WO2020057600A1 - 信息传输的方法、装置、设备和存储介质 - Google Patents

信息传输的方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2020057600A1
WO2020057600A1 PCT/CN2019/106680 CN2019106680W WO2020057600A1 WO 2020057600 A1 WO2020057600 A1 WO 2020057600A1 CN 2019106680 W CN2019106680 W CN 2019106680W WO 2020057600 A1 WO2020057600 A1 WO 2020057600A1
Authority
WO
WIPO (PCT)
Prior art keywords
lbt
lbt mechanism
transmission
channel
beam direction
Prior art date
Application number
PCT/CN2019/106680
Other languages
English (en)
French (fr)
Inventor
杨玲
赵亚军
李新彩
徐汉青
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP19863310.9A priority Critical patent/EP3855831A4/en
Priority to US17/294,639 priority patent/US20210410187A1/en
Publication of WO2020057600A1 publication Critical patent/WO2020057600A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • This disclosure relates to, but is not limited to, the field of communications.
  • NR New Radio
  • LBT List Before Talk
  • MCOT Maximum Channel Occupancy Time
  • Cat4 LBT Category 4 List Before Before Talk, Class 4 Listen Before Talk
  • LAA Licensed and Assisted Access
  • LTE Long and Term Evolution, Long Term Evolution
  • devices use omnidirectional mode for LBT detection and transmission.
  • the device usually uses the directional beam (beam) mode for transmission. This makes it possible to continue to adopt the omnidirectional LBT mechanism based on LAA and LTE phase, which will reduce the channel access probability and transmission failure.
  • Embodiments of the present disclosure provide a method, an apparatus, and a device for information transmission.
  • An embodiment of the present disclosure provides a method for information transmission, including: a device performs information transmission on a configured resource.
  • An embodiment of the present disclosure further provides an information transmission device, including: a transmission module, configured to perform information transmission on a configured resource.
  • An embodiment of the present disclosure further provides an information transmission device, including a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor implements the information transmission method when the program is executed. .
  • FIG. 1 is a flowchart of an information transmission method according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of a channel access mode and a transmission mode of a base station / UE in the case of continuous transmission according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a channel access method for dynamically indicating a base station / UE in a continuous transmission situation according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a channel access method used for transmission in different directional beam directions in the case of continuous transmission according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a transmission manner when the number of transmission beam directions on consecutive transmission resources is sequentially from each of P to Q according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a decreasing number of transmission beam directions on continuous transmission resources and indicating LBT operation through dynamic signaling according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a device transmitting simultaneously in a direction of detecting an idle beam according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a channel access mechanism in a case where there are multiple switching points in an MCOT according to an embodiment of the present disclosure.
  • FIG. 9 is a first schematic diagram of channel access when different UEs share one MCOT according to an embodiment of the present disclosure.
  • FIG. 10 is a second schematic diagram of channel access when different UEs share one MCOT according to an embodiment of the present disclosure.
  • FIG. 11 is a first schematic diagram of channel access when different UEs cannot share one MCOT according to an embodiment of the present disclosure.
  • FIG. 12 is a second schematic diagram of channel access in a case where different UEs cannot share one MCOT according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a BWP / Subband-based LBT method according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of spatial reuse / reuse of different UEs according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of an information transmission device according to an embodiment of the present disclosure.
  • the base station In LAA LTE, the base station has supported the use of channels in the MCOT, and the MCOT can only share with the UE (User Equipment) receiving the downlink data of the base station. That is, it only supports the D + U (Downlink + Uplink) structure in MCOT, and supports one downlink and uplink transition point. Among them, the base station uses the channel in the MCOT and adopts the Cat4 LBT mechanism, and the UE sharing the MCOT only needs to implement the Cat2 LBT mechanism before performing uplink transmission.
  • the UE User Equipment
  • the device adopts an omnidirectional mode when the device performs LBT detection and transmission.
  • the device usually uses the directional beam (beam) mode for transmission. This makes it impossible to accurately reflect the interference level in the directional transmission beam range if the LAA LTE phase-based omnidirectional LBT mechanism continues to be used, resulting in a lower channel access probability.
  • the device uses the omnidirectional-based LBT mechanism, but uses the directional beam mode for transmission, and does not perform LBT before continuously transmitting in different directional beam directions, there may be strong interference in the direction of the switched beam. Transmission failure, because before switching the beam direction, the channel in the direction of the beam direction after the switch is reserved or occupied in advance.
  • an embodiment of the present disclosure provides a method for information transmission, including: Step 101: A device performs information transmission on a configured resource.
  • the device before the device performs information transmission on the configured resources, the device further includes: the device performs idle channel detection according to at least one of a specific LBT mechanism and a specific LBT mode.
  • the device transmitting information on the configured resources includes: the device transmitting information using the same beam beam direction on the configured resources.
  • the device uses the same beam beam direction for information transmission on the configured resources, including:
  • the device detects that the channel is free on resource n and uses beam direction i for information transmission; on resource n + 1 or subsequent configuration resources, the device may not perform idle channel detection and / or uses beam direction i for information transmission .
  • the information transmission performed by the device on the configured resources includes: the device switches a beam direction used on the configured resources, or uses different beam beam directions for information transmission.
  • the device switches the beam direction used on the configured resources, or uses different beam beam directions for information transmission, including before transmitting on resources corresponding to different beam directions, or, Before transmitting on the resources corresponding to the switched beam direction, the device performs idle channel detection according to at least one of a specific LBT mechanism and a specific LBT mode; if a channel is detected to be idle, the device is on the configured resource The beam direction corresponding to the current resource or the beam beam direction after switching is used for transmission.
  • the device before the device performs information transmission on the configured resources, the device further includes: the device uses an LBT mechanism based on a single beam direction for idle channel detection; if the channel is detected to be idle, the device is in Information is transmitted on the configured resources in the beam direction in which the channel is detected to be idle.
  • the method before the device performs information transmission on the configured resources, the method further includes: using the single beam direction-based LBT for the device to perform idle channel detection: if the channel is detected to be busy, the device gives up Information transmission on the current resource. Alternatively, if the channel is detected to be busy, the device continues to perform idle channel detection according to at least one of the previous LBT mode and the LBT mechanism before the next candidate transmission start position. Alternatively, if it is detected that the channel is busy, the device replaces at least one of the Beam direction, the LBT mechanism, and the LBT mode that executes the LBT mechanism, and retry the idle channel detection. Or, if the channel is detected to be busy, the device uses a simplified LBT mechanism to perform idle channel detection than the previous one, or uses a fast LBT mechanism to perform idle channel detection.
  • the method before the device performs information transmission on the configured resources, the method further includes: for the case where the device uses an LBT mechanism based on multiple beam directions for idle channel detection, if a beam idle channel is detected Beam direction, the device uses the beam direction in which the channel is idle to be transmitted on the configured resources for information transmission. Alternatively, if it is detected that the beam beam direction in which the channel is idle includes the beam beam direction corresponding to the configuration resource, information is transmitted according to the beam beam direction corresponding to the configuration resource. Alternatively, if the number of beam beam directions in which channel vacancy is detected is greater than or equal to 1, the configured resources are simultaneously transmitted in the beam direction in which channel vacancy is detected. Alternatively, if the number of beam beam directions in which channel vacancy is detected is greater than or equal to one, among the beam directions in which channel vacancy is detected, a beam direction is selected for information transmission according to a specific rule.
  • the method before the device performs information transmission on the configured resources, the method further includes: using the LBT based on multiple Beam directions for the device to perform an idle channel detection condition. If the channel is detected to be busy, the device is configured to: The device abandoned transmission on the current resource. Alternatively, if the channel is detected to be busy, the device continues to perform idle channel detection according to at least one of the previous LBT mode and the LBT mechanism before the next candidate transmission start position. Or, if it is detected that the channel is busy, the device changes the Beam direction in which LBT is performed, and retry the free channel detection. Alternatively, if the channel is detected to be busy, the device uses a simplified LBT mechanism in a plurality of beam directions before the next candidate transmission start position, or a fast LBT mechanism to perform idle channel detection.
  • the device performs information transmission on the configured resources, including: the device uses multiple beam directions for transmission on the configured resources; or the device uses multi-based transmission on the configured resources.
  • the LBT mechanism in the beam direction performs idle channel detection.
  • the beam direction used by the device for information transmission on the current resource includes the beam direction corresponding to at least one of the subsequent resources; or multiple beams are used on the configured resources.
  • the number of beams transmitted in the direction at the same time shows a decreasing trend with the increasing order of the resource index.
  • the method further comprises: during information transmission on the configured resources, if the device receives dynamic indication signaling, the device performs an idle channel detection.
  • the dynamic indication signaling includes at least one of the following information: triggering the execution of the idle channel detection, indicating the LBT mechanism, indicating the LBT mode, the timing between the triggering signaling position and the execution of the idle channel detection / transmission resource Relationship, starting position of LBT, number of symbols occupied by LBT; subcarrier interval SCS, beam direction, whether to support beam handover indication, whether to support partial symbol indication, candidate data transmission starting point or set, priority level for performing LBT, LBT At least one parameter in a parameter set corresponding to the mechanism.
  • the device before the device performs information transmission on the configured resources, the device further includes: the device performs idle channel detection according to at least one of a specific LBT mechanism and a specific LBT mode, and if a channel is detected, When idle, the device initiates an MCOT or TxOP or for information transmission.
  • the device in the MCOT, at a switching point of at least one of a switching point between uplink and downlink and a switching point between downlink and uplink, the device follows a specific rule and a specific LBT mechanism, At least one of the specific LBT modes performs idle channel detection.
  • the specific rule includes at least one of the following rules one to ten.
  • Rule 1 If at least one of the gap between downlink and uplink and the gap between uplink and downlink is less than or equal to the first threshold, the device does not perform the LBT mechanism or does not perform idle channel detection.
  • Rule 2 If at least one of the gap between downlink and uplink, and the gap between uplink and downlink is less than the second threshold, or greater than or equal to the first threshold and less than or equal to the second threshold, the device performs Cat2 LBT Mechanism, or M Cat2 LBT mechanism.
  • Rule 3 If at least one of the gap between downlink and uplink, and the gap between uplink and downlink is greater than the second threshold, the device performs the same LBT mechanism as when the MCOT is initiated, or a higher priority LBT mechanism .
  • Rule four At a switching point of at least one of the switching point between the downlink and the uplink, the device performs the Cat2 LBT mechanism, or the Cat2 LBT mechanism M times.
  • Rule 5 At a switching point of at least one of a switching point between downlink and uplink, and a switching point between uplink and downlink, the device uses the same LBT mechanism as when the MCOT is initiated.
  • Rule 6 At a switching point of at least one of a switching point between downlink and uplink, and a switching point between uplink and downlink, the device uses an LBT mechanism with a higher priority level when initiating MCOT.
  • Rule 7 At a switching point of at least one of a switching point between downlink and uplink, and a switching point between uplink and downlink, the device determines according to the type of service transmitted, or the type of service / channel / channel priority LBT mechanism adopted.
  • Rule eight At a switching point of at least one of a switching point between downlink and uplink, and a switching point between uplink and downlink, the device determines an LBT mechanism according to a time domain / subframe / slot structure of a transmission.
  • Rule ten When the number of switching points of at least one of the switching points between the downlink and the uplink is greater than a specific threshold, the device performs a specific LBT mechanism.
  • the first threshold, the second threshold, the time domain / subframe / slot structure of the transmission, the number of switching points, the specific threshold, the time domain / subframe / slot structure of the transmission, and the LBT mechanism / LBT mechanism priority level relationship, gap duration, switching point start position, switching point end position, Cat2 LBT mechanism execution times, LBT mode, LBT mechanism, LBT starting position, number of symbols occupied by LBT, Subcarrier interval SCS, beam direction, beam switching indication, whether to support partial symbol indication, candidate data transmission starting point or set, LBT priority level, parameter set corresponding to LBT mechanism, and at least one of M can be achieved through at least one of the following: One way acquisition: a predefined way, a physical layer DCI signaling indication, a high-level RRC signaling indication, and a MAC signaling indication.
  • the number of switching points, or the number of times that the Cat2 LBT mechanism is allowed to be executed in the MCOT, or M can be obtained by at least one of the following: determined according to the MCOT / Txop duration; according to the allowed in the MCOT / Txop
  • the gap duration is determined; it is determined according to the number / structure of the scheduling units; it is determined according to the SCS; and it is determined according to the ratio between the MCOT / Txop duration and the gap.
  • the specific LBT mode includes at least one of the following: an omnidirectional LBT mode; multiple LBT modes in a beam direction; an LBT mode in a wide beam direction; and an LBT mode in a single beam direction.
  • the specific LBT mechanism includes at least one of the following: Cat4 LBT mechanism; Cat2 LBT mechanism; M Cat2 LBT mechanisms; Cat4 LBT with higher priority; Cat3 LBT mechanism; Random fallback value N Cat4 LBT mechanism; defer period (delayed period) LBT mechanism; at least one of the above mechanisms scales according to the SCS proportional LBT mechanism; wherein M and N are positive integers.
  • the method further includes: multiplexing resources configured by different devices for information transmission. Among them, different beam indexes are used between different devices that perform information transmission on the configured resources, or idle channel assessment is performed on multiple beam indexes at the same time.
  • the device if different devices use the same beam index, the device performs channel idle detection according to at least one of a first detection threshold value and a second detection threshold value in the beam direction.
  • the method further includes: multiplexing resources configured by different devices for information transmission, wherein different devices perform information interaction before transmitting information on the configured resources.
  • the interaction information includes at least one of the following: beam index information, time domain resource information, time domain pattern, frequency domain resource information, SCS, MCOT transmission structure, subframe / slot structure, LBT mechanism, LBT position, LBT mode.
  • the LBT mode includes at least one of the following: an omnidirectional LBT mode, a plurality of beam direction LBT modes, a wide beam direction LBT mode, and a single beam direction LBT mode.
  • the LBT mode in the multiple beam directions refers to the beam directions corresponding to the continuous transmission performed by the multiple beam directions in which LBT is performed, or the beam directions included in the TxOP / MCOT.
  • the wide beam direction LBT mode refers to the beam direction covering / including the beam direction corresponding to continuous transmission, or the beam direction included in TxOP / MCOT.
  • the LBT mechanism includes at least one of the following: Cat4 LBT mechanism, Cat2 LBT mechanism, Cat2 LBT mechanism M times, Cat4 LBT mechanism with random fallback value N (excluding defer period), random fallback value N (including defer period) ) Cat4 LBT mechanism, defer period LBT mechanism, the above-mentioned LBT mechanism is based on SCS scaling LBT mechanism.
  • the M, N, and LBT mechanisms, SCS, LBT mode, LBT start position / candidate position, MCOT transmission structure, switch point position, and number of switches are obtained through at least one of the following methods: predefined methods, physical Layer DCI signaling indication, high-level RRC signaling indication, MAC signaling indication.
  • the Cat2 LBT of M times may be a Cat2 LBT mechanism that executes Cat2 LBT of M times, or a successful LBT of Cat2 LBT only once in M times.
  • the dynamic signaling includes at least one of the following: physical layer DCI (Downlink Control Information) signaling, high-level RRC (Radio Resource Control) signaling, and MAC (Media Access Control) ) Signaling.
  • physical layer DCI Downlink Control Information
  • RRC Radio Resource Control
  • MAC Media Access Control
  • a channel access method in the case of continuous downlink / uplink transmission is provided.
  • the LBT mechanism implemented by the device includes one of the following: a single beam direction LBT mechanism, multiple beam direction LBT mechanisms, and a wide beam direction LBT mechanism. If the channel is detected to be idle according to the LBT mechanism, the device continues to transmit in the directional beam direction.
  • FIG. 2 is a schematic diagram of a channel access mode and a transmission mode of a base station / UE in the case of continuous transmission. It can be seen from FIG. 2 that before the base station or the UE performs the information transmission on the continuously transmitted resources, the Cat4 or Cat2 LBT mechanism of a single beam direction / multiple beam directions / wide beam directions is used.
  • the base station / UE uses the Cat4 LBT mechanism before continuous transmission or before MCOT is initiated. If the continuous transmission of the base station / UE is within the MCOT, the base station / UE performs the Cat2 LBT mechanism before transmitting information.
  • the downlink / uplink continuous transmission uses the same directional beam.
  • the base station / UE can be triggered to perform a continuous transmission through dynamic signaling Channel idle status judgment, that is, an LBT mechanism is implemented.
  • the dynamic signaling may indicate at least one of triggering the execution of the LBT mechanism, the mode of performing the LBT, the starting position of the LBT, the position of the LBT mechanism, the LBT mechanism, the SCS, the beam direction, and the like.
  • the base station / UE can implement a fast LBT mechanism, for example, Cat2 LBT mechanism, or Cat2 LBT mechanism M times, or Cat4 LBT mechanism with a random backoff value N (excluding defer period). Or, a Cat4 LBT mechanism with a random backoff value N (including defer period), or an LBT mechanism with a defer period duration, or an LBT mechanism in which the above-mentioned LBT mechanism is scaled down according to the SCS ratio.
  • FIG. 3 is a schematic diagram of indicating a channel access mode of a base station / UE through dynamic signaling in the case of continuous transmission. It can be seen from FIG. 3 that the base station / UE performs Cat2 LBT according to a dynamic signaling instruction. If the dynamic signaling only triggers the execution of the LBT mechanism, and the implementation of the LBT mechanism is not notified, then Cat2 LBT is executed by default.
  • the multi-beam direction / wide beam direction / single-directional beam direction LBT mechanism is used before continuous transmission.
  • the base station / UE adopts Cat4 LBT mechanism before continuous transmission or before initiating MCOT. If the continuous transmission of the base station / UE is within the MCOT, the base station / UE performs the Cat2 LBT mechanism before the information transmission.
  • the base station / UE uses the LBT mechanism in the unidirectional beam direction before MCOT or continuous transmission, if the channel is detected to be idle, the base station / UE starts transmission and transmits according to the detected beam direction of the idle. If a directional beam direction switching situation occurs during continuous transmission, the base station / UE can implement a fast LBT mechanism. In one embodiment, during the continuous transmission, there is no handover in the directional beam direction. Due to different channel interference conditions at different times, in order to improve the success probability of transmission / reception, the base station / UE can be triggered by dynamic signaling to perform a fast LBT mechanism.
  • the dynamic signaling may indicate at least one of triggering the execution of the LBT mechanism, the mode of performing the LBT, the starting position of the LBT, the position of the LBT mechanism, the LBT mechanism, the SCS, the beam direction, and the like.
  • the fast LBT mechanism may be a Cat2 LBT mechanism, or Cat2 LBT mechanism M times, or a Cat4 LBT mechanism with a random fallback value N (excluding defer period), or a random fallback value N (including defer period) ) Cat4 LBT mechanism, or defer period duration LBT mechanism, or the above LBT mechanism is an LBT mechanism scaled down according to the SCS ratio.
  • the base station / UE adopts multiple directional beam direction LBT mechanisms before MCOT or continuous transmission, if it detects that the channel is free, it transmits in the corresponding beam direction. Because the base station / UE transmission uses a single directional beam direction for transmission, even if multiple channels are detected in the beam direction before the transmission is started, the transmission is only transmitted in a single directional beam direction, which may result in non-transmission. Channel loss in the direction of the directional beam. Therefore, once a directional beam handover occurs during continuous transmission, the base station / UE needs to implement a fast LBT mechanism. Other methods are the same as those mentioned above. Similarly, if the base station / UE adopts the wide beam direction LBT mechanism before MCOT or continuous transmission, the processing mode is the same as the corresponding processing mode mentioned above.
  • FIG. 4 is a schematic diagram of a channel access method used for transmission in different directional beam directions in the case of continuous transmission. It can be seen from FIG. 4 that the Cat2 LBT mechanism is executed before transmission in the switched directional beam direction, and that in the beam direction in which the directional beam direction switching has not occurred, an LBT mechanism such as Cat2 LBT is implemented according to dynamic signaling instructions. If the dynamic signaling only triggers the execution of the LBT mechanism, and the specific LBT mechanism is not notified, then Cat2 LBT is executed by default.
  • the base station / UE uses multiple directional beam directions / wide beam directions / omnidirectional LBT mechanisms before continuous transmission. If the channel is detected to be idle, during continuous transmission, the base station / UE adopts a simultaneous transmission in the direction of subsequent transmission beams, so as to help pre-occupy the beam directions of subsequent transmissions.
  • the pre-occupied beam direction may be the same transmission information as the beam direction during actual transmission, or, invalid information, or, indication information, or, reference / measurement signal, or uplink / downlink channel. /signal. As shown in FIG. 5, FIG.
  • 5 is a schematic diagram of a transmission manner when the number of beam directions during transmission on continuous transmission resources is sequentially each of P to Q.
  • P is the number of different beam directions in the beam during subsequent transmissions
  • Q is the number of different beam directions in the beam transmitted on the current resource and subsequent resources.
  • the base station / UE on the first resource transmits simultaneously in 5 beam directions
  • the base station / UE on the second resource transmits 4 beams.
  • Simultaneous transmission in the direction, and so on the base station / UE on the fifth resource transmits in the direction of a beam.
  • the base station / UE can instruct the LBT operation according to the dynamic signaling on the continuously transmitted resources, as shown in FIG. 6, which shows a decreasing trend in the number of beam directions when transmitting on the continuously transmitted resources and the dynamic Schematic diagram of signaling indicating LBT operation.
  • the difference from the previous case is that the base station / UE uses multiple directional beam directions / wide beam directions / omnidirectional LBT mechanisms before continuous transmission. If it is detected that the channel is idle in at least one of its beam directions, transmission is performed on the beam in which the idle is detected. Wherein, for the beam directions transmitted in the same direction, the beam direction used in the previous transmission is used for transmission. For the beam direction change before and after the transmission, the current transmission may not be transmitted in the beam direction corresponding to the previous resource. Or, the previous transmission was only transmitted in the direction of the adjacent beam. Before the next transmission, the base station / UE may perform the LBT mechanism in the beam direction corresponding to the current resource and / or in the beam direction corresponding to at least one of the subsequent resources.
  • the base station / UE may transmit at least one of the detected beam directions in addition to transmitting in the corresponding beam direction when transmitting on the next resource. Transmission in one direction. If the beam direction transmitted on the previous resource includes the beam transmitted on the next or subsequent resource, the device may not perform LBT before the next resource. Alternatively, perform a simplified LBT. Or, instruct LBT operation according to dynamic signaling.
  • the idle beam direction is detected as the beam direction for activation or transmission on subsequent resources.
  • FIG. 7 is a schematic diagram of simultaneous transmission in the direction in which the device detects an idle beam.
  • the device transmits on 5 consecutive resources, and the beam direction corresponding to each resource is different, and the beam direction is labeled as beam # 1, beam # 2, beam # 3, beam # 4, beam # 5.
  • the base station / UE uses multiple beam LBT methods to perform channel vacancy detection. If it is detected that the idle beam directions are beam # 2, beam # 3, beam # 4, the base station / UE uses these three beam directions for transmission on the first resource, and uses the beam # 2 described on the second resource. And beam # 3 for transmission. It is specifically divided into two cases: the first case: beam # 3 is used for transmission on the third resource.
  • the device Before transmitting on the 4th resource, the device can implement the LBT mechanism on beam # 1 and / or, beam # 5. If it detects that there is at least one beam in the channel direction, the device performs in at least one beam direction transmission.
  • the fifth resource uses the beam direction that is detected to be idle and not previously used for transmission.
  • the device before transmitting on the fourth resource, the device may perform an LBT mechanism on at least one of beam # 1 to beam # 5, and subsequent resources may be transmitted using the beam direction in which an idle is detected.
  • the latter resource is transmitted in the beam direction in which the previous resource is not used by the previous resource.
  • the base station / UE may perform the LBT mechanism on beam # 1, and / or, beam # 3, and / or, beam # 5.
  • the channel is detected to be idle in the beam direction
  • transmission is performed on the third resource in the beam direction in which the channel is detected to be idle, and / or, the corresponding beam # 3 direction on the third resource is used for transmission.
  • the latter resource is transmitted in the beam direction in which the previous resource is not used by the previous resource.
  • a processing manner in a case where a channel busy is detected is provided.
  • the base station / UE may perform at least one of the following manners 1 to 14.
  • At least one of mode 1 to mode 3 is adopted.
  • Method 1 Before the next candidate starting position, use the previous LBT mechanism to perform the idle channel detection.
  • Method 2 Before the next candidate starting position, a simplified LBT mechanism or a faster LBT mechanism than the previous one is adopted.
  • Method 3 The difference from Method 1 and Method 2 is that the next candidate starting position is replaced with the next resource.
  • the previous beam direction may be adopted, or the LBT mode adopted last time may be adopted, or the LBT mechanism may be performed only in the beam direction of transmission.
  • Method 4 Switch to the frequency domain for detecting idleness for transmission.
  • Method 5 Switch to another frequency domain, and use the previous LBT mechanism to perform idle channel detection.
  • Method six switch to another frequency domain, and adopt a simplified LBT mechanism or a faster LBT mechanism than the previous one.
  • Method 7 Switch to the direction of detecting the idle beam for transmission.
  • Method eight The beam direction is switched, and the previous LBT mechanism is adopted in the beam direction after the switch.
  • Method 9 Switch the beam direction, and use the simplified LBT mechanism or the faster LBT mechanism in the beam direction after the switch.
  • Method 10 Continue to implement the LBT mechanism until the execution of the LBT is successful.
  • Method 11 The previous LBT mechanism is adopted in multiple beam directions.
  • Method twelve In a plurality of beam directions, a simplified LBT mechanism or a faster LBT mechanism is adopted.
  • Method 13 Determine whether the currently detected energy is greater than the first detection threshold and smaller than the second detection threshold, or whether the currently detected energy is less than the second detection threshold. If so, the current channel is considered idle and the device can transmit.
  • Mode Fourteen A combination mode of at least one of the above modes.
  • the device in the foregoing manner, if a partial symbol or a partial (small) time slot or a partial subframe occurs, the device is in the partial symbol or a partial (small) time slot or a partial Data may be sent on the subframe, or the occupation signal, or the reference signal, or the indication signal.
  • a simplified LBT mechanism or a faster LBT mechanism is adopted.
  • the first preset number of times may be determined according to a statistical result, or, in a predefined manner, a physical layer DCI signaling indication, a high-level RRC signaling indication, and a MAC signaling indication.
  • the switching frequency domain is a frequency domain in which channel detection is idle.
  • the frequency domain may be RB (Resource Block) or RBG (Resource Block Group) or RE (Resource Element) or REG (Resource Element Group) ), Or BWP (bandwidth part), or CC (Component Carriers), or Subband (subband), or CCG (Common Channel Group), or, Subband group Belt group).
  • the LBT mechanism simplified from the previous one is at least one of the parameter configuration in the LBT mechanism, the priority corresponding to the LBT mechanism, the detection time corresponding to the parameter, the SCS (Sub Carrier Spacing), the LBT mechanism, and the LBT mechanism execution times.
  • An angle corresponds to a more simplified LBT mechanism compared to the previous one.
  • the fast LBT mechanism may be Cat2 LBT mechanism, Cat2 LBT mechanism M times, Cat4 LBT mechanism with random fallback value N (excluding defer period), Cat4 LBT mechanism with random fallback value N (including defer period), defer The LBT mechanism with a period of time.
  • the LBT mechanism described above is one of the LBT mechanisms scaled down according to the SCS ratio.
  • the previous use of Cat4 LBT currently can use the Cat4 LBT mechanism with a higher priority level, or the Cat4 LBT mechanism with a smaller competition window / random backoff value N, or the Cat2 LBT mechanism, or M Cat2 LBT Mechanism, or Cat4 LBT mechanism with random backoff value N (excluding defer period), or Cat4 LBT mechanism with random backoff value N (with defer period), or LBT mechanism with defer period duration, or the above LBT
  • the mechanism is scaled according to the SCS LBT mechanism.
  • the previous time Cat2 LBT was used, the Cat2 LBT mechanism with a shorter detection time than the previous one, or the Cat2 LBT mechanism M times, etc. can be currently used.
  • a channel access method for a base station / terminal UE initiating a MCOT (Maximum Channel Occupancy Time) / TxOP (Transmission Opportunity, Transmission Opportunity) situation is provided.
  • the base station / UE initiates an MCOT / TxOP and needs to implement a Category 4 LBT (Category 4 List Before Before Talk, type 4 listen first and then talk) mechanism.
  • the Cat4 LBT mechanism may be an omnidirectional Cat4 LBT mechanism, or a Cat4 LBT mechanism in multiple beam directions, or a Cat4 LBT mechanism in a wide beam direction, or Cat4 LBT in a single beam direction.
  • the Cat4 LBT mechanism may be one of the following: Cat4 LBT mechanism with a higher priority level, Cat3 LBT mechanism, Cat4 LBT mechanism with a random fallback value N (excluding defer period), and random fallback value N (including defer period) ) Cat4 LBT mechanism, M Cat2 LBT mechanism, Cat2 LBT mechanism, defer period LBT mechanism, the above LBT mechanism is scaled according to the SCS LBT mechanism.
  • the channel access methods performed by the UE / base station before transmission include at least one of the following modes 1 to 9.
  • Method 1 If the gap between the downlink and the uplink, or the gap between the uplink and the downlink is not greater than the first threshold, the base station / UE may not perform LBT or perform idle channel detection.
  • the first threshold may be one of a positive integer between 9us and 43us.
  • the first threshold value is obtained by at least one of the following methods: a predefined method, a physical layer DCI signaling indication, a high-level RRC signaling indication, and a MAC signaling indication.
  • Method 2 The gap between downlink and uplink, or the gap between uplink and downlink is less than the second threshold, or not less than the first threshold and not greater than the second threshold, then the base station / UE can implement the Cat2 LBT mechanism, or , Cat2 LBT M times.
  • the first threshold or the second threshold is obtained by at least one of the following methods: a predefined method, a physical layer DCI signaling indication, a high-level RRC signaling indication, and a MAC signaling indication.
  • Method 3 At the switching point between downlink and uplink, or at the switching point between uplink and downlink, the base station / UE executes the Cat2 LBT mechanism before starting the downlink / uplink transmission, or M times Cat2 LBT.
  • Method 4 At the switching point between downlink and uplink, or at the switching point between uplink and downlink, the base station / UE adopts the same LBT mechanism used when the base station / UE initiates the MCOT before performing downlink / uplink transmission.
  • the LBT modes may be the same or different.
  • the base station initiates MCOT and uses Cat4 LBT.
  • the LBT mechanism used by the base station for downlink transmission can be the Cat4 LBT mechanism used when the base station initiates MCOT.
  • Method 5 At the handover point, before the downlink / uplink transmission, the base station / UE uses a higher priority LBT mechanism than when the base station / UE initiates the MCOT.
  • the LBT modes may be the same or different.
  • the base station initiates MCOT and uses Cat4 LBT with priority level 3.
  • the LBT mechanism used by the base station for downlink transmission may be Cat4 LBT mechanism with priority level 2 or 1.
  • Method 6 In the MCOT, the base station / UE executes the LBT mechanism and / or mode before the downlink / uplink transmission, and the duration of its downlink transmission or uplink transmission and / or beam information is related.
  • the higher priority Cat4 LBT mechanism for example, in MCOT, after uplink transmission, downlink transmission occupies the remaining time or proportion of MCOT greater than or equal to the third preset threshold, the higher priority Cat4 LBT mechanism, or Cat3 LBT mechanism, or random fallback is used.
  • the LBT mechanism, or the above-mentioned LBT mechanism is scaled down according to the SCS proportional ratio.
  • LBT is not implemented, or Cat2 LBT mechanism is used, or Cat2 LBT mechanism is used M times, or the above-mentioned LBT mechanism is based on SCS proportional Scaled LBT mechanism.
  • Method 7 In MCOT, the LBT used by the base station / UE for downlink / uplink transmission is related to the number of handover points / index in the MCOT.
  • the greater the number or index of the switching points, or the closer to the end of the MCOT, a more adequate mechanism for assessing channel vacancy may be adopted, such as the Cat4 LBT mechanism, or a higher priority Cat4 LBT mechanism, or Cat3 LBT mechanism, or Cat4 LBT mechanism with random fallback value N (excluding defer period), or Cat4 LBT mechanism with random fallback value N (including defer period), or M times Cat2
  • the LBT mechanism, or the Cat2 LBT mechanism, or the defer period LBT mechanism, or the above-mentioned LBT mechanism is a scaled-down LBT mechanism based on SCS.
  • the base station / UE when the base station / UE still has data / channels / signals to be transmitted at the end of the MCOT, or its data / channels / signals have not been transmitted, the base station / UE is outside the MCOT and can be transmitted based on continuous transmission.
  • the transmission method adopted at the time, and / or, the LBT mechanism, and / or, the LBT mode is used for transmission.
  • a fast LBT mechanism implements a fast LBT mechanism, Cat4 LBT mechanism, or use a higher priority Cat4 LBT mechanism, or Cat3 LBT mechanism, or Cat4 LBT mechanism with a random fallback value N (excluding defer period), or Cat4 LBT mechanism with random backoff value N (including defer period), or Cat2 LBT mechanism for M times, or Cat2 LBT mechanism, or LBT mechanism for defer period duration, or the above LBT mechanism is scaled down according to the SCS ratio LBT mechanism.
  • the base station or UE may use Cat2 LBT mechanisms, Cat4 LBT mechanisms of higher priority, or Cat3 LBT mechanism, or Cat4 LBT mechanism with random fallback value N (excluding defer period), or Cat4 LBT mechanism with random fallback value N (including defer period), or M times Cat2 LBT mechanism, or Cat2 LBT Mechanism, or the defer period LBT mechanism, or the above-mentioned LBT mechanism is scaled according to the SCS proportional LBT mechanism.
  • the base station or UE may adopt the Cat2 LBT mechanism, or M times the Cat2 LBT mechanism.
  • the specific threshold can be obtained by at least one of the following methods: a predefined method, a high-level RRC signaling indication, and a physical layer DCI signaling indication.
  • Method 8 In MCOT, the LBT mechanism used by the base station / UE for downlink / uplink transmission is related to the time domain / subframe / slot structure of the current transmission.
  • the UE may not implement the LBT mechanism, or perform a Cat2 LBT mechanism, or a Cat2 LBT mechanism, or a defer period before transmitting on the uplink portion of the downlink-dominated structure.
  • LBT mechanism, or the above-mentioned LBT mechanism is scaled down according to the SCS proportional LBT mechanism.
  • the base station may implement an LBT mechanism in multiple beam directions, or an LBT mechanism in a single beam direction.
  • the LBT mechanism may adopt a higher priority Cat4 LBT mechanism, or a Cat3 LBT mechanism, or a Cat4 LBT mechanism with a random fallback value N (excluding defer period), or a random fallback value N (including defer period) ) Cat4 LBT mechanism, or M Cat2 LBT mechanism, or Cat2 LBT mechanism, or LBT mechanism of deferperiod duration, or LBT mechanism in which the above-mentioned LBT mechanism is scaled down according to the SCS ratio.
  • Method 9 In MCOT, the LBT mechanism used by the base station / UE for downlink / uplink transmission is related to the priority of the corresponding channel / signal transmitted. For channels / signals with high priority, a more simplified or faster LBT mechanism is adopted, or the LBT mechanism is not implemented.
  • FIG. 8 is a schematic diagram 1 of a channel access mechanism in the case where there is multiple switching points in an MCOT.
  • the Cat4 LBT mechanism is implemented.
  • the UE / base station may not perform LBT. If the gap at the transition point is between the first threshold and the second threshold, or is less than or equal to the second threshold, the base station / UE can implement the Cat2 LBT mechanism, or M times Cat2 LBT.
  • the LBT mode adopted by the base station / UE at the handover point may be a mode configured by default or a mode indicated by dynamic signaling. If the base station / UE does not complete the transmission in the MCOT, generally, the base station / UE needs to implement a Cat4 LBT mechanism outside the MCOT. In order to improve the probability of the base station / UE accessing the channel, the base station / UE may implement a Cat2 LBT mechanism, or M Cat2 LBT mechanisms. In one embodiment, the LBT mechanism may be performed based on a single beam direction, or multiple beam directions may be performed simultaneously, or a single beam direction may be adopted on other BWP / Subbands, or the LBT mechanism may be performed on multiple beam directions. In one embodiment, the LBT mechanism outside the MCOT may be notified or instructed through dynamic signaling in the previous MCOT, or may adopt a default method.
  • the transmission structure in the MCOT, the number of switching points, the starting point of the switching point, the ending position of the switching point, the duration of the switching point, the number of times the Cat2 LBT mechanism is executed, and at least one of the M values may be in advance Configuration, or notified to the base station / UE through dynamic signaling of the physical layer.
  • the number of switching points, or the number of times Cat2 LBT is performed, or the M value may also be determined according to the MCOT / Txop duration, or the gap duration allowed in the MCOT, or the number / structure of scheduling units, or SCS OK.
  • the transmission structure refers to the subframe / slot structure in the MCOT, and / or, the uplink and downlink attributes of each part, and / or, SCS, and / or, the uplink / downlink starting position / set, and / or, the uplink / downlink end Location / set constitutes a time-domain transmission structure.
  • the MCOT transmission structure may be shared between base stations, and / or between UEs, and / or between base stations and UEs.
  • the CCA detection time can take one of the positive integers between [1us, 43us].
  • the Cat2 LBT of M times can be a Cat2 LBT mechanism that executes Cat2 of L2 times, or a Cat2 LBT mechanism of which LBT succeeds only once in M times.
  • the base station / UE executes the LBT mechanism to detect that the current channel is free, the base station / UE initiates an MCOT.
  • its downlink / uplink transmission method, and / or, the LBT mechanism refer to the channel access method in the case of continuous downlink / uplink transmission provided in the above embodiments, and / or, the detected What to do if the channel is busy.
  • the base station / UE transmission beam direction can be determined based on the LBT results.
  • the base station / UE can perform transmission only in the direction of Beam when the channel is detected to be free.
  • a channel access method is provided in a case where the UE initiates an MCOT / TxOP.
  • the LBT mode may be an omnidirectional Cat4 LBT mechanism, or multiple Cat4 LBT mechanisms in the beam direction, or a wide beam Cat4 LBT mechanism, or a single beam direction Cat4 LBT mechanism.
  • FIG. 9 is a first schematic diagram of channel access when different UEs share one MCOT.
  • the UE may perform a Cat4 LBT mechanism with a higher priority, or a Cat3 LBT mechanism, or a Cat4 LBT mechanism with a random backoff value N (excluding defer period), or a random backoff value N ( Cat4 LBT mechanism with defer period), or Cat2 LBT mechanism for M times, or Cat2 LBT mechanism, or LBT mechanism for defer period duration, or the above LBT mechanism is scaled down according to the SCS proportional LBT mechanism.
  • the MCB shares the LBT mechanism performed by the UE within the MCOT, and / or the LBT mode, and / or, the LBT detection position may be obtained in a predefined manner, and / or, the physical layer DCI signaling indication, and / or, the upper layer RRC signaling indication.
  • the UE sharing MCOT may determine whether the MCOT of the initiator UE can be shared through CCA detection pattern, and / or beam direction / information, and / or channel / signal identification.
  • UEs sharing MCOT are configured with the same CCA detection pattern, for example, do not send / vacant / blank at even / odd resource locations in the frequency domain, and send signals at odd / even resource locations.
  • the CCA detection pattern can adopt the comb structure of SRS. If the UE sharing MCOT detects that the channel is free on the even / odd frequency domain resources, the channel is considered available, or the MCOT can be shared.
  • a UE sharing MCOT detects channel idle on even / odd frequency domain resources and detects channel busy / idle on odd / even resources, the channel is considered available, or the MCOT can be shared. Further, the UEs sharing the MCOT may share at least one of the uplink transmission start position, end position, CCA detection pattern, CCA detection position, and SCS in the MCOT. For another example, the UEs sharing MCOT share the beam direction and other information of uplink transmission, so that UEs sharing MCOT initiated by other UEs can identify whether the current MCOT is initiated by the shared UE. This method is also suitable for base stations sharing MCOT. If it cannot be identified, the UE needs to implement a Cat4 LBT mechanism to initiate a new MCOT.
  • FIG. 10 is a second schematic diagram of channel access when different UEs share one MCOT.
  • the first type of UE implements the Cat4 LBT mechanism before MCOT begins. If the detection channel is free, an MCOT is initiated. Within the MCOT, at odd / even switching points, the UE performs the LBT mechanism, and / or, the LBT mode, and / or the LBT detection position, and / or, the SCS may be indicated to the UE by the base station through physical layer DCI signaling.
  • the UE uses the LBT mode adopted in the MCOT for channel access, for example, does not perform LBT, or Cat2 LBT, or M times LBT mechanism.
  • FIG. 11 is a first schematic diagram of channel access when different UEs cannot share one MCOT.
  • the UE that cannot share one MCOT refers to a UE that has no information to be transmitted between the MCOT and the base station before transmitting on the scheduling resource.
  • a UE uses Cat4 LBT mechanism for channel access before starting transmission; if the channel is detected to be idle, the UE (labeled as UE1, or a first type UE) initiates an MCOT.
  • the base station may not perform LBT. If the gap after the uplink and before the gap is between the first threshold and the second threshold, or is not less than the second threshold, the base station may implement the Cat2 LBT mechanism, or M times of Cat2 LBT. Further, another UE (for example, UE2, or a second type UE, or a UE that cannot share UE1 or a first type UE initiated MCOT) is scheduled within the MCOT initiated by UE1 or the first type UE.
  • UE2 for example, UE2, or a second type UE, or a UE that cannot share UE1 or a first type UE initiated MCOT
  • the The UE implementation can implement a Cat4 LBT mechanism, or a Cat4 LBT mechanism with a high priority level. If the detection channel is free, the UE initiates a new MCOT. If the UE (for example, UE2, or a UE of the second type, or a UE of which the UE1 or the UE of the first type cannot initiate MCOT) receives the MCOT information notified by the base station, and / or, the LBT mechanism, and / or, LBT mode, and / or, LBT location, and / or, sharing MCOT indication information, and / or, beam information, etc., the UE may not implement Cat4 LBT mechanism, or, implement a Cat2 LBT mechanism, or M Cat2 LBT mechanism, or Cat4 LBT mechanism. In one embodiment, the UE uses a Cat4 LBT mechanism with a high priority level, and / or the UE does not re-initiate an MCOT.
  • the UE uses a Cat4 LBT mechanism
  • FIG. 12 is a second schematic diagram of channel access when different UEs cannot share one MCOT. If UE1 successfully executes the Cat4 LBT mechanism before starting transmission, UE1 sends an MCOT / TxOP. UE2 performs idle channel evaluation during the channel occupied by UE1 and determines that the current channel is idle, then UE2 can initiate a new MCOT / TxOP.
  • UE2 and UE1 can transmit in the MCOT / TxOP initiated by them respectively. If UE1 is preempted by UE2 during MCOT / TxOP, UE1 abandons the current transmission in MCOT / TxOP, or the device that UE1 and UE1 share MCOT / TxOP can try to continue the channel on the candidate transmission opportunity in MCOT / TxOP Access. In general, UE2 initiates a new MCOT / TxOP and needs to implement the LBT mechanism.
  • UE2 may implement a higher priority Cat4 LBT mechanism, or Cat3 LBT mechanism, or a Cat4 LBT mechanism with a random fallback value N (excluding defer period), or a random fallback value N Cat4 LBT mechanism (including defer period), or M Cat2 LBT mechanism, or Cat2 LBT mechanism, or LBT mechanism of defer period duration, or LBT mechanism in which the above-mentioned LBT mechanism is scaled down in proportion to SCS.
  • the adopted LBT mode may be an LBT mode in a single beam direction, or an LBT mode in a plurality of beam directions.
  • the device may be a base station or a terminal UE.
  • the device may perform an LBT mechanism on each BWP / Subband, or perform LBT on a bandwidth corresponding to the BWP / Subband.
  • the LBT may be an omnidirectional LBT mechanism, or an LBT mechanism in a single beam direction, or an LBT mechanism in multiple beam directions.
  • the device For the device using an omnidirectional LBT mechanism on different BWP / Subbands, if the device detects that the channel is idle on the L BWP / Subbands, the device can transmit on at least one of the L BWP / Subbands. If a channel busy BWP / Subband is detected on the L BWP / Subbands, the transmission is currently abandoned on the BWP / Subband that is detected as busy. Further, the LBT mechanism is continued until the next candidate starting position.
  • the device For a device using a single beam direction LBT mechanism on different BWP / Subbands, if the device detects channel vacancy in the beam directions corresponding to the L BWP / Subbands, it will follow the instructions on the detected BWP / Subband vacancy Beam direction. Conversely, if the channel is detected to be busy in the corresponding beam directions on the L BWP / Subbands, the device abandons the current transmission in the corresponding beam direction on the BWP / Subbands that are detected as busy. In one embodiment, the device may switch the beam direction or perform the LBT mechanism simultaneously in multiple beam directions. If the channel is detected to be idle in the switched beam direction, the BWP / Subband is considered to be currently available.
  • the device can detect on the BWP Simultaneous transmission is performed in the idle beam direction, or transmission is performed in at least one of the detected idle beam directions on the BWP. In one embodiment, when it is detected that multiple beam directions are idle, the device selects the beam direction with the least interference within the beam for transmission.
  • the device can implement the LBT mechanism in the above-mentioned manner on the currently activated BWP / Subband.
  • the device may perform the LBT mechanism on the configured L BWP / Subbands in the foregoing manner.
  • FIG. 13 is a schematic diagram of an LBT method based on BWP / Subband.
  • the subband and subband LBT mechanisms, subband LBT mode, beam direction, LBT start time, and LBT position may be determined by at least one of the following: predefined, physical layer DCI signaling, high-level RRC signaling, and MAC signaling.
  • the UE1 may perform the LBT mechanism on the subband # 1 in an omnidirectional, single beam direction, multiple beam direction, and wide beam direction mode. If UE1 detects that the channel is free, it can transmit on subband # 1. On the contrary, the processing method in the case where the channel is detected to be busy provided by the foregoing embodiment may be followed. For UE2, multiple subband LBTs can be performed simultaneously on subband # 2 and subband # 3. Each of the subbands may use a different beam direction, or the same beam direction.
  • UE2 may perform LBT detection in the beam direction configured in each subband, or perform LBT mechanism in multiple beam directions.
  • the UE2 transmits only in the direction corresponding to the detected channel idle beam.
  • the beam direction is used as the beam direction for the current transmission. In the direction of the idle beam that is not detected, UE2 does not transmit.
  • the UE may transmit in multiple beam directions in which the idle is detected, or transmit in the s beam directions with the best channel conditions in the detected idle beams.
  • the s is a positive integer greater than or equal to 1.
  • the processing procedure for UE3 is the same as that of UE2.
  • UE2 or UE3 may perform transmission only on the subband that successfully performs LBT.
  • the processing of the UE performing the LBT failure reference may be made to the processing manner in the case where the channel is detected to be busy provided in the foregoing embodiment.
  • the UE performs channel access in at least one of the following ways.
  • Method 1 Implement Cat4 LBT of BWP.
  • Method 2 The UE performs the subband Cat4 LBT mechanism on each subband.
  • Method 3 The UE uses the subband Cat4 LBT mechanism on a subband, which uses priority level A, and the other subbands use the subband Cat4 LBT mechanism, which uses a priority level higher than priority A.
  • Method 4 The UE uses the Subband Cat4 LBT mechanism on one subband, and uses the LBT mechanism of the subband to perform a delay period on other subbands.
  • Method 5 Multiple carrier LBT standardized in LAA is used, that is, Cat4 LBT is used on one carrier, and Cat2 LBT is used on other carriers.
  • the LBT mode used on the BWP or different subbands may be different or the same.
  • the same contention window size (or the same random backoff value N) can be configured on different subbands, and / or the same priority level is used, and / or, a smaller subband with a poor channel condition is configured. Random fallback value / fallback window.
  • a subband described in Mode 3 and Mode 4 may be determined by at least one of the following methods: predefined, carrier selection, physical layer DCI signaling indication, high-level RRC signaling indication, and MAC layer signaling indication.
  • different UEs can implement Cat4 LBT mechanisms on their respective BWPs.
  • Cat4 LBT mechanisms In order to achieve spatial reuse / reuse between different UEs, if different UEs use the beam direction for transmission, different UEs can use the beam direction-based BWP Cat4 LBT mechanism.
  • different UEs may perform LBT for multiple subbands on their respective subbands.
  • LBT with multiple subbands for a UE refer to the corresponding manner in this disclosure.
  • different UEs can perform LBT mechanisms in their respective beam directions or multiple beam directions at the same time, which is beneficial to improve channel access.
  • the access probability is also conducive to achieving spatial reuse / reuse. For specific spatial multiplexing / reusing methods, see the following embodiments.
  • the UE may adopt the Cat2 LBT mechanism, or the Cat2 LBT mechanism M times.
  • the spatial multiplexing / reuse mainly focuses on describing the method in which different beam directions are used for transmission between devices at the same time.
  • the device includes a base station, and / or a terminal UE.
  • the device 1 uses beam index # 1 for transmission. Before the transmission, the device 1 performs an LBT mechanism to determine the busy status of the current channel. If the channel is detected to be idle, device 1 uses beam index # 1 for transmission. In order to improve the spatial reuse / reuse efficiency / factor, it is expected that while the device 1 uses beam index # 1 for transmission, it may also use other beam index for transmission.
  • the base stations need to exchange information.
  • the content of the interactive information is at least one of the following: beam index information, time domain resource information (e.g., time domain pattern (pattern), etc.), frequency domain resource information, SCS, MCOT transmission structure, subframe / slot structure, LBT mechanism, LBT position, LBT mode.
  • the base station may notify the UE of the transmission beam index information, time domain resource information (for example, time) through at least one of physical layer DCI signaling, high-level RRC signaling, and MAC layer signaling. Domain pattern, etc.), frequency domain resource information, SCS, MCOT transmission structure, subframe / slot structure.
  • the beam index information between different base stations / UEs is pre-configured.
  • the base station / UE performs an LBT mechanism in the beam direction before transmission. If it is detected that the channel is idle in the beam direction, the base station / UE performs transmission in the beam direction.
  • the LBT mechanism may be performed in the corresponding beam direction before transmission, or the LBT mechanism may be performed simultaneously in multiple beam directions.
  • the base station / UE can transmit in the beam direction in which the channel is detected to be free. Or, transmit in the beam direction where the channel is detected to be free and the interference is minimal.
  • the multiplexed device can implement Cat2 LBT mechanism, or M times Cat2 LBT mechanism. Multiplexed devices can also implement Cat4 LBT mechanisms.
  • the base station / UE detects an interference level or energy in the beam direction that is greater than or equal to a first detection threshold and less than or equal to a second If the detection threshold is set, the base station / UE detection channel is considered to be idle.
  • FIG. 14 is a schematic diagram of spatial reuse / reuse of different UEs.
  • UE1 is scheduled on resource # 1, resource # 2, resource # 3, resource # 4, and the beam direction adopted in this order is index # 1, index # 1, index # 2, index # 3.
  • UE2 is scheduled at resource # 2, resource # 3, and resource # 4, and the beam directions adopted in this order are index # 2, index # 2, and index # 4.
  • UE1 performs LBT detection before the channel is free, it uses beam index # 1 for transmission on resource # 1.
  • UE1 may directly perform transmission in the beam direction corresponding to beam # 1 without performing LBT before transmitting on resource # 2.
  • UE1 can perform a fast LBT mechanism before transmitting on resource # 2.
  • UE1 reserves or idles the time domain and / or frequency domain resources of the LBT mechanism, which is also beneficial for the spatially multiplexed UE to perform idle channel evaluation.
  • UE2 needs to perform an LBT mechanism before transmission to determine the channel idle status in the direction of beam index # 2.
  • the UE2 may implement a fast LBT mechanism, for example, the Cat2 LBT mechanism, or the Cat2 LBT mechanism M times.
  • UE2 needs to perform Cat4 LBT mechanism before transmitting on resource # 2.
  • UE2 may implement a Cat4 LBT mechanism with a higher priority level.
  • the time domain locations where UE1 and UE2 perform LBT may be different. For example, the time when UE1 performs LBT is earlier than the time when UE2 performs LBT. At this time, if the energy / interference detected by UE2 / UE1 is greater than or equal to the first detection threshold and less than or equal to the second detection threshold, then UE1 / UE2 is considered to have detected that the channel is idle. In another manner, the location and / or time at which UE1 and UE2 perform LBT are the same.
  • the above manner can be adopted for transmission on subsequent resources.
  • the UE performing the LBT operation may be indicated by the base station through dynamic signaling.
  • the manner of spatial reuse / reuse given in the embodiments of the present disclosure is also applicable to the spatial reuse / reuse of the base station side.
  • the interactive information content is at least one of the following: beam index information, time domain resource information (e.g., time domain pattern, etc.), frequency domain resource information, SCS, MCOT transmission structure, subframe / slot structure, LBT mechanism, LBT position, LBT mode.
  • time domain resource information e.g., time domain pattern, etc.
  • frequency domain resource information e.g., SCS, MCOT transmission structure, subframe / slot structure, LBT mechanism, LBT position, LBT mode.
  • different base stations inform the surrounding base stations of the corresponding transmission beam index information on which resources.
  • different base stations inform surrounding base stations of which resources are not applicable beam index information.
  • the base station may notify the UE of the belonging information.
  • the base station / UE executes the LBT mechanism before transmitting on the corresponding resources, and transmits in the direction of the detected beam.
  • the base station may dynamically indicate whether the LBT mechanism needs to be performed before the current transmission, and / or, the LBT mechanism mode, and / or the LBT position.
  • the same beam direction pattern is configured between devices under the same operator.
  • different beam direction patterns are configured for different UEs in the same cell.
  • different beam direction patterns are configured between different operators.
  • the device may execute the LBT mechanism in at least one of the configured beam patterns. If idle is detected, transmission can be performed on at least one of the beams where idle is detected.
  • the same LBT detection position can be configured.
  • a dual detection threshold method may be adopted. It is also possible to configure different LBT detection mechanisms according to the priorities of devices using the same beam direction, or according to the priority of signals / channels transmitted by their devices, and / or configure different LBT detection start positions.
  • An embodiment of the present disclosure further provides an information transmission apparatus, including: a transmission module configured to perform information transmission on a configured resource.
  • an embodiment of the present disclosure further provides an information transmission device including a memory 201, a processor 202, and a computer program 203 stored on the memory 201 and executable on the processor 202.
  • the processor 202 A method for implementing the information transmission when the computer program 203 is executed.
  • An embodiment of the present disclosure further provides a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to perform the method for transmitting information.
  • the above storage medium may include, but is not limited to, a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk, etc.
  • Various media that can store program code may include, but is not limited to, a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk, etc.
  • computer storage medium includes volatile and non-volatile implemented in any method or technology used to store information such as computer-readable instructions, data structures, program modules or other data.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • a communication medium typically contains computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种信息传输的方法、装置和设备。其中,所述方法包括:设备在配置的资源上进行信息传输。

Description

信息传输的方法、装置、设备和存储介质 技术领域
本公开涉及但不限于通信领域。
背景技术
在RAN(Radio Access Network,无线接入网)75次全会上,新立项了一个研究课题:NR(New Radio,新空口)协助接入非授权载波。该课题旨在研究如何在非授权频谱上完成NR工作部署。
根据ETSI(European Telecommunications Standards Institute,欧洲电信标准化协会)中的管制要求,在非授权频谱上进行传输之前,设备需要执行一个LBT(Listen Before Talk,先听后说机制)。如果LBT检测到信道空闲,则允许设备在MCOT(Maximum Channel Occupancy Time,最大信道时长)内使用信道。这里,在MCOT内使用信道之前,设备执行一个新的扩展CCA(Clear Channel Assessment,空闲信道评估),例如,Cat4 LBT(Category 4 Listen Before Talk,第4类先听后说)。
在LAA(Licensed Assisted Access,授权协助接入)LTE(Long Term Evolution,长期演进)中,设备进行LBT检测和传输时采用的都是全向模式。而NR中,设备进行传输通常采用的是定向beam(波束)模式。这使得如果继续沿用LAA LTE阶段基于全向的LBT机制,将出现信道接入概率降低、传输失败等情况。
发明内容
本公开实施例提供了一种信息传输的方法、装置和设备。
本公开实施例提供了一种信息传输的方法,包括:设备在配置的资源上进行信息传输。
本公开实施例还提供一种信息传输的装置,包括:传输模块,用于在配置的资源上进行信息传输。
本公开实施例还提供一种信息传输的设备,包括存储器、处理 器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现所述信息传输的方法。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为本公开实施例的信息传输的方法流程图。
图2为本公开实施例在连续传输情况下基站/UE的信道接入方式和传输方式的示意图。
图3为本公开实施例的在连续传输情况下通过动态指示基站/UE的信道接入方式示意图。
图4为本公开实施例的在连续传输情况下不同定向beam方向上进行传输采用的信道接入方式的示意图。
图5为本公开实施例的连续传输资源上传输beam方向的数目依次为从P至Q中的每一个时传输方式的示意图。
图6为本公开实施例的连续传输资源上传输beam方向数目呈递减趋势且通过动态信令指示LBT操作的示意图。
图7为本公开实施例的在设备在检测空闲的beam方向上同时进行传输的一种示意图。
图8为本公开实施例的一个MCOT内存在多个切换点情况的信道接入机制示意图。
图9为本公开实施例的不同UE共享一个MCOT情况下的信道接入示意图一。
图10为本公开实施例的不同UE共享一个MCOT情况下的信道接入示意图二。
图11为本公开实施例的不同UE不可共享一个MCOT情况下的信道接入示意图一。
图12为本公开实施例的不同UE不可共享一个MCOT情况下的信道接入示意图二。
图13为本公开实施例的基于BWP/Subband的LBT方式的示意图。
图14为本公开实施例的不同UE空间复用/重用的示意图。
图15为本公开实施例的信息传输的设备示意图。
具体实施方式
下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在LAA LTE中,已支持基站在MCOT内使用信道,且在MCOT内只可以与接收基站下行数据的UE(User Equipment,用户设备)间进行共享。也就是说,仅支持MCOT内D+U(Downlink+Uplink,下行+上行)结构,支持一个下行和上行转换点情况。其中,基站在MCOT内使用信道,采用Cat4 LBT机制,而共享MCOT的UE在进行上行传输之前仅需要执行Cat2 LBT机制。
进一步地,LAA LTE中,设备进行设备进行LBT检测和传输时采用的都是全向模式。而NR中,设备进行传输通常采用的是定向beam(波束)模式。这使得如果继续沿用LAA LTE阶段基于全向的LBT机制,则不能精确反映定向发送beam范围内的干扰水平,从而导致信道接入概率降低。另一方面,如果设备按照基于全向的LBT机制,但发送却采用定向beam模式,且连续在不同定向beam方向上进行传输之前不执行LBT,则可能出现切换的beam方向上干扰很强而导致传输失败情况,因为在切换beam方向之前,切换后的定向beam方向的信道被预先预留或占用。再一方面,对于连续传输时对应的定向 beam方向相同情况,即使设备在连续传输之前已检测到该定向beam方向对应的信道空闲,但信道在不同时刻的干扰波动不同,这也会使得在连续传输的资源上采用之前检测空闲的beam方向进行传输时,会受到较大的干扰,导致传输失败的情况出现。针对这些问题,需要提供一个针对连续传输资源上采用相同定向beam以及不同定向beam传输时的信道接入方式。
此外,在3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)RAN1#92bis次会议上,针对一个TxOP(Transmission Opportunity,传输机会)或MCOT内支持大于一个转换点的情况达成共识。因此,需要研究多个转换点情况下的上下行信道/信号传输的信道接入方式,以及,研究终端UE发起MCOT情况的信道接入方式,例如,与不同UE之间的共享情况。
如图1所示,本公开实施例提供一种信息传输的方法,包括:包括:步骤101,设备在配置的资源上进行信息传输。
在一种实施例中,所述设备在配置的资源上进行信息传输之前,还包括:所述设备按照特定的LBT机制和特定的LBT模式中的至少之一进行空闲信道检测。
在一种实施例中,所述设备在配置的资源上进行信息传输包括:所述设备在配置的资源上采用相同的beam波束方向进行信息传输。
在一种实施例中,所述设备在配置的资源上采用相同的beam波束方向进行信息传输,包括:
所述设备在资源n上检测信道空闲且采用beam方向i进行信息传输;在资源n+1或后续的配置资源上,设备可以不执行空闲信道检测,和/或,采用beam方向i进行信息传输。
在一种实施例中,所述设备在配置的资源上进行信息传输包括:所述设备在配置的资源上采用的beam方向发生切换,或,采用不同的beam波束方向进行信息传输。
在一种实施例中,所述设备在配置的资源上采用的beam方向发生切换,或,采用不同的beam波束方向进行信息传输,包括:在不同beam方向对应的资源上进行传输之前,或,在切换的beam方向对 应的资源上进行传输之前,所述设备按照特定的LBT机制和特定的LBT模式中的至少之一进行空闲信道检测;如果检测到信道空闲,则所述设备在配置的资源上采用当前资源对应的beam方向,或,切换后的beam波束方向进行传输。
在一种实施例中,所述设备在配置的资源上进行信息传输之前,还包括:所述设备采用基于单beam方向的LBT机制进行空闲信道检测;若检测到信道空闲,则所述设备在配置的资源上采用检测到信道空闲的beam方向进行信息传输。
在一种实施例中,所述设备在配置的资源上进行信息传输之前,还包括:对于所述设备采用基于单beam方向的LBT进行空闲信道检测:若检测到信道忙,则所述设备放弃在当前资源上进行信息传输。或者,若检测到信道忙,则所述设备在下一个候选传输起始位置之前,继续按照之前的LBT模式和LBT机制中的至少之一进行空闲信道检测。或者,若检测到信道忙,则所述设备更换执行LBT机制的Beam方向和LBT机制、LBT模式中的至少之一,重新尝试进行空闲信道检测。或者,若检测到信道忙,则所述设备采用比前一次简化的LBT机制进行空闲信道检测,或,采用快速的LBT机制进行空闲信道检测。
在一种实施例中,所述设备在配置的资源上进行信息传输之前,还包括:对于所述设备采用基于多个beam方向的LBT机制进行空闲信道检测的情况,若检测到信道空闲的beam波束方向,则所述设备在配置的资源上采用检测到信道空闲的beam方向进行信息传输。或者,若检测到信道空闲的beam波束方向中包含配置资源上对应的beam波束方向,则按照配置资源上对应的beam波束方向进行信息传输。或者,若检测到信道空闲的beam波束方向的数目大于或等于1,则在配置的资源上采用检测到信道空闲的beam方向上同时进行信息传输。或者,若检测到信道空闲的beam波束方向的数目大于或等于1,则在检测到信道空闲的beam方向中按照特定规则选择一个beam方向进行信息传输。
在一种实施例中,所述设备在配置的资源上进行信息传输之前,还包括:对于所述设备采用基于多个Beam方向的LBT进行空闲信道 检测情况,若检测到信道忙,则所述设备放弃在当前资源上进行传输。或者,若检测到信道忙,则所述设备在下一个候选传输起始位置之前,继续按照之前的LBT模式和LBT机制中的至少之一进行空闲信道检测。或者,若检测到信道忙,则所述设备更换执行LBT的Beam方向,重新尝试进行空闲信道检测。或者,若检测到信道忙,则所述设备在下一个候选传输起始位置之前,在多个beam方向上采用比前一次简化的LBT机制,或,快速的LBT机制进行空闲信道检测。
在一种实施例中,所述设备在配置的资源上进行信息传输,包括:所述设备在配置的资源上采用多个beam方向进行传输;或者,所述设备在配置的资源上采用基于多个beam方向的LBT机制进行空闲信道检测,所述设备在当前资源上进行信息传输采用的beam方向包含后续资源中至少之一资源上对应的beam方向;或者,在配置的资源上采用多个beam方向同时传输的beam数目是随着资源索引递增的顺序而呈现递减趋势。
在一种实施例中,所述方法还包括:在配置的资源上进行信息传输期间,若所述设备接收到动态指示信令,则所述设备执行空闲信道检测。
在一种实施例中,所述动态指示信令包括以下至少之一信息:触发执行空闲信道检测,指示LBT机制,指示LBT模式,触发信令位置与执行空闲信道检测/传输资源之间的定时关系,LBT的起始位置,LBT占用的符号数目;子载波间隔SCS,beam方向,是否支持beam切换指示,是否支持部分符号指示,候选的数据传输起点或集合,执行LBT的优先级等级,LBT机制对应的参数集合中至少之一参数。
在一种实施例中,所述设备在配置的资源上进行信息传输之前,还包括:所述设备按照特定的LBT机制和特定的LBT模式中的至少之一进行空闲信道检测,若检测到信道空闲,则所述设备发起一个MCOT或TxOP或,进行信息传输。
在一种实施例中,在MCOT内,在上行和下行之间的切换点,下行和上行之间的切换点中至少之一的切换点处,所述设备按照特定规则,特定的LBT机制,特定的LBT模式中至少之一进行空闲信道检测。
在一种实施例中,所述特定规则,包括以下规则一至十中至少之一。
规则一:如果下行和上行之间的gap,上行和下行之间的gap中至少之一小于或等于第一门限,所述设备不执行LBT机制或不进行空闲信道检测。
规则二:如果下行和上行之间的gap,上行和下行之间的gap中至少之一小于第二门限,或,大于或等于第一门限且小于或等于第二门限,所述设备执行Cat2 LBT机制,或,M次Cat2 LBT机制。
规则三:如果下行和上行之间的gap,上行和下行之间的gap中至少之一大于第二门限,所述设备执行与发起MCOT时相同LBT机制,或,更高优先级等级的LBT机制。
规则四:在下行和上行之间的切换点,上行和下行之间的切换点中至少之一的切换点处,所述设备执行Cat2 LBT机制,或,M次Cat2 LBT机制。
规则五:在下行和上行之间的切换点,上行和下行之间的切换点中至少之一的切换点处,所述设备采用与发起MCOT时相同LBT机制。
规则六:在下行和上行之间的切换点,上行和下行之间的切换点中至少之一的切换点处,所述设备采用与发起MCOT时更高优先级等级的LBT机制。
规则七:在下行和上行之间的切换点,上行和下行之间的切换点中至少之一的切换点处,所述设备根据传输的业务类型,或,业务类型/信道/信道优先级确定采用的LBT机制。
规则八:在下行和上行之间的切换点,上行和下行之间的切换点中至少之一的切换点处,所述设备根据传输的时域/子帧/时隙结构确定LBT机制。
规则九:当在下行和上行之间的切换点,上行和下行之间的切换点中至少之一的切换点处执行Cat2 LBT机制的次数超过特定门限时,在下一个切换点处,所述设备执行特定的LBT机制。
规则十:当在下行和上行之间的切换点,上行和下行之间的切 换点中至少之一的切换点数目大于特定门限时,所述设备执行特定的LBT机制。
在一种实施例中,所述第一门限,第二门限,传输的时域/子帧/时隙结构,切换点数目,特定门限,传输的时域/子帧/时隙结构与LBT机制/LBT机制优先级等级之间的关系,gap时长,切换点起始位置,切换点结束位置,执行Cat2 LBT机制的次数,LBT模式,LBT机制,LBT的起始位置,LBT占用的符号数目,子载波间隔SCS,beam方向,beam切换指示,是否支持部分符号指示,候选的数据传输起点或集合,LBT的优先级等级,LBT机制对应的参数集合以及M中至少之一,可以通过以下至少之一方式获取:预定义方式、物理层DCI信令指示、高层RRC信令指示、MAC信令指示。
在一种实施例中,所述切换点数目,或,MCOT内允许执行Cat2 LBT机制的次数,或,M可以通过以下至少之一获取:根据MCOT/Txop时长确定;根据MCOT/Txop内允许的gap时长确定;根据调度单元的数目/结构确定;根据SCS确定;根据MCOT/Txop时长与gap之间的比例确定。
在一种实施例中,所述特定的LBT模式包括以下至少之一:全向的LBT模式;多个Beam方向的LBT模式;宽beam方向的LBT模式;单beam方向的LBT模式。
在一种实施例中,所述特定的LBT机制包括以下至少之一:Cat4 LBT机制;Cat2 LBT机制;M次Cat2 LBT机制;较高优先级的Cat4 LBT;Cat3 LBT机制;随机回退值N的Cat4 LBT机制;defer period(推迟周期)时长的LBT机制;上述机制中至少之一根据SCS等比例放缩的LBT机制;其中,所述M,N均为正整数。
在一种实施例中,所述方法还包括:不同设备复用配置的资源进行信息传输。其中,在配置的资源上进行信息传输的不同设备之间采用不同的beam index,或,同时在多个beam index上执行空闲信道评估。
在一种实施例中,若不同设备采用相同的beam index,则设备在所述beam方向上按照第一检测门限值,第二检测门限值中至少之 一进行信道的空闲检测。
在一种实施例中,所述方法还包括:不同设备复用配置的资源进行信息传输,其中,不同的设备在配置的资源上进行传输信息之前,进行信息交互。
在一种实施例中,所述交互的信息,包括以下至少之一:beam index信息,时域资源信息,时域pattern,频域资源信息,SCS,MCOT的传输结构,子帧/slot结构,LBT机制,LBT位置,LBT模式。
本公开中,所述的LBT模式,包括以下至少之一:全向LBT模式,多个beam方向LBT模式,宽beam方向LBT模式,单beam方向LBT模式。所述多个beam方向的LBT模式,是指执行LBT的多个beam方向为连续传输对应的beam方向,或,TxOP/MCOT内包含的beam方向。所述宽beam方向LBT模式,是指宽beam方向覆盖/包含连续传输对应的beam方向,或,TxOP/MCOT内包含的beam方向。
所述LBT机制,包括以下至少之一:Cat4 LBT机制,Cat2 LBT机制,M次Cat2 LBT机制,随机回退值N(不含defer period)的Cat4 LBT机制,随机回退值N(含defer period)的Cat4 LBT机制,defer period时长的LBT机制,上述LBT机制根据SCS等比例放缩的LBT机制。
所述M,N,LBT机制,SCS,LBT模式,LBT起始位置/候选位置,MCOT传输结构,切换点位置,切换数目中至少之一,通过以下至少之一方式获取:预定义方式、物理层DCI信令指示、高层RRC信令指示、MAC信令指示。
所述M次Cat2 LBT可以是执行M次Cat2 LBT机制,或,M次中只要一次LBT成功的Cat2 LBT机制。
所述动态信令,包括以下至少之一:物理层DCI(Downlink Control Information,下行控制信息)信令、高层RRC(Radio Resource Control,无线资源控制)信令、MAC(Media Access Control,媒体介入控制)信令。
在本公开实施例中,给出一种下行/上行连续传输情况下的信道接入方式。
对于下行/上行连续传输采用相同定向beam情况,设备执行的LBT机制包括以下之一:单beam方向的LBT机制,多个beam方向的LBT机制,宽beam方向的LBT机制。如果按照所述LBT机制检测到信道空闲,则设备采用该定向beam方向继续传输。如图2所示,图2为在连续传输情况下基站/UE的信道接入方式和传输方式的示意图。从图2可看到,基站或UE在连续传输的资源上进行信息传输之前,采用单beam方向/多个beam方向/宽beam方向的Cat4或Cat2 LBT机制。所述基站/UE在连续传输之前或发起MCOT之前,采用Cat4 LBT机制。若基站/UE的连续传输是在MCOT内,则基站/UE在进行信息传输之前执行Cat2 LBT机制。
另一种情况,基于下行/上行连续传输采用相同定向beam情况,由于不同时间信道干扰状况波动不同,为了提高传输/接收的成功概率,可以通过动态信令触发基站/UE在连续传输中进行一个信道空闲状况判断,即执行一个LBT机制。动态信令可以指示触发执行LBT机制,执行LBT的模式,LBT的起始位置,LBT机制位置,LBT机制,SCS,beam方向等中至少之一。为了防止信道中途被抢占,基站/UE可以执行一个快速的LBT机制,例如,Cat2 LBT机制,或,M次Cat2 LBT机制,或,随机回退值N(不含defer period)的Cat4 LBT机制,或,随机回退值N(含defer period)的Cat4 LBT机制,或,defer period时长的LBT机制,或,上述LBT机制根据SCS等比例放缩的LBT机制。如图3所示,图3为在连续传输情况下通过动态信令指示基站/UE的信道接入方式示意图。从图3可看到,基站/UE根据动态信令指示执行Cat2 LBT。如果动态信令仅触发执行LBT机制,未通知执行的LBT机制,则默认执行Cat2 LBT。
另一种情况,对于下行/上行连续传输采用不同定向beam,或,连续传输中存在定向beam切换的情况,则连续传输之前,采用多beam方向/宽beam方向/单定向beam方向的LBT机制。进一步地,基站/UE在连续传输之前或发起MCOT之前,采用Cat4 LBT机制。若基站/UE的连续传输是在MCOT内,则基站/UE在信息传输之前执行Cat2 LBT机制。
对于基站/UE在MCOT或连续传输之前,采用单定向beam方向的LBT机制的情况,若检测到信道空闲,则基站/UE开始传输且按照所述检测空闲的beam方向进行传输。若连续传输期间出现定向beam方向切换情况,则基站/UE可以执行一个快速的LBT机制。在一种实施例中,对于连续传输期间,定向beam方向未发生切换情况,由于不同时间信道干扰状况波动不同,为了提高传输/接收的成功概率,可以通过动态信令触发基站/UE执行一个快速的LBT机制。动态信令可以指示触发执行LBT机制,执行LBT的模式,LBT的起始位置,LBT机制位置,LBT机制,SCS,beam方向等中至少之一。所述快速的LBT机制,可以是Cat2 LBT机制,或,M次Cat2 LBT机制,或,随机回退值N(不含defer period)的Cat4 LBT机制,或,随机回退值N(含defer period)的Cat4 LBT机制,或,defer period时长的LBT机制,或,上述LBT机制为根据SCS等比例放缩的LBT机制。
对于基站/UE在MCOT或连续传输之前,采用多个定向beam方向的LBT机制的情况,若检测到信道空闲,则在对应的beam方向上进行传输。由于基站/UE传输采用的是单个定向beam方向的方式进行传输,即便在开始传输之前检测到多个beam方向上信道空闲,但传输仅在某一个单个定向beam方向上传输,这可能导致未传输的定向beam方向上的信道丢失现象。因此,一旦连续传输期间出现定向beam切换,则基站/UE需要执行一个快速的LBT机制。其他方式同上述已提及的方式。同样地,若基站/UE在MCOT或连续传输之前,采用宽beam方向的LBT机制,其处理方式同上述已提及的相对应的处理方式。
如图4所示,图4为在连续传输情况下不同定向beam方向上进行传输采用的信道接入方式的示意图。从图4可看到,在切换的定向beam方向上进行传输之前执行Cat2 LBT机制,以及,在未发生定向beam方向切换的beam方向上,根据动态信令指示执行一个LBT机制,如Cat2 LBT。如果动态信令仅触发执行LBT机制,未通知具体执行的LBT机制,则默认执行Cat2 LBT。
另一种情况,为了降低连续传输或MCOT内执行LBT的次数,基 站/UE在连续传输之前,采用多个定向beam方向/宽beam方向/全向的LBT机制。若检测到信道空闲,则在连续传输期间,基站/UE采用在后续发送beam方向上同时传输的方式,以实现帮助预先占用后续传输的beam方向。所述预先占用的beam方向上发送的可以是与实际传输时的beam方向上相同的传输信息,或,无效的信息,或,指示信息,或,参考/测量信号,或,上/下行的信道/信号。如图5所示,图5为连续传输资源上传输时beam方向的数目依次为P至Q中的每一个时传输方式的示意图。P为后续传输时beam中不同beam方向的数目,Q为当前资源上以及后续资源上传输的beam中不同beam方向的数目。例如,连续传输资源为5个,且,每个资源上对应的beam方向不同,则第一个资源上基站/UE在5个beam方向上同时传输,第二资源上基站/UE在4个beam方向上同时传输,依次类推,第5个资源上基站/UE在1个beam方向上进行传输。在一种实施例中,在连续传输的资源上,基站/UE可以根据动态信令指示LBT操作,如图6所示,图6为连续传输资源上传输时beam方向数目呈递减趋势且通过动态信令指示LBT操作的示意图。
另一种情况,与上一种情况不同之处在于,基站/UE在连续传输之前,采用多个定向beam方向/宽beam方向/全向的LBT机制。若检测到其beam方向中至少之一上信道空闲,则在检测到空闲的beam上进行传输。其中,对于前后传输的beam方向相同的,则采用前一次传输的beam方向进行传输。对于前后传输的beam方向改变,则本次传输可在前一次资源对应的beam方向不进行传输。或者,前一次传输仅在相邻的发送beam方向进行传输。下一次传输前,基站/UE可在当前资源对应的beam方向,和/或,后续资源上至少之一对应的beam方向上执行LBT机制。如果检测到下一个资源对应的beam方向上信道忙,则放弃在下个资源对应的beam方向上传输,可以在当前资源对应的beam方向上进行传输。如果检测到后续beam方向上有检测到空闲的beam方向,则基站/UE在下一个资源上传输时,除了在对应的beam方向上进行传输之外,还可以在检测到空闲的beam方向中至少之一的方向上进行传输。如果前一资源上传输的beam方向包 含下一个或后续资源上传输beam,则下一个资源之前设备可以不执行LBT。或者,执行一个简化的LBT。或,根据动态信令指示LBT操作。
在一种实施例中,采用多个beam方向的LBT机制进行空闲信道检测时,检测空闲的beam方向为激活或后续资源上进行传输的beam方向。
如图7所示,图7为在设备在检测空闲的beam方向上同时进行传输的一种示意图。设备在连续的5个资源上进行传输,且,每个资源对应的beam方向不同,所述beam方向依次标记为beam#1,beam#2,beam#3,beam#4,beam#5。在连续传输的资源上进行传输之前,基站/UE采用多个beam的LBT方式进行信道空闲检测。如果检测到空闲的beam方向为beam#2,beam#3,beam#4,则基站/UE在第一个资源上采用这三个beam方向进行传输,第二资源上采用所述的beam#2和beam#3进行传输。具体分为两种情况:第一种情况:第三个资源上采用beam#3进行传输。在第4个资源上进行传输之前,设备可以在beam#1和/或,beam#5上执行LBT机制,如果检测到有至少一个beam方向上信道空闲,则设备在至少之一的beam方向进行传输。第5个资源上采用检测到空闲且未被之前使用的beam方向进行传输。或者,在第4个资源上进行传输之前,设备可以在beam#1至beam#5中至少之一上执行LBT机制,后续资源上采用检测到空闲的beam方向进行传输。后一资源采用前一资源未被前一资源使用的beam方向进行传输。第二种情况:在第三个资源上进行传输之前,基站/UE可以在beam#1,和/或,beam#3,和/或,beam#5上执行LBT机制。如果检测到beam方向上信道空闲,则在第三个资源上采用检测到信道空闲的beam方向进行传输,和/或,采用第三个资源上对应的beam#3方向进行传输。后一资源采用前一资源未被前一资源使用的beam方向进行传输。依次类推,如果当前资源传输的beam方向数目不大于2,且,若当前资源不是连续传输的倒数第二个资源,则,需要采用第二种情况所述的方式进行处理。
在本公开实施例中,给出一种检测到信道忙情况下的处理方式。
如果基站/UE在检测到信道忙,则基站/UE可以执行以下方式一至方式十四中至少之一操作。
对于时域+LBT+(频域和空域beam方向不变)的情况,采用方式一至方式三中的至少之一。
方式一:在下一个候选起始位置之前,采用前一次的LBT机制方式执行空闲信道检测。
方式二:在下一个候选起始位置之前,采用比前一次简化的LBT机制,或,快速的LBT机制。
方式三:与方式一和方式二中不同之处在于,下一个候选起始位置更换为下一个资源。
在一种实施例中,方式一至方式三中可以采用前一次的beam方向,或,采用前一次采用的LBT模式,或,仅在传输的beam方向上执行LBT机制。
对于频域+LBT(beam方向不变)的情况,采用方式四至方式六中的至少之一。
方式四:切换到检测空闲的频域上进行传输。
方式五:切换到其他频域上,采用前一次的LBT机制方式执行空闲信道检测。
方式六,切换到其他频域上,采用比前一次简化的LBT机制,或,快速的LBT机制。
对于空域+LBT(beam方向不变)的情况,采用方式七至方式十四中的至少之一。
方式七:切换到检测空闲的beam方向上进行传输。
方式八:切换beam方向,在切换后的beam方向上采用前一次的LBT机制。
方式九:切换beam方向,在切换后的beam方向上采用比前一次简化的LBT机制,或,快速的LBT机制。
方式十:继续执行LBT机制,直到执行LBT成功。
方式十一:在多个beam方向上采用前一次的LBT机制。
方式十二:在多个beam方向上采用比前一次简化的LBT机制, 或,快速的LBT机制。
方式十三:判断当前检测到的能量是否大于第一检测门限,且,小于第二检测门限,或,当前检测到的能量是否小于第二检测门限。若是,则认为当前信道空闲,设备可以进行传输。
方式十四:上述方式中至少之一的组合方式。
在一实施例中,上述方式中,若出现部分符号,或,部分(小)时隙,或,部分子帧情况,则设备在上述部分符号,或,部分(小)时隙,或,部分子帧上可以发送数据,或,占用信号,或,参考信号,或,指示信号等。
在一种实施例中,如果采用前一次LBT机制执行信道忙次数大于或等于第一预设次数,则采用比前一次简化的LBT机制,或,快速的LBT机制。
所述第一预设次数,可以根据统计结果确定,或,预定义方式,物理层DCI信令指示、高层RRC信令指示、MAC信令指示。
其中,切换的频域为信道检测空闲的频域。所述频域可以是RB(Resource Block,资源块),或,RBG(Resource Block Group,资源块组),或,RE(Resource Element,资源元素),或,REG(Resource Element Group,资源元素组),或,BWP(bandwidth part,带宽部分),或,CC(Component Carriers,分量载波)或,Subband(子带),或,CCG(Common Channel Group,公共信道组),或,Subband group(子带组)。
所述比前一次简化的LBT机制是从LBT机制中参数配置,LBT机制对应的优先级,参数对应检测时长,SCS(Sub Carrier Spacing,子载波间隔),LBT机制,LBT机制执行次数中至少之一的角度对应的相对于前一次的更加简化的LBT机制。所述快速的LBT机制可以是Cat2 LBT机制,M次Cat2 LBT机制,随机回退值N(不含defer period)的Cat4 LBT机制,随机回退值N(含defer period)的Cat4 LBT机制,defer period时长的LBT机制,上述LBT机制根据SCS等比例放缩的LBT机制中之一。
例如,前一次采用Cat4 LBT,当前可以采用更高优先级等级的 Cat4 LBT机制,或,更小竞争窗/随机回退值N的Cat4 LBT机制,或,Cat2 LBT机制,或,M次Cat2 LBT机制,或,随机回退值N(不含defer period)的Cat4 LBT机制,或,随机回退值N(含defer period)的Cat4 LBT机制,或,defer period时长的LBT机制,或,上述LBT机制根据SCS等比例放缩的LBT机制。又如,前一次采用Cat2 LBT,当前可以采用比前一个更短检测时长的Cat2 LBT机制,或,M次Cat2 LBT机制等。
在本公开实施例中,提供一种基站/终端UE发起MCOT(Maximum Channel Occupancy Time,最大允许信道占用时间)/TxOP(Transmission Opportunity,传输机会)情况的信道接入方式。
基站/UE发起一个MCOT/TxOP,需要执行一个Cat4 LBT(Category 4 Listen Before Talk,第4类先听后说)机制。所述Cat4 LBT机制可以是全向的Cat4 LBT机制,或,多个beam方向的Cat4 LBT机制,或,宽beam方向的Cat4 LBT机制,单beam方向的Cat4 LBT。所述Cat4 LBT机制可以是以下之一:优先级等级较高的Cat4 LBT机制,Cat3 LBT机制,随机回退值N(不含defer period)的Cat4 LBT机制,随机回退值N(含defer period)的Cat4 LBT机制,M次Cat2 LBT机制,Cat2 LBT机制,defer period时长的LBT机制,上述LBT机制根据SCS等比例放缩的LBT机制。
在MCOT内,UE/基站在进行传输之前,执行的信道接入方式,包括以下方式一至方式九中至少之一。
方式一:如果下行与上行之间的gap,或,上行与下行之间的gap不大于第一门限,则基站/UE可以不执行LBT或不进行空闲信道检测。在一种实施例中,所述第一门限可以取9us至43us之间的正整数之一。
其中,第一门限值,通过以下至少之一方式获取:预定义方式、物理层DCI信令指示、高层RRC信令指示、MAC信令指示。
方法二:下行与上行之间的gap,或,上行与下行之间的gap小于第二门限,或,不小于第一门限且不大于第二门限,则基站/UE可以执行Cat2 LBT机制,或,M次Cat2 LBT。
其中,第一门限,或,第二门限值,通过以下至少之一方式获取:预定义方式、物理层DCI信令指示、高层RRC信令指示、MAC信令指示。
方式三:下行与上行之间的切换点处,或,上行与下行之间的切换点处,基站/UE在进行下行/上行传输开始之前,执行Cat2 LBT机制,或,M次Cat2 LBT。
方式四:下行与上行之间的切换点处,或,上行与下行之间的切换点处,基站/UE在进行下行/上行传输之前,采用与基站/UE发起MCOT时相同采用的LBT机制。所述LBT模式可以相同,或,不同。
例如,基站发起MCOT,且采用Cat4 LBT,在MCOT内,上行传输之后,下行传输之前,基站进行下行传输采用的LBT机制可以为基站发起MCOT时采用的Cat4 LBT机制。
方式五:切换点处,基站/UE在下行/上行传输之前,采用比基站/UE发起MCOT时更高优先级的LBT机制。所述LBT模式可以相同,或,不同。
例如,基站发起MCOT,且采用优先级等级3的Cat4 LBT,在MCOT内,上行传输之后,下行传输之前,基站进行下行传输采用的LBT机制可以为优先级等级2或1的Cat4 LBT机制。优先级等级1>优选级等级2>优先级等级3等等。
方式六:MCOT内,基站/UE在下行/上行传输之前,执行LBT机制和/或模式与其下行传输或上行传输的时长,和/或,beam信息有关。
例如,MCOT内,上行传输之后,下行传输占用MCOT剩余时长或比例大于或等于第三预设门限值,则采用较高优先级的Cat4 LBT机制,或,Cat3 LBT机制,或,随机回退值N(不含defer period)的Cat4 LBT机制,或,随机回退值N(含defer period)的Cat4 LBT机制,或,M次Cat2 LBT机制,或,Cat2 LBT机制,或,defer period时长的LBT机制,或,上述LBT机制根据SCS等比例放缩的LBT机制。反之,如果下行传输占用MCOT剩余时长或比例不大于第三预设门限值,则不执行LBT,或,采用Cat2 LBT机制,或,M次Cat2 LBT机 制,或,上述LBT机制根据SCS等比例放缩的LBT机制。
方式七:MCOT内,基站/UE进行下行/上行传输采用的LBT与MCOT内切换点数目/index索引号有关。
在一种实施例中,所述切换点数目或index越大,或,越靠近MCOT结束位置,可采用更加充分的评估信道空闲的机制,例如,Cat4 LBT机制,或,采用较高优先级的Cat4 LBT机制,或,Cat3 LBT机制,或,随机回退值N(不含defer period)的Cat4 LBT机制,或,随机回退值N(含defer period)的Cat4 LBT机制,或,M次Cat2 LBT机制,或,Cat2 LBT机制,或,defer period时长的LBT机制,或,上述LBT机制根据SCS等比例放缩的LBT机制。
在一种实施例中,基站/UE在MCOT结束时刻,仍有数据/信道/信号需要进行传输,或,其数据/信道/信号尚未传输结束,则基站/UE在MCOT外,可以根据连续传输时采用的传输方式,和/或,LBT机制,和/或,LBT模式进行传输。或,执行一个快速的LBT机制,Cat4 LBT机制,或,采用较高优先级的Cat4 LBT机制,或,Cat3 LBT机制,或,随机回退值N(不含defer period)的Cat4 LBT机制,或,随机回退值N(含defer period)的Cat4 LBT机制,或,M次Cat2 LBT机制,或,Cat2 LBT机制,或,defer period时长的LBT机制,或,上述LBT机制根据SCS等比例放缩的LBT机制。
在一种实施例中,如果MCOT内,切换点处设备执行Cat2 LBT机制,或,简化的Cat2 LBT机制,或,M次Cat2 LBT机制。执行Cat2 LBT机制的次数超过特定门限时,或,所述MCOT内切换点数目大于特定门限时,所述基站或UE可以采用M次Cat2 LBT机制,较高优先级的Cat4 LBT机制,或,Cat3 LBT机制,或,随机回退值N(不含defer period)的Cat4 LBT机制,或,随机回退值N(含defer period)的Cat4 LBT机制,或,M次Cat2 LBT机制,或,Cat2 LBT机制,或,defer period时长的LBT机制,或,上述LBT机制根据SCS等比例放缩的LBT机制。
在一种实施例中,如果执行非Cat2 LBT机制的次数超过特定门限,所述基站或UE可以采用Cat2 LBT机制,或,M次Cat2 LBT机 制。
特定门限可以通过以下至少之一方式获取:预定义方式,高层RRC信令指示,物理层DCI信令指示。
方式八:MCOT内,基站/UE进行下行/上行传输采用的LBT机制与当前传输的时域/子帧/slot结构有关。
例如,对于下行占主导传输结构,在下行占主导结构中上行部分上进行传输之前,UE可以不执行LBT机制,或,执行一个M次Cat2 LBT机制,或,Cat2 LBT机制,或,defer period时长的LBT机制,或,上述LBT机制根据SCS等比例放缩的LBT机制。或者,在下行占主导结构之前,基站可以执行一个多个beam方向的LBT机制,或,单beam方向的LBT机制。所述LBT机制可以采用较高优先级的Cat4 LBT机制,或,Cat3 LBT机制,或,随机回退值N(不含defer period)的Cat4 LBT机制,或,随机回退值N(含defer period)的Cat4 LBT机制,或,M次Cat2 LBT机制,或,Cat2 LBT机制,或,defer period时长的LBT机制,或,上述LBT机制根据SCS等比例放缩的LBT机制。
方式九:MCOT内,基站/UE进行下行/上行传输采用的LBT机制与其对应传输的信道/信号的优选级有关。优先级高的信道/信号,采用更加简化或快速的LBT机制,或,不执行LBT机制。
在一个典型的一个MCOT内存在多个切换点情况的信道接入示例中,如图8所示,图8为一个MCOT内存在多个切换点情况的信道接入机制示意图一。基站/UE发起一个MCOT之前,执行Cat4 LBT机制。在MCOT内,下行-上行,或,上行-下行转换点处,若转换点处gap小于或等于第一门限,则UE/基站可以不执行LBT。如果其转换点处gap介于第一门限和第二门限之间,或,小于或等于第二门限值,则基站/UE可以执行Cat2 LBT机制,或,M次Cat2 LBT。所述在切换点处,基站/UE采用的LBT模式,可以是默认配置的模式,或是,根据动态信令指示的模式。如果基站/UE在MCOT内未完成传输,则,一般情况下,基站/UE在MCOT外需要执行一个Cat4 LBT机制。为了提高基站/UE接入信道的概率,基站/UE可以执行一个Cat2 LBT机制,或,M次Cat2 LBT机制。在一种实施例中,可采用基于单beam方向, 或,多个beam方向同时执行LBT机制,或,在其他BWP/Subband上采用单个beam方向,或,多个beam方向执行LBT机制。在一种实施例中,MCOT外的LBT机制,可以在前一个MCOT内通过动态信令通知或指示,也可以是采用默认方式。
在一种实施例中,所述MCOT内的传输结构,切换点数目,切换点起始位置,切换点结束位置,切换点持续时长,执行Cat2 LBT机制的次数,M值中至少之一可以预先配置,或,通过物理层动态信令通知给基站/UE。所述切换点数目,或,执行Cat2 LBT的次数,或,M值还可以根据MCOT/Txop时长确定,或,根据MCOT内允许的gap时长,或,调度单元的数目/结构确定,或,根据SCS确定。所述传输结构是指MCOT内子帧/slot结构,和/或,每部分上下行属性,和/或,SCS,和/或,上行/下行起始位置/集合,和/或,上行/下行结束位置/集合构成的时域上传输结构形式。所述MCOT传输结构对于基站之间,和/或,UE之间,和/或,基站与UE之间可以是共享的。
上述提及的Cat2 LBT,其CCA检测时长可以取[1us,43us]之间的正整数之一。M次Cat2 LBT可以是执行M次Cat2 LBT机制,或,M次中只要一次LBT成功的Cat2 LBT机制。
如果基站/UE执行LBT机制检测到当前信道空闲,则基站/UE发起一个MCOT。对于MCOT的开始,其下行/上行的传输方式,和/或,LBT机制参见上述实施例中提供的下行/上行连续传输情况下的信道接入方式,和/或,上述实施例提供的检测到信道忙的情况下的处理方式。
基站/UE传输beam方向可以根据LBT结果确定。基站/UE在检测到信道空闲的Beam方向上才可以进行传输。
在本公开实施例中,提供一种UE发起一个MCOT/TxOP情况下的信道接入方式。
对于UE发起MCOT的情况,UE在MCOT开始,采用Cat4 LBT机制。所述LBT的模式可以是全向的Cat4 LBT机制,或,多个beam方向的Cat4 LBT机制,或,宽beam方向的Cat4 LBT机制,或,单beam方向的Cat4 LBT机制。
若不同UE之间可以共享同一个MCOT,则在共享MCOT内,UE进行上行传输之前可以执行一个Cat2 LBT机制,或,M次Cat 2 LBT机制。如图9所示,图9为不同UE共享一个MCOT情况下的信道接入示意图一。所述UE在上行传输之前可以执行较高优先级的Cat4 LBT机制,或,Cat3 LBT机制,或,随机回退值N(不含defer period)的Cat4 LBT机制,或,随机回退值N(含defer period)的Cat4 LBT机制,或,M次Cat2 LBT机制,或,Cat2 LBT机制,或,defer period时长的LBT机制,或,上述LBT机制根据SCS等比例放缩的LBT机制。所述MCOT内共享UE执行的LBT机制,和/或,LBT模式,和/或,LBT检测位置可以是通过预定义的方式获取,和/或,物理层DCI信令指示,和/或,高层RRC信令指示。
在一种实施例中,共享MCOT的UE可以通过CCA检测图样,和/或,beam方向/信息,和/或,信道/信号识别来确定是否可以共享发起者UE的MCOT。例如,共享MCOT的UE配置相同的CCA检测图样,如,频域上偶数/奇数资源位置上不发送/空置/blank,在奇数/偶数资源位置上发送信号。又如,CCA检测图样可以采用SRS的梳齿结构。如果共享MCOT的UE在偶数/奇数频域资源上检测信道空闲,则认为信道可用,或,可用共享该MCOT。或者,如果共享MCOT的UE在偶数/奇数频域资源上检测信道空闲,且在奇数/偶数资源上检测信道忙/空闲,则认为信道可用,或,可用共享该MCOT。进一步地,共享MCOT的UE之间可以共享其MCOT内的上行传输起始位置,结束位置,CCA检测图样,CCA检测位置,SCS中至少之一信息。又如,共享MCOT的UE之间共享上行传输的beam方向等信息,以便于共享其他UE发起MCOT的UE可以识别是否当前MCOT是共享UE发起的。这种方式也同样适合于共享MCOT的基站。如果无法识别,则UE需要执行一个Cat4 LBT机制,发起一个新的MCOT。
与图9不同之处,图10是不同UE共享一个MCOT情况下的信道接入示意图二。第一类UE在MCOT开始之前,执行Cat4 LBT机制。如果检测信道空闲,则发起一个MCOT。在MCOT内,在奇数/偶数切换点处,UE执行LBT机制,和/或,LBT模式,和/或,LBT检测位置, 和/或,SCS可以由基站通过物理层DCI信令指示给UE。在一种实施例中,UE采用MCOT内传输采用的LBT方式进行信道接入,例如,不执行LBT,或,Cat2 LBT,或,M次LBT机制。
若不同UE之间不可以共享同一个MCOT,则可以采用图11中的信道接入方式。如图11所示,图11为不同UE不可共享一个MCOT情况下的信道接入示意图一。所述不可共享一个MCOT的UE是指,MCOT内与基站之间在调度资源上传输之前没有信息传递的UE。在一种实施例中,一个UE在开始进行传输之前,采用Cat4 LBT机制进行信道接入;如果检测到信道空闲,则该UE(标记为UE1,或第一类UE)发起一个MCOT。在该UE发起的MCOT内,上行之后,下行之前,如果上行和下行之前的gap小于或等于第一门限,则基站可以不执行LBT。如果上行之后,下行之前gap介于第一门限和第二门限之间,或,不小于第二门限值,则基站可以执行Cat2 LBT机制,或,M次Cat2 LBT。进一步地,另一个UE(例如,UE2,或,第二类UE,或,不可共享UE1或第一类UE发起MCOT的UE)在UE1或第一类UE发起MCOT内被调度,此时,该UE执行可以执行一个Cat4 LBT机制,或,高优先级等级的Cat4 LBT机制。如果检测信道空闲,则该UE发起一个新的MCOT。如果该UE(例如,UE2,或,第二类UE,或,不可共享UE1或第一类UE发起MCOT的UE)接收到基站通知的MCOT的信息,和/或,LBT机制,和/或,LBT模式,和/或,LBT位置,和/或,共享MCOT的指示信息,和/或,beam信息等,则UE可以不执行Cat4 LBT机制,或,执行一个Cat2 LBT机制,或,M个Cat2 LBT机制,或,Cat4 LBT机制。在一种实施例中,UE采用高优先级等级的Cat4 LBT机制,和/或,UE不重新发起一个MCOT。
若不同UE之间不可以共享同一个MCOT,则还可以采用图12中的信道接入方式。如图12所示,图12为不同UE不可共享一个MCOT情况下的信道接入示意图二。如果UE1在开始传输之前执行Cat4 LBT机制成功,则UE1发送一个MCOT/TxOP。UE2在UE1占用信道期间执行空闲信道评估,确定当前信道空闲,则UE2可以发起一个新的MCOT/TxOP。此时,如果UE2和UE1在重叠资源上采用的beam不同, 或,beam方向上干扰在允许范围内,则UE2和UE1可以在各自发起的MCOT/TxOP内进行传输。如果是UE1在MCOT/TxOP期间,信道被UE2抢占,则UE1放弃当前MCOT/TxOP内传输,或者,UE1与UE1共享MCOT/TxOP的设备可以尝试在MCOT/TxOP内候选的传输机会上继续进行信道接入。一般情况下,UE2发起一个新的MCOT/TxOP,需要执行LBT机制。在一种实施例中,UE2可以执行较高优先级的Cat4 LBT机制,或,Cat3 LBT机制,或,随机回退值N(不含defer period)的Cat4 LBT机制,或,随机回退值N(含defer period)的Cat4 LBT机制,或,M次Cat2 LBT机制,或,Cat2 LBT机制,或,defer period时长的LBT机制,或,上述LBT机制根据SCS等比例放缩的LBT机制。在一种实施例中,采用的LBT模式可以为单个beam方向的LBT模式,或,多个beam方向的LBT模式等。
在本公开实施例中,提供一种不同BWP/Subband上的信道接入方式。所述设备可以基站,或,终端UE。
根据LBT结果,确定设备传输所用的BWP/Subband。所述设备可以在每个BWP/Subband上执行LBT机制,或者,在所述BWP/Subband对应的带宽上执行LBT。所述LBT可以是全向的LBT机制,或,单个beam方向的LBT机制,或,多个beam方向的LBT机制。
对于设备在不同的BWP/Subband上采用全向的LBT机制,如果设备在所述L个BWP/Subband上检测到信道空闲,则设备可以在L个BWP/Subband中至少之一上进行传输。如果在L个BWP/Subband上检测到信道忙的BWP/Subband,则放弃当前在检测为忙的BWP/Subband上进行传输。进一步,在下一个候选的起始位置之前,继续执行LBT机制。
对于设备在不同的BWP/Subband上采用单beam方向的LBT机制,如果设备在所述L个BWP/Subband对应的beam方向上检测到信道空闲,则在检测到空闲的BWP/Subband上按照所述beam方向进行传输。反之,如果在L个BWP/Subband上对应的beam方向上检测到信道忙,则设备放弃当前在检测为忙的BWP/Subband上对应beam方向上进行传输。在一种实施例中,设备可以切换beam方向,或是,在多个beam 方向上同时执行LBT机制,如果在切换的beam方向上检测到信道空闲,则认为该BWP/Subband当前可用。
对于设备在不同的BWP/Subband上采用多个beam方向的LBT机制,如果设备在所述L个BWP/Subband上检测到的空闲beam方向的数目不小于1,则,设备可以在该BWP上检测空闲的beam方向上同时进行传输,或者,在BWP上检测空闲的beam方向中至少之一上进行传输。在一种实施例中,检测到多个beam方向都为信道空闲的情况下,设备选择beam内干扰最小的beam方向进行传输。
对于下一个资源,设备可以在当前激活的BWP/Subband上采用上述方式执行LBT机制。或者,设备可以在配置的L个BWP/Subband上采用上述方式执行LBT机制。
不同BWP/Subband上检测到信道为忙的处理方式,可以参考上述实施例中提供的检测到信道忙的情况下的处理方式。
举例说明,假定UE1的传输带宽标记为子带subband#1,也可以标记为BWP#1,UE2的传输带宽标记为子带subband#2,子带subband#3,也可以标记为BWP#2,UE3的传输带宽标记为子带subband#2,子带subband#3,子带subband#4,也可以标记为BWP#3。如图13所示,图13为基于BWP/Subband的LBT方式的示意图。所述subband以及subband LBT机制,subband LBT模式,beam方向,LBT开始时刻,LBT位置可以由以下至少之一确定:预定义,物理层DCI信令,高层RRC信令,MAC信令。所述UE1可以按照全向、单beam方向、多beam方向,宽beam方向模式在subband#1上执行LBT机制。如果UE1检测到信道空闲,则可以在subband#1上进行传输。反之,则可以按照上述实施例提供的检测到信道忙的情况下的处理方法。对于UE2,可以在subband#2,和,subband#3上同时执行多subband LBT。所述每个subband上可以采用不同的beam方向,或,相同的beam方向。UE2可以在各subband配置的beam方向上执行LBT检测,或,在多个beam方向上执行LBT机制。所述UE2仅在检测到信道空闲beam对应的方向上进行传输。当UE2在多个beam方向上执行LBT机制时,如果检测到空闲的beam方向的数目只有一个,则该 beam方向作为当前传输使用的beam方向。未检测到空闲的beam方向上,UE2不进行传输。如果检测到空闲的beam方向数目不小于1,则UE可以在检测到空闲的多个beam方向上进行传输,或,在检测到空闲的beam中信道状况最好的s个beam方向上进行传输。所述s为大于或等于1的正整数。对于UE3的处理过程与UE2相同。进一步地,如果UE2或UE3在配置的subband中存在执行LBT失败的subband,则UE2或UE3可以仅在执行LBT成功的subband上进行传输。所述UE执行LBT失败的处理均可以参考上述实施例中提供的检测到信道忙的情况下的处理方式。
对于UE发起MCOT情况,UE在MCOT外或开始之前,UE按照以下方式一至五中至少之一进行信道接入。
方式一:执行BWP的Cat4 LBT。
方式二:UE在各个subband上执行subband的Cat4 LBT机制。
方式三:UE在一个subband上采用subband的Cat4 LBT机制,其采用优先级等级A,其他subband上采用subband的Cat4 LBT机制,其采用高于优先级A的优先级等级。
方式四:UE在一个subband上采用subband的Cat4 LBT机制,在其他subband上采用subband的执行一个延迟期时长的LBT机制。
方式五:复用LAA中标准化的多个载波LBT方式,即一个载波上采用Cat4 LBT,其他载波上采用Cat2 LBT机制。
上述方式中,BWP或不同subband上采用的LBT模式可以不同,也可以相同。对于方式二,不同subband上可以配置相同的竞争窗大小(或相同的随机回退值N),和/或,采用相同的优先级等级,和/或,针对信道状况差的subband配置较小的随机回退值/回退窗。方式三和方式四中所述的一个subband可以通过以下至少之一方式确定:预定义,载波选择,物理层DCI信令指示,高层RRC信令指示,MAC层信令指示。
对于不同UE的BWP重叠情况,不同UE可以在各自的BWP上执行Cat4 LBT机制。为了实现不同UE之间的空间复用/重用,若不同UE采用beam方向进行传输,则不同UE可以采用基于beam方向的BWP  Cat4 LBT机制。
在一种实施例中,不同UE可以在各自的subband上执行多个subband的LBT。对于一个UE有多个subband的LBT可参见本公开中对应的方式。同样地,对于不同UE在同一个subband的情况,若不同UE采用beam方向进行传输,则不同UE可以在各自的beam方向上,或,多个beam方向上同时执行LBT机制,有利于提高信道接入概率,也有利于实现空间复用/重用。具体空间复用/重用方法,参见下文实施例。
同理地,对于MCOT内,UE可以采用Cat2 LBT机制,或,M次Cat2 LBT机制。
在本公开实施例中,还给出一种空间复用/重用的方式。在其中一种方式中,空间复用/重用主要侧重于描述设备之间在同一时刻采用不同beam方向进行传输的方式。所述设备包括基站,和/或,终端UE。
假定设备1采用beam index#1进行传输,在传输之前,设备1执行LBT机制判断当前信道的忙闲状况。如果检测到信道空闲,则设备1采用beam index#1进行传输。为了提高空间复用/重用效率/因子,期望其他设备在设备1采用beam index#1进行传输的同时,也可以采用其他beam index进行传输。
如果系统支持不同设备之间的空间复用/重用,则不同设备之间在同一个时刻配置不同的beam index。对于基站之间的空间复用/重用,在进行传输之前,基站之间需要进行信息交互。所述交互的信息内容为以下至少之一:beam index信息,时域资源信息(例如,时域pattern(图样)等),频域资源信息,SCS,MCOT的传输结构,子帧/slot结构,LBT机制,LBT位置,LBT模式。对于UE之间的空间复用/重用,基站可以通过物理层DCI信令,高层RRC信令,MAC层信令中至少之一通知UE所述传输beam index信息,时域资源信息(例如,时域pattern等),频域资源信息,SCS,MCOT的传输结构,子帧/slot(时隙)结构。或者,不同基站/UE之间的beam index信息是预先配置好的。
基于上述方式,基站/UE在传输之前,在所述beam方向上执行LBT机制。如果检测到所述beam方向上信道空闲,则所述基站/UE按照beam方向进行传输。
在一种实施例中,如果基站/UE在传输之间没有进行信息交互,则在传输之前可以在对应的beam方向上执行LBT机制,或者,可以在多个beam方向上同时执行LBT机制。基站/UE可以在检测到信道空闲的beam方向上进行传输。或者,在检测到信道空闲且干扰最小的beam方向上进行传输。复用的设备可以执行Cat2 LBT机制,或者,M次Cat2 LBT机制。复用的设备也可以执行Cat4 LBT机制。
如果不同基站/UE配置相同的beam方向,则为了提升空间重用因子,基站/UE在所述beam方向上检测到干扰水平或是能量大于或等于第一检测门限值,且小于或等于第二检测门限值,则认为基站/UE检测信道为空闲。
举例说明,设备之间在没有信息交互情况下的复用方式。如图14所示,图14为不同UE空间复用/重用的示意图。假定UE1被调度在资源#1,资源#2,资源#3,资源#4上,且依次采用的beam方向为index#1,index#1,index#2,index#3。UE2被调度在资源#2,资源#3,资源#4,且依次采用的beam方向为index#2,index#2,index#4。如果UE1在传输之前执行LBT检测信道空闲,则在资源#1上采用beam index#1进行传输。一般情况下,UE1在资源#2上进行传输之前可以不执行LBT,直接在beam#1对应的beam方向进行传输。UE1在资源#2上进行传输之前,可以执行一个快速的LBT机制。UE1预留或空闲执行LBT机制的时域和/或频域资源,这样也有利于空间复用的UE进行空闲信道评估。在资源#2上,UE2在传输之前需要执行一个LBT机制,判断beam index#2方向上的信道空闲状况。所述UE2可以执行一个快速的LBT机制,例如,Cat2 LBT机制,或,M次Cat2 LBT机制。在一种实施例中,在UE1和UE2不可用共享一个MCOT的情况下,UE2需要在资源#2上进行传输之前执行Cat4 LBT机制。在一种实施例中,UE2可以执行一个较高优先级等级的Cat4 LBT机制。在资源#3上,UE1和UE2采用相同的beam方向,则UE1和UE2 需要采用基于单beam方向的LBT机制。在一种实施例中,UE1和UE2执行LBT的时域位置可以不同。例如,UE1执行LBT时刻早于UE2执行LBT的时刻。此时,UE2/UE1检测到的能量/干扰大于或等于第一检测门限值,且小于或等于第二检测门限值,则认为UE1/UE2检测到信道为空闲。另一种方式,UE1和UE2执行LBT的位置和/或时刻相同。依次类推,在后续资源上传输可以采用上述方式。在一种实施例中,所述UE执行LBT操作,可以是基站通过动态信令指示。本公开实施例给出的空间复用/重用的方式也适用于基站侧空间复用/重用。
另一个例子,设备之间在有信息交互情况下的复用方式。假定是基站之间空间复用/重用,则基站在进行传输之前,先进行信息交互。所述交互的信息内容为以下至少之一:beam index信息,时域资源信息(例如,时域pattern等),频域资源信息,SCS,MCOT的传输结构,子帧/slot结构,LBT机制,LBT位置,LBT模式。例如,不同基站将自身在哪些资源上对应的传输beam index信息告诉周围基站。或者,不同基站将自身在哪些资源上对应的不适用的beam index信息告诉周围基站。在一种实施例中,基站可以将所属信息通知给UE。基于交互的信息,基站/UE在对应的资源上进行传输之前执行LBT机制,在检测到空闲的beam方向上进行传输。在一种实施例中,基站可以动态指示在当前传输之前是否需要执行LBT机制,和/或,LBT机制模式,和/或,LBT位置。
在另一种方式中,同运营商下的设备间配置相同的beam方向pattern。或,同小区下不同UE配置不同的beam方向pattern。或,不同运营商间配置不同的beam方向pattern。所述设备可以在配置的beam pattern中至少之一个beam方向上执行LBT机制。如果检测到空闲,则可以在检测到空闲的beam中至少之一上进行传输。对于采用相同beam方向的设备,可以配置相同的LBT检测位置。在一种实施例中,为了提高空间复用/重用因子,可以采用双检测门限方法。也可以根据采用相同beam方向的设备的优先级,或者,根据其设备传输信号/信道的优先级,配置不同的LBT检测机制,和/或,配置不同LBT检测开始位置。
本公开实施例还提供一种信息传输的装置,包括:传输模块,配置为在配置的资源上进行信息传输。
如图15所示,本公开实施例还提供一种信息传输的设备,包括存储器201、处理器202及存储在存储器201上并可在处理器202上运行的计算机程序203,所述处理器202执行所述计算机程序203时实现所述信息传输的方法。
本公开实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行所述信息传输的方法。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (27)

  1. 一种信息传输的方法,包括:
    设备在配置的资源上进行信息传输。
  2. 如权利要求1所述的方法,其中,所述设备在配置的资源上进行信息传输之前,还包括:
    所述设备按照特定的LBT机制和特定的LBT模式中的至少之一进行空闲信道检测。
  3. 如权利要求1所述的方法,其中,所述设备在配置的资源上进行信息传输包括:
    所述设备在配置的资源上采用相同的beam波束方向进行信息传输。
  4. 如权利要求3所述的方法,其中,所述设备在配置的资源上采用相同的beam波束方向进行信息传输,包括:
    所述设备在资源n上检测信道空闲且采用beam方向i进行信息传输,在资源n+1或后续的配置资源上,设备不执行空闲信道检测,和/或,采用beam方向i进行信息传输。
  5. 如权利要求1所述的方法,其中,所述设备在配置的资源上进行信息传输包括:
    所述设备在配置的资源上采用的beam方向发生切换,或,采用不同的beam波束方向进行信息传输。
  6. 如权利要求5所述的方法,其中,所述设备在配置的资源上采用的beam方向发生切换,或,采用不同的beam波束方向进行信息传输,包括:
    在不同beam方向对应的资源上进行传输之前,或,在切换的 beam方向对应的资源上进行传输之前,所述设备按照特定的LBT机制和特定的LBT模式中的至少之一进行空闲信道检测;
    如果检测到信道空闲,则所述设备在配置的资源上采用当前资源对应的beam方向,或,切换后的beam波束方向进行传输。
  7. 如权利要求1所述的方法,其中,所述设备在配置的资源上进行信息传输之前,包括:
    所述设备采用基于单beam方向的LBT机制进行空闲信道检测;
    若检测到信道空闲,则所述设备在配置的资源上采用检测到信道空闲的beam方向进行信息传输。
  8. 如权利要求1所述的方法,其中,所述设备在配置的资源上进行信息传输之前,包括:
    对于所述设备采用基于单beam方向的LBT机制进行空闲信道检测:
    若检测到信道忙,则所述设备放弃在当前资源上进行信息传输;或者,
    若检测到信道忙,则所述设备在下一个候选传输起始位置之前,继续按照之前的LBT模式和LBT机制中的至少之一进行空闲信道检测;或者,
    若检测到信道忙,则所述设备更换执行LBT机制的beam波束方向和LBT机制、LBT模式中的至少之一,重新尝试进行空闲信道检测;或者,
    若检测到信道忙,则所述设备采用比前一次简化的LBT机制进行空闲信道检测,或,采用快速的LBT机制进行空闲信道检测。
  9. 如权利要求1所述的方法,其中,所述设备在配置的资源上进行信息传输之前,还包括:
    对于所述设备采用基于多个beam方向的LBT机制进行空闲信道检测的情况:
    若检测到信道空闲的beam波束方向,则所述设备在配置的资源上采用检测到信道空闲的beam方向进行信息传输;或者,
    若检测到信道空闲的beam波束方向中包含配置资源上对应的beam波束方向,则按照配置资源上对应的beam波束方向进行信息传输;或者,
    若检测到信道空闲的beam波束方向的数目大于或等于1,则在配置的资源上采用检测到信道空闲的beam方向上同时进行信息传输;或者,
    若检测到信道空闲的beam波束方向的数目大于或等于1,则在检测到信道空闲的beam方向中按照特定规则选择一个beam方向进行信息传输。
  10. 如权利要求1所述的方法,其中,所述设备在配置的资源上进行信息传输之前,还包括:
    对于所述设备采用基于多个beam方向的LBT机制进行空闲信道检测情况:
    若检测到信道忙,则所述设备放弃在当前资源上进行传输;或者,
    若检测到信道忙,则所述设备在下一个候选传输起始位置之前,继续按照之前的LBT模式和LBT机制中的至少之一进行空闲信道检测;或者,
    若检测到信道忙,则所述设备更换执行LBT的beam波束方向,重新尝试进行空闲信道检测;或者,
    若检测到信道忙,则所述设备在下一个候选传输起始位置之前,在多个beam方向上采用比前一次简化的LBT机制,或,快速的LBT机制进行空闲信道检测。
  11. 如权利要求1至10中任意一项所述的方法,其中,所述设备在配置的资源上进行信息传输,包括:
    所述设备在配置的资源上采用多个beam方向进行传输,或者, 所述设备在配置的资源上采用基于多个beam方向的LBT机制进行空闲信道检测,所述设备在当前资源上进行信息传输采用的beam方向包含后续资源中至少之一资源上对应的beam方向,或者,在配置的资源上采用多个beam方向同时传输的beam数目是随着资源索引递增的顺序而呈现递减趋势。
  12. 如权利要求1至10中任意一项所述的方法,其中,所述方法还包括:
    在配置的资源上进行信息传输期间,若所述设备接收到动态指示信令,则所述设备执行空闲信道检测。
  13. 如权利要求12所述的方法,其中,所述动态指示信令包括以下至少之一信息:
    触发执行空闲信道检测,指示LBT机制,指示LBT模式,触发信令位置与执行空闲信道检测/传输资源之间的定时关系,LBT的起始位置,LBT占用的符号数目;子载波间隔SCS,beam方向,是否支持beam切换指示,是否支持部分符号指示,候选的数据传输起点或集合,执行LBT的优先级等级,LBT机制对应的参数集合中至少之一参数。
  14. 如权利要求1所述的方法,其中,所述设备在配置的资源上进行信息传输之前,包括:
    所述设备按照特定的LBT机制和特定的LBT模式中的至少之一进行空闲信道检测,若检测到信道空闲,则所述设备发起一个MCOT或TxOP,或,进行信息传输。
  15. 如权利要求14所述的方法,其中,包括:
    在MCOT内,在上行和下行之间的切换点,下行和上行之间的切换点中至少之一的切换点处,所述设备按照特定规则,特定的LBT机制,特定的LBT模式中至少之一进行空闲信道检测。
  16. 如权利要求15所述的方法,其中,所述特定规则,包括以下至少之一:
    如果下行和上行之间的gap,上行和下行之间的gap中至少之一小于或等于第一门限,所述设备不执行LBT机制或不进行空闲信道检测;
    如果下行和上行之间的gap,上行和下行之间的gap中至少之一小于或等于第二门限,或,大于或等于第一门限且小于或等于第二门限,所述设备执行Cat2 LBT机制,或,M次Cat2 LBT机制;
    如果下行和上行之间的gap,上行和下行之间的gap中至少之一大于第二门限,所述设备执行与发起MCOT时相同LBT机制,或,更高优先级等级的LBT机制;
    在下行和上行之间的切换点,上行和下行中之间的切换点中至少之一的切换点处,所述设备执行Cat2 LBT机制,或,M次Cat2 LBT机制;
    在下行和上行之间的切换点,上行和下行之间的切换点中至少之一的切换点处,所述设备采用与发起MCOT时相同LBT机制;
    在下行和上行之间的切换点,上行和下行之间的切换点中至少之一的切换点处,所述设备采用与发起MCOT时更高优先级等级的LBT机制;
    在下行和上行之间的切换点,上行和下行之间的切换点中至少之一的切换点处,所述设备根据传输的业务类型,或,业务类型/信道/信道优先级确定采用的LBT机制;
    在下行和上行之间的切换点,上行和下行之间的切换点中至少之一的切换点处,所述设备根据传输的时域/子帧/时隙结构确定LBT机制;
    当在下行和上行之间的切换点,上行和下行之间的切换点中至少之一的切换点处执行Cat2 LBT机制的次数超过特定门限时,在下一个切换点处,所述设备执行特定的LBT机制;
    当在下行和上行之间的切换点,上行和下行之间的切换点中至 少之一的切换点数目大于特定门限时,所述设备执行特定的LBT机制。
  17. 如权利要求16所述的方法,其中,所述第一门限,第二门限,传输的时域/子帧/时隙结构,切换点数目,特定门限,传输的时域/子帧/时隙结构与LBT机制/LBT机制优先级等级之间的关系,gap时长,切换点起始位置,切换点结束位置,执行Cat2 LBT机制的次数,LBT模式,LBT机制,LBT的起始位置,LBT占用的符号数目,子载波间隔SCS,beam方向,beam切换指示,是否支持部分符号指示,候选的数据传输起点或集合,LBT的优先级等级,LBT机制对应的参数集合以及M中的至少之一,通过以下至少之一方式获取:
    预定义方式、物理层DCI信令指示、高层RRC信令指示、MAC信令指示。
  18. 如权利要求16所述的方法,其中,所述切换点数目,或,MCOT内允许执行Cat2 LBT机制的次数,或,M通过以下至少之一获取:
    根据MCOT/Txop时长确定;
    根据MCOT/Txop内允许的gap时长确定;
    根据调度单元的数目/结构确定;
    根据SCS确定;
    根据MCOT/Txop时长与gap之间的比例确定。
  19. 如权利要求2或6或8或10或13或14或15或17所述的方法,其中,所述特定的LBT模式包括以下至少之一:
    全向的LBT模式;
    多个beam方向的LBT模式;
    宽beam方向的LBT模式;
    单beam方向的LBT模式。
  20. 如权利要求2或6或8或10或13或14或15或17中任意一项所述的方法,其中,所述特定的LBT机制包括以下至少之一:
    Cat4 LBT机制;
    Cat2 LBT机制;
    M次Cat2 LBT机制;
    较高优先级的Cat4 LBT机制;
    Cat3 LBT机制;
    随机回退值N的Cat4 LBT机制;
    defer period时长的LBT机制;
    上述机制中至少之一根据SCS等比例放缩的LBT机制;
    其中,所述M和所述N均为正整数。
  21. 如权利要求1所述的方法,其中,所述方法还包括:不同设备复用配置的资源进行信息传输;
    在配置的资源上进行传输的不同设备之间采用不同的beam index,或,同时在多个beam index上执行空闲信道评估。
  22. 如权利要求21所述的方法,其中,
    若不同设备采用相同的beam index,则设备在所述beam方向上按照第一检测门限值,第二检测门限值中至少之一进行信道的空闲检测。
  23. 如权利要求1所述的方法,其中,所述方法还包括:不同设备复用配置的资源进行信息传输;
    不同的所述设备在配置的资源上进行信息传输之前,进行信息交互。
  24. 如权利要求23所述的方法,其中,所述交互的信息,包括以下至少之一:
    beam index信息,时域资源信息,时域pattern,频域资源信 息,SCS,MCOT的传输结构,子帧/slot结构,LBT机制,LBT位置,LBT模式。
  25. 一种信息传输的装置,包括:
    传输模块,配置为在配置的资源上进行信息传输。
  26. 一种信息传输的设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至24中任意一项所述信息传输的方法。
  27. 一种计算机可读存储介质,其上存储有计算机程序,当所述计算机程序被执行时实现根据权利要求1至24中任意一项所述信息传输的方法。
PCT/CN2019/106680 2018-09-21 2019-09-19 信息传输的方法、装置、设备和存储介质 WO2020057600A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19863310.9A EP3855831A4 (en) 2018-09-21 2019-09-19 METHOD, DEVICE AND APPARATUS FOR TRANSMITTING INFORMATION, AND MEDIA
US17/294,639 US20210410187A1 (en) 2018-09-21 2019-09-19 Information transmission method and device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811110863.9 2018-09-21
CN201811110863.9A CN110536432A (zh) 2018-09-21 2018-09-21 一种信息传输的方法、装置和设备

Publications (1)

Publication Number Publication Date
WO2020057600A1 true WO2020057600A1 (zh) 2020-03-26

Family

ID=68657403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106680 WO2020057600A1 (zh) 2018-09-21 2019-09-19 信息传输的方法、装置、设备和存储介质

Country Status (4)

Country Link
US (1) US20210410187A1 (zh)
EP (1) EP3855831A4 (zh)
CN (1) CN110536432A (zh)
WO (1) WO2020057600A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111669240A (zh) * 2020-05-15 2020-09-15 中国信息通信研究院 一种支持方向性先听后发传输方法、设备和系统
WO2022153241A1 (en) * 2021-01-14 2022-07-21 Lenovo (Singapore) Pte. Ltd. Configuring channel occupancy sharing
EP4050963A4 (en) * 2021-01-15 2023-01-11 Lg Electronics Inc. METHOD FOR PERFORMING CHANNEL ACCESS PROCEDURE AND ASSOCIATED APPARATUS
WO2023050453A1 (en) * 2021-10-02 2023-04-06 Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd User equipment, base station, and method for lbt mode determination during beam switching

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210345314A1 (en) * 2018-10-24 2021-11-04 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for channel detection on unlicensed frequency spectrum, and storage medium
US20220078841A1 (en) * 2019-01-09 2022-03-10 Nokia Technologies Oy Uplink operation for listen before talk
US11895699B2 (en) * 2019-02-11 2024-02-06 Qualcomm Incorporated Listen-before-talk (LBT) type and gap signaling for back-to-back grants and multi-transmission time interval (multi-TTI) grants
JP7289366B2 (ja) * 2019-03-20 2023-06-09 北京小米移動軟件有限公司 チャネル検出メカニズムの決定方法、装置、機器及び記憶媒体
US11882461B2 (en) * 2019-07-08 2024-01-23 Qualcomm Incorporated Bidirectional listen-before-talk operation
US11696333B2 (en) 2019-12-20 2023-07-04 Qualcomm Incorporated Beam sweep based random access msg 1 and msg 2
KR20220140782A (ko) 2020-02-14 2022-10-18 지티이 코포레이션 상이한 우선순위 레벨을 갖는 서비스의 다중화 방법
US11743742B2 (en) * 2020-03-31 2023-08-29 Qualcomm Incorporated Beam sweep based random access msg 3 and msg 4
CN113541830B (zh) * 2020-04-17 2022-09-23 大唐移动通信设备有限公司 空闲信道检测方法、装置、电子设备和存储介质
US11864164B2 (en) * 2020-05-18 2024-01-02 Qualcomm Incorporated Multiple beam monitoring and transmitting in a wireless medium
WO2022104745A1 (zh) * 2020-11-20 2022-05-27 北京小米移动软件有限公司 通信方法、通信装置及存储介质
CN115696270A (zh) * 2021-07-21 2023-02-03 展讯通信(上海)有限公司 一种通信方法及相关装置
KR102647031B1 (ko) * 2022-01-07 2024-03-13 엘지전자 주식회사 비면허 대역에서 신호를 송수신하는 방법 및 이를 위한 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106658718A (zh) * 2015-10-30 2017-05-10 中国电信股份有限公司 提升laa上行传输性能的方法以及系统
CN107734560A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 信号传输方法、通信设备及通信系统
CN107889113A (zh) * 2016-09-30 2018-04-06 北京三星通信技术研究有限公司 在非授权频段上的载波监测和信号发送方法与设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455117B (zh) * 2015-08-07 2021-07-23 中兴通讯股份有限公司 一种竞争接入方法和装置
US10917913B2 (en) * 2015-10-26 2021-02-09 Intel IP Corporation Apparatus, system and method of communication based on clear channel assessment (CCA) in one or more directions
WO2018016921A1 (ko) * 2016-07-21 2018-01-25 엘지전자 주식회사 무선 통신 시스템에서 기지국과 단말 간 하향링크 제어 정보를 송수신하는 방법 및 이를 지원하는 장치
WO2018045307A1 (en) * 2016-09-02 2018-03-08 Intel IP Corporation Paging with unified single and multi-beam operation support in new radio
CN107888256B (zh) * 2016-09-30 2022-12-02 中兴通讯股份有限公司 数据传输、接收方法、装置、基站及终端
CN108024363B (zh) * 2016-11-04 2023-05-23 中兴通讯股份有限公司 一种干扰处理方法及装置
EP3585123B1 (en) * 2017-02-16 2023-02-01 LG Electronics Inc. Method for signal transmission/reception between base station and terminal in wireless communication system supporting unlicensed band, and apparatus supporting same
US10368301B2 (en) * 2017-02-21 2019-07-30 Qualcomm Incorporated Multi-beam and single-beam discovery reference signals for shared spectrum
US11457475B2 (en) * 2018-02-14 2022-09-27 Idac Holdings, Inc. Methods, apparatus, and system using multiple antenna techniques for new radio (NR) operations in unlicensed bands

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106658718A (zh) * 2015-10-30 2017-05-10 中国电信股份有限公司 提升laa上行传输性能的方法以及系统
CN107734560A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 信号传输方法、通信设备及通信系统
CN107889113A (zh) * 2016-09-30 2018-04-06 北京三星通信技术研究有限公司 在非授权频段上的载波监测和信号发送方法与设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3855831A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111669240A (zh) * 2020-05-15 2020-09-15 中国信息通信研究院 一种支持方向性先听后发传输方法、设备和系统
CN111669240B (zh) * 2020-05-15 2022-07-19 中国信息通信研究院 一种支持方向性先听后发传输方法、设备和系统
WO2022153241A1 (en) * 2021-01-14 2022-07-21 Lenovo (Singapore) Pte. Ltd. Configuring channel occupancy sharing
EP4050963A4 (en) * 2021-01-15 2023-01-11 Lg Electronics Inc. METHOD FOR PERFORMING CHANNEL ACCESS PROCEDURE AND ASSOCIATED APPARATUS
JP7490776B2 (ja) 2021-01-15 2024-05-27 エルジー エレクトロニクス インコーポレイティド チャネル接続手順を行う方法及びそのための装置
WO2023050453A1 (en) * 2021-10-02 2023-04-06 Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd User equipment, base station, and method for lbt mode determination during beam switching

Also Published As

Publication number Publication date
EP3855831A1 (en) 2021-07-28
EP3855831A4 (en) 2023-01-25
US20210410187A1 (en) 2021-12-30
CN110536432A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2020057600A1 (zh) 信息传输的方法、装置、设备和存储介质
CN106455117B (zh) 一种竞争接入方法和装置
EP3818768B1 (en) Method and user equipment for performing random access channel procedure for unlicensed operation
US10536973B2 (en) Preamble transmission method and apparatus
US10736148B2 (en) Random access method, random access device, and terminal
US11452134B2 (en) Channel access method and device, storage medium, terminal, and base station
CN102291837B (zh) 一种周期性srs的处理方法和设备
EP3253165A1 (en) Processing method and device for discovery signal
WO2017024988A1 (zh) 信息处理方法、装置及系统
US20180070244A1 (en) Method for Detecting Signal on Unlicensed Spectrum Channel, User Equipment, and Base Station
EP3346793A1 (en) Method and apparatus for transmitting data in wireless communication system
WO2017025004A1 (zh) 一种竞争接入方法和装置
US20230199735A1 (en) Methods and systems for coverage enhancement in wireless networks
KR102656607B1 (ko) 비면허 대역에서의 다중 채널을 이용한 통신 방법 및 장치
US20220279576A1 (en) Method and device for managing channel occupancy duration of unlicensed frequency band
CN113728718A (zh) 非授权带宽部分的随机接入过程
CN112889338A (zh) 通信系统中的随机接入
CN113973395A (zh) 随机接入方法、配置方法及相关设备
CN112437495A (zh) 随机接入的传输方法及设备
EP3086621B1 (en) Data transmission processing method and apparatus
CN113692759B (zh) 信息发送、接收方法、装置、设备及存储介质
CN109076350B (zh) 一种基于授权辅助接入laa系统的上行传输方法及装置
WO2016165365A1 (zh) 非授权载波的抢占方法、基站及系统
EP3811664B1 (en) Wireless communication with conflict avoidance
CN115699953A (zh) 免许可频谱中装置之间的通信

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019863310

Country of ref document: EP

Effective date: 20210421