WO2020059202A1 - Method for detecting shape of joint part of joining member, and method and device for managing quality of joining member by using same - Google Patents
Method for detecting shape of joint part of joining member, and method and device for managing quality of joining member by using same Download PDFInfo
- Publication number
- WO2020059202A1 WO2020059202A1 PCT/JP2019/019115 JP2019019115W WO2020059202A1 WO 2020059202 A1 WO2020059202 A1 WO 2020059202A1 JP 2019019115 W JP2019019115 W JP 2019019115W WO 2020059202 A1 WO2020059202 A1 WO 2020059202A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shape
- straight line
- point
- coordinate data
- joint
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C51/00—Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
Definitions
- the present invention relates to a method for detecting the shape of a joint of a joining member, a method for quality control of a joining member using the same, and an apparatus therefor.
- a typical example of the joining member in which the end of the second member is butted against the first member and joined is a welded steel such as an H-beam or a T-beam.
- a butt portion (T-shaped joint portion) in which the width direction end faces of the web material as the second member are butted in a T-shape is joined to the surface of the flange material as the first member (
- the joint is formed and completed by generally welding in the case of metal. If a welding defect such as poor penetration occurs at the time of this welding, a correctly shaped back bead cannot be formed. For this reason, the shape of the butted portion of the welded steel (particularly the shape on the side where the back bead is formed) is used as an index for judging welding quality.
- the shape of the butted part of a welded steel was judged by visual inspection, but as a method of efficiently detecting the shape of the welded part of the steel, the surface of the steel using a non-contact optical sensor etc.
- a method of measuring the profile of the welding portion and processing the profile data to detect the shape of the welded portion has been performed.
- a processing method is set on the assumption that there is a considerably sharp change in the gradient from a smooth shape.
- the profile of the shape of the welded portion changes smoothly and even if a sudden change in the gradient is not recognized as compared with the other portions, there are cases where poor welding has occurred. This has not been recognized, and a situation has arisen in which a defective product cannot be determined as a defective product.
- Japanese Patent Application Laid-Open Publication No. H11-163873 discloses a technique such as damage or wear using a video inspection device including an image sensor such as a CCD, a probe electronic circuit, and a central processing unit.
- Methods and devices for automatically identifying points of interest (e.g., deepest or highest) on the surface of a display object having anomalies are disclosed.
- an image of the surface of the display target having an abnormality (target surface) is acquired using the image sensor of the video inspection device, and is displayed on the monitor.
- three-dimensional data is generated from the image acquired using the central processing unit, and three-dimensional coordinates of a plurality of surface points on the target surface of the display object including the abnormal surface point are determined.
- the central processing unit is used to determine a reference surface including a plurality of reference surface points close to the abnormality on the display object, and to determine a region of interest which is abnormally close based on the reference surface points of the reference surface.
- the central processing unit is used to determine the distance from each of the plurality of surface points in the region of interest to the reference surface, and by determining the surface point farthest from the reference surface, the position of the deepest or highest surface in the region of interest is determined. Is determined. According to such a method, it is not necessary for the user to manually specify the point of interest on the surface of the abnormality, so that the time for performing the measurement can be reduced and the measurement accuracy can be improved.
- a method of automatically identifying a point of interest on the surface of a display object having an abnormality such as damage or wear generates three-dimensional data of an image acquired by an image sensor. Determination of three-dimensional coordinates of a plurality of surface points on the target surface of the display object, determination of a reference surface including a plurality of reference surface points that are abnormally close, determination of a region of interest that is close to the abnormality based on the reference surface points of the reference surface A large amount of data processing such as determination, determination of the deepest or highest surface position in the region of interest, etc.
- the reference surface may deviate from the actual surface shape depending on how the reference surface points are taken, and an error may occur in the position of the deepest or highest surface in the region of interest or its distance. May also occur.
- a main object of the present invention is to provide a bonding member capable of accurately detecting information on a shape necessary and sufficient for judging the quality of a bonding portion of the bonding member without requiring a high-speed data processing device or a complicated mechanism.
- An object of the present invention is to provide a method for detecting a shape of a joint.
- a further object of the present invention is to provide a quality control method and apparatus for a joining member capable of reliably finding a defective product in which a shape abnormality exceeding a quality standard has occurred in a joint using such a shape detection method. And to provide.
- the first invention of the present invention provides, for example, as shown in FIGS. 1 to 8, an end of a second member (10b) protrudes from a first member (10a).
- the method for detecting the shape of the joint (12) of the joined members (10) joined together was constructed as follows.
- the shape of the joint portion (12) of the joint member (10) is specified by the shape coordinate data L obtained by scanning the non-contact means 14, including the joint portion (12) developed on a two-dimensional plane. Detection is performed based on the shape coordinate data L of the detection range.
- a coordinate point A of the minimum value in the Z-axis direction in the specific detection range is searched, and the coordinate point A of the minimum value is referred to from the profile of the second member (10b).
- Each coordinate of the first selection point B and the second selection point C is selected, and each coordinate of the third selection point D and the fourth selection point E is selected from the profile of the first member (10a).
- An approximate straight line ( ⁇ ) on the side of the second member including the above-described first selection point B and the above-mentioned second selection point C, and a second line including the above-mentioned third selection point D and the above-mentioned fourth selection point E Calculate the approximate straight line ( ⁇ ) on the side of the one member, and calculate the coordinates of the intersection F of the approximate straight line ( ⁇ ) on the side of the second member and the approximate straight line ( ⁇ ) on the side of the first member. calculate. Then, in the vicinity of a divergence between the approximate straight line ( ⁇ ) on the side of the second member or the approximate straight line ( ⁇ ) on the side of the first member and the shape of the shape coordinate data L, the shape coordinate is provided.
- a determination reference straight line J that does not intersect with the data L is provided, a minimum distance T between the determination reference straight line J and the above-described shape coordinate data L is calculated, and the minimum distance T expresses the shape of the above-described joint (12). Used as an index.
- the “Z-axis” refers to the profile of the first member (10a) of the shape coordinate data L in the specific detection range developed on the two-dimensional plane.
- the direction axis indicates the vertical direction
- the “minimum value” is the axis direction of the Z axis.
- the first invention has, for example, the following effects.
- the coordinate data of the determination reference straight line J that does not intersect with the shape coordinate data L and do not perform complicated image processing-like calculations. Therefore, a high-speed data processing device and a complicated mechanism are not required.
- the judgment reference straight line J is offset from the shape coordinate data L, whether the shape of the abutting portion 12 is convex or concave, the judgment reference straight line J and the shape coordinate data L are determined only on one side of the judgment reference straight line J. It is only necessary to search for a point on the shape coordinate data L at which the distance to is shortest, which is very simple.
- the present invention includes the following configuration. That is, the coordinate point A of the minimum value in the Z-axis direction in the shape coordinate data L is on the approximate straight line ( ⁇ ) on the side of the second member or on the approximate straight line ( ⁇ ) on the side of the first member.
- the judgment reference line J includes the intersection point F, and is between each of the approximate line ( ⁇ ) on the side of the second member and the approximate line ( ⁇ ) on the side of the first member. Are provided so as to make the angles formed by.
- the determination reference straight line J includes the intersection point F, and is between each of the approximate straight line ( ⁇ ) on the side of the second member and the approximate straight line ( ⁇ ) on the side of the first member. It is provided so that the angles formed are equal.
- the coordinate point A of the minimum value in the Z-axis direction in the shape coordinate data L is on the approximate straight line ( ⁇ ) on the side of the second member or on the approximate straight line ( ⁇ ) on the side of the first member. If not, the determination reference straight line J is provided so as to be parallel to the approximate straight line ( ⁇ ) on the side of the second member. "When the coordinate point A of the minimum value in the Z-axis direction in the shape coordinate data L is not on the approximate straight line ( ⁇ ) on the second member side or on the approximate straight line ( ⁇ ) on the first member side" In the joint portion (12), the thickness is depressed from the ideal outer shape line, and this corresponds to the case where the joint portion (12) does not protrude from the ideal outer shape line. , So as to be parallel to the approximate straight line ( ⁇ ) on the side of the second member.
- the joining member (10) in which the end of the second member (10b) is butted and joined to the first member (10a) is referred to as "the web member with respect to the flange material.” It is preferable that the ends of the material are butt-welded and welded section steels, and the “joining portion (12)" is a welded "butting portion". In this case, in particular, in the field of welded steel which is considered to have a high need for use of the present invention, it is possible to accurately detect information on the shape necessary and sufficient for judging the quality of the butted portion of the welded steel.
- the second invention according to the present invention is a quality control method for the joining member (10) using the shape detecting method for the joining portion (12) of the joining member (10) according to the first invention, wherein the "minimum distance T Is compared with a predetermined threshold value to determine the quality of the shape of the bonding portion (12) of the bonding member (10) after bonding. "
- the quality can be determined by comparison with a set threshold value, so that the quality of the shape can be detected very simply and accurately.
- the "joining member quality control apparatus" of the third invention in the present invention is an apparatus for implementing the method of the second invention, and for example, as shown in FIGS.
- the quality control device of (1) is configured as follows.
- the fan-shaped light is applied to the specific detection area including the joint (12) of the joining member (10), which is formed by joining the end of the second member (10b) to the first member (10a).
- a minimum coordinate A in the Z-axis direction in the specific detection range is searched, and the second member is referred to based on the minimum coordinate A.
- the respective coordinates of the first selection point B and the second selection point C are selected from the profile of (10b), and the third selection point D and the fourth selection point E are selected from the profile of the first member (10a).
- Each coordinate is selected, and an approximate straight line ( ⁇ ) on the side of the second member including the first selection point B and the second selection point C, the third selection point D, and the fourth selection point While calculating the approximate straight line ( ⁇ ) on the side of the first member including the point E, the approximate straight line ( ⁇ ) on the side of the second member and the approximate straight line ( ⁇ ) on the side of the first member are calculated. Is calculated, and the approximate straight line ( ⁇ ) on the side of the second member or the approximate straight line ( ⁇ ) on the side of the first member is calculated.
- a determination reference straight line J that does not intersect with the shape coordinate data L is provided in the vicinity of a divergence from the shape of the shape coordinate data L, and a minimum distance T between the determination reference straight line J and the shape coordinate data L is calculated.
- the joining unit The arithmetic processing unit 16 is composed of the determination processing unit 16c that determines the quality of the shape after joining in 12).
- the shape of the joining part of the joining member which can detect the information regarding the shape sufficient for the quality judgment of the joining part of the joining member with sufficient accuracy without requiring a high-speed data processing apparatus and a complicated mechanism It is possible to provide a quality control method and a device for a bonding member capable of reliably finding a defective product having a shape abnormality exceeding a quality standard at a bonding portion by using a detection method and such a shape detection method. it can.
- FIG. 2 is a block diagram illustrating a configuration example of an arithmetic processing unit in the quality control device for the joining member (welded section steel) according to the present invention. It is a flowchart which shows an example of the quality control method of the joining member (welded steel) of this invention.
- FIG. 4 is an image diagram of shape coordinate data in the shape detection method of a joint (butting portion) of a joining member (welded steel) according to the present invention.
- Shape detection image diagram of the joining part (butting part) in the quality control method of the joining part (butting part) of the joining member (welded section steel) of the present invention shape detection image diagram in the second member (web material) In the case of "no dripping").
- Shape detection image diagram of the joining part (butting part) in the quality control method of the joining part (butting part) of the joining member (welded section steel) of the present invention shape detection image diagram in the second member (web material) This is the case with "dripping"). It is explanatory drawing which shows an example of the welded steel to which the quality control method of the joining member (welded steel) of the present invention is applied. According to the quality control method of the joint (butting portion) of the joining member (welded section steel) of the present invention, the end of the second member (web material) projects at an acute angle with respect to the first member (flange material).
- FIG. 11 is a conceptual diagram of a shape detection when applied to a joined joint (butting portion) (in a case where the second member (web material) has no “droop”).
- the end of the second member (web material) projects at an obtuse angle with respect to the first member (flange material).
- FIG. 10 is a conceptual diagram of shape detection when applied to a joined portion (butting portion) (in a case where “sagging” is present in a second member (web material)).
- FIG. 1 is a schematic diagram showing an example of a device configuration of a quality control device for welded steel according to the present invention.
- the quality control device for welded steel according to one embodiment of the present invention includes a non-contact means 14 and an arithmetic processing unit 16.
- a non-contact type displacement meter configured with a light projecting device (not shown) and a data output device corresponds to this device.
- Reference numeral 14C in FIG. 1 is a control unit that controls the operation and the like of the non-contact means 14 in accordance with a command transmitted via the arithmetic processing device 16 described later.
- the light projecting device is a device that irradiates a fan-shaped light or scans a spot-shaped light to a specific detection range (see FIG. 2) centered on the welded butted portion 12 of the welded steel section 10.
- a light source using a slit light source in which light emitted from a light emitting element such as a laser or a lamp is linearly converged by a cylindrical lens or the like, or light that converges in a point shape at an irradiation position by a mirror or the like.
- An example using a scanning point light source that scans in a direction (X-axis direction) orthogonal to the butted portion 12 of the welded steel 10 can be exemplified.
- the “direction (X-axis direction) perpendicular to the butting portion 12” refers to the direction in which the flange material 10 a passes through the butting portion 12 (the end of the web material 10 b abuts against the flange material 10 a).
- the data output device receives the reflected light of the light radiated from the light projecting device toward the above-described specific detection range, and the shape coordinates reflecting the change in the position and shape of the butting portion 12 based on the reflected light.
- This device outputs data L, which is a shape coordinate data L obtained by developing a shape of a specific detection range centered on the abutting portion 12 on a two-dimensional plane. Specifically, it is composed of a 2D Ernostar lens, a CMOS image sensor, a microprocessor, and the like, and forms an image on the light receiving element of the CMOS image sensor by reflecting light diffusely reflected on the surface of the butted portion 12 of the welded steel 10.
- the generation of the shape coordinate data L is continuously performed in the longitudinal direction (Y-axis direction) of the welded steel 10.
- the shape coordinate data L generated by the data output device is provided to the arithmetic processing device 16 via the wiring 15.
- the Z-axis direction is a direction orthogonal to both the X-axis and the Y-axis (see FIGS. 1 and 2).
- the shape coordinate data L is arranged such that the profile of the flange material 10a and the profile of the web material 10b of the shape coordinate data L developed on the two-dimensional plane are bilaterally symmetric, Become.
- the welded steel 10 is an H-shaped steel, and a pair of butted portions 12 are formed at both ends of the web material 10b.
- the non-contact means 14 is connected is shown, for example, when the welded section steel 10 is a T-section steel, the number of the non-contact means 14 connected to the quality control device may be one. Further, if necessary, three or more non-contact means 14 may be provided in the quality control device.
- the arithmetic processing unit 16 is provided on a computer (not shown) and decodes an instruction to perform an arithmetic operation.
- the data processing unit 16a includes a data buffer unit 16a, a criterion straight line arithmetic / processing unit 16b,
- the processing unit 16c, the display processing unit 16d, and the event occurrence signal output unit 16e are configured on a general-purpose operating system 16x such as Windows (registered trademark) or Linux (registered trademark).
- the data buffer unit 16a is a storage device that temporarily stores the shape coordinate data L of the butted portion 12 of the welded steel 10 continuously provided from the non-contact means 14.
- the determination reference straight line / processing unit 16b performs the following operation on the above-described shape coordinate data L provided from the data buffer unit 16a. That is, the coordinate point A of the minimum value in the Z-axis direction in the specific detection range centering on the shape of the butting portion 12 is searched for the shape coordinate data L (see FIG. 5), and the coordinate point A of the minimum value is determined.
- the respective coordinates of the first selection point B and the second selection point C are selected from the profile of the web material 10b as a reference, and the respective coordinates of the third selection point D and the fourth selection point E are selected from the profile of the flange material 10a. Select (see FIG. 6).
- a web-side approximate straight line ⁇ including the first selected point B and the second selected point C and a flange-side approximate straight line ⁇ including the third selected point D and the fourth selected point E are described.
- the coordinates of the intersection F of the web-side approximate straight line ⁇ and the flange-side approximate straight line ⁇ are calculated (see FIG. 6).
- a determination reference straight line J that does not intersect with the shape coordinate data L is provided near the divergence between the web-side approximate straight line ⁇ or the flange-side approximate straight line ⁇ and the shape of the shape coordinate data L.
- the minimum distance T from the shape coordinate data L is calculated.
- “selecting the coordinates of the first selection point B” means that the first selection point B is selected on the two-dimensional coordinate plane including the X axis and the Z axis as shown in FIG. Determining the X and Z coordinates.
- the determination reference straight line J (which does not intersect with the shape coordinate data L)
- one of the following two is selected according to the shape of the butting portion 12.
- the coordinate point A of the minimum value in the Z-axis direction in the shape coordinate data L exists on the web-side approximate straight line ⁇ or the flange-side approximate straight line ⁇ .
- the determination reference straight line J selected in such a case includes the intersection point F and is provided such that the angles formed between the web-side approximate straight line ⁇ and the flange-side approximate straight line ⁇ are equal. (That is, a straight line substantially parallel to the X axis in the case of the embodiment of FIG. 7).
- the second case is, as shown in FIG. 8, where the welded portion of the butt portion 12 is recessed from the ideal outer shape line, and the butt portion 12 does not protrude from the ideal outer shape line.
- the coordinate A of the minimum value in the Z-axis direction in the shape coordinate data L does not exist on the web-side approximate straight line ⁇ or the flange-side approximate straight line ⁇ .
- the determination reference line J selected in such a case is provided so as to be parallel to the web-side approximate straight line ⁇ , in other words, the web-side approximate straight line ⁇ intersects the shape coordinate data L. It is translated so that it does not.
- the coordinate point G closest to the determination reference line J on the shape coordinate data L may not coincide with the minimum coordinate point A in the Z-axis direction.
- the reason why the welded portion is depressed from the ideal outer shape line in the butted portion 12 is that the web material 10b has a “sag” at the widthwise end of the web material 10b when the web material 10b is abutted against the flange material 10a. This may occur when the material 10b is butted against the flange material 10a.
- This “sag” appears in FIG. 8 in a portion where the shape coordinate data L deviates from the web-side approximate curve ⁇ and is curved from the point C to the point F via the point G.
- the "dripping" at the width direction end of the web material 10b means cutting conditions such as a state of a slitter blade and a method of applying the slitter blade when the steel material is cut by a slitter or the like to manufacture the web material 10b.
- an undesired cutting stress is applied to the width direction end of the web material 10b, and the end face is dragged toward the direction in which the stress is applied and plastically deforms as if dripping.
- the criterion straight line / processing unit 16b uses the obtained minimum distance T (between the criterion straight line J and the shape coordinate data L) as an index expressing the shape of the abutting unit 12, and uses the determination processing unit 16c and the display process. To the unit 16d.
- the display processing unit 16d receives not only the information on the minimum distance T but also the shape coordinate data L, each selected point, the web-side approximate straight line ⁇ , and the flange-side approximate straight line ⁇ as shown in FIGS. ,
- the intersection F and the determination reference line J are also provided from the determination reference line / processing unit 16b.
- the determination processing unit 16c determines whether or not the shape of the butted portion 12 of the welded steel shape 10 is good by comparing the deviation referred to as the minimum distance T calculated by the determination reference straight line / processing unit 16b with a predetermined threshold value. It is. When the deviation (minimum distance T) is equal to or exceeds the threshold as shown in FIGS. 7 and 8, for example, as shown in FIGS. If it is less than, it is determined that the defective product is not sufficiently welded, and the signal is given to the display processing unit 16d and the event occurrence signal output unit 16e.
- the display processing unit 16d is connected to a display device 18 such as a monitor via the wiring 17, and converts the data given from the determination reference straight line / processing unit 16b and the determination processing unit 16c so that the display device 18 can display the data. Is what you do.
- a touch panel display is used as the display device 18, and the display device 18 also has a function as a man-machine interface (HMI) for issuing various instructions to the arithmetic processing device 16.
- HMI man-machine interface
- Event occurrence signal output unit 16e The event occurrence signal output unit 16e is connected to an external system 20 such as a rotation warning light or an alarm buzzer via a wiring 19, and determines whether the butted portion 12 of the welded steel 10 is judged by the judgment processing unit 16c. A predetermined event occurrence signal is given to the external system 20 based on the result of the failure determination. For example, when the quality of the butting unit 12 is determined to be defective by the determination processing unit 16c, the event occurrence signal output unit 16e sends an external warning signal such as a rotation warning light or an alarm buzzer to notify the operator of the occurrence of a defective product. An event occurrence signal is generated such that the system 20 operates.
- an external system 20 such as a rotation warning light or an alarm buzzer
- the present invention is applied as shown in the flow chart of FIG.
- the method for detecting the shape of the butted portion 12 of the welded steel 10 and the quality control method using the same are executed in this order.
- step S1 of FIG. 4 by scanning the non-contact means 14, the shape coordinate data L of a specific detection range centered on the butted portion 12 of the welded steel 10 is acquired in a form developed on a two-dimensional plane.
- the data is supplied to the data buffer unit 16a of the arithmetic processing unit 16 via the wiring 15.
- step S2 in FIG. 4 the above-described shape coordinate data L is provided from the data buffer unit 16a to the determination reference straight line / processing unit 16b, and the specific detection centering on the shape of the butting unit 12 is performed as described above.
- the minimum coordinate point A in the Z-axis direction in the range is searched, and based on the minimum coordinate point A, the first selection point B and the second selection point C are selected from the profile of the web material 10b, A third selection point D and a fourth selection point E are selected from the profile of 10a (see FIG. 6). Thereafter, a web-side approximation straight line ⁇ including the first selection point B and the second selection point C and a flange-side approximation straight line ⁇ including the third selection point D and the fourth selection point E are calculated, and the web-side approximation is calculated. The coordinates of the intersection F between the straight line ⁇ and the flange side approximate straight line ⁇ are calculated (see FIG. 6).
- a determination reference straight line J that does not intersect with the shape coordinate data L is provided in the vicinity of the divergence between the web-side approximate straight line ⁇ or the flange-side approximate straight line ⁇ near the intersection F and the shape of the shape coordinate data L.
- the minimum distance T between the determination reference straight line J and the shape coordinate data L is calculated, and these data are given to the determination processing unit 16c as an index representing the shape of the abutting unit 12.
- step S3 in FIG. 4 the judgment processing unit 16c compares the minimum distance T between the judgment reference straight line J and the shape coordinate data L with a predetermined threshold value as described above, and The quality of the shape of the fitting unit 12 is determined. If the shape of the butt portion 12 is good, the OK process for determining that the product is a good product is performed in step S4. Conversely, if the shape of the butt portion 12 is bad, the process proceeds to step S5. NG processing for determining that the product is defective, specifically, as described above, the external system 20 such as a rotation warning light and a warning buzzer is operated from the event occurrence signal output unit 16e to notify the operator of the occurrence of the defective product. Such an event occurrence signal is issued.
- the external system 20 such as a rotation warning light and a warning buzzer is operated from the event occurrence signal output unit 16e to notify the operator of the occurrence of the defective product. Such an event occurrence signal is issued.
- quality control is performed when producing an H-section steel having a height of 150 mm x a width of 100 mm x a web thickness of 2.3 mm x a flange thickness of 3.2 mm x a length of 8600 mm.
- a commercially available high-precision two-dimensional laser displacement meter is used for the non-contact means 14 according to the present invention, and the threshold value when there is no “sag” at the end of the web material is 40 ⁇ m.
- the operation was performed with a threshold value of 600 ⁇ m (provided that the parallel movement distance between the web-side approximate straight line ⁇ and the determination reference straight line J was 1 mm) when “sagging” occurred.
- the defect detection rate was 0.07% for 1343 inspections. Since defective products could be extracted by using the quality control device of the present invention in the inspection process of the welding section steel production line, the number of defective products outflow was 0 and the defective product outflow rate was 0.00%.
- the non-contact means 14 uses a light projecting device.
- the non-contact means 14 has a surface shape of the welded butt portion 12 of the welded section steel 10. Any mode can be used as long as coordinate data (that is, shape coordinate data L) can be obtained, and an ultrasonic generator, a radar, or the like may be used instead of the light projecting device.
- the welding method and the shape of the welding section steel to which the method and apparatus of the present invention are applied are not particularly limited, and for example, any welding method such as high frequency, arc, plasma, laser, etc. It may be.
- the method and the apparatus of the present invention can be used, for example, in addition to the laser welded steel shown in FIG. 9A, the lightweight welded steel shown in FIG. 9B, and the build H-shaped steel shown in FIG. , (D), the shape of the butted portion 12 can be detected.
- the shape can be detected also for the fillet portion indicated by reference numeral 13 of the rolled H-beam shown in FIG. 9E.
- the welded section steel 10 is not limited to the one in which the ends of the web material 10b are vertically butted against the flange material 10a and are welded.
- the method of the present invention can be applied to a welded steel section in which the end of the web material 10b is abutted at an acute angle with respect to the flange material 10a, or a welded steel section abutted at an obtuse angle. Apparatus can be applied.
- the specific detection range is centered on the butting portion 12
- the specific detection range may be any mode as long as the specific detecting range includes the butting portion 12.
- the present invention is not limited to the scope of the above embodiment.
- the welded steel member 10 has been described as a specific example of the joint member (10).
- the joint member (10) is not limited to the welded steel member 10,
- a member in which a synthetic resin material such as FRP or CFRP is joined may be used, and in this case, the members may be joined by a method using an adhesive or a method using heat fusion.
- 10 welded steel (joining member), 10a: flange material (first member), 10b: web material (second member), 12: butted portion (joined portion), 14: non-contact means, 16: Arithmetic processing unit, 16b: determination reference straight line calculation / processing unit, 16c: determination processing unit, A: coordinate point of the minimum value in the Z-axis direction (in a specific detection range), B: first selection point, C: second selection Point, D: third selection point, E: fourth selection point, F: (web-side approximate straight line (approximate straight line on the second member side) and flange-side approximate straight line (approximate straight line on the first member side) J: Judgment reference straight line, L: Shape coordinate data, T: Minimum distance (between the judgment reference straight line and shape coordinate data), ⁇ : Web-side approximate straight line (approximate straight line on the second member side) , ⁇ : approximate straight line on the flange side (approximate straight line on the side of the first member).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Provided is a method which is capable of accurately detecting information about the shape, which is necessary and sufficient for determining the quality of a joint part of a joining member. According to the present invention, shape coordinate data is obtained by scanning a joint part (12) of a joining member (10) with a non-contact means (14) and deploying the scanned result on a two-dimensional plane. A coordinate point (A) of a minimum value in a Z-axis direction of the shape coordinate data (L) is searched for, and, on the basis thereof, a first selection point (B) and a second selection point (C) are selected from a profile of a second member (10b), and a third selection point (D) and a fourth selection point (E) are selected from a profile of a first member (10a). A second member side approximate straight line (α) including the first selection point (B) and the second selection point (C), a first member side approximate straight line (β) including the third selection point(D) and the fourth selection point (D), and the coordinates of an intersection point (F) thereof are calculated. Around deviation portions of the second member side approximate straight line (α) or the first member side approximate straight line (β), from the shape of the shape coordinate data (L), a determination criterion straight line (J), which does not intersect with the shape coordinate data (L), is provided, and the minimum distance (T) between the determination criterion straight line and the shape coordinate data (L) is adopted as an index for expressing the shape of the joint part (12).
Description
本発明は、接合部材の接合部の形状検出方法と、それを用いた接合部材の品質管理方法及びその装置とに関する。
The present invention relates to a method for detecting the shape of a joint of a joining member, a method for quality control of a joining member using the same, and an apparatus therefor.
第一の部材に対して第二の部材の端部が突き合わされて接合された接合部材の代表的なものにH形鋼やT形鋼などの溶接形鋼がある。この溶接形鋼は、第一の部材であるフランジ材の表面に、第二の部材であるウェブ材の幅方向端面をT字状に突き合わせた突合わせ部(T字状継手部)を接合(金属の場合は一般的に溶接)することによって接合部が形成され完成する。この溶接の際に、溶け込み不良などの溶接欠陥が生じている場合、正しい形状の裏ビードが形成されなくなる。このため、溶接形鋼の突合わせ部の形状(とりわけ裏ビードが形成される側の形状)は溶接品質を判断する指標として活用されている。
接合 A typical example of the joining member in which the end of the second member is butted against the first member and joined is a welded steel such as an H-beam or a T-beam. In this welded steel, a butt portion (T-shaped joint portion) in which the width direction end faces of the web material as the second member are butted in a T-shape is joined to the surface of the flange material as the first member ( The joint is formed and completed by generally welding in the case of metal. If a welding defect such as poor penetration occurs at the time of this welding, a correctly shaped back bead cannot be formed. For this reason, the shape of the butted portion of the welded steel (particularly the shape on the side where the back bead is formed) is used as an index for judging welding quality.
従来、溶接形鋼の突合わせ部の形状は全量目視検査することにより判定されていたが、鋼材の溶接部分の形状を効率よく検出する方法として、非接触式の光学センサーなどを用いて鋼材表面のプロファイルを測定し、そのプロファイルデータを処理することによって溶接部分の形状を検出する方法が行なわれている。かかる方法では、プロファイルデータを処理する場合において、溶接部分の形状に異常が有る場合、滑らかな形状からかなり急激な勾配の変化があるものと期待して処理方法が設定されていた。しかしながら、溶接部分の形状のプロファイルが滑らかに変化し、他の部分に比較して特段の勾配の急変が認められない場合であっても溶接不良を生じている場合があるため、従来の方法ではそれが認識されず、不良品を不良品と判定できなくなる事態が生じるようになって来た。
Conventionally, the shape of the butted part of a welded steel was judged by visual inspection, but as a method of efficiently detecting the shape of the welded part of the steel, the surface of the steel using a non-contact optical sensor etc. A method of measuring the profile of the welding portion and processing the profile data to detect the shape of the welded portion has been performed. In such a method, when processing profile data, if there is an abnormality in the shape of a welded portion, a processing method is set on the assumption that there is a considerably sharp change in the gradient from a smooth shape. However, even in the case where the profile of the shape of the welded portion changes smoothly and even if a sudden change in the gradient is not recognized as compared with the other portions, there are cases where poor welding has occurred. This has not been recognized, and a situation has arisen in which a defective product cannot be determined as a defective product.
そこで、そのような問題を解消し得る技術として、例えば下記の特許文献1には、CCDなどのイメージセンサ,プローブ電子回路および中央処理ユニット等で構成されたビデオ検査デバイスを用いて損傷や磨耗などの異常を有する表示対象物の表面上の関心点(例えば、最深または最高点)を自動的に識別する方法およびデバイスが開示されている。具体的には、ビデオ検査デバイスのイメージセンサを用いて異常を有する表示対象物の表面(対象表面)の画像を取得し、モニター上に表示する。続いて、中央処理ユニットを用いて取得した画像から3次元データを生成し、異常の表面点を含む表示対象物の対象表面上の複数の表面点の3次元座標を決定する。続いて、中央処理ユニットを用いて表示対象物上の異常に近接する複数の基準表面点を含む基準表面を決定するとともに、基準表面の基準表面点に基づいて異常に近接する関心領域を決定する。そして、中央処理ユニットを用いて関心領域内の複数の表面点それぞれから基準表面への距離を決定するとともに、基準表面から最も遠い表面点を決定することにより関心領域内の最深または最高表面の位置を決定するものである。
かかる方法によれば、ユーザーが手動で異常の表面上の関心点を特定する必要がないので、測定を実行するための時間が短縮されるとともに、測定精度を改善することが可能となる。 Therefore, as a technique capable of solving such a problem, for example, Japanese Patent Application Laid-Open Publication No. H11-163873 discloses a technique such as damage or wear using a video inspection device including an image sensor such as a CCD, a probe electronic circuit, and a central processing unit. Methods and devices for automatically identifying points of interest (e.g., deepest or highest) on the surface of a display object having anomalies are disclosed. Specifically, an image of the surface of the display target having an abnormality (target surface) is acquired using the image sensor of the video inspection device, and is displayed on the monitor. Subsequently, three-dimensional data is generated from the image acquired using the central processing unit, and three-dimensional coordinates of a plurality of surface points on the target surface of the display object including the abnormal surface point are determined. Subsequently, the central processing unit is used to determine a reference surface including a plurality of reference surface points close to the abnormality on the display object, and to determine a region of interest which is abnormally close based on the reference surface points of the reference surface. . Then, the central processing unit is used to determine the distance from each of the plurality of surface points in the region of interest to the reference surface, and by determining the surface point farthest from the reference surface, the position of the deepest or highest surface in the region of interest is determined. Is determined.
According to such a method, it is not necessary for the user to manually specify the point of interest on the surface of the abnormality, so that the time for performing the measurement can be reduced and the measurement accuracy can be improved.
かかる方法によれば、ユーザーが手動で異常の表面上の関心点を特定する必要がないので、測定を実行するための時間が短縮されるとともに、測定精度を改善することが可能となる。 Therefore, as a technique capable of solving such a problem, for example, Japanese Patent Application Laid-Open Publication No. H11-163873 discloses a technique such as damage or wear using a video inspection device including an image sensor such as a CCD, a probe electronic circuit, and a central processing unit. Methods and devices for automatically identifying points of interest (e.g., deepest or highest) on the surface of a display object having anomalies are disclosed. Specifically, an image of the surface of the display target having an abnormality (target surface) is acquired using the image sensor of the video inspection device, and is displayed on the monitor. Subsequently, three-dimensional data is generated from the image acquired using the central processing unit, and three-dimensional coordinates of a plurality of surface points on the target surface of the display object including the abnormal surface point are determined. Subsequently, the central processing unit is used to determine a reference surface including a plurality of reference surface points close to the abnormality on the display object, and to determine a region of interest which is abnormally close based on the reference surface points of the reference surface. . Then, the central processing unit is used to determine the distance from each of the plurality of surface points in the region of interest to the reference surface, and by determining the surface point farthest from the reference surface, the position of the deepest or highest surface in the region of interest is determined. Is determined.
According to such a method, it is not necessary for the user to manually specify the point of interest on the surface of the abnormality, so that the time for performing the measurement can be reduced and the measurement accuracy can be improved.
しかしながら、上記の特許文献に記載の技術には、次のような問題があった。
すなわち、上記特許文献1で開示されている、損傷や磨耗などの異常を有する表示対象物の表面上の関心点を自動的に識別する方法では、イメージセンサで取得した画像の3次元データ生成,表示対象物の対象表面上の複数の表面点の3次元座標の決定,異常に近接する複数の基準表面点を含む基準表面の決定,基準表面の基準表面点に基づく異常に近接する関心領域の決定,関心領域内の最深または最高表面位置の決定等々の大量のデータ処理を行わなければならず、かかる方法の処理速度を上げるためには、高速なデータ処理装置や複雑な機構が必要となる。
また、表示対象物の表面が不規則な形状である場合、基準表面点の取り方によっては基準表面が実際の表面形状と乖離し、関心領域内の最深または最高表面の位置やその距離に誤差の生じる虞もある。 However, the techniques described in the above patent documents have the following problems.
That is, in the method disclosed in Patent Document 1 described above, a method of automatically identifying a point of interest on the surface of a display object having an abnormality such as damage or wear, generates three-dimensional data of an image acquired by an image sensor. Determination of three-dimensional coordinates of a plurality of surface points on the target surface of the display object, determination of a reference surface including a plurality of reference surface points that are abnormally close, determination of a region of interest that is close to the abnormality based on the reference surface points of the reference surface A large amount of data processing such as determination, determination of the deepest or highest surface position in the region of interest, etc. must be performed, and a high-speed data processing device and a complicated mechanism are required to increase the processing speed of such a method. .
In addition, if the surface of the display object has an irregular shape, the reference surface may deviate from the actual surface shape depending on how the reference surface points are taken, and an error may occur in the position of the deepest or highest surface in the region of interest or its distance. May also occur.
すなわち、上記特許文献1で開示されている、損傷や磨耗などの異常を有する表示対象物の表面上の関心点を自動的に識別する方法では、イメージセンサで取得した画像の3次元データ生成,表示対象物の対象表面上の複数の表面点の3次元座標の決定,異常に近接する複数の基準表面点を含む基準表面の決定,基準表面の基準表面点に基づく異常に近接する関心領域の決定,関心領域内の最深または最高表面位置の決定等々の大量のデータ処理を行わなければならず、かかる方法の処理速度を上げるためには、高速なデータ処理装置や複雑な機構が必要となる。
また、表示対象物の表面が不規則な形状である場合、基準表面点の取り方によっては基準表面が実際の表面形状と乖離し、関心領域内の最深または最高表面の位置やその距離に誤差の生じる虞もある。 However, the techniques described in the above patent documents have the following problems.
That is, in the method disclosed in Patent Document 1 described above, a method of automatically identifying a point of interest on the surface of a display object having an abnormality such as damage or wear, generates three-dimensional data of an image acquired by an image sensor. Determination of three-dimensional coordinates of a plurality of surface points on the target surface of the display object, determination of a reference surface including a plurality of reference surface points that are abnormally close, determination of a region of interest that is close to the abnormality based on the reference surface points of the reference surface A large amount of data processing such as determination, determination of the deepest or highest surface position in the region of interest, etc. must be performed, and a high-speed data processing device and a complicated mechanism are required to increase the processing speed of such a method. .
In addition, if the surface of the display object has an irregular shape, the reference surface may deviate from the actual surface shape depending on how the reference surface points are taken, and an error may occur in the position of the deepest or highest surface in the region of interest or its distance. May also occur.
それゆえに、本発明の主たる目的は、高速なデータ処理装置や複雑な機構を必要とせず、接合部材の接合部の良否判別に必要十分な形状に関する情報を精度よく検出することができる接合部材の接合部の形状検出方法を提供することにある。また、本発明の更なる目的は、そのような形状検出方法を用い、接合部に品質基準を超える形状異常が生じた不良品を確実に見つけ出すことが可能な接合部材の品質管理方法とその装置とを提供することにある。
Therefore, a main object of the present invention is to provide a bonding member capable of accurately detecting information on a shape necessary and sufficient for judging the quality of a bonding portion of the bonding member without requiring a high-speed data processing device or a complicated mechanism. An object of the present invention is to provide a method for detecting a shape of a joint. Further, a further object of the present invention is to provide a quality control method and apparatus for a joining member capable of reliably finding a defective product in which a shape abnormality exceeding a quality standard has occurred in a joint using such a shape detection method. And to provide.
上記目的を達成するため、本発明における第1の発明は、例えば、図1から図8に示すように、第一の部材(10a)に対して第二の部材(10b)の端部が突き合わされて接合された接合部材(10)の接合部(12)の形状検出方法を次のように構成した。
接合部材(10)の接合部(12)の形状を、非接触手段14を走査することにより得た形状座標データLであって2次元平面に展開された上記の接合部(12)を含む特定検出範囲の形状座標データLに基づいて検出する。
上記の形状座標データLに対し、上記の特定検出範囲におけるZ軸方向の最小値の座標点Aを検索し、その最小値の座標点Aを基準に第二の部材(10b)のプロファイル上から第1選択点Bおよび第2選択点Cの各座標を選出するとともに、第一の部材(10a)のプロファイル上から第3選択点Dおよび第4選択点Eの各座標を選出する。
上記の第1選択点Bと上記の第2選択点Cとを含む第二の部材の側の近似直線(α)および上記の第3選択点Dと上記の第4選択点Eとを含む第一の部材の側の近似直線(β)を算出するとともに、上記第二の部材の側の近似直線(α)と上記第一の部材の側の近似直線(β)との交点Fの座標を算出する。
そして、上記第二の部材の側の近似直線(α)または上記第一の部材の側の近似直線(β)と上記の形状座標データLの形状との乖離部分の近傍に、上記の形状座標データLと交差しない判定基準直線Jを設け、その判定基準直線Jと上記の形状座標データLとの最小距離Tを算出し、この最小距離Tを上記の接合部(12)の形状を表現する指標として用いる。 In order to achieve the above object, the first invention of the present invention provides, for example, as shown in FIGS. 1 to 8, an end of a second member (10b) protrudes from a first member (10a). The method for detecting the shape of the joint (12) of the joined members (10) joined together was constructed as follows.
The shape of the joint portion (12) of the joint member (10) is specified by the shape coordinate data L obtained by scanning the non-contact means 14, including the joint portion (12) developed on a two-dimensional plane. Detection is performed based on the shape coordinate data L of the detection range.
With respect to the shape coordinate data L, a coordinate point A of the minimum value in the Z-axis direction in the specific detection range is searched, and the coordinate point A of the minimum value is referred to from the profile of the second member (10b). Each coordinate of the first selection point B and the second selection point C is selected, and each coordinate of the third selection point D and the fourth selection point E is selected from the profile of the first member (10a).
An approximate straight line (α) on the side of the second member including the above-described first selection point B and the above-mentioned second selection point C, and a second line including the above-mentioned third selection point D and the above-mentioned fourth selection point E Calculate the approximate straight line (β) on the side of the one member, and calculate the coordinates of the intersection F of the approximate straight line (α) on the side of the second member and the approximate straight line (β) on the side of the first member. calculate.
Then, in the vicinity of a divergence between the approximate straight line (α) on the side of the second member or the approximate straight line (β) on the side of the first member and the shape of the shape coordinate data L, the shape coordinate is provided. A determination reference straight line J that does not intersect with the data L is provided, a minimum distance T between the determination reference straight line J and the above-described shape coordinate data L is calculated, and the minimum distance T expresses the shape of the above-described joint (12). Used as an index.
接合部材(10)の接合部(12)の形状を、非接触手段14を走査することにより得た形状座標データLであって2次元平面に展開された上記の接合部(12)を含む特定検出範囲の形状座標データLに基づいて検出する。
上記の形状座標データLに対し、上記の特定検出範囲におけるZ軸方向の最小値の座標点Aを検索し、その最小値の座標点Aを基準に第二の部材(10b)のプロファイル上から第1選択点Bおよび第2選択点Cの各座標を選出するとともに、第一の部材(10a)のプロファイル上から第3選択点Dおよび第4選択点Eの各座標を選出する。
上記の第1選択点Bと上記の第2選択点Cとを含む第二の部材の側の近似直線(α)および上記の第3選択点Dと上記の第4選択点Eとを含む第一の部材の側の近似直線(β)を算出するとともに、上記第二の部材の側の近似直線(α)と上記第一の部材の側の近似直線(β)との交点Fの座標を算出する。
そして、上記第二の部材の側の近似直線(α)または上記第一の部材の側の近似直線(β)と上記の形状座標データLの形状との乖離部分の近傍に、上記の形状座標データLと交差しない判定基準直線Jを設け、その判定基準直線Jと上記の形状座標データLとの最小距離Tを算出し、この最小距離Tを上記の接合部(12)の形状を表現する指標として用いる。 In order to achieve the above object, the first invention of the present invention provides, for example, as shown in FIGS. 1 to 8, an end of a second member (10b) protrudes from a first member (10a). The method for detecting the shape of the joint (12) of the joined members (10) joined together was constructed as follows.
The shape of the joint portion (12) of the joint member (10) is specified by the shape coordinate data L obtained by scanning the non-contact means 14, including the joint portion (12) developed on a two-dimensional plane. Detection is performed based on the shape coordinate data L of the detection range.
With respect to the shape coordinate data L, a coordinate point A of the minimum value in the Z-axis direction in the specific detection range is searched, and the coordinate point A of the minimum value is referred to from the profile of the second member (10b). Each coordinate of the first selection point B and the second selection point C is selected, and each coordinate of the third selection point D and the fourth selection point E is selected from the profile of the first member (10a).
An approximate straight line (α) on the side of the second member including the above-described first selection point B and the above-mentioned second selection point C, and a second line including the above-mentioned third selection point D and the above-mentioned fourth selection point E Calculate the approximate straight line (β) on the side of the one member, and calculate the coordinates of the intersection F of the approximate straight line (α) on the side of the second member and the approximate straight line (β) on the side of the first member. calculate.
Then, in the vicinity of a divergence between the approximate straight line (α) on the side of the second member or the approximate straight line (β) on the side of the first member and the shape of the shape coordinate data L, the shape coordinate is provided. A determination reference straight line J that does not intersect with the data L is provided, a minimum distance T between the determination reference straight line J and the above-described shape coordinate data L is calculated, and the minimum distance T expresses the shape of the above-described joint (12). Used as an index.
ここで、本発明における「Z軸方向の最小値」に関し、「Z軸」とは、2次元平面に展開された特定検出範囲における形状座標データLの第一の部材(10a)のプロファイルと第二の部材(10b)のプロファイルとが左右対称となるよう当該形状座標データLを配置した際にその上下方向を示す方向軸であり、「最小値」とは、そのZ軸の軸方向において、形状座標データLを出力する非接触手段14から最も離間した所に有る形状座標データL上の座標位置(値)をいう(図1,図2および図5参照)。
Here, regarding the “minimum value in the Z-axis direction” in the present invention, the “Z-axis” refers to the profile of the first member (10a) of the shape coordinate data L in the specific detection range developed on the two-dimensional plane. When the shape coordinate data L is arranged such that the profile of the second member (10b) is bilaterally symmetric, the direction axis indicates the vertical direction, and the “minimum value” is the axis direction of the Z axis. A coordinate position (value) on the shape coordinate data L located farthest from the non-contact means 14 that outputs the shape coordinate data L (see FIGS. 1, 2 and 5).
上記の第1の発明は、例えば、次の作用を奏する。
接合部(12)の形状判定に必要なデータとして、形状座標データLに加え、上記の通り算出した第二の部材の側の近似直線(α)及び第一の部材の側の近似直線(β)の座標データと形状座標データLと交差しない判定基準直線Jの座標データとを用い、複雑な画像処理的な演算を行わないことから、高速なデータ処理装置や複雑な機構が不要である。
加えて、判定基準直線Jが形状座標データLからオフセットされているので、突合わせ部12の形状が凸状でも凹状でも、判定基準直線Jの片側だけで当該判定基準直線Jと形状座標データLとの距離が最短になる形状座標データL上の点を探査すればよく、非常に簡便である。 The first invention has, for example, the following effects.
As data necessary for shape determination of the joint (12), in addition to the shape coordinate data L, the approximate straight line (α) on the side of the second member and the approximate straight line (β ) And the coordinate data of the determination reference straight line J that does not intersect with the shape coordinate data L, and do not perform complicated image processing-like calculations. Therefore, a high-speed data processing device and a complicated mechanism are not required.
In addition, since the judgment reference straight line J is offset from the shape coordinate data L, whether the shape of the abuttingportion 12 is convex or concave, the judgment reference straight line J and the shape coordinate data L are determined only on one side of the judgment reference straight line J. It is only necessary to search for a point on the shape coordinate data L at which the distance to is shortest, which is very simple.
接合部(12)の形状判定に必要なデータとして、形状座標データLに加え、上記の通り算出した第二の部材の側の近似直線(α)及び第一の部材の側の近似直線(β)の座標データと形状座標データLと交差しない判定基準直線Jの座標データとを用い、複雑な画像処理的な演算を行わないことから、高速なデータ処理装置や複雑な機構が不要である。
加えて、判定基準直線Jが形状座標データLからオフセットされているので、突合わせ部12の形状が凸状でも凹状でも、判定基準直線Jの片側だけで当該判定基準直線Jと形状座標データLとの距離が最短になる形状座標データL上の点を探査すればよく、非常に簡便である。 The first invention has, for example, the following effects.
As data necessary for shape determination of the joint (12), in addition to the shape coordinate data L, the approximate straight line (α) on the side of the second member and the approximate straight line (β ) And the coordinate data of the determination reference straight line J that does not intersect with the shape coordinate data L, and do not perform complicated image processing-like calculations. Therefore, a high-speed data processing device and a complicated mechanism are not required.
In addition, since the judgment reference straight line J is offset from the shape coordinate data L, whether the shape of the abutting
なお、本発明は次の構成を含む。
すなわち、前記の形状座標データLにおけるZ軸方向の最小値の座標点Aが前記第二の部材の側の近似直線(α)上または前記第一の部材の側の近似直線(β)上にある場合、前記の判定基準直線Jが、前記の交点Fを含み、上記第二の部材の側の近似直線(α)および上記第一の部材の側の近似直線(β)のそれぞれとの間で成す角度が等しくなるように設けられる。
「形状座標データLにおけるZ軸方向の最小値の座標点Aが第二の部材の側の近似直線(α)上または第一の部材の側の近似直線(β)上にある場合」とは、接合部(12)においてその肉が第二の部材の側の近似直線(α)と第一の部材の側の近似直線(β)とで構成される理想外形線よりも突出している場合に相当し、このような場合、判定基準直線Jを、交点Fを含み、第二の部材の側の近似直線(α)および第一の部材の側の近似直線(β)のそれぞれとの間で成す角度が等しくなるように設ける。
また、前記の形状座標データLにおけるZ軸方向の最小値の座標点Aが前記第二の部材の側の近似直線(α)上または前記第一の部材の側の近似直線(β)上にない場合、前記の判定基準直線Jが、前記第二の部材の側の近似直線(α)と平行するように設けられる。
「形状座標データLにおけるZ軸方向の最小値の座標点Aが第二の部材の側の近似直線(α)上または第一の部材の側の近似直線(β)上にない場合」とは、接合部(12)においてその肉が上記の理想外形線よりも窪んでおり、接合部(12)が理想外形線よりも突出していない場合に相当し、このような場合、判定基準直線Jを、第二の部材の側の近似直線(α)と平行するように設ける。 The present invention includes the following configuration.
That is, the coordinate point A of the minimum value in the Z-axis direction in the shape coordinate data L is on the approximate straight line (α) on the side of the second member or on the approximate straight line (β) on the side of the first member. In some cases, the judgment reference line J includes the intersection point F, and is between each of the approximate line (α) on the side of the second member and the approximate line (β) on the side of the first member. Are provided so as to make the angles formed by.
"When the coordinate point A of the minimum value in the Z-axis direction in the shape coordinate data L is on the approximate straight line (α) on the second member side or on the approximate straight line (β) on the first member side" In the case where the flesh of the joint (12) protrudes beyond the ideal outline formed by the approximate straight line (α) on the second member side and the approximate straight line (β) on the first member side, Correspondingly, in such a case, the determination reference straight line J includes the intersection point F, and is between each of the approximate straight line (α) on the side of the second member and the approximate straight line (β) on the side of the first member. It is provided so that the angles formed are equal.
Also, the coordinate point A of the minimum value in the Z-axis direction in the shape coordinate data L is on the approximate straight line (α) on the side of the second member or on the approximate straight line (β) on the side of the first member. If not, the determination reference straight line J is provided so as to be parallel to the approximate straight line (α) on the side of the second member.
"When the coordinate point A of the minimum value in the Z-axis direction in the shape coordinate data L is not on the approximate straight line (α) on the second member side or on the approximate straight line (β) on the first member side" In the joint portion (12), the thickness is depressed from the ideal outer shape line, and this corresponds to the case where the joint portion (12) does not protrude from the ideal outer shape line. , So as to be parallel to the approximate straight line (α) on the side of the second member.
すなわち、前記の形状座標データLにおけるZ軸方向の最小値の座標点Aが前記第二の部材の側の近似直線(α)上または前記第一の部材の側の近似直線(β)上にある場合、前記の判定基準直線Jが、前記の交点Fを含み、上記第二の部材の側の近似直線(α)および上記第一の部材の側の近似直線(β)のそれぞれとの間で成す角度が等しくなるように設けられる。
「形状座標データLにおけるZ軸方向の最小値の座標点Aが第二の部材の側の近似直線(α)上または第一の部材の側の近似直線(β)上にある場合」とは、接合部(12)においてその肉が第二の部材の側の近似直線(α)と第一の部材の側の近似直線(β)とで構成される理想外形線よりも突出している場合に相当し、このような場合、判定基準直線Jを、交点Fを含み、第二の部材の側の近似直線(α)および第一の部材の側の近似直線(β)のそれぞれとの間で成す角度が等しくなるように設ける。
また、前記の形状座標データLにおけるZ軸方向の最小値の座標点Aが前記第二の部材の側の近似直線(α)上または前記第一の部材の側の近似直線(β)上にない場合、前記の判定基準直線Jが、前記第二の部材の側の近似直線(α)と平行するように設けられる。
「形状座標データLにおけるZ軸方向の最小値の座標点Aが第二の部材の側の近似直線(α)上または第一の部材の側の近似直線(β)上にない場合」とは、接合部(12)においてその肉が上記の理想外形線よりも窪んでおり、接合部(12)が理想外形線よりも突出していない場合に相当し、このような場合、判定基準直線Jを、第二の部材の側の近似直線(α)と平行するように設ける。 The present invention includes the following configuration.
That is, the coordinate point A of the minimum value in the Z-axis direction in the shape coordinate data L is on the approximate straight line (α) on the side of the second member or on the approximate straight line (β) on the side of the first member. In some cases, the judgment reference line J includes the intersection point F, and is between each of the approximate line (α) on the side of the second member and the approximate line (β) on the side of the first member. Are provided so as to make the angles formed by.
"When the coordinate point A of the minimum value in the Z-axis direction in the shape coordinate data L is on the approximate straight line (α) on the second member side or on the approximate straight line (β) on the first member side" In the case where the flesh of the joint (12) protrudes beyond the ideal outline formed by the approximate straight line (α) on the second member side and the approximate straight line (β) on the first member side, Correspondingly, in such a case, the determination reference straight line J includes the intersection point F, and is between each of the approximate straight line (α) on the side of the second member and the approximate straight line (β) on the side of the first member. It is provided so that the angles formed are equal.
Also, the coordinate point A of the minimum value in the Z-axis direction in the shape coordinate data L is on the approximate straight line (α) on the side of the second member or on the approximate straight line (β) on the side of the first member. If not, the determination reference straight line J is provided so as to be parallel to the approximate straight line (α) on the side of the second member.
"When the coordinate point A of the minimum value in the Z-axis direction in the shape coordinate data L is not on the approximate straight line (α) on the second member side or on the approximate straight line (β) on the first member side" In the joint portion (12), the thickness is depressed from the ideal outer shape line, and this corresponds to the case where the joint portion (12) does not protrude from the ideal outer shape line. , So as to be parallel to the approximate straight line (α) on the side of the second member.
また、本発明においては、「第一の部材(10a)に対して第二の部材(10b)の端部が突き合わされて接合された接合部材(10)」が、「フランジ材に対してウェブ材の端部が突き合わされて溶接された溶接形鋼」であり、「接合部(12)」が、溶接された「突合わせ部」であるのが好ましい。
この場合、特に本発明の利用ニーズが高いと考えられる溶接形鋼の分野において、溶接形鋼の突合わせ部の良否判別に必要十分な形状に関する情報を精度よく検出することができる。 Further, in the present invention, "the joining member (10) in which the end of the second member (10b) is butted and joined to the first member (10a)" is referred to as "the web member with respect to the flange material." It is preferable that the ends of the material are butt-welded and welded section steels, and the "joining portion (12)" is a welded "butting portion".
In this case, in particular, in the field of welded steel which is considered to have a high need for use of the present invention, it is possible to accurately detect information on the shape necessary and sufficient for judging the quality of the butted portion of the welded steel.
この場合、特に本発明の利用ニーズが高いと考えられる溶接形鋼の分野において、溶接形鋼の突合わせ部の良否判別に必要十分な形状に関する情報を精度よく検出することができる。 Further, in the present invention, "the joining member (10) in which the end of the second member (10b) is butted and joined to the first member (10a)" is referred to as "the web member with respect to the flange material." It is preferable that the ends of the material are butt-welded and welded section steels, and the "joining portion (12)" is a welded "butting portion".
In this case, in particular, in the field of welded steel which is considered to have a high need for use of the present invention, it is possible to accurately detect information on the shape necessary and sufficient for judging the quality of the butted portion of the welded steel.
本発明における第2の発明は、上記第1の発明の接合部材(10)の接合部(12)の形状検出方法を用いた接合部材(10)の品質管理方法であって、「最小距離Tを所定の閾値と比較することにより、接合部材(10)における接合部(12)の接合後の形状の良否を判定する」ことを特徴とする。
この発明では、接合部(12)の接合後の形状の良否を判断する際に、設定した閾値との比較で判定できるため、かかる形状の良否を非常に簡単且つ精度よく検出することができる。 The second invention according to the present invention is a quality control method for the joining member (10) using the shape detecting method for the joining portion (12) of the joining member (10) according to the first invention, wherein the "minimum distance T Is compared with a predetermined threshold value to determine the quality of the shape of the bonding portion (12) of the bonding member (10) after bonding. "
According to the present invention, when determining the quality of the shape of the bonded portion (12) after bonding, the quality can be determined by comparison with a set threshold value, so that the quality of the shape can be detected very simply and accurately.
この発明では、接合部(12)の接合後の形状の良否を判断する際に、設定した閾値との比較で判定できるため、かかる形状の良否を非常に簡単且つ精度よく検出することができる。 The second invention according to the present invention is a quality control method for the joining member (10) using the shape detecting method for the joining portion (12) of the joining member (10) according to the first invention, wherein the "minimum distance T Is compared with a predetermined threshold value to determine the quality of the shape of the bonding portion (12) of the bonding member (10) after bonding. "
According to the present invention, when determining the quality of the shape of the bonded portion (12) after bonding, the quality can be determined by comparison with a set threshold value, so that the quality of the shape can be detected very simply and accurately.
本発明における第3の発明の「接合部材の品質管理装置」は、上記第2の発明の方法を実施するための装置であって、例えば図1から図8に示すように、接合部材(10)の品質管理装置を次のように構成したものである。
第一の部材(10a)に対して第二の部材(10b)の端部が突き合わされて接合された接合部材(10)の接合部(12)を含む特定検出範囲に扇状光を照射あるいは点状光を走査し、照射あるいは走査された光の反射光に基づいて上記の接合部(12)の位置や形状の変化が反映された形状座標データLを生成して出力する非接触手段14を有する。
上記の非接触手段14により得られた形状座標データLに対し、上記の特定検出範囲におけるZ軸方向の最小値の座標Aを検索し、その最小値の座標Aを基準に上記第二の部材(10b)のプロファイル上から第1選択点Bおよび第2選択点Cの各座標を選出するとともに、上記第一の部材(10a)のプロファイル上から第3選択点Dおよび第4選択点Eの各座標を選出し、上記の第1選択点Bと上記の第2選択点Cとを含む第二の部材の側の近似直線(α)および上記の第3選択点Dと上記の第4選択点Eとを含む第一の部材の側の近似直線(β)を算出するとともに、上記第二の部材の側の近似直線(α)と上記第一の部材の側の近似直線(β)との交点Fの座標を算出し、上記第二の部材の側の近似直線(α)または上記第一の部材の側の近似直線(β)と上記の形状座標データLの形状との乖離部分の近傍に、上記の形状座標データLと交差しない判定基準直線Jを設け、その判定基準直線Jと上記の形状座標データLとの最小距離Tを算出する判定基準直線演算・処理部16b、および、上記の判定基準直線演算・処理部16bで得られた上記の最小距離Tを所定の閾値と比較することにより、接合部材(10)における接合部(12)の接合後の形状の良否を判定する判定処理部16cで演算処理装置16が構成される。 The "joining member quality control apparatus" of the third invention in the present invention is an apparatus for implementing the method of the second invention, and for example, as shown in FIGS. The quality control device of (1) is configured as follows.
The fan-shaped light is applied to the specific detection area including the joint (12) of the joining member (10), which is formed by joining the end of the second member (10b) to the first member (10a). Non-contact means 14 for scanning shape light and generating and outputting shape coordinate data L reflecting a change in the position or shape of the above-mentioned joint (12) based on reflected light of the irradiated or scanned light. Have.
With respect to the shape coordinate data L obtained by the non-contact means 14, a minimum coordinate A in the Z-axis direction in the specific detection range is searched, and the second member is referred to based on the minimum coordinate A. The respective coordinates of the first selection point B and the second selection point C are selected from the profile of (10b), and the third selection point D and the fourth selection point E are selected from the profile of the first member (10a). Each coordinate is selected, and an approximate straight line (α) on the side of the second member including the first selection point B and the second selection point C, the third selection point D, and the fourth selection point While calculating the approximate straight line (β) on the side of the first member including the point E, the approximate straight line (α) on the side of the second member and the approximate straight line (β) on the side of the first member are calculated. Is calculated, and the approximate straight line (α) on the side of the second member or the approximate straight line (β) on the side of the first member is calculated. A determination reference straight line J that does not intersect with the shape coordinate data L is provided in the vicinity of a divergence from the shape of the shape coordinate data L, and a minimum distance T between the determination reference straight line J and the shape coordinate data L is calculated. By comparing the minimum distance T obtained by the judgment reference straight line calculation /processing unit 16b and the judgment reference straight line calculation / processing unit 16b with a predetermined threshold value, the joining unit ( The arithmetic processing unit 16 is composed of the determination processing unit 16c that determines the quality of the shape after joining in 12).
第一の部材(10a)に対して第二の部材(10b)の端部が突き合わされて接合された接合部材(10)の接合部(12)を含む特定検出範囲に扇状光を照射あるいは点状光を走査し、照射あるいは走査された光の反射光に基づいて上記の接合部(12)の位置や形状の変化が反映された形状座標データLを生成して出力する非接触手段14を有する。
上記の非接触手段14により得られた形状座標データLに対し、上記の特定検出範囲におけるZ軸方向の最小値の座標Aを検索し、その最小値の座標Aを基準に上記第二の部材(10b)のプロファイル上から第1選択点Bおよび第2選択点Cの各座標を選出するとともに、上記第一の部材(10a)のプロファイル上から第3選択点Dおよび第4選択点Eの各座標を選出し、上記の第1選択点Bと上記の第2選択点Cとを含む第二の部材の側の近似直線(α)および上記の第3選択点Dと上記の第4選択点Eとを含む第一の部材の側の近似直線(β)を算出するとともに、上記第二の部材の側の近似直線(α)と上記第一の部材の側の近似直線(β)との交点Fの座標を算出し、上記第二の部材の側の近似直線(α)または上記第一の部材の側の近似直線(β)と上記の形状座標データLの形状との乖離部分の近傍に、上記の形状座標データLと交差しない判定基準直線Jを設け、その判定基準直線Jと上記の形状座標データLとの最小距離Tを算出する判定基準直線演算・処理部16b、および、上記の判定基準直線演算・処理部16bで得られた上記の最小距離Tを所定の閾値と比較することにより、接合部材(10)における接合部(12)の接合後の形状の良否を判定する判定処理部16cで演算処理装置16が構成される。 The "joining member quality control apparatus" of the third invention in the present invention is an apparatus for implementing the method of the second invention, and for example, as shown in FIGS. The quality control device of (1) is configured as follows.
The fan-shaped light is applied to the specific detection area including the joint (12) of the joining member (10), which is formed by joining the end of the second member (10b) to the first member (10a). Non-contact means 14 for scanning shape light and generating and outputting shape coordinate data L reflecting a change in the position or shape of the above-mentioned joint (12) based on reflected light of the irradiated or scanned light. Have.
With respect to the shape coordinate data L obtained by the non-contact means 14, a minimum coordinate A in the Z-axis direction in the specific detection range is searched, and the second member is referred to based on the minimum coordinate A. The respective coordinates of the first selection point B and the second selection point C are selected from the profile of (10b), and the third selection point D and the fourth selection point E are selected from the profile of the first member (10a). Each coordinate is selected, and an approximate straight line (α) on the side of the second member including the first selection point B and the second selection point C, the third selection point D, and the fourth selection point While calculating the approximate straight line (β) on the side of the first member including the point E, the approximate straight line (α) on the side of the second member and the approximate straight line (β) on the side of the first member are calculated. Is calculated, and the approximate straight line (α) on the side of the second member or the approximate straight line (β) on the side of the first member is calculated. A determination reference straight line J that does not intersect with the shape coordinate data L is provided in the vicinity of a divergence from the shape of the shape coordinate data L, and a minimum distance T between the determination reference straight line J and the shape coordinate data L is calculated. By comparing the minimum distance T obtained by the judgment reference straight line calculation /
本発明によれば、高速なデータ処理装置や複雑な機構を必要とせず、接合部材の接合部の良否判別に必要十分な形状に関する情報を精度よく検出することができる接合部材の接合部の形状検出方法と、そのような形状検出方法を用い、接合部に品質基準を超える形状異常が生じた不良品を確実に見つけ出すことが可能な接合部材の品質管理方法及びその装置とを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the shape of the joining part of the joining member which can detect the information regarding the shape sufficient for the quality judgment of the joining part of the joining member with sufficient accuracy without requiring a high-speed data processing apparatus and a complicated mechanism It is possible to provide a quality control method and a device for a bonding member capable of reliably finding a defective product having a shape abnormality exceeding a quality standard at a bonding portion by using a detection method and such a shape detection method. it can.
以下、本発明の一実施形態について、図面を参照しつつ説明する。
なお、本実施形態では、発明の理解を容易にするため、接合部材の具体例として溶接形鋼を取り上げ、また、「第一の部材に対して第二の部材の端部が突き合わされて接合された接合部材の接続部」の具体例として、「フランジ材に対してウェブ材の端部が突き合わされて溶接された溶接形鋼の突合わせ部」を取り上げて説明する。
図1は、本発明に係る溶接形鋼の品質管理装置の装置構成例を示す概略図である。この図が示すように、本発明の一実施形態の溶接形鋼の品質管理装置は、非接触手段14と演算処理装置16とを備える。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In the present embodiment, in order to facilitate understanding of the invention, a welded steel section is taken as a specific example of the joining member, and "the end of the second member is abutted against the first member and joined. As a specific example of the “connected portion of the joined member”, a description will be given of a “butt portion of a welded steel shape formed by welding an end of a web material to a flange material and welding”.
FIG. 1 is a schematic diagram showing an example of a device configuration of a quality control device for welded steel according to the present invention. As shown in this figure, the quality control device for welded steel according to one embodiment of the present invention includes a non-contact means 14 and anarithmetic processing unit 16.
なお、本実施形態では、発明の理解を容易にするため、接合部材の具体例として溶接形鋼を取り上げ、また、「第一の部材に対して第二の部材の端部が突き合わされて接合された接合部材の接続部」の具体例として、「フランジ材に対してウェブ材の端部が突き合わされて溶接された溶接形鋼の突合わせ部」を取り上げて説明する。
図1は、本発明に係る溶接形鋼の品質管理装置の装置構成例を示す概略図である。この図が示すように、本発明の一実施形態の溶接形鋼の品質管理装置は、非接触手段14と演算処理装置16とを備える。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In the present embodiment, in order to facilitate understanding of the invention, a welded steel section is taken as a specific example of the joining member, and "the end of the second member is abutted against the first member and joined. As a specific example of the “connected portion of the joined member”, a description will be given of a “butt portion of a welded steel shape formed by welding an end of a web material to a flange material and welding”.
FIG. 1 is a schematic diagram showing an example of a device configuration of a quality control device for welded steel according to the present invention. As shown in this figure, the quality control device for welded steel according to one embodiment of the present invention includes a non-contact means 14 and an
非接触手段14は、フランジ材10aに対してウェブ材10bの端部が垂直に突き合わされて溶接された溶接形鋼10の突合わせ部12の表面形状の座標データ(=形状座標データL)を得るための装置で、本実施形態では、(図示しないが)投光装置とデータ出力装置とで構成された非接触式変位計がこれに該当する。
なお、図1中の符号14Cは、後述する演算処理装置16を介して伝達される命令に応じて、この非接触手段14の動作などを制御する制御ユニットである。 The non-contact means 14 converts the coordinate data (= shape coordinate data L) of the surface shape of the buttedportion 12 of the welded steel 10 to which the end of the web material 10b is vertically butted against the flange material 10a and welded. In the present embodiment, a non-contact type displacement meter configured with a light projecting device (not shown) and a data output device corresponds to this device.
Reference numeral 14C in FIG. 1 is a control unit that controls the operation and the like of the non-contact means 14 in accordance with a command transmitted via the arithmetic processing device 16 described later.
なお、図1中の符号14Cは、後述する演算処理装置16を介して伝達される命令に応じて、この非接触手段14の動作などを制御する制御ユニットである。 The non-contact means 14 converts the coordinate data (= shape coordinate data L) of the surface shape of the butted
投光装置は、溶接形鋼10の溶接された突合わせ部12を中心とした特定検出範囲(図2参照)に扇状光を照射あるいは点状光を走査する装置である。具体的には、レーザーやランプ等の発光素子が放射する光をシリンドリカルレンズ等で線状に収束されたスリット光源を用いたものや、照射位置で点状に収束するような光をミラー等で溶接形鋼10の突合わせ部12に直交する方向(X軸方向)に走査するような走査点光源を用いたものなどを例示することができる。ここで、「突合わせ部12に直交する方向(X軸方向)」とは、(フランジ材10aに対してウェブ材10bの端部が突き合わされた)突合わせ部12を通り且つフランジ材10aおよびウェブ材10bのそれぞれの表面から等距離にある軸線Hと直交するとともに、溶接形鋼10の軸方向(長手方向=Y軸方向)とも直交する方向のことを言う(図1および図2参照)。
光 The light projecting device is a device that irradiates a fan-shaped light or scans a spot-shaped light to a specific detection range (see FIG. 2) centered on the welded butted portion 12 of the welded steel section 10. Specifically, a light source using a slit light source in which light emitted from a light emitting element such as a laser or a lamp is linearly converged by a cylindrical lens or the like, or light that converges in a point shape at an irradiation position by a mirror or the like. An example using a scanning point light source that scans in a direction (X-axis direction) orthogonal to the butted portion 12 of the welded steel 10 can be exemplified. Here, the “direction (X-axis direction) perpendicular to the butting portion 12” refers to the direction in which the flange material 10 a passes through the butting portion 12 (the end of the web material 10 b abuts against the flange material 10 a). The direction perpendicular to the axis H equidistant from each surface of the web material 10b and also perpendicular to the axial direction (longitudinal direction = Y-axis direction) of the welded steel 10 (see FIGS. 1 and 2). .
データ出力装置は、投光装置から上記の特定検出範囲に向けて照射された光の反射光が入力され、その反射光に基づいて突合わせ部12の位置や形状の変化が反映された形状座標データLであって、突合わせ部12を中心とする特定検出範囲の形状を2次元平面に展開した形状座標データLを出力する装置である。具体的には、2Dエルノスターレンズ,CMOSイメージセンサ及びマイクロプロセッサなどで構成され、溶接形鋼10の突合わせ部12の表面で拡散反射した反射光をCMOSイメージセンサの受光素子上に結像させ、位置・形状の変化を検出し、その位置や形状の変化を表す形状座標データLを生成する装置である。なお、このデータ出力装置を含む非接触手段14では、形状座標データLの生成が溶接形鋼10の長手方向(Y軸方向)に対して連続的に行われる。
そして、このデータ出力装置で生成された形状座標データLは配線15を介して演算処理装置16に与えられる。 The data output device receives the reflected light of the light radiated from the light projecting device toward the above-described specific detection range, and the shape coordinates reflecting the change in the position and shape of the buttingportion 12 based on the reflected light. This device outputs data L, which is a shape coordinate data L obtained by developing a shape of a specific detection range centered on the abutting portion 12 on a two-dimensional plane. Specifically, it is composed of a 2D Ernostar lens, a CMOS image sensor, a microprocessor, and the like, and forms an image on the light receiving element of the CMOS image sensor by reflecting light diffusely reflected on the surface of the butted portion 12 of the welded steel 10. This is a device that detects a change in position and shape and generates shape coordinate data L representing the change in position and shape. In the non-contact means 14 including this data output device, the generation of the shape coordinate data L is continuously performed in the longitudinal direction (Y-axis direction) of the welded steel 10.
The shape coordinate data L generated by the data output device is provided to thearithmetic processing device 16 via the wiring 15.
そして、このデータ出力装置で生成された形状座標データLは配線15を介して演算処理装置16に与えられる。 The data output device receives the reflected light of the light radiated from the light projecting device toward the above-described specific detection range, and the shape coordinates reflecting the change in the position and shape of the butting
The shape coordinate data L generated by the data output device is provided to the
本発明に係る溶接形鋼の品質管理装置において、Z軸方向は、X軸とY軸のどちらに対しても直交する方向であり(図1および図2参照)、上述したように、Z軸は、2次元平面に展開された形状座標データLのフランジ材10aのプロファイルとウェブ材10bのプロファイルとが左右対称となるよう当該形状座標データLを配置した際にその上下方向を示す方向軸となる。
In the welded steel quality control device according to the present invention, the Z-axis direction is a direction orthogonal to both the X-axis and the Y-axis (see FIGS. 1 and 2). When the shape coordinate data L is arranged such that the profile of the flange material 10a and the profile of the web material 10b of the shape coordinate data L developed on the two-dimensional plane are bilaterally symmetric, Become.
なお、図1の実施形態では、溶接形鋼10がH形鋼であり、ウェブ材10bの両端に一対の突合わせ部12が形成されているため、溶接形鋼の品質管理装置に2台の非接触手段14を接続する場合を示しているが、例えば、溶接形鋼10がT形鋼の場合には、当該品質管理装置に接続する非接触手段14は1台でもよい。また、必要に応じて、品質管理装置に3台以上の非接触手段14を設けるようにしても良い。
In the embodiment of FIG. 1, the welded steel 10 is an H-shaped steel, and a pair of butted portions 12 are formed at both ends of the web material 10b. Although the case where the non-contact means 14 is connected is shown, for example, when the welded section steel 10 is a T-section steel, the number of the non-contact means 14 connected to the quality control device may be one. Further, if necessary, three or more non-contact means 14 may be provided in the quality control device.
演算処理装置16は、コンピューター(図示せず)上に設けられ、命令を解読し演算を行う装置であり、図3に示すように、データバッファ部16a,判定基準直線演算・処理部16b,判定処理部16c,表示処理部16d及びイベント発生信号出力部16eの各部が、Windows(登録商標)やLinux(登録商標)と言った汎用のオペレーティングシステム16x上に構成されている。
The arithmetic processing unit 16 is provided on a computer (not shown) and decodes an instruction to perform an arithmetic operation. As shown in FIG. 3, the data processing unit 16a includes a data buffer unit 16a, a criterion straight line arithmetic / processing unit 16b, The processing unit 16c, the display processing unit 16d, and the event occurrence signal output unit 16e are configured on a general-purpose operating system 16x such as Windows (registered trademark) or Linux (registered trademark).
(データバッファ部16a)
データバッファ部16aは、非接触手段14から連続的に提供される溶接形鋼10の突合わせ部12の形状座標データLを一時的に蓄えておく記憶装置である。 (Data buffer unit 16a)
Thedata buffer unit 16a is a storage device that temporarily stores the shape coordinate data L of the butted portion 12 of the welded steel 10 continuously provided from the non-contact means 14.
データバッファ部16aは、非接触手段14から連続的に提供される溶接形鋼10の突合わせ部12の形状座標データLを一時的に蓄えておく記憶装置である。 (
The
(判定基準直線・処理部16b)
判定基準直線・処理部16bは、データバッファ部16aより提供される上記の形状座標データLに対し、以下の演算を行うものである。
すなわち、形状座標データLに対し、突合わせ部12の形状を中心とした特定検出範囲におけるZ軸方向の最小値の座標点Aを検索し(図5参照)、その最小値の座標点Aを基準にウェブ材10bのプロファイル上から第1選択点Bおよび第2選択点Cの各座標を選出するとともに、フランジ材10aのプロファイル上から第3選択点Dおよび第4選択点Eの各座標を選出する(図6参照)。
続いて、上記の第1選択点Bと上記の第2選択点Cとを含むウェブ側近似直線αおよび上記の第3選択点Dと上記の第4選択点Eとを含むフランジ側近似直線βを算出するとともに、上記ウェブ側近似直線αと上記フランジ側近似直線βとの交点Fの座標を算出する(図6参照)。
また、上記のウェブ側近似直線αまたはフランジ側近似直線βと形状座標データLの形状との乖離部分の近傍に、形状座標データLと交差しない判定基準直線Jを設け、その判定基準直線Jと形状座標データLとの最小距離Tを算出する。
なお、本明細書において、例えば「第1選択点Bの座標を選出する」とは、図6に示したようにX軸とZ軸からなる2次元座標平面上で、第1選択点BのX座標とZ座標とを決定することを言う。 (Judgment reference straight line /processing unit 16b)
The determination reference straight line /processing unit 16b performs the following operation on the above-described shape coordinate data L provided from the data buffer unit 16a.
That is, the coordinate point A of the minimum value in the Z-axis direction in the specific detection range centering on the shape of the buttingportion 12 is searched for the shape coordinate data L (see FIG. 5), and the coordinate point A of the minimum value is determined. The respective coordinates of the first selection point B and the second selection point C are selected from the profile of the web material 10b as a reference, and the respective coordinates of the third selection point D and the fourth selection point E are selected from the profile of the flange material 10a. Select (see FIG. 6).
Subsequently, a web-side approximate straight line α including the first selected point B and the second selected point C and a flange-side approximate straight line β including the third selected point D and the fourth selected point E are described. And the coordinates of the intersection F of the web-side approximate straight line α and the flange-side approximate straight line β are calculated (see FIG. 6).
In addition, a determination reference straight line J that does not intersect with the shape coordinate data L is provided near the divergence between the web-side approximate straight line α or the flange-side approximate straight line β and the shape of the shape coordinate data L. The minimum distance T from the shape coordinate data L is calculated.
In this specification, for example, “selecting the coordinates of the first selection point B” means that the first selection point B is selected on the two-dimensional coordinate plane including the X axis and the Z axis as shown in FIG. Determining the X and Z coordinates.
判定基準直線・処理部16bは、データバッファ部16aより提供される上記の形状座標データLに対し、以下の演算を行うものである。
すなわち、形状座標データLに対し、突合わせ部12の形状を中心とした特定検出範囲におけるZ軸方向の最小値の座標点Aを検索し(図5参照)、その最小値の座標点Aを基準にウェブ材10bのプロファイル上から第1選択点Bおよび第2選択点Cの各座標を選出するとともに、フランジ材10aのプロファイル上から第3選択点Dおよび第4選択点Eの各座標を選出する(図6参照)。
続いて、上記の第1選択点Bと上記の第2選択点Cとを含むウェブ側近似直線αおよび上記の第3選択点Dと上記の第4選択点Eとを含むフランジ側近似直線βを算出するとともに、上記ウェブ側近似直線αと上記フランジ側近似直線βとの交点Fの座標を算出する(図6参照)。
また、上記のウェブ側近似直線αまたはフランジ側近似直線βと形状座標データLの形状との乖離部分の近傍に、形状座標データLと交差しない判定基準直線Jを設け、その判定基準直線Jと形状座標データLとの最小距離Tを算出する。
なお、本明細書において、例えば「第1選択点Bの座標を選出する」とは、図6に示したようにX軸とZ軸からなる2次元座標平面上で、第1選択点BのX座標とZ座標とを決定することを言う。 (Judgment reference straight line /
The determination reference straight line /
That is, the coordinate point A of the minimum value in the Z-axis direction in the specific detection range centering on the shape of the butting
Subsequently, a web-side approximate straight line α including the first selected point B and the second selected point C and a flange-side approximate straight line β including the third selected point D and the fourth selected point E are described. And the coordinates of the intersection F of the web-side approximate straight line α and the flange-side approximate straight line β are calculated (see FIG. 6).
In addition, a determination reference straight line J that does not intersect with the shape coordinate data L is provided near the divergence between the web-side approximate straight line α or the flange-side approximate straight line β and the shape of the shape coordinate data L. The minimum distance T from the shape coordinate data L is calculated.
In this specification, for example, “selecting the coordinates of the first selection point B” means that the first selection point B is selected on the two-dimensional coordinate plane including the X axis and the Z axis as shown in FIG. Determining the X and Z coordinates.
ここで、(形状座標データLと交差しない)判定基準直線Jは、突合わせ部12の形状に応じて、次の2つの何れかが選択される。
一つ目は、図6および図7に示すように、突合わせ部12において溶接部分がウェブ側近似直線αとフランジ側近似直線βとで構成される理想外形線よりも突出している場合である。この場合、形状座標データLにおけるZ軸方向の最小値の座標点Aがウェブ側近似直線α上またはフランジ側近似直線β上に存在することとなる。
かかる場合に選択される判定基準直線Jは、図7に示すように、交点Fを含み、ウェブ側近似直線αおよびフランジ側近似直線βのそれぞれとの間で成す角度が等しくなるように設けられたもの(すなわち、図7の実施形態の場合はX軸と略平行な直線)である。 Here, as the determination reference straight line J (which does not intersect with the shape coordinate data L), one of the following two is selected according to the shape of the buttingportion 12.
First, as shown in FIG. 6 and FIG. 7, a case where the welded portion in thebutt portion 12 protrudes beyond an ideal outline formed by the web-side approximate straight line α and the flange-side approximate straight line β. . In this case, the coordinate point A of the minimum value in the Z-axis direction in the shape coordinate data L exists on the web-side approximate straight line α or the flange-side approximate straight line β.
As shown in FIG. 7, the determination reference straight line J selected in such a case includes the intersection point F and is provided such that the angles formed between the web-side approximate straight line α and the flange-side approximate straight line β are equal. (That is, a straight line substantially parallel to the X axis in the case of the embodiment of FIG. 7).
一つ目は、図6および図7に示すように、突合わせ部12において溶接部分がウェブ側近似直線αとフランジ側近似直線βとで構成される理想外形線よりも突出している場合である。この場合、形状座標データLにおけるZ軸方向の最小値の座標点Aがウェブ側近似直線α上またはフランジ側近似直線β上に存在することとなる。
かかる場合に選択される判定基準直線Jは、図7に示すように、交点Fを含み、ウェブ側近似直線αおよびフランジ側近似直線βのそれぞれとの間で成す角度が等しくなるように設けられたもの(すなわち、図7の実施形態の場合はX軸と略平行な直線)である。 Here, as the determination reference straight line J (which does not intersect with the shape coordinate data L), one of the following two is selected according to the shape of the butting
First, as shown in FIG. 6 and FIG. 7, a case where the welded portion in the
As shown in FIG. 7, the determination reference straight line J selected in such a case includes the intersection point F and is provided such that the angles formed between the web-side approximate straight line α and the flange-side approximate straight line β are equal. (That is, a straight line substantially parallel to the X axis in the case of the embodiment of FIG. 7).
二つ目は、図8に示すように、突合わせ部12において溶接部分が上記の理想外形線よりも窪んでおり、突合わせ部12が理想外形線よりも突出していない場合である。この場合、形状座標データLにおけるZ軸方向の最小値の座標Aがウェブ側近似直線α上またはフランジ側近似直線β上に存在しないこととなる。
かかる場合に選択される判定基準直線Jは、図8に示すように、ウェブ側近似直線αと平行するように設けられたもの、換言すれば、ウェブ側近似直線αを形状座標データLと交差しないように平行移動させたものである。このため、(上記の一つ目の場合と異なり)形状座標データL上で判定基準直線Jに最も近い座標点GがZ軸方向の最小値の座標点Aと一致しない場合が生じるようになる。
なお、この突合わせ部12において溶接部分が上記の理想外形線よりも窪むのは、フランジ材10aにウェブ材10bを突き合わせるにあたり、ウェブ材10bの幅方向端部に「垂れ」が生じているウェブ材10bをフランジ材10aに突き合わせた場合に起こることがある。この「垂れ」は、図8において、形状座標データLがウェブ側近似曲線αから外れて、点Cから点Gを経て点Fに至るまでの間に湾曲している部分に現れている。
因みに、ウェブ材10bの幅方向端部における「垂れ」とは、鋼材をスリッターなどで切断してウェブ材10bを製造する際に、スリッター刃の状態やスリッター刃の当て方などと言った切断条件によって、ウェブ材10bの幅方向端部に不所望な切断応力が加えられ、かかる応力の押圧方向に向けて端面が引き摺られて垂れたように塑性変形してしまう現象を言う。 The second case is, as shown in FIG. 8, where the welded portion of thebutt portion 12 is recessed from the ideal outer shape line, and the butt portion 12 does not protrude from the ideal outer shape line. In this case, the coordinate A of the minimum value in the Z-axis direction in the shape coordinate data L does not exist on the web-side approximate straight line α or the flange-side approximate straight line β.
As shown in FIG. 8, the determination reference line J selected in such a case is provided so as to be parallel to the web-side approximate straight line α, in other words, the web-side approximate straight line α intersects the shape coordinate data L. It is translated so that it does not. For this reason, unlike the first case, the coordinate point G closest to the determination reference line J on the shape coordinate data L may not coincide with the minimum coordinate point A in the Z-axis direction. .
In addition, the reason why the welded portion is depressed from the ideal outer shape line in the buttedportion 12 is that the web material 10b has a “sag” at the widthwise end of the web material 10b when the web material 10b is abutted against the flange material 10a. This may occur when the material 10b is butted against the flange material 10a. This “sag” appears in FIG. 8 in a portion where the shape coordinate data L deviates from the web-side approximate curve α and is curved from the point C to the point F via the point G.
Incidentally, the "dripping" at the width direction end of theweb material 10b means cutting conditions such as a state of a slitter blade and a method of applying the slitter blade when the steel material is cut by a slitter or the like to manufacture the web material 10b. As a result, an undesired cutting stress is applied to the width direction end of the web material 10b, and the end face is dragged toward the direction in which the stress is applied and plastically deforms as if dripping.
かかる場合に選択される判定基準直線Jは、図8に示すように、ウェブ側近似直線αと平行するように設けられたもの、換言すれば、ウェブ側近似直線αを形状座標データLと交差しないように平行移動させたものである。このため、(上記の一つ目の場合と異なり)形状座標データL上で判定基準直線Jに最も近い座標点GがZ軸方向の最小値の座標点Aと一致しない場合が生じるようになる。
なお、この突合わせ部12において溶接部分が上記の理想外形線よりも窪むのは、フランジ材10aにウェブ材10bを突き合わせるにあたり、ウェブ材10bの幅方向端部に「垂れ」が生じているウェブ材10bをフランジ材10aに突き合わせた場合に起こることがある。この「垂れ」は、図8において、形状座標データLがウェブ側近似曲線αから外れて、点Cから点Gを経て点Fに至るまでの間に湾曲している部分に現れている。
因みに、ウェブ材10bの幅方向端部における「垂れ」とは、鋼材をスリッターなどで切断してウェブ材10bを製造する際に、スリッター刃の状態やスリッター刃の当て方などと言った切断条件によって、ウェブ材10bの幅方向端部に不所望な切断応力が加えられ、かかる応力の押圧方向に向けて端面が引き摺られて垂れたように塑性変形してしまう現象を言う。 The second case is, as shown in FIG. 8, where the welded portion of the
As shown in FIG. 8, the determination reference line J selected in such a case is provided so as to be parallel to the web-side approximate straight line α, in other words, the web-side approximate straight line α intersects the shape coordinate data L. It is translated so that it does not. For this reason, unlike the first case, the coordinate point G closest to the determination reference line J on the shape coordinate data L may not coincide with the minimum coordinate point A in the Z-axis direction. .
In addition, the reason why the welded portion is depressed from the ideal outer shape line in the butted
Incidentally, the "dripping" at the width direction end of the
そして、判定基準直線・処理部16bは、得られた(判定基準直線Jと形状座標データLとの)最小距離Tを、突合わせ部12の形状を表現する指標として判定処理部16c及び表示処理部16dへと与える。
なお、表示処理部16dへは、上記の最小距離Tの情報のみならず、図7や図8に示すように、形状座標データL,各選択点,ウェブ側近似直線α,フランジ側近似直線β,交点Fおよび判定基準直線Jなどの情報もこの判定基準直線・処理部16bから与えられるようになっている。 The criterion straight line /processing unit 16b uses the obtained minimum distance T (between the criterion straight line J and the shape coordinate data L) as an index expressing the shape of the abutting unit 12, and uses the determination processing unit 16c and the display process. To the unit 16d.
Thedisplay processing unit 16d receives not only the information on the minimum distance T but also the shape coordinate data L, each selected point, the web-side approximate straight line α, and the flange-side approximate straight line β as shown in FIGS. , The intersection F and the determination reference line J are also provided from the determination reference line / processing unit 16b.
なお、表示処理部16dへは、上記の最小距離Tの情報のみならず、図7や図8に示すように、形状座標データL,各選択点,ウェブ側近似直線α,フランジ側近似直線β,交点Fおよび判定基準直線Jなどの情報もこの判定基準直線・処理部16bから与えられるようになっている。 The criterion straight line /
The
(判定処理部16c)
判定処理部16cは、判定基準直線・処理部16bで演算した、最小距離Tと言う偏差を所定の閾値と比較することにより、溶接形鋼10の突合わせ部12の形状の良否を判定するものである。
この判定処理部16cでは、例えば図7や図8で示すように、偏差(最小距離T)が閾値と同一あるいはこれを超える場合、しっかりと溶接された良品と判定し、逆に、偏差が閾値を下回る場合、十分に溶接されていない不良品と判定し、その信号を表示処理部16d及びイベント発生信号出力部16eに与える。 (Determination processing unit 16c)
Thedetermination processing unit 16c determines whether or not the shape of the butted portion 12 of the welded steel shape 10 is good by comparing the deviation referred to as the minimum distance T calculated by the determination reference straight line / processing unit 16b with a predetermined threshold value. It is.
When the deviation (minimum distance T) is equal to or exceeds the threshold as shown in FIGS. 7 and 8, for example, as shown in FIGS. If it is less than, it is determined that the defective product is not sufficiently welded, and the signal is given to thedisplay processing unit 16d and the event occurrence signal output unit 16e.
判定処理部16cは、判定基準直線・処理部16bで演算した、最小距離Tと言う偏差を所定の閾値と比較することにより、溶接形鋼10の突合わせ部12の形状の良否を判定するものである。
この判定処理部16cでは、例えば図7や図8で示すように、偏差(最小距離T)が閾値と同一あるいはこれを超える場合、しっかりと溶接された良品と判定し、逆に、偏差が閾値を下回る場合、十分に溶接されていない不良品と判定し、その信号を表示処理部16d及びイベント発生信号出力部16eに与える。 (
The
When the deviation (minimum distance T) is equal to or exceeds the threshold as shown in FIGS. 7 and 8, for example, as shown in FIGS. If it is less than, it is determined that the defective product is not sufficiently welded, and the signal is given to the
(表示処理部16d)
表示処理部16dは、配線17を介してモニターなどの表示装置18に接続されており、判定基準直線・処理部16b及び判定処理部16cより与えられたデータを表示装置18で表示できるように変換するものである。なお、本実施形態では、この表示装置18としてタッチパネルディスプレイを用いており、この表示装置18が演算処理装置16に対する種々の指令を行なうマンマシンインターフェイス(HMI)としての機能も有する。 (Display processing unit 16d)
Thedisplay processing unit 16d is connected to a display device 18 such as a monitor via the wiring 17, and converts the data given from the determination reference straight line / processing unit 16b and the determination processing unit 16c so that the display device 18 can display the data. Is what you do. In the present embodiment, a touch panel display is used as the display device 18, and the display device 18 also has a function as a man-machine interface (HMI) for issuing various instructions to the arithmetic processing device 16.
表示処理部16dは、配線17を介してモニターなどの表示装置18に接続されており、判定基準直線・処理部16b及び判定処理部16cより与えられたデータを表示装置18で表示できるように変換するものである。なお、本実施形態では、この表示装置18としてタッチパネルディスプレイを用いており、この表示装置18が演算処理装置16に対する種々の指令を行なうマンマシンインターフェイス(HMI)としての機能も有する。 (
The
(イベント発生信号出力部16e)
イベント発生信号出力部16eは、配線19を介して回転警告灯や警報ブザーなどの外部システム20に接続されており、判定処理部16cで判断された溶接形鋼10の突合わせ部12の良・不良の判定結果に基づいて外部システム20に所定のイベント発生信号を与える。例えば、判定処理部16cで突合わせ部12の品質が不良と判定された際には、オペレーターに不良品の発生を伝えるべく、このイベント発生信号出力部16eより回転警告灯や警報ブザーなどの外部システム20が作動するようなイベント発生信号が発せられる。 (Event occurrencesignal output unit 16e)
The event occurrencesignal output unit 16e is connected to an external system 20 such as a rotation warning light or an alarm buzzer via a wiring 19, and determines whether the butted portion 12 of the welded steel 10 is judged by the judgment processing unit 16c. A predetermined event occurrence signal is given to the external system 20 based on the result of the failure determination. For example, when the quality of the butting unit 12 is determined to be defective by the determination processing unit 16c, the event occurrence signal output unit 16e sends an external warning signal such as a rotation warning light or an alarm buzzer to notify the operator of the occurrence of a defective product. An event occurrence signal is generated such that the system 20 operates.
イベント発生信号出力部16eは、配線19を介して回転警告灯や警報ブザーなどの外部システム20に接続されており、判定処理部16cで判断された溶接形鋼10の突合わせ部12の良・不良の判定結果に基づいて外部システム20に所定のイベント発生信号を与える。例えば、判定処理部16cで突合わせ部12の品質が不良と判定された際には、オペレーターに不良品の発生を伝えるべく、このイベント発生信号出力部16eより回転警告灯や警報ブザーなどの外部システム20が作動するようなイベント発生信号が発せられる。 (Event occurrence
The event occurrence
次に、以上のように構成された溶接形鋼10の品質管理装置を用いて溶接形鋼10の突合わせ部12の品質管理を行う際には、図4で示すフローのように、本発明の溶接形鋼10の突合わせ部12の形状検出方法と、それを用いた品質管理方法とがこの順で実行される。
Next, when the quality control of the butt portion 12 of the welded steel 10 is performed using the quality control device for the welded steel 10 configured as described above, the present invention is applied as shown in the flow chart of FIG. The method for detecting the shape of the butted portion 12 of the welded steel 10 and the quality control method using the same are executed in this order.
すなわち、図4のステップS1において、非接触手段14を走査させることにより溶接形鋼10の突合わせ部12を中心とする特定検出範囲の形状座標データLが2次元平面に展開された形で取得され、配線15を介して演算処理装置16のデータバッファ部16aに与えられる。
続いて図4のステップS2では、データバッファ部16aより上記の形状座標データLが判定基準直線・処理部16bへと与えられ、上述したように、突合わせ部12の形状を中心とした特定検出範囲におけるZ軸方向の最小値の座標点Aが検索され、その最小値の座標点Aを基準にウェブ材10bのプロファイル上から第1選択点Bおよび第2選択点Cが、また、フランジ材10aのプロファイル上から第3選択点Dおよび第4選択点Eが選出される(図6参照)。その後、第1選択点Bと第2選択点Cとを含むウェブ側近似直線αおよび第3選択点Dと第4選択点Eとを含むフランジ側近似直線βが算出されるとともに、ウェブ側近似直線αとフランジ側近似直線βとの交点Fの座標が算出される(図6参照)。そして、上記の交点F近辺におけるウェブ側近似直線αまたはフランジ側近似直線βと形状座標データLの形状との乖離部分の近傍に、形状座標データLと交差しない判定基準直線Jが設けられ、その判定基準直線Jと形状座標データLとの最小距離Tが算出されて、これらのデータが突合わせ部12の形状を表現する指標として判定処理部16cへと与えられる。 That is, in step S1 of FIG. 4, by scanning the non-contact means 14, the shape coordinate data L of a specific detection range centered on the buttedportion 12 of the welded steel 10 is acquired in a form developed on a two-dimensional plane. The data is supplied to the data buffer unit 16a of the arithmetic processing unit 16 via the wiring 15.
Subsequently, in step S2 in FIG. 4, the above-described shape coordinate data L is provided from thedata buffer unit 16a to the determination reference straight line / processing unit 16b, and the specific detection centering on the shape of the butting unit 12 is performed as described above. The minimum coordinate point A in the Z-axis direction in the range is searched, and based on the minimum coordinate point A, the first selection point B and the second selection point C are selected from the profile of the web material 10b, A third selection point D and a fourth selection point E are selected from the profile of 10a (see FIG. 6). Thereafter, a web-side approximation straight line α including the first selection point B and the second selection point C and a flange-side approximation straight line β including the third selection point D and the fourth selection point E are calculated, and the web-side approximation is calculated. The coordinates of the intersection F between the straight line α and the flange side approximate straight line β are calculated (see FIG. 6). A determination reference straight line J that does not intersect with the shape coordinate data L is provided in the vicinity of the divergence between the web-side approximate straight line α or the flange-side approximate straight line β near the intersection F and the shape of the shape coordinate data L. The minimum distance T between the determination reference straight line J and the shape coordinate data L is calculated, and these data are given to the determination processing unit 16c as an index representing the shape of the abutting unit 12.
続いて図4のステップS2では、データバッファ部16aより上記の形状座標データLが判定基準直線・処理部16bへと与えられ、上述したように、突合わせ部12の形状を中心とした特定検出範囲におけるZ軸方向の最小値の座標点Aが検索され、その最小値の座標点Aを基準にウェブ材10bのプロファイル上から第1選択点Bおよび第2選択点Cが、また、フランジ材10aのプロファイル上から第3選択点Dおよび第4選択点Eが選出される(図6参照)。その後、第1選択点Bと第2選択点Cとを含むウェブ側近似直線αおよび第3選択点Dと第4選択点Eとを含むフランジ側近似直線βが算出されるとともに、ウェブ側近似直線αとフランジ側近似直線βとの交点Fの座標が算出される(図6参照)。そして、上記の交点F近辺におけるウェブ側近似直線αまたはフランジ側近似直線βと形状座標データLの形状との乖離部分の近傍に、形状座標データLと交差しない判定基準直線Jが設けられ、その判定基準直線Jと形状座標データLとの最小距離Tが算出されて、これらのデータが突合わせ部12の形状を表現する指標として判定処理部16cへと与えられる。 That is, in step S1 of FIG. 4, by scanning the non-contact means 14, the shape coordinate data L of a specific detection range centered on the butted
Subsequently, in step S2 in FIG. 4, the above-described shape coordinate data L is provided from the
そして、図4のステップS3において、判定処理部16cでは、上述のように判定基準直線Jと形状座標データLとの最小距離Tを、所定の閾値と比較することによって、溶接形鋼10の突合わせ部12の形状の良否が判定される。突合わせ部12の形状が良の場合には、同ステップS4において良製品である旨の判定OK処理が行われ、逆に、突合わせ部12の形状が不良の場合には、同ステップS5において不良品である旨の判定NG処理、具体的には、上述したようにオペレーターに不良品の発生を伝えるべく、イベント発生信号出力部16eより回転警告灯や警報ブザーなどの外部システム20が作動するようなイベント発生信号が発せられる。
Then, in step S3 in FIG. 4, the judgment processing unit 16c compares the minimum distance T between the judgment reference straight line J and the shape coordinate data L with a predetermined threshold value as described above, and The quality of the shape of the fitting unit 12 is determined. If the shape of the butt portion 12 is good, the OK process for determining that the product is a good product is performed in step S4. Conversely, if the shape of the butt portion 12 is bad, the process proceeds to step S5. NG processing for determining that the product is defective, specifically, as described above, the external system 20 such as a rotation warning light and a warning buzzer is operated from the event occurrence signal output unit 16e to notify the operator of the occurrence of the defective product. Such an event occurrence signal is issued.
ここで、レーザー溶接機を備えた実際の溶接形鋼製造ラインにおいて、高さ150mm×幅100mm×ウェブ厚2.3mm×フランジ厚3.2mm×長さ8600mmのH形鋼の製造に際し、品質管理装置として非接触手段14に市販の高精度2次元レーザー変位計を採用した本発明のものを用い、ウェブ材の端部に「垂れ」がない場合の閾値を40μm、ウェブ材の端部に「垂れ」が生じている場合の閾値を600μm(但し、ウェブ側近似直線αと判定基準直線Jとの平行移動距離を1mmとする。)として操業を行った。その結果、検査本数1343本に対して、不良検出率は0.07%であった。溶接形鋼の製造ラインの検査工程において本発明の品質管理装置を用いることにより不良品を抽出できたので、不良品の流出本数0本、不良品流出率0.00%であった。
Here, in an actual welding section steel production line equipped with a laser welding machine, quality control is performed when producing an H-section steel having a height of 150 mm x a width of 100 mm x a web thickness of 2.3 mm x a flange thickness of 3.2 mm x a length of 8600 mm. As the device, a commercially available high-precision two-dimensional laser displacement meter is used for the non-contact means 14 according to the present invention, and the threshold value when there is no “sag” at the end of the web material is 40 μm. The operation was performed with a threshold value of 600 μm (provided that the parallel movement distance between the web-side approximate straight line α and the determination reference straight line J was 1 mm) when “sagging” occurred. As a result, the defect detection rate was 0.07% for 1343 inspections. Since defective products could be extracted by using the quality control device of the present invention in the inspection process of the welding section steel production line, the number of defective products outflow was 0 and the defective product outflow rate was 0.00%.
なお、上述した実施形態では、非接触手段14として、投光装置を用いたものを示しているが、この非接触手段14は、溶接形鋼10の溶接された突合わせ部12の表面形状の座標データ(すなわち、形状座標データL)を得ることができるものであれば如何なる態様であってもよく、この投光装置に換えて超音波発生装置やレーダーなどを用いるものであってもよい。
In the embodiment described above, the non-contact means 14 uses a light projecting device. However, the non-contact means 14 has a surface shape of the welded butt portion 12 of the welded section steel 10. Any mode can be used as long as coordinate data (that is, shape coordinate data L) can be obtained, and an ultrasonic generator, a radar, or the like may be used instead of the light projecting device.
また、本発明の方法及び装置が適用される溶接形鋼10について、その溶接方法や溶接形鋼の形状は特に限定されるものではなく、例えば、高周波,アーク,プラズマ,レーザー等、如何なる溶接方法であってもよい。また、本発明の方法及び装置は、例えば、図9の(a)に示したレーザ溶接形鋼の他に、(b)に示した軽量溶接形鋼、(c)に示したビルドH形鋼、(d)に示したJ形鋼などの形鋼についても、突合わせ部12に対して形状を検出することができる。なお、溶接形鋼ではないが、図9の(e)に示した圧延H形鋼の、符号13で示したフィレット部に対しても、その形状検出を行なうことが可能である。
Further, the welding method and the shape of the welding section steel to which the method and apparatus of the present invention are applied are not particularly limited, and for example, any welding method such as high frequency, arc, plasma, laser, etc. It may be. Further, the method and the apparatus of the present invention can be used, for example, in addition to the laser welded steel shown in FIG. 9A, the lightweight welded steel shown in FIG. 9B, and the build H-shaped steel shown in FIG. , (D), the shape of the butted portion 12 can be detected. Although not a welded steel, the shape can be detected also for the fillet portion indicated by reference numeral 13 of the rolled H-beam shown in FIG. 9E.
加えて、上述の図示実施形態のように溶接形鋼10がフランジ材10aに対してウェブ材10bの端部が垂直に突き合わされて溶接された物のみに限定されるものではなく、図10や図11に示すように、フランジ材10aに対してウェブ材10bの端部が鋭角に突き合わされた溶接形鋼や、鈍角に突き合わされた溶接形鋼の突き合わせ部に対しても本発明の方法および装置を適用することができる。
In addition, as in the illustrated embodiment described above, the welded section steel 10 is not limited to the one in which the ends of the web material 10b are vertically butted against the flange material 10a and are welded. As shown in FIG. 11, the method of the present invention can be applied to a welded steel section in which the end of the web material 10b is abutted at an acute angle with respect to the flange material 10a, or a welded steel section abutted at an obtuse angle. Apparatus can be applied.
さらに、上記実施形態では、特定検出範囲の選定に際し、突合わせ部12を中心とする場合を示しているが、この特定検出範囲は、突合わせ部12が含まれているものであれば如何なる態様であってもよく、上記実施形態の範囲に限定されるものではない。
Furthermore, in the above-described embodiment, the case where the specific detection range is centered on the butting portion 12 is shown, but the specific detection range may be any mode as long as the specific detecting range includes the butting portion 12. And the present invention is not limited to the scope of the above embodiment.
また、上述の各実施形態では、接合部材(10)の具体例として溶接形鋼10を取り上げて説明してきたが、この接合部材(10)はこの溶接形鋼10に限定されるものではなく、例えば、FRPやCFRPなどの合成樹脂材料を接合した部材であってもよく、その場合の部材同士の接合は接着剤を用いる方法や熱融着を用いる方法などであってもよい。
Further, in each of the above-described embodiments, the welded steel member 10 has been described as a specific example of the joint member (10). However, the joint member (10) is not limited to the welded steel member 10, For example, a member in which a synthetic resin material such as FRP or CFRP is joined may be used, and in this case, the members may be joined by a method using an adhesive or a method using heat fusion.
10:溶接形鋼(接合部材),10a:フランジ材(第一の部材),10b:ウェブ材(第二の部材),12:突合わせ部(接合部),14:非接触手段,16:演算処理装置,16b:判定基準直線演算・処理部,16c:判定処理部,A:(特定検出範囲における)Z軸方向の最小値の座標点,B:第1選択点,C:第2選択点,D:第3選択点,E:第4選択点,F:(ウェブ側近似直線(第二の部材の側の近似直線)とフランジ側近似直線(第一の部材の側の近似直線)との)交点,J:判定基準直線,L:形状座標データ,T:(判定基準直線と形状座標データとの)最小距離,α:ウェブ側近似直線(第二の部材の側の近似直線),β:フランジ側近似直線(第一の部材の側の近似直線).
10: welded steel (joining member), 10a: flange material (first member), 10b: web material (second member), 12: butted portion (joined portion), 14: non-contact means, 16: Arithmetic processing unit, 16b: determination reference straight line calculation / processing unit, 16c: determination processing unit, A: coordinate point of the minimum value in the Z-axis direction (in a specific detection range), B: first selection point, C: second selection Point, D: third selection point, E: fourth selection point, F: (web-side approximate straight line (approximate straight line on the second member side) and flange-side approximate straight line (approximate straight line on the first member side) J: Judgment reference straight line, L: Shape coordinate data, T: Minimum distance (between the judgment reference straight line and shape coordinate data), α: Web-side approximate straight line (approximate straight line on the second member side) , Β: approximate straight line on the flange side (approximate straight line on the side of the first member).
Claims (6)
- 第一の部材(10a)に対して第二の部材(10b)の端部が突き合わされて接合された接合部材(10)の接合部(12)の形状を、非接触手段(14)を走査することにより得た形状座標データ(L)であって2次元平面に展開された上記の接合部(12)を含む特定検出範囲の形状座標データ(L)に基づいて検出する接合部材(10)の接合部(12)の形状検出方法であって、
上記の形状座標データ(L)に対し、上記の特定検出範囲におけるZ軸方向の最小値の座標点(A)を検索し、その最小値の座標点(A)を基準に第二の部材(10b)のプロファイル上から第1選択点(B)および第2選択点(C)の各座標を選出するとともに、第一の部材(10a)のプロファイル上から第3選択点(D)および第4選択点(E)の各座標を選出し、
上記の第1選択点(B)と上記の第2選択点(C)とを含む第二の部材の側の近似直線(α)および上記の第3選択点(D)と上記の第4選択点(E)とを含む第一の部材の側の近似直線(β)を算出するとともに、上記第二の部材の側の近似直線(α)と上記第一の部材の側の近似直線(β)との交点(F)の座標を算出し、
上記第二の部材の側の近似直線(α)または上記第一の部材の側の近似直線(β)と上記の形状座標データ(L)の形状との乖離部分の近傍に、上記の形状座標データ(L)と交差しない判定基準直線(J)を設け、その判定基準直線(J)と上記の形状座標データ(L)との最小距離(T)を算出し、この最小距離(T)を上記の接合部(12)の形状を表現する指標として用いる、ことを特徴とする接合部材の接合部の形状検出方法。 The non-contact means (14) scans the shape of the joint (12) of the joint member (10) in which the end of the second member (10b) is butted against the first member (10a). The joining member (10) which is detected based on the shape coordinate data (L) of the specific detection range including the above-mentioned joining portion (12), which is the shape coordinate data (L) obtained by performing A method for detecting the shape of the joint (12),
With respect to the shape coordinate data (L), the minimum coordinate point (A) in the Z-axis direction in the specific detection range is searched, and the second member ( The coordinates of the first selected point (B) and the second selected point (C) are selected from the profile of 10b), and the third selected point (D) and the fourth selected point (D) are selected from the profile of the first member (10a). Select each coordinate of the selection point (E),
An approximate straight line (α) on the side of the second member including the first selection point (B) and the second selection point (C), the third selection point (D), and the fourth selection point The approximate straight line (β) on the side of the first member including the point (E) is calculated, and the approximate straight line (α) on the side of the second member and the approximate straight line (β ) And the coordinates of the intersection (F) are calculated,
Near the divergence between the approximate straight line (α) on the side of the second member or the approximate straight line (β) on the side of the first member and the shape of the shape coordinate data (L), the shape coordinates A judgment reference straight line (J) that does not intersect with the data (L) is provided, and a minimum distance (T) between the judgment reference straight line (J) and the shape coordinate data (L) is calculated. A method for detecting the shape of a joint of a joining member, wherein the method is used as an index representing the shape of the joint (12). - 請求項1の接合部材の接合部の形状検出方法において、
前記の形状座標データ(L)におけるZ軸方向の最小値の座標点(A)が前記第二の部材の側の近似直線(α)上または前記第一の部材の側の近似直線(β)上にある場合、前記の判定基準直線(J)が、前記の交点(F)を含み、上記第二の部材の側の近似直線(α)および上記第一の部材の側の近似直線(β)のそれぞれとの間で成す角度が等しくなるように設けられる、ことを特徴とする接合部材の接合部の形状検出方法。 The method for detecting the shape of a joint of a joining member according to claim 1,
The coordinate point (A) of the minimum value in the Z-axis direction in the shape coordinate data (L) is on the approximate line (α) on the side of the second member or the approximate line (β) on the side of the first member. When it is above, the criterion straight line (J) includes the intersection (F), and the approximate straight line (α) on the side of the second member and the approximate straight line (β ) Is provided so as to be equal in angle to each other. - 請求項1の接合部材の接合部の形状検出方法において、
前記の形状座標データ(L)におけるZ軸方向の最小値の座標点(A)が前記第二の部材の側の近似直線(α)上または前記第一の部材の側の近似直線(β)上にない場合、前記の判定基準直線(J)が、上記第二の部材の側の近似直線(α)と平行するように設けられる、ことを特徴とする接合部材の接合部の形状検出方法。 The method for detecting the shape of a joint of a joining member according to claim 1,
The coordinate point (A) of the minimum value in the Z-axis direction in the shape coordinate data (L) is on the approximate line (α) on the side of the second member or the approximate line (β) on the side of the first member. If not, the determination reference straight line (J) is provided so as to be parallel to the approximate straight line (α) on the side of the second member, . - 請求項1乃至3のいずれかの接合部材の接合部の形状検出方法において、
前記第一の部材(10a)に対して前記第二の部材(10b)の端部が突き合わされて接合された前記の接合部材(10)が、フランジ材に対してウェブ材の端部が突き合わされて溶接された溶接形鋼であり、
前記の接合部(12)が、溶接された突合わせ部である、ことを特徴とする接合部材の接合部の形状検出方法。 The method for detecting the shape of a joint of a joining member according to any one of claims 1 to 3,
The joining member (10) in which the end of the second member (10b) is butted and joined to the first member (10a), the end of the web material is opposed to the flange material. A welded section steel welded together
A method for detecting a shape of a joint of a joint member, wherein the joint (12) is a welded butted portion. - 請求項1乃至4のいずれかの接合部材の接合部の形状検出方法を用いた接合部材の品質管理方法であって、
前記の最小距離(T)を所定の閾値と比較することにより、前記の接合部材(10)における接合部(12)の接合後の形状の良否を判定する、ことを特徴とする接合部材の品質管理方法。 A quality control method for a joint member using the shape detection method for a joint portion of the joint member according to any one of claims 1 to 4,
By comparing the minimum distance (T) with a predetermined threshold value, the quality of the shape of the bonding portion (12) in the bonding member (12) after bonding is determined. Management method. - 第一の部材(10a)に対して第二の部材(10b)の端部が突き合わされて接合された接合部材(10)の接合部(12)を含む特定検出範囲に扇状光を照射あるいは点状光を走査し、照射あるいは走査された光の反射光に基づいて上記の突合わせ部(12)の位置や形状の変化が反映された形状座標データ(L)を生成して出力する非接触手段(14)と、
上記の非接触手段(14)により得られた形状座標データ(L)に対し、上記の特定検出範囲におけるZ軸方向の最小値の座標点(A)を検索し、その最小値の座標点(A)を基準に上記ウェブ材(10b)のプロファイル上から第1選択点(B)および第2選択点(C)の各座標を選出するとともに、上記フランジ材(10a)のプロファイル上から第3選択点(D)および第4選択点(E)の各座標を選出し、上記の第1選択点(B)と上記の第2選択点(C)とを含む第二の部材の側の近似直線(α)および上記の第3選択点(D)と上記の第4選択点(E)とを含む第一の部材の側の近似直線(β)を算出するとともに、上記第二の部材の側の近似直線(α)と上記第一の部材の側の近似直線(β)との交点(F)の座標を算出し、上記第二の部材の側の近似直線(α)または上記第一の部材の側の近似直線(β)と上記の形状座標データ(L)の形状との乖離部分の近傍に、上記の形状座標データ(L)と交差しない判定基準直線(J)を設け、その判定基準直線(J)と上記の形状座標データ(L)との最小距離(T)を算出する判定基準直線演算・処理部(16b)、および、上記の判定基準直線演算・処理部(16b)で得られた上記の最小距離(T)を所定の閾値と比較することにより、接合部材(10)における接合部(12)の接合後の形状の良否を判定する判定処理部(16c)を有する演算処理装置(16)とを備える、ことを特徴とする接合部材の品質管理装置。 The fan-shaped light is applied to the specific detection area including the joint (12) of the joining member (10), which is formed by joining the end of the second member (10b) to the first member (10a). A non-contact method of scanning shape light and generating and outputting shape coordinate data (L) reflecting a change in the position or shape of the abutting portion (12) based on reflected light of the irradiated or scanned light. Means (14);
With respect to the shape coordinate data (L) obtained by the non-contact means (14), a coordinate point (A) of the minimum value in the Z-axis direction in the specific detection range is searched, and a coordinate point (M) of the minimum value is searched. The respective coordinates of the first selected point (B) and the second selected point (C) are selected from the profile of the web material (10b) on the basis of A), and the third coordinate is selected from the profile of the flange material (10a). The respective coordinates of the selection point (D) and the fourth selection point (E) are selected, and an approximation on the side of the second member including the first selection point (B) and the second selection point (C) is performed. Calculating an approximate straight line (β) on the side of the first member including the straight line (α) and the third selected point (D) and the fourth selected point (E); The coordinates of the intersection (F) of the approximate straight line (α) on the side of the first member and the approximate straight line (β) on the side of the first member are calculated, and the approximate straight line (α) on the side of the second member or the first member is calculated. Of the member A determination reference straight line (J) that does not intersect with the shape coordinate data (L) is provided near a divergence between the approximate straight line (β) and the shape of the shape coordinate data (L). J) obtained by the criterion line calculation / processing unit (16b) for calculating the minimum distance (T) between the shape coordinate data (L) and the criterion line calculation / processing unit (16b). An arithmetic processing unit (16c) having a determination processing unit (16c) for determining whether the shape of the bonding portion (12) of the bonding member (10) after bonding is good by comparing the minimum distance (T) with a predetermined threshold value; 16) The quality control device for a joining member, comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018174960A JP7198450B2 (en) | 2018-09-19 | 2018-09-19 | METHOD FOR DETECTING SHAPE OF JOINT PORTION OF JOINTED MEMBER, QUALITY CONTROL METHOD FOR JOINTED MEMBER USING THE SAME, AND DEVICE THEREOF |
JP2018-174960 | 2018-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020059202A1 true WO2020059202A1 (en) | 2020-03-26 |
Family
ID=69886848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/019115 WO2020059202A1 (en) | 2018-09-19 | 2019-05-14 | Method for detecting shape of joint part of joining member, and method and device for managing quality of joining member by using same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7198450B2 (en) |
TW (1) | TW202030455A (en) |
WO (1) | WO2020059202A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220291141A1 (en) * | 2021-03-10 | 2022-09-15 | Central Motor Wheel Co., Ltd. | Defective product determination method for vehicle wheel, non-transitory storage medium, and defective product determination device for vehicle wheel |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61142408A (en) * | 1984-12-15 | 1986-06-30 | Ishikawajima Harima Heavy Ind Co Ltd | Weld bead shape measuring apparatus |
JP2009085786A (en) * | 2007-09-28 | 2009-04-23 | Toyota Motor Corp | Weld bead inspection device and method |
JP2012184996A (en) * | 2011-03-04 | 2012-09-27 | Mitsui Eng & Shipbuild Co Ltd | Apparatus and method for evaluating welding shape |
-
2018
- 2018-09-19 JP JP2018174960A patent/JP7198450B2/en active Active
-
2019
- 2019-05-14 WO PCT/JP2019/019115 patent/WO2020059202A1/en active Application Filing
- 2019-05-28 TW TW108118342A patent/TW202030455A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61142408A (en) * | 1984-12-15 | 1986-06-30 | Ishikawajima Harima Heavy Ind Co Ltd | Weld bead shape measuring apparatus |
JP2009085786A (en) * | 2007-09-28 | 2009-04-23 | Toyota Motor Corp | Weld bead inspection device and method |
JP2012184996A (en) * | 2011-03-04 | 2012-09-27 | Mitsui Eng & Shipbuild Co Ltd | Apparatus and method for evaluating welding shape |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220291141A1 (en) * | 2021-03-10 | 2022-09-15 | Central Motor Wheel Co., Ltd. | Defective product determination method for vehicle wheel, non-transitory storage medium, and defective product determination device for vehicle wheel |
US11821849B2 (en) * | 2021-03-10 | 2023-11-21 | Central Motor Wheel Co., Ltd. | Defective product determination method for vehicle wheel, non-transitory storage medium, and defective product determination device for vehicle wheel |
Also Published As
Publication number | Publication date |
---|---|
JP7198450B2 (en) | 2023-01-04 |
JP2020046302A (en) | 2020-03-26 |
TW202030455A (en) | 2020-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6279062B1 (en) | Method for detecting shape of butt portion of welded steel pipe, quality control method and apparatus for welded steel pipe using the same | |
Yang et al. | Advances techniques of the structured light sensing in intelligent welding robots: a review | |
US5877960A (en) | Method and apparatus for monitoring and positioning a beam or jet for operating on a workpiece | |
JP2005508759A (en) | Method and apparatus for evaluating workpiece joints | |
KR101850968B1 (en) | Weld bead detecting apparatus | |
KR102299184B1 (en) | Laser welding monitoring system using Optical Coherence Tomography | |
KR20200136686A (en) | Portable type welding inspection appatatus and inspection method | |
WO2013100004A1 (en) | Method for measuring shape of threaded tube end portion | |
US6998569B2 (en) | Apparatus and method for regulating the weld seam position during laser welding of a butt-jointed workpiece | |
WO2020059202A1 (en) | Method for detecting shape of joint part of joining member, and method and device for managing quality of joining member by using same | |
Vasilev et al. | Feed forward control of welding process parameters through on-line ultrasonic thickness measurement | |
JP2002331383A (en) | Monitoring device for cutting | |
KR101690991B1 (en) | System dor monitoring welding using noncontact irtemperature sensor | |
JP2016209922A (en) | Weld state monitoring method for laser welder | |
JP6561037B2 (en) | Curved surface inspection program | |
Ivanov et al. | Visual control of weld defects using computer vision system on FANUC robot | |
JP2017181263A (en) | Defect detection device | |
JP6837361B2 (en) | Weld position detector, ultrasonic flaw detector, weld flaw detector method and weld position detection program | |
JP5818009B2 (en) | Weld hardness evaluation method | |
US20230264302A1 (en) | Repair welding segment detection method and repair welding segment detection device | |
KR102537856B1 (en) | Welding inspection method | |
US20240286228A1 (en) | System and method for monitoring welded joints | |
Pajić et al. | AI APPLICATION IN QUALITY ASSURANCE OF INDUSTRIAL LASER WELDING PROCESSES | |
JPH05337669A (en) | Laser beam machine | |
Li et al. | A dual laser sensor scanning system for inspection of holistic weld geometry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19861668 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19861668 Country of ref document: EP Kind code of ref document: A1 |