JPS61142408A - Weld bead shape measuring apparatus - Google Patents

Weld bead shape measuring apparatus

Info

Publication number
JPS61142408A
JPS61142408A JP26375384A JP26375384A JPS61142408A JP S61142408 A JPS61142408 A JP S61142408A JP 26375384 A JP26375384 A JP 26375384A JP 26375384 A JP26375384 A JP 26375384A JP S61142408 A JPS61142408 A JP S61142408A
Authority
JP
Japan
Prior art keywords
weld
bead
weld bead
section
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26375384A
Other languages
Japanese (ja)
Inventor
Hidenobu Amano
天野 秀信
Akinori Abe
安部 昭則
Toshio Irisawa
入沢 敏夫
Suemi Hirata
平田 末美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP26375384A priority Critical patent/JPS61142408A/en
Publication of JPS61142408A publication Critical patent/JPS61142408A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To judge the acceptance of weld, by analyzing the shape of the section of a weld bead based on data from a detector section which observes a weld bead being irradiated with a laser light to computer the stress concentration coefficient of toe of weld at the section. CONSTITUTION:A laser light is irradiated along a weld beam 11 which a measuring apparatus 13 with a detector section 12 having a camera is provided. In the measuring apparatus 13, a beam 15 is linked between two legs 14 arranged along the direction of the weld beam 11 and the detector 12 thereof is provided along the beam 15 in such a manner as to free to reciprocate with a travelling unit 16. Data for the shape of the section of the weld beam 11 while the detector section 12 is travelling from the start to end point thereof is memorized into a media 19 of a bubble cassette and the shape of the section is analyzed at each weld position with an analysis computing unit 20 from the media 19 to determine the height (h) of the bead, right and left flank angles thetaL and thetaR, radii of toe of weld rhoL and rhoR and width 2hP of the bead. A stress concentration coefficient kt is computed from these values to judge on the acceptance of weld.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液化ガスタンカーの独立方形タンクの溶接部
など疲労強度の解析を要求される溶接部の溶接ビード形
状の計測装置に関し、特にその溶接ビード形状からその
溶接の良否を判別できる溶接ビード形状計測装置に関す
るものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a device for measuring the shape of a weld bead in a welded part of an independent rectangular tank of a liquefied gas tanker, which requires analysis of fatigue strength. The present invention relates to a weld bead shape measuring device that can determine the quality of welding based on the weld bead shape.

[従来の技術] 液化ガスタンカーは第10図に示すように船殻1内に独
立方形タンク2がローリングチョック3及びサポート4
にて殻1の内面と隙間をもって支持され、独立方形タン
ク2内にLNG、LPGなどを積荷した際に低温による
収縮移動を許容できるようになっている。低温液体を収
容する独立方形タンク2は収縮時の変形応力に対して十
分な強度を有するような構造となっている。
[Prior Art] As shown in Fig. 10, a liquefied gas tanker has an independent rectangular tank 2 in a hull 1, a rolling chock 3 and a support 4.
It is supported with a gap between it and the inner surface of the shell 1, so that when LNG, LPG, etc. are loaded into the independent rectangular tank 2, contraction and movement due to low temperatures can be tolerated. The independent rectangular tank 2 containing the low-temperature liquid has a structure that has sufficient strength against deformation stress during contraction.

この独立方形タンク2はアルミニウム合金や低温用鋼材
からなり、例えば、第11図に示すようにタンク2内に
ブラケットやリブ、型材、スキンプレートなど多数のタ
ンク部材5を骨組し、各タンク部材5の継目を溶接して
構築している。ところで、この種の液化ガスタンカーで
I M OCodeにおけるTypeBに属するタンカ
ーはIMOCodeによって詳細な疲労強度解析を行な
うことを義務づけられている。このBタイプタンクの定
義はタンクの安全性が正確な解析と実験で確認され、一
時にタンクの大破壊が生じることのないりンクであり、
そのため疲労解析、破壊解析に重点がおかれている。独
立方形タンクはその内部が多数のタンク部材が溶接され
た骨付き構造で不静定次数が高いので完全な解析は困難
であったが、最近コンピュータにより比較的簡単に解析
できるようになっている。しかしながら骨付き構造には
必然的に隅肉溶接などが多用されており、溶接形状が不
規則なため、この溶接部については個々に疲労試験を行
なう必要がある。この溶接部の疲労強度解析は部材の公
称応力を基礎に行なっており、各溶接継手の種類毎に、
応力が繰り返しかかった場合に、疲労し破壊する回数と
その応力との関係を示したS−N曲線を実験により求め
、それをもとに公称応力に対する溶接継手の耐疲労強度
を求めている。しかしながら部材の形状や継手形状、或
は溶接ビードの形状により耐疲労強度が相違するため各
種のS−N曲線を必要とするので多くの試験が必要であ
る。事実上、独立方形タンクに表われるすべての継手を
各々の試験で求めたS−N曲線でカバーすることは不可
能である。
This independent rectangular tank 2 is made of aluminum alloy or low-temperature steel. For example, as shown in FIG. It is constructed by welding the seams. Incidentally, this type of liquefied gas tanker belonging to Type B in the IMO Code is required to perform a detailed fatigue strength analysis in accordance with the IMO Code. The definition of this B type tank is that the safety of the tank has been confirmed through accurate analysis and experiments, and it is a link that does not cause major destruction of the tank at once.
Therefore, emphasis is placed on fatigue analysis and fracture analysis. An independent rectangular tank has a bone structure with many welded tank parts inside, and has a high unsteady constant order, so it was difficult to completely analyze it, but recently it has become relatively easy to analyze it with computers. . However, fillet welds and the like are inevitably used frequently in bone structures, and the welded shapes are irregular, so it is necessary to conduct fatigue tests on each welded part individually. This fatigue strength analysis of welded parts is performed based on the nominal stress of the members, and for each type of welded joint,
An S-N curve showing the relationship between stress and the number of times of fatigue and fracture when stress is repeatedly applied is determined through experiments, and based on this, the fatigue strength of the welded joint against nominal stress is determined. However, since the fatigue strength differs depending on the shape of the member, the shape of the joint, or the shape of the weld bead, various S-N curves are required, which requires many tests. In fact, it is impossible to cover all the joints appearing in an independent rectangular tank with the S-N curve determined for each test.

本出願人は、特願昭58−191037号にて、溶接部
の上端部における応力集中係数を計測し、この応力集中
係数に基づいて溶接部の疲労解析が容易に行なえる[液
化ガスの独立方形タンク」を提案した。
In Japanese Patent Application No. 58-191037, the present applicant has proposed that the stress concentration coefficient at the upper end of the weld can be measured, and the fatigue analysis of the weld can be easily performed based on this stress concentration coefficient [independent of liquefied gas]. proposed a square tank.

この先願の発明においては、応力集中係数を求めるに当
って、その溶接部のフランク角、止端半径、ビード高さ
などビード形状を測定する必要があるが、現在、計器に
よるビード形状を計測する装置はない。
In this prior invention, in order to determine the stress concentration factor, it is necessary to measure the bead shape such as the flank angle, toe radius, and bead height of the weld, but currently, the bead shape is measured using a meter. There is no equipment.

従来、ビード形状を計測するにはモデリングコンパウン
ドで溶接ビードの複製を作り、溶接線に対して直角に鋸
で切断し、その切断面を10倍に拡大撮影し、この拡大
写真を用いて定規により、フランク角、止端半径、ビー
ド高さや脚長を測定していた。
Conventionally, to measure the bead shape, a replica of the weld bead was made using modeling compound, cut with a saw at right angles to the weld line, and the cut surface was photographed at a 10x magnification, and this enlarged photograph was used to measure the weld bead using a ruler. , flank angle, toe radius, bead height and leg length were measured.

[発明が解決しようとする問題点] しかしながら、この測定法は、複製を作るための前準備
や後処理に時間がかかり1人が1日で測定できる個所が
30力所程度しかできない。また、処理の仕方により複
製に歪が生じ、実゛際の形状と違ったり、また拡大写真
による計測は定規で行なうため個人差が出てくるなどの
問題がある。
[Problems to be Solved by the Invention] However, this measuring method requires time for preparatory and post-processing for making copies, and one person can only measure about 30 points in a day. In addition, there are problems such as distortions in the reproduction due to the processing method, which may cause the shape to differ from the actual shape, and individual differences due to measurements taken using enlarged photographs taken with a ruler.

[発明の目的] 本発明は上記事情を考慮してなされたもので、溶接部の
形状を短時間で計測でき、かつその溶接部の良否を判別
できる溶接ビード形状計測装置を提供することを目的と
する。
[Object of the Invention] The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a weld bead shape measuring device that can measure the shape of a welded part in a short time and can determine whether the welded part is good or bad. shall be.

し発明の概要] 本発明は上記の目的を達成するために溶接ビードにレー
ザー光を照射すると共にそれを観測するカメラとを有す
る検出部と、その検出部を溶接ビードに沿って移動させ
る走行装置と、上記検出部からのデータによりその溶接
と一ドの断面形状を解析すると共にその断面形状におけ
る溶接上端部の応力集中係数を演算する解析演算装置と
を備えたもので、レーザー光を溶接ビームに照射しそれ
をカメラで検出し、その溶接ビードの断面形状を解析し
てそのご−ドのフランク角、止端半径、ビード高さや脚
長などを求めて応力集中係数を演算し、その求めた応力
集中係数が基準値以内にあるかどうかで溶接部の良否を
判断できるようにしたものである。
SUMMARY OF THE INVENTION] In order to achieve the above object, the present invention provides a detection unit that irradiates a weld bead with a laser beam and a camera that observes the same, and a traveling device that moves the detection unit along the weld bead. and an analysis calculation device that analyzes the cross-sectional shape of the weld and the weld using data from the detection unit and calculates the stress concentration coefficient at the upper end of the weld in the cross-sectional shape. The weld bead is irradiated and detected by a camera, and the cross-sectional shape of the weld bead is analyzed to determine the flank angle, toe radius, bead height, leg length, etc. of the weld bead, and the stress concentration factor is calculated. The quality of the weld can be determined based on whether the stress concentration factor is within a standard value.

[実施例] 以下本発明に係る溶接ビード形状計測装置の好適一実施
例を添付図面に基づいて説明する。
[Embodiment] A preferred embodiment of the weld bead shape measuring device according to the present invention will be described below with reference to the accompanying drawings.

先ず始めに応力集中係数Ktを第8図の十字溶接継手を
例に説明する。
First, the stress concentration factor Kt will be explained using the cross-welded joint shown in FIG. 8 as an example.

第8図において、6は縦板、7は横板で、その縦板6と
横板7に隅肉溶接8がされていたとする。
In FIG. 8, it is assumed that 6 is a vertical plate and 7 is a horizontal plate, and a fillet weld 8 is made between the vertical plate 6 and the horizontal plate 7.

この場合、溶接8の余盛角(以下フランク角という)を
θ、ビード高さをh、溶接8の上端部9のビード止端半
径をρ、横板7の板厚をtとする。
In this case, the reinforcement angle (hereinafter referred to as flank angle) of the weld 8 is θ, the bead height is h, the bead toe radius of the upper end 9 of the weld 8 is ρ, and the thickness of the horizontal plate 7 is t.

今横板7に公称応力σNがかかったとすると、その応力
分布は10で示すように溶接の施されていない横板7で
公称応力σNのままであるが、上端部9に近づくにつれ
て応力集中が起り、上端部9で略最大の局部応力σLが
作用する。従ってこの上端部9における応力集中係数を
Ktとすると、)(1は下式で表わされる。
Assuming that a nominal stress σN is now applied to the horizontal plate 7, the stress distribution remains at the nominal stress σN in the unwelded horizontal plate 7, as shown at 10, but the stress concentration increases as it approaches the upper end 9. The maximum local stress σL is applied at the upper end 9. Therefore, if the stress concentration coefficient at this upper end portion 9 is Kt, )(1 is expressed by the following formula.

またこのKtは、上述したフランク角θ、止端半径ρ、
ビード高さhの関数で下式で表わされる。
In addition, this Kt is the above-mentioned flank angle θ, toe radius ρ,
It is a function of bead height h and is expressed by the following formula.

K、=[1+f(θ+(c3(pナー−1))C(a/
〆1)       −・−−−(2)ここで、f(θ
)はフランク角の影響、q(ρ)は溶接止端半径の影響
、C(a/T)は未溶着部の存在の影響による関数であ
り夫々下式で表わされる。
K, = [1+f(θ+(c3(pner-1))C(a/
〆1) −・---(2) Here, f(θ
) is a function due to the influence of the flank angle, q(ρ) is a function due to the influence of the weld toe radius, and C(a/T) is a function due to the influence of the presence of an unwelded portion, and each is expressed by the following formula.

フランク角;f(θ) 止端半径:9(ρ) OJ(ρ)=αt・9t(ρ)十αb・9b(ρ)  
    ・・・・・(4)ここでgt (ρ)は引張荷
重の場合で次式で与えられる。
Flank angle: f (θ) Toe radius: 9 (ρ) OJ (ρ) = αt・9t (ρ) + αb・9b (ρ)
...(4) Here, gt (ρ) is given by the following formula in the case of a tensile load.

ここでβtは溶接継手形状に応じて次の値をとる。十字
継手22、突合せ継手2.0、T継手1.0゜また、曲
げ荷重の場合のgb  (ρ)は継手形状とは無関係に
次式で与えられる。
Here, βt takes the following value depending on the shape of the welded joint. Cross joint 22, butt joint 2.0°, T joint 1.0° Also, gb (ρ) in the case of bending load is given by the following equation, regardless of the joint shape.

ここでβbは溶接継手形状に応じて次の値をとる。突合
せ継手−1,5、T継手部1,9、その他の継手=10
0 未溶着部; C(a/Tl ここで(31、(51式中のWは溶接継手形式により次
のように使い分ける。
Here, βb takes the following value depending on the shape of the welded joint. Butt joints - 1, 5, T joints 1, 9, other joints = 10
0 Unwelded part; C(a/Tl where (31, (W in formula 51 is used as follows depending on the type of welded joint.

但し、(b〜(8式中θはフランク角、ρは止端半径、
tは付加する部材の板厚、tpは負荷を受けない部材の
板厚、hはビード高さく脚長) 、hpは溶接脚長、a
は未溶着部の長さ、αtは上端部での引張応力係数(引
張荷重の場合=1、曲げ荷重の場合=0)、αbは上端
部での曲げ応力係数(曲げ荷重の場合=1、引張荷重の
場合−〇)である。
However, (b ~ (in formula 8, θ is the flank angle, ρ is the toe radius,
t is the plate thickness of the member to be added, tp is the plate thickness of the member that does not receive the load, h is the bead height (leg length), hp is the weld leg length, a
is the length of the unwelded part, αt is the tensile stress coefficient at the upper end (for tensile load = 1, for bending load = 0), αb is the bending stress coefficient at the upper end (for bending load = 1, In case of tensile load -〇).

以上において、応力集中係数Ktを求めることにより、
上記中成より上端部9における局部応力σ、が判る。す
なわち局部応力σLは下式より求まる。
In the above, by determining the stress concentration coefficient Kt,
The local stress σ at the upper end portion 9 can be seen from the above-mentioned intermediate portion. That is, the local stress σL is determined from the following formula.

σL=KL ・σN 従って今、例えば第8図に示した十字継手部の横板7に
公称応力σNを破壊するまで繰り返し作用させた場合の
S−N曲線を作成する場合、公称応力σ8でなく局部応
力σ、にてS−N曲線を作図すれば、統一的なS−N曲
線ができる。このS−N曲線を第9図に示した。図にお
いて縦軸は応力範囲で上端部での局部応力σLを示し、
その各応力を繰り返しかけた場合に突合せ継手、十字継
手、T7継手が破壊した点をプロットしたもので、グラ
フを示した直線は試験個数中の生存確率を示したもので
ある。
σL=KL ・σN Therefore, for example, when creating an S-N curve for the case where the nominal stress σN is repeatedly applied to the horizontal plate 7 of the cruciform joint shown in Fig. 8 until it breaks, instead of the nominal stress σ8, If the S-N curve is drawn using the local stress σ, a unified S-N curve can be obtained. This SN curve is shown in FIG. In the figure, the vertical axis indicates the local stress σL at the upper end in the stress range,
The points at which the butt joint, cruciform joint, and T7 joint break when each stress is repeatedly applied are plotted, and the straight line showing the graph shows the probability of survival among the number of test pieces.

このS−N曲線は局部応力σLをベースに作図しである
ため各継手部の疲労強度は容易に求めることが可能とな
る。
Since this SN curve is drawn based on the local stress σL, the fatigue strength of each joint can be easily determined.

応力集中係数Ktは、通常無制限に溶接を行なえば同一
の溶接継手でも、その溶接ビードの方向の各位置で広い
範囲に分布する。このため例えばKt値70の場合、上
端部にかかる局部応力σLは公称応力σ、に対して7倍
となり、大きくなって耐疲労強度が落ちる。
Normally, if welding is performed without limit, the stress concentration coefficient Kt will be distributed over a wide range at each position in the direction of the weld bead even in the same welded joint. Therefore, for example, in the case of a Kt value of 70, the local stress σL applied to the upper end is seven times the nominal stress σ, which increases and reduces fatigue strength.

今、各継手部における公称応力σ8を一定とした場合、
上端部における局部応力σ、はKL値によって変化する
。従って耐疲労強度を求めて各溶接継手を溶接する場合
、最大局部応力a+aXσLを越えないようにするには
Kl値が基準値以内にあるかどうかを求めなければなら
ない。しかしながらKt値は、通常無制限に溶接を行な
えば、同一の溶接継手でも、その溶接ビードの方向の各
位置で広い範囲に分布し、設定した基準値以上にKt値
が越える場合がある。
Now, if the nominal stress σ8 in each joint is constant,
The local stress σ at the upper end changes depending on the KL value. Therefore, when welding each weld joint to determine the fatigue strength, it is necessary to determine whether the Kl value is within the standard value in order to prevent the maximum local stress a+aXσL from being exceeded. However, if welding is normally performed without limit, the Kt value will be distributed over a wide range at each position in the direction of the weld bead, even for the same welded joint, and the Kt value may exceed a set reference value.

このように溶接継手の溶接の良否を判別するには、その
溶接継手のビード溶接方向に亘ってすべてのKt値を計
測する必要があり、そのためにはそのビード溶接方向に
沿っての断面形状を計測する必要がある。
In order to determine the quality of welding of a welded joint in this way, it is necessary to measure all Kt values along the bead welding direction of the welded joint, and to do so, the cross-sectional shape along the bead welding direction must be measured It is necessary to measure it.

次に本発明のビード溶接形状計測装置を第1〜7図によ
り説明する。
Next, the bead weld shape measuring device of the present invention will be explained with reference to FIGS. 1 to 7.

第1〜3図において、11は突合せ溶接における溶接ビ
ードで、第11図で説明したように独立方形タンクのタ
ンク部材5を突合せ溶接した部分を示している。
In FIGS. 1 to 3, reference numeral 11 indicates a weld bead in butt welding, which indicates a portion where the tank member 5 of an independent rectangular tank is butt welded as explained in FIG. 11.

この溶接ビード11に沿って、溶接ビードにレーザー光
を照射すると共にそれを観測するカメラを有する検出部
12を有する計測装置13が設けられる。計測装置13
は溶接ビード11の方向に沿った二本の脚14間にビー
ム15を連結し、そのビーム15に沿って検出部12が
走行装置16により往復移動自在に設けられる。検出部
12は投光部12aからの細いレーザービームで溶接ビ
ード11の表面に形成された光切断波をカメラ12bで
斜めの方向から観測し、その溶接ビード11に照射した
部分の輪郭を示した像をポジションセンサー上に結像さ
せ、その結像信号を走行装置16の走行位置信号と共に
メモリ装置17に送り記憶させる。また走行装置16に
よる検出部12の移動速度や投光部12aのレーザーパ
ワーは駆動制御装置18により制御される。
A measuring device 13 is provided along the weld bead 11, and includes a detection unit 12 that irradiates the weld bead with a laser beam and has a camera that observes the laser beam. Measuring device 13
A beam 15 is connected between two legs 14 extending in the direction of the weld bead 11, and a detection section 12 is provided along the beam 15 so as to be movable back and forth by a traveling device 16. The detection unit 12 uses a camera 12b to observe the optical cutting wave formed on the surface of the weld bead 11 by the thin laser beam from the light projecting unit 12a from an oblique direction, and shows the outline of the irradiated part of the weld bead 11. The image is formed on the position sensor, and the image signal is sent to the memory device 17 together with the traveling position signal of the traveling device 16 and stored therein. Further, the moving speed of the detection section 12 by the traveling device 16 and the laser power of the light projecting section 12a are controlled by the drive control device 18.

検出部12がその始点から終点まで走行するにおいて、
その間の溶接ビード11の断面形状のデータがバブルカ
セットのメディア19に記憶され、そのメディア19を
解析演算装置20で各溶接位置における断面形状を解析
し、その形状から第5図に示したようにビード高さh1
左右のフランク角θ5.θc1止端半径ρL、ρR,ピ
ード巾2hPを求め、その値よりKt値を演算して溶接
の良否を判別する。
When the detection unit 12 travels from its starting point to its ending point,
Data on the cross-sectional shape of the weld bead 11 during that time is stored in the media 19 of the bubble cassette, and the media 19 is analyzed by the analysis calculation device 20 for the cross-sectional shape at each welding position. Bead height h1
Left and right flank angle θ5. The θc1 toe radii ρL, ρR, and the peed width 2hP are determined, and the Kt value is calculated from these values to determine the quality of welding.

これを第4図によりさらに詳しく説明する。This will be explained in more detail with reference to FIG.

検出部12はレーザー光を被検出体である溶接ビームに
照射する投光部12aを有すると共にそのご−ド上に形
成された光切断波をカメラ12bで観測し、それをメモ
リ装置17のビデオ信号処理部21に入力する。投光部
12aのレーザー光の調整及びカメラ12bの出力は夫
々駆動制御装置18の各調整装@22.23で調整され
、走行装置16のモータ24も駆動制御装置18のドラ
イバ25により駆動制御される。また走行装置16によ
る始点位@16a、終点位置16b及び位置信号はメモ
リ装@17の制御インタフェース(1/F)部26に入
出力される。
The detection unit 12 has a light projection unit 12a that irradiates a welding beam, which is an object to be detected, with a laser beam, and observes the light cutting wave formed on the target with a camera 12b, and records it on the video of the memory device 17. The signal is input to the signal processing section 21. The adjustment of the laser beam of the light projector 12a and the output of the camera 12b are adjusted by each adjusting device @22, 23 of the drive control device 18, and the motor 24 of the traveling device 16 is also drive-controlled by the driver 25 of the drive control device 18. Ru. Further, the starting point position @16a, ending point position 16b, and position signals from the traveling device 16 are input and output to the control interface (1/F) section 26 of the memory device @17.

メモリ装置17はパネル操作部27を有し、そのパネル
I/F部28.制御I/F部26を介して走行装置16
の速度を制御できるようになっており、またビデオ信号
処理部21に入った溶接ビード断面形状の信号及びその
断面部の位置信号が中央処理装置29の指示により適宜
バブルI/F部30を介してバブルカセットホルダ31
に記憶される。このバブルカセットホルダ31に記憶さ
れたメディア19を解析演算装f120に入力する。
The memory device 17 has a panel operation section 27, and a panel I/F section 28. The traveling device 16 via the control I/F section 26
The speed of the weld bead can be controlled, and the signal of the weld bead cross-sectional shape and the position signal of the cross-section entered into the video signal processing section 21 are sent via the bubble I/F section 30 as appropriate according to instructions from the central processing unit 29. bubble cassette holder 31
is memorized. The medium 19 stored in this bubble cassette holder 31 is input to the analysis calculation unit f120.

解析演算装@20は記憶された各溶接ビード位置におけ
る第5図の断面形状を位置ごとにCR7表示32で表示
し、その画像からフランク角θ。
The analysis/arithmetic unit @20 displays the cross-sectional shape of FIG. 5 at each memorized weld bead position on a CR7 display 32 for each position, and calculates the flank angle θ from the image.

ビード高さり、止端半径ρなどを読取装置33で読み取
り、その各読取値をKt値演算装置34に送る。Kv値
演棹装置34には上述したKt値を求める(b〜(8)
式が入力されており、その式にフランク角θ、ビード高
さり、止端半径ρを代入してそのKt値を演算し、それ
を溶接良否判別装置35に出力する。溶接良否判別装置
35では溶接ビードの各部分でKt値が定められた基準
値(例えばKt値が3.0以下)にあるかどうかを判断
し、溶接ビード11のどの位置で溶接が悪いかどうかを
表示する。また、読取装置33での各データ及び判別装
置35でのデータをプリンタ36に送りプリンタ36で
その各データを記録する。
The bead height, toe radius ρ, etc. are read by a reading device 33, and each read value is sent to a Kt value calculating device 34. The Kv value calculation device 34 calculates the above-mentioned Kt value (b~(8)
A formula is input, and the flank angle θ, bead height, and toe radius ρ are substituted into the formula to calculate the Kt value, which is output to the weld quality determination device 35. The weld quality determination device 35 determines whether the Kt value at each part of the weld bead is within a predetermined standard value (for example, the Kt value is 3.0 or less), and determines in which position of the weld bead 11 the weld is poor. Display. Further, each data from the reading device 33 and data from the discriminating device 35 are sent to a printer 36, and the printer 36 records each data.

従って第1図、第3図に示すようにプリンタ36で打ち
出されたハードコピー37を観て、その溶接ビード11
の溶接状態が判別でき、もしその計測した溶接ビード中
に溶接の不適個所があれば、その部分の溶接ビード11
を適宜補修する。
Therefore, as shown in FIGS. 1 and 3, when looking at the hard copy 37 printed out by the printer 36,
The welding condition can be determined, and if there is an inappropriate welding point in the measured weld bead, the weld bead 11
Repair as appropriate.

以上は溶接後にその溶接ビードの良否を判別することで
説明したが、溶接と同時に検出部12でその溶接直後の
ビードを計測し、それからKL値を演算し、その値より
適宜溶接を制御するように構成してもよい。
The above explanation was based on determining the quality of the weld bead after welding, but it is also possible to measure the bead immediately after welding with the detection unit 12 at the same time as welding, calculate the KL value, and control the welding appropriately based on that value. It may be configured as follows.

また第1〜4図の例では溶接ビード11に対して光切断
波で一度にその断面形状を解析するようにしたが、第6
図に示すように検出部12を溶接ビード11を横断する
よう移動し、順次矢印Aで示すようにビード幅より大き
な幅Hで走査させ、その走査位置における距離をカメラ
で計測し、その値より断面形状を計測するようにしても
よい。
Furthermore, in the example shown in Figs. 1 to 4, the cross-sectional shape of the weld bead 11 is analyzed at once using an optical cutting wave, but in the example shown in Figs.
As shown in the figure, the detection unit 12 is moved to cross the weld bead 11, sequentially scanned with a width H larger than the bead width as shown by arrow A, the distance at the scanning position is measured with a camera, and the value is The cross-sectional shape may also be measured.

この場合第7図に示すように投光部12aからビード1
1上に照射されたビームはそのビード11上からイメー
ジレンズ38を通じ、ハーフミラ−39を介して位置セ
ンサー40とフォトセンサー41とからなるカメラ12
bで観測し、第6図に示すように■→■へ走査した場合
の距離変化から断面形状を解析することができる。この
場合、断面形状が走査間隔dを直接読み取れるので、そ
のデータからフランク角θ、止端半径ρ等を求めること
ができ、間隔dごとのKt値を演算することが可能とな
る。
In this case, as shown in FIG.
The beam irradiated onto the bead 11 passes through the image lens 38 and the half mirror 39 to the camera 12 consisting of a position sensor 40 and a photosensor 41.
b, and the cross-sectional shape can be analyzed from the change in distance when scanning from ■ to ■ as shown in FIG. In this case, since the scanning interval d can be directly read from the cross-sectional shape, the flank angle θ, toe radius ρ, etc. can be determined from the data, and the Kt value for each interval d can be calculated.

[発明の効果] 以上詳述してきたことから明らかなように本発明によれ
ば次のごとき優れた効果を発揮する。
[Effects of the Invention] As is clear from the detailed description above, the present invention exhibits the following excellent effects.

(1)  レーザーにより溶接ビードを非接触で測定し
、その測定した断面形状を解析すると共にその形状から
応力集中係数を演算して溶接の良否を判別することがで
きる。
(1) It is possible to measure the weld bead non-contact with a laser, analyze the measured cross-sectional shape, and calculate the stress concentration coefficient from the shape to determine whether the weld is good or bad.

(2)  レーザーにより得られる断面形状のデータは
メディアにメモリしてあとからまとめて解析することも
できる。
(2) The cross-sectional shape data obtained by the laser can be stored in media and analyzed at a later time.

(3)  ビードの測定は間隔ごとに自動的に、かつそ
の間隔を゛可変にでき、かつその測定時間が極めて短時
間に行なえる。
(3) Bead measurements can be performed automatically at each interval, the intervals can be made variable, and the measurement time can be extremely short.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の溶接ビード形状計測装置の一実施例を
示す概略図、第2図は本発明の溶接ビード形状計測装置
の計測部を示す斜視図、第3図は本発明の溶接ビード形
状計測装置の解析演算装置を示す斜視図、第4図は本発
明の溶接ビード形状計測装置の回路図、第5図は本発明
における溶接ビードの形状を示す図、第6図は本発明の
溶接ビード形状計測装置においてレーザーを照射して測
定する他の例を示す説明図、第7図は第6図で用いる検
出部の詳細図、第8図は十字継手における応力集中係数
を説明する図、第9図はS−N曲線を示す図、第10図
は独立方形タンクを示す断面図、第11図は第9図のタ
ンクの詳細を示す斜視図である。 図中、11は溶接ビード、12は検出部、12aは投光
部、12bはカメラ、16は走行装置、20は解析演算
装置である。 特 許 出 願 人  石川島播磨重工業株式会社代理
人弁理士 絹  谷  信  雄 第2図 第3図 第6図 第7図 第8図 第9図
FIG. 1 is a schematic diagram showing an embodiment of the weld bead shape measuring device of the present invention, FIG. 2 is a perspective view showing a measuring section of the weld bead shape measuring device of the present invention, and FIG. 3 is a weld bead shape measuring device of the present invention. FIG. 4 is a circuit diagram of the weld bead shape measuring device of the present invention, FIG. 5 is a diagram showing the shape of the weld bead in the present invention, and FIG. 6 is a diagram showing the weld bead shape of the present invention. An explanatory diagram showing another example of measuring by irradiating a laser in a weld bead shape measuring device, FIG. 7 is a detailed diagram of the detection part used in FIG. 6, and FIG. 8 is a diagram explaining the stress concentration coefficient in a cross joint. , FIG. 9 is a diagram showing an S-N curve, FIG. 10 is a sectional view showing an independent rectangular tank, and FIG. 11 is a perspective view showing details of the tank shown in FIG. 9. In the figure, 11 is a welding bead, 12 is a detection section, 12a is a light projecting section, 12b is a camera, 16 is a traveling device, and 20 is an analysis calculation device. Patent applicant: Ishikawajima Harima Heavy Industries Co., Ltd. Representative Patent Attorney Nobuo Kinutani Figure 2 Figure 3 Figure 6 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 溶接ビードにレーザー光を照射すると共にそれを観測す
るカメラとを有する検出部と、その検出部を溶接ビード
に沿って移動させる走行装置と、上記検出部からのデー
タによりその溶接ビードの断面形状を解析すると共にそ
の断面形状における溶接上端部の応力集中係数を演算す
る解析演算装置とを備えたことを特徴とする溶接ビード
形状計測装置。
A detection unit that irradiates a weld bead with a laser beam and a camera that observes it; a traveling device that moves the detection unit along the weld bead; and a cross-sectional shape of the weld bead based on data from the detection unit. A weld bead shape measuring device comprising: an analysis calculation device that analyzes and calculates a stress concentration coefficient at the upper end of the weld in the cross-sectional shape of the weld bead.
JP26375384A 1984-12-15 1984-12-15 Weld bead shape measuring apparatus Pending JPS61142408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26375384A JPS61142408A (en) 1984-12-15 1984-12-15 Weld bead shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26375384A JPS61142408A (en) 1984-12-15 1984-12-15 Weld bead shape measuring apparatus

Publications (1)

Publication Number Publication Date
JPS61142408A true JPS61142408A (en) 1986-06-30

Family

ID=17393808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26375384A Pending JPS61142408A (en) 1984-12-15 1984-12-15 Weld bead shape measuring apparatus

Country Status (1)

Country Link
JP (1) JPS61142408A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135339U (en) * 1988-03-04 1989-09-18
JPH0328704A (en) * 1989-05-08 1991-02-06 General Electric Co <Ge> Method and equipment for quality control of bead
JPH0571932A (en) * 1991-09-11 1993-03-23 Toyota Motor Corp Quality-inspection device of welding bead
EP0708326A3 (en) * 1994-10-19 1997-05-14 Kvaerner Masa Yards Oy Arrangement for the inspection of welded plate sections
JP2012184996A (en) * 2011-03-04 2012-09-27 Mitsui Eng & Shipbuild Co Ltd Apparatus and method for evaluating welding shape
CN108262583A (en) * 2018-01-23 2018-07-10 广东工业大学 The type judgement of weld seam and localization method and system
JP2020046302A (en) * 2018-09-19 2020-03-26 日鉄日新製鋼株式会社 Shape detection method of junction of joint member, quality management method of joint member using the same and device therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135339U (en) * 1988-03-04 1989-09-18
JPH0328704A (en) * 1989-05-08 1991-02-06 General Electric Co <Ge> Method and equipment for quality control of bead
JPH0571932A (en) * 1991-09-11 1993-03-23 Toyota Motor Corp Quality-inspection device of welding bead
EP0708326A3 (en) * 1994-10-19 1997-05-14 Kvaerner Masa Yards Oy Arrangement for the inspection of welded plate sections
JP2012184996A (en) * 2011-03-04 2012-09-27 Mitsui Eng & Shipbuild Co Ltd Apparatus and method for evaluating welding shape
CN108262583A (en) * 2018-01-23 2018-07-10 广东工业大学 The type judgement of weld seam and localization method and system
CN108262583B (en) * 2018-01-23 2020-10-20 广东工业大学 Welding seam type judging and positioning method and system
JP2020046302A (en) * 2018-09-19 2020-03-26 日鉄日新製鋼株式会社 Shape detection method of junction of joint member, quality management method of joint member using the same and device therefor
WO2020059202A1 (en) * 2018-09-19 2020-03-26 日鉄日新製鋼株式会社 Method for detecting shape of joint part of joining member, and method and device for managing quality of joining member by using same

Similar Documents

Publication Publication Date Title
CN104697467B (en) Weld appearance shape based on line laser scanning and surface defect detection method
US8345094B2 (en) System and method for inspecting the interior surface of a pipeline
JPS61142408A (en) Weld bead shape measuring apparatus
EP0483362B1 (en) System for measuring length of sheet
US20030103216A1 (en) Device and process for measuring ovalization, buckling, planes and rolling parameters of railway wheels
US9823224B2 (en) Weld inspection method and system
JP4813505B2 (en) Inspection method of welding state
JPH08210995A (en) Device for inspecting arc-shaped plate assembly
RU2550979C2 (en) Weld surface quality control procedure
JPH0727518A (en) On-line shape measuring device for shape steel
JPS58111708A (en) Flatness measuring device
RU2709177C1 (en) Method of determining shape of weld seam surface standard
JPH06317411A (en) Method for discriminating resistance to fatigue of welded joint
RU2550673C2 (en) Device to assess quality of welded joint
JP3064072B2 (en) Method and apparatus for detecting weld shape during butt welding
JP7198450B2 (en) METHOD FOR DETECTING SHAPE OF JOINT PORTION OF JOINTED MEMBER, QUALITY CONTROL METHOD FOR JOINTED MEMBER USING THE SAME, AND DEVICE THEREOF
JP2000237808A (en) Method for adjusting roll position of rolling roll for bar steel and guidance device for adjusting roll position
JP3284492B2 (en) Device for detecting the mounting position of the back side member
JPH06277843A (en) Method and device for multilayer welding
JPS61270657A (en) Ultrasonic flaw detecting and testing method
JP2001038467A (en) Method and device for checking welding quality
CA2208480A1 (en) Optical testing device for the on-line assessment of weldments or soldered joints
JPH067991B2 (en) Automatic welding equipment
JP2003106821A (en) Groove depth-measuring/recording method and system
JPH04340406A (en) Measurement of aspherical surface