法,检测待测样品中是否含有特定RNA靶标(以let7a为例)。A probe is formed from a probe precursor, and a fluorescent method of nucleic acid intramolecular amplification is used to detect whether the sample to be tested contains a specific RNA target (take let7a as an example).
本实验利用let7a探针前体(序列: TGAGGTAGTAGAGATTGCTAGTCGTTTGAGGTAGTAATACAACC,即SEQ ID NO.9)、let7a(序列:UGAGGUAGUAGGUUGUAUAGUU,即SEQ ID NO.10),对照序列miRNA122(序列: UGGAGUGUGACAAUGGUGUUUG,即SEQ ID NO.11),检验通过荧光法检测RNA靶标核酸的能力。具体步骤如下:In this experiment, let7a probe precursor (sequence: TGAGGTAGTAGAGATTGCTAGTCGTTTGAGGTAGTAATACAACC, namely SEQ ID NO. 9), let7a (sequence: UGAGGUAGUAGGUUGUAUAGUU, namely SEQ ID NO. 10), control sequence miRNA122 (sequence: UGGAGUGUGACAAUGGUGUUUG, namely SEQ ID NO. 11) , to test the ability to detect RNA target nucleic acids by fluorescence. Specific steps are as follows:
1)配制17uL的逆转录体系,其中各物质浓度为:250mmol/L三(羟甲基) 氨基甲烷(pH 8.5)、40mmol/L氯化镁、150mmol/L氯化钾、5mmol/L二硫苏糖醇、0.5mmol/LdNTPs、500nmol/L探针前体、10U AMV逆转录酶;1) prepare the reverse transcription system of 17uL, wherein each substance concentration is: 250mmol/L tris (hydroxymethyl) aminomethane (pH 8.5), 40mmol/L magnesium chloride, 150mmol/L potassium chloride, 5mmol/L dithiothreose Alcohol, 0.5mmol/LdNTPs, 500nmol/L probe precursor, 10U AMV reverse transcriptase;
2)分别取3ul的终浓度为400nmol/L的let7a、对照序列miRNA122,分别加入步骤1)的反应液中,使最终反应体积为20uL,混匀反应液;2) Take 3ul of let7a and the control sequence miRNA122 with a final concentration of 400nmol/L respectively, add them to the reaction solution of step 1) respectively, make the final reaction volume be 20uL, and mix the reaction solution evenly;
3)置于PCR仪上,设置其反应温度为42℃1h,85℃5min;3) Put it on the PCR machine, and set the reaction temperature to be 42°C for 1 hour and 85°C for 5 minutes;
4)取步骤3)反应物2ul加入23ul基础反应液;4) take step 3) reactant 2ul and add 23ul basic reaction solution;
5)利用伯乐CFX96TM实时荧光定量PCR仪进行检测,每分钟采集一次荧光信号,在60℃进行恒温扩增反应,扩增结果见图8。结果表明:在2小时内,let7a 靶标有明显荧光信号上升,而对照序列miRNA122样品没有明显荧光信号上升。说明运用该方法,可以有效检测RNA靶标。5) Use Biole CFX96TM real-time fluorescence quantitative PCR instrument for detection, collect fluorescent signals every minute, and perform constant temperature amplification reaction at 60 °C. The amplification results are shown in Figure 8. The results showed that: within 2 hours, the let7a target had a significant increase in the fluorescence signal, while the control sequence miRNA122 sample had no obvious increase in the fluorescence signal. It shows that the method can effectively detect RNA targets.
实施例6Example 6
通过探针前体的分子内核酸扩增方法的抗干扰能力的验证Validation of anti-interference ability of an intramolecular nucleic acid amplification method by probe precursor
为验证该方法是否有好的抗干扰能力,在实施例5的步骤1中,加入1ul 从小鼠肝脏组织中抽提的总RNA来验证本发明所述方法的抗干扰能力,其余步骤与实施例5相同。检测结果见图9。与没有加干扰总RNA的图8检测结果相比,结果没有明显差异。说明加入1ul从肝脏组织中抽提的总RNA,没有干扰扩增反应。In order to verify whether the method has good anti-interference ability, in
实施例7Example 7
本发明的单碱基差异检测能力(以let7a为例)。通过核酸连接片段连接形成探针,运用核酸分子内扩增的荧光方法,验证本发明的单碱基差异检测能力(以 let7a为例)。The single-base difference detection capability of the present invention (taking let7a as an example). The nucleic acid ligation fragments are connected to form a probe, and the fluorescence method of nucleic acid intramolecular amplification is used to verify the single-base difference detection ability of the present invention (taking let7a as an example).
let7a和let7c仅只有单碱基差异,通过检测let7a和let7c,验证本发明对单碱基差异的检测能力。本实验针对let7a靶标,设计两个核酸连接片段,核酸连接片段1(序列:TGAGGTAGTAGAGATTGCTAGTCGTTTGAGGTAGTAAACTATAC,即SEQ ID NO.13),核酸连接片段2(序列:AACCTACTACCTCA,即SEQ ID NO.14),利用靶标为let7a(序列:UGAGGUAGUAGGUUGUAUAGUU,即SEQ ID NO.10)、对照序列let7c(序列:UGAGGUAGUAGGUUGUAUGGUU,即SEQ ID NO.12,与let7a单碱基差异),验证本发明检测单碱基差异能力。具体方法包括以下步骤:Let7a and let7c only have a single base difference, and by detecting let7a and let7c, the detection ability of the present invention for single base difference is verified. In this experiment, two nucleic acid connecting fragments were designed for the let7a target. let7a (sequence: UGAGGUAGUAGGUUGUAUAGUU, namely SEQ ID NO. 10) and control sequence let7c (sequence: UGAGGUAGUAGGUUGUAUGGUU, namely SEQ ID NO. 12, single base difference with let7a), verify the ability of the present invention to detect single base difference. The specific method includes the following steps:
1)配制20uL连接反应体系,其中各物质浓度为:100mmol/L Tris-HCl (pH7.6),10mmol/L MgCl2,10mmol/L DTT,0.1mmol/L ATP,300nmol/L核酸连接片段1,300nmol/L核酸连接片段2,5U连接酶;1) prepare 20uL ligation reaction system, wherein each substance concentration is: 100mmol/L Tris-HCl (pH7.6), 10mmol/L MgCl , 10mmol/L DTT, 0.1mmol/L ATP, 300nmol/L nucleic
2)分别往步骤1.1)所得的反应液中加入400nmol/L的let7a和let7c,连接反应1h,灭活,得let7a反应液或let7c反应液;2) adding 400 nmol/L of let7a and let7c to the reaction solution obtained in step 1.1) respectively, ligating for 1 h and inactivating to obtain a let7a reaction solution or a let7c reaction solution;
3)分别取2ul的let7a反应液或let7c反应液,分别往其中加入23ul基础反应液;3) respectively get the let7a reaction solution or let7c reaction solution of 2ul, respectively add 23ul basic reaction solution to it;
4)利用伯乐CFX96TM实时荧光定量PCR仪进行检测,每分钟采集一次荧光信号,扩增结果见图10.结果表明:在2小时内,let7a靶标有明显荧光信号上升,而对照序列let7c样品没有明显荧光信号上升。从图中可以看出,核酸连接片段1和核酸连接片段2在靶标核酸let7a存在的情况下,连接形成探针,探针进行分子内核酸扩增,而在对照序列let7c存在时,和核酸连接片段不能连接形成探针,没有扩增反应出现。从而实现靶标核酸let7a的特异检测。4) Use Biole CFX96TM real-time fluorescence quantitative PCR instrument for detection, and collect fluorescent signals every minute. The amplification results are shown in Figure 10. The results show that within 2 hours, the let7a target has a significant increase in the fluorescence signal, while the control sequence let7c sample has no obvious increase. Fluorescence signal rises. It can be seen from the figure that in the presence of the target nucleic acid let7a, the nucleic
序列表 sequence listing
<110> 湖南大学<110> Hunan University
<120> 一种核酸分子内扩增的探针及其检测方法<120> A probe for intramolecular amplification of nucleic acid and its detection method
<141> 2020-02-27<141> 2020-02-27
<160> 14<160> 14
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 75<211> 75
<212> DNA<212> DNA
<213> 人工合成()<213> Synthetic()
<400> 1<400> 1
agaggtagta ctagtactca agaggtagta ctagtaagtt gccttcagaa ctctactact 60agaggtagta ctagtactca agaggtagta ctagtaagtt gccttcagaa ctctactact 60
actagtacta cctct 75actagtacta cctct 75
<210> 2<210> 2
<211> 75<211> 75
<212> DNA<212> DNA
<213> 人工合成()<213> Synthetic()
<400> 2<400> 2
agaggtagta ctagtactca agaggtagta ctagtaagtt gccttcagaa ctctactact 60agaggtagta ctagtactca agaggtagta ctagtaagtt gccttcagaa ctctactact 60
acttcaacta ggact 75acttcaacta ggact 75
<210> 3<210> 3
<211> 75<211> 75
<212> DNA<212> DNA
<213> 人工合成()<213> Synthetic()
<400> 3<400> 3
tctgcaagta gctgtagtca agaggtagta ctagtaagtt gccttcagaa ctctactact 60tctgcaagta gctgtagtca agaggtagta ctagtaagtt gccttcagaa ctctactact 60
actagtacta cctct 75actagtacta cctct 75
<210> 4<210> 4
<211> 57<211> 57
<212> DNA<212> DNA
<213> 人工合成()<213> Synthetic()
<400> 4<400> 4
gccggcagac tttacttttt tttttttttg ccggcagact ccaatatgtc tgccggc 57gccggcagac tttacttttt ttttttttttg ccggcagact ccaatatgtc tgccggc 57
<210> 5<210> 5
<211> 42<211> 42
<212> DNA<212> DNA
<213> 人工合成()<213> Synthetic()
<400> 5<400> 5
gccggcagac atattggatt ccaagatggc gtctgtacaa cc 42gccggcagac atattggatt ccaagatggc gtctgtacaa cc 42
<210> 6<210> 6
<211> 42<211> 42
<212> DNA<212> DNA
<213> 人工合成()<213> Synthetic()
<400> 6<400> 6
agctgcagat gagttggatt ggaagaaccc gtgtgttgta ca 42agctgcagat gagttggatt ggaagaaccc gtgtgttgta ca 42
<210> 7<210> 7
<211> 18<211> 18
<212> DNA<212> DNA
<213> 人工合成()<213> Synthetic()
<400> 7<400> 7
cggatgcttg ccggcaga 18cggatgcttg ccggcaga 18
<210> 8<210> 8
<211> 11<211> 11
<212> DNA<212> DNA
<213> 人工合成()<213> Synthetic()
<400> 8<400> 8
tctgccggca a 11tctgccggca a 11
<210> 9<210> 9
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工合成()<213> Synthetic()
<400> 9<400> 9
tgaggtagta gagattgcta gtcgtttgag gtagtaatac aacc 44tgaggtagta gagattgcta gtcgtttgag gtagtaatac aacc 44
<210> 10<210> 10
<211> 22<211> 22
<212> RNA<212> RNA
<213> 人工合成()<213> Synthetic()
<400> 10<400> 10
ugagguagua gguuguauag uu 22ugagguagua gguuguauag uu 22
<210> 11<210> 11
<211> 22<211> 22
<212> RNA<212> RNA
<213> 人工合成()<213> Synthetic()
<400> 11<400> 11
uggaguguga caaugguguu ug 22uggaguguga caaugguguu ug 22
<210> 12<210> 12
<211> 22<211> 22
<212> RNA<212> RNA
<213> 人工合成()<213> Synthetic()
<400> 12<400> 12
ugagguagua gguuguaugg uu 22ugagguagua gguuguaugg uu 22
<210> 13<210> 13
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工合成()<213> Synthetic()
<400> 13<400> 13
tgaggtagta gagattgcta gtcgtttgag gtagtaaact atac 44tgaggtagta gagattgcta gtcgtttgag gtagtaaact atac 44
<210> 14<210> 14
<211> 14<211> 14
<212> DNA<212> DNA
<213> 人工合成()<213> Synthetic()
<400> 14<400> 14
aacctactac ctca 14aacctactac ctca 14
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010121899.8A CN113308462B (en) | 2020-02-27 | 2020-02-27 | A probe for intramolecular amplification of nucleic acid and its detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010121899.8A CN113308462B (en) | 2020-02-27 | 2020-02-27 | A probe for intramolecular amplification of nucleic acid and its detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113308462A CN113308462A (en) | 2021-08-27 |
CN113308462B true CN113308462B (en) | 2022-06-21 |
Family
ID=77369929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010121899.8A Active CN113308462B (en) | 2020-02-27 | 2020-02-27 | A probe for intramolecular amplification of nucleic acid and its detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113308462B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1427007A (en) * | 2001-12-21 | 2003-07-02 | 上海基达基因技术有限公司 | Nucleic acid amplification using hairpin structure to produce signal and detecting method |
CN104164488A (en) * | 2014-07-09 | 2014-11-26 | 青岛科技大学 | Single primer-initiated nucleic acid constant temperature amplification method |
CN109988758A (en) * | 2019-04-16 | 2019-07-09 | 上海快灵生物科技有限公司 | A kind of oligonucleotide chain probe and its nucleic acid amplification kit for participating in polymerization and extending |
-
2020
- 2020-02-27 CN CN202010121899.8A patent/CN113308462B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1427007A (en) * | 2001-12-21 | 2003-07-02 | 上海基达基因技术有限公司 | Nucleic acid amplification using hairpin structure to produce signal and detecting method |
CN104164488A (en) * | 2014-07-09 | 2014-11-26 | 青岛科技大学 | Single primer-initiated nucleic acid constant temperature amplification method |
CN109988758A (en) * | 2019-04-16 | 2019-07-09 | 上海快灵生物科技有限公司 | A kind of oligonucleotide chain probe and its nucleic acid amplification kit for participating in polymerization and extending |
Also Published As
Publication number | Publication date |
---|---|
CN113308462A (en) | 2021-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11208687B2 (en) | Compositions and methods for quantifying a nucleic acid sequence in a sample | |
US9487807B2 (en) | Compositions and methods for producing single-stranded circular DNA | |
USRE44265E1 (en) | Nucleic acid amplification method | |
CN104726549B (en) | Novel nicking enzyme-based double-stranded nucleic acid isothermal amplification detection method | |
JP2004511227A (en) | Specific double-stranded probe for detection of nucleic acid in the same species and its application method | |
JP2003500038A (en) | Primers, amplification methods and kits with high specificity | |
JP3909010B2 (en) | Quantitative multiplex PCR with high dynamic range | |
WO2017143873A1 (en) | Isothermal nucleic acid amplification method | |
EP4083229A1 (en) | Methods and compositions for nucleic acid detection | |
US20240368679A1 (en) | Linear displacement isothermal amplification method and application thereof | |
CN113308462B (en) | A probe for intramolecular amplification of nucleic acid and its detection method | |
WO2024259848A1 (en) | Real-time fluorescence loop-mediated isothermal nucleic acid amplification detection method | |
US20210262021A1 (en) | Cleavable co-operative primers and method of amplifying nucleic acid sequences using same | |
KR101785687B1 (en) | Method for detection of target nucleic acid sequence by multiple amplification nested signal amplification | |
US20140051086A1 (en) | Isothermal Amplification of Nucleic Acid | |
CN113046421A (en) | Method for asymmetrically amplifying target nucleic acid | |
US9212398B2 (en) | Cross priming amplification of target nucleic acids | |
KR20240058025A (en) | Primer sets for rapid detection of Escherichia coli O110, O113, O167 or O116 serotype and a method of detecting a serotype of Escherichia coli using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |