WO2020059437A1 - Silicone rubber composition and silicone rubber cross-linked body - Google Patents

Silicone rubber composition and silicone rubber cross-linked body Download PDF

Info

Publication number
WO2020059437A1
WO2020059437A1 PCT/JP2019/033338 JP2019033338W WO2020059437A1 WO 2020059437 A1 WO2020059437 A1 WO 2020059437A1 JP 2019033338 W JP2019033338 W JP 2019033338W WO 2020059437 A1 WO2020059437 A1 WO 2020059437A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone rubber
rubber composition
group
phenyl group
phthalocyanine
Prior art date
Application number
PCT/JP2019/033338
Other languages
French (fr)
Japanese (ja)
Inventor
竜介 山岡
安紀 二村
早崎 康行
泰 村上
小林 正美
Original Assignee
住友理工株式会社
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友理工株式会社, 国立大学法人信州大学 filed Critical 住友理工株式会社
Publication of WO2020059437A1 publication Critical patent/WO2020059437A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a silicone rubber composition and a crosslinked silicone rubber having excellent heat resistance.
  • Silicone rubber is superior in heat resistance to general organic synthetic rubber and natural rubber, and is used for applications requiring heat resistance.
  • Various studies have been made for the purpose of further improving the heat resistance of silicone rubber.
  • Patent Document 1 describes that in an addition-curable silicone rubber composition, heat resistance is improved by adding an organosilicon compound having an alkoxy group and an epoxy group together with iron sesquioxide.
  • Patent Literature 2 describes that in a condensation-curable silicone rubber composition, the heat resistance is improved by adding a metal phthalocyanine complex.
  • the problem to be solved by the present invention is to provide a silicone rubber composition and a crosslinked silicone rubber having excellent heat resistance.
  • the silicone rubber composition according to the present invention comprises (a) an organopolysiloxane having at least two alkenyl groups in one molecule, (b) a hydrosilyl crosslinking agent, (c) a hydrosilylation catalyst,
  • the gist of the invention is that it contains d) a phthalocyanine compound and (e) a phenyl group-containing organopolysiloxane.
  • the siloxane unit of (e) is preferably composed of diphenylsiloxane (e1) and dialkylsiloxane (e2).
  • the siloxane unit of (e) may be composed of methylphenylsiloxane (e3) and dialkylsiloxane (e2).
  • the ratio of the number of moles of siloxane units not containing a phenyl group to the number of moles of siloxane units containing a phenyl group is preferably 5 or more.
  • the above (e) is preferably a periodic copolymer or a block copolymer.
  • the number of repeating units of a phenyl group-containing siloxane unit in one cycle of the periodic copolymer or the number of repeating units of a phenyl group-containing siloxane unit in the block copolymer is 1 to 3. Is preferred.
  • the gist of the crosslinked silicone rubber of the present invention is that it is a crosslinked product of the silicone rubber composition of the present invention.
  • silicone rubber composition of the present invention (a) an organopolysiloxane having at least two alkenyl groups in one molecule, (b) a hydrosilyl crosslinking agent, (c) a hydrosilylation catalyst, and (d) a phthalocyanine-based compound Since it contains the compound, (e) a phenyl group-containing organopolysiloxane, the crosslinked product is excellent in heat resistance.
  • the crosslinked silicone rubber composition of the present invention is excellent in heat resistance.
  • the silicone rubber composition according to the present invention comprises (a) an organopolysiloxane having at least two alkenyl groups in one molecule, (b) a hydrosilyl crosslinking agent, (c) a hydrosilylation catalyst, (d) a phthalocyanine compound, (E) a phenyl group-containing organopolysiloxane.
  • (A) is used as a main raw material of an addition-curable silicone rubber composition. Since (a) has at least two alkenyl groups in one molecule, it is crosslinked by (b) a hydrosilyl crosslinking agent by an addition reaction with (b) a hydrosilyl crosslinking agent.
  • alkenyl group include a vinyl group, an allyl group, a butenyl group, a pentenyl group, and a hexenyl group.
  • (A) has an organic group other than an alkenyl group in addition to the alkenyl group.
  • the organic group is a monovalent substituted or unsubstituted hydrocarbon group.
  • the unsubstituted hydrocarbon group include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group and a dodecyl group, an aryl group such as a phenyl group, a ⁇ -phenylethyl group, and a ⁇ -phenylpropyl group.
  • an aralkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group and a dodecyl group
  • an aryl group such as a phenyl group, a ⁇ -phenylethyl group, and a ⁇ -phenylpropyl
  • Examples of the substituted hydrocarbon group include a chloromethyl group and a 3,3,3-trifluoropropyl group.
  • the organopolysiloxane generally, those having a methyl group as an organic group are frequently used because of ease of synthesis and the like.
  • the organopolysiloxane is preferably linear, but may be branched or cyclic.
  • (A) has no hydrosilyl group because of the relationship with (b).
  • (A) may have a phenyl group or may not have a phenyl group.
  • (A) may be a liquid type or a millable type.
  • the viscosity at 25 ° C. is from 300 to 300 from the viewpoints of improving the dispersibility of (d) the phthalocyanine compound, (e) the phenyl group-containing organopolysiloxane, and improving the mechanical properties of the crosslinked product.
  • it is 100,000 cs (centistokes). More preferably, it is 400 to 10,000 cs.
  • the viscosity can be measured with a B-type viscometer.
  • the degree of polymerization is preferably from 3,000 to 10,000 from the viewpoint of improving the mechanical properties of the crosslinked product.
  • the hydrosilyl crosslinking agent is used as a crosslinking agent for an addition-curable silicone rubber composition, and is a crosslinking agent for crosslinking (a).
  • the hydrosilyl crosslinking agent has a hydrosilyl group (SiH group) in its molecular structure.
  • the hydrosilyl crosslinking agent is a hydrosilyl group-containing organopolysiloxane (organohydrogenpolysiloxane).
  • the number of hydrosilyl groups in the molecular structure is not particularly limited, but is preferably in the range of 2 to 50 from the viewpoint of excellent curing speed and excellent stability. Further, from the viewpoint of crosslinkability and the like, it is preferably in the range of 3 to 50.
  • the hydrosilyl groups are preferably present in different Si.
  • the polysiloxane may be a chain or a cyclic one.
  • the hydrosilyl group-containing organopolysiloxane preferably has at least two hydrosilyl groups in one molecule.
  • the hydrosilyl crosslinking agent preferably has a number average molecular weight in the range of 200 to 30,000 from the viewpoint of excellent handleability.
  • (B) has no alkenyl group because of the relationship with (a).
  • (B) may have a phenyl group or may not have a phenyl group.
  • hydrosilyl group-containing organopolysiloxane examples include methylhydrogenpolysiloxane having trimethylsiloxy groups at both ends and dimethylsiloxane / methylhydrogensiloxane copolymer having trimethylsiloxy groups at both ends.
  • the amount of the hydrosilyl crosslinking agent (b) is not particularly limited, but is usually in the range of 0.1 to 40 parts by mass with respect to 100 parts by mass of (a).
  • the hydrosilylation catalyst is a catalyst that promotes the crosslinking reaction of (a) by the (b) hydrosilyl crosslinking agent.
  • Examples of the hydrosilylation catalyst include a platinum catalyst, a ruthenium catalyst, and a rhodium catalyst.
  • Examples of the platinum catalyst include fine particles of platinum, platinum black, activated carbon carrying platinum, silica carrying platinum, chloroplatinic acid, alcohol solutions of chloroplatinic acid, olefin complexes of platinum, and alkenylsiloxane complexes of platinum. These may be used alone or in combination of two or more.
  • the hydrosilylation catalyst may be microencapsulated using a resin.
  • the microencapsulated catalyst (microencapsulated catalyst) is composed of resin fine particles containing a hydrosilylation catalyst.
  • the resin fine particles containing the hydrosilylation catalyst are preferably solid at least at room temperature and have an average particle diameter of 30 ⁇ m or less.
  • the average particle size is measured by a laser microscope.
  • the average particle diameter of the resin fine particles containing the hydrosilylation catalyst is preferably 10 ⁇ m or less from the viewpoint of enhancing the dispersibility of the hydrosilylation catalyst. More preferably, it is 7.0 ⁇ m or less.
  • the thickness is preferably 0.1 ⁇ m or more. It is more preferably at least 2.0 ⁇ m.
  • the resin of the microcapsule type catalyst may be either a thermoplastic resin or a thermosetting resin.
  • the resin of the microcapsule type catalyst is more preferably a thermosetting resin from the viewpoint that a reduction in compression set can be suppressed by being crosslinked.
  • Examples of the resin of the microcapsule type catalyst include epoxy resin, acrylic resin, polyvinyl butyral resin, styrene-based polymer, polycarbonate resin, unsaturated polyester resin, alkyd resin, urea resin, melamine resin, vinyl chloride resin, polyurethane resin, and polyether.
  • Examples include a sulfone resin, a polysulfone resin, a polyphenylene sulfide resin, a phenol resin, a diallyl phthalate resin, a polyvinyl alcohol resin, a hydrogenated terpene resin, and a silicone resin. These may be used alone as a resin of the microcapsule type catalyst, or may be used in combination of two or more.
  • thermosetting resin examples include polyvinyl butyral resin, epoxy resin, unsaturated polyester resin, phenol resin, resol resin, alkyd resin, urea resin, melamine resin, polyurethane resin, diallyl phthalate resin, and acrylic resin.
  • an epoxy resin, an acrylic resin, a polyvinyl butyral resin, and an unsaturated polyester resin are more preferable from the viewpoint of particularly excellent storage stability of the material before curing.
  • the resin (coating resin) of the microcapsule catalyst is preferably a solubility parameter that largely deviates from the solubility parameter of the organopolysiloxane (a) from the viewpoint of storage stability and the like.
  • the solubility parameter (SP value) is preferably 7.9 or more. It is more preferably 8.3 or more, and still more preferably 9.0 or more.
  • the upper limit of the solubility parameter of the resin of the microcapsule catalyst is not particularly limited, and may be, for example, 20 or less.
  • the solubility parameter can be calculated from the molecular structure by Small's calculation method.
  • the resin of the microcapsule type catalyst preferably has a glass transition temperature (Tg) of 40 to 145 ° C from the viewpoints of improvement in crosslinking reactivity due to an increase in the diffusion amount of the crosslinking catalyst and storage stability.
  • the temperature is more preferably from 45 to 100 ° C, and even more preferably from 50 to 85 °.
  • the glass transition temperature (Tg) of the thermosetting resin is a value before thermosetting.
  • the glass transition temperature can be measured by DSC (differential scanning calorimetry).
  • the resin of the microcapsule-type catalyst has a thermal conductivity of 0.16 W / m ⁇ K or more, a thermal conductivity of 0.17 W / m ⁇ K or more, from the viewpoint of improving the crosslinking reactivity by increasing the diffusion amount of the crosslinking catalyst. Is preferably 0.20 W / m ⁇ K or more.
  • the thermal conductivity can be measured according to ASTM C177.
  • the microcapsule type catalyst can be produced by a conventionally known method. From the viewpoints of productivity, sphericity, and the like, a suspension polymerization method, an emulsion polymerization method, a spray dryer method, a submerged drying method, and the like are preferable.
  • the amount of the hydrosilylation catalyst (c) is usually in the range of 1 ppm to 1.0 part by mass, based on 100 parts by mass of the metal (a).
  • the phthalocyanine-based compound has the effect of improving the heat resistance of the silicone rubber by being added to the silicone rubber composition. This is presumed to be due to the radical trapping action of the phthalocyanine compound (d) under a high temperature environment.
  • the phthalocyanine-based compound is a compound having a phthalocyanine ring, and includes phthalocyanine, a phthalocyanine derivative, a metal phthalocyanine, and a metal phthalocyanine derivative.
  • the phthalocyanine-based compound may or may not contain a metal.
  • the metal phthalocyanine is represented by the following general formula (1).
  • Metal phthalocyanine has a structure in which a metal is coordinated at the center of a phthalocyanine ring.
  • M represents a metal element, preferably one selected from Cu, Fe, Co, Mn, Ni, Cr, Zn, Pb, Ti, Pt, Pd, Ru, Ce, and V That is all.
  • the phthalocyanine ring has one or more substituents on one or more of the four benzene rings. It may be something.
  • the substituent include a halogen group, a hydroxyl group, an alkyl group, a nitro group, an amino group, a sulfonic acid group, a carboxy group, and an alkoxy group.
  • the two or more substituents may be the same or different.
  • the substituents on different benzene rings may be the same or different.
  • the phthalocyanine-based compound one or a combination of two or more of copper phthalocyanine, cobalt phthalocyanine, iron phthalocyanine and derivatives thereof is more preferable.
  • copper phthalocyanine and its derivatives include copper phthalocyanine (phthalocyanine blue), chlorinated copper phthalocyanine (phthalocyanine green), and copper phthalocyanine monosulfonic acid.
  • cobalt phthalocyanine and its derivatives include cobalt phthalocyanine, cobalt phthalocyanine amine derivatives, and cobalt phthalocyanine monosulfonic acid.
  • iron phthalocyanine and its derivatives include iron phthalocyanine, iron phthalocyanine tetracarboxylic acid, and iron phthalocyanine monosulfonic acid.
  • the amount of the phthalocyanine compound (d) is preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of (a). It is more preferably in the range of 0.5 to 5.0 parts by mass, and even more preferably in the range of 1.0 to 3.0 parts by mass.
  • the phenyl group-containing organopolysiloxane has a polysiloxane skeleton and a phenyl group, thereby improving the dispersibility of the (d) phthalocyanine compound having an aromatic ring in the silicone rubber composition. Thereby, the heat resistance of the silicone rubber is dramatically improved. This is because (d) the phthalocyanine compound has an aromatic ring and the molecules are likely to overlap with each other, and has poor compatibility with the silicone rubber (a). It is inferred that such aggregation is suppressed by the (e) phenyl group-containing organopolysiloxane.
  • the phenyl group-containing organopolysiloxane contains, as siloxane units, diphenylsiloxane (e1) and dialkylsiloxane (e2), methylphenylsiloxane (e3) and dialkylsiloxane (e2), or diphenylsiloxane (e1). ), Methylphenylsiloxane (e3) and dialkylsiloxane (e2).
  • the phenyl group-containing organopolysiloxane may contain a siloxane unit having another functional group in addition to (e1) to (e3), or may contain a siloxane unit having another functional group. It is not necessary.
  • (e) preferably does not have an alkenyl group from the relationship with (a). Further, (e) preferably has no hydrosilyl group in view of the relationship with (b). Further, even when (e) has a hydrosilyl group, the number of hydrosilyl groups is preferably 2 or less in one molecule.
  • the ratio of the number of moles of the siloxane group not containing a phenyl group to the number of moles of the siloxane unit containing a phenyl group is preferably from the viewpoint of excellent compatibility with (a). It is preferably 5.0 or more. More preferably, it is 10 or more. In addition, from the viewpoint of excellent compatibility with (d), it is preferably 500 or less. It is more preferably 300 or less, further preferably 100 or less.
  • the ratio of the number of moles of the siloxane unit not containing a phenyl group to the number of moles of the siloxane unit containing a phenyl group is determined by the molar ratio when the siloxane unit (e) is composed of diphenylsiloxane (e1) and dialkylsiloxane (e2). (E2 / e1), and when the siloxane unit of (e) is composed of methylphenylsiloxane (e3) and dialkylsiloxane (e2), the molar ratio is (e2 / e3).
  • the phenyl group-containing organopolysiloxane may be any of a random copolymer, an alternating copolymer, a periodic copolymer, and a block copolymer. Since it is particularly excellent in the effect of improving the heat resistance of the silicone rubber, a periodic copolymer or a block copolymer is preferred.
  • the phenyl group-containing organopolysiloxane may have a viscosity at 25 ° C. of 10 to 6000 cs (centistokes) from the viewpoint of compatibility with the organopolysiloxane (a) and the phthalocyanine compound (d). preferable. More preferably, it is 70 to 500 cs.
  • the viscosity can be measured with a B-type viscometer.
  • the phenyl group-containing organopolysiloxane has, for example, a structure represented by the following general formula (2).
  • R 1 is an alkyl group
  • R 2 is an alkyl group or a phenyl group
  • m, n, and l are 1 or more in the number of repeating units.
  • R 1 is preferably a methyl group or an ethyl group, and more preferably a methyl group.
  • R 2 is preferably a methyl group, an ethyl group or a phenyl group, more preferably a phenyl group.
  • m is preferably from 8 to 350.
  • n is preferably 1 to 3.
  • l is preferably 1 to 50.
  • the copolymer of the formula (2) may be any of a random copolymer, an alternating copolymer, a periodic copolymer, and a block copolymer.
  • the phenyl group may be a phenyl group having a substituent. Examples of the substituent include an alkyl group and an aryl group.
  • the siloxane unit when R 2 is a phenyl group, the siloxane unit is composed of diphenylsiloxane (e1) and dialkylsiloxane (e2). In the formula (2), when R 2 is an alkyl group, the siloxane unit is composed of methylphenylsiloxane (e3) and dialkylsiloxane (e2).
  • the siloxane unit may be composed of diphenylsiloxane (e1) and dialkylsiloxane (e2), or the siloxane unit may be methylphenylsiloxane (e3) and dialkylsiloxane (e2). May be used.
  • the compounding amount of the (e) phenyl group-containing organopolysiloxane is 0.5 parts by mass or more based on 100 parts by mass of (a) from the viewpoint that the effect of improving the dispersibility of (d) is excellent. Is preferred. It is more preferably at least 1.0 part by mass, and even more preferably at least 3.0 parts by mass. In addition, from the viewpoint that the decrease in the curing rate of the silicone rubber and the decrease in the mechanical strength of the crosslinked product are easily suppressed, the amount is preferably 20 parts by mass or less based on 100 parts by mass of (a). More preferably, it is 15 parts by mass or less, further preferably 10 parts by mass or less.
  • the mixing ratio of the (d) phthalocyanine compound and the (e) phenyl group-containing organopolysiloxane is compatible with (a), and is stable when a mixture of (d) and (e) is obtained.
  • additives that can be added to the silicone rubber can be added to the silicone rubber composition within a range that does not impair the present invention.
  • Additives include reinforcing materials, conductive agents, fillers, crosslinking accelerators, crosslinking retarders, crosslinking aids, scorch inhibitors, anti-aging agents, softeners, plasticizers, lubricants, heat stabilizers, flame retardants, flame retardants Examples include a combustion aid, an ultraviolet absorber, a rust inhibitor, and a foaming agent. Further, depending on the foaming method, a thickener, a surfactant, a communication agent, and the like may be added.
  • an electronic conductive agent carbon black, graphite, c-TiO 2 , c-ZnO, c-SnO 2 (c- means conductivity)
  • an ionic conductive agent quaternary ammonium salt
  • Quaternary phosphonium salts Quaternary phosphonium salts, borates, surfactants, etc.
  • a predetermined foaming agent is used depending on the foaming method.
  • the foaming method include emulsion foaming, balloon foaming, mechanical foaming, and chemical foaming.
  • Emulsion foaming is a foaming method in which water is dispersed in an uncured material, the material is cured in the dispersed state, and water is removed from the cured product after curing.
  • Balloon foaming is a foaming method in which a hollow balloon is dispersed in an uncured material, and after curing, the hollow balloon is removed from the cured product, or the hollow balloon is broken to form cells (bubbles).
  • Chemical foaming is a method in which a gas such as carbon dioxide is forcibly mixed into a material from the outside and mechanically stirred and foamed.
  • Chemical foaming is a foaming method in which an organic or inorganic chemical foaming agent is used to foam a material at the time of curing (at the time of molding).
  • the chemical blowing agent include an organic blowing agent such as azodicarbonamide and an inorganic blowing agent such as sodium bicarbonate.
  • Chemical foaming is a method of generating bubbles during curing, and the size of the bubbles tends to be uneven and large.
  • emulsion foaming, balloon foaming, and mechanical foaming are foaming methods in which foam is contained in the material from before the material is cured (before molding), and the foam-containing state is cured as it is. Is easy to make uniform in size. Therefore, emulsion foaming, balloon foaming, and mechanical foaming are preferred from the viewpoint of making the structure containing fine and small variations in air bubbles. Of these, emulsion foaming and balloon foaming are preferred, and emulsion foaming is particularly preferred. Therefore, the foaming agent is preferably water for emulsion foaming, hollow particles for balloon foaming, and gas for mechanical foaming.
  • the balloon-expanded hollow particles are composed of unexpanded or unexpanded, heat-expandable microcapsules (microspheres) containing a low-boiling hydrocarbon in a shell made of a thermoplastic polymer.
  • the heat-expandable microcapsules expand rapidly due to the expansion of the low-boiling hydrocarbons contained therein upon heating and, at the same time, the softening of the shell made of a thermoplastic polymer, resulting in a hollow balloon.
  • the silicone rubber composition can be prepared by blending the above (a) to (e) and, if necessary, additives.
  • the above (a), (b) and (e) are polysiloxanes, and each polysiloxane can be produced by a known polymerization method such as a hydrolysis polymerization method of chlorosilane or a ring-opening polymerization method of cyclic siloxane. .
  • the silicone rubber composition can be formed by, for example, injecting an uncrosslinked conductive silicone rubber composition into a molding die, heating and curing (crosslinking), and then removing the mold. Thereby, a crosslinked silicone rubber comprising the crosslinked product of the silicone rubber composition of the present invention can be obtained.
  • (e) may be immobilized in the skeleton. Thereby, the bleeding of (e) in the silicone rubber crosslinked product is easily suppressed.
  • a hydrosilyl group is contained as a functional group, (e) can be immobilized in a skeleton.
  • the crosslinked silicone rubber may be a non-foamed or foamed material depending on the use or the like.
  • the foam has a plurality of cells (cells) in a base material (solid phase) containing a crosslinked silicone rubber.
  • the foam can be formed by a foaming method such as emulsion foaming, balloon foaming, mechanical foaming, and chemical foaming.
  • the silicone rubber composition having the above constitution, (a) an organopolysiloxane having at least two alkenyl groups in one molecule, (b) a hydrosilyl crosslinking agent, (c) a hydrosilylation catalyst, and (d) a phthalocyanine-based compound Since it contains the compound, (e) a phenyl group-containing organopolysiloxane, the crosslinked product is excellent in heat resistance.
  • the silicone rubber composition according to the present invention has better heat resistance than conventional ones, it is suitable for application to parts requiring high heat resistance.
  • the silicone rubber composition according to the present invention is used, for example, as a component for preventing heat generation of power devices such as SiC, GaN, and Ga 2 O 3, a waterproof seal member for automobiles, and a material for forming a fixing roll for OA equipment. Can be used.
  • Examples 1 to 10 After mixing the liquid silicone rubber (vinyl group-containing dimethylpolysiloxane), fumed silica, hydrosilylation catalyst (platinum catalyst), copper phthalocyanine, and dispersant (phenyl group-containing organopolysiloxane) so as to have the composition shown in Table 2. And a planetary mixer for 30 minutes, and then a hydrosilyl cross-linking agent (hydrosilyl group-containing dimethylpolysiloxane) and a retarder (1-ethynyl-1-cyclohexanol) are further mixed for 30 minutes and defoamed under reduced pressure. Thus, a liquid silicone rubber composition was prepared.
  • a hydrosilyl cross-linking agent hydrosilyl group-containing dimethylpolysiloxane
  • a retarder (1-ethynyl-1-cyclohexanol
  • Example 1 A silicone rubber composition was prepared in the same manner as in Example 1, except that copper phthalocyanine and a dispersant were not used in the preparation of the silicone rubber composition.
  • Example 2 In the preparation of the silicone rubber composition, a silicone rubber composition was prepared in the same manner as in Example 1 except that copper phthalocyanine was added but no dispersant was added.
  • Copper phthalocyanine "Phthalocyanine copper (II) ( ⁇ -type)" manufactured by Tokyo Chemical Industry (E)
  • Component / dispersant A Synthetic product / dispersant B: Synthetic product / dispersant C: Synthetic product / dispersant D: Synthetic product / dispersant E: Dow Toray “SH510-100CS” ⁇ Dispersant F: “KF50-100CS” manufactured by Shin-Etsu Chemical Co., Ltd. ⁇ Dispersant G: “KF50-3000CS” manufactured by Shin-Etsu Chemical Co., Ltd.
  • Dispersant B was obtained in the same manner as in the method for synthesizing dispersant A, except that the polydimethylsiloxane modified with silanol at both ends was changed to "X-21-5841" manufactured by Shin-Etsu Chemical Co., Ltd.
  • Dispersant C was obtained in the same manner as in the method for synthesizing dispersant A, except that the polydimethylsiloxane modified with silanol at both ends was changed to "DMS-S21" manufactured by Gelest.
  • Dispersant D was obtained in the same manner as in the synthesis of Dispersant A, except that the polydimethylsiloxane modified with silanol at both ends was changed to "DMS-S31" manufactured by Gelest.
  • the addition-curable silicone rubber composition contained no phthalocyanine-based compound but a dispersant, and thus had a change in hardness and tensile elongation even at a high temperature of 2 hours at 250 ° C. for 72 hours. Is too large or cannot be evaluated, indicating that the heat resistance is poor.
  • a high temperature of 250 ° C. ⁇ 72 hours is used.
  • the high temperature condition 1 of 285 ° C. ⁇ 72 hours as well as the condition 2 the change in hardness and the change in tensile elongation are small, and it is understood that the heat resistance is excellent.
  • the dispersant is a periodic copolymer, the heat resistance is particularly excellent.

Abstract

Provided are a silicone rubber composition and a silicone rubber cross-linked body having an excellent heat resistance. This silicone rubber composition contains: (a) an organopolysiloxane having at least two alkenyl groups in one molecule; (b) a hydrosilyl cross-linking agent; (c) a hydrosilylation catalyst; (d) a phthalocyanine-based compound; and (e) a phenyl group-containing organopolysiloxane. A siloxane unit of (e) may comprise a diphenylsiloxane (e1) and a dialkylsiloxane (e2). In addition, a siloxane unit of (e) may also comprise a methylphenylsiloxane (e3) and a dialkylsiloxane (e2).

Description

シリコーンゴム組成物およびシリコーンゴム架橋体Silicone rubber composition and crosslinked silicone rubber
 本発明は、耐熱性に優れるシリコーンゴム組成物およびシリコーンゴム架橋体に関するものである。 The present invention relates to a silicone rubber composition and a crosslinked silicone rubber having excellent heat resistance.
 シリコーンゴムは、一般の有機合成ゴムや天然ゴムに比較して、熱に対する抵抗性に優れており、耐熱性が求められる用途に用いられている。シリコーンゴムの耐熱性をさらに向上する目的で、種々の検討がなされている。例えば特許文献1には、付加硬化型のシリコーンゴム組成物において、三二酸化鉄とともにアルコキシ基とエポキシ基を有する有機ケイ素化合物を添加することで耐熱性を向上することが記載されている。また、特許文献2には、縮合硬化型のシリコーンゴム組成物において、金属フタロシアニン錯体を添加することで耐熱性を向上することが記載されている。 Silicone rubber is superior in heat resistance to general organic synthetic rubber and natural rubber, and is used for applications requiring heat resistance. Various studies have been made for the purpose of further improving the heat resistance of silicone rubber. For example, Patent Document 1 describes that in an addition-curable silicone rubber composition, heat resistance is improved by adding an organosilicon compound having an alkoxy group and an epoxy group together with iron sesquioxide. Patent Literature 2 describes that in a condensation-curable silicone rubber composition, the heat resistance is improved by adding a metal phthalocyanine complex.
特開平11-106659号公報JP-A-11-106559 特開2017-57386号公報JP 2017-57386 A
 付加硬化型のシリコーンゴム組成物において、金属フタロシアニン錯体を単に添加しただけでは、得られる耐熱性は十分なものではなかった。そのため、耐熱性の向上のために改良の余地があった。 耐熱 In the addition-curable silicone rubber composition, simply adding a metal phthalocyanine complex did not provide sufficient heat resistance. Therefore, there is room for improvement for improving the heat resistance.
 本発明が解決しようとする課題は、耐熱性に優れるシリコーンゴム組成物およびシリコーンゴム架橋体を提供することにある。 The problem to be solved by the present invention is to provide a silicone rubber composition and a crosslinked silicone rubber having excellent heat resistance.
 上記課題を解決するため本発明に係るシリコーンゴム組成物は、(a)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、(b)ヒドロシリル架橋剤、(c)ヒドロシリル化触媒、(d)フタロシアニン系化合物、(e)フェニル基含有オルガノポリシロキサン、を含有することを要旨とするものである。 In order to solve the above problems, the silicone rubber composition according to the present invention comprises (a) an organopolysiloxane having at least two alkenyl groups in one molecule, (b) a hydrosilyl crosslinking agent, (c) a hydrosilylation catalyst, The gist of the invention is that it contains d) a phthalocyanine compound and (e) a phenyl group-containing organopolysiloxane.
 前記(e)のシロキサン単位は、ジフェニルシロキサン(e1)とジアルキルシロキサン(e2)からなることが好ましい。あるいは、前記(e)のシロキサン単位は、メチルフェニルシロキサン(e3)とジアルキルシロキサン(e2)からなるものであってもよい。前記(e)において、フェニル基を含有するシロキサン単位のモル数に対するフェニル基を含有しないシロキサン単位のモル数の比は、5以上であることが好ましい。前記(e)は、周期的共重合体またはブロック共重合体であることが好ましい。前記周期的共重合体の1周期中におけるフェニル基を含有するシロキサン単位の繰り返し単位数、または、前記ブロック共重合体におけるフェニル基を含有するシロキサン単位の繰り返し単位数は、1~3であることが好ましい。前記(d)と前記(e)の質量比は、(d):(e)=1.0:0.5~1.0:10の範囲内であることが好ましい。 シ ロ キ サ ン The siloxane unit of (e) is preferably composed of diphenylsiloxane (e1) and dialkylsiloxane (e2). Alternatively, the siloxane unit of (e) may be composed of methylphenylsiloxane (e3) and dialkylsiloxane (e2). In the above (e), the ratio of the number of moles of siloxane units not containing a phenyl group to the number of moles of siloxane units containing a phenyl group is preferably 5 or more. The above (e) is preferably a periodic copolymer or a block copolymer. The number of repeating units of a phenyl group-containing siloxane unit in one cycle of the periodic copolymer or the number of repeating units of a phenyl group-containing siloxane unit in the block copolymer is 1 to 3. Is preferred. The mass ratio of (d) to (e) is preferably in the range of (d) :( e) = 1.0: 0.5 to 1.0: 10.
 そして、本発明に係るシリコーンゴム架橋体は、本発明に係るシリコーンゴム組成物の架橋体であることを要旨とするものである。 The gist of the crosslinked silicone rubber of the present invention is that it is a crosslinked product of the silicone rubber composition of the present invention.
 本発明に係るシリコーンゴム組成物によれば、(a)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、(b)ヒドロシリル架橋剤、(c)ヒドロシリル化触媒、(d)フタロシアニン系化合物、(e)フェニル基含有オルガノポリシロキサン、を含有することから、その架橋体の耐熱性に優れる。 According to the silicone rubber composition of the present invention, (a) an organopolysiloxane having at least two alkenyl groups in one molecule, (b) a hydrosilyl crosslinking agent, (c) a hydrosilylation catalyst, and (d) a phthalocyanine-based compound Since it contains the compound, (e) a phenyl group-containing organopolysiloxane, the crosslinked product is excellent in heat resistance.
 そして、本発明に係るシリコーンゴム架橋体によれば、本発明に係るシリコーンゴム組成物の架橋体であることから、耐熱性に優れる。 According to the crosslinked silicone rubber of the present invention, the crosslinked silicone rubber composition of the present invention is excellent in heat resistance.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明に係るシリコーンゴム組成物は、(a)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、(b)ヒドロシリル架橋剤、(c)ヒドロシリル化触媒、(d)フタロシアニン系化合物、(e)フェニル基含有オルガノポリシロキサン、を含有する。 The silicone rubber composition according to the present invention comprises (a) an organopolysiloxane having at least two alkenyl groups in one molecule, (b) a hydrosilyl crosslinking agent, (c) a hydrosilylation catalyst, (d) a phthalocyanine compound, (E) a phenyl group-containing organopolysiloxane.
 (a)は、付加硬化型のシリコーンゴム組成物の主原料として用いられるものである。(a)は、1分子中に少なくとも2個のアルケニル基を有することから、(b)ヒドロシリル架橋剤との付加反応で(b)ヒドロシリル架橋剤により架橋されるものである。アルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基などが挙げられる。 (A) is used as a main raw material of an addition-curable silicone rubber composition. Since (a) has at least two alkenyl groups in one molecule, it is crosslinked by (b) a hydrosilyl crosslinking agent by an addition reaction with (b) a hydrosilyl crosslinking agent. Examples of the alkenyl group include a vinyl group, an allyl group, a butenyl group, a pentenyl group, and a hexenyl group.
 (a)は、アルケニル基に加えて、アルケニル基以外の有機基を有する。有機基は、1価の置換または非置換の炭化水素基である。非置換の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基などのアルキル基、フェニル基などのアリール基、β-フェニルエチル基、β-フェニルプロピル基などのアラルキル基などが挙げられる。置換の炭化水素基としては、クロロメチル基、3,3,3-トリフルオロプロピル基などが挙げられる。オルガノポリシロキサンとしては、一般的には、有機基としてメチル基を有するものが、合成のしやすさ等から多用される。オルガノポリシロキサンは、直鎖状のものが好ましいが、分岐状もしくは環状のものであっても良い。なお、(a)は、(b)との関係から、ヒドロシリル基を有しないものである。(a)は、フェニル基を有していてもよいし、フェニル基を有していなくてもよい。 (A) has an organic group other than an alkenyl group in addition to the alkenyl group. The organic group is a monovalent substituted or unsubstituted hydrocarbon group. Examples of the unsubstituted hydrocarbon group include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group and a dodecyl group, an aryl group such as a phenyl group, a β-phenylethyl group, and a β-phenylpropyl group. And an aralkyl group. Examples of the substituted hydrocarbon group include a chloromethyl group and a 3,3,3-trifluoropropyl group. As the organopolysiloxane, generally, those having a methyl group as an organic group are frequently used because of ease of synthesis and the like. The organopolysiloxane is preferably linear, but may be branched or cyclic. (A) has no hydrosilyl group because of the relationship with (b). (A) may have a phenyl group or may not have a phenyl group.
 (a)は、液状タイプであってもミラブルタイプであっても良い。(a)が液状タイプの場合は、(d)フタロシアニン系化合物、(e)フェニル基含有オルガノポリシロキサンの分散性向上、架橋体の機械的特性向上などの観点から、25℃における粘度が300~10万cs(センチストークス)であることが好ましい。より好ましくは400~1万csである。上記粘度は、B型粘度計により測定することができる。(a)がミラブルタイプの場合は、架橋体の機械的特性向上などの観点から重合度3000~10000であることが好ましい。 (A) may be a liquid type or a millable type. When (a) is a liquid type, the viscosity at 25 ° C. is from 300 to 300 from the viewpoints of improving the dispersibility of (d) the phthalocyanine compound, (e) the phenyl group-containing organopolysiloxane, and improving the mechanical properties of the crosslinked product. Preferably, it is 100,000 cs (centistokes). More preferably, it is 400 to 10,000 cs. The viscosity can be measured with a B-type viscometer. When (a) is a millable type, the degree of polymerization is preferably from 3,000 to 10,000 from the viewpoint of improving the mechanical properties of the crosslinked product.
 (b)ヒドロシリル架橋剤は、付加硬化型のシリコーンゴム組成物の架橋剤として用いられ、(a)を架橋する架橋剤である。ヒドロシリル架橋剤は、その分子構造中にヒドロシリル基(SiH基)を有する。ヒドロシリル架橋剤は、ヒドロシリル基含有オルガノポリシロキサン(オルガノハイドロジェンポリシロキサン)である。分子構造中におけるヒドロシリル基の数としては、特に限定されるものではないが、硬化速度に優れる、安定性に優れるなどの観点から、2~50の範囲内であることが好ましい。また、架橋性などの観点から、3~50の範囲内であることが好ましい。分子構造中にヒドロシリル基を2以上有する場合には、ヒドロシリル基は異なるSiに存在することが好ましい。ポリシロキサンは、鎖状のものでも良いし、環状のものでも良い。ヒドロシリル基含有オルガノポリシロキサンは、1分子中に少なくとも2個のヒドロシリル基を有することが好ましい。ヒドロシリル架橋剤は、取り扱い性に優れるなどの観点から、数平均分子量200~30000の範囲内であることが好ましい。なお、(b)は、(a)との関係から、アルケニル基を有しないものである。(b)は、フェニル基を有していてもよいし、フェニル基を有していなくてもよい。 (B) The hydrosilyl crosslinking agent is used as a crosslinking agent for an addition-curable silicone rubber composition, and is a crosslinking agent for crosslinking (a). The hydrosilyl crosslinking agent has a hydrosilyl group (SiH group) in its molecular structure. The hydrosilyl crosslinking agent is a hydrosilyl group-containing organopolysiloxane (organohydrogenpolysiloxane). The number of hydrosilyl groups in the molecular structure is not particularly limited, but is preferably in the range of 2 to 50 from the viewpoint of excellent curing speed and excellent stability. Further, from the viewpoint of crosslinkability and the like, it is preferably in the range of 3 to 50. When the molecular structure has two or more hydrosilyl groups, the hydrosilyl groups are preferably present in different Si. The polysiloxane may be a chain or a cyclic one. The hydrosilyl group-containing organopolysiloxane preferably has at least two hydrosilyl groups in one molecule. The hydrosilyl crosslinking agent preferably has a number average molecular weight in the range of 200 to 30,000 from the viewpoint of excellent handleability. (B) has no alkenyl group because of the relationship with (a). (B) may have a phenyl group or may not have a phenyl group.
 ヒドロシリル基含有オルガノポリシロキサン(オルガノハイドロジェンポリシロキサン)は、具体的には、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、(CHHSiO1/2単位とSiO4/2単位とから成る共重合体、(CHHSiO1/2単位とSiO4/2単位と(C)SiO3/2単位とから成る共重合体などが挙げられる。 Specific examples of the hydrosilyl group-containing organopolysiloxane (organohydrogenpolysiloxane) include methylhydrogenpolysiloxane having trimethylsiloxy groups at both ends and dimethylsiloxane / methylhydrogensiloxane copolymer having trimethylsiloxy groups at both ends. Dimethyl polysiloxane with terminal dimethyl hydrogen siloxy group blocked, dimethyl siloxane with both terminal dimethyl hydrogen siloxy group / methyl hydrogen siloxane copolymer, trimethyl siloxy group with both terminal terminated methyl hydrogen siloxane / diphenyl siloxane copolymer, both terminal trimethyl Siloxy group-blocked methyl hydrogen siloxane / diphenyl siloxane / dimethyl siloxane copolymer, (CH 3 ) 2 HSiO 1/2 unit and SiO 4 / 2 units, a copolymer composed of (CH 3 ) 2 HSiO1 / 2 units, SiO 4/2 units and (C 6 H 5 ) SiO 3/2 units, and the like.
 シリコーンゴム組成物において、(b)ヒドロシリル架橋剤の配合量は、特に限定されるものではないが、通常、(a)100質量部に対して0.1~40質量部の範囲とされる。 に お い て In the silicone rubber composition, the amount of the hydrosilyl crosslinking agent (b) is not particularly limited, but is usually in the range of 0.1 to 40 parts by mass with respect to 100 parts by mass of (a).
 (c)ヒドロシリル化触媒は、(b)ヒドロシリル架橋剤による(a)の架橋反応を促進する触媒である。(c)ヒドロシリル化触媒としては、白金触媒、ルテニウム触媒、ロジウム触媒などが挙げられる。白金触媒としては、微粒子状白金、白金黒、白金担持活性炭、白金担持シリカ、塩化白金酸、塩化白金酸のアルコール溶液、白金のオレフィン錯体、白金のアルケニルシロキサン錯体などが挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 (C) The hydrosilylation catalyst is a catalyst that promotes the crosslinking reaction of (a) by the (b) hydrosilyl crosslinking agent. (C) Examples of the hydrosilylation catalyst include a platinum catalyst, a ruthenium catalyst, and a rhodium catalyst. Examples of the platinum catalyst include fine particles of platinum, platinum black, activated carbon carrying platinum, silica carrying platinum, chloroplatinic acid, alcohol solutions of chloroplatinic acid, olefin complexes of platinum, and alkenylsiloxane complexes of platinum. These may be used alone or in combination of two or more.
 (c)ヒドロシリル化触媒は、樹脂を用いてマイクロカプセル化されていてもよい。マイクロカプセル型触媒(マイクロカプセル化触媒)は、ヒドロシリル化触媒を内包する樹脂微粒子からなる。ヒドロシリル化触媒を内包する樹脂微粒子は、少なくとも室温において固体であり、平均粒子径が30μm以下であることが好ましい。平均粒子径は、レーザー顕微鏡により測定される。ヒドロシリル化触媒を内包する樹脂微粒子の平均粒子径は、ヒドロシリル化触媒の分散性を高めるなどの観点から、10μm以下であることが好ましい。より好ましくは7.0μm以下である。また、作製時の微粒子回収率を高めるなどの観点から、0.1μm以上であることが好ましい。より好ましくは2.0μm以上である。 (C) The hydrosilylation catalyst may be microencapsulated using a resin. The microencapsulated catalyst (microencapsulated catalyst) is composed of resin fine particles containing a hydrosilylation catalyst. The resin fine particles containing the hydrosilylation catalyst are preferably solid at least at room temperature and have an average particle diameter of 30 μm or less. The average particle size is measured by a laser microscope. The average particle diameter of the resin fine particles containing the hydrosilylation catalyst is preferably 10 μm or less from the viewpoint of enhancing the dispersibility of the hydrosilylation catalyst. More preferably, it is 7.0 μm or less. In addition, from the viewpoint of increasing the recovery rate of fine particles at the time of preparation, the thickness is preferably 0.1 μm or more. It is more preferably at least 2.0 μm.
 マイクロカプセル型触媒の樹脂は、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。マイクロカプセル型触媒の樹脂は、架橋されることにより圧縮永久歪の低下を抑えられるなどの観点から、熱硬化性樹脂がより好ましい。 樹脂 The resin of the microcapsule type catalyst may be either a thermoplastic resin or a thermosetting resin. The resin of the microcapsule type catalyst is more preferably a thermosetting resin from the viewpoint that a reduction in compression set can be suppressed by being crosslinked.
 マイクロカプセル型触媒の樹脂としては、エポキシ樹脂、アクリル樹脂、ポリビニルブチラール樹脂、スチレン系重合体、ポリカーボネート樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ユリア樹脂、メラミン樹脂、塩化ビニル樹脂、ポリウレタン樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリフェニレンサルファイド樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリビニルアルコール樹脂、水添テルペン樹脂、シリコーン樹脂などが挙げられる。これらは、マイクロカプセル型触媒の樹脂として1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。熱硬化性樹脂としては、ポリビニルブチラール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、レゾール樹脂、アルキド樹脂、ユリア樹脂、メラミン樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、アクリル樹脂などが挙げられる。これらのうちでは、硬化前の材料の貯蔵安定性に特に優れる観点から、エポキシ樹脂、アクリル樹脂、ポリビニルブチラール樹脂、不飽和ポリエステル樹脂がより好ましい。 Examples of the resin of the microcapsule type catalyst include epoxy resin, acrylic resin, polyvinyl butyral resin, styrene-based polymer, polycarbonate resin, unsaturated polyester resin, alkyd resin, urea resin, melamine resin, vinyl chloride resin, polyurethane resin, and polyether. Examples include a sulfone resin, a polysulfone resin, a polyphenylene sulfide resin, a phenol resin, a diallyl phthalate resin, a polyvinyl alcohol resin, a hydrogenated terpene resin, and a silicone resin. These may be used alone as a resin of the microcapsule type catalyst, or may be used in combination of two or more. Examples of the thermosetting resin include polyvinyl butyral resin, epoxy resin, unsaturated polyester resin, phenol resin, resol resin, alkyd resin, urea resin, melamine resin, polyurethane resin, diallyl phthalate resin, and acrylic resin. Among these, an epoxy resin, an acrylic resin, a polyvinyl butyral resin, and an unsaturated polyester resin are more preferable from the viewpoint of particularly excellent storage stability of the material before curing.
 マイクロカプセル型触媒の樹脂(被覆樹脂)は、貯蔵安定性などの観点から、(a)のオルガノポリシロキサンの溶解度パラメータを大きく外れる溶解度パラメータであることが好ましい。具体的には、溶解度パラメータ(SP値)は、7.9以上であることが好ましい。より好ましくは8.3以上、さらに好ましくは9.0以上である。一方、マイクロカプセル型触媒の樹脂の溶解度パラメータの上限値は特に限定されるものではなく、例えば20以下などであればよい。溶解度パラメータは、Smallの計算法により分子構造から算出することができる。 樹脂 The resin (coating resin) of the microcapsule catalyst is preferably a solubility parameter that largely deviates from the solubility parameter of the organopolysiloxane (a) from the viewpoint of storage stability and the like. Specifically, the solubility parameter (SP value) is preferably 7.9 or more. It is more preferably 8.3 or more, and still more preferably 9.0 or more. On the other hand, the upper limit of the solubility parameter of the resin of the microcapsule catalyst is not particularly limited, and may be, for example, 20 or less. The solubility parameter can be calculated from the molecular structure by Small's calculation method.
 マイクロカプセル型触媒の樹脂は、架橋触媒の拡散量増加による架橋反応性の向上、貯蔵安定性などの観点から、ガラス転移温度(Tg)40~145℃であることが好ましい。より好ましくは45~100℃、さらに好ましくは50~85°である。熱硬化性樹脂のガラス転移温度(Tg)は、熱硬化前の値である。ガラス転移温度は、DSC(示差走査熱量測定)により測定することができる。 樹脂 The resin of the microcapsule type catalyst preferably has a glass transition temperature (Tg) of 40 to 145 ° C from the viewpoints of improvement in crosslinking reactivity due to an increase in the diffusion amount of the crosslinking catalyst and storage stability. The temperature is more preferably from 45 to 100 ° C, and even more preferably from 50 to 85 °. The glass transition temperature (Tg) of the thermosetting resin is a value before thermosetting. The glass transition temperature can be measured by DSC (differential scanning calorimetry).
 マイクロカプセル型触媒の樹脂は、架橋触媒の拡散量増加による架橋反応性の向上などの観点から、熱伝導率0.16W/m・K以上、熱伝導率0.17W/m・K以上、さらには0.20W/m・K以上とすることが好ましい。熱伝導率は、ASTM C177に準拠して測定することができる。 The resin of the microcapsule-type catalyst has a thermal conductivity of 0.16 W / m · K or more, a thermal conductivity of 0.17 W / m · K or more, from the viewpoint of improving the crosslinking reactivity by increasing the diffusion amount of the crosslinking catalyst. Is preferably 0.20 W / m · K or more. The thermal conductivity can be measured according to ASTM C177.
 マイクロカプセル型触媒は、従来公知の方法で製造することができる。生産性、球状度などの観点から、懸濁重合法、乳化重合法、スプレードライヤー法、液中乾燥法などが好ましい。 The microcapsule type catalyst can be produced by a conventionally known method. From the viewpoints of productivity, sphericity, and the like, a suspension polymerization method, an emulsion polymerization method, a spray dryer method, a submerged drying method, and the like are preferable.
 シリコーンゴム組成物において、(c)ヒドロシリル化触媒の配合量は、金属量に換算して、通常、(a)100質量部に対して1ppm~1.0質量部の範囲とされる。 In the silicone rubber composition, the amount of the hydrosilylation catalyst (c) is usually in the range of 1 ppm to 1.0 part by mass, based on 100 parts by mass of the metal (a).
 (d)フタロシアニン系化合物は、シリコーンゴム組成物中に添加することで、シリコーンゴムの耐熱性を向上する効果を有する。これは、高温環境下での(d)フタロシアニン系化合物のラジカルトラップ作用によるものと推察される。(d)フタロシアニン系化合物は、フタロシアニン環を有する化合物であり、フタロシアニン、フタロシアニン誘導体、金属フタロシアニン、金属フタロシアニン誘導体を含む。(d)フタロシアニン系化合物は、金属を含有していてもよいし、金属を含有していなくてもよい。 (D) The phthalocyanine-based compound has the effect of improving the heat resistance of the silicone rubber by being added to the silicone rubber composition. This is presumed to be due to the radical trapping action of the phthalocyanine compound (d) under a high temperature environment. (D) The phthalocyanine-based compound is a compound having a phthalocyanine ring, and includes phthalocyanine, a phthalocyanine derivative, a metal phthalocyanine, and a metal phthalocyanine derivative. (D) The phthalocyanine-based compound may or may not contain a metal.
 金属フタロシアニンは、以下の一般式(1)で表される。金属フタロシアニンは、フタロシアニン環の中心に金属を配位した構造を持つ。 The metal phthalocyanine is represented by the following general formula (1). Metal phthalocyanine has a structure in which a metal is coordinated at the center of a phthalocyanine ring.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)において、Mは金属元素を意味し、好適にはCu,Fe,Co,Mn,Ni,Cr,Zn,Pb,Ti,Pt,Pd,Ru,Ce,Vから選択される1種以上である。 In the formula (1), M represents a metal element, preferably one selected from Cu, Fe, Co, Mn, Ni, Cr, Zn, Pb, Ti, Pt, Pd, Ru, Ce, and V That is all.
 一般式(1)では、4つのベンゼン環は置換基を有していないものとして示されているが、フタロシアニン環には4つのベンゼン環の1または2以上に1または2以上の置換基を有するものであってもよい。置換基としては、ハロゲン基、水酸基、アルキル基、ニトロ基、アミノ基、スルホン酸基、カルボキシ基、アルコキシ基などが挙げられる。1のベンゼン環において2以上の置換基を有する場合、その2以上の置換基は互いに同一であってもよいし、異なるものであってもよい。また、2以上のベンゼン環のそれぞれに置換基を有する場合、異なるベンゼン環の置換基は互いに同一であってもよいし、異なるものであってもよい。 In the general formula (1), four benzene rings are shown as having no substituent, but the phthalocyanine ring has one or more substituents on one or more of the four benzene rings. It may be something. Examples of the substituent include a halogen group, a hydroxyl group, an alkyl group, a nitro group, an amino group, a sulfonic acid group, a carboxy group, and an alkoxy group. When one benzene ring has two or more substituents, the two or more substituents may be the same or different. When two or more benzene rings have a substituent, the substituents on different benzene rings may be the same or different.
 (d)フタロシアニン系化合物としては、銅フタロシアニン、コバルトフタロシアニン、鉄フタロシアニンおよびそれらの誘導体の1種または2種以上の組み合わせがより好ましい。銅フタロシアニンおよびその誘導体としては、銅フタロシアニン(フタロシアニン・ブルー)、塩素化銅フタロシアニン(フタロシアニン・グリーン)、銅フタロシアニンモノスルホン酸などが挙げられる。コバルトフタロシアニンおよびその誘導体としては、コバルトフタロシアニン、コバルトフタロシアニンアミン誘導体、コバルトフタロシアニンモノスルホン酸などが挙げられる。鉄フタロシアニンおよびその誘導体としては、鉄フタロシアニン、鉄フタロシアニンテトラカルボン酸、鉄フタロシアニンモノスルホン酸などが挙げられる。 (D) As the phthalocyanine-based compound, one or a combination of two or more of copper phthalocyanine, cobalt phthalocyanine, iron phthalocyanine and derivatives thereof is more preferable. Examples of copper phthalocyanine and its derivatives include copper phthalocyanine (phthalocyanine blue), chlorinated copper phthalocyanine (phthalocyanine green), and copper phthalocyanine monosulfonic acid. Examples of cobalt phthalocyanine and its derivatives include cobalt phthalocyanine, cobalt phthalocyanine amine derivatives, and cobalt phthalocyanine monosulfonic acid. Examples of iron phthalocyanine and its derivatives include iron phthalocyanine, iron phthalocyanine tetracarboxylic acid, and iron phthalocyanine monosulfonic acid.
 シリコーンゴム組成物において、(d)フタロシアニン系化合物の配合量は、(a)100質量部に対して0.1~10質量部の範囲内が好ましい。より好ましくは0.5~5.0質量部の範囲内、さらに好ましくは1.0~3.0質量部の範囲内である。 In the silicone rubber composition, the amount of the phthalocyanine compound (d) is preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of (a). It is more preferably in the range of 0.5 to 5.0 parts by mass, and even more preferably in the range of 1.0 to 3.0 parts by mass.
 (e)フェニル基含有オルガノポリシロキサンは、ポリシロキサン骨格およびフェニル基を有することで、芳香環を有する(d)フタロシアニン系化合物のシリコーンゴム組成物における分散性を向上する。これにより、シリコーンゴムの耐熱性が飛躍的に向上する。これは、(d)フタロシアニン系化合物が、芳香環を有し分子同士が重なり合いやすいこと、シリコーンゴムである(a)との相溶性が悪いこと、から、シリコーンゴム組成物において凝集しやすいが、(e)フェニル基含有オルガノポリシロキサンによってこのような凝集が抑えられるためと推察される。 (E) The phenyl group-containing organopolysiloxane has a polysiloxane skeleton and a phenyl group, thereby improving the dispersibility of the (d) phthalocyanine compound having an aromatic ring in the silicone rubber composition. Thereby, the heat resistance of the silicone rubber is dramatically improved. This is because (d) the phthalocyanine compound has an aromatic ring and the molecules are likely to overlap with each other, and has poor compatibility with the silicone rubber (a). It is inferred that such aggregation is suppressed by the (e) phenyl group-containing organopolysiloxane.
 (e)フェニル基含有オルガノポリシロキサンは、シロキサン単位として、ジフェニルシロキサン(e1)とジアルキルシロキサン(e2)を含むか、メチルフェニルシロキサン(e3)とジアルキルシロキサン(e2)を含むか、ジフェニルシロキサン(e1)とメチルフェニルシロキサン(e3)とジアルキルシロキサン(e2)を含む。(e)フェニル基含有オルガノポリシロキサンは、(e1)~(e3)の他に、他の官能基を有するシロキサン単位を含んでいてもよいし、他の官能基を有するシロキサン単位を含んでいなくてもよい。ただし、(e)は、(a)との関係から、アルケニル基を有しないことが好ましい。また、(e)は、(b)との関係から、ヒドロシリル基を有しないことが好ましい。また、(e)は、ヒドロシリル基を有する場合でも、ヒドロシリル基の数は1分子中に2以下であることが好ましい。 (E) The phenyl group-containing organopolysiloxane contains, as siloxane units, diphenylsiloxane (e1) and dialkylsiloxane (e2), methylphenylsiloxane (e3) and dialkylsiloxane (e2), or diphenylsiloxane (e1). ), Methylphenylsiloxane (e3) and dialkylsiloxane (e2). (E) The phenyl group-containing organopolysiloxane may contain a siloxane unit having another functional group in addition to (e1) to (e3), or may contain a siloxane unit having another functional group. It is not necessary. However, (e) preferably does not have an alkenyl group from the relationship with (a). Further, (e) preferably has no hydrosilyl group in view of the relationship with (b). Further, even when (e) has a hydrosilyl group, the number of hydrosilyl groups is preferably 2 or less in one molecule.
 (e)フェニル基含有オルガノポリシロキサンにおいて、フェニル基を含有するシロキサン単位のモル数に対するフェニル基を含有しないシロキサン単位のモル数の比は、(a)との相溶性に優れるなどの観点から、5.0以上であることが好ましい。より好ましくは10以上である。また、(d)との相溶性に優れるなどの観点から、500以下であることが好ましい。より好ましくは300以下、さらに好ましくは100以下である。フェニル基を含有するシロキサン単位のモル数に対するフェニル基を含有しないシロキサン単位のモル数の比は、(e)のシロキサン単位がジフェニルシロキサン(e1)とジアルキルシロキサン(e2)からなる場合にはモル比(e2/e1)であり、(e)のシロキサン単位がメチルフェニルシロキサン(e3)とジアルキルシロキサン(e2)からなる場合にはモル比(e2/e3)である。 (E) In the phenyl group-containing organopolysiloxane, the ratio of the number of moles of the siloxane group not containing a phenyl group to the number of moles of the siloxane unit containing a phenyl group is preferably from the viewpoint of excellent compatibility with (a). It is preferably 5.0 or more. More preferably, it is 10 or more. In addition, from the viewpoint of excellent compatibility with (d), it is preferably 500 or less. It is more preferably 300 or less, further preferably 100 or less. The ratio of the number of moles of the siloxane unit not containing a phenyl group to the number of moles of the siloxane unit containing a phenyl group is determined by the molar ratio when the siloxane unit (e) is composed of diphenylsiloxane (e1) and dialkylsiloxane (e2). (E2 / e1), and when the siloxane unit of (e) is composed of methylphenylsiloxane (e3) and dialkylsiloxane (e2), the molar ratio is (e2 / e3).
 (e)フェニル基含有オルガノポリシロキサンは、ランダム共重合体、交互共重合体、周期的共重合体、ブロック共重合体のいずれであってもよい。シリコーンゴムの耐熱性の向上効果に特に優れることから、好ましくは、周期的共重合体、ブロック共重合体である。 (E) The phenyl group-containing organopolysiloxane may be any of a random copolymer, an alternating copolymer, a periodic copolymer, and a block copolymer. Since it is particularly excellent in the effect of improving the heat resistance of the silicone rubber, a periodic copolymer or a block copolymer is preferred.
 (e)フェニル基含有オルガノポリシロキサンは、(a)のオルガノポリシロキサン、(d)フタロシアニン系化合物との相溶性などの観点から、25℃における粘度が10~6000cs(センチストークス)であることが好ましい。より好ましくは70~500csである。上記粘度は、B型粘度計により測定することができる。 (E) The phenyl group-containing organopolysiloxane may have a viscosity at 25 ° C. of 10 to 6000 cs (centistokes) from the viewpoint of compatibility with the organopolysiloxane (a) and the phthalocyanine compound (d). preferable. More preferably, it is 70 to 500 cs. The viscosity can be measured with a B-type viscometer.
 (e)フェニル基含有オルガノポリシロキサンは、一例として、下記の一般式(2)で表される構造のものを挙げることができる。 (E) The phenyl group-containing organopolysiloxane has, for example, a structure represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2)において、Rはアルキル基であり、Rはアルキル基またはフェニル基であり、m,n,lは繰り返し単位数で1以上である。式(2)において、Rは、好ましくはメチル基またはエチル基であり、より好ましくはメチル基である。式(2)において、Rは、好ましくはメチル基、エチル基またはフェニル基であり、より好ましくはフェニル基である。式(2)において、mは8~350であることが好ましい。式(2)において、nは1~3であることが好ましい。式(2)において、lは1~50であることが好ましい。式(2)の共重合体は、ランダム共重合体、交互共重合体、周期的共重合体、ブロック共重合体のいずれであってもよい。式(2)において、フェニル基は、置換基を有するフェニル基であってもよい。置換基としては、アルキル基、アリール基、などが挙げられる。 In the formula (2), R 1 is an alkyl group, R 2 is an alkyl group or a phenyl group, and m, n, and l are 1 or more in the number of repeating units. In the formula (2), R 1 is preferably a methyl group or an ethyl group, and more preferably a methyl group. In the formula (2), R 2 is preferably a methyl group, an ethyl group or a phenyl group, more preferably a phenyl group. In the formula (2), m is preferably from 8 to 350. In the formula (2), n is preferably 1 to 3. In the formula (2), l is preferably 1 to 50. The copolymer of the formula (2) may be any of a random copolymer, an alternating copolymer, a periodic copolymer, and a block copolymer. In the formula (2), the phenyl group may be a phenyl group having a substituent. Examples of the substituent include an alkyl group and an aryl group.
 式(2)において、Rがフェニル基のものは、シロキサン単位が、ジフェニルシロキサン(e1)とジアルキルシロキサン(e2)からなる。式(2)において、Rがアルキル基のものは、シロキサン単位がメチルフェニルシロキサン(e3)とジアルキルシロキサン(e2)からなる。(e)フェニル基含有オルガノポリシロキサンは、シロキサン単位がジフェニルシロキサン(e1)とジアルキルシロキサン(e2)からなるものであってもよいし、シロキサン単位がメチルフェニルシロキサン(e3)とジアルキルシロキサン(e2)からなるものであってもよい。 In the formula (2), when R 2 is a phenyl group, the siloxane unit is composed of diphenylsiloxane (e1) and dialkylsiloxane (e2). In the formula (2), when R 2 is an alkyl group, the siloxane unit is composed of methylphenylsiloxane (e3) and dialkylsiloxane (e2). (E) In the phenyl group-containing organopolysiloxane, the siloxane unit may be composed of diphenylsiloxane (e1) and dialkylsiloxane (e2), or the siloxane unit may be methylphenylsiloxane (e3) and dialkylsiloxane (e2). May be used.
 シリコーンゴム組成物において、(e)フェニル基含有オルガノポリシロキサンの配合量は、(d)の分散性向上効果に優れるなどの観点から、(a)100質量部に対して0.5質量部以上が好ましい。より好ましくは1.0質量部以上、さらに好ましくは3.0質量部以上である。また、シリコーンゴムの硬化速度の低下や架橋体の機械強度の低下が抑えられやすいなどの観点から、(a)100質量部に対して20質量部以下が好ましい。より好ましくは15質量部以下、さらに好ましくは10質量部以下である。 In the silicone rubber composition, the compounding amount of the (e) phenyl group-containing organopolysiloxane is 0.5 parts by mass or more based on 100 parts by mass of (a) from the viewpoint that the effect of improving the dispersibility of (d) is excellent. Is preferred. It is more preferably at least 1.0 part by mass, and even more preferably at least 3.0 parts by mass. In addition, from the viewpoint that the decrease in the curing rate of the silicone rubber and the decrease in the mechanical strength of the crosslinked product are easily suppressed, the amount is preferably 20 parts by mass or less based on 100 parts by mass of (a). More preferably, it is 15 parts by mass or less, further preferably 10 parts by mass or less.
 また、シリコーンゴム組成物において、(d)フタロシアニン系化合物と(e)フェニル基含有オルガノポリシロキサンの配合比率は、(a)への相溶性、(d)(e)の混合物としたときの安定性などの観点から、質量比で、(d):(e)=1.0:0.5~1.0:10の範囲内が好ましい。より好ましくは(d):(e)=1.0:1.0~1.0:5.0の範囲内である。 In the silicone rubber composition, the mixing ratio of the (d) phthalocyanine compound and the (e) phenyl group-containing organopolysiloxane is compatible with (a), and is stable when a mixture of (d) and (e) is obtained. From the viewpoint of properties and the like, the mass ratio is preferably in the range of (d) :( e) = 1.0: 0.5 to 1.0: 10. More preferably, (d) :( e) = 1.0: 1.0 to 1.0: 5.0.
 シリコーンゴム組成物には、必要に応じて、本発明を阻害しない範囲内で、シリコーンゴムに添加され得る添加剤を添加することができる。添加剤としては、補強材、導電剤、充填剤、架橋促進剤、架橋遅延剤、架橋助剤、スコーチ防止剤、老化防止剤、軟化剤、可塑剤、滑剤、熱安定剤、難燃剤、難燃助剤、紫外線吸収剤、防錆剤、発泡剤などが挙げられる。また、発泡方法にもよるが、増粘剤、界面活性剤、連通化剤などが添加されていても良い。導電剤としては、電子導電剤(カーボンブラック、グラファイト、c-TiO、c-ZnO、c-SnO(c-は、導電性を意味する。))、イオン導電剤(第四級アンモニウム塩、第四級ホスホニウム塩、ホウ酸塩、界面活性剤など)などの従来より公知の導電剤が挙げられる。 If necessary, additives that can be added to the silicone rubber can be added to the silicone rubber composition within a range that does not impair the present invention. Additives include reinforcing materials, conductive agents, fillers, crosslinking accelerators, crosslinking retarders, crosslinking aids, scorch inhibitors, anti-aging agents, softeners, plasticizers, lubricants, heat stabilizers, flame retardants, flame retardants Examples include a combustion aid, an ultraviolet absorber, a rust inhibitor, and a foaming agent. Further, depending on the foaming method, a thickener, a surfactant, a communication agent, and the like may be added. As the conductive agent, an electronic conductive agent (carbon black, graphite, c-TiO 2 , c-ZnO, c-SnO 2 (c- means conductivity)), an ionic conductive agent (quaternary ammonium salt) , Quaternary phosphonium salts, borates, surfactants, etc.).
 発泡剤は、発泡方法に応じて、所定の発泡剤が用いられる。発泡方法としては、エマルション発泡、バルーン発泡、機械発泡、化学発泡などが挙げられる。エマルション発泡は、未硬化材料に水を分散させておき、その分散状態で材料を硬化させ、硬化後に硬化物から水を除去する発泡方法である。バルーン発泡は、中空バルーンを未硬化材料に分散させておき、硬化後に硬化物から中空バルーンを除去する、若しくは、中空バルーンを破ってセル(気泡)を形成する発泡方法である。機械発泡は、外部から強制的に材料中へ炭酸ガスなどのガスを混入させ、機械的に攪拌・発泡させる方法である。化学発泡は、有機あるいは無機の化学発泡剤を用いて材料の硬化時(成形時)に発泡させる発泡方法である。化学発泡剤としては、アゾジカルボンアミドなどの有機発泡剤や重炭酸ナトリウムなどの無機発泡剤などが挙げられる。 As the foaming agent, a predetermined foaming agent is used depending on the foaming method. Examples of the foaming method include emulsion foaming, balloon foaming, mechanical foaming, and chemical foaming. Emulsion foaming is a foaming method in which water is dispersed in an uncured material, the material is cured in the dispersed state, and water is removed from the cured product after curing. Balloon foaming is a foaming method in which a hollow balloon is dispersed in an uncured material, and after curing, the hollow balloon is removed from the cured product, or the hollow balloon is broken to form cells (bubbles). Mechanical foaming is a method in which a gas such as carbon dioxide is forcibly mixed into a material from the outside and mechanically stirred and foamed. Chemical foaming is a foaming method in which an organic or inorganic chemical foaming agent is used to foam a material at the time of curing (at the time of molding). Examples of the chemical blowing agent include an organic blowing agent such as azodicarbonamide and an inorganic blowing agent such as sodium bicarbonate.
 化学発泡は、硬化中に気泡を発生させる方法であり、気泡の大きさが不均一で大きくなりやすい。これに対し、エマルション発泡、バルーン発泡、機械発泡は、いずれも材料の硬化前(成形前)から材料中に泡を含む発泡方法であり、泡を含む状態をそのまま硬化するものであるため、気泡の大きさを均一で小さくしやすい。したがって、微細でばらつきの小さい気泡を含む構成にする観点から、エマルション発泡、バルーン発泡、機械発泡が好ましい。また、これらのうちでは、エマルション発泡、バルーン発泡が好ましく、特にエマルション発泡が好ましい。よって、発泡剤としては、エマルション発泡の水、バルーン発泡の中空粒子、機械発泡のガスが好ましい。バルーン発泡の中空粒子は、熱可塑性ポリマーからなる殻(シェル)内に低沸点炭化水素を内包した、未膨張型または既膨張型の、熱膨張性のマイクロカプセル(マイクロスフェア)で構成される。熱膨張性のマイクロカプセルは、加熱により内包された低沸点炭化水素が膨張し、同時に熱可塑性ポリマーからなる殻(シェル)が軟化することによって急激に膨張し、中空状のバルーンとなる。 Chemical foaming is a method of generating bubbles during curing, and the size of the bubbles tends to be uneven and large. On the other hand, emulsion foaming, balloon foaming, and mechanical foaming are foaming methods in which foam is contained in the material from before the material is cured (before molding), and the foam-containing state is cured as it is. Is easy to make uniform in size. Therefore, emulsion foaming, balloon foaming, and mechanical foaming are preferred from the viewpoint of making the structure containing fine and small variations in air bubbles. Of these, emulsion foaming and balloon foaming are preferred, and emulsion foaming is particularly preferred. Therefore, the foaming agent is preferably water for emulsion foaming, hollow particles for balloon foaming, and gas for mechanical foaming. The balloon-expanded hollow particles are composed of unexpanded or unexpanded, heat-expandable microcapsules (microspheres) containing a low-boiling hydrocarbon in a shell made of a thermoplastic polymer. The heat-expandable microcapsules expand rapidly due to the expansion of the low-boiling hydrocarbons contained therein upon heating and, at the same time, the softening of the shell made of a thermoplastic polymer, resulting in a hollow balloon.
 シリコーンゴム組成物は、上記の(a)~(e)や必要に応じて添加剤を配合することにより調製することができる。上記(a)、(b)、(e)は、ポリシロキサンであるが、各ポリシロキサンは、クロロシランの加水分解重合法や環状シロキサンの開環重合法など公知の重合法によって製造することができる。 The silicone rubber composition can be prepared by blending the above (a) to (e) and, if necessary, additives. The above (a), (b) and (e) are polysiloxanes, and each polysiloxane can be produced by a known polymerization method such as a hydrolysis polymerization method of chlorosilane or a ring-opening polymerization method of cyclic siloxane. .
 そして、シリコーンゴム組成物は、例えば、成形金型に未架橋の導電性のシリコーンゴム組成物を注入して、加熱・硬化(架橋)させた後、脱型することによって成形することができる。これにより、本発明のシリコーンゴム組成物の架橋体からなるシリコーンゴム架橋体を得ることができる。シリコーンゴム架橋体において、(e)は骨格中に固定化されていてもよい。これにより、シリコーンゴム架橋体における(e)のブリードが抑えられやすい。例えば官能基としてヒドロシリル基を有すると、(e)は骨格中に固定化可能となる。 (4) The silicone rubber composition can be formed by, for example, injecting an uncrosslinked conductive silicone rubber composition into a molding die, heating and curing (crosslinking), and then removing the mold. Thereby, a crosslinked silicone rubber comprising the crosslinked product of the silicone rubber composition of the present invention can be obtained. In the crosslinked silicone rubber, (e) may be immobilized in the skeleton. Thereby, the bleeding of (e) in the silicone rubber crosslinked product is easily suppressed. For example, when a hydrosilyl group is contained as a functional group, (e) can be immobilized in a skeleton.
 シリコーンゴム架橋体は、用途等に応じて、非発泡体であってもよいし、発泡体であってもよい。発泡体は、架橋シリコーンゴムを含有するベース材料(固相)中に複数の気泡(セル)を有するものである。発泡体は、エマルション発泡、バルーン発泡、機械発泡、化学発泡などの発泡方法により形成することができる。 架橋 The crosslinked silicone rubber may be a non-foamed or foamed material depending on the use or the like. The foam has a plurality of cells (cells) in a base material (solid phase) containing a crosslinked silicone rubber. The foam can be formed by a foaming method such as emulsion foaming, balloon foaming, mechanical foaming, and chemical foaming.
 以上の構成のシリコーンゴム組成物によれば、(a)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、(b)ヒドロシリル架橋剤、(c)ヒドロシリル化触媒、(d)フタロシアニン系化合物、(e)フェニル基含有オルガノポリシロキサン、を含有することから、その架橋体の耐熱性に優れる。 According to the silicone rubber composition having the above constitution, (a) an organopolysiloxane having at least two alkenyl groups in one molecule, (b) a hydrosilyl crosslinking agent, (c) a hydrosilylation catalyst, and (d) a phthalocyanine-based compound Since it contains the compound, (e) a phenyl group-containing organopolysiloxane, the crosslinked product is excellent in heat resistance.
 本発明に係るシリコーンゴム組成物は、従来よりも優れた耐熱性を有することから、高い耐熱性が求められる部分への適用に好適である。本発明に係るシリコーンゴム組成物は、例えば、SiC、GaN、Ga系などのパワーデバイスの発熱対策部品、自動車向け等の防水シール部材、OA機器向け定着用ロールを形成する材料などとして用いることができる。 Since the silicone rubber composition according to the present invention has better heat resistance than conventional ones, it is suitable for application to parts requiring high heat resistance. The silicone rubber composition according to the present invention is used, for example, as a component for preventing heat generation of power devices such as SiC, GaN, and Ga 2 O 3, a waterproof seal member for automobiles, and a material for forming a fixing roll for OA equipment. Can be used.
 以下、実施例および比較例を用いて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.
(実施例1~10)
 表2に示す配合となるように、液状シリコーンゴム(ビニル基含有ジメチルポリシロキサン)、ヒュームドシリカ、ヒドロシリル化触媒(白金触媒)、銅フタロシアニン、分散剤(フェニル基含有オルガノポリシロキサン)を配合後、プラネタリーミキサーにて30分混合し、次いで、ヒドロシリル架橋剤(ヒドロシリル基含有ジメチルポリシロキサン)、遅延剤(1-エチニル-1-シクロヘキサノール)を配合後、さらに30分混合し、減圧脱泡して、液状のシリコーンゴム組成物を調製した。
(Examples 1 to 10)
After mixing the liquid silicone rubber (vinyl group-containing dimethylpolysiloxane), fumed silica, hydrosilylation catalyst (platinum catalyst), copper phthalocyanine, and dispersant (phenyl group-containing organopolysiloxane) so as to have the composition shown in Table 2. And a planetary mixer for 30 minutes, and then a hydrosilyl cross-linking agent (hydrosilyl group-containing dimethylpolysiloxane) and a retarder (1-ethynyl-1-cyclohexanol) are further mixed for 30 minutes and defoamed under reduced pressure. Thus, a liquid silicone rubber composition was prepared.
(比較例1)
 シリコーンゴム組成物の調製において、銅フタロシアニンおよび分散剤を配合しなかった以外は実施例1と同様にして、シリコーンゴム組成物を調製した。
(Comparative Example 1)
A silicone rubber composition was prepared in the same manner as in Example 1, except that copper phthalocyanine and a dispersant were not used in the preparation of the silicone rubber composition.
(比較例2)
 シリコーンゴム組成物の調製において、銅フタロシアニンは配合したが分散剤を配合しなかった以外は実施例1と同様にして、シリコーンゴム組成物を調製した。
(Comparative Example 2)
In the preparation of the silicone rubber composition, a silicone rubber composition was prepared in the same manner as in Example 1 except that copper phthalocyanine was added but no dispersant was added.
(比較例3)
 シリコーンゴム組成物の調製において、分散剤は配合したが銅フタロシアニンを配合しなかった以外は実施例1と同様にして、シリコーンゴム組成物を調製した。
(Comparative Example 3)
In the preparation of the silicone rubber composition, a silicone rubber composition was prepared in the same manner as in Example 1 except that the dispersant was added but copper phthalocyanine was not added.
 使用した材料は以下の通りである。
(a)成分
・液状シリコーンゴム(ビニル基含有ジメチルポリシロキサン):Gelest社製「DMS-V25」
(b)成分
・ヒドロシリル架橋剤(ヒドロシリル基含有ジメチルポリシロキサン):Gelest社製「HMS-501」
(c)成分
・ヒドロシリル化触媒(白金触媒):塩化白金(IV)酸、株式会社フルヤ金属社製
(d)成分
・銅フタロシアニン:東京化成工業製「フタロシアニン銅(II)(β-型)」
(e)成分
・分散剤A:合成品
・分散剤B:合成品
・分散剤C:合成品
・分散剤D:合成品
・分散剤E:ダウ東レ製「SH510-100CS」
・分散剤F:信越化学工業製「KF50-100CS」
・分散剤G:信越化学工業製「KF50-3000CS」
(添加剤)
・遅延剤(1-エチニル-1-シクロヘキサノール):(東京化成社製、試薬)
・ヒュームドシリカ(日本アエロジル社製、「アエロジルRX200」)
The materials used are as follows.
(A) Component / Liquid silicone rubber (vinyl group-containing dimethylpolysiloxane): "DMS-V25" manufactured by Gelest
Component (b) hydrosilyl crosslinking agent (hydrosilyl group-containing dimethylpolysiloxane): “HMS-501” manufactured by Gelest
Component (c) Hydrosilylation catalyst (platinum catalyst): chloroplatinic (IV) acid, component (d) manufactured by Fluya Metal Co., Ltd. Copper phthalocyanine: "Phthalocyanine copper (II) (β-type)" manufactured by Tokyo Chemical Industry
(E) Component / dispersant A: Synthetic product / dispersant B: Synthetic product / dispersant C: Synthetic product / dispersant D: Synthetic product / dispersant E: Dow Toray “SH510-100CS”
・ Dispersant F: “KF50-100CS” manufactured by Shin-Etsu Chemical Co., Ltd.
・ Dispersant G: “KF50-3000CS” manufactured by Shin-Etsu Chemical Co., Ltd.
(Additive)
・ Retardant (1-ethynyl-1-cyclohexanol): (Tokyo Kasei Co., Ltd., reagent)
-Fumed silica (Aerosil RX200 manufactured by Nippon Aerosil Co., Ltd.)
(分散剤Aの合成方法)
 信越化学工業製の両末端シラノール変性ポリジメチルシロキサン「KF-9701」と東京化成工業製の「ジメトキシジフェニルシラン」をモル比1:1で混合し、室温・超音波を10分かけた後、上記混合物に対し日東化成製触媒「ネオスタンU-220H」を0.5質量部添加し、60℃真空下にて500rpmの速度で2日間撹拌した後、上記総重量に対し、東京化成工業製「トリエチルシラン」を5質量部加えて同条件でさらに1日撹拌することで、分散剤Aを得た。
(Method of synthesizing dispersant A)
Shin-Etsu Chemical's silanol-modified polydimethylsiloxane "KF-9701" and "Dimethoxydiphenylsilane" manufactured by Tokyo Chemical Industry were mixed at a molar ratio of 1: 1. To the mixture was added 0.5 parts by mass of Nitto Kasei's catalyst "Neostan U-220H", and the mixture was stirred under vacuum at 60 ° C. for 2 days at a speed of 500 rpm. "Silane" was added in an amount of 5 parts by mass, and the mixture was further stirred for one day under the same conditions to obtain Dispersant A.
(分散剤Bの合成方法)
 両末端シラノール変性ポリジメチルシロキサンを信越化学工業製「X-21-5841」に変更した以外は分散剤Aの合成方法と同様にして、分散剤Bを得た。
(Method of synthesizing dispersant B)
Dispersant B was obtained in the same manner as in the method for synthesizing dispersant A, except that the polydimethylsiloxane modified with silanol at both ends was changed to "X-21-5841" manufactured by Shin-Etsu Chemical Co., Ltd.
(分散剤Cの合成方法)
 両末端シラノール変性ポリジメチルシロキサンをGelest製「DMS-S21」に変更した以外は分散剤Aの合成方法と同様にして、分散剤Cを得た。
(Method of synthesizing dispersant C)
Dispersant C was obtained in the same manner as in the method for synthesizing dispersant A, except that the polydimethylsiloxane modified with silanol at both ends was changed to "DMS-S21" manufactured by Gelest.
(分散剤Dの合成方法)
 両末端シラノール変性ポリジメチルシロキサンをGelest製「DMS-S31」に変更した以外は分散剤Aの合成方法と同様にして、分散剤Dを得た。
(Method of synthesizing dispersant D)
Dispersant D was obtained in the same manner as in the synthesis of Dispersant A, except that the polydimethylsiloxane modified with silanol at both ends was changed to "DMS-S31" manufactured by Gelest.
 (e)成分の詳細は、以下の表1に示すとおりである。分散剤A~Gの構造式は、式(2)に示す通りである。
Figure JPOXMLDOC01-appb-T000003
Details of the component (e) are as shown in Table 1 below. The structural formulas of the dispersants A to G are as shown in Formula (2).
Figure JPOXMLDOC01-appb-T000003
 実施例1~10、比較例1~3の各シリコーンゴム組成物を170℃×10分の条件でプレス成形し、その後、200℃×4時間の条件にて2次キュアを実施し、2mm厚のシートを作製した。作製したシートを用い、高温環境下での硬度変化および引張伸びの変化を調べた。その結果を表2に示す。 Each of the silicone rubber compositions of Examples 1 to 10 and Comparative Examples 1 to 3 was press-molded at 170 ° C. for 10 minutes, and then subjected to a secondary cure at 200 ° C. for 4 hours. Was prepared. Using the prepared sheet, a change in hardness and a change in tensile elongation under a high temperature environment were examined. Table 2 shows the results.
(硬度評価)
 各シートを高温条件1(285℃×72時間)あるいは高温条件2(250℃×72時間)で保持する前後の硬度をそれぞれ測定し、保持前の値を基準とする硬度変化率を調べた。各シートの硬度は、JIS K 6253に従い、デュアロメータ・タイプA硬度計で測定した。高温条件1において硬度変化率が±25%以内であった場合を硬度変化が小さく特に良好「◎」、高温条件1において硬度変化率が±40%以内であった場合を良好「○」、高温条件1において硬度変化率が±40%外であったが高温条件2において硬度変化率が±50%以内であった場合を不良「△」、高温条件1において硬度変化率が±40%外で高温条件2において硬度変化率が±50%外もしくは評価不可であった場合を不良「×」とした。
(Hardness evaluation)
The hardness before and after holding each sheet under the high temperature condition 1 (285 ° C. × 72 hours) or the high temperature condition 2 (250 ° C. × 72 hours) was measured, and the hardness change rate based on the value before holding was measured. The hardness of each sheet was measured with a dualometer type A hardness meter according to JIS K6253. When the hardness change rate was within ± 25% under the high temperature condition 1, the hardness change was small and particularly good “◎”, and when the hardness change rate was within ± 40% under the high temperature condition 1, it was good “○”. When the rate of change of hardness was out of ± 40% in condition 1 but was not more than ± 50% in high-temperature condition 2, the result was bad “△”. In the case of the high-temperature condition 2, when the rate of change in hardness was out of ± 50% or the evaluation was not possible, it was judged as poor “x”.
(伸び評価)
 各シートを高温条件1(285℃×72時間)あるいは高温条件2(250℃×72時間)で保持する前後の引張伸びをそれぞれ測定し、保持前の値を基準とする引張伸びの変化率を調べた。各シートの引張伸びは、JIS K 6251に従い、ダンベル6号形状にて測定した。高温条件1において変化率が±25%以内であった場合を引張伸びの変化が小さく特に良好「◎」、高温条件1において変化率が±70%以内であった場合を良好「○」、高温条件1において変化率が±70%外であったが高温条件2において変化率が±50%以内であった場合を不良「△」、高温条件1において変化率が±70%外で高温条件2において変化率が±50%外もしくは評価不可であった場合を不良「×」とした。
(Elongation evaluation)
The tensile elongation before and after holding each sheet under high temperature condition 1 (285 ° C. × 72 hours) or high temperature condition 2 (250 ° C. × 72 hours) was measured, and the rate of change in tensile elongation based on the value before holding was measured. Examined. The tensile elongation of each sheet was measured in a dumbbell No. 6 shape according to JIS K6251. When the change rate was within ± 25% under the high temperature condition 1, the change in tensile elongation was small and particularly good “◎”, and when the change rate was within ± 70% under the high temperature condition 1, good “○”. If the rate of change was out of ± 70% in condition 1 but was less than ± 50% in high temperature condition 2, it was judged as bad (△). In the case where the rate of change was out of ± 50% or could not be evaluated, it was judged as poor “x”.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 比較例1は、付加硬化型のシリコーンゴム組成物において、フタロシアニン系化合物および分散剤(フェニル基含有オルガノポリシロキサン)を配合していないため、250℃×72時間の高温条件2においても硬度変化および引張伸びの変化が大きすぎるか評価不可であり、耐熱性に劣ることがわかる。また、比較例2は、付加硬化型のシリコーンゴム組成物において、フタロシアニン系化合物は配合しているが分散剤を配合していないため、285℃×72時間の高温条件1において硬度変化および引張伸びの変化が大きすぎて、耐熱性に劣ることがわかる。比較例3は、付加硬化型のシリコーンゴム組成物において、フタロシアニン系化合物を配合していないが分散剤は配合していることから、250℃×72時間の高温条件2においても硬度変化および引張伸びの変化が大きすぎるか評価不可であり、耐熱性に劣ることがわかる。 In Comparative Example 1, since the addition-curable silicone rubber composition did not contain the phthalocyanine-based compound and the dispersant (phenyl group-containing organopolysiloxane), the hardness change and the high-temperature condition 2 even at a high temperature of 250 ° C. × 72 hours were obtained. The change in tensile elongation is too large or cannot be evaluated, indicating that the heat resistance is poor. In Comparative Example 2, since the addition-curable silicone rubber composition contained a phthalocyanine-based compound but did not contain a dispersant, the hardness change and the tensile elongation under high-temperature condition 1 at 285 ° C. × 72 hours. It can be seen that the change in the heat resistance was too large and the heat resistance was poor. In Comparative Example 3, the addition-curable silicone rubber composition contained no phthalocyanine-based compound but a dispersant, and thus had a change in hardness and tensile elongation even at a high temperature of 2 hours at 250 ° C. for 72 hours. Is too large or cannot be evaluated, indicating that the heat resistance is poor.
 このような比較例に対し、付加硬化型のシリコーンゴム組成物において、フタロシアニン系化合物および分散剤(フェニル基含有オルガノポリシロキサン)を配合している実施例によれば、250℃×72時間の高温条件2だけでなく285℃×72時間の高温条件1においても、硬度変化および引張伸びの変化が小さく、耐熱性に優れることがわかる。そして、実施例のうちでも、分散剤が周期的共重合体であると、特に耐熱性に優れることがわかる。 In contrast to such a comparative example, according to an example in which a phthalocyanine compound and a dispersant (phenyl group-containing organopolysiloxane) are blended in an addition-curable silicone rubber composition, a high temperature of 250 ° C. × 72 hours is used. Under the high temperature condition 1 of 285 ° C. × 72 hours as well as the condition 2, the change in hardness and the change in tensile elongation are small, and it is understood that the heat resistance is excellent. Further, it can be seen that among the examples, when the dispersant is a periodic copolymer, the heat resistance is particularly excellent.
 以上、本発明の実施形態・実施例について説明したが、本発明は上記実施形態・実施例に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改変が可能である。 The embodiments and examples of the present invention have been described above. However, the present invention is not limited to the above embodiments and examples, and various modifications can be made without departing from the spirit of the present invention. .

Claims (8)

  1.  (a)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、
     (b)ヒドロシリル架橋剤、
     (c)ヒドロシリル化触媒、
     (d)フタロシアニン系化合物、
     (e)フェニル基含有オルガノポリシロキサン、
    を含有することを特徴とするシリコーンゴム組成物。
    (A) an organopolysiloxane having at least two alkenyl groups in one molecule,
    (B) a hydrosilyl crosslinking agent,
    (C) a hydrosilylation catalyst,
    (D) a phthalocyanine compound,
    (E) a phenyl group-containing organopolysiloxane,
    A silicone rubber composition comprising:
  2.  前記(e)のシロキサン単位が、ジフェニルシロキサン(e1)とジアルキルシロキサン(e2)からなることを特徴とする請求項1に記載のシリコーンゴム組成物。 The silicone rubber composition according to claim 1, wherein the siloxane unit (e) comprises diphenylsiloxane (e1) and dialkylsiloxane (e2).
  3.  前記(e)のシロキサン単位が、メチルフェニルシロキサン(e3)とジアルキルシロキサン(e2)からなることを特徴とする請求項1に記載のシリコーンゴム組成物。 The silicone rubber composition according to claim 1, wherein the siloxane unit (e) comprises methylphenylsiloxane (e3) and dialkylsiloxane (e2).
  4.  前記(e)において、フェニル基を含有するシロキサン単位のモル数に対するフェニル基を含有しないシロキサン単位のモル数の比が、5以上であることを特徴とする請求項1から3のいずれか1項に記載のシリコーンゴム組成物。 4. The method according to claim 1, wherein in (e), the ratio of the number of moles of the siloxane unit containing no phenyl group to the number of moles of the siloxane unit containing a phenyl group is 5 or more. 5. The silicone rubber composition according to the above.
  5.  前記(e)が、周期的共重合体またはブロック共重合体であることを特徴とする請求項1から4のいずれか1項に記載のシリコーンゴム組成物。 (5) The silicone rubber composition according to any one of (1) to (4), wherein (e) is a periodic copolymer or a block copolymer.
  6.  前記周期的共重合体の1周期中におけるフェニル基を含有するシロキサン単位の繰り返し単位数、または、前記ブロック共重合体におけるフェニル基を含有するシロキサン単位の繰り返し単位数が、1~3であることを特徴とする請求項5に記載のシリコーンゴム組成物。 The number of repeating units of a phenyl group-containing siloxane unit in one cycle of the periodic copolymer or the number of repeating units of a phenyl group-containing siloxane unit in the block copolymer is 1 to 3. The silicone rubber composition according to claim 5, characterized in that:
  7.  前記(d)と前記(e)の質量比が、(d):(e)=1.0:0.5~1.0:10の範囲内であることを特徴とする請求項1から6のいずれか1項に記載のシリコーンゴム組成物。 The mass ratio of (d) to (e) is in the range of (d) :( e) = 1.0: 0.5 to 1.0: 10. The silicone rubber composition according to any one of the above.
  8.  請求項1から7のいずれか1項に記載のシリコーンゴム組成物の架橋体であることを特徴とするシリコーンゴム架橋体。 (8) A crosslinked silicone rubber, which is a crosslinked product of the silicone rubber composition according to any one of (1) to (7).
PCT/JP2019/033338 2018-09-18 2019-08-26 Silicone rubber composition and silicone rubber cross-linked body WO2020059437A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018173187A JP6956697B2 (en) 2018-09-18 2018-09-18 Silicone rubber composition and silicone rubber crosslinked product
JP2018-173187 2018-09-18

Publications (1)

Publication Number Publication Date
WO2020059437A1 true WO2020059437A1 (en) 2020-03-26

Family

ID=69887228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033338 WO2020059437A1 (en) 2018-09-18 2019-08-26 Silicone rubber composition and silicone rubber cross-linked body

Country Status (2)

Country Link
JP (1) JP6956697B2 (en)
WO (1) WO2020059437A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146560A (en) * 1989-10-31 1991-06-21 Toray Dow Corning Silicone Co Ltd Curable organopolysiloxane rubber composition
JP2002294076A (en) * 2001-04-02 2002-10-09 Dow Corning Toray Silicone Co Ltd Silicone gel composition for molding in metal mold
JP2014503680A (en) * 2011-01-26 2014-02-13 ダウ コーニング コーポレーション High temperature stable thermal conductive material
JP2014185229A (en) * 2013-03-22 2014-10-02 Momentive Performance Materials Inc Addition curable silicone rubber composition
JP2014534292A (en) * 2011-10-06 2014-12-18 ダウ コーニング コーポレーションDow Corning Corporation Gel with improved thermal stability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146560A (en) * 1989-10-31 1991-06-21 Toray Dow Corning Silicone Co Ltd Curable organopolysiloxane rubber composition
JP2002294076A (en) * 2001-04-02 2002-10-09 Dow Corning Toray Silicone Co Ltd Silicone gel composition for molding in metal mold
JP2014503680A (en) * 2011-01-26 2014-02-13 ダウ コーニング コーポレーション High temperature stable thermal conductive material
JP2014534292A (en) * 2011-10-06 2014-12-18 ダウ コーニング コーポレーションDow Corning Corporation Gel with improved thermal stability
JP2014185229A (en) * 2013-03-22 2014-10-02 Momentive Performance Materials Inc Addition curable silicone rubber composition

Also Published As

Publication number Publication date
JP2020045395A (en) 2020-03-26
JP6956697B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
JP5234964B2 (en) Liquid silicone rubber composition for textile coating
JP5392274B2 (en) Method for producing high thermal conductive silicone rubber sponge composition
CN112384556B (en) Composition, foamed silicone elastomer formed therefrom, and method of forming
JP2012131916A (en) Highly heat-conductive silicone rubber sponge composition and fixing roll
WO2012058956A1 (en) Liquid silicone rubber composition and preparation method therefor
JP2006144009A (en) Cross-linkable silicone material having long processing time and storage stability
JP2001240747A (en) Low-specific gravity liquid silicone rubber composition
JP2003096223A (en) Silicone rubber sponge-forming composition, silicone rubber sponge and process for producing same
JP7314397B2 (en) Silicone composition for elastomer foam
JP6947124B2 (en) Curable Silicone Gel Composition and Silicone Gel Cured Product
WO2015056374A1 (en) Silicone gel composition, and silicone gel cured product
JP2007063389A (en) Heat-curable and low-specific gravity liquid silicone rubber composition and low-specific gravity silicone rubber molded product
KR20170118093A (en) Sponge-forming silicone rubber composition and silicone rubber sponge
JP2003147207A (en) Low-specific gravity liquid silicone rubber composition and molded product of low-specific gravity silicone rubber
JP6956697B2 (en) Silicone rubber composition and silicone rubber crosslinked product
JP2018076407A (en) Curable silicone gel composition
JP4257531B2 (en) Silicone rubber composition for fixing roll and fixing roll
JP5864828B2 (en) Silicone rubber powder and method for producing the same
JPWO2018097125A1 (en) Sponge-forming liquid silicone rubber composition and silicone rubber sponge
JP2017179046A (en) Resin composition containing carried platinum catalyst, heat curable organopolysiloxane composition using the same, and method of curing the heat curable organopolysiloxane composition
JP4232469B2 (en) Silicone rubber composition, fixing roll and fixing belt
JP4648029B2 (en) Silicone rubber composition for heat fixing roll and heat fixing roll
JP7352454B2 (en) Expandable silicone rubber composition and silicone rubber foam
JP7409339B2 (en) Curable liquid silicone rubber foam composition for mechanical foaming and method for producing silicone rubber foam
JP3407852B2 (en) Liquid addition-curable silicone rubber composition for a fixing roll having a fluororesin-based surface layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863819

Country of ref document: EP

Kind code of ref document: A1