WO2020059116A1 - Poor physical condition detection device and poor physical condition detection method - Google Patents

Poor physical condition detection device and poor physical condition detection method Download PDF

Info

Publication number
WO2020059116A1
WO2020059116A1 PCT/JP2018/035052 JP2018035052W WO2020059116A1 WO 2020059116 A1 WO2020059116 A1 WO 2020059116A1 JP 2018035052 W JP2018035052 W JP 2018035052W WO 2020059116 A1 WO2020059116 A1 WO 2020059116A1
Authority
WO
WIPO (PCT)
Prior art keywords
pupil diameter
physical condition
occupant
poor physical
unit
Prior art date
Application number
PCT/JP2018/035052
Other languages
French (fr)
Japanese (ja)
Inventor
奈津季 田原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/035052 priority Critical patent/WO2020059116A1/en
Publication of WO2020059116A1 publication Critical patent/WO2020059116A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/11Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators

Definitions

  • the present invention relates to a poor physical condition detecting device and a poor physical condition detecting method.
  • an iris diameter and a pupil diameter are calculated based on a light source that irradiates the anterior segment with flash light, an imaging device that captures an anterior segment, and an image of the anterior segment captured by the imaging device.
  • the light reflection of the pupil diameter occurs not only before and after flash light irradiation but also due to, for example, a change in environmental illuminance.
  • the environmental illuminance at the eyes of the occupant of the vehicle changes depending on various factors such as the position or orientation of the traveling vehicle, the surroundings of the traveling vehicle, or the date and time when the vehicle travels.
  • the conventional technology does not consider changes in the pupil diameter due to changes in environmental illuminance, and thus cannot accurately obtain the amount of change in the pupil diameter due to flash light irradiation. could not be determined.
  • An object of the present invention is to solve the above-mentioned problems, and to provide a poor physical condition detecting device capable of accurately determining the physical condition of an occupant of a vehicle based on a change in pupil diameter due to irradiation of flash light. It is an issue.
  • a poor physical condition detection device includes an image acquisition unit configured to acquire an image of the eye of a vehicle occupant during a predetermined first period after the eye is irradiated with the flash light; An exposure parameter acquisition unit that acquires an exposure parameter used when the image is captured, a pupil diameter detection unit that detects a pupil diameter of the eye based on the image, and an exposure parameter acquisition unit that acquires the exposure parameter acquired by the exposure parameter acquisition unit.
  • a pupil diameter determining unit that determines a reference pupil diameter based on the pupil diameter, a pupil diameter detected by the pupil diameter detecting unit, and a poor physical condition that detects a poor occupant condition based on the reference pupil diameter determined by the reference pupil diameter determining unit. And a detection unit.
  • the present invention it is possible to accurately determine the physical condition of an occupant of a vehicle based on a change in pupil diameter due to flash light irradiation.
  • FIG. 1 is a block diagram illustrating an example of a main part of the poor physical condition detection device according to the first embodiment.
  • 2A and 2B are diagrams illustrating an example of a hardware configuration of the poor physical condition detection device according to Embodiment 1.
  • FIG. 3 is a diagram illustrating an example of exposure pupil diameter information held by a reference pupil diameter determination unit in the poor physical condition detection device according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a temporal change of a pupil diameter when a flash light is applied to a healthy human eye when there is no change in environmental illuminance.
  • FIG. 5 is a diagram illustrating an example of the poor physical condition of the occupant detected by the poor physical condition detection unit in the poor physical condition detection device according to the first embodiment.
  • FIG. 1 is a block diagram illustrating an example of a main part of the poor physical condition detection device according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of exposure pupil diameter information held by a reference pupil diameter determination unit
  • FIG. 6 is a flowchart illustrating an example of a process performed by the poor physical condition detection device according to the first embodiment.
  • FIG. 7 is a flowchart illustrating an example of the details of the process of step ST608 shown in FIG.
  • FIG. 8 is a block diagram illustrating an example of a main part of the poor physical condition detection device according to the second embodiment.
  • FIG. 9 is a flowchart illustrating an example of a process performed by the poor physical condition detection device according to the second embodiment.
  • FIG. 10 is a block diagram illustrating an example of a main part of the poor physical condition detection device according to Embodiment 3.
  • FIG. 11 is a flowchart illustrating an example of a process performed by the poor physical condition detection device according to the third embodiment.
  • FIG. 1 is a block diagram illustrating an example of a main part of poor physical condition detection device 100 according to Embodiment 1.
  • the vehicle 1 includes, for example, a poor physical condition detection device 100, an imaging device 11, a flash light source 12, and an output device 13.
  • the physical condition detection device 100 according to Embodiment 1 is mounted on, for example, the vehicle 1.
  • the poor physical condition detection device 100 generates physical condition information and outputs the generated physical condition information to the output device 13 or the like. Details of the poor physical condition detection device 100 will be described later.
  • the output device 13 is mounted on, for example, the vehicle 1.
  • the output device 13 is, for example, an output device such as a display output device or an audio output device.
  • the output device 13 outputs the physical condition information acquired from the poor physical condition detection device 100 as an image, a sound, or the like.
  • the imaging device 11 is installed in the vehicle 1.
  • the imaging device 11 images the eyes of the occupant of the vehicle 1.
  • the imaging device 11 outputs data indicating the captured image of the eye (hereinafter, simply referred to as “image” including “data indicating an image”) to the poor-health detecting device 100.
  • the imaging device 11 is, for example, a digital camera capable of capturing a still image.
  • the imaging device 11 captures an eye of the occupant of the vehicle 1 by receiving a trigger signal from the poor physical condition detection device 100, for example.
  • the imaging device 11 includes, for example, an image sensor using a CCD (Charge-Coupled Device), a CMOS (Complementary MOS), and a lens that condenses external light on the image sensor.
  • the imaging device 11 can change exposure conditions such as an exposure time of an image sensor or an aperture value of a lens when capturing an image.
  • the imaging device 11 measures the brightness in the eyes of the occupant of the vehicle 1 output from an illuminance sensor (not shown) such as an AE (Automatic Exposure) sensor, a photometric sensor, or a luminance sensor provided in the imaging device 11.
  • an illuminance sensor such as an AE (Automatic Exposure) sensor, a photometric sensor, or a luminance sensor provided in the imaging device 11.
  • the exposure condition is changed based on the indicated information.
  • the imaging device 11 outputs, for example, an exposure parameter determined based on the exposure condition to the poor physical condition detection device 100. More specifically, for example, the exposure parameter is included in the header information of the image of the eye taken by the imaging device 11 according to a predetermined format such as Exif (Exchangeable image ⁇ file ⁇ format), and is included together with the image of the eye. Is output.
  • a predetermined format such as Exif (Exchangeable image ⁇ file ⁇ format)
  • the exposure parameter is determined based on the exposure time of the image sensor when the aperture value of the lens in the imaging device 11 is unchanged. In addition, for example, when the exposure time of the image sensor in the imaging device 11 does not change, the determination is made based on, for example, the aperture value of the lens. Further, for example, when the aperture value of the lens and the exposure time of the image sensor are variable, the determination is made based on the aperture value of the lens and the exposure time of the image sensor.
  • the exposure parameter may be any parameter as long as the exposure condition can be identified. For example, the exposure parameter may be a number predetermined for each exposure condition. In the first embodiment, as an example, a description will be given assuming that the aperture value of the lens in the imaging device 11 is invariable, and the exposure parameter is a value indicated by the reciprocal of the exposure time (second) of the image sensor.
  • the flash light source 12 is installed in the vehicle 1.
  • the flash light source 12 is a lighting device that turns on a light-emitting body such as an LED (light emitting diode), a miniature bulb, or a halogen light.
  • the flash light source 12 emits flash light to the eyes of the occupant of the vehicle 1.
  • the flash light is a flash light that is generated when the light emitter of the flash light source 12 is turned on for a short period of time, for example, several milliseconds, and then turned off.
  • the illuminant of the flash light source 12 is preferably capable of irradiating the eye portion of the occupant of the vehicle 1 with an amount of light capable of directly irradiating the flash light.
  • the timing of flash light irradiation by the flash light source 12 is controlled, for example, by a control signal output from the poor physical condition detection device 100.
  • the flash light source 12 continuously emits a flash light in a period in which the vehicle 1 runs, for example, according to a control signal output from the poor physical condition detection device 100. Specifically, the flash light source 12 is controlled by the control signal output from the poor physical condition detection device 100, for example, in a period in which the vehicle 1 travels, for example, after a predetermined period elapses after irradiating the flash light, The flash light source 12 is irradiated with flash light.
  • the predetermined period here is, for example, 10 minutes.
  • the predetermined period is not limited to the above-described period, and may be longer or shorter than 10 minutes, and may be determined based on continuous running time, weather, date and time, or running distance. May be.
  • the poor physical condition detection device 100 includes an image obtaining unit 101, an exposure parameter obtaining unit 102, a pupil diameter detecting unit 103, a reference pupil diameter determining unit 104, and a poor physical condition detecting unit 105.
  • the image acquiring unit 101 captures an image (hereinafter, referred to as “first period”) of the eye of the occupant of the vehicle 1 during a predetermined first period (hereinafter, referred to as a “first period”) after the eye is irradiated with the flash light. 1st period image "). More specifically, for example, by transmitting a trigger signal to the imaging device 11, the image acquisition unit 101 causes the imaging device 11 to photograph the occupant's eye, and the first period image captured by the imaging device 11 is displayed. Obtained from the imaging device 11. The image acquisition unit 101 transmits a control signal to the flash light source 12 to irradiate the occupant's eye with the flash light.
  • the first period is, for example, 2 seconds. The first period is not limited to two seconds.
  • the first period is, for example, a period including a time point at which the size of the pupil diameter becomes minimum in the light reflection of the pupil diameter generated when the flash part is irradiated to the eyes of the occupant of the vehicle 1, 2 It may be longer or shorter than seconds.
  • the image acquiring unit 101 acquires, for example, a plurality of first period images in the first period. More specifically, for example, the image acquisition unit 101 acquires a plurality of first period images over a first period at a predetermined time interval after flash light irradiation.
  • the time interval is, for example, a 0.2 second interval.
  • the time interval is not limited to a 0.2 second interval.
  • the time interval may be, for example, an interval longer or shorter than 0.2 seconds, or may be determined based on the length of the first period.
  • the image acquisition unit 101 controls the imaging device 11 to fix the exposure condition in the first period to the exposure condition before the flash light is irradiated.
  • the exposure condition in the image in the first period is influenced by the irradiated flash light and the first period. To be unaffected by changes in ambient illuminance.
  • the exposure parameter acquisition unit 102 acquires the exposure parameters used when the first period image is captured. More specifically, for example, the exposure parameter acquisition unit 102 acquires the exposure parameter included in the header information of the first period image acquired by the image acquisition unit 101.
  • the pupil diameter detection unit 103 detects the pupil diameter of the eye of the occupant of the vehicle 1 based on the first period image acquired by the image acquisition unit 101. More specifically, for example, first, the pupil diameter detection unit 103 performs the first period image by using a well-known method that appropriately combines well-known image analysis techniques such as an edge detection method, a model fitting method, and a pattern matching method. The position or shape of the pupil of the occupant is detected. Next, the pupil diameter detection unit 103 calculates, for example, information such as the position or shape of the pupil of the occupant detected in the first period image, the distance from the imaging device 11 to the occupant's eye of the vehicle 1 captured by the imaging device 11.
  • distance information information indicating the angle of view of the imaging device 11
  • angle of view information information indicating the angle of view of the imaging device 11
  • angle of view information information indicating the angle of view of the imaging device 11
  • angle of view information information indicating the angle of view of the imaging device 11
  • the reference pupil diameter determination unit 104 determines a reference pupil diameter based on the exposure parameters acquired by the exposure parameter acquisition unit 102. Details of the reference pupil diameter determining unit 104 will be described later.
  • the poor physical condition detection unit 105 detects a poor physical condition of the occupant based on the pupil diameter detected by the pupil diameter detection unit 103 and the reference pupil diameter determined by the reference pupil diameter determination unit 104.
  • the poor physical condition detection unit 105 generates, for example, physical condition information indicating the detected physical condition of the occupant, and outputs the generated physical condition information to the output device 13 or the like. By outputting the physical condition information to, for example, the output device 13, the occupant can know, for example, his or her own physical condition. Details of the poor physical condition detection unit 105 will be described later.
  • FIGS. 2A and 2B are diagrams illustrating an example of a hardware configuration of a main part of the physical condition detection device 100 according to Embodiment 1.
  • FIG. 2A and 2B are diagrams illustrating an example of a hardware configuration of a main part of the physical condition detection device 100 according to Embodiment 1.
  • the poor physical condition detecting apparatus 100 is configured by a computer, and the computer includes a processor 201 and a memory 202.
  • the memory 202 stores programs for causing the computer to function as the image acquisition unit 101, the exposure parameter acquisition unit 102, the pupil diameter detection unit 103, the reference pupil diameter determination unit 104, and the poor physical condition detection unit 105.
  • the processor 201 By causing the processor 201 to read and execute the program stored in the memory 202, the image acquisition unit 101, the exposure parameter acquisition unit 102, the pupil diameter detection unit 103, the reference pupil diameter determination unit 104, and the poor physical condition detection unit 105 Is achieved.
  • the poor physical condition detecting apparatus 100 may be constituted by a processing circuit 203.
  • the functions of the image acquisition unit 101, the exposure parameter acquisition unit 102, the pupil diameter detection unit 103, the reference pupil diameter determination unit 104, and the poor physical condition detection unit 105 may be realized by the processing circuit 203.
  • the physical condition detection device 100 may be configured by a processor 201, a memory 202, and a processing circuit 203 (not shown). In this case, some of the functions of the image acquisition unit 101, the exposure parameter acquisition unit 102, the pupil diameter detection unit 103, the reference pupil diameter determination unit 104, and the poor physical condition detection unit 105 are implemented by the processor 201 and the memory 202. Then, the remaining functions may be realized by the processing circuit 203.
  • the processor 201 uses, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor).
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • microprocessor a microcontroller
  • DSP Digital Signal Processor
  • the memory 202 uses, for example, a semiconductor memory or a magnetic disk. More specifically, the memory 202 includes a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Memory Only), and an EEPROM (Electrical Memory). State @ Drive) or HDD (Hard @ Disk @ Drive) or the like.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory a flash memory
  • EPROM Erasable Programmable Read Memory Only
  • EEPROM Electrical Memory
  • State @ Drive or HDD (Hard @ Disk @ Drive) or the like.
  • the processing circuit 203 includes, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate System Array), and an SoC (Sig-Lag-Sig-Lag-Site-Leg-Site-Ligital-Array-Sig-System-Sig-System-Sig-Leg-Sig-System-Sig-Leg-Sig-System-Sig-System-Sig-Leg-Sig-System). Is used.
  • FIG. 3 is a diagram showing an example of exposure pupil diameter information held by the reference pupil diameter determination unit 104 in the poor physical condition detection apparatus 100 according to Embodiment 1.
  • the exposure pupil diameter information includes a plurality of reference exposure parameters and a reference pupil diameter associated with each of the plurality of reference exposure parameters. More specifically, for example, the exposure pupil diameter information is so-called matrix data having a plurality of reference exposure parameters and a reference pupil diameter associated with each of the plurality of reference exposure parameters.
  • the reference exposure parameter shown in FIG. 3 is, as an example, a value that is expressed by the reciprocal of the exposure time (second) of the image sensor assuming that the aperture value of the lens in the imaging device 11 is not changed.
  • the exposure pupil diameter information is held in advance, for example, by the reference pupil diameter determination unit 104.
  • the reference pupil diameter determining unit 104 may read out the exposure pupil diameter information from, for example, a storage device (not shown in FIG. 1) in which the exposure pupil diameter information is stored.
  • the left column describes the exposure parameters for reference.
  • the right column is the reference pupil diameter associated with the reference exposure parameter described in the left column.
  • the reference pupil diameter determination unit 104 determines the reference pupil diameter based on the exposure parameters acquired by the exposure parameter acquisition unit 102. Specifically, for example, when the reference pupil diameter determining unit 104 detects the poor physical condition of the occupant based on the exposure pupil diameter information and the exposure parameters acquired by the exposure parameter acquiring unit 102, The reference pupil diameter used for the determination is determined. More specifically, for example, the reference pupil diameter determining unit 104 first compares the exposure parameter with the reference exposure parameter.
  • the reference pupil diameter determination unit 104 selects a reference pupil diameter associated with the reference exposure parameter equal to the exposure parameter, and based on the selected reference pupil diameter, the poor physical condition detection unit 105 The reference pupil diameter used when detecting the occupant's poor physical condition is determined.
  • the reference pupil diameter determination unit 104 refers to the exposure pupil diameter information shown in FIG. "Millimeter” is referred to as "mm").
  • the reference pupil diameter determining unit 104 determines the reference corresponding to each of the plurality of reference exposure parameters equal to the exposure parameters.
  • the average value of the pupil diameters is determined, and the average value is determined as the reference pupil diameter used when the poor physical condition detection unit 105 detects the poor physical condition of the occupant.
  • the reference pupil diameter is not limited to the above method.
  • the reference pupil diameter determination unit 104 uses the well-known statistical processing technology to determine the reference pupil diameter corresponding to each of the plurality of reference exposure parameters equal to the exposure parameter, and the poor physical condition detection unit 105 detects the poor physical condition of the occupant.
  • the reference pupil diameter used at that time may be determined.
  • the exposure pupil diameter information shown in FIG. not exist.
  • the reference pupil diameter determination unit 104 determines the reference exposure parameter that is the value closest to the exposure parameter and the exposure parameter.
  • the reference pupil diameter used when the poor physical condition detecting unit 105 detects the poor physical condition of the occupant may be calculated and determined based on the reference exposure parameter which is the second closest value to the parameter.
  • FIG. 4 is a diagram illustrating an example of a temporal change of a pupil diameter when flash light is emitted to a healthy human eye.
  • FIG. 4 shows an example where the pupil diameter is 3.5 mm before flash light irradiation.
  • the pupil of the healthy person starts miosis about 0.2 seconds after the flash light is applied due to light reflection. Thereafter, the pupil diameter becomes a minimum value about 1.0 second after the irradiation of the flash light.
  • the pupil diameter before flash light irradiation is 3.5 mm
  • the pupil diameter in the state where the pupil is most constricted due to light reflection is 1 compared with the pupil diameter before flash light irradiation.
  • the pupil diameter returns so as to gradually approach the state before flash light irradiation at a lower speed than the speed at which the pupil diameter becomes smaller due to light reflection.
  • the poor physical condition detection unit 105 detects poor physical condition of the occupant based on the pupil diameter detected by the pupil diameter detection unit 103 and the reference pupil diameter determined by the reference pupil diameter determination unit 104. .
  • the poor physical condition detection unit 105 detects the pupil diameter detection unit 103 based on the reference pupil diameter determined by the reference pupil diameter determination unit 104 and the first period image acquired by the image acquisition unit 101. Based on the difference from the pupil diameter of the eye of the occupant of the vehicle 1, poor occupant condition is detected.
  • the poor physical condition detection unit 105 determines that the maximum value of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is equal to or greater than a predetermined first threshold and a second threshold. The occupant's poor physical condition is detected based on whether it is within the range of less than or equal to.
  • the first threshold is 0.8 mm
  • the second threshold is 1.2 mm.
  • the poor physical condition detection unit 105 indicates that the occupant's physical condition is normal. Is determined.
  • the poor physical condition detection unit 105 It is determined to be defective.
  • the first threshold value and the second threshold value are not limited to those described above, and are appropriately determined based on a well-known technique or common technical knowledge. Further, for example, when the environmental illuminance is higher than the case shown in FIG. 4, the pupil diameter before the flash light is irradiated is smaller than the pupil diameter before the flash light shown in FIG. Therefore, when the environmental illuminance is higher than the case shown in FIG. 4, the difference between the pupil diameter before the flash light is irradiated and the pupil diameter in the state in which the pupil is most constricted due to light reflection is smaller than the case shown in FIG. .
  • the poor physical condition detection unit 105 determines that the maximum value of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is, for example, equal to or more than the first threshold and the second threshold, which are predetermined for each reference pupil diameter.
  • the poor physical condition of the occupant may be detected based on whether or not the range is less than the threshold value.
  • the poor physical condition detection unit 105 determines whether the pupil diameter detection unit 103 is based on the reference pupil diameter determined by the reference pupil diameter determination unit 104 and the first period image acquired by the image acquisition unit 101.
  • the occupant's poor physical condition may be detected based on the detected ratio to the pupil diameter of the eye of the occupant of the vehicle 1.
  • the poor physical condition detection unit 105 determines that the ratio between the reference pupil diameter and the minimum value of the pupil diameter detected by the pupil diameter detection unit 103 is equal to or more than a predetermined first ratio threshold and equal to or less than a second ratio.
  • the poor physical condition of the occupant is detected based on whether the ratio is less than the ratio threshold. For example, when the ratio between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is indicated by the value of the pupil diameter detected by the pupil diameter detection unit 103 when the reference pupil diameter is 1, the first ratio
  • the threshold is, for example, 0.6
  • the second ratio threshold is, for example, 0.8.
  • the poor physical condition detection unit 105 Is determined to be normal. Further, for example, if the ratio between the reference pupil diameter and the minimum value of the pupil diameter detected by the pupil diameter detection unit 103 is not in the range of 0.6 or more and less than 0.8, the poor physical condition detection unit 105 It is determined that the physical condition is poor.
  • the first ratio threshold value and the second ratio threshold value are not limited to those described above, and are appropriately determined based on a well-known technique or common general technical knowledge.
  • the poor physical condition detection unit 105 determines that the ratio between the reference pupil diameter and the minimum value of the pupil diameter detected by the pupil diameter detection unit 103 is equal to or more than a first ratio threshold that is predetermined for each reference pupil diameter and The poor physical condition of the occupant may be detected based on whether or not the range is less than the 2 ratio threshold.
  • the poor physical condition detection unit 105 determines whether the pupil diameter detection unit 103 is based on the reference pupil diameter determined by the reference pupil diameter determination unit 104 and the first period image acquired by the image acquisition unit 101.
  • the occupant's poor physical condition may be detected based on the detected temporal change in the difference from the pupil diameter of the eye of the occupant of the vehicle 1.
  • the poor physical condition detection unit 105 determines a period from when the flash light is emitted to when the pupil diameter detected by the pupil diameter detection unit 103 becomes the minimum value, and the reference pupil diameter and the pupil diameter detection unit 103.
  • the time change of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103, which is calculated from the difference between the detected pupil diameter and the minimum value, is equal to or greater than a predetermined first change threshold and
  • the occupant's poor physical condition is detected based on whether the occupant is in a range less than the second change threshold.
  • the first change threshold is, for example, 0.8 mm per second
  • the second change threshold is, for example, 1.2 mm per second.
  • the poor physical condition detection unit 105 Is determined to be in normal condition. Also, for example, the poor physical condition detection unit 105 is configured such that when the time change of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is not more than 0.8 mm per second and less than 1.2 mm per second, It is determined that the occupant is in poor physical condition.
  • the first change threshold value and the second change threshold value are not limited to those described above, and are appropriately determined based on a well-known technique or common technical knowledge.
  • the poor physical condition detection unit 105 determines that the time change of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is, for example, equal to or more than a first change threshold and predetermined for each reference pupil diameter.
  • the poor physical condition of the occupant may be detected based on whether or not the range is less than the two change threshold.
  • the poor physical condition detection unit 105 detects a poor physical condition of the occupant.
  • the poor physical condition detection unit 105 determines whether the pupil diameter detection unit 103 is based on the reference pupil diameter determined by the reference pupil diameter determination unit 104 and the first period image acquired by the image acquisition unit 101. The description will be made on the assumption that the poor physical condition of the occupant is detected based on the detected difference with the pupil diameter of the eye of the occupant of the vehicle 1.
  • the poor physical condition detection unit 105 outputs, for example, information indicating the detected poor physical condition of the occupant to the output device 13 or the like as physical condition information.
  • FIG. 5 is a diagram showing an example of the poor physical condition of the occupant detected by the poor physical condition detection unit 105 in the poor physical condition detection device 100 according to the first embodiment.
  • the poor physical condition detection unit 105 detects that the occupant is in poor physical condition based on the pupil diameter detected by the pupil diameter detection unit 103 and the reference pupil diameter determined by the reference pupil diameter determination unit 104 by the above-described method. After that, for example, the type of poor physical condition of the occupant may be classified by comparing the pupil diameter detected by the pupil diameter detection unit 103 with the pupil diameter pattern shown in FIG.
  • the minimum value of the pupil diameter detected by the pupil diameter detection unit 103 is 5 mm or more, it is determined that the pupil of the occupant is in the dilated pupil state.
  • the dilated pupil state is, for example, a state in which an occupant has cardiac arrest, hypoglycemia, hypoxia, midbrain disorder, or drug addiction, or a state in which these conditions may be caused.
  • the minimum value of the pupil diameter detected by the pupil diameter detection unit 103 is 1 mm or more and less than 2 mm, it is determined that the pupil of the occupant is in the state of severely inducible pupil.
  • the tonic pupil state is, for example, a state in which the occupant is in a state of early cerebral hernia or organophosphorus poisoning, or a state in which these states may be caused.
  • the pupil of the occupant is in the pinhole state.
  • the pinhole condition is, for example, a condition in which the occupant has a condition such as bridge bleeding or drug poisoning, or a condition that may cause these conditions.
  • the difference between the minimum values of the left and right pupil diameters detected by the pupil diameter detection unit 103 is 0.5 mm or more, it is determined that the pupils of the occupant are in the pupil disparity state.
  • the pupillary disparity state is, for example, a state in which the occupant is a sign of cerebral hernia or a hypoglycemic attack, or a state that may cause these states.
  • the poor physical condition detection unit 105 detects that the occupant is in a fatigued state.
  • the poor physical condition detection device 100 can classify the poor physical condition of the occupant in more detail.
  • FIG. 6 is a flowchart illustrating an example of processing of poor physical condition detection device 100 according to Embodiment 1.
  • the poor physical condition detection device 100 continuously executes, for example, the process of the flowchart in a period in which the vehicle 1 travels every time the flash light is irradiated.
  • step ST601 the image obtaining unit 101 determines whether or not to irradiate the flash light source 12 with flash light. The determination as to whether to irradiate the flash light source 12 with the flash light is made based on, for example, whether or not a predetermined period has elapsed since the flash light source 12 was irradiated with the flash light, as described above.
  • step ST601 when the image acquisition unit 101 determines that the flash light source 12 is not to be irradiated with flash light, the process of step ST601 is repeatedly executed until it is determined that the flash light source 12 is to be irradiated with flash light.
  • the poor physical condition detection device 100 performs the processing of step ST602 and subsequent steps.
  • step ST602 the image obtaining unit 101 controls the imaging device 11 to fix the exposure condition in the first period to the exposure condition before the flash light is irradiated.
  • step ST603 the image acquiring unit 101 causes the flash light source 12 to emit flash light by transmitting a control signal to the flash light source 12 as described above.
  • step ST604 as described above, the image obtaining unit 101 obtains an image in the first period at an interval of, for example, 0.2 seconds over the first period after irradiating the flash light.
  • step ST605 the exposure parameter acquisition unit 102 acquires the exposure parameter included in the header information of the first period image acquired by the image acquisition unit 101, as described above.
  • step ST606 reference pupil diameter determining section 104 determines the reference pupil diameter based on the exposure parameters acquired by exposure parameter acquiring section 102, as described above.
  • pupil diameter detection section 103 detects the pupil diameter of the eye of the occupant of vehicle 1 based on the first period image acquired by image acquisition section 101, as described above. More specifically, for example, the pupil diameter detection unit 103 detects the vehicle in the first period based on the first period image acquired by the image acquisition unit 101 over the first period, for example, at intervals of 0.2 seconds. The minimum value of the pupil diameter of the eye of the first occupant is detected.
  • the poor physical condition detection unit 105 determines the occupant's condition based on the pupil diameter detected by the pupil diameter detection unit 103 and the reference pupil diameter determined by the reference pupil diameter determination unit 104, as described above. Detects poor physical condition.
  • step ST609 the poor physical condition detection unit 105 outputs the physical condition information to the output device 13 or the like as described above.
  • the poor-health detection apparatus 100 ends the processing of the flowchart, returns to the processing of step ST601, and repeatedly executes the processing of the flowchart.
  • step ST606 and the process of step ST607 may be performed in the reverse order.
  • FIG. 7 is a flowchart illustrating an example of the details of the process of step ST608 shown in FIG.
  • step ST701 the poor physical condition detection unit 105 determines that the maximum value of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is equal to or more than the first threshold and less than the second threshold, as described above. It is determined whether it is within the range.
  • step ST701 the poor physical condition detection unit 105 determines that the maximum value of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is equal to or more than the first threshold and less than the second threshold.
  • step ST702 the poor physical condition detection unit 105 generates physical condition information indicating that the physical condition of the occupant is normal, as described above.
  • Step ST701 when the poor physical condition detection unit 105 determines that the maximum value of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is not in the range of the first threshold or more and less than the second threshold.
  • step ST703 the poor physical condition detection unit 105 determines whether or not the occupant is in the dilated pupil state, as described above.
  • step ST703 when the poor physical condition detection unit 105 determines that the occupant is in the dilated pupil state, in step ST704, the poor physical condition detection unit 105 determines that the occupant is in poor condition, as described above, Physical condition information indicating that the occupant is in a dilated pupil state is generated. If the occupant is determined not to be in a dilated pupil state by the poor physical condition detection unit 105 in step ST703, the poor physical condition detection unit 105 determines in step ST705 whether the occupant is in the pinhole state, as described above. Is determined.
  • step ST705 if the occupant is determined to be in a pinhole state by the poor physical condition detection unit 105, the poor physical condition detection unit 105 determines in step ST706 that the occupant is in poor physical condition, as described above. Generates physical condition information indicating that it is in a pinhole state.
  • step ST705 when the occupant is determined not to be in the pinhole state by the poor physical condition detection unit 105, in step ST707, the poor physical condition detection unit 105 determines whether or not the occupant is in the severely miotic state, as described above. Is determined.
  • step ST707 if the poor physical condition detection unit 105 determines that the occupant is in a severely miotic state, in step ST708, the poor physical condition detection unit 105 determines that the physical condition of the occupant is poor, Physical condition information indicating that the occupant is in a state of severely miotic pupil is generated.
  • step ST707 when the poor physical condition detection unit 105 determines that the occupant is not in the severely miotic state, in step ST709, the poor physical condition detection unit 105 determines whether or not the occupant is in the pupil disparate state, as described above. Is determined.
  • step ST709 when the poor physical condition detecting unit 105 determines that the occupant is in the pupil disparity state, in step ST710, the poor physical condition detecting unit 105 determines that the physical condition of the occupant is poor, as described above. Generates physical condition information indicating that the pupil is in the pupil disparity state.
  • step ST709 when the poor physical condition detection unit 105 determines that the occupant is not in the pupil disparity state, in step ST711, the poor physical condition detection unit 105 determines that the physical condition of the occupant is poor, and Generate physical condition information indicating that the subject is in a fatigue state.
  • the poor physical condition detection unit 105 detects the poor physical condition of the occupant, and the poor physical condition detected by the poor physical condition detection unit 105. Is a predetermined physical condition, the physical condition detection unit 105 may not detect the predetermined physical condition of the occupant during the period in which the vehicle 1 travels.
  • the predetermined poor physical condition is, for example, poor physical condition corresponding to an occupant's dilated pupil state or pupil disparity state.
  • the predetermined third period is, for example, 30 minutes after the occupant gets on the vehicle 1. The predetermined third period is not limited to the above-described period, and may be longer or shorter than 30 minutes.
  • the poor-health detection device 100 suppresses erroneous detection of poor physical condition in an occupant who has a normal pupil or a dilated pupil even when the physical condition is normal. it can.
  • the poor physical condition detection device 100 includes the image acquisition unit 101 that acquires an image of the eye of the occupant of the vehicle 1 during a predetermined first period after the eye is irradiated with the flash light.
  • An exposure parameter acquisition unit 102 that acquires an exposure parameter used when the image is captured; a pupil diameter detection unit 103 that detects a pupil diameter of an eye based on the image; and an exposure parameter acquisition unit 102
  • a reference pupil diameter determining unit 104 that determines a reference pupil diameter based on the acquired exposure parameters, a pupil diameter detected by the pupil diameter detection unit 103, and a reference pupil diameter determined by the reference pupil diameter determination unit 104.
  • a poor physical condition detecting unit 105 for detecting poor physical condition of the occupant.
  • the poor physical condition detection device 100 can accurately determine the physical condition of the occupant of the vehicle 1 based on the change in the pupil diameter due to the irradiation of the flash light.
  • the output device 13 has been described as being mounted on the vehicle 1, but the present invention is not limited to this.
  • a device for acquiring the physical condition information output from the physical condition detection device 100 such as the output device 13 is provided outside the vehicle 1 and detects physical condition detection via a wireless public line such as LTE (Long Term Evolution).
  • the physical condition information may be acquired from the device 100.
  • an observer or the like outside the vehicle 1 can monitor the physical condition of the occupant of the vehicle 1 using the poor physical condition detection device 100.
  • the imaging device 11 is described as a digital camera capable of capturing a still image, but is not limited thereto.
  • the imaging device 11 outputs an image capable of identifying the position or shape of the pupil in the captured image of the eye, and can change the exposure condition at the time of imaging, the imaging device 11 It may be a digital video camera that captures a moving image, an infrared camera, or the like. With this configuration, the poor physical condition detection device 100 can obtain higher versatility.
  • the imaging device 11 may appropriately adjust the exposure condition based on information indicating the brightness of the eyes of the occupant of the vehicle 1 output from the illuminance sensor provided in the imaging device 11.
  • the exposure condition of the imaging device 11 is such that the poor physical condition detection device 100 determines the exposure condition based on the luminance of the image acquired from the imaging device 11 before irradiating the flash light, and determines the determined exposure condition as the poor physical condition detection.
  • the setting may be made by the device 100 outputting to the imaging device 11.
  • the poor physical condition detection device 100 can use the imaging device 11 in which the illuminance sensor is not provided, and can obtain higher versatility.
  • the poor physical condition detection device 100 has been described as being mounted on the vehicle 1, but the present invention is not limited thereto.
  • the poor physical condition detection device 100 is provided outside the vehicle 1 and connected to the flash light source 12, the imaging device 11, the output device 13, and the like mounted on the vehicle 1 via a wireless public line such as LTE. It may be something.
  • the poor physical condition detection device 100 controls the flash light source 12 via a wireless public line such as LTE, acquires a first period image and exposure parameters from the imaging device 11, and outputs the output device 13 For example, it may output physical condition information.
  • the poor physical condition detection device 100 can be installed outside the vehicle 1, and the degree of freedom of the installation position is increased.
  • the flash light source 12 is, for example, determined in advance by irradiating a flash light during a period in which the vehicle 1 travels, according to a control signal output from the poor physical condition detection device 100.
  • the flash light source 12 is irradiated with the flash light after the elapse of the period, the present invention is not limited to this.
  • the flash light source 12 is determined in advance by the control signal output from the poor physical condition detecting device 100 when the occupant's posture or the like has collapsed or the occupant's posture is still during the period in which the vehicle 1 travels.
  • the flash light source 12 may be irradiated with flash light.
  • the predetermined period here is, for example, 10 minutes.
  • the predetermined period here is not limited to the above-mentioned period, and may be longer or shorter than 10 minutes.
  • the poor physical condition detection device 100 can perform physical condition detection at a timing when the physical condition of the occupant may have changed.
  • the poor physical condition detection device 100 determines whether or not the vehicle 1 is stopped. Flash light may be applied. The determination as to whether or not the vehicle 1 is stopped is based on the sensor information acquired by the poor-health detecting device 100 from, for example, a speed sensor (not shown) of the vehicle 1 connected to the poor-health detecting device 100. judge. With this configuration, the poor physical condition detection device 100 can suppress the flash light emitted to the eyes from hindering driving, particularly when the occupant is a driver.
  • FIG. 8 is a block diagram showing an example of a main part of poor physical condition detection device 100a according to the second embodiment.
  • the poor physical condition detection device 100a according to the second embodiment differs from the poor physical condition detection device 100 according to the first embodiment in that an exposure pupil diameter information generation unit 106 is added.
  • the same components as those of the poor physical condition detection device 100 according to the first embodiment are denoted by the same reference numerals, and redundant description will be omitted. That is, the description of the configuration in FIG. 8 to which the same reference numerals as those in FIG. 1 are given is omitted.
  • the vehicle 1 includes the poor physical condition detection device 100a, the imaging device 11, the flash light source 12, and the output device 13.
  • the imaging device 11 outputs the captured image of the eye part to the poor physical condition detection device 100a.
  • the imaging device 11 captures an eye of an occupant of the vehicle 1 by receiving a trigger signal from the poor physical condition detection device 100a. Since the imaging device 11 according to the second embodiment is equivalent to the imaging device 11 described in the first embodiment, a detailed description is omitted.
  • the flash light source 12 emits flash light according to, for example, a control signal output from the poor physical condition detection device 100a.
  • a description will be given assuming that the poor physical condition detection device 100a controls irradiation of flash light by the flash light source 12.
  • the flash light source 12 according to the second embodiment is the same as the flash light source 12 described in the first embodiment, and a detailed description will be omitted.
  • the poor physical condition detection device 100a generates physical condition information of the occupant, and outputs the generated physical condition information to the output device 13 and the like.
  • the poor physical condition detection apparatus 100a includes an image acquisition unit 101a, an exposure parameter acquisition unit 102a, a pupil diameter detection unit 103a, a reference pupil diameter determination unit 104, a poor physical condition detection unit 105, and an exposure pupil diameter information generation unit 106.
  • the image acquisition unit 101a acquires an image during a first period during a first period.
  • the image acquisition unit 101a can acquire an image (hereinafter, referred to as a “non-influenced period image”) of the eye during a period in which the pupil diameter is not affected by the flash light (hereinafter, referred to as a “non-effect period”).
  • the non-influence period is, for example, a period from when the occupant gets on the vehicle 1 to when the flash light is emitted, or a sufficient period after the flash light is applied to the eyes of the occupant of the vehicle 1 (hereinafter, the “influence period”). This is the period after the elapse of ").
  • the influence period is, for example, one minute.
  • the influence period may be longer or shorter than one minute as long as the period is long enough to prevent the influence of the flash light on the pupil diameter.
  • the image acquisition unit 101a acquires, from the imaging device 11, a first period image or a non-influence period image captured by the imaging device 11 by transmitting a trigger signal to the imaging device 11.
  • the image acquisition unit 101a is described as transmitting a control signal to the flash light source 12 to irradiate the flash light source 12 with flash light.
  • the operations of the image acquiring unit 101a other than the above-described operations are the same as those of the image acquiring unit 101 described in the first embodiment, and a detailed description thereof will be omitted.
  • the exposure parameter acquisition unit 102a acquires an exposure parameter used when the first period image is captured.
  • the exposure parameter acquisition unit 102a can acquire the exposure parameters used when the non-influence period image is captured.
  • the exposure parameter acquisition unit 102a acquires the exposure parameter included in the header information of the first period image or the unaffected period image acquired by the image acquisition unit 101a.
  • the operation of the exposure parameter acquisition unit 102a other than the above-described operation is the same as that of the exposure parameter acquisition unit 102 described in the first embodiment, and a detailed description thereof will be omitted.
  • the pupil diameter detection unit 103a detects the pupil diameter of the eye of the occupant of the vehicle 1 based on the first period image acquired by the image acquisition unit 101a.
  • the pupil diameter detection unit 103a can detect the pupil diameter of the eye of the occupant of the vehicle 1 acquired by the image acquisition unit 101a.
  • the operation of pupil diameter detecting section 103a other than the above-described operation is the same as that of pupil diameter detecting section 103 described in the first embodiment, and thus a detailed description is omitted.
  • the exposure pupil diameter information generation unit 106 is configured to detect the vehicle based on the exposure parameters used when the non-effect period image acquired by the exposure parameter acquisition unit 102a is captured and the pupil diameter detection unit 103a based on the non-effect period image. Exposure pupil diameter information is generated based on the pupil diameter of the eye of the first occupant. Specifically, for example, the exposure pupil diameter information generation unit 106 determines the exposure parameters used when the non-influence period image is captured and the eyes of the occupant eyes of the vehicle 1 detected by the pupil diameter detection unit 103a. The reference exposure parameter and the reference pupil diameter are added to the exposure pupil diameter information based on the pupil diameter.
  • the exposure pupil diameter information generation unit 106 uses the exposure parameter used when the non-influence period image acquired by the exposure parameter acquisition unit 102a is captured as an exposure pupil diameter as a reference exposure parameter. Add to information. Further, the exposure pupil diameter information generation unit 106 sets the pupil diameter of the eye of the occupant of the vehicle 1 detected by the pupil diameter detection unit 103a based on the non-influence period image as a reference pupil diameter, and It is added to the exposure pupil diameter information in association with it. That is, the reference exposure parameter of the exposure pupil diameter information is the exposure parameter used when the non-effect period image acquired by the exposure parameter acquisition unit 102a is captured. In addition, the reference pupil diameter of the exposure pupil diameter information is based on the pupil diameter of the eye of the occupant of the vehicle 1 detected by the pupil diameter detection unit 103a based on the non-effect period image.
  • the exposure pupil diameter information generation unit 106 determines If the reference pupil diameter associated with the exposure parameter for use exists in the exposure pupil diameter information, the reference pupil diameter and the eyes of the occupant of the vehicle 1 detected by the pupil diameter detection unit 103a based on the non-influence period image. A new reference pupil diameter may be determined based on the pupil diameter of the part. More specifically, for example, the exposure pupil diameter information generation unit 106 calculates the reference pupil diameter and the pupil diameter of the eye of the occupant of the vehicle 1 detected by the pupil diameter detection unit 103a based on the non- influence period image. May be calculated, and the calculated average value may be used as a new reference pupil diameter.
  • the reference pupil diameter determining unit 104 and the poor physical condition detecting unit 105 according to the second embodiment are the same as the reference pupil diameter determining unit 104 and the poor physical condition detecting unit 105 described in the first embodiment, detailed description will be omitted. .
  • the reference pupil diameter of the exposure pupil diameter information is based on the non-influence period image captured in a predetermined second period (hereinafter, referred to as “second period”) after the vehicle 1 starts running. It is desirable to include the reference pupil diameter determined based on the pupil diameter of the eye of the occupant of the vehicle 1 detected by the pupil diameter detection unit 103a.
  • the second period is, for example, 10 minutes after the vehicle 1 starts running.
  • the second period is not limited to 10 minutes, and may be longer or shorter than 10 minutes as long as the degree of fatigue of the occupant of the vehicle 1 due to running of the vehicle 1 is small.
  • the period during which the degree of fatigue of the occupant of the vehicle 1 due to the traveling of the vehicle 1 is small is appropriately determined based on a known technique or common technical knowledge.
  • the reference pupil diameter of the exposure pupil diameter information is determined based on the pupil diameter of the eye of the occupant of the vehicle 1 detected by the pupil diameter detection unit 103a based on the non-influence period image captured in the second period. By including the pupil diameter, it is possible to more accurately detect the occupant's poor physical condition based on the reference pupil diameter that is less affected by the degree of fatigue.
  • Each function of the unit 106 may be realized by the processor 201 and the memory 202 in the hardware configuration illustrated in FIGS. 2A and 2B in the first embodiment, or may be realized by the processing circuit 203. It may be something.
  • FIG. 9 is a flowchart illustrating an example of processing of poor physical condition detection device 100a according to Embodiment 2.
  • the poor physical condition detection device 100a continuously executes, for example, the processing of the flowchart in a period in which the vehicle 1 runs every time the flash light is irradiated.
  • step ST901 the image acquisition unit 101a determines whether to irradiate the flash light source 12 with flash light.
  • step ST901 when it is determined by the image acquisition unit 101a to irradiate the flash light source 12 with the flash light, the poor physical condition detection device 100a performs the processing after step ST902.
  • the processing from step ST902 to step ST909 shown in FIG. 9 is the same as the processing from step ST602 to step ST609 shown in FIG.
  • step ST901 when the image obtaining unit 101a determines that the flash light source 12 is not to be irradiated with the flash light, in step ST911, the image obtaining unit 101a determines whether or not the period is the non-effect period. In step ST911, if the image acquiring unit 101a determines that the period is not the non-effect period, the poor physical condition detection device 100a returns to the process of step ST901. In step ST911, when the image acquiring unit 101a determines that the period is the non-influence period, in step ST912, the image acquiring unit 101a acquires the non-influence period image.
  • step ST913 the exposure parameter acquiring unit 102a acquires the exposure parameter included in the header information of the non-influence period image acquired by the image acquiring unit 101a.
  • step ST914 pupil diameter detecting section 103a detects the pupil diameter of the occupant's eye of vehicle 1 based on the non-influence period image acquired by image acquiring section 101a, as described above.
  • step ST915 the exposure pupil diameter information generation unit 106 determines the exposure parameters used when the non- influence period image is captured and the occupant of the vehicle 1 detected by the pupil diameter detection unit 103a. The reference exposure parameter and the reference pupil diameter are added to the exposure pupil diameter information based on the pupil diameter of the eye.
  • the exposure pupil diameter information generation unit 106 uses the exposure parameter used when the non-effect period image acquired by the exposure parameter acquisition unit 102a is captured as the reference exposure parameter, The pupil diameter of the eye of the occupant of the vehicle 1 detected by the unit 103a based on the non-influence period image is added as the reference pupil diameter to the exposure pupil diameter information in association with the reference exposure parameter.
  • the poor-health detection device 100a ends the processing of the flowchart, returns to the processing of step ST901, and repeatedly executes the processing of the flowchart.
  • step ST913 and the process of step ST914 may be performed in the reverse order.
  • the reference exposure parameter of the exposure pupil diameter information of the poor physical condition detection apparatus 100a is an exposure parameter used when the non-influence period image acquired by the exposure parameter acquiring unit 102a is captured, and
  • the reference pupil diameter of the exposure pupil diameter information of the detection device 100a is based on the pupil diameter of the eye detected by the pupil diameter detection unit 103a based on the non-effect period image.
  • the poor physical condition detection device 100a generates exposure pupil diameter information based on the exposure parameter acquired during traveling and the pupil diameter of the eye of the occupant of the vehicle 1 detected during traveling. Therefore, it is possible to accurately determine the physical condition of the occupant of the vehicle 1 based on a change in the pupil diameter due to the irradiation of the flash light without preparing exposure pupil diameter information in advance.
  • FIG. 10 is a block diagram illustrating an example of a main part of poor-health detecting device 100b according to Embodiment 3.
  • the poor physical condition detection device 100b according to Embodiment 3 is different from the poor physical condition detection device 100a according to Embodiment 2 in that an occupant identification unit 107 is added.
  • the same components as those of the physical condition detection device 100a according to the second embodiment are denoted by the same reference numerals, and redundant description will be omitted. That is, the description of the configuration in FIG. 10 to which the same reference numerals as those in FIG.
  • the vehicle 1 includes, for example, a physical condition detection device 100b, an imaging device 11, a flash light source 12, and an output device 13.
  • the poor physical condition detection device 100b according to Embodiment 3 generates physical condition information corresponding to each of a plurality of occupants, and outputs the generated physical condition information to the output device 13 and the like. Details of the poor physical condition detection device 100b will be described later.
  • the imaging device 11 photographs the eyes of each of a plurality of occupants of the vehicle 1.
  • the imaging device 11 outputs images of the eyes of a plurality of occupants of the vehicle 1 to the poor physical condition detection device 100b.
  • a plurality of imaging devices 11 are provided in the vehicle 1.
  • the vehicle 1 is provided with two imaging devices 11d and 11p, and the imaging device 11d and the imaging device 11p are respectively associated with each seat on which the occupant sits. It will be described as being provided. More specifically, for example, the imaging device 11d is associated with the driver's seat of the vehicle 1 and captures an image of the eye of a passenger sitting in the driver's seat of the vehicle 1. Further, the imaging device 11p is associated with the passenger seat of the vehicle 1, and captures an image of an eye of a passenger sitting on the passenger seat of the vehicle 1.
  • the imaging device 11 is described as being provided with two imaging devices 11d and 11p, but is not limited thereto.
  • the number of the imaging devices 11 may be three or more.
  • the imaging device 11d and the imaging device 11p will be described as being associated with the driver's seat and the passenger's seat, but this is not a limitation.
  • the imaging device 11d may be associated with a front row seat or the like in the vehicle 1
  • the imaging device 11p may be associated with a rear row seat or the like in the vehicle 1.
  • a description will be given assuming that a plurality of imaging devices 11 are provided, but this is not a limitation.
  • one imaging device 11 is provided in the vehicle 1, and the imaging device 11 performs panning, tilting, zooming, or the like to sequentially photograph the eyes of each of a plurality of occupants of the vehicle 1. It may be. Since the imaging device 11d and the imaging device 11p are the same as the imaging device 11 described in the second embodiment, detailed description will be omitted.
  • the flash light source 12 irradiates flash light to the eyes of a plurality of occupants of the vehicle 1.
  • a plurality of flash light sources 12 are provided in the vehicle 1.
  • two flash light sources 12d and 12p are provided in the vehicle 1, and the flash light sources 12d and 12p are respectively associated with the respective seats on which the occupants sit. It will be described as being provided. More specifically, for example, the flash light source 12d is associated with the driver's seat of the vehicle 1 and irradiates the eye of a passenger sitting in the driver's seat of the vehicle 1 with flash light.
  • the flash light source 12p is associated with the passenger seat of the vehicle 1 and irradiates the flash light to the eyes of the occupant sitting on the passenger seat of the vehicle 1.
  • the flash light source 12 is described as being provided with two flash light sources 12d and 12p, but the present invention is not limited to this.
  • the number of flash light sources 12 may be three or more.
  • the flash light source 12d and the flash light source 12p will be described as being associated with the driver's seat and the passenger's seat, but are not limited thereto.
  • the flash light source 12d may be associated with a front row seat or the like in the vehicle 1
  • the flash light source 12p may be associated with a rear row seat or the like in the vehicle 1.
  • a description will be given assuming that a plurality of flash light sources 12 are provided, but the present invention is not limited to this.
  • one flash light source 12 may be provided in the vehicle 1 and emit the flash light so that the light reaches the eyes of a plurality of occupants of the vehicle 1.
  • the flash light source 12d and the flash light source 12p are the same as the flash light source 12 described in the second embodiment, and a detailed description will be omitted.
  • the poor physical condition detection device 100b includes an image obtaining unit 101b, an exposure parameter obtaining unit 102b, a pupil diameter detecting unit 103b, a reference pupil diameter determining unit 104b, a poor physical condition detecting unit 105b, an exposure pupil diameter information generating unit 106b, and an occupant specifying unit 107. Having.
  • the occupant identification unit 107 identifies an occupant of the vehicle 1.
  • the occupant identification unit 107 does not need to be capable of identifying an individual occupant as long as the occupant can distinguish a plurality of occupants of the vehicle 1. More specifically, for example, the occupant identification unit 107 identifies the occupant of the vehicle 1 based on the occupant's position in the vehicle 1. For example, the occupant identification unit 107 identifies the occupant in association with the seat based on a detection signal obtained from a detection sensor (not shown) such as a pressure sensor or a human sensor provided for each seat where the occupant sits. I do. In the third embodiment, as an example, a description will be given assuming that an occupant is sitting in both the driver's seat and the passenger seat.
  • the image acquiring unit 101b acquires a first period image captured by the imaging device 11. More specifically, for example, the image acquiring unit 101b acquires, from the imaging device 11, a first period image of the occupant specified by the occupant specifying unit 107 in association with the seat. In the third embodiment, as an example, the image acquisition unit 101b acquires a first period image captured by the imaging device 11d and the imaging device 11p from each of the imaging device 11d and the imaging device 11p. More specifically, the image acquisition unit 101b performs the imaging device 11d in a predetermined period (first period) after the flash light is emitted from the flash light source 12d to the eyes of the occupant sitting in the driver's seat of the vehicle 1.
  • the image acquisition unit 101b sets the imaging device 11p to the eye unit during a predetermined period (first period) after the flash light is emitted from the flash light source 12p to the eyes of the occupant sitting in the front passenger seat of the vehicle 1. Is acquired from the imaging device 11p.
  • the image acquisition unit 101b may be capable of acquiring the non-influence period image captured by the imaging device 11d and the imaging device 11p from the imaging device 11d and the imaging device 11p, respectively. Operations other than the above-described operations in the image acquisition unit 101b according to the third embodiment are the same as those in the image acquisition unit 101a described in the second embodiment, and a detailed description thereof will be omitted.
  • the exposure parameter acquisition unit 102b acquires the respective exposure parameters used when the first period image acquired by the image acquisition unit 101b is acquired from each of the imaging device 11d and the imaging device 11p.
  • the exposure parameter acquisition unit 102b may be capable of acquiring the respective exposure parameters used when the non-influence period image acquired by the image acquisition unit 101b is acquired from each of the imaging device 11d and the imaging device 11p.
  • the operation other than the above-described operation in the exposure parameter acquisition unit 102b of the third embodiment is the same as that of the exposure parameter acquisition unit 102a described in the second embodiment, and thus a detailed description is omitted.
  • the pupil diameter detection unit 103b detects the pupil diameter of the eye for each occupant identified by the occupant identification unit 107. More specifically, the pupil diameter detection unit 103b detects the pupil diameter of the eye for each occupant based on the first period images acquired by the image acquisition unit 101b from each of the imaging device 11d and the imaging device 11p. The pupil diameter detection unit 103b may be capable of detecting the pupil diameter of the eye for each occupant based on the non-influence period image acquired by the image acquisition unit 101b from each of the imaging device 11d and the imaging device 11p.
  • the operation of pupil diameter detecting section 103b other than the above-described operation is the same as that of pupil diameter detecting section 103a described in the second embodiment, and thus a detailed description is omitted.
  • the reference pupil diameter determining unit 104b determines, for each occupant identified by the occupant identifying unit 107, based on the exposure parameters when the imaging device 11d and the imaging device 11p each capture the first period image acquired by the exposure parameter acquisition unit 102b. Determine the reference pupil diameter. More specifically, for example, the reference pupil diameter determination unit 104b includes an occupant identification unit based on exposure parameters when the imaging devices 11d and 11p each capture an image during the first period, and exposure pupil diameter information. The reference pupil diameter is determined for each occupant 107. In the third embodiment, as an example, the description will be made assuming that the exposure pupil diameter information referred to by reference pupil diameter determination unit 104b is prepared in advance for each occupant associated with each seat of vehicle 1.
  • the exposure pupil diameter information referred to by the reference pupil diameter determination unit 104b is not limited to the above.
  • the exposure pupil diameter information referred to by the reference pupil diameter determination unit 104b includes an exposure parameter when the imaging device 11d and the imaging device 11p acquired by the exposure parameter acquisition unit 102b each capture an image with no influence period, and a pupil diameter detection.
  • the exposure pupil diameter information generation unit 106b generates for each occupant based on the pupil diameter of the eye detected for each occupant based on the non-influence period image acquired by the unit 103b from each of the imaging devices 11d and 11p. But it is good.
  • the poor physical condition detection device 100b can detect poor physical condition for each occupant based on appropriate exposure pupil diameter information.
  • the operation of the reference pupil diameter determining unit 104b other than the above-described operation is the same as that of the reference pupil diameter determining unit 104 described in the second embodiment, and a detailed description thereof will be omitted.
  • the poor physical condition detection unit 105b is based on the pupil diameter of the eye of the occupant of the vehicle 1 detected by the pupil diameter detection unit 103b for each occupant, and the reference pupil diameter determined for each occupant by the reference pupil diameter determination unit 104b. Detects poor physical condition for each occupant.
  • the poor physical condition detection unit 105b generates, for example, physical condition information indicating a physical condition of the occupant detected for each occupant, and outputs the generated physical condition information to the output device 13 or the like.
  • the operation of the poor physical condition detection unit 105b is the same as that of the poor physical condition detection unit 105 described in the second embodiment except for the above-described operation, and a detailed description thereof will be omitted.
  • 106b and the respective functions of the occupant identification unit 107 may be realized by the processor 201 and the memory 202 in the hardware configuration illustrated in FIGS. 2A and 2B in the first embodiment, or may be a processing circuit. 203.
  • FIG. 11 is a flowchart illustrating an example of a process of poor physical condition detection device 100b according to Embodiment 3.
  • the poor physical condition detection device 100b continuously executes, for example, the process of the flowchart in a period in which the vehicle 1 runs every time the flash light is irradiated.
  • step ST1101 the image acquisition unit 101b determines whether to irradiate the flash light source 12d with flash light.
  • the poor physical condition detection device 100b performs the process of step ST1102.
  • step ST1102 the image acquisition unit 101b controls the imaging device 11d to fix the exposure condition in the first period to the exposure condition before flash light irradiation.
  • step ST1103 the image acquisition unit 101b transmits a control signal to the flash light source 12d to irradiate the flash light source 12d with flash light.
  • step ST1104 the image acquisition unit 101b acquires the first period image from the imaging device 11d at intervals of, for example, 0.2 seconds over the first period after irradiating the flash light. I do.
  • step ST1105 the exposure parameter acquiring unit 102b acquires the exposure parameter included in the header information of the first period image acquired by the image acquiring unit 101b from the imaging device 11d.
  • step ST1106 the reference pupil diameter determining unit 104b determines, for example, the reference pupil diameter of the occupant sitting in the driver's seat based on the exposure parameters of the imaging device 11d acquired by the exposure parameter acquiring unit 102b, as described above. decide.
  • the pupil diameter detection unit 103b based on the first period image acquired by the image acquisition unit 101b from the imaging device 11d, detects, for example, the eyes of the occupant sitting in the driver's seat of the vehicle 1.
  • the pupil diameter of the part is detected. More specifically, for example, the pupil diameter detecting unit 103b performs the first pupil diameter detection based on the first period image acquired by the image acquiring unit 101b from the imaging device 11d at intervals of, for example, 0.2 seconds over the first period. In one period, for example, the minimum value of the pupil diameter of the eye of the occupant sitting in the driver's seat of the vehicle 1 is detected.
  • step ST1108 the poor physical condition detection unit 105b determines the pupil diameter detected by the pupil diameter detection unit 103b and the reference pupil diameter determined by the reference pupil diameter determination unit 104b. Based on the pupil diameter, for example, the poor physical condition of the occupant sitting in the driver's seat is detected.
  • step ST1109 the poor physical condition detection unit 105b outputs, for example, the physical condition information of the occupant sitting in the driver's seat to the output device 13 or the like as described above.
  • the physical condition detection device 100b performs the processing of step ST1111.
  • step ST1101 if the image acquisition unit 101b determines that the flash light source 12d is not to be irradiated with the flash light, the poor physical condition detection device 100b performs the process of step ST1111.
  • step ST1111 the image acquiring unit 101b determines whether to irradiate the flash light source 12p with flash light. If it is determined in step ST1111 that the image acquisition unit 101b does not irradiate the flash light source 12p with flash light, the poor physical condition detection device 100b ends the processing of the flowchart, returns to step ST1101, and returns to step ST1101. The processing of the flowchart is repeatedly executed. If it is determined in step ST1111 that the image acquisition unit 101b irradiates the flash light source 12p with flash light, the poor physical condition detection device 100b performs the process of step ST1112.
  • step ST1112 the image acquisition unit 101b controls the imaging device 11p to fix the exposure condition in the first period to the exposure condition before flash light irradiation.
  • step ST1113 the image acquisition unit 101b transmits a control signal to the flash light source 12p to irradiate the flash light source 12p with flash light.
  • step ST1114 the image acquiring unit 101b acquires the first period image from the imaging device 11p at intervals of, for example, 0.2 seconds over the first period after irradiating the flash light. I do.
  • step ST1115 the exposure parameter acquisition unit 102b acquires the exposure parameter included in the header information of the non-influence period image acquired by the image acquisition unit 101b from the imaging device 11p.
  • step ST1116 the reference pupil diameter determining unit 104b determines, for example, the reference pupil diameter of the occupant sitting in the passenger seat based on the exposure parameters of the imaging device 11p acquired by the exposure parameter acquiring unit 102b, as described above. decide.
  • pupil diameter detecting section 103b based on the first period image acquired by image acquiring section 101b from imaging apparatus 11p, outputs, for example, the eyes of an occupant sitting in the passenger seat of vehicle 1.
  • the pupil diameter of the part is detected. More specifically, for example, the pupil diameter detection unit 103b performs the first pupil diameter detection based on the first period image acquired by the image acquisition unit 101b from the imaging device 11p at, for example, 0.2 second intervals over the first period. In one period, for example, the minimum value of the pupil diameter of the eye of the occupant sitting in the passenger seat of the vehicle 1 is detected.
  • step ST1118 the poor physical condition detection unit 105b determines the pupil diameter detected by the pupil diameter detection unit 103b and the pupil diameter determined by the reference pupil diameter determination unit 104b. Based on the pupil diameter, for example, the poor physical condition of the occupant sitting in the passenger seat is detected.
  • step ST1119 as described above, the poor physical condition detection unit 105b outputs, for example, the physical condition information of the occupant sitting in the passenger seat to the output device 13 or the like.
  • the poor-health detection device 100b ends the processing of the flowchart, returns to the processing of step ST1101, and repeatedly executes the processing of the flowchart.
  • step ST1106 and step ST1107 may be reversed.
  • step ST1116 and the processing of step ST1117 may be performed in the reverse order.
  • the poor physical condition detection device 100b includes the image acquisition unit 101b that acquires an image of the eye of the occupant of the vehicle 1 during a first predetermined period after the eye is irradiated with the flash light.
  • An exposure parameter acquisition unit 102b that acquires an exposure parameter used when the image is captured; a pupil diameter detection unit 103b that detects a pupil diameter of an eye based on the image; and an exposure parameter acquisition unit 102b
  • a reference pupil diameter determining unit 104b that determines a reference pupil diameter based on the acquired exposure parameters, a pupil diameter detected by the pupil diameter detection unit 103b, and a reference pupil diameter determined by the reference pupil diameter determination unit 104b.
  • the pupil diameter detecting unit 103b includes an illness detecting unit 105b for detecting an illness of the occupant, and an occupant identifying unit 107 for identifying the occupant.
  • the pupil diameter of the eye is detected for each occupant, and the poor physical condition detection unit 105b determines the pupil diameter of the eye detected by the pupil diameter detection unit 103b for each occupant, and the reference pupil diameter determination unit 104b determines for each occupant. Based on the reference pupil diameter, it is configured to detect poor physical condition for each occupant.
  • the poor physical condition detection device 100b can determine the physical condition of the occupants of the vehicle 1 based on the change in the pupil diameter due to the irradiation of the flash light for each occupant. Can be done accurately.
  • any combination of the embodiments can be freely combined, or any component of each embodiment can be modified, or any component can be omitted in each embodiment. .
  • the poor physical condition detecting device according to the present invention can be applied to a vehicle.

Abstract

A poor physical condition detection device (100) comprises: an image acquisition unit (101) for acquiring an image of the eyes of an occupant of a vehicle (1) during a predetermined first period after the eyes are irradiated with a flashing light; an exposure parameter acquisition unit (102) for acquiring an exposure parameter used when the image was captured; a pupil diameter detection unit (103) for detecting the pupil diameters of the eyes on the basis of the image; a reference pupil diameter determination unit (104) for determining a reference pupil diameter on the basis of the exposure parameter acquired by the exposure parameter acquisition unit (102); and a poor physical condition detection unit (105) for detecting a poor physical condition of the occupant on the basis of the pupil diameters detected by the pupil diameter detection unit (103) and the reference pupil diameter determined by the reference pupil diameter determination unit (104).

Description

体調不良検出装置及び体調不良検出方法Physical condition detection device and physical condition detection method
 この発明は、体調不良検出装置及び体調不良検出方法に関するものである。 The present invention relates to a poor physical condition detecting device and a poor physical condition detecting method.
 車両の乗員の体調を監視する技術が検討されている。 技術 Technologies for monitoring the physical condition of occupants of vehicles are being studied.
 例えば、特許文献1には、前眼部にフラッシュ光を照射する光源と、前眼部を撮像する撮像装置と、撮像装置で撮像した前眼部の画像に基づき虹彩径及び瞳孔径を算出する虹彩/瞳孔径演算部と、虹彩径に対する瞳孔径の割合からストレス強度を算出するストレス強度演算部とを備え、ストレス強度演算部は、瞳孔対光反応前の虹彩径と瞳孔径から算出した初期相対瞳孔径比と、瞳孔対光反応後の最大縮瞳の相対瞳孔最小径比と、設定時間経過後の複数の相対瞳孔径比とを加算、乗算、又は、加算及び乗算して、ストレス強度を算出するストレス強度演算装置が開示されている。 For example, in Patent Literature 1, an iris diameter and a pupil diameter are calculated based on a light source that irradiates the anterior segment with flash light, an imaging device that captures an anterior segment, and an image of the anterior segment captured by the imaging device. An iris / pupil diameter calculating unit; and a stress intensity calculating unit that calculates a stress intensity from a ratio of the pupil diameter to the iris diameter, wherein the stress intensity calculating unit calculates an initial value calculated from the iris diameter and the pupil diameter before the pupil-light reaction. By adding, multiplying, or adding and multiplying the relative pupil diameter ratio, the relative pupil minimum diameter ratio of the maximum pupil after pupil-to-light reaction, and the plurality of relative pupil diameter ratios after the lapse of the set time, the stress intensity Is disclosed.
特開2008-212179JP 2008-212179 A
 瞳孔径の対光反射は、フラッシュ光を照射する前後だけでなく、例えば、環境照度の変化によっても生じる。特に走行する車両においては、走行する車両の位置或いは向き、走行する車両の周囲の状況、又は、車両が走行する日時等の様々な要因により、車両の乗員の眼部における環境照度が変化する。
 しかしながら、従来の技術は、環境照度の変化による瞳孔径の変化を考慮していないため、フラッシュ光の照射による瞳孔径の変化量を精度よく取得することができず、車両の乗員の体調を正確に判定できなかった。
The light reflection of the pupil diameter occurs not only before and after flash light irradiation but also due to, for example, a change in environmental illuminance. In particular, in a traveling vehicle, the environmental illuminance at the eyes of the occupant of the vehicle changes depending on various factors such as the position or orientation of the traveling vehicle, the surroundings of the traveling vehicle, or the date and time when the vehicle travels.
However, the conventional technology does not consider changes in the pupil diameter due to changes in environmental illuminance, and thus cannot accurately obtain the amount of change in the pupil diameter due to flash light irradiation. Could not be determined.
 この発明は、上述の問題点を解決するためのもので、フラッシュ光の照射による瞳孔径の変化に基づく車両の乗員の体調の判定を正確に行うことができる体調不良検出装置を提供することを課題としている。 An object of the present invention is to solve the above-mentioned problems, and to provide a poor physical condition detecting device capable of accurately determining the physical condition of an occupant of a vehicle based on a change in pupil diameter due to irradiation of flash light. It is an issue.
 この発明に係る体調不良検出装置は、車両の乗員の眼部にフラッシュ光が照射されてから予め定められた第1の期間に当該眼部を撮像した画像を取得する画像取得部と、当該画像が撮像される際に用いられた露光パラメータを取得する露光パラメータ取得部と、当該画像に基づいて眼部の瞳孔径を検出する瞳孔径検出部と、露光パラメータ取得部が取得した露光パラメータに基づいて基準瞳孔径を決定する基準瞳孔径決定部と、瞳孔径検出部が検出した瞳孔径と、基準瞳孔径決定部が決定した基準瞳孔径とに基づいて、乗員の体調不良を検出する体調不良検出部と、を備えたものである。 A poor physical condition detection device according to the present invention includes an image acquisition unit configured to acquire an image of the eye of a vehicle occupant during a predetermined first period after the eye is irradiated with the flash light; An exposure parameter acquisition unit that acquires an exposure parameter used when the image is captured, a pupil diameter detection unit that detects a pupil diameter of the eye based on the image, and an exposure parameter acquisition unit that acquires the exposure parameter acquired by the exposure parameter acquisition unit. A pupil diameter determining unit that determines a reference pupil diameter based on the pupil diameter, a pupil diameter detected by the pupil diameter detecting unit, and a poor physical condition that detects a poor occupant condition based on the reference pupil diameter determined by the reference pupil diameter determining unit. And a detection unit.
 この発明によれば、フラッシュ光の照射による瞳孔径の変化に基づく車両の乗員の体調の判定を正確に行うことができる。 According to the present invention, it is possible to accurately determine the physical condition of an occupant of a vehicle based on a change in pupil diameter due to flash light irradiation.
図1は、実施の形態1に係る体調不良検出装置の要部の一例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of a main part of the poor physical condition detection device according to the first embodiment. 図2A及び図2Bは、実施の形態1に係る体調不良検出装置のハードウェア構成の一例を示す図である。2A and 2B are diagrams illustrating an example of a hardware configuration of the poor physical condition detection device according to Embodiment 1. FIG. 図3は、実施の形態1に係る体調不良検出装置における基準瞳孔径決定部が保持する露光瞳孔径情報の一例を示す図である。FIG. 3 is a diagram illustrating an example of exposure pupil diameter information held by a reference pupil diameter determination unit in the poor physical condition detection device according to the first embodiment. 図4は、環境照度に変化がない場合における健康な人の眼部にフラッシュ光が照射された際の瞳孔径の時間変化の一例を示す図である。FIG. 4 is a diagram illustrating an example of a temporal change of a pupil diameter when a flash light is applied to a healthy human eye when there is no change in environmental illuminance. 図5は、実施の形態1に係る体調不良検出装置における体調不良検出部が検出する乗員の体調不良の一例を示す図である。FIG. 5 is a diagram illustrating an example of the poor physical condition of the occupant detected by the poor physical condition detection unit in the poor physical condition detection device according to the first embodiment. 図6は、実施の形態1に係る体調不良検出装置の処理の一例を説明するフローチャートである。FIG. 6 is a flowchart illustrating an example of a process performed by the poor physical condition detection device according to the first embodiment. 図7は、図6に示すステップST608の処理の詳細の一例を説明するフローチャートである。FIG. 7 is a flowchart illustrating an example of the details of the process of step ST608 shown in FIG. 図8は、実施の形態2に係る体調不良検出装置の要部の一例を示すブロック図である。FIG. 8 is a block diagram illustrating an example of a main part of the poor physical condition detection device according to the second embodiment. 図9は、実施の形態2に係る体調不良検出装置の処理の一例を説明するフローチャートである。FIG. 9 is a flowchart illustrating an example of a process performed by the poor physical condition detection device according to the second embodiment. 図10は、実施の形態3に係る体調不良検出装置の要部の一例を示すブロック図である。FIG. 10 is a block diagram illustrating an example of a main part of the poor physical condition detection device according to Embodiment 3. 図11は、実施の形態3に係る体調不良検出装置の処理の一例を説明するフローチャートである。FIG. 11 is a flowchart illustrating an example of a process performed by the poor physical condition detection device according to the third embodiment.
 以下、この発明の実施の形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
実施の形態1.
 図1を参照して実施の形態1に係る体調不良検出装置100について説明する。
 実施の形態1に係る体調不良検出装置100は、例えば、車両1に適用される。
 図1は、実施の形態1に係る体調不良検出装置100の要部の一例を示すブロック図である。
 車両1は、例えば、体調不良検出装置100、撮像装置11、フラッシュ光源12、出力装置13を備える。
Embodiment 1 FIG.
The physical condition detection device 100 according to Embodiment 1 will be described with reference to FIG.
The poor physical condition detection device 100 according to Embodiment 1 is applied to, for example, the vehicle 1.
FIG. 1 is a block diagram illustrating an example of a main part of poor physical condition detection device 100 according to Embodiment 1.
The vehicle 1 includes, for example, a poor physical condition detection device 100, an imaging device 11, a flash light source 12, and an output device 13.
 実施の形態1に係る体調不良検出装置100は、例えば、車両1に搭載される。体調不良検出装置100は、体調情報を生成して、生成した体調情報を出力装置13等に出力する。体調不良検出装置100の詳細については後述する。 The physical condition detection device 100 according to Embodiment 1 is mounted on, for example, the vehicle 1. The poor physical condition detection device 100 generates physical condition information and outputs the generated physical condition information to the output device 13 or the like. Details of the poor physical condition detection device 100 will be described later.
 出力装置13は、例えば、車両1に搭載される。出力装置13は、例えば、表示出力装置又は音声出力装置等の出力装置である。出力装置13は、体調不良検出装置100から取得した体調情報を画像又は音声等で出力する。 The output device 13 is mounted on, for example, the vehicle 1. The output device 13 is, for example, an output device such as a display output device or an audio output device. The output device 13 outputs the physical condition information acquired from the poor physical condition detection device 100 as an image, a sound, or the like.
 撮像装置11は、車両1の中に設置される。撮像装置11は、車両1の乗員の眼部を撮影する。撮像装置11は、撮影した眼部の画像を示すデータ(以下、「画像を示すデータ」を含めて、単に「画像」という。)を、体調不良検出装置100に出力する。
 撮像装置11は、例えば、静止画像を撮影することが可能なデジタルカメラである。
The imaging device 11 is installed in the vehicle 1. The imaging device 11 images the eyes of the occupant of the vehicle 1. The imaging device 11 outputs data indicating the captured image of the eye (hereinafter, simply referred to as “image” including “data indicating an image”) to the poor-health detecting device 100.
The imaging device 11 is, for example, a digital camera capable of capturing a still image.
 撮像装置11は、例えば、体調不良検出装置100からのトリガ信号を受信することにより、車両1の乗員の眼部を撮影する。 The imaging device 11 captures an eye of the occupant of the vehicle 1 by receiving a trigger signal from the poor physical condition detection device 100, for example.
 撮像装置11は、例えば、CCD(Charge-Coupled Device)、CMOS(Complementary MOS)等を用いたイメージセンサ、及び、イメージセンサに外部の光を集光するレンズ等を有する。撮像装置11は、撮影する際の、イメージセンサの露光時間又はレンズの絞り値等の露光条件を変更可能なものである。 The imaging device 11 includes, for example, an image sensor using a CCD (Charge-Coupled Device), a CMOS (Complementary MOS), and a lens that condenses external light on the image sensor. The imaging device 11 can change exposure conditions such as an exposure time of an image sensor or an aperture value of a lens when capturing an image.
 撮像装置11は、例えば、撮像装置11に設けられたAE(Automatic Exposure)センサ、測光センサ又は輝度センサ等の照度センサ(図示せず)から出力された車両1の乗員の眼部における明るさを示す情報に基づいて露光条件を変更する。 For example, the imaging device 11 measures the brightness in the eyes of the occupant of the vehicle 1 output from an illuminance sensor (not shown) such as an AE (Automatic Exposure) sensor, a photometric sensor, or a luminance sensor provided in the imaging device 11. The exposure condition is changed based on the indicated information.
 撮像装置11は、例えば、露光条件に基づいて決定される露光パラメータを体調不良検出装置100に出力する。より具体的には、例えば、露光パラメータは、撮像装置11が撮影した眼部の画像のヘッダ情報に、Exif(Exchangeable image file format)等の予め定められた形式に従って含められ、眼部の画像とともに出力される。 The imaging device 11 outputs, for example, an exposure parameter determined based on the exposure condition to the poor physical condition detection device 100. More specifically, for example, the exposure parameter is included in the header information of the image of the eye taken by the imaging device 11 according to a predetermined format such as Exif (Exchangeable image \ file \ format), and is included together with the image of the eye. Is output.
 例えば、露光パラメータは、撮像装置11におけるレンズの絞り値が不変である場合、イメージセンサの露光時間に基づいて決定される。また、例えば、撮像装置11におけるイメージセンサの露光時間が不変である場合、例えば、レンズの絞り値に基づいて決定される。また、例えば、レンズの絞り値及びイメージセンサの露光時間が可変である場合、レンズの絞り値及びイメージセンサの露光時間に基づいて決定される。露光パラメータは、露光条件が識別可能なものであれば良く、例えば、露光条件ごとに予め定められた番号等であっても良い。
 実施の形態1では、一例として、撮像装置11におけるレンズの絞り値が不変であり、露光パラメータは、イメージセンサの露光時間(秒)の逆数により示される値として説明する。
For example, the exposure parameter is determined based on the exposure time of the image sensor when the aperture value of the lens in the imaging device 11 is unchanged. In addition, for example, when the exposure time of the image sensor in the imaging device 11 does not change, the determination is made based on, for example, the aperture value of the lens. Further, for example, when the aperture value of the lens and the exposure time of the image sensor are variable, the determination is made based on the aperture value of the lens and the exposure time of the image sensor. The exposure parameter may be any parameter as long as the exposure condition can be identified. For example, the exposure parameter may be a number predetermined for each exposure condition.
In the first embodiment, as an example, a description will be given assuming that the aperture value of the lens in the imaging device 11 is invariable, and the exposure parameter is a value indicated by the reciprocal of the exposure time (second) of the image sensor.
 フラッシュ光源12は、車両1の中に設置される。フラッシュ光源12は、LED(light emitting diode)、豆電球、又はハロゲンライト等の発光体を点灯させる照明装置である。フラッシュ光源12は、車両1の乗員の眼部にフラッシュ光を照射する。フラッシュ光は、フラッシュ光源12の発光体が、例えば、数ミリ秒間という短い期間点灯した後、消灯することにより生じる閃光である。フラッシュ光源12の発光体は、車両1の乗員の眼部にフラッシュ光を直接照射可能な光量を照射することが可能なものが好適である。
 フラッシュ光源12によるフラッシュ光の照射のタイミングは、例えば、体調不良検出装置100から出力された制御信号により制御される。
The flash light source 12 is installed in the vehicle 1. The flash light source 12 is a lighting device that turns on a light-emitting body such as an LED (light emitting diode), a miniature bulb, or a halogen light. The flash light source 12 emits flash light to the eyes of the occupant of the vehicle 1. The flash light is a flash light that is generated when the light emitter of the flash light source 12 is turned on for a short period of time, for example, several milliseconds, and then turned off. The illuminant of the flash light source 12 is preferably capable of irradiating the eye portion of the occupant of the vehicle 1 with an amount of light capable of directly irradiating the flash light.
The timing of flash light irradiation by the flash light source 12 is controlled, for example, by a control signal output from the poor physical condition detection device 100.
 フラッシュ光源12は、体調不良検出装置100から出力された制御信号により、例えば、車両1が走行する期間において継続的にフラッシュ光を照射する。具体的には、フラッシュ光源12は、体調不良検出装置100から出力された制御信号により、車両1が走行する期間において、例えば、フラッシュ光を照射させてから予め定められた期間が経過した後に、フラッシュ光源12にフラッシュ光を照射する。ここで言う予め定められた期間は、例えば、10分間である。ここで言う予め定められた期間は、上述の期間に限定されるものではなく、10分間より長くても短くても良く、また、連続走行時間、天候、日時、又は走行距離等に基づいて決定されても良い。 (4) The flash light source 12 continuously emits a flash light in a period in which the vehicle 1 runs, for example, according to a control signal output from the poor physical condition detection device 100. Specifically, the flash light source 12 is controlled by the control signal output from the poor physical condition detection device 100, for example, in a period in which the vehicle 1 travels, for example, after a predetermined period elapses after irradiating the flash light, The flash light source 12 is irradiated with flash light. The predetermined period here is, for example, 10 minutes. Here, the predetermined period is not limited to the above-described period, and may be longer or shorter than 10 minutes, and may be determined based on continuous running time, weather, date and time, or running distance. May be.
 以下、体調不良検出装置100について説明する。
 体調不良検出装置100は、画像取得部101、露光パラメータ取得部102、瞳孔径検出部103、基準瞳孔径決定部104、及び体調不良検出部105を有する。
Hereinafter, the poor physical condition detection device 100 will be described.
The poor physical condition detection device 100 includes an image obtaining unit 101, an exposure parameter obtaining unit 102, a pupil diameter detecting unit 103, a reference pupil diameter determining unit 104, and a poor physical condition detecting unit 105.
 画像取得部101は、車両1の乗員の眼部にフラッシュ光が照射されてから予め定められた第1の期間(以下「第1期間」という。)に当該眼部を撮像した画像(以下「第1期間画像」という。)を取得する。より具体的には、例えば、画像取得部101は、撮像装置11にトリガ信号を送信することにより、撮像装置11に乗員の眼部を撮影させ、撮像装置11により撮影された第1期間画像を撮像装置11から取得する。
 また、画像取得部101は、フラッシュ光源12に制御信号を送信することにより、乗員の眼部にフラッシュ光を照射させる。
 第1期間は、例えば、2秒間である。第1期間は、2秒間に限定されるものではない。第1期間は、例えば、車両1の乗員の眼部にフラッシュ光が照射された際に生じる瞳孔径の対光反射において、瞳孔径の大きさが最小となる時点を含む期間であれば、2秒間より長くても短くても良い。
The image acquiring unit 101 captures an image (hereinafter, referred to as “first period”) of the eye of the occupant of the vehicle 1 during a predetermined first period (hereinafter, referred to as a “first period”) after the eye is irradiated with the flash light. 1st period image "). More specifically, for example, by transmitting a trigger signal to the imaging device 11, the image acquisition unit 101 causes the imaging device 11 to photograph the occupant's eye, and the first period image captured by the imaging device 11 is displayed. Obtained from the imaging device 11.
The image acquisition unit 101 transmits a control signal to the flash light source 12 to irradiate the occupant's eye with the flash light.
The first period is, for example, 2 seconds. The first period is not limited to two seconds. The first period is, for example, a period including a time point at which the size of the pupil diameter becomes minimum in the light reflection of the pupil diameter generated when the flash part is irradiated to the eyes of the occupant of the vehicle 1, 2 It may be longer or shorter than seconds.
 画像取得部101は、例えば、第1期間に複数の第1期間画像を取得する。より具体的には、例えば、画像取得部101は、フラッシュ光が照射されてから予め定められた時間間隔で第1期間に亘って複数の第1期間画像を取得する。時間間隔は、例えば、0.2秒間隔である。時間間隔は、0.2秒間隔に限定されるものではない。時間間隔は、例えば、0.2秒間隔より長い間隔でも短い間隔でも良く、また、第1期間の長さに基づいて決定されるものであっても良い。 The image acquiring unit 101 acquires, for example, a plurality of first period images in the first period. More specifically, for example, the image acquisition unit 101 acquires a plurality of first period images over a first period at a predetermined time interval after flash light irradiation. The time interval is, for example, a 0.2 second interval. The time interval is not limited to a 0.2 second interval. The time interval may be, for example, an interval longer or shorter than 0.2 seconds, or may be determined based on the length of the first period.
 画像取得部101は、撮像装置11に対して、第1期間における露光条件を、フラッシュ光が照射される前の露光条件に固定させるように制御する。
 第1期間における撮像装置11の露光条件を、フラッシュ光が照射される前の露光条件に固定させることで、第1期間画像における露光条件は、照射されたフラッシュ光の影響、及び、第1期間における環境照度の変化の影響を受けないようにする。
The image acquisition unit 101 controls the imaging device 11 to fix the exposure condition in the first period to the exposure condition before the flash light is irradiated.
By fixing the exposure condition of the imaging device 11 in the first period to the exposure condition before the flash light is irradiated, the exposure condition in the image in the first period is influenced by the irradiated flash light and the first period. To be unaffected by changes in ambient illuminance.
 露光パラメータ取得部102は、第1期間画像が撮像される際に用いられた露光パラメータを取得する。より具体的には、例えば、露光パラメータ取得部102は、画像取得部101が取得した第1期間画像のヘッダ情報に含まれる露光パラメータを取得する。 The exposure parameter acquisition unit 102 acquires the exposure parameters used when the first period image is captured. More specifically, for example, the exposure parameter acquisition unit 102 acquires the exposure parameter included in the header information of the first period image acquired by the image acquisition unit 101.
 瞳孔径検出部103は、画像取得部101が取得した第1期間画像に基づいて車両1の乗員の眼部の瞳孔径を検出する。
 より具体的には、例えば、まず、瞳孔径検出部103は、エッジ検出法、モデルフィッティング法、及びパターンマッチング法等の周知の画像解析技術を適宜組み合わせた周知の方法により、第1期間画像における乗員の瞳孔の位置又は形状等を検出する。
 次に、瞳孔径検出部103は、例えば、第1期間画像において検出した乗員の瞳孔の位置又は形状等の情報、撮像装置11から撮像装置11が撮影した車両1の乗員の眼部までの距離を示す情報(以下「距離情報」という。)、及び撮像装置11の画角を示す情報(以下「画角情報」という。)等に基づいて、周知の方法により、第1期間画像に写った乗員の実際の瞳孔径を算出する。
 距離情報は、例えば、撮像装置11に設けられたAF(Auto Focus)センサ等の測距センサ(図示せず)から取得する。距離情報を取得する方法は、上述の方法に限るものではなく、例えば、撮像装置11が距離情報を第1期間画像のヘッダ情報に含め、距離情報は、第1期間画像を介して取得されても良い。
 画角情報は、例えば、撮像装置11が画角情報を第1期間画像のヘッダ情報に含め、画角情報は、第1期間画像を介して取得される。
The pupil diameter detection unit 103 detects the pupil diameter of the eye of the occupant of the vehicle 1 based on the first period image acquired by the image acquisition unit 101.
More specifically, for example, first, the pupil diameter detection unit 103 performs the first period image by using a well-known method that appropriately combines well-known image analysis techniques such as an edge detection method, a model fitting method, and a pattern matching method. The position or shape of the pupil of the occupant is detected.
Next, the pupil diameter detection unit 103 calculates, for example, information such as the position or shape of the pupil of the occupant detected in the first period image, the distance from the imaging device 11 to the occupant's eye of the vehicle 1 captured by the imaging device 11. (Hereinafter, referred to as “distance information”), information indicating the angle of view of the imaging device 11 (hereinafter, referred to as “angle of view information”), and the like. Calculate the actual pupil diameter of the occupant.
The distance information is acquired from, for example, a distance measuring sensor (not shown) such as an AF (Auto Focus) sensor provided in the imaging device 11. The method for acquiring the distance information is not limited to the above-described method. For example, the imaging device 11 includes the distance information in the header information of the first period image, and the distance information is acquired via the first period image. Is also good.
As the angle of view information, for example, the imaging device 11 includes the angle of view information in the header information of the first period image, and the angle of view information is acquired via the first period image.
 基準瞳孔径決定部104は、露光パラメータ取得部102が取得した露光パラメータに基づいて基準瞳孔径を決定する。
 基準瞳孔径決定部104の詳細については後述する。
The reference pupil diameter determination unit 104 determines a reference pupil diameter based on the exposure parameters acquired by the exposure parameter acquisition unit 102.
Details of the reference pupil diameter determining unit 104 will be described later.
 体調不良検出部105は、瞳孔径検出部103が検出した瞳孔径と、基準瞳孔径決定部104が決定した基準瞳孔径とに基づいて、乗員の体調不良を検出する。
 体調不良検出部105は、例えば、検出した乗員の体調の状態を示す体調情報を生成して、生成した体調情報を出力装置13等に出力する。体調情報が、例えば、出力装置13に出力されることにより、乗員は、例えば、自身の体調の状態を知ることができる。
 体調不良検出部105の詳細については後述する。
The poor physical condition detection unit 105 detects a poor physical condition of the occupant based on the pupil diameter detected by the pupil diameter detection unit 103 and the reference pupil diameter determined by the reference pupil diameter determination unit 104.
The poor physical condition detection unit 105 generates, for example, physical condition information indicating the detected physical condition of the occupant, and outputs the generated physical condition information to the output device 13 or the like. By outputting the physical condition information to, for example, the output device 13, the occupant can know, for example, his or her own physical condition.
Details of the poor physical condition detection unit 105 will be described later.
 図2A及び図2Bを参照して、実施の形態1に係る体調不良検出装置100の要部のハードウェア構成について説明する。
 図2A及び図2Bは、実施の形態1に係る体調不良検出装置100の要部のハードウェア構成の一例を示す図である。
With reference to FIGS. 2A and 2B, a hardware configuration of a main part of physical condition detection device 100 according to Embodiment 1 will be described.
2A and 2B are diagrams illustrating an example of a hardware configuration of a main part of the physical condition detection device 100 according to Embodiment 1. FIG.
 図2Aに示す如く、体調不良検出装置100はコンピュータにより構成されており、当該コンピュータはプロセッサ201及びメモリ202を有している。メモリ202には、当該コンピュータを画像取得部101、露光パラメータ取得部102、瞳孔径検出部103、基準瞳孔径決定部104、及び体調不良検出部105として機能させるためのプログラムが記憶されている。メモリ202に記憶されているプログラムをプロセッサ201が読み出して実行することにより、画像取得部101、露光パラメータ取得部102、瞳孔径検出部103、基準瞳孔径決定部104、及び体調不良検出部105が実現される。 As shown in FIG. 2A, the poor physical condition detecting apparatus 100 is configured by a computer, and the computer includes a processor 201 and a memory 202. The memory 202 stores programs for causing the computer to function as the image acquisition unit 101, the exposure parameter acquisition unit 102, the pupil diameter detection unit 103, the reference pupil diameter determination unit 104, and the poor physical condition detection unit 105. By causing the processor 201 to read and execute the program stored in the memory 202, the image acquisition unit 101, the exposure parameter acquisition unit 102, the pupil diameter detection unit 103, the reference pupil diameter determination unit 104, and the poor physical condition detection unit 105 Is achieved.
 また、図2Bに示す如く、体調不良検出装置100は処理回路203により構成されても良い。この場合、画像取得部101、露光パラメータ取得部102、瞳孔径検出部103、基準瞳孔径決定部104、及び体調不良検出部105の機能が処理回路203により実現されても良い。 {Circle around (2)} As shown in FIG. 2B, the poor physical condition detecting apparatus 100 may be constituted by a processing circuit 203. In this case, the functions of the image acquisition unit 101, the exposure parameter acquisition unit 102, the pupil diameter detection unit 103, the reference pupil diameter determination unit 104, and the poor physical condition detection unit 105 may be realized by the processing circuit 203.
 また、体調不良検出装置100はプロセッサ201、メモリ202及び処理回路203により構成されても良い(不図示)。この場合、画像取得部101、露光パラメータ取得部102、瞳孔径検出部103、基準瞳孔径決定部104、及び体調不良検出部105の機能のうちの一部の機能がプロセッサ201及びメモリ202により実現されて、残余の機能が処理回路203により実現されるものであっても良い。 The physical condition detection device 100 may be configured by a processor 201, a memory 202, and a processing circuit 203 (not shown). In this case, some of the functions of the image acquisition unit 101, the exposure parameter acquisition unit 102, the pupil diameter detection unit 103, the reference pupil diameter determination unit 104, and the poor physical condition detection unit 105 are implemented by the processor 201 and the memory 202. Then, the remaining functions may be realized by the processing circuit 203.
 プロセッサ201は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)を用いたものである。 The processor 201 uses, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor).
 メモリ202は、例えば、半導体メモリ又は磁気ディスクを用いたものである。より具体的には、メモリ202は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、SSD(Solid State Drive)又はHDD(Hard Disk Drive)などを用いたものである。 The memory 202 uses, for example, a semiconductor memory or a magnetic disk. More specifically, the memory 202 includes a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Memory Only), and an EEPROM (Electrical Memory). State @ Drive) or HDD (Hard @ Disk @ Drive) or the like.
 処理回路203は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)、SoC(System-on-a-Chip)又はシステムLSI(Large-Scale Integration)を用いたものである。 The processing circuit 203 includes, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate System Array), and an SoC (Sig-Lag-Sig-Lag-Site-Leg-Site-Ligital-Array-Sig-System-Sig-System-Sig-Leg-Sig-System-Sig-Leg-Sig-System-Sig-System-Sig-Leg-Sig-System). Is used.
 図3を参照して、基準瞳孔径決定部104が基準瞳孔径を決定する処理について説明する。
 図3は、実施の形態1に係る体調不良検出装置100における基準瞳孔径決定部104が保持する露光瞳孔径情報の一例を示す図である。
With reference to FIG. 3, a process in which reference pupil diameter determination section 104 determines a reference pupil diameter will be described.
FIG. 3 is a diagram showing an example of exposure pupil diameter information held by the reference pupil diameter determination unit 104 in the poor physical condition detection apparatus 100 according to Embodiment 1.
 露光瞳孔径情報は、複数の参照用露光パラメータと、当該複数の参照用露光パラメータそれぞれに対応付けられた参照用瞳孔径とを有する。より具体的には、例えば、露光瞳孔径情報は、複数の参照用露光パラメータと、当該複数の参照用露光パラメータそれぞれに対応付けられた参照用瞳孔径とを有する、所謂、マトリックスデータである。
 図3に示す参照用露光パラメータは、一例として、撮像装置11におけるレンズの絞り値が不変であるものとして、イメージセンサの露光時間(秒)の逆数によって示されたものである。
The exposure pupil diameter information includes a plurality of reference exposure parameters and a reference pupil diameter associated with each of the plurality of reference exposure parameters. More specifically, for example, the exposure pupil diameter information is so-called matrix data having a plurality of reference exposure parameters and a reference pupil diameter associated with each of the plurality of reference exposure parameters.
The reference exposure parameter shown in FIG. 3 is, as an example, a value that is expressed by the reciprocal of the exposure time (second) of the image sensor assuming that the aperture value of the lens in the imaging device 11 is not changed.
 露光瞳孔径情報は、例えば、基準瞳孔径決定部104により予め保持されている。
 基準瞳孔径決定部104は、例えば、露光瞳孔径情報が記憶された図1に不図示の記憶装置から露光瞳孔径情報を読み出しても良い。
The exposure pupil diameter information is held in advance, for example, by the reference pupil diameter determination unit 104.
The reference pupil diameter determining unit 104 may read out the exposure pupil diameter information from, for example, a storage device (not shown in FIG. 1) in which the exposure pupil diameter information is stored.
 図3において、左側の欄は、参照用露光パラメータが記載されている。また、図3において、右側の欄は、左側の欄に記載された参照用露光パラメータに対応付けられた参照用瞳孔径である。
 上述のとおり、基準瞳孔径決定部104は、露光パラメータ取得部102が取得した露光パラメータに基づいて基準瞳孔径を決定するものである。
 具体的には、例えば、基準瞳孔径決定部104は、露光瞳孔径情報と、露光パラメータ取得部102が取得した露光パラメータとに基づいて、体調不良検出部105が乗員の体調不良を検出する際に用いる基準瞳孔径を決定する。
 より具体的には、例えば、基準瞳孔径決定部104は、まず、露光パラメータと参照用露光パラメータとを比較する。次に、基準瞳孔径決定部104は、当該露光パラメータと等しい参照用露光パラメータに対応付けられた参照用瞳孔径を選択し、選択した当該参照用瞳孔径に基づいて、体調不良検出部105が乗員の体調不良を検出する際に用いる基準瞳孔径を決定する。
In FIG. 3, the left column describes the exposure parameters for reference. In FIG. 3, the right column is the reference pupil diameter associated with the reference exposure parameter described in the left column.
As described above, the reference pupil diameter determination unit 104 determines the reference pupil diameter based on the exposure parameters acquired by the exposure parameter acquisition unit 102.
Specifically, for example, when the reference pupil diameter determining unit 104 detects the poor physical condition of the occupant based on the exposure pupil diameter information and the exposure parameters acquired by the exposure parameter acquiring unit 102, The reference pupil diameter used for the determination is determined.
More specifically, for example, the reference pupil diameter determining unit 104 first compares the exposure parameter with the reference exposure parameter. Next, the reference pupil diameter determination unit 104 selects a reference pupil diameter associated with the reference exposure parameter equal to the exposure parameter, and based on the selected reference pupil diameter, the poor physical condition detection unit 105 The reference pupil diameter used when detecting the occupant's poor physical condition is determined.
 例えば、露光パラメータ取得部102が取得した露光パラメータが400である場合、基準瞳孔径決定部104は、図3に示す露光瞳孔径情報を参照して、基準瞳孔径を3.5ミリメートル(以下「ミリメートル」を「mm」と表記する。)に決定する。 For example, when the exposure parameter acquired by the exposure parameter acquisition unit 102 is 400, the reference pupil diameter determination unit 104 refers to the exposure pupil diameter information shown in FIG. "Millimeter" is referred to as "mm").
 また、例えば、露光パラメータ取得部102が取得した露光パラメータが200である場合、基準瞳孔径決定部104が参照する図3に示す露光瞳孔径情報には、参照用露光パラメータが200であるものが2個存在する。このように露光パラメータ取得部102が取得した露光パラメータと等しい参照用露光パラメータが複数存在する場合、例えば、基準瞳孔径決定部104は、露光パラメータと等しい複数の参照用露光パラメータそれぞれに対応する参照用瞳孔径の平均値を求めて、当該平均値を体調不良検出部105が乗員の体調不良を検出する際に用いる基準瞳孔径として決定する。露光パラメータ取得部102が取得した露光パラメータと等しい参照用露光パラメータが複数存在する場合、基準瞳孔径は、上述の方法に限るものではない。例えば、基準瞳孔径決定部104は、露光パラメータと等しい複数の参照用露光パラメータそれぞれに対応する参照用瞳孔径を周知の統計処理技術を用いて体調不良検出部105が乗員の体調不良を検出する際に用いる基準瞳孔径を決定しても良い。 Further, for example, when the exposure parameter acquired by the exposure parameter acquiring unit 102 is 200, the exposure pupil diameter information shown in FIG. There are two. When there are a plurality of reference exposure parameters equal to the exposure parameters acquired by the exposure parameter acquisition unit 102 in this way, for example, the reference pupil diameter determining unit 104 determines the reference corresponding to each of the plurality of reference exposure parameters equal to the exposure parameters. The average value of the pupil diameters is determined, and the average value is determined as the reference pupil diameter used when the poor physical condition detection unit 105 detects the poor physical condition of the occupant. When there are a plurality of reference exposure parameters equal to the exposure parameters acquired by the exposure parameter acquisition unit 102, the reference pupil diameter is not limited to the above method. For example, the reference pupil diameter determination unit 104 uses the well-known statistical processing technology to determine the reference pupil diameter corresponding to each of the plurality of reference exposure parameters equal to the exposure parameter, and the poor physical condition detection unit 105 detects the poor physical condition of the occupant. The reference pupil diameter used at that time may be determined.
 また、例えば、露光パラメータ取得部102が取得した露光パラメータが150である場合、基準瞳孔径決定部104が参照する図3に示す露光瞳孔径情報には、参照用露光パラメータが150であるものが存在しない。このように露光パラメータ取得部102が取得した露光パラメータと等しい参照用露光パラメータが存在しない場合、例えば、基準瞳孔径決定部104は、露光パラメータに最も近い値である参照用露光パラメータと、当該露光パラメータに2番目に近い値である参照用露光パラメータとに基づいて、体調不良検出部105が乗員の体調不良を検出する際に用いる基準瞳孔径を算出して決定しても良い。 Further, for example, when the exposure parameter acquired by the exposure parameter acquiring unit 102 is 150, the exposure pupil diameter information shown in FIG. not exist. When there is no reference exposure parameter equal to the exposure parameter acquired by the exposure parameter acquisition unit 102 in this way, for example, the reference pupil diameter determination unit 104 determines the reference exposure parameter that is the value closest to the exposure parameter and the exposure parameter. The reference pupil diameter used when the poor physical condition detecting unit 105 detects the poor physical condition of the occupant may be calculated and determined based on the reference exposure parameter which is the second closest value to the parameter.
 図4を参照して、体調不良検出部105が乗員の体調不良を検出する処理について説明する。
 図4は、健康な人の眼部にフラッシュ光が照射された際の瞳孔径の時間変化の一例を示す図である。
 図4は、フラッシュ光が照射される前における瞳孔径が3.5mmである場合を一例としている。健康な人の眼部にフラッシュ光が照射されると、健康な人の瞳孔は、対光反射により、フラッシュ光が照射されてから約0.2秒後に縮瞳を始める。その後、瞳孔径は、フラッシュ光が照射されてから約1.0秒後に極小値となる。例えば、フラッシュ光が照射される前における瞳孔径が3.5mmである場合、対光反射により最も縮瞳した状態における瞳孔径は、フラッシュ光が照射される前の瞳孔径と比較して、1.0mm程度小さくなる。更にその後、瞳孔径は、対光反射により瞳孔径が小さくなる速度と比較して、遅い速度でフラッシュ光が照射される前の状態に漸近するように戻る。
With reference to FIG. 4, a process in which the poor physical condition detection unit 105 detects the poor physical condition of the occupant will be described.
FIG. 4 is a diagram illustrating an example of a temporal change of a pupil diameter when flash light is emitted to a healthy human eye.
FIG. 4 shows an example where the pupil diameter is 3.5 mm before flash light irradiation. When the flash light is applied to the eye of a healthy person, the pupil of the healthy person starts miosis about 0.2 seconds after the flash light is applied due to light reflection. Thereafter, the pupil diameter becomes a minimum value about 1.0 second after the irradiation of the flash light. For example, when the pupil diameter before flash light irradiation is 3.5 mm, the pupil diameter in the state where the pupil is most constricted due to light reflection is 1 compared with the pupil diameter before flash light irradiation. About 0.0 mm. Further, thereafter, the pupil diameter returns so as to gradually approach the state before flash light irradiation at a lower speed than the speed at which the pupil diameter becomes smaller due to light reflection.
 上述のとおり、体調不良検出部105は、瞳孔径検出部103が検出した瞳孔径と、基準瞳孔径決定部104が決定した基準瞳孔径とに基づいて、乗員の体調不良を検出するものである。 As described above, the poor physical condition detection unit 105 detects poor physical condition of the occupant based on the pupil diameter detected by the pupil diameter detection unit 103 and the reference pupil diameter determined by the reference pupil diameter determination unit 104. .
 具体的には、例えば、体調不良検出部105は、基準瞳孔径決定部104が決定した基準瞳孔径と、画像取得部101が取得した第1期間画像に基づいて瞳孔径検出部103が検出した車両1の乗員の眼部の瞳孔径との差に基づいて、乗員の体調不良を検出する。 Specifically, for example, the poor physical condition detection unit 105 detects the pupil diameter detection unit 103 based on the reference pupil diameter determined by the reference pupil diameter determination unit 104 and the first period image acquired by the image acquisition unit 101. Based on the difference from the pupil diameter of the eye of the occupant of the vehicle 1, poor occupant condition is detected.
 より具体的には、例えば、体調不良検出部105は、基準瞳孔径と瞳孔径検出部103が検出した瞳孔径との差の最大値が、予め定められた、第1閾値以上且つ第2閾値未満の範囲であるか否かにより、乗員の体調不良を検出する。例えば、第1閾値は、0.8mmであり、第2閾値は、1.2mmである。例えば、体調不良検出部105は、基準瞳孔径と瞳孔径検出部103が検出した瞳孔径との差の最大値が、0.8mm以上、且つ1.2mm未満である場合、乗員の体調が正常であると判定する。また、例えば、体調不良検出部105は、基準瞳孔径と瞳孔径検出部103が検出した瞳孔径との差の最大値が、0.8mm以上、且つ1.2mm未満でない場合、乗員の体調が不良であると判定する。 More specifically, for example, the poor physical condition detection unit 105 determines that the maximum value of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is equal to or greater than a predetermined first threshold and a second threshold. The occupant's poor physical condition is detected based on whether it is within the range of less than or equal to. For example, the first threshold is 0.8 mm, and the second threshold is 1.2 mm. For example, when the maximum value of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is 0.8 mm or more and less than 1.2 mm, the poor physical condition detection unit 105 indicates that the occupant's physical condition is normal. Is determined. Further, for example, when the maximum value of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is not less than 0.8 mm and less than 1.2 mm, the poor physical condition detection unit 105 It is determined to be defective.
 第1閾値及び第2閾値は、上述のものに限定されるものではなく、周知技術又は技術常識等に基づいて適宜決定される。
 また、例えば、環境照度が図4に示す場合より高い場合、フラッシュ光が照射される前における瞳孔径は、図4に示すフラッシュ光が照射される前における瞳孔径と比較して小さい。そのため、環境照度が図4に示す場合より高い場合、フラッシュ光が照射される前における瞳孔径と、対光反射により最も縮瞳した状態における瞳孔径と差は、図4に示す場合より小さくなる。したがって、体調不良検出部105は、基準瞳孔径と瞳孔径検出部103が検出した瞳孔径との差の最大値が、例えば、基準瞳孔径ごとに予め定められた、第1閾値以上且つ第2閾値未満の範囲であるか否かにより、乗員の体調不良を検出しても良い。
The first threshold value and the second threshold value are not limited to those described above, and are appropriately determined based on a well-known technique or common technical knowledge.
Further, for example, when the environmental illuminance is higher than the case shown in FIG. 4, the pupil diameter before the flash light is irradiated is smaller than the pupil diameter before the flash light shown in FIG. Therefore, when the environmental illuminance is higher than the case shown in FIG. 4, the difference between the pupil diameter before the flash light is irradiated and the pupil diameter in the state in which the pupil is most constricted due to light reflection is smaller than the case shown in FIG. . Therefore, the poor physical condition detection unit 105 determines that the maximum value of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is, for example, equal to or more than the first threshold and the second threshold, which are predetermined for each reference pupil diameter. The poor physical condition of the occupant may be detected based on whether or not the range is less than the threshold value.
 また、具体的には、例えば、体調不良検出部105は、基準瞳孔径決定部104が決定した基準瞳孔径と、画像取得部101が取得した第1期間画像に基づいて瞳孔径検出部103が検出した車両1の乗員の眼部の瞳孔径との比率に基づいて、乗員の体調不良を検出しても良い。 Also, specifically, for example, the poor physical condition detection unit 105 determines whether the pupil diameter detection unit 103 is based on the reference pupil diameter determined by the reference pupil diameter determination unit 104 and the first period image acquired by the image acquisition unit 101. The occupant's poor physical condition may be detected based on the detected ratio to the pupil diameter of the eye of the occupant of the vehicle 1.
 より具体的には、例えば、体調不良検出部105は、基準瞳孔径と瞳孔径検出部103が検出した瞳孔径の最小値との比率が、予め定められた、第1比率閾値以上且つ第2比率閾値未満の範囲であるか否かにより、乗員の体調不良を検出する。例えば、基準瞳孔径と瞳孔径検出部103が検出した瞳孔径との比率が、基準瞳孔径を1とした場合の瞳孔径検出部103が検出した瞳孔径の値により示される場合、第1比率閾値は、例えば、0.6であり、第2比率閾値は、例えば、0.8である。例えば、体調不良検出部105は、基準瞳孔径と瞳孔径検出部103が検出した瞳孔径の最小値との比率が、0.6以上、且つ0.8未満の範囲である場合、乗員の体調が正常であると判定する。また、例えば、体調不良検出部105は、基準瞳孔径と瞳孔径検出部103が検出した瞳孔径の最小値との比率が、0.6以上、且つ0.8未満の範囲でない場合、乗員の体調が不良であると判定する。 More specifically, for example, the poor physical condition detection unit 105 determines that the ratio between the reference pupil diameter and the minimum value of the pupil diameter detected by the pupil diameter detection unit 103 is equal to or more than a predetermined first ratio threshold and equal to or less than a second ratio. The poor physical condition of the occupant is detected based on whether the ratio is less than the ratio threshold. For example, when the ratio between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is indicated by the value of the pupil diameter detected by the pupil diameter detection unit 103 when the reference pupil diameter is 1, the first ratio The threshold is, for example, 0.6, and the second ratio threshold is, for example, 0.8. For example, when the ratio between the reference pupil diameter and the minimum value of the pupil diameter detected by the pupil diameter detection unit 103 is in the range of 0.6 or more and less than 0.8, the poor physical condition detection unit 105 Is determined to be normal. Further, for example, if the ratio between the reference pupil diameter and the minimum value of the pupil diameter detected by the pupil diameter detection unit 103 is not in the range of 0.6 or more and less than 0.8, the poor physical condition detection unit 105 It is determined that the physical condition is poor.
 第1比率閾値及び第2比率閾値は、上述のものに限定されるものではなく、周知技術又は技術常識等に基づいて適宜決定される。
 また、例えば、体調不良検出部105は、基準瞳孔径と瞳孔径検出部103が検出した瞳孔径の最小値との比率が、基準瞳孔径ごとに予め定められた、第1比率閾値以上且つ第2比率閾値未満の範囲であるか否かにより、乗員の体調不良を検出しても良い。
The first ratio threshold value and the second ratio threshold value are not limited to those described above, and are appropriately determined based on a well-known technique or common general technical knowledge.
In addition, for example, the poor physical condition detection unit 105 determines that the ratio between the reference pupil diameter and the minimum value of the pupil diameter detected by the pupil diameter detection unit 103 is equal to or more than a first ratio threshold that is predetermined for each reference pupil diameter and The poor physical condition of the occupant may be detected based on whether or not the range is less than the 2 ratio threshold.
 また、具体的には、例えば、体調不良検出部105は、基準瞳孔径決定部104が決定した基準瞳孔径と、画像取得部101が取得した第1期間画像に基づいて瞳孔径検出部103が検出した車両1の乗員の眼部の瞳孔径との差の時間変化に基づいて、乗員の体調不良を検出しても良い。 Also, specifically, for example, the poor physical condition detection unit 105 determines whether the pupil diameter detection unit 103 is based on the reference pupil diameter determined by the reference pupil diameter determination unit 104 and the first period image acquired by the image acquisition unit 101. The occupant's poor physical condition may be detected based on the detected temporal change in the difference from the pupil diameter of the eye of the occupant of the vehicle 1.
 より具体的には、例えば、体調不良検出部105は、フラッシュ光が照射されてから瞳孔径検出部103が検出した瞳孔径が最小値となるまで期間と、基準瞳孔径と瞳孔径検出部103が検出した瞳孔径の最小値との差とより算出される、基準瞳孔径と瞳孔径検出部103が検出した瞳孔径との差の時間変化が、予め定められた、第1変化閾値以上且つ第2変化閾値未満の範囲であるか否かにより、乗員の体調不良を検出する。第1変化閾値は、例えば、毎秒0.8mmであり、第2変化閾値は、例えば、毎秒1.2mmである。例えば、体調不良検出部105は、基準瞳孔径と瞳孔径検出部103が検出した瞳孔径との差の時間変化が、毎秒0.8mm以上、且つ毎秒1.2mm未満の範囲である場合、乗員の体調が正常であると判定する。また、例えば、体調不良検出部105は、基準瞳孔径と瞳孔径検出部103が検出した瞳孔径との差の時間変化が、毎秒0.8mm以上、且つ毎秒1.2mm未満の範囲でない場合、乗員の体調が不良であると判定する。 More specifically, for example, the poor physical condition detection unit 105 determines a period from when the flash light is emitted to when the pupil diameter detected by the pupil diameter detection unit 103 becomes the minimum value, and the reference pupil diameter and the pupil diameter detection unit 103. The time change of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103, which is calculated from the difference between the detected pupil diameter and the minimum value, is equal to or greater than a predetermined first change threshold and The occupant's poor physical condition is detected based on whether the occupant is in a range less than the second change threshold. The first change threshold is, for example, 0.8 mm per second, and the second change threshold is, for example, 1.2 mm per second. For example, if the temporal change of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is in the range of 0.8 mm / sec or more and less than 1.2 mm / sec, the poor physical condition detection unit 105 Is determined to be in normal condition. Also, for example, the poor physical condition detection unit 105 is configured such that when the time change of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is not more than 0.8 mm per second and less than 1.2 mm per second, It is determined that the occupant is in poor physical condition.
 第1変化閾値及び第2変化閾値は、上述のものに限定されるものではなく、周知技術又は技術常識等に基づいて適宜決定される。
 また、体調不良検出部105は、基準瞳孔径と瞳孔径検出部103が検出した瞳孔径との差の時間変化が、例えば、基準瞳孔径ごとに予め定められた、第1変化閾値以上且つ第2変化閾値未満の範囲であるか否かにより、乗員の体調不良を検出しても良い。
The first change threshold value and the second change threshold value are not limited to those described above, and are appropriately determined based on a well-known technique or common technical knowledge.
In addition, the poor physical condition detection unit 105 determines that the time change of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is, for example, equal to or more than a first change threshold and predetermined for each reference pupil diameter. The poor physical condition of the occupant may be detected based on whether or not the range is less than the two change threshold.
 また、例えば、体調不良検出部105は、瞳孔径検出部103が検出した瞳孔径と、基準瞳孔径決定部104が決定した基準瞳孔径とに基づいて、乗員の体調不良を検出する際に、上述の方法を組み合わせても良い。
 実施の形態1では、一例として、体調不良検出部105は、基準瞳孔径決定部104が決定した基準瞳孔径と、画像取得部101が取得した第1期間画像に基づいて瞳孔径検出部103が検出した車両1の乗員の眼部の瞳孔径との差に基づいて、乗員の体調不良を検出するものとして説明する。
Further, for example, based on the pupil diameter detected by the pupil diameter detection unit 103 and the reference pupil diameter determined by the reference pupil diameter determination unit 104, the poor physical condition detection unit 105 detects a poor physical condition of the occupant. The above methods may be combined.
In the first embodiment, as an example, the poor physical condition detection unit 105 determines whether the pupil diameter detection unit 103 is based on the reference pupil diameter determined by the reference pupil diameter determination unit 104 and the first period image acquired by the image acquisition unit 101. The description will be made on the assumption that the poor physical condition of the occupant is detected based on the detected difference with the pupil diameter of the eye of the occupant of the vehicle 1.
 体調不良検出部105は、例えば、検出した乗員の体調不良を示す情報を体調情報として、出力装置13等に出力する。 不良 The poor physical condition detection unit 105 outputs, for example, information indicating the detected poor physical condition of the occupant to the output device 13 or the like as physical condition information.
 図5を参照して、体調不良検出部105が検出する乗員の体調不良について説明する。
 図5は、実施の形態1に係る体調不良検出装置100における体調不良検出部105が検出する乗員の体調不良の一例を示す図である。
 体調不良検出部105は、上述の方法により、瞳孔径検出部103が検出した瞳孔径と、基準瞳孔径決定部104が決定した基準瞳孔径とに基づいて、乗員の体調が不良であると検出した後、例えば、瞳孔径検出部103が検出した瞳孔径と図5に示す瞳孔径パターンとを比較して、乗員の体調不良の種別を分類しても良い。
The poor physical condition of the occupant detected by the poor physical condition detection unit 105 will be described with reference to FIG.
FIG. 5 is a diagram showing an example of the poor physical condition of the occupant detected by the poor physical condition detection unit 105 in the poor physical condition detection device 100 according to the first embodiment.
The poor physical condition detection unit 105 detects that the occupant is in poor physical condition based on the pupil diameter detected by the pupil diameter detection unit 103 and the reference pupil diameter determined by the reference pupil diameter determination unit 104 by the above-described method. After that, for example, the type of poor physical condition of the occupant may be classified by comparing the pupil diameter detected by the pupil diameter detection unit 103 with the pupil diameter pattern shown in FIG.
 具体的には、例えば、瞳孔径検出部103が検出した瞳孔径の最小値が、5mm以上である場合、乗員の瞳孔が瞳孔散大状態であると判定する。瞳孔散大状態は、例えば、乗員が、心停止、低血糖、低酸素、中脳障害、或いは、薬物中毒等の状態、又は、これらの状態を引き起こす可能性がある状態である。
 また、例えば、瞳孔径検出部103が検出した瞳孔径の最小値が、1mm以上且つ2mm未満である場合、乗員の瞳孔が強縮瞳状態であると判定する。強縮瞳状態は、例えば、乗員が、脳ヘルニア初期或いは有機リン中毒等の状態、又は、これらの状態を引き起こす可能性がある状態である。
Specifically, for example, when the minimum value of the pupil diameter detected by the pupil diameter detection unit 103 is 5 mm or more, it is determined that the pupil of the occupant is in the dilated pupil state. The dilated pupil state is, for example, a state in which an occupant has cardiac arrest, hypoglycemia, hypoxia, midbrain disorder, or drug addiction, or a state in which these conditions may be caused.
Further, for example, when the minimum value of the pupil diameter detected by the pupil diameter detection unit 103 is 1 mm or more and less than 2 mm, it is determined that the pupil of the occupant is in the state of severely inducible pupil. The tonic pupil state is, for example, a state in which the occupant is in a state of early cerebral hernia or organophosphorus poisoning, or a state in which these states may be caused.
 また、例えば、瞳孔径検出部103が検出した瞳孔径の最小値が、1mm未満である場合、乗員の瞳孔がピンホール状態であると判定する。ピンホール状態は、例えば、乗員が、橋出血或いは麻薬中毒等の状態、又は、これらの状態を引き起こす可能性がある状態である。
 また、例えば、瞳孔径検出部103が検出した左右の瞳孔径の最小値の差が、0.5mm以上である場合、乗員の瞳孔が瞳孔不同状態であると判定する。瞳孔不同状態は、例えば、乗員が、脳ヘルニアの兆候或いは低血糖発作等の状態、又は、これらの状態を引き起こす可能性がある状態である。
 また、上述の方法により、瞳孔径検出部103が検出した瞳孔径と、基準瞳孔径決定部104が決定した基準瞳孔径とに基づいて、乗員の体調が不良であると検出したが、瞳孔径検出部103が検出した瞳孔径の最小値が上述のいずれの状態でもない場合、体調不良検出部105は、乗員の体調が疲労状態であると検出する。
Further, for example, when the minimum value of the pupil diameter detected by the pupil diameter detection unit 103 is less than 1 mm, it is determined that the pupil of the occupant is in the pinhole state. The pinhole condition is, for example, a condition in which the occupant has a condition such as bridge bleeding or drug poisoning, or a condition that may cause these conditions.
Further, for example, when the difference between the minimum values of the left and right pupil diameters detected by the pupil diameter detection unit 103 is 0.5 mm or more, it is determined that the pupils of the occupant are in the pupil disparity state. The pupillary disparity state is, for example, a state in which the occupant is a sign of cerebral hernia or a hypoglycemic attack, or a state that may cause these states.
Further, according to the above-described method, it is detected that the occupant is in poor physical condition based on the pupil diameter detected by the pupil diameter detection unit 103 and the reference pupil diameter determined by the reference pupil diameter determination unit 104. If the minimum value of the pupil diameter detected by the detection unit 103 is not in any of the above states, the poor physical condition detection unit 105 detects that the occupant is in a fatigued state.
 このように構成することで、実施の形態1に係る体調不良検出装置100は、より詳細に乗員の体調不良を分類することができる。 With such a configuration, the poor physical condition detection device 100 according to Embodiment 1 can classify the poor physical condition of the occupant in more detail.
 図6及び図7を参照して、実施の形態1に係る体調不良検出装置100の動作について説明する。
 図6は、実施の形態1に係る体調不良検出装置100の処理の一例を説明するフローチャートである。
 体調不良検出装置100は、例えば、当該フローチャートの処理をフラッシュ光が照射される度に車両1が走行する期間において継続的に実行する。
With reference to FIG. 6 and FIG. 7, an operation of the poor physical condition detection device 100 according to Embodiment 1 will be described.
FIG. 6 is a flowchart illustrating an example of processing of poor physical condition detection device 100 according to Embodiment 1.
The poor physical condition detection device 100 continuously executes, for example, the process of the flowchart in a period in which the vehicle 1 travels every time the flash light is irradiated.
 まず、ステップST601にて、画像取得部101は、フラッシュ光源12にフラッシュ光を照射させるか否かを判定する。フラッシュ光源12にフラッシュ光を照射させるか否かを判定は、例えば、上述のとおり、フラッシュ光源12にフラッシュ光を照射させてから予め定められた期間が経過したかにより判定する。
 ステップST601にて、画像取得部101により、フラッシュ光源12にフラッシュ光を照射させないと判定された場合、フラッシュ光源12にフラッシュ光を照射させると判定されるまで、ステップST601の処理を繰り返し実行する。
 ステップST601にて、画像取得部101により、フラッシュ光源12にフラッシュ光を照射させると判定された場合、体調不良検出装置100は、ステップST602以降の処理を行う。
First, in step ST601, the image obtaining unit 101 determines whether or not to irradiate the flash light source 12 with flash light. The determination as to whether to irradiate the flash light source 12 with the flash light is made based on, for example, whether or not a predetermined period has elapsed since the flash light source 12 was irradiated with the flash light, as described above.
In step ST601, when the image acquisition unit 101 determines that the flash light source 12 is not to be irradiated with flash light, the process of step ST601 is repeatedly executed until it is determined that the flash light source 12 is to be irradiated with flash light.
In step ST601, when the image acquisition unit 101 determines that the flash light source 12 is to be irradiated with flash light, the poor physical condition detection device 100 performs the processing of step ST602 and subsequent steps.
 ステップST602にて、画像取得部101は、上述のとおり、撮像装置11に対して、第1期間における露光条件を、フラッシュ光が照射される前の露光条件に固定させるように制御する。
 次に、ステップST603にて、画像取得部101は、上述のとおり、フラッシュ光源12に制御信号を送信することによりフラッシュ光源12にフラッシュ光を照射させる。
 次に、ステップST604にて、画像取得部101は、上述のとおり、フラッシュ光を照射させてから第1期間に亘って、例えば、0.2秒間隔で第1期間画像を取得する。
 次に、ステップST605にて、露光パラメータ取得部102は、上述のとおり、画像取得部101が取得した第1期間画像のヘッダ情報に含まれる露光パラメータを取得する。
 次に、ステップST606にて、基準瞳孔径決定部104は、上述のとおり、露光パラメータ取得部102が取得した露光パラメータに基づいて基準瞳孔径を決定する。
In step ST602, as described above, the image obtaining unit 101 controls the imaging device 11 to fix the exposure condition in the first period to the exposure condition before the flash light is irradiated.
Next, in step ST603, the image acquiring unit 101 causes the flash light source 12 to emit flash light by transmitting a control signal to the flash light source 12 as described above.
Next, in step ST604, as described above, the image obtaining unit 101 obtains an image in the first period at an interval of, for example, 0.2 seconds over the first period after irradiating the flash light.
Next, in step ST605, the exposure parameter acquisition unit 102 acquires the exposure parameter included in the header information of the first period image acquired by the image acquisition unit 101, as described above.
Next, in step ST606, reference pupil diameter determining section 104 determines the reference pupil diameter based on the exposure parameters acquired by exposure parameter acquiring section 102, as described above.
 次に、ステップST607にて、瞳孔径検出部103は、上述のとおり、画像取得部101が取得した第1期間画像に基づいて車両1の乗員の眼部の瞳孔径を検出する。より具体的には、例えば、瞳孔径検出部103は、画像取得部101が第1期間に亘って、例えば、0.2秒間隔で取得した第1期間画像に基づいて、第1期間における車両1の乗員の眼部の瞳孔径の最小値を検出する。
 次に、ステップST608にて、体調不良検出部105は、上述のとおり、瞳孔径検出部103が検出した瞳孔径と、基準瞳孔径決定部104が決定した基準瞳孔径とに基づいて、乗員の体調不良を検出する。
 次に、ステップST609にて、体調不良検出部105は、上述のとおり、体調情報を、出力装置13等に出力する。体調不良検出装置100は、ステップST609の処理を実行した後、当該フローチャートの処理を終了し、ステップST601の処理に戻って、当該フローチャートの処理を繰り返し実行する。
Next, in step ST607, pupil diameter detection section 103 detects the pupil diameter of the eye of the occupant of vehicle 1 based on the first period image acquired by image acquisition section 101, as described above. More specifically, for example, the pupil diameter detection unit 103 detects the vehicle in the first period based on the first period image acquired by the image acquisition unit 101 over the first period, for example, at intervals of 0.2 seconds. The minimum value of the pupil diameter of the eye of the first occupant is detected.
Next, in step ST608, the poor physical condition detection unit 105 determines the occupant's condition based on the pupil diameter detected by the pupil diameter detection unit 103 and the reference pupil diameter determined by the reference pupil diameter determination unit 104, as described above. Detects poor physical condition.
Next, in step ST609, the poor physical condition detection unit 105 outputs the physical condition information to the output device 13 or the like as described above. After executing the processing of step ST609, the poor-health detection apparatus 100 ends the processing of the flowchart, returns to the processing of step ST601, and repeatedly executes the processing of the flowchart.
 なお、当該フローチャートの処理において、ステップST606の処理とステップST607の処理とは、処理する順序が逆であっても良い。 In the process of the flowchart, the process of step ST606 and the process of step ST607 may be performed in the reverse order.
 図7は、図6に示すステップST608の処理の詳細の一例を説明するフローチャートである。 FIG. 7 is a flowchart illustrating an example of the details of the process of step ST608 shown in FIG.
 まず、ステップST701にて、体調不良検出部105は、上述のとおり、基準瞳孔径と瞳孔径検出部103が検出した瞳孔径との差の最大値が、第1閾値以上且つ第2閾値未満の範囲であるか否かを判定する。
 ステップST701にて、体調不良検出部105により、基準瞳孔径と瞳孔径検出部103が検出した瞳孔径との差の最大値が、第1閾値以上且つ第2閾値未満の範囲であると判定された場合、ステップST702にて、体調不良検出部105は、上述のとおり、乗員の体調が正常である旨を示す体調情報を生成する。
 ステップST701にて、体調不良検出部105により、基準瞳孔径と瞳孔径検出部103が検出した瞳孔径との差の最大値が、第1閾値以上且つ第2閾値未満の範囲でないと判定した場合、ステップST703にて、体調不良検出部105は、上述のとおり、乗員が瞳孔散大状態であるか否かを判定する。
First, in step ST701, the poor physical condition detection unit 105 determines that the maximum value of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is equal to or more than the first threshold and less than the second threshold, as described above. It is determined whether it is within the range.
In step ST701, the poor physical condition detection unit 105 determines that the maximum value of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is equal to or more than the first threshold and less than the second threshold. In this case, in step ST702, the poor physical condition detection unit 105 generates physical condition information indicating that the physical condition of the occupant is normal, as described above.
In Step ST701, when the poor physical condition detection unit 105 determines that the maximum value of the difference between the reference pupil diameter and the pupil diameter detected by the pupil diameter detection unit 103 is not in the range of the first threshold or more and less than the second threshold. In step ST703, the poor physical condition detection unit 105 determines whether or not the occupant is in the dilated pupil state, as described above.
 ステップST703にて、体調不良検出部105により、乗員が瞳孔散大状態であると判定された場合、ステップST704にて、体調不良検出部105は、上述のとおり、乗員の体調が不良であり、乗員が瞳孔散大状態である旨を示す体調情報を生成する。
 ステップST703にて、体調不良検出部105により、乗員が瞳孔散大状態でないと判定された場合、ステップST705にて、体調不良検出部105は、上述のとおり、乗員がピンホール状態であるか否かを判定する。
In step ST703, when the poor physical condition detection unit 105 determines that the occupant is in the dilated pupil state, in step ST704, the poor physical condition detection unit 105 determines that the occupant is in poor condition, as described above, Physical condition information indicating that the occupant is in a dilated pupil state is generated.
If the occupant is determined not to be in a dilated pupil state by the poor physical condition detection unit 105 in step ST703, the poor physical condition detection unit 105 determines in step ST705 whether the occupant is in the pinhole state, as described above. Is determined.
 ステップST705にて、体調不良検出部105により、乗員がピンホール状態であると判定された場合、ステップST706にて、体調不良検出部105は、上述のとおり、乗員の体調が不良であり、乗員がピンホール状態である旨を示す体調情報を生成する。
 ステップST705にて、体調不良検出部105により、乗員がピンホール状態でないと判定された場合、ステップST707にて、体調不良検出部105は、上述のとおり、乗員が強縮瞳状態であるか否かを判定する。
In step ST705, if the occupant is determined to be in a pinhole state by the poor physical condition detection unit 105, the poor physical condition detection unit 105 determines in step ST706 that the occupant is in poor physical condition, as described above. Generates physical condition information indicating that it is in a pinhole state.
In step ST705, when the occupant is determined not to be in the pinhole state by the poor physical condition detection unit 105, in step ST707, the poor physical condition detection unit 105 determines whether or not the occupant is in the severely miotic state, as described above. Is determined.
 ステップST707にて、体調不良検出部105により、乗員が強縮瞳状態であると判定された場合、ステップST708にて、体調不良検出部105は、上述のとおり、乗員の体調が不良であり、乗員が強縮瞳状態である旨を示す体調情報を生成する。
 ステップST707にて、体調不良検出部105により、乗員が強縮瞳状態でないと判定された場合、ステップST709にて、体調不良検出部105は、上述のとおり、乗員が瞳孔不同状態であるか否かを判定する。
In step ST707, if the poor physical condition detection unit 105 determines that the occupant is in a severely miotic state, in step ST708, the poor physical condition detection unit 105 determines that the physical condition of the occupant is poor, Physical condition information indicating that the occupant is in a state of severely miotic pupil is generated.
In step ST707, when the poor physical condition detection unit 105 determines that the occupant is not in the severely miotic state, in step ST709, the poor physical condition detection unit 105 determines whether or not the occupant is in the pupil disparate state, as described above. Is determined.
 ステップST709にて、体調不良検出部105により、乗員が瞳孔不同状態であると判定された場合、ステップST710にて、体調不良検出部105は、上述のとおり、乗員の体調が不良であり、乗員が瞳孔不同状態である旨を示す体調情報を生成する。
 ステップST709にて、体調不良検出部105により、乗員が瞳孔不同状態でないと判定された場合、ステップST711にて、体調不良検出部105は、上述のとおり、乗員の体調が不良であり、乗員が疲労状態である旨を示す体調情報を生成する。
In step ST709, when the poor physical condition detecting unit 105 determines that the occupant is in the pupil disparity state, in step ST710, the poor physical condition detecting unit 105 determines that the physical condition of the occupant is poor, as described above. Generates physical condition information indicating that the pupil is in the pupil disparity state.
In step ST709, when the poor physical condition detection unit 105 determines that the occupant is not in the pupil disparity state, in step ST711, the poor physical condition detection unit 105 determines that the physical condition of the occupant is poor, and Generate physical condition information indicating that the subject is in a fatigue state.
 なお、乗員が先天的な瞳孔不同を有する場合、乗員が眼部の手術等により瞳孔散大を有する場合、乗員が瞳孔の縮瞳に影響を及ぼす投薬等により瞳孔散大を有する場合、又は、乗員が失明していることにより瞳孔散大を有する場合等、体調が正常な状態でも瞳孔不同又は瞳孔散大になることがある。
 そのため、乗員が車両1に乗車してから予め定められた第3の期間において、体調不良検出部105が当該乗員の体調不良を検出し、且つ、体調不良検出部105により検出された当該体調不良が所定の体調不良である場合、体調不良検出部105は、車両1が走行する期間において当該乗員における当該所定の体調不良の検出を行わないようにしても良い。
 より具体的には、所定の体調不良とは、例えば、乗員の瞳孔散大状態又は瞳孔不同状態に該当する体調不良である。
 また、予め定められた第3の期間は、例えば、乗員が車両1に乗車してから30分間である。予め定められた第3の期間は、上述の期間に限定されるものではなく、30分間より長くても短くても良い。
If the occupant has congenital pupil disparity, if the occupant has pupil dilation due to eye surgery, etc., if the occupant has pupil dilation due to medication or the like that affects the pupil miosis, or Even when the occupant has dilated pupils due to blindness, the pupils may be unequal or dilated even in a normal condition.
Therefore, during a predetermined third period after the occupant gets on the vehicle 1, the poor physical condition detection unit 105 detects the poor physical condition of the occupant, and the poor physical condition detected by the poor physical condition detection unit 105. Is a predetermined physical condition, the physical condition detection unit 105 may not detect the predetermined physical condition of the occupant during the period in which the vehicle 1 travels.
More specifically, the predetermined poor physical condition is, for example, poor physical condition corresponding to an occupant's dilated pupil state or pupil disparity state.
Further, the predetermined third period is, for example, 30 minutes after the occupant gets on the vehicle 1. The predetermined third period is not limited to the above-described period, and may be longer or shorter than 30 minutes.
 このように構成することで、実施の形態1に係る体調不良検出装置100は、体調が正常な状態ではあるが元々瞳孔不同又は瞳孔散大を有する乗員における体調不良の誤検出を抑制することができる。 With this configuration, the poor-health detection device 100 according to Embodiment 1 suppresses erroneous detection of poor physical condition in an occupant who has a normal pupil or a dilated pupil even when the physical condition is normal. it can.
 以上のように、体調不良検出装置100は、車両1の乗員の眼部にフラッシュ光が照射されてから予め定められた第1の期間に当該眼部を撮像した画像を取得する画像取得部101と、当該画像が撮像される際に用いられた露光パラメータを取得する露光パラメータ取得部102と、当該画像に基づいて眼部の瞳孔径を検出する瞳孔径検出部103と、露光パラメータ取得部102が取得した露光パラメータに基づいて基準瞳孔径を決定する基準瞳孔径決定部104と、瞳孔径検出部103が検出した瞳孔径と、基準瞳孔径決定部104が決定した基準瞳孔径とに基づいて、乗員の体調不良を検出する体調不良検出部105と、を備えた。 As described above, the poor physical condition detection device 100 includes the image acquisition unit 101 that acquires an image of the eye of the occupant of the vehicle 1 during a predetermined first period after the eye is irradiated with the flash light. An exposure parameter acquisition unit 102 that acquires an exposure parameter used when the image is captured; a pupil diameter detection unit 103 that detects a pupil diameter of an eye based on the image; and an exposure parameter acquisition unit 102 A reference pupil diameter determining unit 104 that determines a reference pupil diameter based on the acquired exposure parameters, a pupil diameter detected by the pupil diameter detection unit 103, and a reference pupil diameter determined by the reference pupil diameter determination unit 104. And a poor physical condition detecting unit 105 for detecting poor physical condition of the occupant.
 このように構成することで、体調不良検出装置100は、フラッシュ光の照射による瞳孔径の変化に基づく車両1の乗員の体調の判定を正確に行うことができる。 With this configuration, the poor physical condition detection device 100 can accurately determine the physical condition of the occupant of the vehicle 1 based on the change in the pupil diameter due to the irradiation of the flash light.
 なお、実施の形態1では、一例として、出力装置13は、車両1に搭載されているものとして説明したが、この限りではない。例えば、出力装置13等の体調不良検出装置100から出力された体調情報を取得する装置は、車両1の外部に設けられ、LTE(Long Term Evolution)等の無線公衆回線を介して、体調不良検出装置100から体調情報を取得しても良い。
 このように構成することで、車両1の外部にいる監視員等が、体調不良検出装置100により車両1の乗員の体調の状態を監視することができる。
In the first embodiment, as an example, the output device 13 has been described as being mounted on the vehicle 1, but the present invention is not limited to this. For example, a device for acquiring the physical condition information output from the physical condition detection device 100 such as the output device 13 is provided outside the vehicle 1 and detects physical condition detection via a wireless public line such as LTE (Long Term Evolution). The physical condition information may be acquired from the device 100.
With this configuration, an observer or the like outside the vehicle 1 can monitor the physical condition of the occupant of the vehicle 1 using the poor physical condition detection device 100.
 また、実施の形態1では、一例として、撮像装置11は、静止画像を撮影することが可能なデジタルカメラであるものとして説明するが、この限りではない。例えば、撮像装置11は、撮影した眼部の画像において瞳孔の位置又は形状等を識別可能な画像を出力し、且つ、撮影する際の露光条件を変更可能なものあれば、撮像装置11は、動画像を撮影するデジタルビデオカメラ、又は赤外線カメラ等であっても良い。
 このように構成することで、体調不良検出装置100は、より高い汎用性を得ることができる。
In the first embodiment, as an example, the imaging device 11 is described as a digital camera capable of capturing a still image, but is not limited thereto. For example, if the imaging device 11 outputs an image capable of identifying the position or shape of the pupil in the captured image of the eye, and can change the exposure condition at the time of imaging, the imaging device 11 It may be a digital video camera that captures a moving image, an infrared camera, or the like.
With this configuration, the poor physical condition detection device 100 can obtain higher versatility.
 また、実施の形態1では、一例として、撮像装置11は、撮像装置11に設けられた照度センサから出力された車両1の乗員の眼部における明るさを示す情報に基づいて、適宜、露光条件を変更するものとして説明したが、この限りではない。例えば、撮像装置11の露光条件は、体調不良検出装置100が、フラッシュ光を照射する前に撮像装置11から取得した画像の輝度に基づいて露光条件を決定し、決定した露光条件を体調不良検出装置100が撮像装置11に出力することで設定されても良い。
 このように構成することで、体調不良検出装置100は、照度センサが設けられていない撮像装置11を利用することが可能となり、より高い汎用性を得ることができる。
Further, in the first embodiment, as an example, the imaging device 11 may appropriately adjust the exposure condition based on information indicating the brightness of the eyes of the occupant of the vehicle 1 output from the illuminance sensor provided in the imaging device 11. Has been described as being changed, but is not limited to this. For example, the exposure condition of the imaging device 11 is such that the poor physical condition detection device 100 determines the exposure condition based on the luminance of the image acquired from the imaging device 11 before irradiating the flash light, and determines the determined exposure condition as the poor physical condition detection. The setting may be made by the device 100 outputting to the imaging device 11.
With such a configuration, the poor physical condition detection device 100 can use the imaging device 11 in which the illuminance sensor is not provided, and can obtain higher versatility.
 また、実施の形態1では、一例として、体調不良検出装置100は、車両1に搭載されているものとして説明したが、この限りではない。例えば、体調不良検出装置100は、車両1の外部に設けられ、LTE等の無線公衆回線を介して、車両1に搭載されたフラッシュ光源12、撮像装置11、及び出力装置13等と接続されるものであっても良い。より具体的には、例えば、体調不良検出装置100は、LTE等の無線公衆回線を介して、フラッシュ光源12を制御し、撮像装置11から第1期間画像及び露光パラメータを取得し、出力装置13等に体調情報を出力するものであっても良い。
 このように構成することで、体調不良検出装置100は、車両1の外部に設置することができ、設置位置の自由度が広がる。
Further, in the first embodiment, as an example, the poor physical condition detection device 100 has been described as being mounted on the vehicle 1, but the present invention is not limited thereto. For example, the poor physical condition detection device 100 is provided outside the vehicle 1 and connected to the flash light source 12, the imaging device 11, the output device 13, and the like mounted on the vehicle 1 via a wireless public line such as LTE. It may be something. More specifically, for example, the poor physical condition detection device 100 controls the flash light source 12 via a wireless public line such as LTE, acquires a first period image and exposure parameters from the imaging device 11, and outputs the output device 13 For example, it may output physical condition information.
With this configuration, the poor physical condition detection device 100 can be installed outside the vehicle 1, and the degree of freedom of the installation position is increased.
 また、実施の形態1では、一例として、フラッシュ光源12は、体調不良検出装置100から出力された制御信号により、車両1が走行する期間において、例えば、フラッシュ光を照射させてから予め定められた期間が経過した後に、フラッシュ光源12にフラッシュ光を照射するものとして説明したが、この限りではない。例えば、フラッシュ光源12は、体調不良検出装置100から出力された制御信号により、車両1が走行する期間において、乗員の姿勢等が崩れた際、又は、乗員の姿勢が静止したまま予め定められた期間継続された際等に、フラッシュ光源12にフラッシュ光を照射させても良い。ここで言う予め定められた期間とは、例えば、10分間である。ここで言う予め定められた期間は、上述の期間に限定されるものではなく、10分間より長くても短くもて良い。
 このように構成することで、体調不良検出装置100は、乗員の体調が変化した可能性があるタイミングに体調検出を実施することができる。
In the first embodiment, as an example, the flash light source 12 is, for example, determined in advance by irradiating a flash light during a period in which the vehicle 1 travels, according to a control signal output from the poor physical condition detection device 100. Although it has been described that the flash light source 12 is irradiated with the flash light after the elapse of the period, the present invention is not limited to this. For example, the flash light source 12 is determined in advance by the control signal output from the poor physical condition detecting device 100 when the occupant's posture or the like has collapsed or the occupant's posture is still during the period in which the vehicle 1 travels. For example, when the period is continued, the flash light source 12 may be irradiated with flash light. The predetermined period here is, for example, 10 minutes. The predetermined period here is not limited to the above-mentioned period, and may be longer or shorter than 10 minutes.
With this configuration, the poor physical condition detection device 100 can perform physical condition detection at a timing when the physical condition of the occupant may have changed.
 更に、例えば、体調不良検出装置100は、フラッシュ光源12にフラッシュ光を照射させる際に、車両1が停車しているか否かを判定し、車両1が停車している場合に、フラッシュ光源12にフラッシュ光を照射させても良い。車両1が停車しているか否かの判定は、体調不良検出装置100が、例えば、体調不良検出装置100に接続された車両1の速度センサ(図示せず)等から取得したセンサ情報に基づいて判定する。
 このように構成することで、体調不良検出装置100は、特に乗員が運転者である場合、眼部に照射されたフラッシュ光が運転の妨げになることを抑制することができる。
Furthermore, for example, when illuminating the flash light source 12 with the flash light, the poor physical condition detection device 100 determines whether or not the vehicle 1 is stopped. Flash light may be applied. The determination as to whether or not the vehicle 1 is stopped is based on the sensor information acquired by the poor-health detecting device 100 from, for example, a speed sensor (not shown) of the vehicle 1 connected to the poor-health detecting device 100. judge.
With this configuration, the poor physical condition detection device 100 can suppress the flash light emitted to the eyes from hindering driving, particularly when the occupant is a driver.
実施の形態2.
 図8を参照して実施の形態2に係る体調不良検出装置100aについて説明する。
 特に、実施の形態2では、実施の形態1において説明した露光瞳孔径情報を生成する方法について説明する。
 実施の形態2に係る体調不良検出装置100aは、例えば、車両1に適用される。
 図8は、実施の形態2に係る体調不良検出装置100aの要部の一例を示すブロック図である。
Embodiment 2 FIG.
With reference to FIG. 8, the poor physical condition detecting apparatus 100a according to the second embodiment will be described.
In particular, in the second embodiment, a method for generating the exposure pupil diameter information described in the first embodiment will be described.
The poor physical condition detection device 100a according to the second embodiment is applied to, for example, the vehicle 1.
FIG. 8 is a block diagram showing an example of a main part of poor physical condition detection device 100a according to the second embodiment.
 実施の形態2に係る体調不良検出装置100aは、実施の形態1に係る体調不良検出装置100と比較して、露光瞳孔径情報生成部106が追加されている。
 実施の形態2に係る体調不良検出装置100aの構成において、実施の形態1に係る体調不良検出装置100と同様の構成については、同じ符号を付して重複した説明を省略する。すなわち、図1に記載した符号と同じ符号を付した図8の構成については、説明を省略する。
The poor physical condition detection device 100a according to the second embodiment differs from the poor physical condition detection device 100 according to the first embodiment in that an exposure pupil diameter information generation unit 106 is added.
In the configuration of the poor physical condition detection device 100a according to the second embodiment, the same components as those of the poor physical condition detection device 100 according to the first embodiment are denoted by the same reference numerals, and redundant description will be omitted. That is, the description of the configuration in FIG. 8 to which the same reference numerals as those in FIG. 1 are given is omitted.
 車両1は、体調不良検出装置100a、撮像装置11、フラッシュ光源12、及び出力装置13を備える。 The vehicle 1 includes the poor physical condition detection device 100a, the imaging device 11, the flash light source 12, and the output device 13.
 撮像装置11は、撮影した眼部の画像を、体調不良検出装置100aに出力する。実施の形態2では、一例として、撮像装置11は、体調不良検出装置100aからのトリガ信号を受信することにより、車両1の乗員の眼部を撮影するものとして説明する。
 実施の形態2における撮像装置11は、実施の形態1に記載した撮像装置11と同等であるため、詳細な説明を省略する。
The imaging device 11 outputs the captured image of the eye part to the poor physical condition detection device 100a. In the second embodiment, as an example, a description will be given assuming that the imaging device 11 captures an eye of an occupant of the vehicle 1 by receiving a trigger signal from the poor physical condition detection device 100a.
Since the imaging device 11 according to the second embodiment is equivalent to the imaging device 11 described in the first embodiment, a detailed description is omitted.
 フラッシュ光源12は、例えば、体調不良検出装置100aから出力された制御信号により、フラッシュ光を照射する。実施の形態2では、一例として、体調不良検出装置100aがフラッシュ光源12によるフラッシュ光の照射を制御するものとして説明する。
 実施の形態2におけるフラッシュ光源12は、実施の形態1に記載したフラッシュ光源12と同等であるため、詳細な説明を省略する。
The flash light source 12 emits flash light according to, for example, a control signal output from the poor physical condition detection device 100a. In the second embodiment, as an example, a description will be given assuming that the poor physical condition detection device 100a controls irradiation of flash light by the flash light source 12.
The flash light source 12 according to the second embodiment is the same as the flash light source 12 described in the first embodiment, and a detailed description will be omitted.
 体調不良検出装置100aは、乗員の体調情報を生成して、生成した体調情報を出力装置13等に出力する。
 体調不良検出装置100aは、画像取得部101a、露光パラメータ取得部102a、瞳孔径検出部103a、基準瞳孔径決定部104、体調不良検出部105、及び露光瞳孔径情報生成部106を有する。
The poor physical condition detection device 100a generates physical condition information of the occupant, and outputs the generated physical condition information to the output device 13 and the like.
The poor physical condition detection apparatus 100a includes an image acquisition unit 101a, an exposure parameter acquisition unit 102a, a pupil diameter detection unit 103a, a reference pupil diameter determination unit 104, a poor physical condition detection unit 105, and an exposure pupil diameter information generation unit 106.
 画像取得部101aは、第1期間に第1期間画像を取得する。また、画像取得部101aは、フラッシュ光による瞳孔径への影響がない期間(以下「無影響期間」という。)に眼部を撮像した画像(以下「無影響期間画像」という。)を取得可能なものである。
 無影響期間は、例えば、乗員が車両1に乗車してからフラッシュ光が照射されるまでの期間、又はフラッシュ光が車両1の乗員の眼部に照射されてから十分な期間(以下「影響期間」という。)が経過した以降の期間である。影響期間は、例えば、1分間である。影響期間は、フラッシュ光による瞳孔径への影響がなくなるのに十分な期間であれば、1分間より長くても短くても良い。
The image acquisition unit 101a acquires an image during a first period during a first period. In addition, the image acquisition unit 101a can acquire an image (hereinafter, referred to as a “non-influenced period image”) of the eye during a period in which the pupil diameter is not affected by the flash light (hereinafter, referred to as a “non-effect period”). It is something.
The non-influence period is, for example, a period from when the occupant gets on the vehicle 1 to when the flash light is emitted, or a sufficient period after the flash light is applied to the eyes of the occupant of the vehicle 1 (hereinafter, the “influence period”). This is the period after the elapse of "). The influence period is, for example, one minute. The influence period may be longer or shorter than one minute as long as the period is long enough to prevent the influence of the flash light on the pupil diameter.
 実施の形態2では、一例として、画像取得部101aは、撮像装置11にトリガ信号を送信することにより撮像装置11に撮影させた第1期間画像又は無影響期間画像を、撮像装置11から取得するものとして説明する。
 また、実施の形態2では、一例として、画像取得部101aは、フラッシュ光源12に制御信号を送信することによりフラッシュ光源12にフラッシュ光を照射させるものとして説明する。
 画像取得部101aは、上述の動作以外の動作については、実施の形態1に記載した画像取得部101と同等であるため、詳細な説明を省略する。
In the second embodiment, as an example, the image acquisition unit 101a acquires, from the imaging device 11, a first period image or a non-influence period image captured by the imaging device 11 by transmitting a trigger signal to the imaging device 11. Description
In the second embodiment, as an example, the image acquisition unit 101a is described as transmitting a control signal to the flash light source 12 to irradiate the flash light source 12 with flash light.
The operations of the image acquiring unit 101a other than the above-described operations are the same as those of the image acquiring unit 101 described in the first embodiment, and a detailed description thereof will be omitted.
 露光パラメータ取得部102aは、第1期間画像が撮像される際に用いられた露光パラメータを取得する。また、露光パラメータ取得部102aは、無影響期間画像が撮像される際に用いられた露光パラメータを取得可能なものである。
 実施の形態2では、一例として、露光パラメータ取得部102aは、画像取得部101aが取得した第1期間画像又は無影響期間画像のヘッダ情報に含まれる露光パラメータを取得する。
 露光パラメータ取得部102aは、上述の動作以外の動作については、実施の形態1に記載した露光パラメータ取得部102と同等であるため、詳細な説明を省略する。
The exposure parameter acquisition unit 102a acquires an exposure parameter used when the first period image is captured. The exposure parameter acquisition unit 102a can acquire the exposure parameters used when the non-influence period image is captured.
In the second embodiment, as an example, the exposure parameter acquisition unit 102a acquires the exposure parameter included in the header information of the first period image or the unaffected period image acquired by the image acquisition unit 101a.
The operation of the exposure parameter acquisition unit 102a other than the above-described operation is the same as that of the exposure parameter acquisition unit 102 described in the first embodiment, and a detailed description thereof will be omitted.
 瞳孔径検出部103aは、画像取得部101aが取得した第1期間画像に基づいて車両1の乗員の眼部の瞳孔径を検出する。また、瞳孔径検出部103aは、画像取得部101aが取得した車両1の乗員の眼部の瞳孔径を検出可能なものである。
 瞳孔径検出部103aは、上述の動作以外の動作については、実施の形態1に記載した瞳孔径検出部103と同等であるため、詳細な説明を省略する。
The pupil diameter detection unit 103a detects the pupil diameter of the eye of the occupant of the vehicle 1 based on the first period image acquired by the image acquisition unit 101a. The pupil diameter detection unit 103a can detect the pupil diameter of the eye of the occupant of the vehicle 1 acquired by the image acquisition unit 101a.
The operation of pupil diameter detecting section 103a other than the above-described operation is the same as that of pupil diameter detecting section 103 described in the first embodiment, and thus a detailed description is omitted.
 露光瞳孔径情報生成部106は、露光パラメータ取得部102aが取得した無影響期間画像が撮像される際に用いられた露光パラメータと、瞳孔径検出部103aが無影響期間画像に基づいて検出した車両1の乗員の眼部の瞳孔径とに基づいて、露光瞳孔径情報を生成する。
 具体手的には、例えば、露光瞳孔径情報生成部106は、無影響期間画像が撮像される際に用いられた露光パラメータと、瞳孔径検出部103aが検出した車両1の乗員の眼部の瞳孔径とに基づいて、参照用露光パラメータと参照用瞳孔径とを露光瞳孔径情報に追加する。
 より具体的には、例えば、露光瞳孔径情報生成部106は、露光パラメータ取得部102aが取得した無影響期間画像が撮像される際に用いられた露光パラメータを、参照用露光パラメータとして露光瞳孔径情報に追加する。また、露光瞳孔径情報生成部106は、瞳孔径検出部103aが当該無影響期間画像に基づいて検出した車両1の乗員の眼部の瞳孔径を参照用瞳孔径として、当該参照用露光パラメータに対応付けて露光瞳孔径情報に追加する。
 すなわち、露光瞳孔径情報の参照用露光パラメータは、露光パラメータ取得部102aが取得した無影響期間画像が撮像される際に用いられた露光パラメータである。また、露光瞳孔径情報の参照用瞳孔径は、無影響期間画像に基づいて瞳孔径検出部103aが検出した車両1の乗員の眼部の瞳孔径に基づくものである。
The exposure pupil diameter information generation unit 106 is configured to detect the vehicle based on the exposure parameters used when the non-effect period image acquired by the exposure parameter acquisition unit 102a is captured and the pupil diameter detection unit 103a based on the non-effect period image. Exposure pupil diameter information is generated based on the pupil diameter of the eye of the first occupant.
Specifically, for example, the exposure pupil diameter information generation unit 106 determines the exposure parameters used when the non-influence period image is captured and the eyes of the occupant eyes of the vehicle 1 detected by the pupil diameter detection unit 103a. The reference exposure parameter and the reference pupil diameter are added to the exposure pupil diameter information based on the pupil diameter.
More specifically, for example, the exposure pupil diameter information generation unit 106 uses the exposure parameter used when the non-influence period image acquired by the exposure parameter acquisition unit 102a is captured as an exposure pupil diameter as a reference exposure parameter. Add to information. Further, the exposure pupil diameter information generation unit 106 sets the pupil diameter of the eye of the occupant of the vehicle 1 detected by the pupil diameter detection unit 103a based on the non-influence period image as a reference pupil diameter, and It is added to the exposure pupil diameter information in association with it.
That is, the reference exposure parameter of the exposure pupil diameter information is the exposure parameter used when the non-effect period image acquired by the exposure parameter acquisition unit 102a is captured. In addition, the reference pupil diameter of the exposure pupil diameter information is based on the pupil diameter of the eye of the occupant of the vehicle 1 detected by the pupil diameter detection unit 103a based on the non-effect period image.
 露光瞳孔径情報生成部106は、例えば、瞳孔径検出部103aが無影響期間画像に基づいて検出した車両1の乗員の眼部の瞳孔径を参照用瞳孔径とする際に、既に対応する参照用露光パラメータに対応付けらえた参照用瞳孔径が露光瞳孔径情報に存在する場合、当該参照用瞳孔径と、瞳孔径検出部103aが無影響期間画像に基づいて検出した車両1の乗員の眼部の瞳孔径とに基づいて、新たな参照用瞳孔径を決定しても良い。より具体的には、例えば、露光瞳孔径情報生成部106は、当該参照用瞳孔径と、瞳孔径検出部103aが無影響期間画像に基づいて検出した車両1の乗員の眼部の瞳孔径との平均値を算出し、算出した平均値を新たな参照用瞳孔径としても良い。 For example, when the pupil diameter of the eye of the occupant of the vehicle 1 detected by the pupil diameter detection unit 103a based on the non-influence period image is used as the reference pupil diameter, the exposure pupil diameter information generation unit 106 determines If the reference pupil diameter associated with the exposure parameter for use exists in the exposure pupil diameter information, the reference pupil diameter and the eyes of the occupant of the vehicle 1 detected by the pupil diameter detection unit 103a based on the non-influence period image. A new reference pupil diameter may be determined based on the pupil diameter of the part. More specifically, for example, the exposure pupil diameter information generation unit 106 calculates the reference pupil diameter and the pupil diameter of the eye of the occupant of the vehicle 1 detected by the pupil diameter detection unit 103a based on the non-influence period image. May be calculated, and the calculated average value may be used as a new reference pupil diameter.
 実施の形態2における基準瞳孔径決定部104及び体調不良検出部105は、実施の形態1に記載した基準瞳孔径決定部104及び体調不良検出部105と同等であるため、詳細な説明を省略する。 Since the reference pupil diameter determining unit 104 and the poor physical condition detecting unit 105 according to the second embodiment are the same as the reference pupil diameter determining unit 104 and the poor physical condition detecting unit 105 described in the first embodiment, detailed description will be omitted. .
 なお、露光瞳孔径情報の参照用瞳孔径は、車両1が走行を開始してから予め定められた第2の期間(以下「第2期間」という。)に撮像された無影響期間画像に基づいて瞳孔径検出部103aが検出した車両1の乗員の眼部の瞳孔径に基づいて決定された参照用瞳孔径を含むことが望ましい。第2期間は、例えば、車両1が走行を開始してから10分間である。第2期間は、10分間に限定されるものではなく、車両1が走行することによる車両1の乗員における疲労の度合いが少ない期間であれば、10分間より長くても短くても良い。車両1が走行することによる車両1の乗員における疲労の度合いが少ない期間は、周知技術又は技術常識等に基づいて適宜決定されるものである。
 露光瞳孔径情報の参照用瞳孔径を第2期間に撮像された無影響期間画像に基づいて瞳孔径検出部103aが検出した車両1の乗員の眼部の瞳孔径に基づいて決定された参照用瞳孔径を含むように構成することで、疲労の度合いによる影響の少ない基準瞳孔径に基づいて、より正確な乗員の体調不良を検出できる。
In addition, the reference pupil diameter of the exposure pupil diameter information is based on the non-influence period image captured in a predetermined second period (hereinafter, referred to as “second period”) after the vehicle 1 starts running. It is desirable to include the reference pupil diameter determined based on the pupil diameter of the eye of the occupant of the vehicle 1 detected by the pupil diameter detection unit 103a. The second period is, for example, 10 minutes after the vehicle 1 starts running. The second period is not limited to 10 minutes, and may be longer or shorter than 10 minutes as long as the degree of fatigue of the occupant of the vehicle 1 due to running of the vehicle 1 is small. The period during which the degree of fatigue of the occupant of the vehicle 1 due to the traveling of the vehicle 1 is small is appropriately determined based on a known technique or common technical knowledge.
The reference pupil diameter of the exposure pupil diameter information is determined based on the pupil diameter of the eye of the occupant of the vehicle 1 detected by the pupil diameter detection unit 103a based on the non-influence period image captured in the second period. By including the pupil diameter, it is possible to more accurately detect the occupant's poor physical condition based on the reference pupil diameter that is less affected by the degree of fatigue.
 なお、実施の形態2に係る体調不良検出装置100aにおける画像取得部101a、露光パラメータ取得部102a、瞳孔径検出部103a、基準瞳孔径決定部104、体調不良検出部105、及び露光瞳孔径情報生成部106の各機能は、実施の形態1において図2A及び図2Bに一例を示したハードウェア構成におけるプロセッサ201及びメモリ202により実現されるものであっても良く、又は処理回路203により実現されるものであっても良い。 The image acquisition unit 101a, the exposure parameter acquisition unit 102a, the pupil diameter detection unit 103a, the reference pupil diameter determination unit 104, the poor physical condition detection unit 105, and the exposure pupil diameter information generation in the poor physical condition detection apparatus 100a according to the second embodiment. Each function of the unit 106 may be realized by the processor 201 and the memory 202 in the hardware configuration illustrated in FIGS. 2A and 2B in the first embodiment, or may be realized by the processing circuit 203. It may be something.
 図9を参照して、実施の形態2に係る体調不良検出装置100aの動作について説明する。
 図9は、実施の形態2に係る体調不良検出装置100aの処理の一例を説明するフローチャートである。
 体調不良検出装置100aは、例えば、当該フローチャートの処理をフラッシュ光が照射される度に車両1が走行する期間において継続的に実行する。
With reference to FIG. 9, the operation of poor physical condition detecting device 100a according to the second embodiment will be described.
FIG. 9 is a flowchart illustrating an example of processing of poor physical condition detection device 100a according to Embodiment 2.
The poor physical condition detection device 100a continuously executes, for example, the processing of the flowchart in a period in which the vehicle 1 runs every time the flash light is irradiated.
 まず、ステップST901にて、画像取得部101aは、フラッシュ光源12にフラッシュ光を照射させるか否かを判定する。
 ステップST901にて、画像取得部101aにより、フラッシュ光源12にフラッシュ光を照射させると判定された場合、体調不良検出装置100aは、ステップST902以降の処理を行う。図9に示すステップST902からステップST909までの処理は、図6に示すステップST602からステップST609までの処理と同等であるため、説明を省略する。
First, in step ST901, the image acquisition unit 101a determines whether to irradiate the flash light source 12 with flash light.
In step ST901, when it is determined by the image acquisition unit 101a to irradiate the flash light source 12 with the flash light, the poor physical condition detection device 100a performs the processing after step ST902. The processing from step ST902 to step ST909 shown in FIG. 9 is the same as the processing from step ST602 to step ST609 shown in FIG.
 ステップST901にて、画像取得部101aにより、フラッシュ光源12にフラッシュ光を照射させないと判定された場合、ステップST911にて、画像取得部101aは、無影響期間であるか否かを判定する。
 ステップST911にて、画像取得部101aにより無影響期間でないと判定された場合、体調不良検出装置100aは、ステップST901の処理に戻る。
 ステップST911にて、画像取得部101aにより無影響期間であると判定された場合、ステップST912にて、画像取得部101aは、無影響期間画像を取得する。
In step ST901, when the image obtaining unit 101a determines that the flash light source 12 is not to be irradiated with the flash light, in step ST911, the image obtaining unit 101a determines whether or not the period is the non-effect period.
In step ST911, if the image acquiring unit 101a determines that the period is not the non-effect period, the poor physical condition detection device 100a returns to the process of step ST901.
In step ST911, when the image acquiring unit 101a determines that the period is the non-influence period, in step ST912, the image acquiring unit 101a acquires the non-influence period image.
 次に、ステップST913にて、露光パラメータ取得部102aは、上述のとおり、画像取得部101aが取得した無影響期間画像のヘッダ情報に含まれる露光パラメータを取得する。
 次に、ステップST914にて、瞳孔径検出部103aは、上述のとおり、画像取得部101aが取得した無影響期間画像に基づいて車両1の乗員の眼部の瞳孔径を検出する。
 次に、ステップST915にて、露光瞳孔径情報生成部106は、上述のとおり、無影響期間画像が撮像される際に用いられた露光パラメータと、瞳孔径検出部103aが検出した車両1の乗員の眼部の瞳孔径とに基づいて、参照用露光パラメータと参照用瞳孔径とを露光瞳孔径情報に追加する。より具体的には、露光瞳孔径情報生成部106は、露光パラメータ取得部102aが取得した無影響期間画像が撮像される際に用いられた露光パラメータを参照用露光パラメータとして、また、瞳孔径検出部103aが当該無影響期間画像に基づいて検出した車両1の乗員の眼部の瞳孔径を参照用瞳孔径として、当該参照用露光パラメータに対応付けて露光瞳孔径情報に追加する。体調不良検出装置100aは、ステップST915の処理を実行した後、当該フローチャートの処理を終了し、ステップST901の処理に戻って、当該フローチャートの処理を繰り返し実行する。
Next, in step ST913, as described above, the exposure parameter acquiring unit 102a acquires the exposure parameter included in the header information of the non-influence period image acquired by the image acquiring unit 101a.
Next, in step ST914, pupil diameter detecting section 103a detects the pupil diameter of the occupant's eye of vehicle 1 based on the non-influence period image acquired by image acquiring section 101a, as described above.
Next, in step ST915, as described above, the exposure pupil diameter information generation unit 106 determines the exposure parameters used when the non-influence period image is captured and the occupant of the vehicle 1 detected by the pupil diameter detection unit 103a. The reference exposure parameter and the reference pupil diameter are added to the exposure pupil diameter information based on the pupil diameter of the eye. More specifically, the exposure pupil diameter information generation unit 106 uses the exposure parameter used when the non-effect period image acquired by the exposure parameter acquisition unit 102a is captured as the reference exposure parameter, The pupil diameter of the eye of the occupant of the vehicle 1 detected by the unit 103a based on the non-influence period image is added as the reference pupil diameter to the exposure pupil diameter information in association with the reference exposure parameter. After executing the processing of step ST915, the poor-health detection device 100a ends the processing of the flowchart, returns to the processing of step ST901, and repeatedly executes the processing of the flowchart.
 なお、当該フローチャートの処理において、ステップST913の処理とステップST914の処理とは、処理する順序が逆であっても良い。 In the process of the flowchart, the process of step ST913 and the process of step ST914 may be performed in the reverse order.
 以上のように、体調不良検出装置100aの露光瞳孔径情報の参照用露光パラメータは、露光パラメータ取得部102aが取得した無影響期間画像が撮像される際に用いられた露光パラメータであり、体調不良検出装置100aの露光瞳孔径情報の参照用瞳孔径は、当該無影響期間画像に基づいて瞳孔径検出部103aが検出した眼部の瞳孔径に基づくものである。
 このように構成することで、体調不良検出装置100aは、走行中に取得した露光パラメータと、走行中に検出した車両1の乗員の眼部の瞳孔径とに基づいて露光瞳孔径情報を生成するため、予め露光瞳孔径情報を準備することなく、フラッシュ光の照射による瞳孔径の変化に基づく車両1の乗員の体調の判定を正確に行うことができる。
As described above, the reference exposure parameter of the exposure pupil diameter information of the poor physical condition detection apparatus 100a is an exposure parameter used when the non-influence period image acquired by the exposure parameter acquiring unit 102a is captured, and The reference pupil diameter of the exposure pupil diameter information of the detection device 100a is based on the pupil diameter of the eye detected by the pupil diameter detection unit 103a based on the non-effect period image.
With this configuration, the poor physical condition detection device 100a generates exposure pupil diameter information based on the exposure parameter acquired during traveling and the pupil diameter of the eye of the occupant of the vehicle 1 detected during traveling. Therefore, it is possible to accurately determine the physical condition of the occupant of the vehicle 1 based on a change in the pupil diameter due to the irradiation of the flash light without preparing exposure pupil diameter information in advance.
実施の形態3.
 図8を参照して実施の形態3に係る体調不良検出装置100bについて説明する。
 実施の形態3に係る体調不良検出装置100bは、例えば、車両1に適用される。
 実施の形態3に係る体調不良検出装置100bは、車両1の中の複数の乗員の体調不良を検出するものである。
 図10は、実施の形態3に係る体調不良検出装置100bの要部の一例を示すブロック図である。
Embodiment 3 FIG.
With reference to FIG. 8, the poor physical condition detection device 100b according to the third embodiment will be described.
The poor physical condition detection device 100b according to Embodiment 3 is applied to, for example, the vehicle 1.
The poor physical condition detection device 100b according to the third embodiment detects poor physical condition of a plurality of occupants in the vehicle 1.
FIG. 10 is a block diagram illustrating an example of a main part of poor-health detecting device 100b according to Embodiment 3.
 実施の形態3に係る体調不良検出装置100bは、実施の形態2に係る体調不良検出装置100aと比較して、乗員特定部107が追加されている。
 実施の形態3に係る体調不良検出装置100bの構成において、実施の形態2に係る体調不良検出装置100aと同様の構成については、同じ符号を付して重複した説明を省略する。すなわち、図8に記載した符号と同じ符号を付した図10の構成については、説明を省略する。
The poor physical condition detection device 100b according to Embodiment 3 is different from the poor physical condition detection device 100a according to Embodiment 2 in that an occupant identification unit 107 is added.
In the configuration of the physical condition detection device 100b according to the third embodiment, the same components as those of the physical condition detection device 100a according to the second embodiment are denoted by the same reference numerals, and redundant description will be omitted. That is, the description of the configuration in FIG. 10 to which the same reference numerals as those in FIG.
 車両1は、例えば、体調不良検出装置100b、撮像装置11、フラッシュ光源12、及び出力装置13を備える。 The vehicle 1 includes, for example, a physical condition detection device 100b, an imaging device 11, a flash light source 12, and an output device 13.
 実施の形態3に係る体調不良検出装置100bは、複数の乗員それぞれに対応する体調情報を生成して、生成した体調情報を出力装置13等に出力する。体調不良検出装置100bの詳細については後述する。 The poor physical condition detection device 100b according to Embodiment 3 generates physical condition information corresponding to each of a plurality of occupants, and outputs the generated physical condition information to the output device 13 and the like. Details of the poor physical condition detection device 100b will be described later.
 撮像装置11は、車両1の複数の乗員それぞれの眼部を撮影する。撮像装置11は、車両1の複数の乗員それぞれの眼部を撮影した画像を体調不良検出装置100bに出力する。撮像装置11は、例えば、車両1に複数台設けられている。
 実施の形態3では、一例として、撮像装置11は、車両1に2台の撮像装置11d,11pが設けられており、撮像装置11d及び撮像装置11pはそれぞれ、乗員が座る座席ごとに対応付けられて設けられているものとして説明する。より具体的には、例えば、撮像装置11dは、車両1の運転席に対応付けられ、車両1の運転席に座る乗員の眼部を撮影する。また、撮像装置11pは、車両1の助手席に対応付けられ、車両1の助手席に座る乗員の眼部を撮影する。
The imaging device 11 photographs the eyes of each of a plurality of occupants of the vehicle 1. The imaging device 11 outputs images of the eyes of a plurality of occupants of the vehicle 1 to the poor physical condition detection device 100b. For example, a plurality of imaging devices 11 are provided in the vehicle 1.
In the third embodiment, as an example, in the imaging device 11, the vehicle 1 is provided with two imaging devices 11d and 11p, and the imaging device 11d and the imaging device 11p are respectively associated with each seat on which the occupant sits. It will be described as being provided. More specifically, for example, the imaging device 11d is associated with the driver's seat of the vehicle 1 and captures an image of the eye of a passenger sitting in the driver's seat of the vehicle 1. Further, the imaging device 11p is associated with the passenger seat of the vehicle 1, and captures an image of an eye of a passenger sitting on the passenger seat of the vehicle 1.
 実施の形態3では、一例として、撮像装置11は、2台の撮像装置11d及び撮像装置11pが設けられているものとして説明するが、この限りではない。例えば、撮像装置11は、3台以上であっても良い。また、実施の形態3では、一例として、撮像装置11d及び撮像装置11pは、運転席及び助手席に対応付けられているものとして説明するが、この限りではない。例えば、撮像装置11dは、車両1における前列の座席等に、また、撮像装置11pは、車両1における後列の座席等に対応付けられていても良い。また、実施の形態3では、一例として、撮像装置11は、複数台設けられているものとして説明するが、この限りではない。例えば、撮像装置11は、車両1に1台設けられており、撮像装置11がパン、チルト、又はズーム等を行うことにより、適宜、車両1の複数の乗員それぞれの眼部を順次撮影するものであっても良い。
 撮像装置11d及び撮像装置11pは、実施の形態2に記載した撮像装置11と同等であるため詳細な説明を省略する。
In the third embodiment, as an example, the imaging device 11 is described as being provided with two imaging devices 11d and 11p, but is not limited thereto. For example, the number of the imaging devices 11 may be three or more. In the third embodiment, as an example, the imaging device 11d and the imaging device 11p will be described as being associated with the driver's seat and the passenger's seat, but this is not a limitation. For example, the imaging device 11d may be associated with a front row seat or the like in the vehicle 1, and the imaging device 11p may be associated with a rear row seat or the like in the vehicle 1. In the third embodiment, as an example, a description will be given assuming that a plurality of imaging devices 11 are provided, but this is not a limitation. For example, one imaging device 11 is provided in the vehicle 1, and the imaging device 11 performs panning, tilting, zooming, or the like to sequentially photograph the eyes of each of a plurality of occupants of the vehicle 1. It may be.
Since the imaging device 11d and the imaging device 11p are the same as the imaging device 11 described in the second embodiment, detailed description will be omitted.
 フラッシュ光源12は、車両1の複数の乗員それぞれの眼部にフラッシュ光を照射する。フラッシュ光源12は、例えば、車両1に複数台設けられている。
 実施の形態3では、一例として、フラッシュ光源12は、車両1に2台のフラッシュ光源12d,12pが設けられており、フラッシュ光源12d及びフラッシュ光源12pはそれぞれ、乗員が座る座席ごとに対応付けられて設けられているものとして説明する。より具体的には、例えば、フラッシュ光源12dは、車両1の運転席に対応付けられ、車両1の運転席に座る乗員の眼部にフラッシュ光を照射する。また、フラッシュ光源12pは、車両1の助手席に対応付けられ、車両1の助手席に座る乗員の眼部にフラッシュ光を照射する。
The flash light source 12 irradiates flash light to the eyes of a plurality of occupants of the vehicle 1. For example, a plurality of flash light sources 12 are provided in the vehicle 1.
In the third embodiment, as an example, as the flash light source 12, two flash light sources 12d and 12p are provided in the vehicle 1, and the flash light sources 12d and 12p are respectively associated with the respective seats on which the occupants sit. It will be described as being provided. More specifically, for example, the flash light source 12d is associated with the driver's seat of the vehicle 1 and irradiates the eye of a passenger sitting in the driver's seat of the vehicle 1 with flash light. The flash light source 12p is associated with the passenger seat of the vehicle 1 and irradiates the flash light to the eyes of the occupant sitting on the passenger seat of the vehicle 1.
 実施の形態3では、一例として、フラッシュ光源12は、2台のフラッシュ光源12d及びフラッシュ光源12pが設けられているものとして説明するが、この限りではない。例えば、フラッシュ光源12は、3台以上であっても良い。また、実施の形態3では、一例として、フラッシュ光源12d及びフラッシュ光源12pは、運転席及び助手席に対応付けられているものとして説明するが、この限りではない。例えば、フラッシュ光源12dは、車両1における前列の座席等に、また、フラッシュ光源12pは、車両1における後列の座席等に対応付けられていても良い。また、実施の形態3では、一例として、フラッシュ光源12は、複数台設けられているものとして説明するが、この限りではない。例えば、フラッシュ光源12は、車両1に1台設け、車両1の複数の乗員の眼部に光が届くようにフラッシュ光を照射するものであっても良い。
 フラッシュ光源12d及びフラッシュ光源12pは、実施の形態2に記載したフラッシュ光源12と同等であるため詳細な説明を省略する。
In the third embodiment, as an example, the flash light source 12 is described as being provided with two flash light sources 12d and 12p, but the present invention is not limited to this. For example, the number of flash light sources 12 may be three or more. In the third embodiment, as an example, the flash light source 12d and the flash light source 12p will be described as being associated with the driver's seat and the passenger's seat, but are not limited thereto. For example, the flash light source 12d may be associated with a front row seat or the like in the vehicle 1, and the flash light source 12p may be associated with a rear row seat or the like in the vehicle 1. In the third embodiment, as an example, a description will be given assuming that a plurality of flash light sources 12 are provided, but the present invention is not limited to this. For example, one flash light source 12 may be provided in the vehicle 1 and emit the flash light so that the light reaches the eyes of a plurality of occupants of the vehicle 1.
The flash light source 12d and the flash light source 12p are the same as the flash light source 12 described in the second embodiment, and a detailed description will be omitted.
 体調不良検出装置100bについて説明する。
 体調不良検出装置100bは、画像取得部101b、露光パラメータ取得部102b、瞳孔径検出部103b、基準瞳孔径決定部104b、体調不良検出部105b、露光瞳孔径情報生成部106b、及び乗員特定部107を有する。
The poor physical condition detection device 100b will be described.
The poor physical condition detecting device 100b includes an image obtaining unit 101b, an exposure parameter obtaining unit 102b, a pupil diameter detecting unit 103b, a reference pupil diameter determining unit 104b, a poor physical condition detecting unit 105b, an exposure pupil diameter information generating unit 106b, and an occupant specifying unit 107. Having.
 乗員特定部107は、車両1の乗員を特定するものである。
 乗員特定部107は、車両1の複数の乗員を区別可能なものであれば、乗員の個人を特定可能なものでなくても良い。
 より具体的には、例えば、乗員特定部107は、乗員の車両1における乗員の位置に基づいて、車両1の乗員を特定する。例えば、乗員特定部107は、乗員が座る座席ごとに設けられた感圧センサ又は人感センサ等の検知センサ(図示せず)から取得した検知信号に基づいて、乗員を座席に対応付けて特定する。
 実施の形態3では、一例として、運転席及び助手席の両方に乗員が座っているものとして説明する。
The occupant identification unit 107 identifies an occupant of the vehicle 1.
The occupant identification unit 107 does not need to be capable of identifying an individual occupant as long as the occupant can distinguish a plurality of occupants of the vehicle 1.
More specifically, for example, the occupant identification unit 107 identifies the occupant of the vehicle 1 based on the occupant's position in the vehicle 1. For example, the occupant identification unit 107 identifies the occupant in association with the seat based on a detection signal obtained from a detection sensor (not shown) such as a pressure sensor or a human sensor provided for each seat where the occupant sits. I do.
In the third embodiment, as an example, a description will be given assuming that an occupant is sitting in both the driver's seat and the passenger seat.
 画像取得部101bは、撮像装置11により撮影された第1期間画像を取得する。より具体的には、例えば、画像取得部101bは、乗員特定部107により座席に対応付けて特定された乗員の第1期間画像を撮像装置11から取得する。
 実施の形態3では、一例として、画像取得部101bは、撮像装置11d及び撮像装置11pにより撮影された第1期間画像を撮像装置11d及び撮像装置11pそれぞれから取得する。より具体的には、画像取得部101bは、フラッシュ光源12dにより車両1の運転席に座る乗員の眼部にフラッシュ光が照射されてから予め定められた期間(第1期間)に、撮像装置11dが当該眼部を撮像した画像(第1期間画像)を撮像装置11dから取得する。また、画像取得部101bは、フラッシュ光源12pにより車両1の助手席に座る乗員の眼部にフラッシュ光が照射されてから予め定められた期間(第1期間)に、撮像装置11pが当該眼部を撮像した画像(第1期間画像)を撮像装置11pから取得する。
The image acquiring unit 101b acquires a first period image captured by the imaging device 11. More specifically, for example, the image acquiring unit 101b acquires, from the imaging device 11, a first period image of the occupant specified by the occupant specifying unit 107 in association with the seat.
In the third embodiment, as an example, the image acquisition unit 101b acquires a first period image captured by the imaging device 11d and the imaging device 11p from each of the imaging device 11d and the imaging device 11p. More specifically, the image acquisition unit 101b performs the imaging device 11d in a predetermined period (first period) after the flash light is emitted from the flash light source 12d to the eyes of the occupant sitting in the driver's seat of the vehicle 1. Acquires an image (first-period image) of the eye part from the imaging device 11d. In addition, the image acquisition unit 101b sets the imaging device 11p to the eye unit during a predetermined period (first period) after the flash light is emitted from the flash light source 12p to the eyes of the occupant sitting in the front passenger seat of the vehicle 1. Is acquired from the imaging device 11p.
 画像取得部101bは、撮像装置11d及び撮像装置11pにより撮影された無影響期間画像を撮像装置11d及び撮像装置11pそれぞれから取得可能なものであっても良い。
 実施の形態3の画像取得部101bにおける上述の動作以外の動作は、実施の形態2に記載した画像取得部101aと同等であるため詳細な説明を省略する。
The image acquisition unit 101b may be capable of acquiring the non-influence period image captured by the imaging device 11d and the imaging device 11p from the imaging device 11d and the imaging device 11p, respectively.
Operations other than the above-described operations in the image acquisition unit 101b according to the third embodiment are the same as those in the image acquisition unit 101a described in the second embodiment, and a detailed description thereof will be omitted.
 露光パラメータ取得部102bは、画像取得部101bが撮像装置11d及び撮像装置11pそれぞれから取得した第1期間画像が撮像される際に用いられたそれぞれの露光パラメータを取得する。
 露光パラメータ取得部102bは、画像取得部101bが撮像装置11d及び撮像装置11pそれぞれから取得した無影響期間画像が撮像される際に用いられたそれぞれの露光パラメータを取得可能なものであっても良い。
 実施の形態3の露光パラメータ取得部102bにおける上述の動作以外の動作は、実施の形態2に記載した露光パラメータ取得部102aと同等であるため詳細な説明を省略する。
The exposure parameter acquisition unit 102b acquires the respective exposure parameters used when the first period image acquired by the image acquisition unit 101b is acquired from each of the imaging device 11d and the imaging device 11p.
The exposure parameter acquisition unit 102b may be capable of acquiring the respective exposure parameters used when the non-influence period image acquired by the image acquisition unit 101b is acquired from each of the imaging device 11d and the imaging device 11p. .
The operation other than the above-described operation in the exposure parameter acquisition unit 102b of the third embodiment is the same as that of the exposure parameter acquisition unit 102a described in the second embodiment, and thus a detailed description is omitted.
 瞳孔径検出部103bは、乗員特定部107が特定した乗員ごとに眼部の瞳孔径を検出する。より具体的には、瞳孔径検出部103bは、画像取得部101bが撮像装置11d及び撮像装置11pそれぞれから取得した第1期間画像に基づいて、乗員ごとの眼部の瞳孔径を検出する。
 瞳孔径検出部103bは、画像取得部101bが撮像装置11d及び撮像装置11pそれぞれから取得した無影響期間画像に基づいて、乗員ごとの眼部の瞳孔径を検出可能なものであっても良い。
 瞳孔径検出部103bは、上述の動作以外の動作については、実施の形態2に記載した瞳孔径検出部103aと同等であるため、詳細な説明を省略する。
The pupil diameter detection unit 103b detects the pupil diameter of the eye for each occupant identified by the occupant identification unit 107. More specifically, the pupil diameter detection unit 103b detects the pupil diameter of the eye for each occupant based on the first period images acquired by the image acquisition unit 101b from each of the imaging device 11d and the imaging device 11p.
The pupil diameter detection unit 103b may be capable of detecting the pupil diameter of the eye for each occupant based on the non-influence period image acquired by the image acquisition unit 101b from each of the imaging device 11d and the imaging device 11p.
The operation of pupil diameter detecting section 103b other than the above-described operation is the same as that of pupil diameter detecting section 103a described in the second embodiment, and thus a detailed description is omitted.
 基準瞳孔径決定部104bは、露光パラメータ取得部102bが取得した撮像装置11d及び撮像装置11pそれぞれが第1期間画像を撮影する際の露光パラメータに基づいて、乗員特定部107が特定した乗員ごとに基準瞳孔径を決定する。
 より具体的には、例えば、基準瞳孔径決定部104bは、撮像装置11d及び撮像装置11pそれぞれが第1期間画像を撮影する際の露光パラメータと、露光瞳孔径情報とに基づいて、乗員特定部107が特定した乗員ごとに基準瞳孔径を決定する。
 実施の形態3では、一例として、基準瞳孔径決定部104bが参照する露光瞳孔径情報は、車両1の座席ごとに対応付けられた乗員ごとに予め用意されているものとして説明する。
The reference pupil diameter determining unit 104b determines, for each occupant identified by the occupant identifying unit 107, based on the exposure parameters when the imaging device 11d and the imaging device 11p each capture the first period image acquired by the exposure parameter acquisition unit 102b. Determine the reference pupil diameter.
More specifically, for example, the reference pupil diameter determination unit 104b includes an occupant identification unit based on exposure parameters when the imaging devices 11d and 11p each capture an image during the first period, and exposure pupil diameter information. The reference pupil diameter is determined for each occupant 107.
In the third embodiment, as an example, the description will be made assuming that the exposure pupil diameter information referred to by reference pupil diameter determination unit 104b is prepared in advance for each occupant associated with each seat of vehicle 1.
 基準瞳孔径決定部104bが参照する露光瞳孔径情報は、上述のものに限るものではない。例えば、基準瞳孔径決定部104bが参照する露光瞳孔径情報は、露光パラメータ取得部102bが取得した撮像装置11d及び撮像装置11pそれぞれが無影響期間画像を撮影する際の露光パラメータと、瞳孔径検出部103bが撮像装置11d及び撮像装置11pそれぞれから取得した無影響期間画像に基づいて乗員ごとに検出した眼部の瞳孔径とに基づいて、露光瞳孔径情報生成部106bが乗員ごとに生成したものでも良い。
 基準瞳孔径決定部104bが参照する露光瞳孔径情報を露光瞳孔径情報生成部106bが乗員ごとに生成するように構成することで、車両1の乗員が不特定な場合、又は車両1の乗員の座席が不特定な場合等においても、体調不良検出装置100bは、適切な露光瞳孔径情報に基づいて、乗員ごとの体調不良を検出できる。
The exposure pupil diameter information referred to by the reference pupil diameter determination unit 104b is not limited to the above. For example, the exposure pupil diameter information referred to by the reference pupil diameter determination unit 104b includes an exposure parameter when the imaging device 11d and the imaging device 11p acquired by the exposure parameter acquisition unit 102b each capture an image with no influence period, and a pupil diameter detection. The exposure pupil diameter information generation unit 106b generates for each occupant based on the pupil diameter of the eye detected for each occupant based on the non-influence period image acquired by the unit 103b from each of the imaging devices 11d and 11p. But it is good.
By configuring the exposure pupil diameter information generation unit 106b to generate the exposure pupil diameter information referred to by the reference pupil diameter determination unit 104b for each occupant, when the occupant of the vehicle 1 is unspecified, or Even when the seat is unspecified, the poor physical condition detection device 100b can detect poor physical condition for each occupant based on appropriate exposure pupil diameter information.
 基準瞳孔径決定部104bは、上述の動作以外の動作については、実施の形態2に記載した基準瞳孔径決定部104と同等であるため、詳細な説明を省略する。 The operation of the reference pupil diameter determining unit 104b other than the above-described operation is the same as that of the reference pupil diameter determining unit 104 described in the second embodiment, and a detailed description thereof will be omitted.
 体調不良検出部105bは、瞳孔径検出部103bが乗員ごとに検出した車両1の乗員の眼部の瞳孔径と、基準瞳孔径決定部104bが乗員ごとに決定した基準瞳孔径とに基づいて、乗員ごとに体調不良を検出する。
 体調不良検出部105bは、例えば、乗員ごとに検出した乗員の体調の状態を示す体調情報を生成して、生成した体調情報を出力装置13等に出力する。
 体調不良検出部105bは、上述の動作以外の動作については、実施の形態2に記載した体調不良検出部105と同等であるため、詳細な説明を省略する。
The poor physical condition detection unit 105b is based on the pupil diameter of the eye of the occupant of the vehicle 1 detected by the pupil diameter detection unit 103b for each occupant, and the reference pupil diameter determined for each occupant by the reference pupil diameter determination unit 104b. Detects poor physical condition for each occupant.
The poor physical condition detection unit 105b generates, for example, physical condition information indicating a physical condition of the occupant detected for each occupant, and outputs the generated physical condition information to the output device 13 or the like.
The operation of the poor physical condition detection unit 105b is the same as that of the poor physical condition detection unit 105 described in the second embodiment except for the above-described operation, and a detailed description thereof will be omitted.
 なお、実施の形態3に係る体調不良検出装置100bにおける画像取得部101b、露光パラメータ取得部102b、瞳孔径検出部103b、基準瞳孔径決定部104b、体調不良検出部105b、露光瞳孔径情報生成部106b、及び乗員特定部107の各機能は、実施の形態1において図2A及び図2Bに一例を示したハードウェア構成におけるプロセッサ201及びメモリ202により実現されるものであっても良く、又は処理回路203により実現されるものであっても良い。 Note that the image acquisition unit 101b, the exposure parameter acquisition unit 102b, the pupil diameter detection unit 103b, the reference pupil diameter determination unit 104b, the poor physical condition detection unit 105b, and the exposure pupil diameter information generation unit in the poor physical condition detection device 100b according to Embodiment 3. 106b and the respective functions of the occupant identification unit 107 may be realized by the processor 201 and the memory 202 in the hardware configuration illustrated in FIGS. 2A and 2B in the first embodiment, or may be a processing circuit. 203.
 図11を参照して、実施の形態3に係る体調不良検出装置100bの動作について説明する。
 図11は、実施の形態3に係る体調不良検出装置100bの処理の一例を説明するフローチャートである。
 体調不良検出装置100bは、例えば、当該フローチャートの処理をフラッシュ光が照射される度に車両1が走行する期間において継続的に実行する。
With reference to FIG. 11, an operation of poor physical condition detection device 100b according to the third embodiment will be described.
FIG. 11 is a flowchart illustrating an example of a process of poor physical condition detection device 100b according to Embodiment 3.
The poor physical condition detection device 100b continuously executes, for example, the process of the flowchart in a period in which the vehicle 1 runs every time the flash light is irradiated.
 まず、ステップST1101にて、画像取得部101bは、フラッシュ光源12dにフラッシュ光を照射させるか否かを判定する。
 ステップST1101にて、画像取得部101bにより、フラッシュ光源12dにフラッシュ光を照射させると判定された場合、体調不良検出装置100bは、ステップST1102の処理を行う。
First, in step ST1101, the image acquisition unit 101b determines whether to irradiate the flash light source 12d with flash light.
In step ST1101, when the image acquisition unit 101b determines that the flash light source 12d is to be irradiated with the flash light, the poor physical condition detection device 100b performs the process of step ST1102.
 ステップST1102にて、画像取得部101bは、上述のとおり、撮像装置11dに対して、第1期間における露光条件を、フラッシュ光が照射される前の露光条件に固定させるように制御する。
 次に、ステップST1103にて、画像取得部101bは、上述のとおり、フラッシュ光源12dに制御信号を送信することによりフラッシュ光源12dにフラッシュ光を照射させる。
 次に、ステップST1104にて、画像取得部101bは、上述のとおり、フラッシュ光を照射させてから第1期間に亘って、例えば、0.2秒間隔で第1期間画像を撮像装置11dから取得する。
 次に、ステップST1105にて、露光パラメータ取得部102bは、上述のとおり、画像取得部101bが撮像装置11dから取得した第1期間画像のヘッダ情報に含まれる露光パラメータを取得する。
 次に、ステップST1106にて、基準瞳孔径決定部104bは、上述のとおり、露光パラメータ取得部102bが取得した撮像装置11dの露光パラメータに基づいて、例えば、運転席に座る乗員の基準瞳孔径を決定する。
In step ST1102, as described above, the image acquisition unit 101b controls the imaging device 11d to fix the exposure condition in the first period to the exposure condition before flash light irradiation.
Next, in step ST1103, as described above, the image acquisition unit 101b transmits a control signal to the flash light source 12d to irradiate the flash light source 12d with flash light.
Next, in step ST1104, as described above, the image acquisition unit 101b acquires the first period image from the imaging device 11d at intervals of, for example, 0.2 seconds over the first period after irradiating the flash light. I do.
Next, in step ST1105, as described above, the exposure parameter acquiring unit 102b acquires the exposure parameter included in the header information of the first period image acquired by the image acquiring unit 101b from the imaging device 11d.
Next, in step ST1106, the reference pupil diameter determining unit 104b determines, for example, the reference pupil diameter of the occupant sitting in the driver's seat based on the exposure parameters of the imaging device 11d acquired by the exposure parameter acquiring unit 102b, as described above. decide.
 次に、ステップST1107にて、瞳孔径検出部103bは、上述のとおり、画像取得部101bが撮像装置11dから取得した第1期間画像に基づいて、例えば、車両1の運転席に座る乗員の眼部の瞳孔径を検出する。より具体的には、例えば、瞳孔径検出部103bは、画像取得部101bが第1期間に亘って、例えば、0.2秒間隔で撮像装置11dから取得した第1期間画像に基づいて、第1期間における、例えば、車両1の運転席に座る乗員の眼部の瞳孔径の最小値を検出する。
 次に、ステップST1108にて、体調不良検出部105bは、上述のとおり、瞳孔径検出部103bが検出した瞳孔径と、基準瞳孔径決定部104bが決定した、例えば、運転席に座る乗員の基準瞳孔径とに基づいて、例えば、運転席に座る乗員の体調不良を検出する。
 次に、ステップST1109にて、体調不良検出部105bは、上述のとおり、例えば、運転席に座る乗員の体調情報を、出力装置13等に出力する。体調不良検出装置100bは、ステップST1109の処理を実行した後、ステップST1111の処理を実行する。
 ステップST1101にて、画像取得部101bにより、フラッシュ光源12dにフラッシュ光を照射させないと判定された場合、体調不良検出装置100bは、ステップST1111の処理を実行する。
Next, in step ST1107, as described above, the pupil diameter detection unit 103b, based on the first period image acquired by the image acquisition unit 101b from the imaging device 11d, detects, for example, the eyes of the occupant sitting in the driver's seat of the vehicle 1. The pupil diameter of the part is detected. More specifically, for example, the pupil diameter detecting unit 103b performs the first pupil diameter detection based on the first period image acquired by the image acquiring unit 101b from the imaging device 11d at intervals of, for example, 0.2 seconds over the first period. In one period, for example, the minimum value of the pupil diameter of the eye of the occupant sitting in the driver's seat of the vehicle 1 is detected.
Next, in step ST1108, as described above, the poor physical condition detection unit 105b determines the pupil diameter detected by the pupil diameter detection unit 103b and the reference pupil diameter determined by the reference pupil diameter determination unit 104b. Based on the pupil diameter, for example, the poor physical condition of the occupant sitting in the driver's seat is detected.
Next, in step ST1109, the poor physical condition detection unit 105b outputs, for example, the physical condition information of the occupant sitting in the driver's seat to the output device 13 or the like as described above. After performing the processing of step ST1109, the physical condition detection device 100b performs the processing of step ST1111.
In step ST1101, if the image acquisition unit 101b determines that the flash light source 12d is not to be irradiated with the flash light, the poor physical condition detection device 100b performs the process of step ST1111.
 ステップST1111にて、画像取得部101bは、フラッシュ光源12pにフラッシュ光を照射させるか否かを判定する。
 ステップST1111にて、画像取得部101bにより、フラッシュ光源12pにフラッシュ光を照射させないと判定された場合、体調不良検出装置100bは、当該フローチャートの処理を終了し、ステップST1101の処理に戻って、当該フローチャートの処理を繰り返し実行する。
 ステップST1111にて、画像取得部101bにより、フラッシュ光源12pにフラッシュ光を照射させると判定された場合、体調不良検出装置100bは、ステップST1112の処理を行う。
In step ST1111, the image acquiring unit 101b determines whether to irradiate the flash light source 12p with flash light.
If it is determined in step ST1111 that the image acquisition unit 101b does not irradiate the flash light source 12p with flash light, the poor physical condition detection device 100b ends the processing of the flowchart, returns to step ST1101, and returns to step ST1101. The processing of the flowchart is repeatedly executed.
If it is determined in step ST1111 that the image acquisition unit 101b irradiates the flash light source 12p with flash light, the poor physical condition detection device 100b performs the process of step ST1112.
 ステップST1112にて、画像取得部101bは、上述のとおり、撮像装置11pに対して、第1期間における露光条件を、フラッシュ光が照射される前の露光条件に固定させるように制御する。
 次に、ステップST1113にて、画像取得部101bは、上述のとおり、フラッシュ光源12pに制御信号を送信することによりフラッシュ光源12pにフラッシュ光を照射させる。
 次に、ステップST1114にて、画像取得部101bは、上述のとおり、フラッシュ光を照射させてから第1期間に亘って、例えば、0.2秒間隔で第1期間画像を撮像装置11pから取得する。
 次に、ステップST1115にて、露光パラメータ取得部102bは、上述のとおり、画像取得部101bが撮像装置11pから取得した無影響期間画像のヘッダ情報に含まれる露光パラメータを取得する。
 次に、ステップST1116にて、基準瞳孔径決定部104bは、上述のとおり、露光パラメータ取得部102bが取得した撮像装置11pの露光パラメータに基づいて、例えば、助手席に座る乗員の基準瞳孔径を決定する。
In step ST1112, as described above, the image acquisition unit 101b controls the imaging device 11p to fix the exposure condition in the first period to the exposure condition before flash light irradiation.
Next, in step ST1113, as described above, the image acquisition unit 101b transmits a control signal to the flash light source 12p to irradiate the flash light source 12p with flash light.
Next, in step ST1114, as described above, the image acquiring unit 101b acquires the first period image from the imaging device 11p at intervals of, for example, 0.2 seconds over the first period after irradiating the flash light. I do.
Next, in step ST1115, as described above, the exposure parameter acquisition unit 102b acquires the exposure parameter included in the header information of the non-influence period image acquired by the image acquisition unit 101b from the imaging device 11p.
Next, in step ST1116, the reference pupil diameter determining unit 104b determines, for example, the reference pupil diameter of the occupant sitting in the passenger seat based on the exposure parameters of the imaging device 11p acquired by the exposure parameter acquiring unit 102b, as described above. decide.
 次に、ステップST1117にて、瞳孔径検出部103bは、上述のとおり、画像取得部101bが撮像装置11pから取得した第1期間画像に基づいて、例えば、車両1の助手席に座る乗員の眼部の瞳孔径を検出する。より具体的には、例えば、瞳孔径検出部103bは、画像取得部101bが第1期間に亘って、例えば、0.2秒間隔で撮像装置11pから取得した第1期間画像に基づいて、第1期間における、例えば、車両1の助手席に座る乗員の眼部の瞳孔径の最小値を検出する。
 次に、ステップST1118にて、体調不良検出部105bは、上述のとおり、瞳孔径検出部103bが検出した瞳孔径と、基準瞳孔径決定部104bが決定した、例えば、助手席に座る乗員の基準瞳孔径とに基づいて、例えば、助手席に座る乗員の体調不良を検出する。
 次に、ステップST1119にて、体調不良検出部105bは、上述のとおり、例えば、助手席に座る乗員の体調情報を、出力装置13等に出力する。体調不良検出装置100bは、ステップST1119の処理を実行した後、体調不良検出装置100bは、当該フローチャートの処理を終了し、ステップST1101の処理に戻って、当該フローチャートの処理を繰り返し実行する。
Next, in step ST1117, as described above, pupil diameter detecting section 103b, based on the first period image acquired by image acquiring section 101b from imaging apparatus 11p, outputs, for example, the eyes of an occupant sitting in the passenger seat of vehicle 1. The pupil diameter of the part is detected. More specifically, for example, the pupil diameter detection unit 103b performs the first pupil diameter detection based on the first period image acquired by the image acquisition unit 101b from the imaging device 11p at, for example, 0.2 second intervals over the first period. In one period, for example, the minimum value of the pupil diameter of the eye of the occupant sitting in the passenger seat of the vehicle 1 is detected.
Next, in step ST1118, as described above, the poor physical condition detection unit 105b determines the pupil diameter detected by the pupil diameter detection unit 103b and the pupil diameter determined by the reference pupil diameter determination unit 104b. Based on the pupil diameter, for example, the poor physical condition of the occupant sitting in the passenger seat is detected.
Next, in step ST1119, as described above, the poor physical condition detection unit 105b outputs, for example, the physical condition information of the occupant sitting in the passenger seat to the output device 13 or the like. After executing the processing of step ST1119, the poor-health detection device 100b ends the processing of the flowchart, returns to the processing of step ST1101, and repeatedly executes the processing of the flowchart.
 なお、当該フローチャートの処理において、ステップST1106の処理とステップST1107の処理とは、処理する順序が逆であっても良い。また、当該フローチャートの処理において、ステップST1116の処理とステップST1117の処理とは、処理する順序が逆であっても良い。 In the process of the flowchart, the order of the processes of step ST1106 and step ST1107 may be reversed. In the processing of the flowchart, the processing of step ST1116 and the processing of step ST1117 may be performed in the reverse order.
 以上のように、体調不良検出装置100bは、車両1の乗員の眼部にフラッシュ光が照射されてから予め定められた第1の期間に当該眼部を撮像した画像を取得する画像取得部101bと、当該画像が撮像される際に用いられた露光パラメータを取得する露光パラメータ取得部102bと、当該画像に基づいて眼部の瞳孔径を検出する瞳孔径検出部103bと、露光パラメータ取得部102bが取得した露光パラメータに基づいて基準瞳孔径を決定する基準瞳孔径決定部104bと、瞳孔径検出部103bが検出した瞳孔径と、基準瞳孔径決定部104bが決定した基準瞳孔径とに基づいて、乗員の体調不良を検出する体調不良検出部105bと、乗員を特定する乗員特定部107を備え、瞳孔径検出部103bは、乗員特定部107が特定した乗員ごとに眼部の瞳孔径を検出し、体調不良検出部105bは、瞳孔径検出部103bが乗員ごとに検出した眼部の瞳孔径と、基準瞳孔径決定部104bが乗員ごとに決定した基準瞳孔径とに基づいて、乗員ごとに体調不良を検出するように構成した。 As described above, the poor physical condition detection device 100b includes the image acquisition unit 101b that acquires an image of the eye of the occupant of the vehicle 1 during a first predetermined period after the eye is irradiated with the flash light. An exposure parameter acquisition unit 102b that acquires an exposure parameter used when the image is captured; a pupil diameter detection unit 103b that detects a pupil diameter of an eye based on the image; and an exposure parameter acquisition unit 102b A reference pupil diameter determining unit 104b that determines a reference pupil diameter based on the acquired exposure parameters, a pupil diameter detected by the pupil diameter detection unit 103b, and a reference pupil diameter determined by the reference pupil diameter determination unit 104b. The pupil diameter detecting unit 103b includes an illness detecting unit 105b for detecting an illness of the occupant, and an occupant identifying unit 107 for identifying the occupant. The pupil diameter of the eye is detected for each occupant, and the poor physical condition detection unit 105b determines the pupil diameter of the eye detected by the pupil diameter detection unit 103b for each occupant, and the reference pupil diameter determination unit 104b determines for each occupant. Based on the reference pupil diameter, it is configured to detect poor physical condition for each occupant.
 このように構成することで、体調不良検出装置100bは、車両1に複数の乗員がいる場合においても、フラッシュ光の照射による瞳孔径の変化に基づく車両1の乗員の体調の判定を乗員ごとに正確に行うことができる。 With such a configuration, even when there are a plurality of occupants in the vehicle 1, the poor physical condition detection device 100b can determine the physical condition of the occupants of the vehicle 1 based on the change in the pupil diameter due to the irradiation of the flash light for each occupant. Can be done accurately.
 なお、この発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the present invention, any combination of the embodiments can be freely combined, or any component of each embodiment can be modified, or any component can be omitted in each embodiment. .
 この発明に係る体調不良検出装置は車両に適用することができる。 体 The poor physical condition detecting device according to the present invention can be applied to a vehicle.
 1 車両、11,11d,11p 撮像装置、12,12d,12p フラッシュ光源、13 出力装置、100,100a,100b 体調不良検出装置、101,101a,101b 画像取得部、102,102a,102b 露光パラメータ取得部、103,103a,103b 瞳孔径検出部、104,104b 基準瞳孔径決定部、105,105b 体調不良検出部、106,106b 露光瞳孔径情報生成部、107 乗員特定部、201 プロセッサ、202 メモリ、203 処理回路。 1 {vehicle, 11, 11d, 11p} imaging device, 12, 12d, 12p {flash light source, 13} output device, 100, 100a, 100b poor physical condition detection device, 101, 101a, 101b {image acquisition unit, 102, 102a, 102b} exposure parameter acquisition Unit, 103, 103a, 103b {pupil diameter detection unit, 104, 104b} reference pupil diameter determination unit, 105, 105b {poor physical condition detection unit, 106, 106b} exposure pupil diameter information generation unit, 107 {occupant identification unit, 201} processor, 202} memory, 203 processing circuit.

Claims (11)

  1.  車両の乗員の眼部にフラッシュ光が照射されてから予め定められた第1の期間に当該眼部を撮像した画像を取得する画像取得部と、
     当該画像が撮像される際に用いられた露光パラメータを取得する露光パラメータ取得部と、
     当該画像に基づいて前記眼部の瞳孔径を検出する瞳孔径検出部と、
     前記露光パラメータ取得部が取得した前記露光パラメータに基づいて基準瞳孔径を決定する基準瞳孔径決定部と、
     前記瞳孔径検出部が検出した前記瞳孔径と、前記基準瞳孔径決定部が決定した前記基準瞳孔径とに基づいて、前記乗員の体調不良を検出する体調不良検出部と、
     を備えたこと
     を特徴とする体調不良検出装置。
    An image acquisition unit configured to acquire an image of the eye of a vehicle occupant during a predetermined first period after the eye is irradiated with the flash light;
    An exposure parameter acquisition unit that acquires an exposure parameter used when the image is captured,
    A pupil diameter detection unit that detects a pupil diameter of the eye based on the image,
    A reference pupil diameter determination unit that determines a reference pupil diameter based on the exposure parameters acquired by the exposure parameter acquisition unit,
    The pupil diameter detected by the pupil diameter detection unit, based on the reference pupil diameter determined by the reference pupil diameter determination unit, based on the poor physical condition detection unit that detects poor physical condition of the occupant,
    An apparatus for detecting poor physical condition, comprising:
  2.  前記基準瞳孔径決定部は、複数の参照用露光パラメータと、当該複数の前記参照用露光パラメータそれぞれに対応付けられた参照用瞳孔径とを有する露光瞳孔径情報と、前記露光パラメータ取得部が取得した前記露光パラメータとに基づいて、前記体調不良検出部が前記乗員の体調不良を検出する際に用いる前記基準瞳孔径を決定すること
     を特徴とする請求項1記載の体調不良検出装置。
    The reference pupil diameter determination unit obtains exposure pupil diameter information having a plurality of reference exposure parameters and reference pupil diameters respectively associated with the plurality of reference exposure parameters, and the exposure parameter acquisition unit acquires The poor physical condition detection device according to claim 1, wherein the poor physical condition detection unit determines the reference pupil diameter to be used when the poor physical condition detection unit detects the poor physical condition of the occupant based on the exposure parameter.
  3.  前記画像取得部は、前記フラッシュ光による前記瞳孔径への影響がない期間に前記眼部を撮像した画像を取得可能なものであって、
     前記露光パラメータ取得部は、当該期間に前記画像が撮像される際に用いられた露光パラメータを取得可能なものであって、
     前記瞳孔径検出部は、当該期間に撮像された前記画像に基づいて前記眼部の瞳孔径を検出可能なものであって、
     前記露光瞳孔径情報の前記参照用露光パラメータは、前記露光パラメータ取得部が取得した当該期間に前記画像が撮像される際に用いられた前記露光パラメータであり、
     前記露光瞳孔径情報の前記参照用瞳孔径は、当該期間に撮像された前記画像に基づいて前記瞳孔径検出部が検出した前記瞳孔径に基づくものであること
     を特徴とする請求項2記載の体調不良検出装置。
    The image acquisition unit is capable of acquiring an image of the eye portion during a period in which the pupil diameter is not affected by the flash light,
    The exposure parameter acquisition unit is capable of acquiring an exposure parameter used when the image is captured during the period,
    The pupil diameter detection unit is capable of detecting a pupil diameter of the eye based on the image captured during the period,
    The reference exposure parameter of the exposure pupil diameter information is the exposure parameter used when the image is captured during the period acquired by the exposure parameter acquisition unit,
    The pupil diameter for reference of the exposure pupil diameter information is based on the pupil diameter detected by the pupil diameter detection unit based on the image captured during the period. The method according to claim 2, wherein Physical condition detection device.
  4.  前記露光瞳孔径情報の前記参照用瞳孔径は、前記車両が走行を開始してから予め定められた第2の期間に撮像された前記画像に基づいて前記瞳孔径検出部が検出した前記瞳孔径に基づいて決定された前記参照用瞳孔径を含むこと
     を特徴とする請求項3記載の体調不良検出装置。
    The reference pupil diameter of the exposure pupil diameter information is the pupil diameter detected by the pupil diameter detection unit based on the image captured in a predetermined second period after the vehicle starts running. The poor physical condition detecting device according to claim 3, further comprising the reference pupil diameter determined on the basis of:
  5.  前記体調不良検出部は、前記基準瞳孔径決定部が決定した前記基準瞳孔径と、前記画像取得部が取得した前記画像に基づいて前記瞳孔径検出部が検出した前記瞳孔径との差に基づいて、前記乗員の体調不良を検出すること
     を特徴とする請求項1記載の体調不良検出装置。
    The poor physical condition detection unit is based on a difference between the reference pupil diameter determined by the reference pupil diameter determination unit and the pupil diameter detected by the pupil diameter detection unit based on the image acquired by the image acquisition unit. The poor physical condition detecting device according to claim 1, wherein the poor physical condition of the occupant is detected.
  6.  前記体調不良検出部は、前記基準瞳孔径決定部が決定した前記基準瞳孔径と、前記画像取得部が取得した前記画像に基づいて前記瞳孔径検出部が検出した前記瞳孔径との比率に基づいて、前記乗員の体調不良を検出すること
     を特徴とする請求項1記載の体調不良検出装置。
    The poor physical condition detection unit is based on the ratio of the reference pupil diameter determined by the reference pupil diameter determination unit and the pupil diameter detected by the pupil diameter detection unit based on the image acquired by the image acquisition unit. The poor physical condition detecting device according to claim 1, wherein the poor physical condition of the occupant is detected.
  7.  前記体調不良検出部は、前記基準瞳孔径決定部が決定した前記基準瞳孔径と、前記画像取得部が取得した前記画像に基づいて前記瞳孔径検出部が検出した前記瞳孔径との差の時間変化に基づいて、前記乗員の体調不良を検出すること
     を特徴とする請求項1記載の体調不良検出装置。
    The poor physical condition detection unit is a time difference between the reference pupil diameter determined by the reference pupil diameter determination unit and the pupil diameter detected by the pupil diameter detection unit based on the image acquired by the image acquisition unit. The poor physical condition detection device according to claim 1, wherein the physical condition of the occupant is detected based on the change.
  8.  前記画像取得部が前記画像を取得する処理、前記露光パラメータ取得部が前記露光パラメータを取得する処理、前記瞳孔径検出部が前記瞳孔径を検出する処理、及び、前記体調不良検出部が前記乗員の体調不良を検出する処理の各処理は、前記フラッシュ光が照射される度に前記車両が走行する期間において継続的に実行されること
     を特徴とする請求項1記載の体調不良検出装置。
    The image acquisition unit acquires the image, the exposure parameter acquisition unit acquires the exposure parameter, the pupil diameter detection unit detects the pupil diameter, and the poor physical condition detection unit includes the occupant. 2. The apparatus for detecting poor physical condition according to claim 1, wherein each processing of the processing for detecting poor physical condition is continuously performed during a period in which the vehicle travels each time the flash light is irradiated. 3.
  9.  前記乗員が前記車両に乗車してから予め定められた第3の期間において、前記体調不良検出部が当該乗員の体調不良を検出し、且つ、前記体調不良検出部により検出された当該体調不良が所定の体調不良である場合、前記体調不良検出部は、前記車両が走行する期間において当該乗員における当該所定の体調不良の検出を行わないこと
     を特徴とする請求項8記載の体調不良検出装置。
    In a predetermined third period after the occupant gets in the vehicle, the poor physical condition detecting unit detects the physical condition of the occupant, and the physical condition detected by the physical condition detecting unit is not good. The physical condition detection device according to claim 8, wherein when the physical condition is the predetermined physical condition, the physical condition detection unit does not detect the predetermined physical condition of the occupant during a period in which the vehicle travels.
  10.  前記乗員を特定する乗員特定部を備え、
     前記瞳孔径検出部は、前記乗員特定部が特定した前記乗員ごとに前記瞳孔径を検出し、
     前記体調不良検出部は、前記瞳孔径検出部が前記乗員ごとに検出した前記瞳孔径と、前記基準瞳孔径決定部が前記乗員ごとに決定した前記基準瞳孔径とに基づいて、前記乗員ごとに体調不良を検出すること
     を特徴とする請求項1記載の体調不良検出装置。
    An occupant identification unit that identifies the occupant is provided,
    The pupil diameter detection unit detects the pupil diameter for each occupant identified by the occupant identification unit,
    The ill-health detecting unit, for each of the occupants, based on the pupil diameter detected by the pupil diameter detecting unit for each occupant, and the reference pupil diameter determined for each occupant by the reference pupil diameter determining unit. The poor physical condition detecting device according to claim 1, wherein the poor physical condition is detected.
  11.  画像取得部が、車両の乗員の眼部にフラッシュ光が照射されてから予め定められた第1の期間に当該眼部を撮像した画像を取得し、
     露光パラメータ取得部が、当該画像が撮像される際に用いられた露光パラメータを取得し
     瞳孔径検出部が、当該画像に基づいて前記眼部の瞳孔径を検出し、
     基準瞳孔径決定部が、前記露光パラメータ取得部により取得された前記露光パラメータに基づいて基準瞳孔径を決定し、
     体調不良検出部が、前記瞳孔径検出部により検出された前記瞳孔径と、前記基準瞳孔径決定部により決定された前記基準瞳孔径とに基づいて、前記乗員の体調不良を検出すること
     を特徴とする体調不良検出方法。
    The image acquisition unit acquires an image of the eye of the occupant of the vehicle during a predetermined first period after the eye is irradiated with the flash light,
    An exposure parameter acquisition unit acquires an exposure parameter used when the image is captured, a pupil diameter detection unit detects a pupil diameter of the eye based on the image,
    A reference pupil diameter determining unit determines a reference pupil diameter based on the exposure parameters obtained by the exposure parameter obtaining unit,
    The poor physical condition detecting unit detects the physical condition of the occupant based on the pupil diameter detected by the pupil diameter detecting unit and the reference pupil diameter determined by the reference pupil diameter determining unit. Poor health detection method.
PCT/JP2018/035052 2018-09-21 2018-09-21 Poor physical condition detection device and poor physical condition detection method WO2020059116A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035052 WO2020059116A1 (en) 2018-09-21 2018-09-21 Poor physical condition detection device and poor physical condition detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035052 WO2020059116A1 (en) 2018-09-21 2018-09-21 Poor physical condition detection device and poor physical condition detection method

Publications (1)

Publication Number Publication Date
WO2020059116A1 true WO2020059116A1 (en) 2020-03-26

Family

ID=69888683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035052 WO2020059116A1 (en) 2018-09-21 2018-09-21 Poor physical condition detection device and poor physical condition detection method

Country Status (1)

Country Link
WO (1) WO2020059116A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113119983A (en) * 2021-05-07 2021-07-16 恒大新能源汽车投资控股集团有限公司 Vehicle safety control method and device and vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422690A (en) * 1994-03-16 1995-06-06 Pulse Medical Instruments, Inc. Fitness impairment tester
JP2002367100A (en) * 2001-06-12 2002-12-20 Nissan Motor Co Ltd Device for detecting driver condition
JP2007522003A (en) * 2004-02-02 2007-08-09 ペーター ブラウン,ウベ Device for measuring the driving ability of a driver in a car
JP2008212179A (en) * 2007-02-28 2008-09-18 Morinaga & Co Ltd Stress intensity computing method and stress intensity computing apparatus
JP2016137871A (en) * 2015-01-29 2016-08-04 マツダ株式会社 Vehicular occupant feeling correspondence control device
JP2016167189A (en) * 2015-03-10 2016-09-15 Necエンジニアリング株式会社 Drunken state detector and room mirror device
WO2018100875A1 (en) * 2016-11-30 2018-06-07 ソニー株式会社 Information processing apparatus, information processing method, and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422690A (en) * 1994-03-16 1995-06-06 Pulse Medical Instruments, Inc. Fitness impairment tester
JP2002367100A (en) * 2001-06-12 2002-12-20 Nissan Motor Co Ltd Device for detecting driver condition
JP2007522003A (en) * 2004-02-02 2007-08-09 ペーター ブラウン,ウベ Device for measuring the driving ability of a driver in a car
JP2008212179A (en) * 2007-02-28 2008-09-18 Morinaga & Co Ltd Stress intensity computing method and stress intensity computing apparatus
JP2016137871A (en) * 2015-01-29 2016-08-04 マツダ株式会社 Vehicular occupant feeling correspondence control device
JP2016167189A (en) * 2015-03-10 2016-09-15 Necエンジニアリング株式会社 Drunken state detector and room mirror device
WO2018100875A1 (en) * 2016-11-30 2018-06-07 ソニー株式会社 Information processing apparatus, information processing method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113119983A (en) * 2021-05-07 2021-07-16 恒大新能源汽车投资控股集团有限公司 Vehicle safety control method and device and vehicle

Similar Documents

Publication Publication Date Title
US10722113B2 (en) Gaze detection apparatus and gaze detection method
JP6201956B2 (en) Gaze detection device and gaze detection method
JP7138168B2 (en) System and method for improving signal-to-noise ratio in object tracking under low illumination light conditions
US7377643B1 (en) Method and apparatus for eye imaging with position registration and constant pupil size
JP5998863B2 (en) Gaze detection device and gaze detection method
KR20140064080A (en) Method and apparatus to detect live eye
JP5983131B2 (en) Diagnosis support apparatus and diagnosis support method
CN106458083A (en) Vehicle headlamp control device
JP6638354B2 (en) Eye gaze detection device and eye gaze detection method
US8511824B2 (en) Fundus camera and control method for the fundus camera
JP6381654B2 (en) Gaze detection device
KR101992016B1 (en) fundus fluorescence image acquisition apparatus with optical source and focus automatic control function, and method thereof
JP6900994B2 (en) Line-of-sight detection device and line-of-sight detection method
WO2019215879A1 (en) Occupant monitoring device and occupant monitoring method
WO2020059116A1 (en) Poor physical condition detection device and poor physical condition detection method
JP6245093B2 (en) Diagnosis support apparatus and diagnosis support method
JP6856017B2 (en) Corneal reflex position detection device, line-of-sight detection device and corneal reflex position detection method
JP2016028669A (en) Pupil detection device and pupil detection method
JP6380178B2 (en) Diagnosis support apparatus and diagnosis support method
JP6593133B2 (en) Diagnosis support apparatus and diagnosis support method
JP2015144635A (en) detection device and detection method
JP2009136424A (en) Ophthalmic apparatus
JP6916283B2 (en) Identification of ocular surface shape using multifocal keratometry
JP6909391B2 (en) Line-of-sight detection device and line-of-sight detection method
JP2017030686A (en) Alert apparatus, alert method and alert system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP