WO2020059628A1 - Multi-control valve unit, and hydraulic drive device for hydraulic excavator - Google Patents

Multi-control valve unit, and hydraulic drive device for hydraulic excavator Download PDF

Info

Publication number
WO2020059628A1
WO2020059628A1 PCT/JP2019/035861 JP2019035861W WO2020059628A1 WO 2020059628 A1 WO2020059628 A1 WO 2020059628A1 JP 2019035861 W JP2019035861 W JP 2019035861W WO 2020059628 A1 WO2020059628 A1 WO 2020059628A1
Authority
WO
WIPO (PCT)
Prior art keywords
spool
control valve
pilot
hydraulic
valve
Prior art date
Application number
PCT/JP2019/035861
Other languages
French (fr)
Japanese (ja)
Inventor
哲弘 近藤
直希 畑
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201980028675.8A priority Critical patent/CN111989497B/en
Publication of WO2020059628A1 publication Critical patent/WO2020059628A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/04Construction of housing; Use of materials therefor of sliding valves

Definitions

  • the present invention relates to a multi-control valve unit having a plurality of control valves and a hydraulic drive device for a hydraulic shovel.
  • Patent Document 1 discloses a hydraulic drive device in which pilot chambers of different control valves are connected to each other and has a pressure adjusting valve commonly connected to the pilot chambers.
  • Patent Document 2 discloses a multi-control valve unit using a plurality of control valves.
  • the hydraulic drive device disclosed in Patent Document 1 does not disclose a form in which the control valve is housed.
  • the hydraulic drive device disclosed in Patent Document 2 does not disclose a form in which pilot chambers of respective hydraulic control valves (control valves) communicate with each other. Therefore, when a configuration in which a pilot chamber is connected to another pilot chamber and a pressure control valve commonly connected to these pilot chambers is applied to a multi-control valve unit, the pilot chamber of one control valve is shifted from the pilot chamber of the other control chamber to the other.
  • the flow path extending to the pilot chamber of the control valve is arranged independently of each other among the plurality of control valves, and the configuration of the flow path may be complicated. Further, when external piping for connecting the pilot chambers is performed, a connecting member and piping are required, and piping connection work is also required. Therefore, the size of the multi-control valve unit may be increased, and the cost may increase.
  • an object of the present invention is to provide a multi-control valve unit and a hydraulic drive device for a hydraulic shovel in which the configuration of the flow path of the pressure oil is simple.
  • the multi-control valve unit of the present invention includes a first valve chamber and a second valve chamber therein, and the first valve chamber and the second valve chamber are arranged such that an axial direction of the first valve chamber and an axial direction of the second valve chamber are parallel to each other.
  • a second spool disposed so as to be able to move, a first pilot chamber for guiding pilot pressure to a pilot pressure receiving portion of the first spool, and a second pilot chamber for guiding pilot pressure to a pilot pressure receiving portion of the second spool.
  • a pilot chamber is provided inside, and a predetermined pressure oil can be supplied to both the pilot chamber forming member attached to the housing, the first pilot chamber, and the second pilot chamber, and pilot An electromagnetic proportional pressure reducing valve provided on a forming member, wherein the first spool moves in the axial direction inside the first valve chamber in accordance with the first pilot pressure, thereby causing the first valve chamber to move.
  • the connection state between a plurality of ports is switched within the first valve chamber, and the opening area between the plurality of ports inside the first valve chamber is adjusted, and the second spool is configured to respond to the second pilot pressure according to the second pilot pressure.
  • the connection state between the plurality of ports inside the second valve chamber is switched by moving in the axial direction inside the second valve chamber, and the opening area between the plurality of ports inside the second valve chamber is reduced. It is characterized by adjusting.
  • the first pilot chamber and the second pilot chamber are provided in one pilot chamber forming member, and the electromagnetic proportional pressure reducing valve is provided in the pilot chamber forming member.
  • the flow path between the first and second pilot chambers and the electromagnetic proportional pressure reducing valve are integrated into one member, so that the multi-control valve is formed compact. Therefore, the configuration of the pressure oil flow path is simplified, and the configuration of the multi-control valve can be reduced. Further, not only is there no need for a piping component for connecting a plurality of pilot chambers, but also the work for connecting the piping can be reduced.
  • the electromagnetic proportional pressure reducing valve when viewed along a direction perpendicular to a plane including the axis of the first spool and the axis of the second spool, the axis of the first spool and the axis of the second spool. It may be provided at a position between the shaft.
  • the electromagnetic proportional pressure reducing valve is provided at a position between the axis of the first spool and the axis of the second spool, a space for disposing the electromagnetic proportional pressure reducing valve is provided for the arrangement of the first spool and the second spool. And the spool can overlap in the axial direction of the spool, and the multi-control valve unit can be reduced in size.
  • the first spool and the second spool may switch a connection state between ports for pressure oil supplied by different hydraulic pumps and adjust an opening area.
  • the first spool and the second spool switch the connection state between ports for pressure oil supplied by different hydraulic pumps and adjust the opening area, so that the control valve supplied with pressure oil by different hydraulic pumps ,
  • the electromagnetic proportional pressure reducing valve can be shared.
  • a hydraulic drive device for a hydraulic shovel that controls driving of an actuator by using the multi-control valve unit having the above configuration, wherein the actuator includes an arm cylinder that causes an arm to perform a pushing operation and a pulling operation, The operation of the arm is controlled by controlling the drive of the arm cylinder by moving the spool and the second spool.
  • a hydraulic drive device for a hydraulic excavator that controls driving of an actuator using the multi-control valve unit having the above configuration, wherein the actuator includes a boom cylinder that performs a boom raising operation and a boom lowering operation,
  • the operation of the boom may be controlled by controlling the drive of the boom cylinder by moving the spool and the second spool.
  • the flow path between the first pilot chamber and the second pilot chamber and the electromagnetic proportional pressure reducing valve are provided. Can be put together in a pilot chamber forming member. Therefore, the configuration of the multi-control valve unit can be reduced in size.
  • FIG. 2 is a circuit diagram showing a part around a control valve connected to an arm cylinder in the circuit diagram of FIG. 1 in more detail.
  • FIG. 2 is a perspective view of a multi-control valve unit used in the hydraulic drive device for a hydraulic shovel of FIG. 1.
  • FIG. 2 is a cross-sectional view showing a pilot chamber formed in a pilot chamber forming member in each of two control valves and an electromagnetic proportional pressure reducing valve in the multi-control valve unit of FIG. 1.
  • Fig. 1 shows a circuit diagram of a hydraulic drive device for a hydraulic shovel.
  • the hydraulic drive system 2000 for a hydraulic shovel according to the present embodiment, two hydraulic pumps 200a and 200b are used.
  • the hydraulic drive device 2000 for a hydraulic shovel includes a tank 300.
  • the hydraulic pumps 200a and 200b may be swash plate pumps or oblique shaft pumps.
  • the hydraulic excavator hydraulic drive 2000 includes a plurality of control valves.
  • the plurality of control valves are arranged in two rows. That is, of the two hydraulic pumps 200a and 200b, a row of control valves arranged along the direction in which pressure oil is supplied from one hydraulic pump 200a, and the direction in which pressure oil is supplied from the other hydraulic pump 200b. And two rows of control valves.
  • the rows of the control valves are arranged such that the axial directions of the spools are parallel.
  • a control valve 510 for driving a bucket On the hydraulic pump 200a side, a control valve 510 for driving a bucket, a control valve 520 for driving an arm, a control valve 530 for driving a boom, and one crawler track are arranged in this order from the side closer to the hydraulic pump 200a.
  • a control valve 540 for driving is provided. However, the order of arrangement of these control valves can be changed.
  • a control valve 550 for driving a swing motor On the hydraulic pump 200b side, a control valve 550 for driving a swing motor, a control valve 560 for driving an arm, a control valve 570 for driving a boom, and the other are arranged in this order from the side closer to the hydraulic pump 200b.
  • a control valve 580 for driving the crawler is provided. However, the order of arrangement of these control valves can be changed.
  • the supply lines 310 and 320 which are the flow paths of the pressure oil supplied from the hydraulic pumps 200a and 200b, are branched at the position of each control valve, and the branched flow path of the pressure oil is connected to the port of each control valve. Connected to Thus, pressure oil from the hydraulic pumps 200a and 200b is supplied to each control valve.
  • the hydraulic drive device 2000 for a hydraulic shovel includes, as a hydraulic actuator, a bucket cylinder 610 for controlling driving of a bucket in the hydraulic shovel.
  • a bucket cylinder 610 for controlling driving of a bucket in the hydraulic shovel.
  • pressure oil is supplied to either the head side or the rod side of the bucket cylinder 610, the flow rate of the pressure oil discharged from the other is adjusted, and the direction of supply / discharge is changed.
  • a control valve 510 for switching is connected.
  • the hydraulic drive device 2000 for a hydraulic shovel includes an arm cylinder 620 for controlling driving of the operation of the arm in the hydraulic shovel.
  • Control valves 520 and 560 are connected to the arm cylinder 620 to supply pressure oil to one of the head side and the rod side of the arm cylinder 620 and to adjust the flow rate of the pressure oil discharged from the other. ing.
  • the arm cylinder 620 causes the arm to perform a pushing operation and a pulling operation. By controlling the driving of the arm cylinder 620, the operation of the arm can be controlled.
  • the hydraulic drive device 2000 for a hydraulic shovel includes a boom cylinder 630 that controls driving of a boom operation in the hydraulic shovel.
  • Control valves 530 and 570 are connected to the boom cylinder 630 to supply pressure oil to one of the head side and the rod side of the boom cylinder 630 and to adjust the flow rate of the pressure oil discharged from the other.
  • the boom cylinder 630 causes a boom raising operation and a boom lowering operation to be performed. By controlling the driving of the boom cylinder 630, the operation of the boom can be controlled.
  • the hydraulic drive device 2000 for a hydraulic shovel includes a hydraulic motor 640 that controls driving of one crawler belt of the hydraulic shovel.
  • the hydraulic motor 640 is connected to a control valve 540 that adjusts the flow rate of pressure oil supplied to and discharged from the hydraulic motor 640.
  • the hydraulic drive device 2000 for a hydraulic shovel includes a hydraulic motor 650 that drives a swing body of the hydraulic shovel.
  • the hydraulic motor 650 is connected to a control valve 550 for adjusting the flow rate of pressure oil supplied to and discharged from the hydraulic motor 650.
  • the hydraulic drive device 2000 for a hydraulic shovel includes a hydraulic motor 660 for controlling the driving of the other crawler belt in the hydraulic shovel.
  • the hydraulic motor 660 is connected to a control valve 580 for adjusting the flow rate of pressure oil supplied to and discharged from each pilot chamber of the hydraulic motor 660.
  • the control valve 510 is configured such that a flow path from the control valve 510 is connected to the bucket cylinder 610.
  • the slide movement of the spool inside the valve chamber of the control valve 510 controls supply and discharge of hydraulic oil to and from the bucket cylinder 610.
  • the spool moves in the axial direction inside the valve chamber according to the pilot pressure supplied to the pilot chamber.
  • the spool inside the control valve 510 moves to a position where the thrust corresponding to the pilot pressure and the return spring force (not shown) are balanced.
  • the control valve 510 allows one of the ports on the head side and the rod side of the bucket cylinder 610 to communicate with the pump port with an opening area corresponding to the amount of movement of the spool.
  • the hydraulic oil is supplied at an appropriate flow rate to one of the head side and the rod side of the bucket cylinder 610.
  • the other port on the head side and the rod side of the bucket cylinder 610 and the port of the tank passage communicate with an opening area determined according to the stroke of the spool, and the hydraulic oil is discharged.
  • the control valve 520 is configured such that a flow path from the control valve 520 is connected to the arm cylinder 620.
  • the sliding movement of the spool inside the valve chamber of the control valve 520 controls the supply and discharge of hydraulic oil to and from the arm cylinder 620.
  • the spool moves in the axial direction inside the valve chamber according to the pilot pressure supplied to the pilot chamber.
  • control valve 520 moves to a position where the thrust corresponding to the pilot pressure and the return spring force (not shown) are balanced.
  • the control valve 520 allows hydraulic oil to communicate between one port on the head side and the rod side of the arm cylinder 620 and the pump port with an opening area corresponding to the amount of movement of the spool.
  • the operating oil is supplied at an appropriate flow rate to one of the head side and the rod side of the arm cylinder 620.
  • the control valve 520 switches the connection state between the plurality of ports.
  • the other port on the head side and the rod side of the arm cylinder 620 and the port of the tank passage communicate with an opening area determined according to the stroke of the spool, and the hydraulic oil is discharged. That is, the control valve 520 switches the connection state between the plurality of ports so that the hydraulic oil in the arm cylinder 620 flows toward the tank 300, and discharges the hydraulic oil to the tank 300.
  • the control valve 530 is configured such that a flow path from the control valve 530 is connected to the boom cylinder 630.
  • the slide movement of the spool inside the valve chamber of the control valve 530 controls supply and discharge of hydraulic oil to and from the boom cylinder 630.
  • the spool moves in the axial direction inside the valve chamber according to the pilot pressure supplied to the pilot chamber.
  • control valve 530 moves to a position where the thrust corresponding to the pilot pressure and the return spring force (not shown) are balanced.
  • Hydraulic oil is communicated by the control valve 530 between one port on the head side and the rod side of the boom cylinder 630 and the pump port with an opening area corresponding to the movement amount of the spool.
  • the control valve 530 switches the connection state between the plurality of ports.
  • the other port on the head side and the rod side of the boom cylinder 630 communicates with the port of the tank passage with an opening area determined according to the stroke of the spool, and hydraulic oil is discharged from the boom cylinder 630.
  • the control valve 530 switches the connection state between the plurality of ports so that the hydraulic oil in the boom cylinder 630 flows toward the tank 300 to discharge the hydraulic oil to the tank 300.
  • the control valve 540 is configured such that a flow path from the control valve 540 is connected to the hydraulic motor 640.
  • the control valve 540 is configured to control the drive of a hydraulic motor 640 for driving one crawler belt by sliding the spool inside the valve chamber.
  • the spool moves in the axial direction inside the valve chamber according to the pilot pressure supplied to the pilot chamber.
  • the control valve moves to a position where the thrust corresponding to the pilot pressure and the return spring force (not shown) are balanced.
  • One of the ports of the hydraulic motor 640 and the pump port are communicated by the control valve 540 with an opening area corresponding to the amount of movement of the spool. In this way, the hydraulic oil is supplied at an appropriate flow rate to one port of the hydraulic motor.
  • the other port of the hydraulic motor 640 and the port of the tank passage are communicated with an opening area determined according to the stroke of the spool, and hydraulic oil is discharged toward the tank 300.
  • the control valve 550 has a flow path from the control valve 550 connected to a hydraulic motor 650 for rotating the revolving structure, and is configured to control the driving of the hydraulic motor 650.
  • the drive of the hydraulic motor 650 is controlled by the slide movement of the spool inside the valve chamber of the control valve 550.
  • the control valve 560 is configured such that a flow path therefrom is connected to the arm cylinder 620.
  • the slide movement of the spool inside the valve chamber of the control valve 560 controls supply and discharge of hydraulic oil to and from the arm cylinder 620.
  • the spool moves in the axial direction inside the valve chamber according to the pilot pressure supplied to the pilot chamber.
  • the spool inside the control valve 560 moves to a position where the thrust according to the pilot pressure and the return spring force (not shown) are balanced.
  • One port on the head side and the rod side of the arm cylinder 620 is communicated with the pump port by the control valve 560 with an opening area corresponding to the amount of movement of the spool.
  • the operating oil is supplied at an appropriate flow rate to one of the head side and the rod side of the arm cylinder 620.
  • the other port on the head side and the rod side of the arm cylinder 620 and the port of the tank passage communicate with an opening area determined according to the stroke of the spool, and the hydraulic oil is discharged.
  • the control valve 570 is configured such that a flow path from the control valve 570 is connected to the boom cylinder 630.
  • the slide movement of the spool inside the valve chamber of the control valve 570 controls the supply of hydraulic oil to the boom cylinder 630.
  • the spool moves in the axial direction inside the valve chamber according to the pilot pressure supplied to the pilot chamber.
  • the spool inside the control valve 630 moves to a position where the thrust according to the pilot pressure and the return spring force (not shown) are balanced.
  • the control valve 630 allows the head side port of the boom cylinder 630 to communicate with the pump port with an opening area corresponding to the amount of movement of the spool.
  • the control valve 570 has no flow path connected to the tank 300. Therefore, the pressure oil cannot be discharged from the boom cylinder 630 through the control valve 570. The discharge of the pressure oil from the boom cylinder 630 is performed only through the control valve 530. Therefore, the control valve 570 can be driven for the raising operation of the boom, and is not involved in the driving for the lowering operation of the boom.
  • the control valve 570 switches the connection between the ports so that the hydraulic oil is supplied to the boom cylinder 630 at an appropriate flow rate.
  • a control valve connected to the tank may be used instead, and the pressure oil may be discharged from the boom cylinder through the control valve.
  • a control valve adapted to the operation of lowering the boom may be used instead of the control valve 570. That is, instead of the control valve 570, a control valve of the same type as the control valve 530 may be applied.
  • the control valve 580 is configured such that a flow path from the control valve 580 is connected to the hydraulic motor 660.
  • the drive of the hydraulic motor 660 for driving the other crawler belt is switched.
  • each control valve has a valve chamber and a spool that can slide inside the valve chamber.
  • the spool is configured to be movable in the axial direction inside the valve chamber according to the pilot pressure.
  • a plurality of valve chambers are arranged such that the axial directions of the respective valve chambers are parallel to each other.
  • the spool is arranged inside the valve chamber so that the axial directions of the spool inside the valve chamber are parallel to each other.
  • FIG. 2 shows a more detailed circuit diagram of the hydraulic system of the control valves 520 and 560 connected to the arm cylinder 620 among the control valves 510 to 580 shown in FIG.
  • the control valve 520 includes pilot chambers 521 and 522.
  • the control valve 560 includes pilot chambers 561 and 562.
  • a pilot chamber (first pilot chamber) 521 and a pilot chamber (second pilot chamber) 561 are connected to form a pressure oil flow path 900.
  • An electromagnetic proportional pressure reducing valve 800 is attached to the flow path 900.
  • the electromagnetic proportional pressure reducing valve 800 is disposed between the pilot chamber 521 and the pilot chamber 561.
  • the electromagnetic proportional pressure reducing valve 800 is configured to be able to adjust the pressure of the pressure oil inside the flow path 900.
  • the pilot chamber 521 and the pilot chamber 561 are formed inside the pilot chamber forming member 130a.
  • Electromagnetic proportional pressure reducing valve 800 is provided in flow path 900 connecting pilot chamber 521 and pilot chamber 561. Therefore, the electromagnetic proportional pressure reducing valve 800 is configured to be able to simultaneously adjust both the pressure of the pressure oil in the pilot chamber 521 and the pressure of the pressure oil in the pilot chamber 561.
  • the pilot chamber 522 is connected to the pilot chamber 522 opposite to the pilot chambers 521 and 561.
  • An electromagnetic proportional pressure reducing valve 810 is disposed in a flow path 910 formed by connecting the pilot chamber 522 and the pilot chamber 562.
  • an electric signal corresponding to the inclination angle of the operation lever is output to a control device (not shown).
  • the control device detects that the operation lever has been depressed by the driver, the control device controls the electromagnetic proportional pressure reducing valve so that the pressure of the pressure oil inside the flow paths 900 and 910 becomes a pressure corresponding to the inclination angle of the operation lever.
  • the current supplied to 800 and 810 is controlled. Accordingly, the pressure oil flows into the flow paths 900 and 910 via the electromagnetic proportional pressure reducing valves 800 and 810 such that the pressure of the pressure oil inside the flow paths 900 and 910 becomes a pressure corresponding to the inclination angle of the operation lever.
  • the pilot pressure is controlled so that the pilot pressure in the pilot pressure receiving portions inside the pilot chambers 521 and 561 becomes a pilot pressure corresponding to the inclination angle of the operation lever.
  • pilot chamber 521 in the control valve 520 and the pilot chamber 561 in the control valve 560 are connected via a flow path, the pressure of the pressure oil in the pilot chamber 521 and the pressure of the pressure oil in the pilot chamber 561 are the same. become.
  • pilot chamber 522 in the control valve 520 and the pilot chamber 562 in the control valve 560 are connected via a flow path, the pressure of the pressure oil in the pilot chamber 522 and the pressure of the pressure oil in the pilot chamber 562 are connected. Is the same as
  • the control valves 510 to 580 shown in FIG. 1 are housed inside the housing 100 (see FIGS. 3 and 4) to constitute the multi-control valve unit 1000.
  • FIG. 3 is a perspective view of the multi-control valve unit 1000.
  • areas where the control valves 510 to 580 shown in FIG. 1 are located are divided by broken lines and indicated by reference numerals.
  • the multi-control valve unit 1000 includes the housing 100.
  • the housing 100 has a rectangular parallelepiped box shape.
  • a plurality of valve chambers of control valves 510 to 580 for controlling various actuators are housed inside the housing 100.
  • the housing 100 is formed with pump ports 110a and 110b through which pressure oil from the hydraulic pumps 200a and 200b passes.
  • two pump ports 110 a and 110 b are formed in the housing 100. Therefore, the pressure oil supplied from the two hydraulic pumps can be guided to the inside of the housing 100 by separate systems through the flow path of the pressure oil communicating with the two pump ports 110a and 110b.
  • control valves Inside the housing 100, a row of control valves arranged along a direction in which pressure oil from one hydraulic pump 200a is supplied through the pump port 110a, and a line passing through the pump port 110b from the other hydraulic pump 200b. And a row of control valves arranged along the direction in which the pressure oil is supplied. Therefore, in the present embodiment, the control valves are arranged in two rows inside the housing 100.
  • each control valve only the valve chamber of the control valve is disposed inside the housing 100. No pilot chamber is formed inside the housing 100. Inside the housing 100, the valve chambers are arranged such that their axial directions are parallel to each other.
  • Pilot chamber forming members 120 and 130 extending from a valve chamber of a control valve disposed inside the housing 100 to the outside of the housing 100 and having a pilot chamber for a corresponding control valve formed therein are attached to the housing 100. .
  • the pilot chambers of the corresponding control valves are formed inside the pilot chamber forming members 120 and 130.
  • the pilot chamber forming members 120 and 130 are attached to the housing 100 such that the distal end portions of the pilot chamber forming members 120 and 130 project outside the housing 100.
  • the pilot chamber forming members 120 and 130 include a pilot chamber forming member 120 corresponding to one control valve, and a pilot chamber forming member 130 attached across the two control valves.
  • a pilot chamber forming member 120a is mounted corresponding to control valve 510, and a pilot chamber forming member 120b is mounted corresponding to control valve 550.
  • a pilot chamber forming member 130a is attached across the control valves 520 and 560, and a pilot chamber forming member 130b is attached across the control valves 530 and 570.
  • a pilot chamber forming member 120c is mounted corresponding to control valve 540, and a pilot chamber forming member 120d is mounted corresponding to control valve 580.
  • the pilot chamber forming members 120a and 120b are provided at positions relatively close to the pump ports 110a and 110b, and the pilot chamber forming members 120 are relatively far from the pump ports 110a and 110b.
  • Forming members 120c and 120d are provided.
  • the pilot chamber forming members 120a, 120b and the pilot chamber forming members 120c, 120d Pilot chamber forming members 130a and 130b are arranged at positions between them.
  • the pilot chamber forming member 130a is disposed closer to the pump ports 110a and 110b than the pilot chamber forming member 130b.
  • the pilot chambers of the respective control valves are formed inside the pilot chamber forming members 120 and 130.
  • the pilot chamber forming members 130a and 130b have pilot chambers for two corresponding control valves therein.
  • a pilot chamber forming member 130 a having a pilot chamber for two control valves 520 and 560 for adjusting the flow rate of the pressure oil supplied to the port of the arm cylinder 620 is attached to the housing 100.
  • a pilot chamber forming member 130b having a pilot chamber for control valves 530 and 570 for adjusting the flow rate of the pressure oil supplied to the port of the boom cylinder 630 is attached to the housing 100.
  • the control valve 520 for adjusting the flow rate of the pressure oil supplied to the port of the arm cylinder 620 is formed corresponding to the flow path from the pump port 110a, and the control valve 560 is corresponding to the flow path from the pump port 110b. It is formed.
  • the pilot chamber forming member 130a corresponding to the control valves 520, 560 for the arm cylinder 620 is attached across the two control valves 520, 560 so as to have both the pilot chambers for the two control valves 520, 560. ing.
  • a control valve 530 for adjusting the flow rate of the pressure oil supplied to the port of the boom cylinder 630 is formed corresponding to the flow path from the pump port 110a, and the control valve 570 is connected to the flow path from the pump port 110b. It is formed correspondingly.
  • the pilot chamber forming member 130b corresponding to the control valves 530, 570 for the boom cylinder 630 is attached across the two control valves 530, 570 so as to have both pilot chambers for the two control valves 530, 570. ing.
  • the pilot chamber forming members 130a, 130b are provided with electromagnetic proportional pressure reducing valves 800a, 800b so as to protrude outward from the pilot chamber forming members 130a, 130b.
  • the electromagnetic proportional pressure reducing valve 800a is provided to protrude outward from the pilot chamber forming member 130a provided relatively close to the pump ports 110a and 110b. I have.
  • an electromagnetic proportional pressure reducing valve 800b is provided to protrude outward from a pilot chamber forming member 130b provided at a position relatively far from the pump ports 110a and 110b.
  • the pilot chamber forming member 130a provided at a position relatively close to the pump ports 110a and 110b is connected to the control unit connected to the arm cylinder 620.
  • a pilot chamber for the valves 520 and 560 is formed.
  • pilot chamber forming member 130b provided at a position relatively far from pump ports 110a and 110b forms pilot chambers of control valves 530 and 570 connected to boom cylinder 630.
  • FIG. 4 shows a pilot chamber 521 formed in the pilot chamber forming member 130a of the control valve 520, a pilot chamber 561 formed in the pilot chamber forming member 130a of the control valve 560, and a peripheral portion of the flow path 900 connecting these.
  • an electromagnetic proportional pressure reducing valve 800a is disposed in a flow path 900 between the pilot chamber 521 and the pilot chamber 561.
  • the electromagnetic proportional pressure reducing valve 800a includes a spool (first spool) 525 inside the valve chamber (first valve chamber) 524 of the control valve 520 and a spool (second spool) inside the valve chamber (second valve chamber) 564 of the control valve 560. It is provided at a position between the pilot chamber 521 and the pilot chamber 561 when viewed along the axial direction of the (two spools) 565. That is, when the control valve 520 and the control valve 560 are viewed in a direction perpendicular to a plane including the axis of the spool 525 and the axis of the spool 565, the electromagnetic proportional pressure reducing valve 800a And is provided at a position between them.
  • the pilot chamber 521 is formed in the pilot chamber forming member 130a at a position on an axial extension of the spool 525 disposed inside the valve chamber 524 of the control valve 520.
  • the pilot chamber 561 is formed on the pilot chamber forming member 130a at a position on an axial extension of the spool 565 disposed inside the valve chamber 564 of the control valve 560.
  • the electromagnetic proportional pressure reducing valve 800a is provided on the pilot chamber forming member 130a.
  • the pilot chamber forming member 130a includes a spring chamber 523 at a position corresponding to the control valve 520.
  • the spring chamber 523 is provided with a spring 523a.
  • the spring 523a urges when the spool 525 strokes to the pilot chamber 521 side, and also urges when the spool 525 strokes to the opposite side to the pilot chamber 521.
  • the pilot chamber forming member 130a includes a spring chamber 563 at a position corresponding to the control valve 560.
  • the spring chamber 563 is provided with a spring 563a.
  • the spring 563a is energized when the spool 565 strokes to the pilot chamber 561 side, and is also energized when the spool 565 strokes to the opposite side to the pilot chamber 561.
  • pilot chamber forming members 120 and 130 are attached to the housing 100. Pilot chambers for the respective control valves are formed in the pilot chamber forming members 120 and 130.
  • the pilot chamber inside the pilot chamber forming members 120 and 130 is arranged at a position facing the valve chamber, and a control valve is formed.
  • the pressure oil is supplied to the pilot chamber 521 of the control valve 520 and the control chamber 521 in accordance with the depressed amount of the operation lever. It is supplied to the pilot chamber 561 of the valve 560.
  • the pressure of the hydraulic oil in the pilot chamber 521 (first pilot pressure) and the pressure of the hydraulic oil in the pilot chamber 561 (second pilot pressure) ) Will be the same. Therefore, the spool 525 of the control valve 520 and the spool 565 of the control valve 560 move according to the pressure of the pressure oil in the pilot chamber 521 and the pilot chamber 561. The spool 525 of the control valve 520 and the spool 565 of the control valve 560 move similarly.
  • the pilot chamber forming member 130a is provided with the pilot chamber 521, the pilot chamber 561, and the electromagnetic proportional pressure reducing valve 800a, and the multi-control valve unit 1000 is configured. Since the pilot chamber 521, the pilot chamber 561, and the electromagnetic proportional pressure reducing valve 800a are provided in one pilot chamber forming member 130a, the number of components is reduced, and the configuration of the multi-control valve unit 1000 is simplified accordingly. In addition, since the flow paths connected to the pilot chamber 521 and the pilot chamber 561 are formed collectively in one pilot chamber forming member 130a, the configuration of the flow path is simplified. Therefore, the configuration of the flow path of the multi-control valve unit 1000 is simplified. As described above, since the configuration of the multi-control valve unit 1000 is simplified, the manufacturing cost of the multi-control valve unit 1000 can be reduced.
  • the pilot chamber 521 formed in the pilot chamber forming member 130a of the control valve 520 and the pilot chamber 561 formed in the pilot chamber forming member 130a of the control valve 560 are connected to each other. Is provided with an electromagnetic proportional pressure reducing valve 800a. That is, in the control valve 520 and the control valve 560, the electromagnetic proportional pressure reducing valve 800a is shared between the pilot chambers 521 and 561. Therefore, the number of electromagnetic proportional pressure reducing valves can be reduced as compared with a configuration in which each of the pilot chamber 521 and the pilot chamber 561 is separately provided with an electromagnetic proportional pressure reducing valve. Therefore, the configuration of the multi-control valve unit 1000 can be simplified, and the manufacturing cost of the multi-control valve unit 1000 can be reduced.
  • the size of the multi-control valve unit 1000 can be reduced accordingly. Therefore, even if the space for mounting the multi-control valve unit 1000 is limited, the multi-control valve unit 1000 can be mounted inside the space. Further, since there are few restrictions on space, the multi-control valve unit 1000 can be widely applied.
  • the configuration of the flow path of the pressure oil for guiding the pressure oil to each electromagnetic proportional pressure reducing valve can be simplified. Since the configuration of the pressure oil flow path is simplified, the manufacturing cost of the multi-control valve unit 1000 can be reduced.
  • the electromagnetic proportional pressure reducing valve 800a is provided at a position between the pilot chamber 521 and the pilot chamber 561. And the space for disposing the valve chambers 524, 564 and the spools 525, 565 can be overlapped in the axial direction of the spools 525, 565. Therefore, the size of the multi-control valve unit 1000 can be reduced in the direction intersecting the axial direction of the spools 525 and 565.
  • the electromagnetic proportional pressure reducing valve 800a is shared between the control valves 520 and 560 that switch the connection state between the flow paths of the pressure oil supplied by the different hydraulic pumps 200a and 200b. Let me. Therefore, in the control valves 520 and 560 to which the pressure oil is supplied by the different hydraulic pumps 200a and 200b, the pilot proportional chambers 521 and 561 can share the electromagnetic proportional pressure reducing valve 800a.
  • the electromagnetic proportional pressure reducing valve 800a is shared between the pilot chambers 521 and 561. Therefore, in the control valves 520 and 560 connected to the arm cylinder 620, the electromagnetic proportional pressure reducing valve 800a is shared, and the configuration is simplified. In the control valves 520 and 560 connected to the arm cylinder 620, the configuration of the flow path between the pilot chambers 521 and 561 is simplified.
  • one pilot chamber forming member is provided between the respective control valves 530 and 570 with the pilot chamber and the electromagnetic proportional. It is configured to provide a pressure reducing valve.
  • the multi-control valve unit 1000 not only the pilot chamber forming member 130a in which the pilot chambers 521 and 561 of the control valves 520 and 560 connected to the arm cylinder 620 are formed, but also the boom cylinder 630 The pilot chambers of the control valves 530 and 570 connected to the control valve 530 and 570 are formed on the pilot chamber forming member 130b corresponding to the control valves 530 and 570.
  • the multi-control valve unit can have a simpler configuration and can be downsized.
  • the pilot chambers 521 and 561 of the control valves 520 and 560 connected to the arm cylinder 620 are formed in the pilot chamber forming member 130a, and the pilot chambers of the control valves 530 and 570 connected to the boom cylinder 630 are formed.
  • the form formed in the pilot chamber forming member 130b has been described, the present invention is not limited to the above embodiment. Only one of the pilot chambers 521 and 561 of the control valves 520 and 560 connected to the arm cylinder 620 and the pilot chamber of the control valves 530 and 570 connected to the boom cylinder 630 has two control valves.
  • the formed pilot chamber may be configured to be formed in one pilot chamber forming member. At this time, between the control valve connected to the arm cylinder 620 and the control valve connected to the boom cylinder 630, the pilot chamber formed in either control valve is formed in one pilot chamber forming member. May be configured.
  • two hydraulic pumps are provided, and the control valves connected to different hydraulic pumps share the electromagnetic proportional pressure reducing valve.
  • the number of hydraulic pumps is not limited to two. In a hydraulic system using three or more hydraulic pumps, two of the hydraulic pumps may be configured such that an electromagnetic proportional pressure reducing valve is shared between control valves connected to different hydraulic pumps. Good.
  • the hydraulic oil from the hydraulic pumps 200a and 200b is supplied through the supply lines 310 and 320, and the supply lines 310 and 320 are branched at the positions of the respective control valves.
  • Pressure oil is supplied to each control valve by connecting the flow path to the port of each control valve.
  • the present invention is not limited to the above embodiment, and is configured such that the pressure oil supplied from the hydraulic pumps 200a and 200b is supplied to each control valve through a flow path other than the supply lines 310 and 320. Is also good.
  • the pressure oil may be supplied to each control valve through a center bypass line in which the pressure oil is directly supplied from the hydraulic pumps 200a and 200b to each control valve.
  • a pressure oil flow path as a center bypass line may be configured to supply pressure oil to each control valve from hydraulic pump 200a through control valves 510 to 540 in order. Further, a flow path of the pressure oil as a center bypass line may be configured to supply the pressure oil to each control valve from the hydraulic pump 200b through the control valves 550 to 580 in order.
  • a control valve for controlling the driving of the boom, the arm and the bucket and a control valve for controlling the driving of the hydraulic motor for the turning operation of the cabin and the traveling drive are provided inside the housing 100.
  • the configuration provided for each has been described.
  • the present invention is not limited to the above embodiment.
  • the actuator whose driving is controlled by the control valve may have another configuration.
  • a multi-control valve unit having some types of control valves may be used to control the driving of only some of the actuators.
  • a multi-control valve unit having a control valve for driving a type of actuator not used in the present embodiment may be used.
  • Pilot chamber forming member 200a Housing 130a, 130b Pilot chamber forming member 200a, 200b Hydraulic pump 510, 520, 530, 540, 550, 560, 570, 580
  • Control valve 521 Pilot chamber (first pilot chamber) 524 valve room (first valve room) 525 spool (first spool) 561 Pilot room (2nd pilot room) 564 valve room (second valve room) 565 spool (second spool) 620 Arm cylinder 630 Boom cylinder 800a, 800b
  • Electromagnetic proportional pressure reducing valve 1000 Multi control valve unit

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)
  • Valve Housings (AREA)

Abstract

Provided are a multi-control valve unit having a simple hydraulic oil flow passage configuration, and a hydraulic drive device for a hydraulic excavator. In this multi-control valve unit, a pilot chamber forming member, provided internally with a first pilot chamber which guides a first pilot pressure for controlling a first spool, and a second pilot chamber which guides a second pilot pressure for controlling a second spool, is attached to a housing, and an electromagnetic proportional pressure reducing valve capable of controlling the first pilot pressure and the second pilot pressure is provided in the pilot chamber forming member.

Description

マルチコントロールバルブユニット及び油圧ショベル用油圧駆動装置Multi-control valve unit and hydraulic drive for hydraulic excavator
 本発明は、複数のコントロールバルブを有するマルチコントロールバルブユニット及び油圧ショベル用油圧駆動装置に関する。 The present invention relates to a multi-control valve unit having a plurality of control valves and a hydraulic drive device for a hydraulic shovel.
 従来、油圧ポンプから吐出された圧油の流量を制御しつつアクチュエータの駆動方向を切換えるマルチコントロールバルブを有する油圧駆動装置が用いられている。このような油圧駆動装置において、異なるコントロールバルブのパイロット室同士を接続し、これらのパイロット室に共通して接続された圧力調整弁を有する油圧駆動装置が特許文献1に開示されている。また、複数のコントロールバルブを用いたマルチコントロールバルブユニットについて特許文献2に開示されている。 Conventionally, a hydraulic drive device having a multi-control valve for switching the drive direction of an actuator while controlling the flow rate of pressure oil discharged from a hydraulic pump has been used. In such a hydraulic drive device, Patent Document 1 discloses a hydraulic drive device in which pilot chambers of different control valves are connected to each other and has a pressure adjusting valve commonly connected to the pilot chambers. Patent Document 2 discloses a multi-control valve unit using a plurality of control valves.
特開2017-110672号公報JP-A-2017-110672 特開2015-148300号公報JP 2015-148300 A
 しかしながら、特許文献1に開示された油圧駆動装置では、コントロールバルブを収納する形式については開示されていない。また、特許文献2に開示された油圧駆動装置では、各油圧制御弁(コントロールバルブ)のパイロット室同士を連通させる形式については開示されていない。そのため、あるパイロット室と別のパイロット室を接続し、これらのパイロット室に共通して接続された圧力調整弁を備えた構成をマルチコントロールバルブユニットに適用すると、一方のコントロールバルブのパイロット室から他方のコントロールバルブのパイロット室へ延びる流路が、複数のコントロールバルブの間でそれぞれ互いに関係なく配置され、流路の構成が複雑になる可能性がある。また、パイロット室同士を接続するための外部配管を行う場合、接続部材と配管が必要で、配管接続作業も必要となる。そのため、マルチコントロールバルブユニットが大型化し、コストが上昇する可能性がある。 However, the hydraulic drive device disclosed in Patent Document 1 does not disclose a form in which the control valve is housed. Further, the hydraulic drive device disclosed in Patent Document 2 does not disclose a form in which pilot chambers of respective hydraulic control valves (control valves) communicate with each other. Therefore, when a configuration in which a pilot chamber is connected to another pilot chamber and a pressure control valve commonly connected to these pilot chambers is applied to a multi-control valve unit, the pilot chamber of one control valve is shifted from the pilot chamber of the other control chamber to the other. The flow path extending to the pilot chamber of the control valve is arranged independently of each other among the plurality of control valves, and the configuration of the flow path may be complicated. Further, when external piping for connecting the pilot chambers is performed, a connecting member and piping are required, and piping connection work is also required. Therefore, the size of the multi-control valve unit may be increased, and the cost may increase.
 そこで、本発明は上記の事情に鑑み、圧油の流路の構成が簡易なマルチコントロールバルブユニット及び油圧ショベル用油圧駆動装置を提供することを目的とする。 Therefore, in view of the above circumstances, an object of the present invention is to provide a multi-control valve unit and a hydraulic drive device for a hydraulic shovel in which the configuration of the flow path of the pressure oil is simple.
 本発明のマルチコントロールバルブユニットは、第1弁室及び第2弁室を内部に備え、前記第1弁室の軸方向と前記第2弁室の軸方向とが互いに平行となるように前記第1弁室及び前記第2弁室が配置されたハウジングと、前記第1弁室の内部に軸方向に移動可能に配置された第1スプールと、前記第2弁室の内部に軸方向に移動可能に配置された第2スプールと、前記第1スプールのパイロット圧受圧部へパイロット圧を導くための第1パイロット室と、前記第2スプールのパイロット圧受圧部へパイロット圧を導くための第2パイロット室とを内部に備え、かつ、前記ハウジングに取り付けられたパイロット室形成部材と、前記第1パイロット室と、前記第2パイロット室との両方へ所定の圧油を供給可能であり、かつ前記パイロット室形成部材に設けられた、電磁比例減圧弁とを備え、前記第1スプールは、前記第1パイロット圧に応じて、前記第1弁室の内部で軸方向に移動することにより前記第1弁室の内部で複数のポートの間の接続状態を切換えると共に前記第1弁室の内部の複数のポートの間の開口面積を調整し、前記第2スプールは、前記第2パイロット圧に応じて、前記第2弁室の内部で軸方向に移動することにより前記第2弁室の内部の複数のポートの間の接続状態を切換えると共に前記第2弁室の内部の複数のポートの間の開口面積を調整することを特徴とする。 The multi-control valve unit of the present invention includes a first valve chamber and a second valve chamber therein, and the first valve chamber and the second valve chamber are arranged such that an axial direction of the first valve chamber and an axial direction of the second valve chamber are parallel to each other. A housing in which the first valve chamber and the second valve chamber are arranged; a first spool arranged in the first valve chamber so as to be movable in the axial direction; and a axial spool moving in the second valve chamber. A second spool disposed so as to be able to move, a first pilot chamber for guiding pilot pressure to a pilot pressure receiving portion of the first spool, and a second pilot chamber for guiding pilot pressure to a pilot pressure receiving portion of the second spool. A pilot chamber is provided inside, and a predetermined pressure oil can be supplied to both the pilot chamber forming member attached to the housing, the first pilot chamber, and the second pilot chamber, and pilot An electromagnetic proportional pressure reducing valve provided on a forming member, wherein the first spool moves in the axial direction inside the first valve chamber in accordance with the first pilot pressure, thereby causing the first valve chamber to move. The connection state between a plurality of ports is switched within the first valve chamber, and the opening area between the plurality of ports inside the first valve chamber is adjusted, and the second spool is configured to respond to the second pilot pressure according to the second pilot pressure. The connection state between the plurality of ports inside the second valve chamber is switched by moving in the axial direction inside the second valve chamber, and the opening area between the plurality of ports inside the second valve chamber is reduced. It is characterized by adjusting.
 上記構成のマルチコントロールバルブユニットでは、第1パイロット室及び第2パイロット室が一つのパイロット室形成部材に設けられると共に、電磁比例減圧弁がパイロット室形成部材に設けられているので、第1パイロット室と第2パイロット室との間の流路及び電磁比例減圧弁が1つの部材にまとめられて、マルチコントロールバルブがコンパクトに形成される。そのため、圧油の流路の構成が簡易になり、マルチコントロールバルブの構成を小型化させることができる。また、複数のパイロット室を接続する配管部品が不要となるだけでなく、配管を接続する作業も低減できる。 In the multi-control valve unit having the above configuration, the first pilot chamber and the second pilot chamber are provided in one pilot chamber forming member, and the electromagnetic proportional pressure reducing valve is provided in the pilot chamber forming member. The flow path between the first and second pilot chambers and the electromagnetic proportional pressure reducing valve are integrated into one member, so that the multi-control valve is formed compact. Therefore, the configuration of the pressure oil flow path is simplified, and the configuration of the multi-control valve can be reduced. Further, not only is there no need for a piping component for connecting a plurality of pilot chambers, but also the work for connecting the piping can be reduced.
 また、前記電磁比例減圧弁は、前記第1スプールの軸と前記第2スプールの軸を含む平面に垂直な方向に沿って見たときに、前記第1スプールの軸と、前記第2スプールの軸との間の位置に設けられていてもよい。 Further, the electromagnetic proportional pressure reducing valve, when viewed along a direction perpendicular to a plane including the axis of the first spool and the axis of the second spool, the axis of the first spool and the axis of the second spool. It may be provided at a position between the shaft.
 電磁比例減圧弁が、第1スプールの軸と、第2スプールの軸との間の位置に設けられるので、電磁比例減圧弁の配置のためのスペースを第1スプール及び第2スプールの配置のためのスペースとスプールの軸方向で重複させることができ、マルチコントロールバルブユニットを小型化させることができる。 Since the electromagnetic proportional pressure reducing valve is provided at a position between the axis of the first spool and the axis of the second spool, a space for disposing the electromagnetic proportional pressure reducing valve is provided for the arrangement of the first spool and the second spool. And the spool can overlap in the axial direction of the spool, and the multi-control valve unit can be reduced in size.
 また、前記第1スプール及び前記第2スプールは、それぞれ異なる油圧ポンプによって供給される圧油についてのポートの間の接続状態切換と開口面積の調整を行ってもよい。 The first spool and the second spool may switch a connection state between ports for pressure oil supplied by different hydraulic pumps and adjust an opening area.
 第1スプール及び第2スプールは、それぞれ異なる油圧ポンプによって供給される圧油についてのポートの間の接続状態の切換と開口面積の調整を行うので、異なる油圧ポンプによって圧油が供給されるコントロールバルブの間で電磁比例減圧弁を共通化させることができる。 The first spool and the second spool switch the connection state between ports for pressure oil supplied by different hydraulic pumps and adjust the opening area, so that the control valve supplied with pressure oil by different hydraulic pumps , The electromagnetic proportional pressure reducing valve can be shared.
 また、上記構成のマルチコントロールバルブユニットを用いてアクチュエータの駆動を制御する油圧ショベル用油圧駆動装置であって、前記アクチュエータは、アームに押し動作及び引き動作を実行させるアームシリンダを備え、前記第1スプール及び前記第2スプールを移動させることによって、前記アームシリンダの駆動を制御して、アームの動作を制御することを特徴とする。 In addition, a hydraulic drive device for a hydraulic shovel that controls driving of an actuator by using the multi-control valve unit having the above configuration, wherein the actuator includes an arm cylinder that causes an arm to perform a pushing operation and a pulling operation, The operation of the arm is controlled by controlling the drive of the arm cylinder by moving the spool and the second spool.
 第1スプール及び第2スプールが移動することによってアームシリンダの駆動を制御して、アームの動作を制御するので、アームの動作の制御のための構成を簡易にすることができる。 (4) Since the operation of the arm cylinder is controlled by the movement of the first spool and the second spool to control the operation of the arm, the configuration for controlling the operation of the arm can be simplified.
 また、上記構成のマルチコントロールバルブユニットを用いてアクチュエータの駆動を制御する油圧ショベル用油圧駆動装置であって、前記アクチュエータは、ブームの上げ動作及び下げ動作を実行させるブームシリンダを備え、前記第1スプール及び前記第2スプールを移動させることによって、前記ブームシリンダの駆動を制御して、ブームの動作を制御してもよい。 Also, a hydraulic drive device for a hydraulic excavator that controls driving of an actuator using the multi-control valve unit having the above configuration, wherein the actuator includes a boom cylinder that performs a boom raising operation and a boom lowering operation, The operation of the boom may be controlled by controlling the drive of the boom cylinder by moving the spool and the second spool.
 第1スプール及び第2スプールが移動することによってブームシリンダの駆動を制御して、ブームの動作を制御するので、ブームの動作の制御のための構成を簡易にすることができる。 (4) Since the operation of the boom cylinder is controlled by moving the first spool and the second spool to control the operation of the boom, the configuration for controlling the operation of the boom can be simplified.
 本発明によれば、第1パイロット室、第2パイロット室及び電磁比例減圧弁がパイロット室形成部材に設けられるので、第1パイロット室と第2パイロット室との間の流路及び電磁比例減圧弁をパイロット室形成部材にまとめることができる。そのため、マルチコントロールバルブユニットの構成を小型化させることができる。 According to the present invention, since the first pilot chamber, the second pilot chamber, and the electromagnetic proportional pressure reducing valve are provided in the pilot chamber forming member, the flow path between the first pilot chamber and the second pilot chamber and the electromagnetic proportional pressure reducing valve are provided. Can be put together in a pilot chamber forming member. Therefore, the configuration of the multi-control valve unit can be reduced in size.
本発明の実施形態に係る油圧ショベル用油圧駆動装置についての回路図である。It is a circuit diagram about the hydraulic drive for hydraulic shovels concerning the embodiment of the present invention. 図1の回路図においてアームシリンダに接続されたコントロールバルブの周辺部分についてより詳細に示した回路図である。FIG. 2 is a circuit diagram showing a part around a control valve connected to an arm cylinder in the circuit diagram of FIG. 1 in more detail. 図1の油圧ショベル用油圧駆動装置で用いられるマルチコントロールバルブユニットについての斜視図である。FIG. 2 is a perspective view of a multi-control valve unit used in the hydraulic drive device for a hydraulic shovel of FIG. 1. 図1のマルチコントロールバルブユニットにおいて、2つのコントロールバルブのそれぞれにおけるパイロット室形成部材に形成されたパイロット室と、電磁比例減圧弁について示した断面図である。FIG. 2 is a cross-sectional view showing a pilot chamber formed in a pilot chamber forming member in each of two control valves and an electromagnetic proportional pressure reducing valve in the multi-control valve unit of FIG. 1.
 以下、本発明の実施形態に係るマルチコントロールバルブユニットの用いられた油圧ショベル用油圧駆動装置について、添付図面を参照して説明する。 Hereinafter, a hydraulic drive for a hydraulic shovel using a multi-control valve unit according to an embodiment of the present invention will be described with reference to the accompanying drawings.
 図1に、油圧ショベル用油圧駆動装置についての回路図を示す。本実施形態の油圧ショベル用油圧駆動装置2000では、2つの油圧ポンプ200a、200bが用いられている。また、油圧ショベル用油圧駆動装置2000は、タンク300を備えている。油圧ポンプ200a、200bは、斜板ポンプであってもよいし斜軸ポンプであってもよい。 Fig. 1 shows a circuit diagram of a hydraulic drive device for a hydraulic shovel. In the hydraulic drive system 2000 for a hydraulic shovel according to the present embodiment, two hydraulic pumps 200a and 200b are used. The hydraulic drive device 2000 for a hydraulic shovel includes a tank 300. The hydraulic pumps 200a and 200b may be swash plate pumps or oblique shaft pumps.
 油圧ショベル用油圧駆動装置2000は、複数のコントロールバルブを備えている。複数のコントロールバルブは、2列に並べられて配置されている。すなわち、2つの油圧ポンプ200a、200bのうち、一方の油圧ポンプ200aから圧油が供給される方向に沿って並べられたコントロールバルブの列と、他方の油圧ポンプ200bから圧油が供給される方向に沿って並べられたコントロールバルブの列との2列に並べられている。それぞれのコントロールバルブの列は、スプールの軸方向が平行となるように並べられている。 油 圧 The hydraulic excavator hydraulic drive 2000 includes a plurality of control valves. The plurality of control valves are arranged in two rows. That is, of the two hydraulic pumps 200a and 200b, a row of control valves arranged along the direction in which pressure oil is supplied from one hydraulic pump 200a, and the direction in which pressure oil is supplied from the other hydraulic pump 200b. And two rows of control valves. The rows of the control valves are arranged such that the axial directions of the spools are parallel.
 油圧ポンプ200a側には、油圧ポンプ200aに近い方から順に、バケットを駆動するためのコントロールバルブ510、アームを駆動するためのコントロールバルブ520、ブームを駆動するためのコントロールバルブ530、一方の履帯を駆動するためのコントロールバルブ540が設けられている。ただし、これらのコントロールバルブの並び順については変更可能である。 On the hydraulic pump 200a side, a control valve 510 for driving a bucket, a control valve 520 for driving an arm, a control valve 530 for driving a boom, and one crawler track are arranged in this order from the side closer to the hydraulic pump 200a. A control valve 540 for driving is provided. However, the order of arrangement of these control valves can be changed.
 また、油圧ポンプ200b側には、油圧ポンプ200bに近い方から順に、旋回モータを駆動するためのコントロールバルブ550、アームを駆動するためのコントロールバルブ560、ブームを駆動するためのコントロールバルブ570、他方の履帯を駆動するためのコントロールバルブ580が設けられている。ただし、これらのコントロールバルブの並び順については変更可能である。 On the hydraulic pump 200b side, a control valve 550 for driving a swing motor, a control valve 560 for driving an arm, a control valve 570 for driving a boom, and the other are arranged in this order from the side closer to the hydraulic pump 200b. A control valve 580 for driving the crawler is provided. However, the order of arrangement of these control valves can be changed.
 本実施形態では、油圧ポンプ200a、200bから供給される圧油の流路である供給ライン310、320を各コントロールバルブの位置で分岐させ、分岐された圧油の流路を各コントロールバルブのポートに接続している。これにより、各コントロールバルブに対して油圧ポンプ200a、200bからの圧油が供給されている。 In the present embodiment, the supply lines 310 and 320, which are the flow paths of the pressure oil supplied from the hydraulic pumps 200a and 200b, are branched at the position of each control valve, and the branched flow path of the pressure oil is connected to the port of each control valve. Connected to Thus, pressure oil from the hydraulic pumps 200a and 200b is supplied to each control valve.
 本実施形態の油圧ショベル用油圧駆動装置2000は、油圧アクチュエータとして、油圧ショベルにおけるバケットの駆動を制御するためのバケットシリンダ610を備えている。バケットシリンダ610には、バケットシリンダ610のヘッド側とロッド側の何れか一方へ圧油を供給すると共に、同いずれか他方から排出される圧油の流量を調整するとともに、供給・排出の方向を切換えるコントロールバルブ510が接続されている。 油 圧 The hydraulic drive device 2000 for a hydraulic shovel according to the present embodiment includes, as a hydraulic actuator, a bucket cylinder 610 for controlling driving of a bucket in the hydraulic shovel. To the bucket cylinder 610, pressure oil is supplied to either the head side or the rod side of the bucket cylinder 610, the flow rate of the pressure oil discharged from the other is adjusted, and the direction of supply / discharge is changed. A control valve 510 for switching is connected.
 また、油圧ショベル用油圧駆動装置2000は、油圧ショベルにおけるアームの動作の駆動を制御するためのアームシリンダ620を備えている。アームシリンダ620には、アームシリンダ620のヘッド側とロッド側の何れか一方へ圧油を供給すると共に、同いずれか他方から排出される圧油の流量を調整するコントロールバルブ520、560が接続されている。アームシリンダ620は、アームに押し動作及び引き動作を実行させる。アームシリンダ620の駆動を制御することにより、アームの動作を制御することができる。 The hydraulic drive device 2000 for a hydraulic shovel includes an arm cylinder 620 for controlling driving of the operation of the arm in the hydraulic shovel. Control valves 520 and 560 are connected to the arm cylinder 620 to supply pressure oil to one of the head side and the rod side of the arm cylinder 620 and to adjust the flow rate of the pressure oil discharged from the other. ing. The arm cylinder 620 causes the arm to perform a pushing operation and a pulling operation. By controlling the driving of the arm cylinder 620, the operation of the arm can be controlled.
 また、油圧ショベル用油圧駆動装置2000は、油圧ショベルにおけるブームの動作の駆動を制御するブームシリンダ630を備えている。ブームシリンダ630には、ブームシリンダ630のヘッド側とロッド側の何れか一方へ圧油を供給すると共に、同いずれか他方から排出される圧油の流量を調整するコントロールバルブ530、570が接続されている。ブームシリンダ630は、ブームの上げ動作及び下げ動作を実行させる。ブームシリンダ630の駆動を制御することにより、ブームの動作を制御することができる。 The hydraulic drive device 2000 for a hydraulic shovel includes a boom cylinder 630 that controls driving of a boom operation in the hydraulic shovel. Control valves 530 and 570 are connected to the boom cylinder 630 to supply pressure oil to one of the head side and the rod side of the boom cylinder 630 and to adjust the flow rate of the pressure oil discharged from the other. ing. The boom cylinder 630 causes a boom raising operation and a boom lowering operation to be performed. By controlling the driving of the boom cylinder 630, the operation of the boom can be controlled.
 また、油圧ショベル用油圧駆動装置2000は、油圧ショベルにおける一方の履帯の駆動を制御する油圧モータ640を備えている。油圧モータ640には、油圧モータ640に給排する圧油の流量を調整するコントロールバルブ540が接続されている。 The hydraulic drive device 2000 for a hydraulic shovel includes a hydraulic motor 640 that controls driving of one crawler belt of the hydraulic shovel. The hydraulic motor 640 is connected to a control valve 540 that adjusts the flow rate of pressure oil supplied to and discharged from the hydraulic motor 640.
 また、油圧ショベル用油圧駆動装置2000は、油圧ショベルにおける旋回体を駆動する油圧モータ650を備えている。油圧モータ650には、油圧モータ650に給排する圧油の流量を調整するコントロールバルブ550が接続されている。 油 圧 The hydraulic drive device 2000 for a hydraulic shovel includes a hydraulic motor 650 that drives a swing body of the hydraulic shovel. The hydraulic motor 650 is connected to a control valve 550 for adjusting the flow rate of pressure oil supplied to and discharged from the hydraulic motor 650.
 また、油圧ショベル用油圧駆動装置2000は、油圧ショベルにおける他方の履帯の駆動を制御する油圧モータ660を備えている。油圧モータ660には、油圧モータ660の各パイロット室に給排する圧油の流量を調整するコントロールバルブ580が接続されている。 The hydraulic drive device 2000 for a hydraulic shovel includes a hydraulic motor 660 for controlling the driving of the other crawler belt in the hydraulic shovel. The hydraulic motor 660 is connected to a control valve 580 for adjusting the flow rate of pressure oil supplied to and discharged from each pilot chamber of the hydraulic motor 660.
 コントロールバルブ510は、そこからの流路がバケットシリンダ610に接続されて構成されている。コントロールバルブ510における弁室の内部でスプールがスライド移動を行うことによって、バケットシリンダ610に対する作動油の供給、排出を制御する。本実施形態では、スプールは、パイロット室に供給されるパイロット圧に応じて、弁室の内部で軸方向に移動する。具体的には、パイロット圧力に応じた推力と、図示しないリターンスプリング力とが釣り合う位置までコントロールバルブ510内部のスプールが移動する。コントロールバルブ510によってバケットシリンダ610のヘッド側、ロッド側の一方のポートとポンプポートとが、スプールの移動量に応じた開口面積で連通される。このようにして、作動油が適切な流量でバケットシリンダ610のヘッド側、ロッド側の一方へ供給される。同時に、バケットシリンダ610のヘッド側、ロッド側の他方のポートとタンク通路のポートとが、スプールのストロークに応じて定まる開口面積で連通され作動油が排出される。 The control valve 510 is configured such that a flow path from the control valve 510 is connected to the bucket cylinder 610. The slide movement of the spool inside the valve chamber of the control valve 510 controls supply and discharge of hydraulic oil to and from the bucket cylinder 610. In the present embodiment, the spool moves in the axial direction inside the valve chamber according to the pilot pressure supplied to the pilot chamber. Specifically, the spool inside the control valve 510 moves to a position where the thrust corresponding to the pilot pressure and the return spring force (not shown) are balanced. The control valve 510 allows one of the ports on the head side and the rod side of the bucket cylinder 610 to communicate with the pump port with an opening area corresponding to the amount of movement of the spool. In this way, the hydraulic oil is supplied at an appropriate flow rate to one of the head side and the rod side of the bucket cylinder 610. At the same time, the other port on the head side and the rod side of the bucket cylinder 610 and the port of the tank passage communicate with an opening area determined according to the stroke of the spool, and the hydraulic oil is discharged.
 また、コントロールバルブ520は、そこからの流路がアームシリンダ620に接続されて構成されている。コントロールバルブ520における弁室の内部でスプールがスライド移動を行うことによって、アームシリンダ620に対する作動油の供給、排出を制御する。コントロールバルブ510と同様に、コントロールバルブ520においても、スプールは、パイロット室に供給されるパイロット圧に応じて、弁室の内部で軸方向に移動する。具体的には、パイロット圧力に応じた推力と、図示しないリターンスプリング力とが釣り合う位置までコントロールバルブ520が移動する。コントロールバルブ520によって作動油がアームシリンダ620のヘッド側、ロッド側の一方のポートとポンプポートとが、スプールの移動量に応じた開口面積で連通される。このようにして、作動油が適切な流量でアームシリンダ620のヘッド側、ロッド側の一方へ供給される。これにより、コントロールバルブ520が複数のポートの間の接続状態を切換える。また、アームシリンダ620のヘッド側、ロッド側の他方のポートとタンク通路のポートとが、スプールのストロークに応じて定まる開口面積で連通され作動油が排出される。すなわち、アームシリンダ620内の作動油がタンク300に向けて流れるようにコントロールバルブ520が複数のポートの間の接続状態を切換えてタンク300に作動油を排出させる。 The control valve 520 is configured such that a flow path from the control valve 520 is connected to the arm cylinder 620. The sliding movement of the spool inside the valve chamber of the control valve 520 controls the supply and discharge of hydraulic oil to and from the arm cylinder 620. As with the control valve 510, also in the control valve 520, the spool moves in the axial direction inside the valve chamber according to the pilot pressure supplied to the pilot chamber. Specifically, control valve 520 moves to a position where the thrust corresponding to the pilot pressure and the return spring force (not shown) are balanced. The control valve 520 allows hydraulic oil to communicate between one port on the head side and the rod side of the arm cylinder 620 and the pump port with an opening area corresponding to the amount of movement of the spool. In this way, the operating oil is supplied at an appropriate flow rate to one of the head side and the rod side of the arm cylinder 620. Thereby, the control valve 520 switches the connection state between the plurality of ports. Further, the other port on the head side and the rod side of the arm cylinder 620 and the port of the tank passage communicate with an opening area determined according to the stroke of the spool, and the hydraulic oil is discharged. That is, the control valve 520 switches the connection state between the plurality of ports so that the hydraulic oil in the arm cylinder 620 flows toward the tank 300, and discharges the hydraulic oil to the tank 300.
 また、コントロールバルブ530は、そこからの流路がブームシリンダ630に接続されて構成されている。コントロールバルブ530における弁室の内部でスプールがスライド移動を行うことによって、ブームシリンダ630に対する作動油の供給、排出を制御する。コントロールバルブ510、520と同様に、コントロールバルブ530においても、スプールは、パイロット室に供給されるパイロット圧に応じて、弁室の内部で軸方向に移動する。具体的には、パイロット圧力に応じた推力と、図示しないリターンスプリング力とが釣り合う位置までコントロールバルブ530が移動する。コントロールバルブ530によって作動油がブームシリンダ630のヘッド側、ロッド側の一方のポートとポンプポートとが、スプールの移動量に応じた開口面積で連通される。このようにして、作動油が適切な流量でブームシリンダ630のヘッド側、ロッド側の一方のポートへ供給される。このように、コントロールバルブ530が複数のポートの間の接続状態を切換える。同時に、ブームシリンダ630のヘッド側、ロッド側の他方のポートとタンク通路のポートとが、スプールのストロークに応じて定まる開口面積で連通されブームシリンダ630から作動油が排出される。ブームシリンダ630内の作動油がタンク300に向けて流れるようにコントロールバルブ530が複数のポートの間の接続状態を切換えてタンク300に作動油を排出させる。 The control valve 530 is configured such that a flow path from the control valve 530 is connected to the boom cylinder 630. The slide movement of the spool inside the valve chamber of the control valve 530 controls supply and discharge of hydraulic oil to and from the boom cylinder 630. Similarly to the control valves 510 and 520, also in the control valve 530, the spool moves in the axial direction inside the valve chamber according to the pilot pressure supplied to the pilot chamber. Specifically, control valve 530 moves to a position where the thrust corresponding to the pilot pressure and the return spring force (not shown) are balanced. Hydraulic oil is communicated by the control valve 530 between one port on the head side and the rod side of the boom cylinder 630 and the pump port with an opening area corresponding to the movement amount of the spool. In this way, the operating oil is supplied at an appropriate flow rate to one of the ports on the head side and the rod side of the boom cylinder 630. Thus, the control valve 530 switches the connection state between the plurality of ports. At the same time, the other port on the head side and the rod side of the boom cylinder 630 communicates with the port of the tank passage with an opening area determined according to the stroke of the spool, and hydraulic oil is discharged from the boom cylinder 630. The control valve 530 switches the connection state between the plurality of ports so that the hydraulic oil in the boom cylinder 630 flows toward the tank 300 to discharge the hydraulic oil to the tank 300.
 コントロールバルブ540は、そこからの流路が油圧モータ640に接続されて構成されている。コントロールバルブ540における弁室の内部でスプールがスライド移動を行うことによって、一方の履帯を駆動させる油圧モータ640の駆動を制御するように構成されている。本実施形態では、スプールは、パイロット室に供給されるパイロット圧に応じて、弁室の内部で軸方向に移動する。具体的には、パイロット圧力に応じた推力と、図示しないリターンスプリング力とが釣り合う位置までコントロールバルブが移動する。コントロールバルブ540によって油圧モータ640のポートの一方とポンプポートとが、スプールの移動量に応じた開口面積で連通される。このようにして、作動油が適切な流量で油圧モータの一方のポートへ供給される。同時に、油圧モータ640の他方のポートとタンク通路のポートとが、スプールのストロークに応じて定まる開口面積で連通され、作動油がタンク300に向けて排出される。 The control valve 540 is configured such that a flow path from the control valve 540 is connected to the hydraulic motor 640. The control valve 540 is configured to control the drive of a hydraulic motor 640 for driving one crawler belt by sliding the spool inside the valve chamber. In the present embodiment, the spool moves in the axial direction inside the valve chamber according to the pilot pressure supplied to the pilot chamber. Specifically, the control valve moves to a position where the thrust corresponding to the pilot pressure and the return spring force (not shown) are balanced. One of the ports of the hydraulic motor 640 and the pump port are communicated by the control valve 540 with an opening area corresponding to the amount of movement of the spool. In this way, the hydraulic oil is supplied at an appropriate flow rate to one port of the hydraulic motor. At the same time, the other port of the hydraulic motor 640 and the port of the tank passage are communicated with an opening area determined according to the stroke of the spool, and hydraulic oil is discharged toward the tank 300.
 コントロールバルブ550は、そこからの流路が旋回体を旋回させるための油圧モータ650に接続され、油圧モータ650の駆動を制御するように構成されている。コントロールバルブ550における弁室の内部でスプールがスライド移動を行うことによって、油圧モータ650の駆動を制御するように構成されている。 The control valve 550 has a flow path from the control valve 550 connected to a hydraulic motor 650 for rotating the revolving structure, and is configured to control the driving of the hydraulic motor 650. The drive of the hydraulic motor 650 is controlled by the slide movement of the spool inside the valve chamber of the control valve 550.
 コントロールバルブ560は、そこからの流路がアームシリンダ620に接続されて構成されている。コントロールバルブ560における弁室の内部でスプールがスライド移動を行うことによって、アームシリンダ620に対する作動油の供給、排出を制御する。本実施形態では、スプールは、パイロット室に供給されるパイロット圧に応じて、弁室の内部で軸方向に移動する。具体的には、パイロット圧力に応じた推力と、図示しないリターンスプリング力とが釣り合う位置までコントロールバルブ560内部のスプールが移動する。コントロールバルブ560によってアームシリンダ620のヘッド側、ロッド側の一方のポートとポンプポートとが、スプールの移動量に応じた開口面積で連通される。このようにして、作動油が適切な流量でアームシリンダ620のヘッド側、ロッド側の一方へ供給される。同時に、アームシリンダ620のヘッド側、ロッド側の他方のポートとタンク通路のポートとが、スプールのストロークに応じて定まる開口面積で連通され作動油が排出される。 The control valve 560 is configured such that a flow path therefrom is connected to the arm cylinder 620. The slide movement of the spool inside the valve chamber of the control valve 560 controls supply and discharge of hydraulic oil to and from the arm cylinder 620. In the present embodiment, the spool moves in the axial direction inside the valve chamber according to the pilot pressure supplied to the pilot chamber. Specifically, the spool inside the control valve 560 moves to a position where the thrust according to the pilot pressure and the return spring force (not shown) are balanced. One port on the head side and the rod side of the arm cylinder 620 is communicated with the pump port by the control valve 560 with an opening area corresponding to the amount of movement of the spool. In this way, the operating oil is supplied at an appropriate flow rate to one of the head side and the rod side of the arm cylinder 620. At the same time, the other port on the head side and the rod side of the arm cylinder 620 and the port of the tank passage communicate with an opening area determined according to the stroke of the spool, and the hydraulic oil is discharged.
 コントロールバルブ570は、そこからの流路がブームシリンダ630に接続されて構成されている。コントロールバルブ570における弁室の内部でスプールがスライド移動を行うことによって、ブームシリンダ630に対する作動油の供給を制御する。本実施形態では、スプールは、パイロット室に供給されるパイロット圧に応じて、弁室の内部で軸方向に移動する。具体的には、パイロット圧力に応じた推力と、図示しないリターンスプリング力とが釣り合う位置までコントロールバルブ630内部のスプールが移動する。コントロールバルブ630によってブームシリンダ630のヘッド側ポートとポンプポートとが、スプールの移動量に応じた開口面積で連通される。このようにして、作動油が適切な流量でブームシリンダ630のヘッド側へ供給される。本実施形態では、コントロールバルブ570には、タンク300に接続される流路は形成されていない。そのため、コントロールバルブ570を通してブームシリンダ630から圧油を排出することはできない。ブームシリンダ630からの圧油の排出は、コントロールバルブ530を通してのみ行われる。従って、コントロールバルブ570は、ブームの上げ動作について駆動させることができ、ブームの下げ動作のときには駆動に関与しない。コントロールバルブ570によって作動油がブームシリンダ630に供給される際には、作動油が適切な流量でブームシリンダ630へ供給されるように、コントロールバルブ570がポートの間の接続状態を切換える。ただし、タンクに接続されたコントロールバルブが代わりに用いられ、コントロールバルブを通してブームシリンダからの圧油の排出を行うことができるように構成されてもよい。これにより、ブームの下げ動作にも適応したコントロールバルブがコントロールバルブ570の代わりに用いられてもよい。つまり、コントロールバルブ570の代わりに、コントロールバルブ530と同じ形式のコントロールバルブが適用されてもよい。 The control valve 570 is configured such that a flow path from the control valve 570 is connected to the boom cylinder 630. The slide movement of the spool inside the valve chamber of the control valve 570 controls the supply of hydraulic oil to the boom cylinder 630. In the present embodiment, the spool moves in the axial direction inside the valve chamber according to the pilot pressure supplied to the pilot chamber. Specifically, the spool inside the control valve 630 moves to a position where the thrust according to the pilot pressure and the return spring force (not shown) are balanced. The control valve 630 allows the head side port of the boom cylinder 630 to communicate with the pump port with an opening area corresponding to the amount of movement of the spool. In this way, the working oil is supplied to the head side of the boom cylinder 630 at an appropriate flow rate. In the present embodiment, the control valve 570 has no flow path connected to the tank 300. Therefore, the pressure oil cannot be discharged from the boom cylinder 630 through the control valve 570. The discharge of the pressure oil from the boom cylinder 630 is performed only through the control valve 530. Therefore, the control valve 570 can be driven for the raising operation of the boom, and is not involved in the driving for the lowering operation of the boom. When hydraulic oil is supplied to the boom cylinder 630 by the control valve 570, the control valve 570 switches the connection between the ports so that the hydraulic oil is supplied to the boom cylinder 630 at an appropriate flow rate. However, a control valve connected to the tank may be used instead, and the pressure oil may be discharged from the boom cylinder through the control valve. Thus, a control valve adapted to the operation of lowering the boom may be used instead of the control valve 570. That is, instead of the control valve 570, a control valve of the same type as the control valve 530 may be applied.
 コントロールバルブ580は、そこからの流路が油圧モータ660に接続されて構成されている。コントロールバルブ580における弁室の内部でスプールがスライド移動を行うことによって、他方の履帯を駆動させる油圧モータ660の駆動を切換えるように構成されている。 The control valve 580 is configured such that a flow path from the control valve 580 is connected to the hydraulic motor 660. When the spool slides inside the valve chamber of the control valve 580, the drive of the hydraulic motor 660 for driving the other crawler belt is switched.
 上述のように、それぞれのコントロールバルブは、弁室と、弁室の内部でスライド移動可能なスプールとを備えている。スプールが、パイロット圧に応じて、弁室の内部で軸方向に移動可能に構成されている。それぞれのコントロールバルブで、スプールが移動を行うことにより、コントロールバルブ内で連通するポート同士の接続先を切換え、開口面積も調整してそれぞれの油圧アクチュエータの駆動を切換えている。 As described above, each control valve has a valve chamber and a spool that can slide inside the valve chamber. The spool is configured to be movable in the axial direction inside the valve chamber according to the pilot pressure. By moving the spool in each control valve, the connection destination of the ports communicating with each other in the control valve is switched, and the opening area is also adjusted to switch the drive of each hydraulic actuator.
 油圧ショベル用油圧駆動装置2000においては、それぞれの弁室の軸方向が互いに平行となるように、複数の弁室が配置されている。また、弁室の内部のスプールの軸方向が互いに平行となるように、弁室の内部にスプールが配置されている。 In the hydraulic drive device 2000 for a hydraulic shovel, a plurality of valve chambers are arranged such that the axial directions of the respective valve chambers are parallel to each other. The spool is arranged inside the valve chamber so that the axial directions of the spool inside the valve chamber are parallel to each other.
 図1に示されるコントロールバルブ510~580のうち、アームシリンダ620に接続されたコントロールバルブ520、560についてのより詳細な油圧システムの回路図について、図2に示す。 FIG. 2 shows a more detailed circuit diagram of the hydraulic system of the control valves 520 and 560 connected to the arm cylinder 620 among the control valves 510 to 580 shown in FIG.
 図2に示されるように、コントロールバルブ520は、パイロット室521、522を備えている。また、コントロールバルブ560は、パイロット室561、562を備えている。パイロット室(第1パイロット室)521とパイロット室(第2パイロット室)561とが接続されて圧油の流路900が形成されている。また、流路900には、電磁比例減圧弁800が取り付けられている。本実施形態では、パイロット室521とパイロット室561との間の位置に電磁比例減圧弁800が配置されている。電磁比例減圧弁800は、流路900の内部の圧油の圧力を調整することが可能に構成されている。 コ ン ト ロ ー ル As shown in FIG. 2, the control valve 520 includes pilot chambers 521 and 522. The control valve 560 includes pilot chambers 561 and 562. A pilot chamber (first pilot chamber) 521 and a pilot chamber (second pilot chamber) 561 are connected to form a pressure oil flow path 900. An electromagnetic proportional pressure reducing valve 800 is attached to the flow path 900. In the present embodiment, the electromagnetic proportional pressure reducing valve 800 is disposed between the pilot chamber 521 and the pilot chamber 561. The electromagnetic proportional pressure reducing valve 800 is configured to be able to adjust the pressure of the pressure oil inside the flow path 900.
 パイロット室521及びパイロット室561は、パイロット室形成部材130aの内部に形成されている。電磁比例減圧弁800は、パイロット室521とパイロット室561とを接続する流路900に設けられている。従って、電磁比例減圧弁800は、パイロット室521の圧油の圧力とパイロット室561の圧油の圧力との両方を同時に調整することが可能に構成されている。 The pilot chamber 521 and the pilot chamber 561 are formed inside the pilot chamber forming member 130a. Electromagnetic proportional pressure reducing valve 800 is provided in flow path 900 connecting pilot chamber 521 and pilot chamber 561. Therefore, the electromagnetic proportional pressure reducing valve 800 is configured to be able to simultaneously adjust both the pressure of the pressure oil in the pilot chamber 521 and the pressure of the pressure oil in the pilot chamber 561.
 本実施形態では、パイロット室521、561とは反対側のパイロット室522と、パイロット室562とが接続されている。パイロット室522と、パイロット室562とが接続されて形成された流路910に、電磁比例減圧弁810が配置されている。 In the present embodiment, the pilot chamber 522 is connected to the pilot chamber 522 opposite to the pilot chambers 521 and 561. An electromagnetic proportional pressure reducing valve 810 is disposed in a flow path 910 formed by connecting the pilot chamber 522 and the pilot chamber 562.
 操作レバーが運転者によって倒されたときに、操作レバーの傾斜角に応じた電気信号が制御装置(不図示)に出力される。操作レバーが運転者によって倒されたことを制御装置が検出すると、流路900、910内部の圧油の圧力が操作レバーの傾斜角に応じた圧力となるように、制御装置が電磁比例減圧弁800、810に供給する電流を制御する。これにより、電磁比例減圧弁800、810を介して、流路900、910内部の圧油の圧力が操作レバーの傾斜角に応じた圧力となるように流路900、910に圧油が流入する。その結果、パイロット室521、561内部のパイロット圧受圧部におけるパイロット圧が操作レバーの傾斜角に応じたパイロット圧となるように、パイロット圧が制御される。 電 気 When the operation lever is depressed by the driver, an electric signal corresponding to the inclination angle of the operation lever is output to a control device (not shown). When the control device detects that the operation lever has been depressed by the driver, the control device controls the electromagnetic proportional pressure reducing valve so that the pressure of the pressure oil inside the flow paths 900 and 910 becomes a pressure corresponding to the inclination angle of the operation lever. The current supplied to 800 and 810 is controlled. Accordingly, the pressure oil flows into the flow paths 900 and 910 via the electromagnetic proportional pressure reducing valves 800 and 810 such that the pressure of the pressure oil inside the flow paths 900 and 910 becomes a pressure corresponding to the inclination angle of the operation lever. . As a result, the pilot pressure is controlled so that the pilot pressure in the pilot pressure receiving portions inside the pilot chambers 521 and 561 becomes a pilot pressure corresponding to the inclination angle of the operation lever.
 コントロールバルブ520におけるパイロット室521と、コントロールバルブ560におけるパイロット室561とが、流路を介して接続されているので、パイロット室521の圧油の圧力とパイロット室561の圧油の圧力とが同じになる。同様に、コントロールバルブ520におけるパイロット室522と、コントロールバルブ560におけるパイロット室562とが、流路を介して接続されているので、パイロット室522の圧油の圧力とパイロット室562の圧油の圧力とが同じになる。 Since the pilot chamber 521 in the control valve 520 and the pilot chamber 561 in the control valve 560 are connected via a flow path, the pressure of the pressure oil in the pilot chamber 521 and the pressure of the pressure oil in the pilot chamber 561 are the same. become. Similarly, since the pilot chamber 522 in the control valve 520 and the pilot chamber 562 in the control valve 560 are connected via a flow path, the pressure of the pressure oil in the pilot chamber 522 and the pressure of the pressure oil in the pilot chamber 562 are connected. Is the same as
 図1に示されるコントロールバルブ510~580は、ハウジング100(図3、4参照)の内部に収められてマルチコントロールバルブユニット1000を構成している。 コ ン ト ロ ー ル The control valves 510 to 580 shown in FIG. 1 are housed inside the housing 100 (see FIGS. 3 and 4) to constitute the multi-control valve unit 1000.
 図3に、マルチコントロールバルブユニット1000の斜視図を示す。図3では、マルチコントロールバルブユニット1000において、図1に示されるコントロールバルブ510~580のそれぞれの位置している領域が、破線で区分けされ、符号によって示されている。 FIG. 3 is a perspective view of the multi-control valve unit 1000. In FIG. 3, in the multi-control valve unit 1000, areas where the control valves 510 to 580 shown in FIG. 1 are located are divided by broken lines and indicated by reference numerals.
 マルチコントロールバルブユニット1000は、ハウジング100を備えている。ハウジング100は、直方体の箱状の形状を有している。ハウジング100の内部には、各種のアクチュエータをコントロールするためのコントロールバルブ510~580における弁室が複数収められている。 The multi-control valve unit 1000 includes the housing 100. The housing 100 has a rectangular parallelepiped box shape. A plurality of valve chambers of control valves 510 to 580 for controlling various actuators are housed inside the housing 100.
 ハウジング100には、油圧ポンプ200a、200bからの圧油を通すポンプポート110a、110bが形成されている。本実施形態のマルチコントロールバルブユニット1000では、ハウジング100に2つのポンプポート110a、110bが形成されている。そのため、2つの油圧ポンプから供給される圧油を、2つのポンプポート110a、110bに連通する圧油の流路を通じてそれぞれ別系統でハウジング100の内部に導くことができる。 The housing 100 is formed with pump ports 110a and 110b through which pressure oil from the hydraulic pumps 200a and 200b passes. In the multi-control valve unit 1000 of the present embodiment, two pump ports 110 a and 110 b are formed in the housing 100. Therefore, the pressure oil supplied from the two hydraulic pumps can be guided to the inside of the housing 100 by separate systems through the flow path of the pressure oil communicating with the two pump ports 110a and 110b.
 ハウジング100の内部には、一方の油圧ポンプ200aからの圧油がポンプポート110aを通って供給される方向に沿って並べられたコントロールバルブの列と、他方の油圧ポンプ200bからポンプポート110bを通って圧油が供給される方向に沿って並べられたコントロールバルブの列とが形成されている。従って、本実施形態では、コントロールバルブは、ハウジング100の内部で2列に並べられている。 Inside the housing 100, a row of control valves arranged along a direction in which pressure oil from one hydraulic pump 200a is supplied through the pump port 110a, and a line passing through the pump port 110b from the other hydraulic pump 200b. And a row of control valves arranged along the direction in which the pressure oil is supplied. Therefore, in the present embodiment, the control valves are arranged in two rows inside the housing 100.
 それぞれのコントロールバルブにおいて、ハウジング100の内部には、コントロールバルブのうち、弁室のみが配置されている。ハウジング100の内部には、パイロット室は形成されていない。ハウジング100の内部において、弁室は、それぞれ軸方向が互いに平行となるように配置されている。 に お い て In each control valve, only the valve chamber of the control valve is disposed inside the housing 100. No pilot chamber is formed inside the housing 100. Inside the housing 100, the valve chambers are arranged such that their axial directions are parallel to each other.
 ハウジング100の内部に配置されたコントロールバルブの弁室からハウジング100の外側に延び、対応するコントロールバルブについてのパイロット室が内部に形成されたパイロット室形成部材120、130がハウジング100に取り付けられている。パイロット室形成部材120、130の内部には、対応するコントロールバルブのパイロット室が形成されている。パイロット室形成部材120、130の先端部がハウジング100の外側に突出するように、それぞれのパイロット室形成部材120、130がハウジング100に取り付けられている。 Pilot chamber forming members 120 and 130 extending from a valve chamber of a control valve disposed inside the housing 100 to the outside of the housing 100 and having a pilot chamber for a corresponding control valve formed therein are attached to the housing 100. . The pilot chambers of the corresponding control valves are formed inside the pilot chamber forming members 120 and 130. The pilot chamber forming members 120 and 130 are attached to the housing 100 such that the distal end portions of the pilot chamber forming members 120 and 130 project outside the housing 100.
 パイロット室形成部材120、130は、1つのコントロールバルブに対応したパイロット室形成部材120と、2つのコントロールバルブに跨いで取り付けられたパイロット室形成部材130とを備えている。コントロールバルブ510に対応してパイロット室形成部材120aが取り付けられ、コントロールバルブ550に対応してパイロット室形成部材120bが取り付けられている。コントロールバルブ520、560に跨いでパイロット室形成部材130aが取り付けられ、コントロールバルブ530、570に跨いでパイロット室形成部材130bが取り付けられている。コントロールバルブ540に対応してパイロット室形成部材120cが取り付けられ、コントロールバルブ580に対応してパイロット室形成部材120dが取り付けられている。 The pilot chamber forming members 120 and 130 include a pilot chamber forming member 120 corresponding to one control valve, and a pilot chamber forming member 130 attached across the two control valves. A pilot chamber forming member 120a is mounted corresponding to control valve 510, and a pilot chamber forming member 120b is mounted corresponding to control valve 550. A pilot chamber forming member 130a is attached across the control valves 520 and 560, and a pilot chamber forming member 130b is attached across the control valves 530 and 570. A pilot chamber forming member 120c is mounted corresponding to control valve 540, and a pilot chamber forming member 120d is mounted corresponding to control valve 580.
 1つのコントロールバルブに対応したパイロット室形成部材120については、ポンプポート110a、110bに比較的近い位置にパイロット室形成部材120a、120bが設けられ、ポンプポート110a、110bから比較的遠い位置にパイロット室形成部材120c、120dが設けられている。また、油圧ポンプ200a、200bからの圧油がポンプポート110a、110bを通ってハウジング100内部に供給される方向に沿って、パイロット室形成部材120a、120bと、パイロット室形成部材120c、120dとの間の位置に、パイロット室形成部材130a、130bが配置されている。パイロット室形成部材130aは、パイロット室形成部材130bよりもポンプポート110a、110bに近い位置に配置されている。本実施形態では、これらのパイロット室形成部材120、130の内部に、それぞれのコントロールバルブのパイロット室が形成されている。 As for the pilot chamber forming member 120 corresponding to one control valve, the pilot chamber forming members 120a and 120b are provided at positions relatively close to the pump ports 110a and 110b, and the pilot chamber forming members 120 are relatively far from the pump ports 110a and 110b. Forming members 120c and 120d are provided. Also, along the direction in which the pressure oil from the hydraulic pumps 200a, 200b is supplied into the housing 100 through the pump ports 110a, 110b, the pilot chamber forming members 120a, 120b and the pilot chamber forming members 120c, 120d Pilot chamber forming members 130a and 130b are arranged at positions between them. The pilot chamber forming member 130a is disposed closer to the pump ports 110a and 110b than the pilot chamber forming member 130b. In the present embodiment, the pilot chambers of the respective control valves are formed inside the pilot chamber forming members 120 and 130.
 パイロット室形成部材130a、130bは、対応する2つのコントロールバルブについてのパイロット室を内部に備えている。本実施形態では、アームシリンダ620のポートに供給される圧油の流量を調整する2つのコントロールバルブ520、560についてのパイロット室を備えたパイロット室形成部材130aがハウジング100に取り付けられている。また、ブームシリンダ630のポートに供給される圧油の流量を調整するコントロールバルブ530、570についてのパイロット室を備えたパイロット室形成部材130bがハウジング100に取り付けられている。 The pilot chamber forming members 130a and 130b have pilot chambers for two corresponding control valves therein. In the present embodiment, a pilot chamber forming member 130 a having a pilot chamber for two control valves 520 and 560 for adjusting the flow rate of the pressure oil supplied to the port of the arm cylinder 620 is attached to the housing 100. Further, a pilot chamber forming member 130b having a pilot chamber for control valves 530 and 570 for adjusting the flow rate of the pressure oil supplied to the port of the boom cylinder 630 is attached to the housing 100.
 アームシリンダ620のポートに供給される圧油の流量を調整するコントロールバルブ520は、ポンプポート110aからの流路に対応して形成され、コントロールバルブ560は、ポンプポート110bからの流路に対応して形成されている。アームシリンダ620についてのコントロールバルブ520、560に対応するパイロット室形成部材130aは、2つのコントロールバルブ520、560についてのパイロット室の両方を有するように、2つのコントロールバルブ520、560を跨いで取り付けられている。 The control valve 520 for adjusting the flow rate of the pressure oil supplied to the port of the arm cylinder 620 is formed corresponding to the flow path from the pump port 110a, and the control valve 560 is corresponding to the flow path from the pump port 110b. It is formed. The pilot chamber forming member 130a corresponding to the control valves 520, 560 for the arm cylinder 620 is attached across the two control valves 520, 560 so as to have both the pilot chambers for the two control valves 520, 560. ing.
 また、ブームシリンダ630のポートに供給される圧油の流量を調整するコントロールバルブ530は、ポンプポート110aからの流路に対応して形成され、コントロールバルブ570は、ポンプポート110bからの流路に対応して形成されている。ブームシリンダ630についてのコントロールバルブ530、570に対応するパイロット室形成部材130bは、2つのコントロールバルブ530、570についてのパイロット室の両方を有するように、2つのコントロールバルブ530、570を跨いで取り付けられている。 Further, a control valve 530 for adjusting the flow rate of the pressure oil supplied to the port of the boom cylinder 630 is formed corresponding to the flow path from the pump port 110a, and the control valve 570 is connected to the flow path from the pump port 110b. It is formed correspondingly. The pilot chamber forming member 130b corresponding to the control valves 530, 570 for the boom cylinder 630 is attached across the two control valves 530, 570 so as to have both pilot chambers for the two control valves 530, 570. ing.
 パイロット室形成部材130a、130bには、パイロット室形成部材130a、130bから外側に向けて突出するように、電磁比例減圧弁800a、800bが設けられている。本実施形態では、2つのパイロット室形成部材130a、130bのうち、ポンプポート110a、110bに比較的近い位置に設けられたパイロット室形成部材130aから電磁比例減圧弁800aが外側に突出して設けられている。また、ポンプポート110a、110bから比較的遠い位置に設けられたパイロット室形成部材130bから外側に突出して電磁比例減圧弁800bが設けられている。 電磁 The pilot chamber forming members 130a, 130b are provided with electromagnetic proportional pressure reducing valves 800a, 800b so as to protrude outward from the pilot chamber forming members 130a, 130b. In the present embodiment, of the two pilot chamber forming members 130a and 130b, the electromagnetic proportional pressure reducing valve 800a is provided to protrude outward from the pilot chamber forming member 130a provided relatively close to the pump ports 110a and 110b. I have. Further, an electromagnetic proportional pressure reducing valve 800b is provided to protrude outward from a pilot chamber forming member 130b provided at a position relatively far from the pump ports 110a and 110b.
 このように、本実施形態では、2つのパイロット室形成部材130a、130bのうち、ポンプポート110a、110bに比較的近い位置に設けられたパイロット室形成部材130aが、アームシリンダ620に接続されたコントロールバルブ520、560のパイロット室を形成する。また、ポンプポート110a、110bから比較的遠い位置に設けられたパイロット室形成部材130bが、ブームシリンダ630に接続されたコントロールバルブ530、570のパイロット室を形成する。 As described above, in the present embodiment, of the two pilot chamber forming members 130a and 130b, the pilot chamber forming member 130a provided at a position relatively close to the pump ports 110a and 110b is connected to the control unit connected to the arm cylinder 620. A pilot chamber for the valves 520 and 560 is formed. Further, pilot chamber forming member 130b provided at a position relatively far from pump ports 110a and 110b forms pilot chambers of control valves 530 and 570 connected to boom cylinder 630.
 図4に、コントロールバルブ520におけるパイロット室形成部材130aに形成されたパイロット室521と、コントロールバルブ560におけるパイロット室形成部材130aに形成されたパイロット室561と、これらを接続する流路900の周辺部分について示した断面図を示す。図4に示されるように、パイロット室521と、パイロット室561との間の流路900に、電磁比例減圧弁800aが配置されている。 FIG. 4 shows a pilot chamber 521 formed in the pilot chamber forming member 130a of the control valve 520, a pilot chamber 561 formed in the pilot chamber forming member 130a of the control valve 560, and a peripheral portion of the flow path 900 connecting these. FIG. As shown in FIG. 4, an electromagnetic proportional pressure reducing valve 800a is disposed in a flow path 900 between the pilot chamber 521 and the pilot chamber 561.
 電磁比例減圧弁800aは、コントロールバルブ520の弁室(第1弁室)524の内部のスプール(第1スプール)525及びコントロールバルブ560の弁室(第2弁室)564の内部のスプール(第2スプール)565の軸方向に沿って見たときに、パイロット室521と、パイロット室561との間の位置に設けられている。つまり、コントロールバルブ520及びコントロールバルブ560を、スプール525の軸とスプール565の軸を含む平面に垂直な方向に見たときに、電磁比例減圧弁800aは、スプール525の軸と、スプール565の軸との間の位置に設けられている。パイロット室521は、パイロット室形成部材130aにおいて、コントロールバルブ520における弁室524内部に配置されたスプール525の軸方向の延長線上の位置に形成されている。パイロット室561は、パイロット室形成部材130aにおいて、コントロールバルブ560における弁室564内部に配置されたスプール565の軸方向の延長線上の位置に形成されている。電磁比例減圧弁800aは、パイロット室形成部材130aに設けられている。 The electromagnetic proportional pressure reducing valve 800a includes a spool (first spool) 525 inside the valve chamber (first valve chamber) 524 of the control valve 520 and a spool (second spool) inside the valve chamber (second valve chamber) 564 of the control valve 560. It is provided at a position between the pilot chamber 521 and the pilot chamber 561 when viewed along the axial direction of the (two spools) 565. That is, when the control valve 520 and the control valve 560 are viewed in a direction perpendicular to a plane including the axis of the spool 525 and the axis of the spool 565, the electromagnetic proportional pressure reducing valve 800a And is provided at a position between them. The pilot chamber 521 is formed in the pilot chamber forming member 130a at a position on an axial extension of the spool 525 disposed inside the valve chamber 524 of the control valve 520. The pilot chamber 561 is formed on the pilot chamber forming member 130a at a position on an axial extension of the spool 565 disposed inside the valve chamber 564 of the control valve 560. The electromagnetic proportional pressure reducing valve 800a is provided on the pilot chamber forming member 130a.
 パイロット室形成部材130aは、コントロールバルブ520に対応する位置に、バネ室523を備えている。バネ室523には、バネ523aが設けられている。本実施形態では、バネ523aはスプール525がパイロット室521側にストロークするときに付勢すると共に、スプール525がパイロット室521とは反対側にストロークするときにも付勢する。また、コントロールバルブ560についても同様に、パイロット室形成部材130aが、コントロールバルブ560に対応する位置に、バネ室563を備えている。バネ室563には、バネ563aが設けられている。本実施形態では、バネ563aはスプール565がパイロット室561側にストロークするときに付勢すると共に、スプール565がパイロット室561とは反対側にストロークするときにも付勢する。 The pilot chamber forming member 130a includes a spring chamber 523 at a position corresponding to the control valve 520. The spring chamber 523 is provided with a spring 523a. In the present embodiment, the spring 523a urges when the spool 525 strokes to the pilot chamber 521 side, and also urges when the spool 525 strokes to the opposite side to the pilot chamber 521. Similarly, for the control valve 560, the pilot chamber forming member 130a includes a spring chamber 563 at a position corresponding to the control valve 560. The spring chamber 563 is provided with a spring 563a. In the present embodiment, the spring 563a is energized when the spool 565 strokes to the pilot chamber 561 side, and is also energized when the spool 565 strokes to the opposite side to the pilot chamber 561.
 このように、ハウジング100の内部には、複数の弁室が形成されると共に、それぞれの弁室の内部にスプールが配置されている。ハウジング100には、パイロット室形成部材120、130が取り付けられる。パイロット室形成部材120、130には、それぞれのコントロールバルブのパイロット室が形成されている。ハウジング100にパイロット室形成部材130が取り付けられたときに、弁室に対向する位置にパイロット室形成部材120、130内部のパイロット室が配置されて、コントロールバルブが形成される。 As described above, a plurality of valve chambers are formed inside the housing 100, and the spools are arranged inside each of the valve chambers. Pilot chamber forming members 120 and 130 are attached to the housing 100. Pilot chambers for the respective control valves are formed in the pilot chamber forming members 120 and 130. When the pilot chamber forming member 130 is attached to the housing 100, the pilot chamber inside the pilot chamber forming members 120 and 130 is arranged at a position facing the valve chamber, and a control valve is formed.
 このように構成された油圧ショベル用油圧駆動装置2000において、操作レバーが運転者によって倒されると、操作レバーの倒された量に応じて、圧油が、コントロールバルブ520のパイロット室521と、コントロールバルブ560のパイロット室561に供給される。 In the hydraulic drive system 2000 for a hydraulic shovel configured as described above, when the operation lever is depressed by the driver, the pressure oil is supplied to the pilot chamber 521 of the control valve 520 and the control chamber 521 in accordance with the depressed amount of the operation lever. It is supplied to the pilot chamber 561 of the valve 560.
 流路900を介して、パイロット室521とパイロット室561とが接続されているので、パイロット室521の圧油の圧力(第1パイロット圧)とパイロット室561の圧油の圧力(第2パイロット圧)とは、同じになる。従って、パイロット室521及びパイロット室561の圧油の圧力に応じて、コントロールバルブ520のスプール525と、コントロールバルブ560のスプール565とが移動する。コントロールバルブ520のスプール525と、コントロールバルブ560のスプール565とは、同様に移動する。 Since the pilot chamber 521 and the pilot chamber 561 are connected via the flow path 900, the pressure of the hydraulic oil in the pilot chamber 521 (first pilot pressure) and the pressure of the hydraulic oil in the pilot chamber 561 (second pilot pressure) ) Will be the same. Therefore, the spool 525 of the control valve 520 and the spool 565 of the control valve 560 move according to the pressure of the pressure oil in the pilot chamber 521 and the pilot chamber 561. The spool 525 of the control valve 520 and the spool 565 of the control valve 560 move similarly.
 本実施形態によれば、パイロット室形成部材130aに、パイロット室521と、パイロット室561と、電磁比例減圧弁800aとが設けられて、マルチコントロールバルブユニット1000が構成される。1つのパイロット室形成部材130aにパイロット室521と、パイロット室561と、電磁比例減圧弁800aとが設けられるので、部品点数が少なくなり、その分マルチコントロールバルブユニット1000の構成が簡易になる。また、パイロット室521と、パイロット室561とに接続される流路が1つのパイロット室形成部材130aにまとめられて形成されるので、流路の構成が簡易になる。従って、マルチコントロールバルブユニット1000の流路の構成が簡易になる。このように、マルチコントロールバルブユニット1000の構成が簡易になるので、マルチコントロールバルブユニット1000の製造コストを少なく抑えることができる。 According to this embodiment, the pilot chamber forming member 130a is provided with the pilot chamber 521, the pilot chamber 561, and the electromagnetic proportional pressure reducing valve 800a, and the multi-control valve unit 1000 is configured. Since the pilot chamber 521, the pilot chamber 561, and the electromagnetic proportional pressure reducing valve 800a are provided in one pilot chamber forming member 130a, the number of components is reduced, and the configuration of the multi-control valve unit 1000 is simplified accordingly. In addition, since the flow paths connected to the pilot chamber 521 and the pilot chamber 561 are formed collectively in one pilot chamber forming member 130a, the configuration of the flow path is simplified. Therefore, the configuration of the flow path of the multi-control valve unit 1000 is simplified. As described above, since the configuration of the multi-control valve unit 1000 is simplified, the manufacturing cost of the multi-control valve unit 1000 can be reduced.
 また、このようにコントロールバルブ520におけるパイロット室形成部材130aに形成されたパイロット室521と、コントロールバルブ560におけるパイロット室形成部材130aに形成されたパイロット室561とが接続され、これらの間の圧油の流路900に電磁比例減圧弁800aが設けられている。つまり、コントロールバルブ520及びコントロールバルブ560において、パイロット室521、561の間で電磁比例減圧弁800aを共通化させている。従って、パイロット室521とパイロット室561とのそれぞれに、別々に電磁比例減圧弁が設けられた構成と比べ、電磁比例減圧弁の数を減少させることができる。従って、マルチコントロールバルブユニット1000の構成を簡易にすることができ、マルチコントロールバルブユニット1000の製造コストを低く抑えることができる。 Further, the pilot chamber 521 formed in the pilot chamber forming member 130a of the control valve 520 and the pilot chamber 561 formed in the pilot chamber forming member 130a of the control valve 560 are connected to each other. Is provided with an electromagnetic proportional pressure reducing valve 800a. That is, in the control valve 520 and the control valve 560, the electromagnetic proportional pressure reducing valve 800a is shared between the pilot chambers 521 and 561. Therefore, the number of electromagnetic proportional pressure reducing valves can be reduced as compared with a configuration in which each of the pilot chamber 521 and the pilot chamber 561 is separately provided with an electromagnetic proportional pressure reducing valve. Therefore, the configuration of the multi-control valve unit 1000 can be simplified, and the manufacturing cost of the multi-control valve unit 1000 can be reduced.
 また、電磁比例減圧弁の個数を少なくすることができるので、その分マルチコントロールバルブユニット1000を小型化することができる。従って、マルチコントロールバルブユニット1000の取り付けのためのスペースが限られたスペースであっても、そのスペースの内部にマルチコントロールバルブユニット1000を取り付けることができる。また、スペース上の制限が少ないので、マルチコントロールバルブユニット1000を広く適用させることができる。 Also, since the number of electromagnetic proportional pressure reducing valves can be reduced, the size of the multi-control valve unit 1000 can be reduced accordingly. Therefore, even if the space for mounting the multi-control valve unit 1000 is limited, the multi-control valve unit 1000 can be mounted inside the space. Further, since there are few restrictions on space, the multi-control valve unit 1000 can be widely applied.
 また、電磁比例減圧弁の個数を少なくすることができるので、圧油をそれぞれの電磁比例減圧弁に導くための圧油の流路の構成を簡易にすることができる。圧油の流路の構成が簡易になるので、マルチコントロールバルブユニット1000の製造コストを低く抑えることができる。 Also, since the number of the electromagnetic proportional pressure reducing valves can be reduced, the configuration of the flow path of the pressure oil for guiding the pressure oil to each electromagnetic proportional pressure reducing valve can be simplified. Since the configuration of the pressure oil flow path is simplified, the manufacturing cost of the multi-control valve unit 1000 can be reduced.
 また、スプール525及びスプール565の軸方向に沿って見たときに、電磁比例減圧弁800aがパイロット室521とパイロット室561との間の位置に設けられるので、電磁比例減圧弁800aの配置のためのスペースと、弁室524、564及びスプール525、565の配置のためのスペースとをスプール525、565の軸方向で重複させることができる。従って、スプール525、565の軸方向に交差する方向に対し、マルチコントロールバルブユニット1000を小型化させることができる。 Further, when viewed along the axial direction of the spool 525 and the spool 565, the electromagnetic proportional pressure reducing valve 800a is provided at a position between the pilot chamber 521 and the pilot chamber 561. And the space for disposing the valve chambers 524, 564 and the spools 525, 565 can be overlapped in the axial direction of the spools 525, 565. Therefore, the size of the multi-control valve unit 1000 can be reduced in the direction intersecting the axial direction of the spools 525 and 565.
 また、本実施形態では、それぞれ異なる油圧ポンプ200a、200bによって供給される圧油についての流路の間の接続状態の切換を行うコントロールバルブ520、560の間で、電磁比例減圧弁800aを共通化させている。従って、異なる油圧ポンプ200a、200bによって圧油が供給されるコントロールバルブ520、560における、パイロット室521、561について、電磁比例減圧弁800aを共通化させることができる。 Further, in the present embodiment, the electromagnetic proportional pressure reducing valve 800a is shared between the control valves 520 and 560 that switch the connection state between the flow paths of the pressure oil supplied by the different hydraulic pumps 200a and 200b. Let me. Therefore, in the control valves 520 and 560 to which the pressure oil is supplied by the different hydraulic pumps 200a and 200b, the pilot proportional chambers 521 and 561 can share the electromagnetic proportional pressure reducing valve 800a.
 また、本実施形態では、アームシリンダ620についての駆動を制御するコントロールバルブ520及びコントロールバルブ560において、パイロット室521、561の間で電磁比例減圧弁800aを共通化させている。従って、アームシリンダ620に接続されたコントロールバルブ520、560において、電磁比例減圧弁800aが共通化され、構成が簡易になっている。また、アームシリンダ620に接続されたコントロールバルブ520、560において、パイロット室521、561の間の流路の構成が簡易になっている。 In the present embodiment, in the control valve 520 and the control valve 560 for controlling the driving of the arm cylinder 620, the electromagnetic proportional pressure reducing valve 800a is shared between the pilot chambers 521 and 561. Therefore, in the control valves 520 and 560 connected to the arm cylinder 620, the electromagnetic proportional pressure reducing valve 800a is shared, and the configuration is simplified. In the control valves 520 and 560 connected to the arm cylinder 620, the configuration of the flow path between the pilot chambers 521 and 561 is simplified.
 また、ブームの動作を制御するブームシリンダ630に接続されたコントロールバルブ530及びコントロールバルブ570においても、それぞれのコントロールバルブ530、570の間で、1つのパイロット室形成部材にお互いのパイロット室と電磁比例減圧弁を設けるように構成されている。図1に示されるように、マルチコントロールバルブユニット1000においては、アームシリンダ620に接続されたコントロールバルブ520、560のパイロット室521、561が形成されたパイロット室形成部材130aだけでなく、ブームシリンダ630に接続されたコントロールバルブ530、570のパイロット室と電磁比例減圧弁が、これらのコントロールバルブ530、570に対応したパイロット室形成部材130bに形成されている。このように、アームシリンダ620だけでなく、ブームシリンダ630に接続されたコントロールバルブ530、570についても、パイロット室及び電磁比例減圧弁が1つのパイロット室形成部材にまとめて設けられるように構成されている。1つのパイロット室形成部材にパイロット室と電磁比例減圧弁をまとめるコントロールバルブの組の数を増加させることにより、マルチコントロールバルブユニットをより簡易な構成にすると共に、小型化させることができる。 Also, in the control valve 530 and the control valve 570 connected to the boom cylinder 630 for controlling the operation of the boom, one pilot chamber forming member is provided between the respective control valves 530 and 570 with the pilot chamber and the electromagnetic proportional. It is configured to provide a pressure reducing valve. As shown in FIG. 1, in the multi-control valve unit 1000, not only the pilot chamber forming member 130a in which the pilot chambers 521 and 561 of the control valves 520 and 560 connected to the arm cylinder 620 are formed, but also the boom cylinder 630 The pilot chambers of the control valves 530 and 570 connected to the control valve 530 and 570 are formed on the pilot chamber forming member 130b corresponding to the control valves 530 and 570. As described above, not only the arm cylinder 620 but also the control valves 530 and 570 connected to the boom cylinder 630 are configured such that the pilot chamber and the electromagnetic proportional pressure reducing valve are collectively provided in one pilot chamber forming member. I have. By increasing the number of control valve sets that combine the pilot chamber and the electromagnetic proportional pressure reducing valve in one pilot chamber forming member, the multi-control valve unit can have a simpler configuration and can be downsized.
 なお、上記実施形態では、アームシリンダ620に接続されたコントロールバルブ520、560のパイロット室521、561がパイロット室形成部材130aに形成され、ブームシリンダ630に接続されたコントロールバルブ530、570のパイロット室が、パイロット室形成部材130bに形成されている形態について説明したが、本発明は上記実施形態に限定されない。アームシリンダ620に接続されたコントロールバルブ520、560のパイロット室521、561と、ブームシリンダ630に接続されたコントロールバルブ530、570のパイロット室とのうち、いずれか一方のみについて、2つのコントロールバルブに形成されたパイロット室が1つのパイロット室形成部材に形成されるように構成されてもよい。その際、アームシリンダ620に接続されたコントロールバルブと、ブームシリンダ630に接続されたコントロールバルブとの間で、どちらのコントロールバルブに形成されたパイロット室が1つのパイロット室形成部材に形成されるように構成されてもよい。 In the above embodiment, the pilot chambers 521 and 561 of the control valves 520 and 560 connected to the arm cylinder 620 are formed in the pilot chamber forming member 130a, and the pilot chambers of the control valves 530 and 570 connected to the boom cylinder 630 are formed. However, although the form formed in the pilot chamber forming member 130b has been described, the present invention is not limited to the above embodiment. Only one of the pilot chambers 521 and 561 of the control valves 520 and 560 connected to the arm cylinder 620 and the pilot chamber of the control valves 530 and 570 connected to the boom cylinder 630 has two control valves. The formed pilot chamber may be configured to be formed in one pilot chamber forming member. At this time, between the control valve connected to the arm cylinder 620 and the control valve connected to the boom cylinder 630, the pilot chamber formed in either control valve is formed in one pilot chamber forming member. May be configured.
 また、上記実施形態では、油圧ポンプが2つ設けられ、異なる油圧ポンプに接続されたコントロールバルブ同士の間で、電磁比例減圧弁が共通化されて構成されている。しかしながら、油圧ポンプの数は2つに限定されない。3つ以上の油圧ポンプが用いられた油圧システムにおいて、そのうち2つの油圧ポンプについて、それぞれ異なる油圧ポンプに接続されたコントロールバルブ同士の間で、電磁比例減圧弁が共通化されて構成されていてもよい。 In the above embodiment, two hydraulic pumps are provided, and the control valves connected to different hydraulic pumps share the electromagnetic proportional pressure reducing valve. However, the number of hydraulic pumps is not limited to two. In a hydraulic system using three or more hydraulic pumps, two of the hydraulic pumps may be configured such that an electromagnetic proportional pressure reducing valve is shared between control valves connected to different hydraulic pumps. Good.
 また、上記実施形態では、油圧ポンプ200a、200bからの圧油が供給ライン310、320を通って供給されると共に、供給ライン310、320が各コントロールバルブの位置で分岐され、分岐した圧油の流路を各コントロールバルブのポートに接続することにより、各コントロールバルブに圧油が供給されている。しかしながら、本発明は上記実施形態に限定されず、油圧ポンプ200a、200bから供給される圧油が、供給ライン310、320以外の流路を通って各コントロールバルブに供給されるように構成されてもよい。例えば、油圧ポンプ200a、200bから各コントロールバルブに直接的に圧油が供給されるセンターバイパスラインを通して、各コントロールバルブに圧油が供給されてもよい。油圧ポンプ200aから、コントロールバルブ510~540を順に通って、各コントロールバルブに圧油を供給するように、センターバイパスラインとしての圧油の流路が構成されてもよい。また、油圧ポンプ200bから、コントロールバルブ550~580を順に通って、各コントロールバルブに圧油を供給するように、センターバイパスラインとしての圧油の流路が構成されてもよい。 In the above embodiment, the hydraulic oil from the hydraulic pumps 200a and 200b is supplied through the supply lines 310 and 320, and the supply lines 310 and 320 are branched at the positions of the respective control valves. Pressure oil is supplied to each control valve by connecting the flow path to the port of each control valve. However, the present invention is not limited to the above embodiment, and is configured such that the pressure oil supplied from the hydraulic pumps 200a and 200b is supplied to each control valve through a flow path other than the supply lines 310 and 320. Is also good. For example, the pressure oil may be supplied to each control valve through a center bypass line in which the pressure oil is directly supplied from the hydraulic pumps 200a and 200b to each control valve. A pressure oil flow path as a center bypass line may be configured to supply pressure oil to each control valve from hydraulic pump 200a through control valves 510 to 540 in order. Further, a flow path of the pressure oil as a center bypass line may be configured to supply the pressure oil to each control valve from the hydraulic pump 200b through the control valves 550 to 580 in order.
 また、上記実施形態では、ハウジング100の内部に、ブーム、アーム及びバケットの駆動を制御するためのコントロールバルブや、キャビンの旋回操作及び走行駆動のための油圧モータの駆動の制御を行うコントロールバルブが、それぞれ設けられている構成について説明した。しかしながら本発明は上記実施形態に限定されない。コントロールバルブによって駆動を制御されるアクチュエータは、他の構成であってもよい。例えば、上記のアクチュエータのうち、一部のアクチュエータのみの駆動を制御するために、一部の種類のコントロールバルブを有するマルチコントロールバルブユニットが用いられてもよい。また、本実施形態で用いられていない種類のアクチュエータを駆動するコントロールバルブを有するマルチコントロールバルブユニットが用いられてもよい。 Further, in the above embodiment, a control valve for controlling the driving of the boom, the arm and the bucket and a control valve for controlling the driving of the hydraulic motor for the turning operation of the cabin and the traveling drive are provided inside the housing 100. The configuration provided for each has been described. However, the present invention is not limited to the above embodiment. The actuator whose driving is controlled by the control valve may have another configuration. For example, a multi-control valve unit having some types of control valves may be used to control the driving of only some of the actuators. Further, a multi-control valve unit having a control valve for driving a type of actuator not used in the present embodiment may be used.
 100 ハウジング
 130a、130b パイロット室形成部材
 200a、200b 油圧ポンプ
 510、520、530、540、550、560、570、580 コントロールバルブ
 521 パイロット室(第1パイロット室)
 524 弁室(第1弁室)
 525 スプール(第1スプール)
 561 パイロット室(第2パイロット室)
 564 弁室(第2弁室)
 565 スプール(第2スプール)
 620 アームシリンダ
 630 ブームシリンダ
 800a、800b 電磁比例減圧弁
 1000 マルチコントロールバルブユニット
100 Housing 130a, 130b Pilot chamber forming member 200a, 200b Hydraulic pump 510, 520, 530, 540, 550, 560, 570, 580 Control valve 521 Pilot chamber (first pilot chamber)
524 valve room (first valve room)
525 spool (first spool)
561 Pilot room (2nd pilot room)
564 valve room (second valve room)
565 spool (second spool)
620 Arm cylinder 630 Boom cylinder 800a, 800b Electromagnetic proportional pressure reducing valve 1000 Multi control valve unit

Claims (5)

  1.  第1弁室及び第2弁室を内部に備え、前記第1弁室の軸方向と前記第2弁室の軸方向とが互いに平行となるように前記第1弁室及び前記第2弁室が配置されたハウジングと、
     前記第1弁室の内部に軸方向に移動可能に配置された第1スプールと、
     前記第2弁室の内部に軸方向に移動可能に配置された第2スプールと、
     前記第1スプールのパイロット圧受圧部へパイロット圧を導くための第1パイロット室と、前記第2スプールのパイロット圧受圧部へパイロット圧を導くための第2パイロット室とを内部に備え、かつ、前記ハウジングに取り付けられたパイロット室形成部材と、
     前記第1パイロット室と、前記第2パイロット室との両方へ所定の圧油を供給可能であり、かつ前記パイロット室形成部材に設けられた、電磁比例減圧弁とを備え、
     前記第1スプールは、前記第1パイロット圧に応じて、前記第1弁室の内部で軸方向に移動することにより前記第1弁室の内部で複数のポートの間の接続状態を切換えると共に前記第1弁室の内部の複数のポートの間の開口面積を調整し、
     前記第2スプールは、前記第2パイロット圧に応じて、前記第2弁室の内部で軸方向に移動することにより前記第2弁室の内部で複数のポートの間の接続状態を切換えると共に前記第2弁室の内部の複数のポートの間の開口面積を調整することを特徴とするマルチコントロールバルブユニット。
    A first valve chamber and a second valve chamber are provided inside the first valve chamber and the second valve chamber such that the axial direction of the first valve chamber and the axial direction of the second valve chamber are parallel to each other. And a housing in which
    A first spool disposed movably in the axial direction inside the first valve chamber;
    A second spool disposed inside the second valve chamber so as to be movable in the axial direction;
    A first pilot chamber for guiding pilot pressure to a pilot pressure receiving portion of the first spool; and a second pilot chamber for guiding pilot pressure to a pilot pressure receiving portion of the second spool, and A pilot chamber forming member attached to the housing,
    The first pilot chamber, it is possible to supply a predetermined pressure oil to both the second pilot chamber, and provided in the pilot chamber forming member, comprising an electromagnetic proportional pressure reducing valve,
    The first spool switches a connection state between a plurality of ports inside the first valve chamber by moving in an axial direction inside the first valve chamber according to the first pilot pressure, and Adjusting the opening area between the plurality of ports inside the first valve chamber,
    The second spool switches the connection state between a plurality of ports inside the second valve chamber by moving in the axial direction inside the second valve chamber according to the second pilot pressure, and A multi-control valve unit, wherein an opening area between a plurality of ports inside a second valve chamber is adjusted.
  2.  前記電磁比例減圧弁は、前記第1スプールの軸と前記第2スプールの軸を含む平面に垂直な方向に見たときに、前記第1スプールの軸と、前記第2スプールの軸との間の位置に設けられていることを特徴とする請求項1に記載のマルチコントロールバルブユニット。 When viewed in a direction perpendicular to a plane including the axis of the first spool and the axis of the second spool, the electromagnetic proportional pressure reducing valve is disposed between the axis of the first spool and the axis of the second spool. The multi-control valve unit according to claim 1, wherein the multi-control valve unit is provided at a position.
  3.  前記第1スプール及び前記第2スプールは、それぞれ異なる油圧ポンプによって供給される圧油についてのポートの間の接続状態の切換と開口面積の調整を行うことを特徴とする請求項1または2に記載のマルチコントロールバルブユニット。 The said 1st spool and the said 2nd spool switch the connection state between ports about the pressure oil supplied by a different hydraulic pump, respectively, and adjust an opening area, The Claims 1 or 2 characterized by the above-mentioned. Multi control valve unit.
  4.  請求項1から3のいずれか1項に記載のマルチコントロールバルブユニットを用いてアクチュエータの駆動を制御する油圧ショベル用油圧駆動装置であって、
     前記アクチュエータは、アームに押し動作及び引き動作を実行させるアームシリンダを備え、
     前記第1スプール及び前記第2スプールを移動させることによって、前記アームシリンダの駆動を制御して、アームの動作を制御することを特徴とする油圧ショベル用油圧駆動装置。
    A hydraulic drive device for a hydraulic excavator that controls driving of an actuator using the multi-control valve unit according to any one of claims 1 to 3,
    The actuator includes an arm cylinder that causes the arm to perform a pushing operation and a pulling operation,
    A hydraulic drive device for a hydraulic shovel, wherein the first spool and the second spool are moved to control the drive of the arm cylinder to control the operation of the arm.
  5.  請求項1から3のいずれか1項に記載のマルチコントロールバルブユニットを用いてアクチュエータの駆動を制御する油圧ショベル用油圧駆動装置であって、
     前記アクチュエータは、ブームの上げ動作及び下げ動作を実行させるブームシリンダを備え、
     前記第1スプール及び前記第2スプールを移動させることによって、前記ブームシリンダの駆動を制御して、ブームの動作を制御することを特徴とする油圧ショベル用油圧駆動装置。
     
    A hydraulic drive device for a hydraulic excavator that controls driving of an actuator using the multi-control valve unit according to any one of claims 1 to 3,
    The actuator includes a boom cylinder that performs a boom raising operation and a boom lowering operation,
    A hydraulic drive device for a hydraulic shovel, wherein the first spool and the second spool are moved to control the drive of the boom cylinder to control the operation of the boom.
PCT/JP2019/035861 2018-09-18 2019-09-12 Multi-control valve unit, and hydraulic drive device for hydraulic excavator WO2020059628A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980028675.8A CN111989497B (en) 2018-09-18 2019-09-12 Multi-control valve unit and hydraulic drive device for hydraulic excavator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-173914 2018-09-18
JP2018173914A JP7149140B2 (en) 2018-09-18 2018-09-18 Multi-control valve unit and hydraulic drive for hydraulic excavators

Publications (1)

Publication Number Publication Date
WO2020059628A1 true WO2020059628A1 (en) 2020-03-26

Family

ID=69888490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035861 WO2020059628A1 (en) 2018-09-18 2019-09-12 Multi-control valve unit, and hydraulic drive device for hydraulic excavator

Country Status (3)

Country Link
JP (1) JP7149140B2 (en)
CN (1) CN111989497B (en)
WO (1) WO2020059628A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021288A1 (en) * 2016-07-29 2018-02-01 住友建機株式会社 Excavator, and control valve for excavator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006007935A1 (en) * 2006-02-21 2007-10-25 Liebherr France Sas Control device and hydraulic pilot control
JP5087047B2 (en) * 2009-06-18 2012-11-28 日立建機株式会社 Hydraulic work machine
JP5463219B2 (en) * 2010-07-01 2014-04-09 日立建機株式会社 Hydraulic drive device for hydraulic working machine
JP6495857B2 (en) * 2016-03-31 2019-04-03 日立建機株式会社 Construction machinery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021288A1 (en) * 2016-07-29 2018-02-01 住友建機株式会社 Excavator, and control valve for excavator

Also Published As

Publication number Publication date
JP2020045950A (en) 2020-03-26
CN111989497B (en) 2023-02-17
JP7149140B2 (en) 2022-10-06
CN111989497A (en) 2020-11-24

Similar Documents

Publication Publication Date Title
EP1584822B1 (en) Hydraulic control system and construction machine
JP4232784B2 (en) Hydraulic control device for work machine
JP6773418B2 (en) Direction switching valve and hydraulic system
JP6600386B1 (en) Valve device
JP2018017347A (en) Valve device and fluid pressure system with the same
US20190169819A1 (en) Shovel and control valve for shovel
WO2020166591A1 (en) Multi-control valve unit and construction machine
WO2020031816A1 (en) Construction-machinery hydraulic circuit
WO2020059628A1 (en) Multi-control valve unit, and hydraulic drive device for hydraulic excavator
CN112585361B (en) Construction machine
WO2020122081A1 (en) Hydraulic drive system
JP3820334B2 (en) Hydraulic circuit for construction vehicles and valve structure used therefor
JP2017026085A (en) Hydraulic control device of work machine
JP2000266009A (en) Actuator controller
WO2019069612A1 (en) Work vehicle
WO2019103001A1 (en) Hydraulic drive system
JP2716607B2 (en) Hydraulic circuit of construction machinery
KR102667937B1 (en) work vehicle
WO2019058711A1 (en) Hydraulic motor control device
WO2022131195A1 (en) Valve unit and valve device
WO2024009620A1 (en) Hydraulic valve device
WO2024122258A1 (en) Pilot cap unit
JP7449659B2 (en) Control valves, hydraulic circuits, hydraulic equipment and construction machinery
KR100226279B1 (en) Hydraulic circuit for travelling motion
US10662623B2 (en) Hydraulic system for working machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863740

Country of ref document: EP

Kind code of ref document: A1