WO2020057543A1 - 基于芳硝基的连接子、含连接子的抗体偶联药物及连接子的用途 - Google Patents
基于芳硝基的连接子、含连接子的抗体偶联药物及连接子的用途 Download PDFInfo
- Publication number
- WO2020057543A1 WO2020057543A1 PCT/CN2019/106418 CN2019106418W WO2020057543A1 WO 2020057543 A1 WO2020057543 A1 WO 2020057543A1 CN 2019106418 W CN2019106418 W CN 2019106418W WO 2020057543 A1 WO2020057543 A1 WO 2020057543A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cancer
- formula
- compound
- certain embodiments
- compound represented
- Prior art date
Links
- 0 CC(C=C(C=C1)N(C)*)(C(C)=C1I)O Chemical compound CC(C=C(C=C1)N(C)*)(C(C)=C1I)O 0.000 description 3
- BUBUEUAUHPJRKS-UHFFFAOYSA-N [O-][N+](c(cc1)ccc1OC(OCc(cc1C(NCCNC(CCCCCN(C(C=C2)=O)C2=O)=O)=O)ccc1[N+]([O-])=O)=O)=O Chemical compound [O-][N+](c(cc1)ccc1OC(OCc(cc1C(NCCNC(CCCCCN(C(C=C2)=O)C2=O)=O)=O)ccc1[N+]([O-])=O)=O)=O BUBUEUAUHPJRKS-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Definitions
- the present application belongs to the field of medicinal chemistry, and particularly relates to an arylnitro-based linker, an antibody coupling drug containing the linker and the use of the linker, and also relates to a pharmaceutical composition containing the antibody coupling drug, and also to these antibody coupling drugs Use for treating and / or preventing diseases.
- Antibody-drug conjugate realizes the combination of monoclonal antibody drugs and the advantages of small molecule cytotoxins. It structurally includes three antibodies: antibody, cytotoxin and linker. The component is that it specifically targets tumors through antibodies, and then releases cytotoxins to further kill tumor cells. ADC has overcome the resistance of monoclonal antibodies to a certain extent. Because the onset of ADC mainly depends on the cytotoxin carried by the antibody, and the biological effect mediated by the antibody is unnecessary, even if the antigen is mutated to some extent, it will not affect the effectiveness of ADC.
- the classic ADC drug Kadcyla which treats HER2 + breast cancer that is resistant to naked anti-Herceptin, can extend the overall survival time by 6 months compared to standard treatments.
- Another clinical study showed a 50% reduction in the incidence of grade 3 adverse reactions in the Kadcyla-treated group compared to the standard-therapy chemotherapeutic group.
- ADC reduces the toxicity and enhances the efficacy, and the therapeutic index is greatly improved compared with conventional chemotherapy drugs.
- ADC is expected to make breakthroughs in the treatment of tumor diseases.
- ADC The success of an ADC depends not only on the optimization of each component, but also on the reasonable matching and integration of each component.
- the three components of ADC play different roles, so ADC also has different requirements for its three components: ADC antibodies need to meet specific tumor targeting, and have appropriate affinity and internalization Performance; ADC toxins need to meet the requirements of high toxicity, clear mechanism of action, can be coupled, etc .; ADC has two basic requirements for the linker: the first is to ensure the stability of ADC in the blood circulation system, the second It is guaranteed that ADC can release toxins quickly and effectively after reaching the tumor.
- ADC is a long-acting biopharmaceutical.
- the administration period is usually 2-3 weeks / times.
- the linker perfectly achieves the two basic requirements of long-term stability of the circulatory system and rapid release of target tissues. Difficulty.
- ADC linkers can be divided into two categories: cleavable linkers and non-cleavable linkers. Among them, cleavable linkers can be further divided into enzyme cleavable linkers and chemically Cleavable linker. ADCs containing cleavable linkers can usually release free toxins to work, while ADCs containing non-cleavable linkers do not break the covalent bond between the linker and the toxin when they are active. Enzymatically cleavable linkers have a relatively broad spectrum of use and higher drug release selectivity, and have become the most widely used tools in ADC drug development.
- the cleavage of mainstream enzyme-cleavable linkers involves only cathepsin B and ⁇ -glucuronidase, both of which are ubiquitous non-tumor-specific lysosomal enzymes that selectively act on dipeptides, respectively. Fragments or glucuronic acid groups drive the release of toxins by catalyzing the cleavage of linkers in ADCs.
- the most widely used enzyme-cleavable linker is the more mature dipeptide-type linker.
- Existing ADC-releasing enzymes such as tissue protease B or ⁇ -glucuronidase, are commonly found in the lysosomes of most mammalian cells.
- Drug enzymes can degrade ADC and release high-killing cytotoxins (such as MMAE), causing toxicity to normal tissues; meanwhile, the released non-ionic free cytotoxins can further penetrate the cell membrane through the bystander effect Causes systemic toxicity to surrounding normal tissues.
- high-killing cytotoxins such as MMAE
- ADC drugs have been noticeably improved compared to traditional chemotherapeutics, the proportion of ADC drugs that can actually reach tumor tissues after administration of ADC is less than 1%. How to reduce the safety hazards caused by the ubiquitous and unavoidable off-targets of highly toxic cytotoxins will become one of the core issues facing ADC R & D. Increasing the selectivity of the ADC enzyme interpretation drug process to tumor tissues is expected to solve or improve the above problems.
- the design of a novel enzymatic linker that selectively cleaves only in tumor tissue can avoid or reduce the release of off-target cytotoxins in normal tissues or cells, which can reduce the systemic toxicity generated during the ADC medication process and further improve the ADC treatment. index.
- the present application relates to a compound represented by Formula I or a salt thereof,
- R 2 is halogen (e.g. fluorine, chlorine, bromine, iodine) or Wherein R 4 is hydrogen, fluorine, chlorine, bromine, iodine, C 1-4 alkyl, nitro or C 1-4 alkoxy, and p is 0, 1, 2, 3 or 4;
- R 3 is hydrogen, fluorine, chlorine, bromine, iodine, C 1-4 alkyl, nitro or C 1-4 alkoxy;
- r 0, 1, 2, 3, or 4;
- Ar is an aryl group, a heteroaryl group, an arylheterocyclic group or a heteroaromatic heterocyclic group, preferably a five- or six-membered aryl or heteroaryl group; preferably, the nitro group on Ar and Z are in an aromatic system And, more preferably, when Ar is a six-membered aryl or heteroaryl group, the nitro group on Ar is in para or ortho position with Z;
- L 1 is selected from:-(CH 2 ) m -,-(CH 2 ) m O-,-(CH 2 ) m NH-,-(CH 2 ) m C (O)-,-(CH 2 CH 2 O ) n -,-(CH 2 CH 2 O) n- (CH 2 ) m -,-(CH 2 ) m- (CH 2 CH 2 O) n- , -O-, -NH-, -S-, -NCH 3- , -NH (CH 2 ) m- , -C (O)-, Where each m is independently 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12, and each n is independently 0, 1, 2, 3, 4 , 5, 6, 7, 8, 9, 10, 11 or 12, and m and n are not 0 at the same time; R 5 is hydrogen, fluorine, chlorine, bromine, iodine, C 1-4 alkyl, nitro or C 1-4 alkoxy, q is 0, 1, 2, 3
- L 2 is selected from: -C (O) NH (CH 2 ) i NH-, -NH (CH 2 ) i NH-, -NH (CH 2 ) i C (O)-, -C (O) (CH 2 ) i NH-, -NH (CH 2 ) i O-, -NH (CH 2 ) i S-, -N (CH 3 ) (CH 2 ) i NH-, -N (CH 3 ) (CH 2 ) i N (CH 3 )-,-O (CH 2 ) i NH-,-C (O) NH-CH [(CH 2 ) d -NHC (O)-(CH 2 CH 2 O) e- (CH 2 ) f -CH 3 ]-,-O (CH 2 ) i C (O)-,-O (CH 2 ) i O-,-O (CH 2 ) i S-, -O-, -NH-, -
- X is selected from: -C (O)-, -O-, -NH-, -NCH 3- , -CH 2 O-, -CH (CH 3 ) O-, -C (CH 3 ) 2 O-,- CH 2 NH-, -CH (CH 3 ) NH-, -C (CH 3 ) 2 NH-, -S-, -S (O)-or -S (O) 2- ;
- Z is -CH 2- , -CH (CH 3 )-or -C (CH 3 ) 2- .
- L 2 is selected from: -C (O) NH (CH 2 ) i NH-, -NH (CH 2 ) i NH-, -NH (CH 2 ) i C (O)-,-C (O) (CH 2 ) i NH-,-NH (CH 2 ) i O-,-NH (CH 2 ) i S-,-N (CH 3 ) (CH 2 ) i NH-, -N (CH 3 ) (CH 2 ) i N (CH 3 )-, -O (CH 2 ) i NH-, -O (CH 2 ) i C (O)-, -O (CH 2 ) i O-, -O (CH 2 ) i S-, -O-, -NH-, -S-, -S (O)-, -S (O) 2- , -NCH 3- , -NH (CH 2 ) 2 NH-, -S-, -S (O
- L 2 is -C (O) NH-CH [(CH 2 ) d -NHC (O)-(CH 2 CH 2 O) e- (CH 2 ) f -CH 3 ]-, where d is 1, 2, 3 , 4, 5, or 6; e is 1, 2, 3 , 4, 5, 6, 7, 8, 9, 10, 11 or 12; f is 1, 2, 3, 4, 5, or 6.
- a compound represented by Formula I has a structure represented by Formula Ia,
- R 1 , R 2 , R 3 , r, L 1 , L 2 , X, Z are as described in this application.
- a compound represented by Formula I has a structure represented by Formula Ib,
- R 1 , R 2 , R 3 , r, L 1 , L 2 , X, Z are as described in this application.
- R 1 is
- R 1 is
- R 1 is
- R 1 is
- R 1 is
- R 2 is Wherein R 4 and p are as defined in the present application.
- R 2 is Wherein R 4 is hydrogen, fluorine, chlorine, bromine, iodine, C 1-4 alkyl, nitro or C 1-4 alkoxy, and p is 0, 1, 2, 3, or 4; further preferably, R 4 Is hydrogen, fluorine, chlorine, bromine, iodine, nitro, methyl, ethyl, methoxy, or ethoxy, and even more preferably, p is 0 or 1.
- R 4 is hydrogen
- R 4 is fluorine, chlorine, bromine, or iodine.
- R 4 is nitro
- R 4 is methyl or ethyl.
- R 4 is methoxy or ethoxy.
- p is 1.
- p is 2.
- p is 3.
- p is 4.
- Ar is a benzene ring.
- the nitro group on Ar is in the para ortho position with Z.
- the nitro group on Ar is in the para position with Z.
- R 3 is hydrogen, fluorine, chlorine, bromine, iodine, methoxy, ethoxy, propoxy, methyl, ethyl , N-propyl or isopropyl.
- R 3 is hydrogen
- R 3 is fluorine, chlorine, bromine, or iodine.
- R 3 is methoxy or ethoxy.
- R 3 is propoxy
- R 3 is methyl or ethyl.
- R 3 is n-propyl or isopropyl.
- r is 0 or 1.
- r is 1.
- r is 2.
- r is 3.
- r is 4.
- L 1 is-(CH 2 ) m -or Where m is 4, 5, 6, or 7.
- L 1 is-(CH 2 ) m- , wherein m is as defined in the present application.
- each m is independently 1 or 2.
- each m is independently 3 or 4.
- each of m in the compound represented by Formula I, Formula Ia, or Formula Ib is independently 5.
- each m is independently 6 or 7.
- each m is independently 8 or 9.
- each m is independently 10, 11, or 12.
- L 1 is
- L 1 is-(CH 2 ) m O-,-(CH 2 ) m NH-, or-(CH 2 ) m C (O )-, Where each m is defined as described in this application.
- L 1 is-(CH 2 CH 2 O) n -,-(CH 2 CH 2 O) n- (CH 2 ) m- Or-(CH 2 ) m- (CH 2 CH 2 O) n- , wherein each m and n is defined as described in this application.
- L 1 is -O-, -NH-, -S-, -NCH 3- , -NH (CH 2 ) m -or- C (O)-, where m is as defined in this application.
- L 1 is Wherein R 5 and q are as defined in the present application.
- each of n in the compound represented by Formula I, Formula Ia, or Formula Ib is independently 1, 2, or 3.
- each of n in the compound represented by Formula I, Formula Ia, or Formula Ib is independently 4, 5, or 6.
- each of n in the compound represented by Formula I, Formula Ia, or Formula Ib is independently 7, 8, or 9.
- each of n in the compound represented by Formula I, Formula Ia, or Formula Ib is independently 10, 11, or 12.
- R 5 is hydrogen
- R 5 is fluorine, chlorine, bromine, or iodine.
- R 5 is methyl or ethyl.
- R 5 is n-propyl, isopropyl, or n-butyl.
- R 5 is nitro
- R 5 is methoxy or ethoxy.
- R 5 is propoxy
- q is 1 or 2.
- q is 3 or 4.
- L 2 is -C (O) NH (CH 2 ) i NH-, -NH (CH 2 ) i NH-, -NH ( CH 2 ) i C (O)-or -C (O) (CH 2 ) i NH-, where each i is independently 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 , 11 or 12; further preferably, each i is independently 1, 2, or 3.
- L 2 is -C (O) NH (CH 2 ) i NH-, wherein i is as defined herein.
- L 2 is -NH (CH 2 ) i NH-, wherein i is as defined herein.
- L 2 is -NH (CH 2 ) i C (O)-, wherein the definition of i is as described herein.
- L 2 is -C (O) (CH 2 ) i NH-, wherein i is as defined herein.
- L 2 is -NH (CH 2 ) i O-, wherein i is as defined in the present application.
- L 2 is -NH (CH 2 ) i S-, -N (CH 3 ) (CH 2 ) i NH- or -N ( CH 3 ) (CH 2 ) i N (CH 3 )-, where each i is defined as described in this application.
- L 2 is -O (CH 2 ) i NH-, -O (CH 2 ) i C (O)-, -O (CH 2 ) i O- or -O (CH 2 ) i S-, wherein the definition of each i is as described in this application.
- L 2 is -O-, -NH-, -S-, -S (O)-, -S (O) 2- , -NCH 3- , -NH (CH 2 ) 2 NH- or -C (O)-.
- L 2 is empty.
- each i is independently 1, 2, or 3.
- each i is independently 4, 5, or 6.
- each of i in the compound represented by Formula I, Formula Ia, or Formula Ib is independently 7, 8, or 9.
- each of i in the compound represented by Formula I, Formula Ia, or Formula Ib is independently 10, 11, or 12.
- X is -C (O)-, -O-, -NH-, -NCH 3- , -CH 2 O-, or- S-.
- X is -C (O)-.
- X is -O-, -NH-, or -NCH 3- .
- compounds of Formula I, Formula Ia or Ib, X is -CH 2 O -, - CH ( CH 3) O-, or -C (CH 3) 2 O-.
- compounds of Formula I, Formula Ia or Ib, X is -CH 2 NH -, - CH ( CH 3) NH- or -C (CH 3) 2 NH-.
- X is -S-, -S (O)-, or -S (O) 2- .
- Z is -CH 2- .
- compounds of Formula I, Formula Ia or Formula Ib, Z is -CH (CH 3) -.
- Z is -C (CH 3 ) 2- .
- the compound represented by Formula I, Formula Ia, or Formula Ib is selected from:
- the present application also relates to the use of a compound represented by Formula I or Formula Ia or Formula Ib or a salt thereof in the preparation of an antibody-conjugated drug.
- the present application also relates to a compound represented by Formula II or a salt thereof,
- R 3 is hydrogen, fluorine, chlorine, bromine, iodine, C 1-4 alkyl, nitro or C 1-4 alkoxy;
- r 0, 1, 2, 3, or 4;
- Ar is an aryl group, a heteroaryl group, an arylheterocyclic group or a heteroaromatic heterocyclic group, preferably a five- or six-membered aryl or heteroaryl group; preferably, the nitro group on Ar and Z are in an aromatic system And, more preferably, when Ar is a six-membered aryl or heteroaryl group, the nitro group on Ar is in para or ortho position with Z;
- L 1 is selected from-(CH 2 ) m -,-(CH 2 ) m O-,-(CH 2 ) m NH-,-(CH 2 ) m C (O)-,-(CH 2 CH 2 O) n -,-(CH 2 CH 2 O) n- (CH 2 ) m -,-(CH 2 ) m- (CH 2 CH 2 O) n -,-(CH 2 CH 2 O) n- , -O -, -NH-, -S-, -NCH 3- , -NH (CH 2 ) m- , -C (O)-, , Where each m is independently 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12, and each n is independently 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12, and m and n are not 0 at the same time; R 5 is hydrogen, fluorine, chlorine, bromine, iodine, C 1-4 alkyl, nitro or C
- L 2 is selected from: -C (O) NH (CH 2 ) i NH-, -NH (CH 2 ) i NH-, -NH (CH 2 ) i C (O)-, -C (O) (CH 2 ) i NH-, -NH (CH 2 ) i O-, -NH (CH 2 ) i S-, -N (CH 3 ) (CH 2 ) i NH-, -N (CH 3 ) (CH 2 ) i N (CH 3 )-,-O (CH 2 ) i NH-,-C (O) NH-CH [(CH 2 ) d -NHC (O)-(CH 2 CH 2 O) e- (CH 2 ) f -CH 3 ]-,-O (CH 2 ) i C (O)-,-O (CH 2 ) i O-,-O (CH 2 ) i S-, -O-, -NH-, -
- X is selected from: -C (O)-, -O-, -NH-, -NCH 3- , -CH 2 O-, -CH (CH 3 ) O-, -C (CH 3 ) 2 O-,- CH 2 NH-, -CH (CH 3 ) NH -, - C (CH 3) 2 NH -, - S -, - S (O) - and -S (O) 2 -;
- Z is -CH 2- , -CH (CH 3 )-or -C (CH 3 ) 2- ;
- t is 0 or 1;
- B is an active compound selected from a drug, a cytotoxin, a detection reagent, a diagnostic reagent or a targeting carrier; preferably, B is a cytotoxin, an antitumor drug, an antiviral drug, an anti-infective drug or an immunomodulator drug; further preferably B is a cytotoxin, such as a tubulin inhibitor, a DNA alkylating agent, a DNA chimeric agent, an enzyme inhibitor, an antimetabolite, a peptide, or a nucleotide;
- B is coupled to a carbonyl (ie, site *) or Z group via the N or O atom in the active compound molecule.
- L 2 is selected from: -C (O) NH (CH 2 ) i NH-, -NH (CH 2 ) i NH-, -NH (CH 2 ) i C (O)-,-C (O) (CH 2 ) i NH-,-NH (CH 2 ) i O-,-NH (CH 2 ) i S-,-N (CH 3 ) (CH 2 ) i NH-, -N (CH 3 ) (CH 2 ) i N (CH 3 )-, -O (CH 2 ) i NH-, -O (CH 2 ) i C (O)-, -O (CH 2 ) i O-, -O (CH 2 ) i S-, -O-, -NH-, -S-, -S (O)-, -S (O) 2- , -NCH 3- , -NH (CH 2 ) 2 NH-, -S-, -S (O
- L 2 is -C (O) NH-CH [(CH 2 ) d -NHC (O)-(CH 2 CH 2 O) e- (CH 2 ) f -CH 3 ]-, where d is 1, 2, 3 , 4, 5, or 6; e is 1, 2, 3 , 4, 5, 6, 7, 8, 9, 10, 11 or 12; f is 1, 2, 3, 4, 5, or 6.
- a compound represented by Formula II has a structure represented by Formula IIa,
- R 1 , R 3 , r, L 1 , L 2 , X, Z, B, and t are as described in this application;
- the compound represented by Formula II has a structure represented by Formula IIb,
- L 1 , L 2 , and B are as described in this application.
- R 1 is
- R 1 is
- R 1 is
- R 1 is
- R 1 is
- R 3 is hydrogen, fluorine, chlorine, bromine, iodine, methoxy, ethoxy, propoxy, methyl, ethyl, n-propyl Or isopropyl.
- R 3 is hydrogen
- R 3 is fluorine, chlorine, bromine, or iodine.
- R 3 is methoxy or ethoxy.
- R 3 is propoxy
- R 3 is methyl or ethyl.
- R 3 is n-propyl or isopropyl.
- r is 0 or 1.
- r 0.
- r is 1.
- r is 2.
- r is 3.
- r is 4.
- Ar is a benzene ring.
- the nitro group on Ar and Z are para ortho.
- the nitro group on Ar is in para-position with Z.
- L 1 is-(CH 2 ) m -or Where m is 4, 5, 6, or 7.
- L 1 is-(CH 2 ) m- , wherein m is as defined in the present application.
- each m is independently 1 or 2.
- each of m in the compound represented by Formula II, Formula IIa, or Formula IIb is independently 3 or 4.
- each of m in the compound represented by Formula II, Formula IIa, or Formula IIb is independently 5.
- each m is independently 6 or 7.
- each m is independently 8 or 9.
- each m is independently 10, 11, or 12.
- L 1 is
- L 1 is-(CH 2 ) m O-,-(CH 2 ) m NH- or-(CH 2 ) m C (O )-, Where each m is defined as described in this application.
- L 1 is-(CH 2 CH 2 O) n -,-(CH 2 CH 2 O) n- (CH 2 ) m- Or-(CH 2 ) m- (CH 2 CH 2 O) n- , wherein each m and n is defined as described in this application.
- L 1 is -O-, -NH-, -S-, -NCH 3- , -NH (CH 2 ) m -or- C (O)-, where m is as defined in this application.
- L 1 is Wherein R 5 and q are as defined in the present application.
- each of n in the compound represented by Formula II, Formula IIa, or Formula IIb is independently 1, 2, or 3.
- each of n in the compound represented by Formula II, Formula IIa, or Formula IIb is independently 4, 5, or 6.
- each of n in the compound represented by Formula II, Formula IIa, or Formula IIb is independently 7, 8, or 9.
- each of n in the compound represented by Formula II, Formula IIa, or Formula IIb is independently 10, 11, or 12.
- R 5 is hydrogen
- R 5 is fluorine, chlorine, bromine or iodine.
- R 5 is methyl or ethyl.
- R 5 is n-propyl, isopropyl, or n-butyl.
- R 5 is nitro
- R 5 is methoxy or ethoxy.
- R 5 is propoxy
- q is 1 or 2.
- q is 3 or 4.
- L 2 is -C (O) NH (CH 2 ) i NH-, -NH (CH 2 ) i NH-, -NH ( CH 2 ) i C (O)-or -C (O) (CH 2 ) i NH-, where i is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12; More preferably, i is 1, 2 or 3.
- L 2 is -C (O) NH (CH 2 ) i NH-, wherein i is as defined in the present application.
- L 2 is -NH (CH 2 ) i NH-, wherein i is as defined in the present application.
- L 2 is -NH (CH 2 ) i C (O)-, wherein i is as defined in the present application.
- L 2 is -C (O) (CH 2 ) i NH-, wherein the definition of i is as described in the present application.
- L 2 is -NH (CH 2 ) i O-, wherein i is as defined in the present application.
- L 2 is -NH (CH 2 ) i S-, -N (CH 3 ) (CH 2 ) i NH- or -N ( CH 3 ) (CH 2 ) i N (CH 3 )-, where each i is defined as described in this application.
- L 2 is -O (CH 2 ) i NH-, -O (CH 2 ) i C (O)-, -O (CH 2 ) i O- or -O (CH 2 ) i S-, wherein the definition of each i is as described in this application.
- L 2 is -O-, -NH-, -S-, -S (O)-, -S (O) 2- , -NCH 3- , -NH (CH 2 ) 2 NH- or -C (O)-.
- L 2 is empty.
- each i is independently 1, 2, or 3.
- each i is independently 4, 5, or 6.
- each i is independently 7, 8, or 9.
- each of i in the compound represented by Formula II, Formula IIa, or Formula IIb is independently 10, 11, or 12.
- X is -C (O)-, -O-, -NH-, -NCH 3- , -CH 2 O-, or -S-.
- X is -C (O)-.
- X is -O-, -NH- or -NCH 3- .
- compounds of Formula II or Formula IIa, X is -CH 2 O -, - CH ( CH 3) O-, or -C (CH 3) 2 O-.
- compounds of Formula II or Formula IIa, X is -CH 2 NH -, - CH ( CH 3) NH- or -C (CH 3) 2 NH-.
- X is -S-, -S (O)-, or -S (O) 2- .
- Z is -CH 2- .
- Z is -CH (CH 3 )-.
- Z is -C (CH 3 ) 2- .
- t is 1.
- B is auristatin, monomethyl oristatin E (MMAE), maytansine, or a derivative thereof Substances (such as maytansinoids, DM1, DM3, DM4), paclitaxel, calicheamicin, bactericin, doxorubicin, camptothecin, PBD (pyrrolobenzodiazepines) cytotoxins and their derivatives.
- MMAE monomethyl oristatin E
- paclitaxel such as maytansinoids, DM1, DM3, DM4
- calicheamicin such as maytansinoids, DM1, DM3, DM4
- doxorubicin doxorubicin
- camptothecin doxorubicin
- PBD pyrrolobenzodiazepines
- B is monomethyl oristatin E (MMAE).
- the compound represented by Formula II, Formula IIa, or Formula IIb has a structure represented by IIIa and IIIb:
- B is coupled to a carbonyl group (ie, a site *) or a methylene group through an N atom or an O atom in an active compound molecule, and the definitions of B and t are as described in the present application.
- the compound of Formula II, Formula IIa, or Formula IIb is selected from:
- the application also relates to the use of a compound represented by Formula II, Formula IIa or Formula IIb or a salt thereof in the preparation of an antibody-conjugated drug.
- the present application also relates to a compound represented by Formula IV or a salt thereof,
- Ar is aryl, heteroaryl, arylheterocyclyl or heteroarylheterocyclyl, preferably a five- or six-membered aryl or heteroaryl; preferably, the nitro group on Ar and Z are in The conjugation position of the aromatic system, and more preferably, when Ar is a six-membered aryl or heteroaryl group, the nitro group on Ar is in para or ortho position with Z;
- R 3 is hydrogen, fluorine, chlorine, bromine, iodine, C 1-4 alkyl, nitro or C 1-4 alkoxy;
- r 0, 1, 2, 3, or 4;
- L 1 is selected from:-(CH 2 ) m -,-(CH 2 ) m O-,-(CH 2 ) m NH-,-(CH 2 ) m C (O)-,-(CH 2 CH 2 O ) n -,-(CH 2 CH 2 O) n- (CH 2 ) m -,-(CH 2 ) m- (CH 2 CH 2 O) n- , -O-, -NH-, -S-, -NCH 3- , -NH (CH 2 ) m- , -C (O)-, Where each m is independently 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12, and each n is independently 0, 1, 2, 3, 4 , 5, 6, 7, 8, 9, 10, 11 or 12, and m and n are not 0 at the same time; R 5 is hydrogen, fluorine, chlorine, bromine, iodine, C 1-4 alkyl, nitro or C 1-4 alkoxy, q is 0, 1, 2, 3
- L 2 is selected from: -C (O) NH (CH 2 ) i NH-, -NH (CH 2 ) i NH-, -NH (CH 2 ) i C (O)-, -C (O) (CH 2 ) i NH-, -NH (CH 2 ) i O-, -NH (CH 2 ) i S-, -N (CH 3 ) (CH 2 ) i NH-, -N (CH 3 ) (CH 2 ) i N (CH 3 )-,-O (CH 2 ) i NH-,-C (O) NH-CH [(CH 2 ) d -NHC (O)-(CH 2 CH 2 O) e- (CH 2 ) f -CH 3 ]-,-O (CH 2 ) i C (O)-,-O (CH 2 ) i O-,-O (CH 2 ) i S-, -O-, -NH-, -
- X is selected from: -C (O)-, -O-, -NH-, -NCH 3- , -CH 2 O-, -CH (CH 3 ) O-, -C (CH 3 ) 2 O-,- CH 2 NH-, -CH (CH 3 ) NH-, -C (CH 3 ) 2 NH-, -S-, -S (O)-or -S (O) 2- ;
- Z is -CH 2- , -CH (CH 3 )-or -C (CH 3 ) 2- ;
- t is 0 or 1;
- A is a targeting compound selected from proteins, antibodies, polypeptides, enzymes, and small molecules; preferably, A is coupled to position # via the S atom in the targeting compound molecule;
- B is an active compound selected from a drug, a cytotoxin, a detection reagent, a diagnostic reagent or a targeting carrier; preferably, B is a cytotoxin, an antitumor drug, an antiviral drug, an anti-infective drug or an immunomodulator drug; further preferably B is a cytotoxin, such as a tubulin inhibitor, a DNA alkylating agent, a DNA chimeric agent, an enzyme inhibitor, an antimetabolite, a peptide, or a nucleotide;
- B is coupled to a carbonyl group (ie, a site *) or a Z group through an N atom or an O atom in the active compound molecule;
- a is a number between 0.5 and 8.5, for example, a number between 0.8 and 5, a number between 1 and 4, a number between 2 and 6, a number between 3 and 7, and a number between 4 and 8.
- L 2 is selected from: -C (O) NH (CH 2 ) i NH-, -NH (CH 2 ) i NH-, -NH (CH 2 ) i C (O)-,-C (O) (CH 2 ) i NH-,-NH (CH 2 ) i O-,-NH (CH 2 ) i S-,-N (CH 3 ) (CH 2 ) i NH-, -N (CH 3 ) (CH 2 ) i N (CH 3 )-, -O (CH 2 ) i NH-, -O (CH 2 ) i C (O)-, -O (CH 2 ) i O-, -O (CH 2 ) i S-, -O-, -NH-, -S-, -S (O)-, -S (O) 2- , -NCH 3- , -NH (CH 2 ) 2 NH-, -S-, -S (O
- L 2 is -C (O) NH-CH [(CH 2 ) d -NHC (O)-(CH 2 CH 2 O) e- (CH 2 ) f -CH 3 ]-, where d is 1, 2, 3 , 4, 5, or 6; e is 1, 2, 3 , 4, 5, 6, 7, 8, 9, 10, 11 or 12; f is 1, 2, 3, 4, 5, or 6.
- a compound represented by Formula IV has a structure represented by Formula IVa,
- L 1 , L 2 , X, R 3 , r, Z, A, B, a, and t are as described in this application.
- the compound represented by Formula IV has a structure represented by Formula IVb,
- L 1 , L 2 , A, B, a, and t are as described in this application.
- R 3 is hydrogen, fluorine, chlorine, bromine, iodine, methoxy, ethoxy, propoxy, methyl, ethyl , N-propyl or isopropyl.
- R 3 is hydrogen
- R 3 is fluorine, chlorine, bromine, or iodine.
- R 3 is methoxy or ethoxy.
- R 3 is propoxy
- R 3 is methyl or ethyl.
- R 3 is n-propyl or isopropyl.
- r is 0 or 1.
- r 0.
- r is 1.
- r is 2.
- r is 3.
- r is 4.
- Ar is a benzene ring.
- the nitro group on Ar is in the para or ortho position with Z.
- the nitro group on Ar is in para-position with Z.
- L 1 is-(CH 2 ) m -or Where m is 4, 5, 6, or 7.
- L 1 is-(CH 2 ) m- , wherein m is as defined herein.
- each of m in the compound represented by Formula IV or Formula IVa or Formula IVb is independently 1 or 2.
- each of m in the compound represented by Formula IV or Formula IVa or Formula IVb is independently 3 or 4.
- each of m in the compound represented by Formula IV or Formula IVa or Formula IVb is independently 5.
- each of m in the compound represented by Formula IV or Formula IVa or Formula IVb is independently 6 or 7.
- each of m in the compound represented by Formula IV or Formula IVa or Formula IVb is independently 8 or 9.
- each of m in the compound represented by Formula IV or Formula IVa or Formula IVb is independently 10, 11, or 12.
- L 1 is
- L 1 is-(CH 2 ) m O-,-(CH 2 ) m NH- or-(CH 2 ) m C (O )-, Where each m is defined as described in this application.
- L 1 is-(CH 2 CH 2 O) n -,-(CH 2 CH 2 O) n- (CH 2 ) m- Or-(CH 2 ) m- (CH 2 CH 2 O) n- , wherein each m and n is defined as described in this application.
- L 1 is -O-, -NH-, -S-, -NCH 3- , -NH (CH 2 ) m -or- C (O)-, where m is as defined in this application.
- L 1 is or Wherein R 5 and q are as defined in the present application.
- each of n in the compound represented by Formula IV or Formula IVa or Formula IVb is independently 1, 2, or 3.
- each of n in the compound represented by Formula IV or Formula IVa or Formula IVb is independently 4, 5, or 6.
- each of n in the compound represented by Formula IV or Formula IVa or Formula IVb is independently 7, 8, or 9.
- each of n in the compound represented by Formula IV or Formula IVa or Formula IVb is independently 10, 11, or 12.
- R 5 is hydrogen
- R 5 is fluorine, chlorine, bromine, or iodine.
- R 5 is methyl or ethyl.
- R 5 is n-propyl, isopropyl, or n-butyl.
- R 5 is nitro
- R 5 is methoxy or ethoxy.
- R 5 is propoxy
- q is 1 or 2.
- q is 3 or 4.
- L 2 is -C (O) NH (CH 2 ) i NH-, -NH (CH 2 ) i NH-, -NH ( CH 2 ) i C (O)-or -C (O) (CH 2 ) i NH-, where i is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12; More preferably, i is 1, 2 or 3.
- L 2 is -C (O) NH (CH 2 ) i NH-, wherein i is as defined herein.
- L 2 is -NH (CH 2 ) i NH-, wherein i is as defined in the present application.
- L 2 is -NH (CH 2 ) i C (O)-, wherein i is as defined herein.
- L 2 is -C (O) (CH 2 ) i NH-, wherein i is as defined herein.
- L 2 is -NH (CH 2 ) i O-, wherein i is as defined herein.
- L 2 is -NH (CH 2 ) i S-, -N (CH 3 ) (CH 2 ) i NH- or -N ( CH 3 ) (CH 2 ) i N (CH 3 )-, where each i is defined as described in this application.
- L 2 is -O (CH 2 ) i NH-, -O (CH 2 ) i C (O)-, -O (CH 2 ) i O- or -O (CH 2 ) i S-, wherein the definition of each i is as described in this application.
- L 2 is -O-, -NH-, -S-, -S (O)-, -S (O) 2- , -NCH 3- , -NH (CH 2 ) 2 NH- or -C (O)-.
- L 2 is empty.
- each of i in the compound represented by Formula IV or Formula IVa or Formula IVb is independently 1, 2, or 3.
- each of i in the compound represented by Formula IV or Formula IVa or Formula IVb is independently 4, 5, or 6.
- each of i in the compound represented by Formula IV or Formula IVa or Formula IVb is independently 7, 8, or 9.
- each of i in the compound represented by Formula IV or Formula IVa or Formula IVb is independently 10, 11, or 12.
- X is -C (O)-, -O-, -NH-, -NCH 3- , -CH 2 O-, or -S-.
- X is -C (O)-.
- X is -O-, -NH- or -NCH 3- .
- X is -CH 2 O -, - CH ( CH 3) O-, or -C (CH 3) 2 O-.
- X is -CH 2 NH-, -CH (CH 3 ) NH- or -C (CH 3 ) 2 NH-.
- X is -S-, -S (O)-, or -S (O) 2- .
- Z is -CH 2- .
- Z is -CH (CH 3) -.
- Z is -C (CH 3 ) 2- .
- t is 1 in a compound represented by Formula IV or Formula IVa or Formula IVb.
- B is auristatin, monomethyl oristatin E (MMAE), maytansine or a derivative thereof Substances (such as maytansinoids, DM1, DM3, DM4), paclitaxel, calicheamicin, bactericin, doxorubicin, camptothecin, PBD (pyrrolobenzodiazepines) cytotoxins and their derivatives.
- MMAE monomethyl oristatin E
- DM1, DM3, DM4 maytansine or a derivative thereof
- paclitaxel such as maytansinoids, DM1, DM3, DM4
- calicheamicin such as maytansinoids, DM1, DM3, DM4
- doxorubicin doxorubicin
- camptothecin doxorubicin
- PBD pyrrolobenzodiazepines
- B is monomethyl oristatin E (MMAE).
- A is a monoclonal antibody having a thiol group as a coupling site, or a site-directed mutation or modified monoclonal antibody having a thiol group as a coupling site antibody.
- A is selected from: anti-HER2 humanized monoclonal antibody mil40, trastuzumab (HERCEPTIN), pertuzumab (PERJETA ), Cetuximab (ERBITUX), Panitumumab (VECTIBIX), Rituximab (RITUXAN), Alendizumab (CAMPATH), Tilimumab (ZEVALIN), Toximobum (BEXXAR), ARZERRA, AVASTIN, YERVOY, XGEVA, KEYTRUDA, Navuzumab ( Opdivo), Avelumab (Bavencio), Atezolizumab (Tecentriq), durvalumab (Imfinzi), sacituzumab, rovalpituzumab, and their biological analogs.
- HERCEPTIN trastuzumab
- PERJETA pertuzumab
- Cetuximab ERBITUX
- Panitumumab VECTI
- A is an anti-HER2 humanized monoclonal antibody mil40.
- a is a number between 2 and 7, or a is a number between 3 and 6 or a number between 4 and 5, preferably Ground, a is about 4, 5, 6, 7, or 8.
- the compound represented by Formula IV or Formula IVa or Formula IVb has a structure represented by Formula IV-1 or Formula IV-2,
- MAB is a monoclonal antibody, preferably an anti-HER2 humanized monoclonal antibody mil40.
- the compound of Formula IV or Formula IVa or Formula IVb is selected from:
- MAB is a monoclonal antibody, preferably an anti-HER2 humanized monoclonal antibody mil40, the definition of a is as described in the present application, preferably about 4.
- the application also relates to a pharmaceutical composition
- a pharmaceutical composition comprising at least one compound described by Formula IV, or a salt, solvate thereof, and one or more pharmaceutically acceptable carriers or excipients.
- the application also relates to the use of a compound of formula IV or a salt thereof for the manufacture of a medicament for treating or reducing the severity of a disease or disorder.
- the application also relates to a method of treating or reducing the severity of a disease or disorder, which method comprises administering to a patient in need of such treatment a therapeutically effective amount of a compound of formula IV or a salt thereof.
- the application also relates to a compound of formula IV or a salt thereof for use in treating or reducing the severity of a disease or disorder.
- the present application also relates to a method of diagnosing, preventing or treating a disease or disorder, comprising administering to a patient in need of such treatment a therapeutically effective amount of a compound of formula IV or a salt thereof.
- the disease or disorder is selected from the group consisting of tumors, infectious diseases, hematological diseases, metabolic diseases, and inflammation.
- the tumor is selected from cancer, lymphoma, lymphoid tumor, blastoma, sarcoma, and leukemia.
- the cancer is selected from: breast cancer (eg, HER2-positive breast cancer); squamous cell carcinoma (eg, epithelial squamous cell carcinoma); lung cancer, including small cell lung cancer, non-small cell lung cancer, Adenocarcinoma of the lung and squamous cell carcinoma of the lung; peritoneal cancer; liver cancer; gastric cancer; gastrointestinal cancer; membrane adenocarcinoma; glioblastoma; cervical cancer; ovarian cancer; liver cancer; bladder cancer; urinary tract cancer; hepatocellular carcinoma; Breast cancer; Colon cancer; Colon cancer; Rectal cancer; Colorectal cancer; Endometrial cancer; Uterine cancer; Salivary adenocarcinoma; Renal or renal cancer; Prostate cancer; Vulvar cancer; Thyroid cancer; Liver cancer; Anal cancer; Penile cancer; Melanoma; multiple myeloma and B-cell lymphoma; brain cancer; gallbladder cancer; esoph
- antibody is a common immunoglobulin, a Y-shaped protein used by the immune system to recognize and neutralize foreign objects such as bacteria and viruses. Antibodies can specifically recognize unique parts of foreign targets (called antigens) because each tip of the Y-shaped protein contains a site that can specifically recognize the antigen. After the antibody binds to the specific antigen, it can mediate multiple Related biological effects. Antibodies are composed of two identical heavy chains and two identical light chains. Each chain is linked by a disulfide bond through a thiol group in a cysteine residue. A “monoclonal antibody” is a single specific antibody in which all antibody molecules are made up of the same immune cells that are clones that are the sole parent cells, so all antibody molecules are the same.
- cytotoxin refers to those molecules that can be toxic to a cell when released in a cancer cell.
- Toxins of particular interest in this application include methyl oristatin E (MMAE), oristatin, maytansinoid or derivatives thereof (e.g. maytansinoid, DM1, DM3, DM4), Caricillium Cytokines, bacitracin, doxorubicin, camptothecin or PBD-like cytotoxins and their derivatives.
- linker is a molecule having two reactive ends, one of which can be conjugated to an antibody and the other end for coupling to an active compound, such as a cytotoxin.
- the antibody-coupling end of the linker is usually a site capable of coupling via the cysteine thiol or lysine amino group on the antibody, and the linker's toxin-coupling end is usually capable of passing through the toxin molecule.
- Active sites such as sulfhydryl, amino, carboxyl, or hydroxyl groups.
- linker When the term linker is used to describe a linker in the form of a coupling, the linker has reacted with one or both of the antibody and the cytotoxin to form a covalent It is therefore possible that it will no longer include one or two reactive terminal reactive sites (such as a leaving group for a thiol-reactive group, a leaving group for an amine-reactive group).
- antibody-conjugated drug is the product of the formation of an antibody molecule by coupling a plurality of molecules (usually 1-8) of cytotoxins each via a linker. An antibody conjugated to one or more cytotoxins. Antibodies are usually monoclonal antibodies that are selective for cancer-specific antigens.
- the term "about” is understood to mean +/- 20%, +/- 18%, +/- 15%, +/- 12%, +/- 10%, +/- 9 at the stated value %, +/- 8%, +/- 7%, +/- 6%, +/- 5%, +/- 4%, +/- 3%, +/- 2%, +/- 1%, Within +/- 0.5%, +/- 0.4%, +/- 0.3%, +/- 0.2%, +/- 0.1%. Unless otherwise clear from the context, all numerical values provided herein are modified by the term "about.”
- tumor diseases of interest in the antibody-conjugated drugs described in this application include, but are not limited to, cancer, breast cancer, lymphoma, lymphoid tumor, blastoma, sarcoma, and leukemia. More specific examples of such cancers include squamous cell carcinoma (e.g., epithelial squamous cell carcinoma); lung cancer, including small cell lung cancer, non-small cell lung cancer, lung adenocarcinoma, and lung squamous cell carcinoma; peritoneal cancer; liver cancer; Gastric or gastric cancer, including gastrointestinal cancer; membrane adenocarcinoma; glioblastoma; cervical cancer; ovarian cancer; liver cancer; bladder cancer; urinary tract cancer; hepatocellular carcinoma; breast cancer, including, for example, HER2-positive breast cancer; colon cancer Rectal cancer; Colorectal cancer; Endometrial or uterine cancer; Salivary adenocarcinoma; Renal or renal cancer; Prostate cancer; Vulfolli
- salt refers to a salt that retains the biological effectiveness and properties of a compound, which are undesirably biologically or otherwise unsuitable for use in medicine.
- the compounds disclosed herein are capable of forming acid and / or base salts by virtue of the presence of amino and / or end groups or similar groups.
- a pharmaceutically acceptable acid addition salt may be composed of an inorganic acid and an organic acid.
- Inorganic acids that can be derived to form salts include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
- Organic acids that can be derived to form salts include, for example, acetic acid, propionic acid, glycolic acid, pyruvate, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamon Acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, etc.
- a pharmaceutically acceptable base addition salt may be composed of an inorganic base and an organic base.
- Inorganic bases from which salts can be derived include, for example, sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum, and the like; particularly preferred are the ammonium, potassium, sodium, calcium, and magnesium salts.
- Organic bases that can be derived to form salts include, for example, primary, secondary, and tertiary amines, substituted amines, including naturally occurring substituted amines, cyclic amines, basic ion exchange resins, and the like, specifically, for example, isopropylamine, trimethylamine, diethyl Amine, triethylamine, tripropylamine and ethanolamine. Many such salts are known in the art, as described by W087 / 05297, Johnston et al., Published September 11, 1987 (which is incorporated herein by reference in its entirety).
- C l -C 6 "and 6 1" refers to the number in the specified group carbon atoms. That is, the group may contain the number of carbon atoms from “1" to “6” (inclusive).
- “C 1 -C 4 alkyl” or “C 1-4 alkyl” refers to all alkyl groups having 1 to 4 carbon atoms, ie, CH 3 , CH 3 CH 2 , CH 3 CH 2 CH 2- , (CH 3 ) 2 CH-, CH 3 CH 2 CH 2 CH 2- , CH 3 CH 2 CH (CH 3 )-, and (CH 3 ) 3 C-.
- halogen refers to any one of the radioactive stable atoms in column 7 of the periodic table of the element, for example, fluorine, chlorine, bromine, iodine, etc., among which chlorine is preferred.
- aryl refers to an unsaturated aromatic carbocyclic group of 5 to 14 carbon atoms having one single ring or two or more fused rings of a conjugated pi-electron system.
- the "aryl” preferably has 5-10, 5-8 or 5-6 carbon atoms.
- Typical examples of “aryl” include, but are not limited to, phenyl, naphthyl, anthracenyl, and the like.
- heteroaryl refers to an aryl group, as defined herein, where at least one ring member is a heteroatom selected from nitrogen, oxygen, or sulfur.
- the “heteroaryl” preferably has 5-10, 5-8 or 5-6 ring members.
- Typical examples of “heteroaryl” include, but are not limited to, furyl, imidazolyl, thienyl, triazolyl, indolyl, tetrazolyl, pyridyl, pteridyl, pyrimidinyl, triazolyl, quinyl Phenyl, isoquinolinyl, quinazolinyl, quinoxalinyl, etc.
- aromatic heterocyclyl refers to a cyclic group having two or more fused rings, where two or more carbons are shared by two adjacent rings, of which at least one ring is An aryl group, as defined herein, and at least one ring is a heterocyclyl.
- heterocyclic refers to a cyclic group having two or more fused rings, where two or more carbons are shared by two adjacent rings, of which at least one ring Is a heteroaryl group as defined herein, and at least one ring is a heterocyclic group.
- heterocyclyl refers to a monocyclic or bicyclic or fused ring (including fused, bridged, and spiro rings) having 3 to 12 ring members. Hydrocarbyl, and at least one ring member is a heteroatom selected from nitrogen, oxygen, or sulfur.
- the "heterocyclic group” preferably has 3 to 10, 3 to 8, 5 to 8, 3 to 6 or 5 to 6 ring members.
- Typical examples of “heterocyclyl” include, but are not limited to, tetrahydrofuryl, tetrahydrothienyl, pyrrolidinyl, piperazinyl, thiazinyl, piperidinyl, morpholinyl, and the like.
- ADC antibody-drug conjugate: antibody-conjugated drug
- DAR Drug, antibody, ratio
- DIPEA N, N-Diisopropylethylamine: diisopropylethylamine
- DMSO Dimethyl Sulphoxide: dimethyl sulfoxide
- EA (Ethyl acetate): ethyl acetate
- EDCI (1- (3-Dimethylaminopropyl) -3-ethylcarbodiimide Hydrochloride: 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride;
- HOBt 1-Hydroxybenzotriazole
- HER2 Human Epidermal Growth Factor Receptor 2: human epidermal growth factor receptor 2;
- MAB Monoclonal Antibody
- MMAE (Monomethyl aurisatin E): monomethyl oristatin E;
- NAC N-Acetyl-L-cysteine: N-acetylcysteine
- TCEP Tris (2-carboxyethyl) phosphine: tris (2-carboxyethyl) phosphine;
- a pharmaceutical composition as described herein comprises a compound represented by Formula IV of the present application, or a salt, solvate thereof, and a conventional pharmaceutical carrier or excipient.
- the pharmaceutical composition can be administered by, for example, oral or parenteral, such as intravenous injection, intraperitoneal injection, intramuscular injection, subcutaneous injection, and the like.
- the term "effective amount” refers to an amount sufficient to achieve a desired therapeutic effect, e.g., an amount to achieve a reduction in symptoms associated with the disease to be treated.
- the dosage and method of application of the compound of the present application depend on many factors, including the age, weight, sex, natural health, nutritional status, intensity of the compound's activity, time of taking, metabolic rate, severity of the disease, and diagnosis and treatment The subjective judgment of the physician.
- the preferred dosage is between 0.01 and 100 mg / kg body weight / day.
- the synthetic route of the ADC described in this application is as follows:
- the antibody-conjugated drug provided in the present application selectively lyses and releases toxins under hypoxic conditions, but the drug release process cannot occur smoothly under normoxic conditions.
- the process of drug release shows a high degree of selectivity to hypoxic factors at the enzyme level and the cell level.
- Figure 1 shows the amount of MMAE released by L1-MMAE conjugate under the action of nitroreductase at different time points under hypoxic and normoxic conditions
- Figure 2 shows the amount of MMAE released by L2-MMAE conjugate under the action of nitroreductase at different time points under hypoxia and normoxic conditions
- Figure 3 shows the amount of MMAE released by ADC-I and ADC-II in breast cancer cell line HCC1954 at different time points under hypoxic and normoxic conditions
- Figure 4 shows the amount of MMAE released by ADC-I and ADC-II in breast cancer cell line BT-474 at different time points under hypoxic and normoxic conditions
- Figure 5 shows the amount of MMAE released by ADC-I and ADC-II in gastric cell line NCI-N87 at different time points under hypoxic and normoxic conditions.
- the obtained EA solution was washed three times with an HCl solution (1 mol / L) and saturated brine, and the obtained organic phase was dried over anhydrous Na 2 SO 4.
- the crude product was obtained by removing EA under reduced pressure, and the crude product was further passed through a column. Purification by chromatography gave the target product S4 as a colorless oily liquid, which was converted to a white solid (4.71 g, 69% yield) when left at low temperature.
- the organic layer obtained by extraction was washed twice with hydrochloric acid (1N, 250 mL), dried over Na 2 SO 4, and then concentrated under reduced pressure to remove DCM to obtain a crude product as a yellow solid.
- the yellow solid was slurried with diethyl ether (3 ⁇ 200 mL) to obtain the target product S7 as a white powdery solid (15 g, 90% yield).
- Buffered saline solution-1 (buffer-1): Take 3.11g of L-histidine, dissolve it in 1L of secondary distilled water, and after all dissolution, adjust its pH to about 5.50 ( ⁇ 0.05) with medical glacial acetic acid; after 0.22 After sterilization by filtering with a ⁇ m filter, the bottles were bottled and stored at 4 ° C for short-term storage.
- Buffered salt solution-2 (buffer-2): Weigh TRIS ⁇ base 6.06g, EDTA ⁇ 2Na 0.93g and dissolve it, and make it to 100mL; also weigh TRIS ⁇ HCl 7.88g, EDTA ⁇ 2Na 0.93g and dissolve, the same Also make up to 100mL; add TRIS ⁇ HCl solution to the TRIS ⁇ base solution and adjust the pH to 8.50 ( ⁇ 0.05); filter and sterilize through a 0.22 ⁇ m filter membrane, bottle and place at 4 °C for a short time Store and use.
- Buffer salt solution-3 (buffer-3): Use a pipette to measure 1.715mL of medical glacial acetic acid, dissolve it in 200mL of secondary distilled water, mix thoroughly, filter and sterilize through a 0.22 ⁇ m filter membrane, bottle and Store at 4 °C for short-term storage.
- the anti-HER2 humanized monoclonal antibody mil40 (purchased from Zhejiang Hisun Pharmaceutical Co., Ltd.) used for the coupling is a biosimilar of Herceptin.
- the initial preparation solution contains Histidine hydrochloride (monohydrate) 0.616mg / ml, L-histidine 0.364mg / ml, trehalose 22.727mg / mL, Tween-20100mg / mL and other medicinal excipients.
- Histidine hydrochloride monohydrate
- L-histidine 0.364mg / ml
- trehalose 22.727mg / mL trehalose 22.727mg / mL
- Tween-20100mg / mL and other medicinal excipients.
- concentration was performed by ultrafiltration centrifugation (final concentration> 5 mg / mL), and its concentration was measured by an ultraviolet spectrophotometer.
- Preparation of the coupling reaction solution According to the required amount of coupled antibody (1eq), use a pipette to accurately remove the buffer-1 solution of the antibody, and add a certain amount of buffer-1, so that the antibody concentration is about 10mg / mL. Use buffer-2 to adjust its pH to about 6-8, and transfer it to a clean reaction vial with a pipette.
- Antibody coupling Calculate the volume of organic solvent (DMAC or DMSO) to be added, so that it accounts for 5% to 15% of the total volume; At the same time, calculate the mass of the small molecule load (linker-MMAE conjugate) that needs to be added In general, the small molecule load needs a slight excess (usually 8 eq), and the concentration of the organic solvent of the load to be added is calculated. After accurately preparing the loaded solution, slowly add it to the already reduced antibody reaction solution. Continue to stir slowly at room temperature, and react for 0.5-5 hours according to the specific coupling situation.
- DMAC or DMSO organic solvent
- Preliminary product purification After the termination reaction of coupling is completed, buffer-3 is added to adjust the pH of the reaction solution to about 5.50; the obtained reaction solution is filtered, and then purified using a G25 glucan gel column. (Approximately 80%) of the component effluent, after concentrated again by ultrafiltration, sterile filtration and sample packing; except for some samples reserved for product analysis, which are stored at 4 ° C for short-term storage, other products are stored. Store at -80 ° C until use.
- L1-MMAE and L2-MMAE were coupled to the anti-HER2 humanized monoclonal antibody mil40 antibody, respectively, and the corresponding ADC-I and ADC-II were prepared:
- MAB is an antibody
- a is about 4.
- MAB is an antibody
- a is about 4.
- the ADCs and related quality information prepared in Example 3 are as follows:
- NAC PBS solution
- L1-MMAE conjugate 100 ⁇ L, 2mg / mL
- HPLC detection shows that all L1-MMAE is converted into NAC-L1 -MMAE conjugate, which is used directly as a stock solution without further purification.
- NADPH 75 ⁇ L, 20 mM, purchased from ARK
- NADPH-CYP reductase 10 ⁇ L, 3 mg, article number CYP004, purchased from Cypex.
- a stock solution 25 ⁇ L of NAC-L1-MMAE conjugate was added, and then the incubation was continued in a hypoxic incubator (0.1% O 2 ) at 37 ° C, in which the enzyme and The ratio of objects is 1: 400.
- a normoxic control group (20.0% O 2 ) was set.
- hypoxia is a common feature of solid tumors.
- This example evaluates the enzyme-explaining drug performance of the conjugate L1-MMAE and the selectivity of the release process to hypoxia.
- the reduction of the arylnitro group in the linker L1 depends on the nitroreductase NADPH-CYP reductase (E.C.1.6.2.4), the reduced NADPH, and the hypoxic environment.
- the substrate L1-MMAE in a hypoxic environment, can selectively release the cytotoxin MMAE carried by the action of nitroreductase, and the release amount of MMAE gradually increases over time.
- Example 5 L2-MMAE enzyme-explained drug release performance and hypoxia selectivity evaluation
- This example further evaluates the enzyme-explaining drug performance of the conjugate L2-MMAE, a conjugate of linker L2 and cytotoxin MMAE.
- the operation process is described with reference to Embodiment 4.
- the amount of MMAE released by the L2-MMAE conjugate under the action of nitroreductase at different time points under hypoxic and normoxic conditions is shown in Figure 2.
- the cell line used in this embodiment is an antigen (HER2) positive human breast cancer cell line HCC1954 (purchased from ATCC).
- the ADCs tested were ADC-I and ADC-II prepared in Example 1.
- the medium of HCC1954 cells consisted of 10% fetal bovine serum (FBS) and RPMI medium containing 1% penicillin-streptomycin (PS). At 37 °C, 5% CO 2, 95% relative humidity flasks cells. When the cells reach 80% to 90% confluence, the cells are separated and seeded.
- HCC1954 cells were seeded in a T75 flask, and cultured at 37 ° C., 5% CO 2 , and 95% relative humidity for 2 days.
- HCC1954 cells were divided into a blank group and an ADC administration group, where each administration group included two replicates.
- the administration group was re-cultured with 15 mL of the above-mentioned HCC1954 cell culture medium containing about 100 ng ADC, and the blank control group was not added with the test ADC.
- the cells were cultured under hypoxia (1% O 2 ) and normoxic (20% O 2 ) conditions for 12h, 24h, and 48h, respectively.
- ADC-I and ADC-II showed significant hypoxia selectivity in the release of the toxin MMAE on the antigen (HER2) -positive HCC1954 breast cancer cell line.
- hypoxic conditions (0.1% O 2 )
- the release of toxins in cells also increased with time; in contrast, only a small amount of MMAE release was detected in cells cultured under normoxic conditions, and Its release amount hardly increases with time, as shown in Figure 3.
- This example demonstrates that ADC-I and ADC-II can smoothly release toxins carried in HCC1954 breast cancer cells, and that the drug release process is selective for hypoxia.
- This example further evaluated the drug release performance of ADCs in antigen (HER2) positive human breast cancer cell line BT-474 cells (purchased from ATCC) and the dependence of the drug release process on hypoxia.
- the tested ADCs used in this implementation are ADC-I and ADC-II prepared in Example 1. The operation is performed with reference to a similar description in Embodiment 6.
- BT-474 cells were cultured in DMEM medium containing 10% FBS, 1% PS, and 0.01 mg / mL insulin; cells were cultured in flasks at 37 ° C, 5% CO 2 , and 95% relative humidity. When the cells reach 80% to 90% confluence, the cells are separated and seeded.
- BT-474 cells Approximately 2.0 ⁇ 10 6 BT-474 cells were seeded in a T75 flask, and cultured at 37 ° C., 5% CO 2 , and 95% relative humidity for 2 days. The cells were divided into a blank group and an ADC administration group, and the administration group contained two replicates. The administration group was re-cultured with 15 mL of the above BT-474 cell culture medium containing approximately 1500 ng ADC, and the blank control group was not added with the test ADC. Cells were cultured under hypoxia (1% O 2 ) and normoxic (20% O 2 ) conditions for 12 h, 24 h, and 48 h, respectively. The medium was discarded, and the cells were separated by trypsin / EDTA.
- hypoxia 1% O 2
- normoxic 20% O 2
- test results showed that the two ADCs tested (ADC-I and ADC-II) on the antigen (HER2) positive BT-474 breast cancer cell line, the release of the toxin MMAE carried by them showed a significant hypoxic selection
- the amount of toxin released in cells under hypoxic conditions (0.1% O 2 ) also increased with time; in contrast, only a small amount of MMAE was detected in cells cultured under normoxic conditions, and Its release amount hardly increases with time.
- This example further demonstrates that ADC-I and ADC-II can smoothly release the toxins carried in BT-474 breast cancer cells, and that the drug release process has selectivity to hypoxia.
- This example further evaluates the release performance of this type of ADCs in antigen (HER2) positive human gastric cancer cell line NCI-N87 cells (purchased from ATCC) and the dependence of the release process on hypoxia.
- the tested ADCs used in this implementation are ADC-I and ADC-II prepared in Example 1. The operation is performed with reference to a similar description in Embodiment 6.
- NCI-N87 cells were cultured in a DMEM medium containing 10% FBS, 1% PS, and 0.01 mg / mL insulin; cells were cultured in flasks at 37 ° C, 5% CO 2 , and 95% relative humidity. When the cells reach 50% to 60% confluence, the cells are separated and seeded.
- NCI-N87 cells in an amount of about 3.0 ⁇ 10 6 were seeded in a T75 flask, and cultured at 37 ° C., 5% CO 2 , and 95% relative humidity for 3 days.
- the cells were divided into a blank group and an ADCs administration group, and the administration group contained two replicates.
- the administration group was re-cultured with 15 mL of the above-mentioned NCI-N87 cell culture medium containing approximately 1000 ng of ADC.
- the blank control group was not added with the test ADCs and cultured under hypoxic (1% O 2 ) and normoxic conditions. Cells were 12h, 24h, and 48h.
- the amount of MMAE released by ADC-I and ADC-II in gastric cell line NCI-N87 at different time points under hypoxic and normoxic conditions is shown in Figure 5.
- the test results showed that the two ADCs tested (ADC-I and ADC-II) on the antigen (HER2) positive NCI-N87 gastric cancer cell line, the release process of the toxin MMAE also showed significant hypoxia selectivity, Under hypoxic conditions (0.1% O 2 ), the amount of toxin released in cells also increased with time; in contrast, only a small amount of MMAE was detected in cells cultured under normoxic conditions, and its The amount of release hardly increases with time.
- This example further proves that ADC-I and ADC-II can smoothly release the toxins carried in NCI-N87 gastric cancer cells, and that the drug release process has selectivity to hypoxia.
- Examples 6, 7, and 8 demonstrate that ADC-I and ADC-II can smoothly release toxins carried in a variety of tumor cells, and that the drug release process has selectivity to hypoxia.
- This example evaluates the in vitro cytotoxicity of ADCs (ADC-I and ADC-II) under hypoxic conditions (0.1% O 2 ).
- the antigen HER2-positive cell lines (BT-474, HCC1954 and NCI-N87) and HER2-negative cell lines MCF-7 and MDA-MB-468 used in this example were purchased from ATCC. All cell lines were supplemented with 10% fetal calf serum (DMEM media for cell lines BT-474, MCF-7, and RPMI1640 media for cell lines NCI-N87, HCC1954, and MDA-MB-468; described below The culture medium is the same as above) at 37 ° C in a humid environment containing 5% CO 2.
- the cells are passaged three times a week at a ratio of 1: 4. Each medium contains 10% FBS (heat-inactivated). And 1% penicillin / streptomycin. The oxygen concentration in the cell culture environment is determined by Incubator (48R, # CO48312044) is controlled.
- the 10-fold dilution method was used to dilute downward to obtain 10 solutions of the concentration to be measured) and added to each well of the assay plate.
- the plates were incubated for 7 days at 37 ° C, 5% CO 2 , 0.1% O 2 , and 95% humidity. The plate was then incubated at room temperature for about 10 minutes, and 40 ⁇ L of CTG reagent (Promega, ), And the plate was incubated at room temperature for 30 minutes.
- Luminescence was detected using EnSpire Plate Reader, and data analysis and IC 50 calculations were performed using Prism 5 for Windows (Graphpad software, Inc., La Jolla, CA, USA).
- the test drug includes two ADCs (ADC-I and ADC-II), and a naked mil40 antibody that is not coupled is used as a control.
- ADC-I and ADC-II have significant cytotoxicity in antigen-positive tumor cells. Compared with antigen-negative cells, the cytotoxicity (IC 50 ) can generally be increased 300-5000 times. Compared with naked antibodies, the cytotoxicity (IC 50 ) has been improved to varying degrees, and the maximum inhibition rate (MaxInhibition) has been significantly improved.
- the two ADCs tested (ADC-I and ADC-II) had only slight differences in the structure of the linker, but the activities of the two ADCs on the positive and negative test cells of each strain were basically equivalent. This example further confirms the potential drugability of ADCs based on the linkers shown in this application.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
一种式(I)所示的连接子,含连接子的抗体偶联药物及连接子的用途,还涉及包含抗体偶联药物的药物组合物,还涉及这些抗体偶联药物用于治疗和/或预防疾病的用途。
Description
本申请是以CN申请号为201811106544.0,申请日为2018年9月21日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
本申请属于药物化学领域,具体涉及基于芳硝基的连接子、含连接子的抗体偶联药物及连接子的用途,还涉及包含抗体偶联药物的药物组合物,还涉及这些抗体偶联药物用于治疗和/或预防疾病的用途。
抗体偶联药物(antibody-drug conjugate,ADC)实现了单克隆抗体药物与小分子细胞毒素优势的联合,其在结构上包括抗体(antibody)、细胞毒素(cytotoxin)和连接子(linker)三个组成部分,它是通过抗体实现对肿瘤的特异性靶向,然后释放出细胞毒素进一步杀灭肿瘤细胞。ADC在一定程度上克服了单抗类药物的耐药问题。由于ADC的起效主要依赖于抗体所携带的细胞毒素,而抗体介导的生物效应则是非必须的,即使抗原发生一定程度的突变也并不会影响ADC发挥效力。例如经典的ADC药物Kadcyla,治疗对裸抗Herceptin产生耐药的HER2
+乳腺癌,较标准疗法可将总生存期进一步延长6个月。另一项临床研究显示,Kadcyla治疗组较标准疗法化疗药治疗组的3级不良反应的发生率降低了50%。ADC通过减毒增效,与常规化疗药相比治疗指数得到大幅提高。作为一种新型的抗肿瘤“武器”,ADC有望在肿瘤疾病的治疗领域做出突破。
一个ADC的成功,不仅依赖于对每个组成部分的优化,同时也依赖于各个组成部分的合理搭配与整合。ADC的三个组成部分所起的作用各不相同,因而ADC对其三个组成部分也分别具有不同的要求:ADC的抗体需要满足可以特异性靶向肿瘤,并具有适宜的亲和力和可内化性能;ADC的毒素则需要满足毒性高、作用机制明确、可被偶联等要求;ADC对连接子最基本的要求有2点:第一是确保ADC在血液循环系统中的稳定性,第二是保证ADC在到达肿瘤后可以快速有效地释放毒素。
作为ADC结构中连接抗体与毒素的枢纽,连接子性能的优劣会直接影响到最终产品的药效、毒性以及药代动力学。ADC作为一种长效生物药,给药周期通常为2~3周/次,连接子同时完美地实现循环系统长期稳定以及靶组织快速释放这两个基本要求,其设计和构建过程具有比较大的难度。
根据毒素释药机制的不同,ADC的连接子可分为可裂解型连接子和不可裂解型连 接子两大类,其中可裂解型连接子又可进一步分为酶可裂解型连接子和化学可裂解型连接子。包含可裂解型连接子的ADC通常可以释放出游离毒素而起效,而包含不可裂解型连接子的ADC在起效时,连接子和毒素之间的共价键是不发生断裂的。酶可裂解型连接子具有相对更广谱的使用范围以及更高的药物释放选择性,现已成为ADC药物开发过程中应用最为广泛的工具。
主流的酶可裂解型连接子的裂解仅涉及到组织蛋白酶B和β-葡萄糖醛酸酶,这两种酶均为普遍存在的非肿瘤特异性溶酶体酶,它们分别选择性作用于二肽片段或葡萄糖醛酸基团,通过催化ADC中连接子的裂解过程实现驱动毒素的释放。现阶段应用最广泛的酶可裂解型连接子为研究比较成熟的二肽型连接子。现有ADC释药酶,例如织蛋白酶B或β-葡萄糖醛酸酶,它们普遍存在于哺乳动物多数细胞的溶酶体中,对于那些不可避免的ADC毒素脱靶,正常组织溶酶体中的释药酶可将ADC降解并释放出高杀伤力的细胞毒素(例如MMAE),而对正常组织造成毒性;与此同时,所释放的非离子态的游离细胞毒素可通过旁观者效应进一步透过细胞膜对周边正常组织造成系统毒性。
虽然ADC类药物相较于传统化疗药的靶向性得到了有目共睹的提高,但ADC给药后真正能到达肿瘤组织的比例尚不足1%。如何降低那些普遍存在而又不可避免的高毒性细胞毒素脱靶带来的安全性隐患,或将成为ADC研发面临的核心问题之一。提高ADC酶解释药过程对肿瘤组织的选择性,有望解决或改善上述问题。设计仅在肿瘤组织选择性裂解的新型酶解型连接子,即可避免或减少脱靶细胞毒素在正常组织或细胞内的释放,如此可降低ADC用药过程中产生的系统毒性,进一步提高ADC的治疗指数。
公开内容
本申请涉及式I所示化合物或其盐,
其中:
R
3为氢、氟、氯、溴、碘、C
1-4烷基、硝基或C
1-4烷氧基;
r为0、1、2、3或4;
Ar为芳基、杂芳基、芳并杂环基或杂芳并杂环基,优选为五元或六元的芳基或杂芳基;优选地,Ar上的硝基与Z处于芳香体系的共轭位置,并且更优选地,当Ar为六元的芳基或杂芳基时,Ar上的硝基与Z是对位或邻位;
L
1选自:-(CH
2)
m-,-(CH
2)
mO-,-(CH
2)
mNH-,-(CH
2)
mC(O)-,-(CH
2CH
2O)
n-,-(CH
2CH
2O)
n-(CH
2)
m-、-(CH
2)
m-(CH
2CH
2O)
n-、-O-、-NH-、-S-、-NCH
3-、-NH(CH
2)
m-、-C(O)-、
其中每个m各自独立地为0、1、2、3、4、5、6、7、8、9、10、11或12,每个n各自独立地为0、1、2、3、4、5、6、7、8、9、10、11或12,且m和n不同时为0;R
5为氢、氟、氯、溴、碘、C
1-4烷基、硝基或C
1-4烷氧基,q为0、1、2、3或4;
L
2选自:-C(O)NH(CH
2)
iNH-,-NH(CH
2)
iNH-,-NH(CH
2)
iC(O)-,-C(O)(CH
2)
iNH-,-NH(CH
2)
iO-,-NH(CH
2)
iS-,-N(CH
3)(CH
2)
iNH-,-N(CH
3)(CH
2)
iN(CH
3)-,-O(CH
2)
iNH-,-C(O)NH-CH[(CH
2)
d-NHC(O)-(CH
2CH
2O)
e-(CH
2)
f-CH
3]-,-O(CH
2)
iC(O)-,-O(CH
2)
iO-,-O(CH
2)
iS-,-O-,-NH-,-S-,-S(O)-,-S(O)
2-,-NCH
3-,-NH(CH
2)
2NH-,-C(O)-,或L
2为空,其中每个i各自独立地为1、2、3、4、5、6、7、8、9、10、11或12;d为1、2、3、4、5或6;e为1、2、3、4、5、6、7、8、9、10、11或12;f为1、2、3、4、5或6;
X选自:-C(O)-,-O-,-NH-,-NCH
3-,-CH
2O-,-CH(CH
3)O-,-C(CH
3)
2O-,-CH
2NH-,-CH(CH
3)NH-,-C(CH
3)
2NH-,-S-,-S(O)-或-S(O)
2-;
Z为-CH
2-,-CH(CH
3)-或-C(CH
3)
2-。
在某些实施方案中,式I所示化合物中,L
2选自:-C(O)NH(CH
2)
iNH-,-NH(CH
2)
iNH-,-NH(CH
2)
iC(O)-,-C(O)(CH
2)
iNH-,-NH(CH
2)
iO-,-NH(CH
2)
iS-,-N(CH
3)(CH
2)
iNH-,-N(CH
3)(CH
2)
iN(CH
3)-,-O(CH
2)
iNH-,-O(CH
2)
iC(O)-,-O(CH
2)
iO-,-O(CH
2)
iS-,-O-,-NH-,-S-,-S(O)-,-S(O)
2-,-NCH
3-,-NH(CH
2)
2NH-,-C(O)-,或L
2为空,其中每个i各自独立地为1、2、3、4、5、6、7、8、9、10、11或12。
在某些实施方案中,式I所示化合物中,L
2为 -C(O)NH-CH[(CH
2)
d-NHC(O)-(CH
2CH
2O)
e-(CH
2)
f-CH
3]-,其中d为1、2、3、4、5或6;e为1、2、3、4、5、6、7、8、9、10、11或12;f为1、2、3、4、5或6。
在某些实施方案中,式I所示化合物具有式Ia所示的结构,
其中:R
1、R
2、R
3、r、L
1、L
2、X、Z的定义如本申请所述。
在某些实施方案中,式I所示化合物具有式Ib所示的结构,
其中:R
1、R
2、R
3、r、L
1、L
2、X、Z的定义如本申请所述。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
2为
其中R
4为氢、氟、氯、溴、碘、C
1-4烷基、硝基或C
1-4烷氧基,p为0、1、2、3或4;进一步优选地,R
4为氢、氟、氯、溴、碘、硝基、甲基、乙基、甲氧基或乙氧基,更进一步优选地,p为0或1。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
4为氢。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
4为氟、氯、溴或碘。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
4为硝基。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
4为甲基或乙基。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
4为甲氧基或乙氧基。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,p为0。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,p为1。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,p为2。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,p为3。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,p为4。
在某些实施方案中,式I所示化合物中,Ar为苯环。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,Ar上的硝基与Z是对位或邻位。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,Ar上的硝基与Z是对位。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
3为氢、氟、氯、溴、碘、甲氧基、乙氧基、丙氧基、甲基、乙基、正丙基或异丙基。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
3为氢。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
3为氟、氯、溴或碘。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
3为甲氧基或乙氧基。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
3为丙氧基。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
3为甲基或乙基。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
3为正丙基或异丙基。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,r为0或1。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,r为0。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,r为1。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,r为2。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,r为3。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,r为4。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,L
1为-(CH
2)
m-,其中m的定义如本申请所述。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,每个m各自独立地为1或2。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,每个m各自独立地为3或4。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,每个m各自独立地为5。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,每个m各自独立地为6或7。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,每个m各自独立地为8或9。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,每个m各自独立地为10、11或12。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,L
1为-(CH
2)
mO-,-(CH
2)
mNH-或-(CH
2)
mC(O)-,其中每个m的定义如本申请所述。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,L
1为-(CH
2CH
2O)
n-,-(CH
2CH
2O)
n-(CH
2)
m-或-(CH
2)
m-(CH
2CH
2O)
n-,其中每个m和n的定义如本申请所述。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,L
1为-O-、-NH-、-S-、-NCH
3-、-NH(CH
2)
m-或-C(O)-,其中m的定义如本申请所述。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,每个n各自独立地为1、2或3。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,每个n各自独立地为4、5或6。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,每个n各自独立地为7、8或9。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,每个n各自独立地为10、11或12。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
5为氢。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
5为氟、氯、溴或碘。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
5为甲基或乙基。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
5为正丙基、异丙基或正丁基。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
5为硝基。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
5为甲氧基或乙氧基。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,R
5为丙氧基。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,q为1或2。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,q为3或4。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,L
2为-C(O)NH(CH
2)
iNH-,-NH(CH
2)
iNH-,-NH(CH
2)
iC(O)-或-C(O)(CH
2)
iNH-,其中每个i各自独立地为1、2、3、4、5、6、7、8、9、10、11或12;进一步优选地,每个i各自独立地为1、2或3。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,L
2为-C(O)NH(CH
2)
iNH-,其中i的定义如本申请所述。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,L
2为-NH(CH
2)
iNH-,其中i的定义如本申请所述。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,L
2为-NH(CH
2)
iC(O)-,其中i的定义如本申请所述。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,L
2为-C(O)(CH
2)
iNH-,其中i的定义如本申请所述。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,L
2为-NH(CH
2)
iO-,其中i的定义如本申请所述。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,L
2为-NH(CH
2)
iS-,-N(CH
3)(CH
2)
iNH-或-N(CH
3)(CH
2)
iN(CH
3)-,其中每个i的定义如本申请所述。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,L
2为-O(CH
2)
iNH-,-O(CH
2)
iC(O)-,-O(CH
2)
iO-或-O(CH
2)
iS-,其中每个i的定义如本申请所述。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,L
2为-O-,-NH-,-S-,-S(O)-,-S(O)
2-,-NCH
3-,-NH(CH
2)
2NH-或-C(O)-。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,L
2为空。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,每个i各自独立地为1、2或3。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,每个i各自独立地为4、5或6。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,每个i各自独立地为7、8或9。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,每个i各自独立地为10、11或12。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,X为-C(O)-,-O-,-NH-,-NCH
3-,-CH
2O-,或-S-。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,X为-C(O)-。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,X为-O-,-NH-或-NCH
3-。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,X为-CH
2O-,-CH(CH
3)O-,或-C(CH
3)
2O-。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,X为-CH
2NH-,-CH(CH
3)NH-或-C(CH
3)
2NH-。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,X为-S-、-S(O)-或-S(O)
2-。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,Z为-CH
2-。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,Z为-CH(CH
3)-。
在某些实施方案中,式I、式Ia或式Ib所示化合物中,Z为-C(CH
3)
2-。
在某些实施方案中,式I、式Ia或式Ib所示化合物选自:
本申请还涉及式I或式Ia或式Ib所示化合物或其盐在制备抗体偶联药物中的用 途。
本申请还涉及式II所示化合物或其盐,
其中:
R
3为氢、氟、氯、溴、碘、C
1-4烷基、硝基或C
1-4烷氧基;
r为0、1、2、3或4;
Ar为芳基、杂芳基、芳并杂环基或杂芳并杂环基,优选为五元或六元的芳基或杂芳基;优选地,Ar上的硝基与Z处于芳香体系的共轭位置,并且更优选地,当Ar为六元的芳基或杂芳基时,Ar上的硝基与Z是对位或邻位;
L
1选自-(CH
2)
m-,-(CH
2)
mO-,-(CH
2)
mNH-,-(CH
2)
mC(O)-,-(CH
2CH
2O)
n-,-(CH
2CH
2O)
n-(CH
2)
m-、-(CH
2)
m-(CH
2CH
2O)
n-、-(CH
2CH
2O)
n-、-O-、-NH-、-S-、-NCH
3-、-NH(CH
2)
m-、-C(O)-、
,其中每个m各自独立地为0、1、2、3、4、5、6、7、8、9、10、11或12,每个n各自独立地为0、1、2、3、4、5、6、7、8、9、10、11或12,且m和n不同时为0;R
5为氢、氟、氯、溴、碘、C
1-4烷基、硝基或C
1-4烷氧基,q为0、1、2、3或4;
L
2选自:-C(O)NH(CH
2)
iNH-,-NH(CH
2)
iNH-,-NH(CH
2)
iC(O)-,-C(O)(CH
2)
iNH-,-NH(CH
2)
iO-,-NH(CH
2)
iS-,-N(CH
3)(CH
2)
iNH-,-N(CH
3)(CH
2)
iN(CH
3)-,-O(CH
2)
iNH-,-C(O)NH-CH[(CH
2)
d-NHC(O)-(CH
2CH
2O)
e-(CH
2)
f-CH
3]-,-O(CH
2)
iC(O)-,-O(CH
2)
iO-,-O(CH
2)
iS-,-O-,-NH-,-S-,-S(O)-,-S(O)
2-,-NCH
3-,-NH(CH
2)
2NH-和-C(O)-,或L
2为空,其中每个i各自独立地为1、2、3、4、5、6、7、8、9、10、11或12;d为1、2、3、4、5或6;e为1、2、3、4、5、6、7、8、9、10、11或12;f为1、2、3、4、5或6;
X选自:-C(O)-,-O-,-NH-,-NCH
3-,-CH
2O-,-CH(CH
3)O-,-C(CH
3)
2O-,-CH
2NH-, -CH(CH
3)NH-,-C(CH
3)
2NH-,-S-,-S(O)-和-S(O)
2-;
Z为-CH
2-,-CH(CH
3)-或-C(CH
3)
2-;
t为0或1;
B为活性化合物,选自药物,细胞毒素,检测试剂,诊断试剂或靶向载体;优选地,B为细胞毒素,抗肿瘤药物,抗病毒药物,抗感染药物或免疫调节剂药物;进一步优选地,B为细胞毒素,例如微管蛋白抑制剂、DNA烷化剂、DNA嵌合剂、酶抑制剂、抗代谢药物、肽或核苷酸;
优选地,B通过活性化合物分子中的N原子或O原子偶联至羰基(即位点*)或Z基团。
在某些实施方案中,式II所示化合物中,L
2选自:-C(O)NH(CH
2)
iNH-,-NH(CH
2)
iNH-,-NH(CH
2)
iC(O)-,-C(O)(CH
2)
iNH-,-NH(CH
2)
iO-,-NH(CH
2)
iS-,-N(CH
3)(CH
2)
iNH-,-N(CH
3)(CH
2)
iN(CH
3)-,-O(CH
2)
iNH-,-O(CH
2)
iC(O)-,-O(CH
2)
iO-,-O(CH
2)
iS-,-O-,-NH-,-S-,-S(O)-,-S(O)
2-,-NCH
3-,-NH(CH
2)
2NH-,-C(O)-,或L
2为空,其中每个i各自独立地为1、2、3、4、5、6、7、8、9、10、11或12。
在某些实施方案中,式II所示化合物中,L
2为-C(O)NH-CH[(CH
2)
d-NHC(O)-(CH
2CH
2O)
e-(CH
2)
f-CH
3]-,其中d为1、2、3、4、5或6;e为1、2、3、4、5、6、7、8、9、10、11或12;f为1、2、3、4、5或6。
在某些实施方案中,式II所示化合物具有式IIa所示的结构,
其中:R
1、R
3、r、L
1、L
2、X、Z、B、t的定义如本申请所述;
在某些实施方案中,式II所示化合物具有式IIb所示的结构,
其中:L
1、L
2、B的定义如本申请所述。
在某些实施方案中,式II或式IIa所示化合物中,R
3为氢、氟、氯、溴、碘、甲氧基、乙氧基、丙氧基、甲基、乙基、正丙基或异丙基。
在某些实施方案中,式II或式IIa所示化合物中,R
3为氢。
在某些实施方案中,式II或式IIa所示化合物中,R
3为氟、氯、溴或碘。
在某些实施方案中,式II或式IIa所示化合物中,R
3为甲氧基或乙氧基。
在某些实施方案中,式II或式IIa所示化合物中,R
3为丙氧基。
在某些实施方案中,式II或式IIa所示化合物中,R
3为甲基或乙基。
在某些实施方案中,式II或式IIa所示化合物中,R
3为正丙基或异丙基。
在某些实施方案中,式II或式IIa所示化合物中,r为0或1。
在某些实施方案中,式II或式IIa所示化合物中,r为0。
在某些实施方案中,式II或式IIa所示化合物中,r为1。
在某些实施方案中,式II或式IIa所示化合物中,r为2。
在某些实施方案中,式II或式IIa所示化合物中,r为3。
在某些实施方案中,式II或式IIa所示化合物中,r为4。
在某些实施方案中,式II所示化合物中,Ar为苯环。
在某些实施方案中,式II所示化合物中,Ar上的硝基与Z是对位或邻位。
在某些实施方案中,式II所示化合物中,Ar上的硝基与Z是对位。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,L
1为-(CH
2)
m-,其中m的定义如本申请所述。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,每个m各自独立地为1或2。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,每个m各自独立地为3或4。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,每个m各自独立地为5。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,每个m各自独立地为6或7。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,每个m各自独立地为8或9。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,每个m各自独立地为10、11或12。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,L
1为-(CH
2)
mO-,-(CH
2)
mNH-或-(CH
2)
mC(O)-,其中每个m的定义如本申请所述。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,L
1为-(CH
2CH
2O)
n-,-(CH
2CH
2O)
n-(CH
2)
m-或-(CH
2)
m-(CH
2CH
2O)
n-,其中每个m和n的定义如本申请所述。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,L
1为-O-、-NH-、-S-、-NCH
3-、-NH(CH
2)
m-或-C(O)-,其中m的定义如本申请所述。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,每个n各自独立地为1、2或3。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,每个n各自独立地为4、5或6。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,每个n各自独立地为7、 8或9。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,每个n各自独立地为10、11或12。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,R
5为氢。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,R
5为氟、氯、溴或碘。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,R
5为甲基或乙基。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,R
5为正丙基、异丙基或正丁基。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,R
5为硝基。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,R
5为甲氧基或乙氧基。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,R
5为丙氧基。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,q为1或2。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,q为3或4。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,L
2为-C(O)NH(CH
2)
iNH-,-NH(CH
2)
iNH-,-NH(CH
2)
iC(O)-或-C(O)(CH
2)
iNH-,其中i为1、2、3、4、5、6、7、8、9、10、11或12;进一步优选地,i为1、2或3。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,L
2为-C(O)NH(CH
2)
iNH-,其中i的定义如本申请所述。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,L
2为-NH(CH
2)
iNH-,其中i的定义如本申请所述。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,L
2为-NH(CH
2)
iC(O)-,其中i的定义如本申请所述。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,L
2为-C(O)(CH
2)
iNH-,其中i的定义如本申请所述。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,L
2为-NH(CH
2)
iO-,其中i的定义如本申请所述。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,L
2为-NH(CH
2)
iS-,-N(CH
3)(CH
2)
iNH-或-N(CH
3)(CH
2)
iN(CH
3)-,其中每个i的定义如本申请所述。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,L
2为-O(CH
2)
iNH-,-O(CH
2)
iC(O)-,-O(CH
2)
iO-或-O(CH
2)
iS-,其中每个i的定义如本申请所述。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,L
2为-O-,-NH-,-S-, -S(O)-,-S(O)
2-,-NCH
3-,-NH(CH
2)
2NH-或-C(O)-。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,L
2为空。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,每个i各自独立地为1、2或3。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,每个i各自独立地为4、5或6。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,每个i各自独立地为7、8或9。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,每个i各自独立地为10、11或12。
在某些实施方案中,式II或式IIa所示化合物中,X为-C(O)-,-O-,-NH-,-NCH
3-,-CH
2O-,或-S-。
在某些实施方案中,式II或式IIa所示化合物中,X为-C(O)-。
在某些实施方案中,式II或式IIa所示化合物中,X为-O-,-NH-或-NCH
3-。
在某些实施方案中,式II或式IIa所示化合物中,X为-CH
2O-,-CH(CH
3)O-,或-C(CH
3)
2O-。
在某些实施方案中,式II或式IIa所示化合物中,X为-CH
2NH-,-CH(CH
3)NH-或-C(CH
3)
2NH-。
在某些实施方案中,式II或式IIa所示化合物中,X为-S-、-S(O)-或-S(O)
2-。
在某些实施方案中,式II或式IIa所示化合物中,Z为-CH
2-。
在某些实施方案中,式II或式IIa所示化合物中,Z为-CH(CH
3)-。
在某些实施方案中,式II或式IIa所示化合物中,Z为-C(CH
3)
2-。
在某些实施方案中,式II或式IIa所示化合物中,t为1。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,B为奥里斯他汀(auristatin),单甲基奥里斯他汀E(MMAE),美登木素(maytansine)或其衍生物(例如类美登木素、DM1、DM3、DM4),紫杉醇,卡里奇霉素,倍癌霉素,多柔比星,喜树碱,PBD(pyrrolobenzodiazepines)类细胞毒素及其衍生物。
在某些实施方案中,式II、式IIa或式IIb所示化合物中,B为单甲基奥里斯他汀E(MMAE)。
在某些实施方案中,式II、式IIa或式IIb所示化合物有IIIa和IIIb所示的结构:
其中,B通过活性化合物分子中的N原子或O原子偶联至羰基(即位点*)或亚甲基,B、t的定义如本申请所述。
在某些实施方案中,式II、式IIa或式IIb所示化合物选自:
本申请还涉及式II、式IIa或式IIb所示化合物或其盐在制备抗体偶联药物中的用途。
本申请还涉及式IV所示化合物或其盐,
其中:Ar为芳基、杂芳基、芳并杂环基或杂芳并杂环基,优选为五元或六元的芳基或杂芳基;优选地,Ar上的硝基与Z处于芳香体系的共轭位置,并且更优选地, 当Ar为六元的芳基或杂芳基时,Ar上的硝基与Z是对位或邻位;
R
3为氢、氟、氯、溴、碘、C
1-4烷基、硝基或C
1-4烷氧基;
r为0、1、2、3或4;
L
1选自:-(CH
2)
m-,-(CH
2)
mO-,-(CH
2)
mNH-,-(CH
2)
mC(O)-,-(CH
2CH
2O)
n-,-(CH
2CH
2O)
n-(CH
2)
m-、-(CH
2)
m-(CH
2CH
2O)
n-、-O-、-NH-、-S-、-NCH
3-、-NH(CH
2)
m-、-C(O)-、
其中每个m各自独立地为0、1、2、3、4、5、6、7、8、9、10、11或12,每个n各自独立地为0、1、2、3、4、5、6、7、8、9、10、11或12,且m和n不同时为0;R
5为氢、氟、氯、溴、碘、C
1-4烷基、硝基或C
1-4烷氧基,q为0、1、2、3或4;
L
2选自:-C(O)NH(CH
2)
iNH-,-NH(CH
2)
iNH-,-NH(CH
2)
iC(O)-,-C(O)(CH
2)
iNH-,-NH(CH
2)
iO-,-NH(CH
2)
iS-,-N(CH
3)(CH
2)
iNH-,-N(CH
3)(CH
2)
iN(CH
3)-,-O(CH
2)
iNH-,-C(O)NH-CH[(CH
2)
d-NHC(O)-(CH
2CH
2O)
e-(CH
2)
f-CH
3]-,-O(CH
2)
iC(O)-,-O(CH
2)
iO-,-O(CH
2)
iS-,-O-,-NH-,-S-,-S(O)-,-S(O)
2-,-NCH
3-,-NH(CH
2)
2NH-,-C(O)-,或L
2为空,其中每个i各自独立地为1、2、3、4、5、6、7、8、9、10、11或12;d为1、2、3、4、5或6;e为1、2、3、4、5、6、7、8、9、10、11或12;f为1、2、3、4、5或6;
X选自:-C(O)-,-O-,-NH-,-NCH
3-,-CH
2O-,-CH(CH
3)O-,-C(CH
3)
2O-,-CH
2NH-,-CH(CH
3)NH-,-C(CH
3)
2NH-,-S-,-S(O)-或-S(O)
2-;
Z为-CH
2-,-CH(CH
3)-或-C(CH
3)
2-;
t为0或1;
A为为靶向化合物,选自蛋白、抗体、多肽、酶和小分子;优选地,A通过靶向化合物分子中的S原子偶联至位点#上;
B为活性化合物,选自药物,细胞毒素,检测试剂,诊断试剂或靶向载体;优选地,B为细胞毒素,抗肿瘤药物,抗病毒药物,抗感染药物或免疫调节剂药物;进一步优选地,B为细胞毒素,例如微管蛋白抑制剂、DNA烷化剂、DNA嵌合剂、酶抑制剂、抗代谢药物、肽或核苷酸;
优选地,B通过活性化合物分子中的N原子或O原子偶联至羰基(即位点*)或Z基团;
a为0.5至8.5之间的数,例如0.8至5之间的数,1至4之间的数,2至6之间的数,3至7之间的数,4至8之间的数,3.5至8.5之间的数,3.5至4.5之间的数, 或6.5至8.5之间的数,优选地a约为4、5、6、7或8。
在某些实施方案中,式IV所示化合物中,L
2选自:-C(O)NH(CH
2)
iNH-,-NH(CH
2)
iNH-,-NH(CH
2)
iC(O)-,-C(O)(CH
2)
iNH-,-NH(CH
2)
iO-,-NH(CH
2)
iS-,-N(CH
3)(CH
2)
iNH-,-N(CH
3)(CH
2)
iN(CH
3)-,-O(CH
2)
iNH-,-O(CH
2)
iC(O)-,-O(CH
2)
iO-,-O(CH
2)
iS-,-O-,-NH-,-S-,-S(O)-,-S(O)
2-,-NCH
3-,-NH(CH
2)
2NH-,-C(O)-,或L
2为空,其中每个i各自独立地为1、2、3、4、5、6、7、8、9、10、11或12。
在某些实施方案中,式IV所示化合物中,L
2为-C(O)NH-CH[(CH
2)
d-NHC(O)-(CH
2CH
2O)
e-(CH
2)
f-CH
3]-,其中d为1、2、3、4、5或6;e为1、2、3、4、5、6、7、8、9、10、11或12;f为1、2、3、4、5或6。
在某些实施方案中,式IV所示化合物具有式IVa所示的结构,
其中L
1、L
2、X、R
3、r、Z、A、B、a、t的定义如本申请所述。
在某些实施方案中,式IV所示化合物具有式IVb所示的结构,
其中L
1、L
2、A、B、a、t的定义如本申请所述。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,R
3为氢、氟、氯、溴、碘、甲氧基、乙氧基、丙氧基、甲基、乙基、正丙基或异丙基。
在某些实施方案中,式IV或式IVa所示化合物中,R
3为氢。
在某些实施方案中,式IV或式IVa所示化合物中,R
3为氟、氯、溴或碘。
在某些实施方案中,式IV或式IVa所示化合物中,R
3为甲氧基或乙氧基。
在某些实施方案中,式IV或式IVa所示化合物中,R
3为丙氧基。
在某些实施方案中,式IV或式IVa所示化合物中,R
3为甲基或乙基。
在某些实施方案中,式IV或式IVa所示化合物中,R
3为正丙基或异丙基。
在某些实施方案中,式IV或式IVa所示化合物中,r为0或1。
在某些实施方案中,式IV或式IVa所示化合物中,r为0。
在某些实施方案中,式IV或式IVa所示化合物中,r为1。
在某些实施方案中,式IV或式IVa所示化合物中,r为2。
在某些实施方案中,式IV或式IVa所示化合物中,r为3。
在某些实施方案中,式IV或式IVa所示化合物中,r为4。
在某些实施方案中,式IV所示化合物中,Ar为苯环。
在某些实施方案中,式IV所示化合物中,Ar上的硝基与Z是对位或邻位。
在某些实施方案中,式IV所示化合物中,Ar上的硝基与Z是对位。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,L
1为-(CH
2)
m-,其中m的定义如本申请所述。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,每个m各自独立地为1或2。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,每个m各自独立地为3或4。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,每个m各自独立地为5。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,每个m各自独立地为6或7。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,每个m各自独立地为8或9。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,每个m各自独立地为10、11或12。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,L
1为-(CH
2)
mO-,-(CH
2)
mNH-或-(CH
2)
mC(O)-,其中每个m的定义如本申请所述。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,L
1为-(CH
2CH
2O)
n-,-(CH
2CH
2O)
n-(CH
2)
m-或-(CH
2)
m-(CH
2CH
2O)
n-,其中每个m和n的定义如本申请所述。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,L
1为-O-、-NH-、-S-、-NCH
3-、-NH(CH
2)
m-或-C(O)-,其中m的定义如本申请所述。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,每个n各自独立地为1、2或3。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,每个n各自独立地为4、5或6。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,每个n各自独立地为7、8或9。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,每个n各自独立地为10、11或12。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,R
5为氢。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,R
5为氟、氯、溴或碘。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,R
5为甲基或乙基。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,R
5为正丙基、异丙基或正丁基。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,R
5为硝基。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,R
5为甲氧基或乙氧基。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,R
5为丙氧基。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,q为1或2。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,q为3或4。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,L
2为-C(O)NH(CH
2)
iNH-,-NH(CH
2)
iNH-,-NH(CH
2)
iC(O)-或-C(O)(CH
2)
iNH-,其中i为1、2、3、4、5、6、7、8、9、10、11或12;进一步优选地,i为1、2或3。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,L
2为-C(O)NH(CH
2)
iNH-,其中i的定义如本申请所述。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,L
2为-NH(CH
2)
iNH-, 其中i的定义如本申请所述。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,L
2为-NH(CH
2)
iC(O)-,其中i的定义如本申请所述。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,L
2为-C(O)(CH
2)
iNH-,其中i的定义如本申请所述。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,L
2为-NH(CH
2)
iO-,其中i的定义如本申请所述。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,L
2为-NH(CH
2)
iS-,-N(CH
3)(CH
2)
iNH-或-N(CH
3)(CH
2)
iN(CH
3)-,其中每个i的定义如本申请所述。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,L
2为-O(CH
2)
iNH-,-O(CH
2)
iC(O)-,-O(CH
2)
iO-或-O(CH
2)
iS-,其中每个i的定义如本申请所述。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,L
2为-O-,-NH-,-S-,-S(O)-,-S(O)
2-,-NCH
3-,-NH(CH
2)
2NH-或-C(O)-。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,L
2为空。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,每个i各自独立地为1、2或3。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,每个i各自独立地为4、5或6。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,每个i各自独立地为7、8或9。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,每个i各自独立地为10、11或12。
在某些实施方案中,式IV或式IVa所示化合物中,X为-C(O)-,-O-,-NH-,-NCH
3-,-CH
2O-,或-S-。
在某些实施方案中,式IV或式IVa所示化合物中,X为-C(O)-。
在某些实施方案中,式IV或式IVa所示化合物中,X为-O-,-NH-或-NCH
3-。
在某些实施方案中,式IV或式IVa所示化合物中,X为-CH
2O-,-CH(CH
3)O-,或-C(CH
3)
2O-。
在某些实施方案中,式IV或式IVa所示化合物中,X为-CH
2NH-,-CH(CH
3)NH-或-C(CH
3)
2NH-。
在某些实施方案中,式IV或式IVa所示化合物中,X为-S-、-S(O)-或-S(O)
2-。
在某些实施方案中,式IV或式IVa所示化合物中,Z为-CH
2-。
在某些实施方案中,式IV或式IVa所示化合物中,Z为-CH(CH
3)-。
在某些实施方案中,式IV或式IVa所示化合物中,Z为-C(CH
3)
2-。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,t为1。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,B为奥里斯他汀(auristatin),单甲基奥里斯他汀E(MMAE),美登木素(maytansine)或其衍生物(例如类美登木素、DM1、DM3、DM4),紫杉醇,卡里奇霉素,倍癌霉素,多柔比星,喜树碱,PBD(pyrrolobenzodiazepines)类细胞毒素及其衍生物。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,B为单甲基奥里斯他汀E(MMAE)。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,A是以巯基为偶联位点的单克隆抗体,或以巯基为偶联位点的定点突变或修饰的单克隆抗体。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,A选自:抗HER2人源化单克隆抗体mil40、曲妥珠单抗(HERCEPTIN),帕妥珠单抗(PERJETA),西妥昔单抗(ERBITUX),帕尼单抗(VECTIBIX),利妥昔单抗(RITUXAN),阿仑单抗(CAMPATH),替伊莫单抗(ZEVALIN),托西莫单抗(BEXXAR),奥法木单抗(ARZERRA),贝伐单抗(AVASTIN),伊匹单抗(YERVOY),地诺单抗(XGEVA),派姆单抗(KEYTRUDA),纳武单抗(Opdivo),Avelumab(Bavencio),Atezolizumab(Tecentriq),durvalumab(Imfinzi),sacituzumab,rovalpituzumab,及其生物类似物。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,A为抗HER2人源化单克隆抗体mil40。
在某些实施方案中,式IV或式IVa或式IVb所示化合物中,a为2至7之间的数,或者a为3至6之间的数或4至5之间的数,优选地,a约为4、5、6、7或8。
在某些实施方案中,式IV或式IVa或式IVb所示化合物具有式IV-1或式IV-2所示的结构,
其中B、a的定义如本申请所述,MAB为单克隆抗体,优选为抗HER2人源化单克隆抗体mil40。
在某些实施方案中,式IV或式IVa或式IVb所示化合物选自:
其中MAB为单克隆抗体,优选为抗HER2人源化单克隆抗体mil40,a的定义如本申请所述,优选为约4。
本申请还涉及药物组合物,其包含至少一种式IV所述的化合物,或其盐、溶剂化物,以及一种或多种药用载体或赋形剂。
本申请还涉及式IV所示化合物或其盐在制备用于治疗疾病或病症或减轻所述疾病或病症严重性的药物中的用途。
本申请还涉及治疗疾病或病症或减轻所述疾病或病症严重性的方法,所述方法包括给予需要这种治疗的患者治疗有效量的通式IV所示化合物或其盐。
本申请还涉及式式IV所示化合物或其盐,其用于治疗疾病或病症或减轻所述疾病或病症严重性。
本申请还涉及诊断、预防或治疗疾病或病症的方法,包括给予需要这种治疗的患者治疗有效量的式IV所示化合物或其盐。
某些实施方案中,所述疾病或病症选自肿瘤、感染性疾病、血液学疾病、代谢性疾病、炎症。
某些实施方案中,所述肿瘤选自癌症、淋巴瘤、淋巴样肿瘤、母细胞瘤、肉瘤和白血病。
某些实施方案中,所述癌症选自:乳腺癌(例如,HER2阳性的乳腺癌);鳞状细胞癌(例如,上皮鳞状细胞癌);肺癌,包括小细胞肺癌、非小细胞肺癌、肺的腺癌和肺的鳞癌;腹膜癌;肝癌;胃癌;胃肠癌;膜腺癌;胶质母细胞瘤;宫颈癌;卵巢癌;肝癌;膀肮癌;尿道癌;肝细胞瘤;乳腺癌;肠癌;结肠癌;直肠癌;结肠直肠癌;子宫内膜癌;子宫癌;唾液腺癌;肾癌或肾癌;前列腺癌;外阴癌;甲状腺癌;肝癌;肛门癌;阴茎癌;黑色素瘤;多发性骨髓瘤和B细胞淋巴瘤;脑癌;胆囊癌;食管癌;胆管癌;头颈癌和相关转移瘤。
定义
如本文所用,术语“抗体”是一种常见的免疫性球蛋白,是免疫系统用来识别并中和外来物(如细菌和病毒)的Y形蛋白。抗体可以特异性识别外来靶标的独特部分(称为抗原),是由于Y形蛋白抗体的的每个尖端含有可对抗原特异性识别的位点,抗体对特异性抗原结合后,可以介导多种相关的生物效应。抗体由两条相同的重链和两条相同的轻链组成,各链间通过半肮氨酸残基中的巯基形成二硫键相连接。“单克隆抗体”是单一特异性抗体,其所有抗体分子均由均作为唯一亲代细胞的克隆的相同免疫细胞组成,因此所有抗体分子是相同的。
如本文所用,术语“细胞毒素”是指那些在癌细胞中释放后可对该细胞产生毒性的分子。在本申请中特别关注的毒素包括甲基奥里斯他汀E(MMAE),奥里斯他汀、美登木素或其衍生物(例如类美登木素、DM1、DM3、DM4)、卡里奇霉素、倍癌霉素、多柔比星、喜树碱或PBD类细胞毒素及其衍生物。
如本文所用,术语“连接子”是具有两个反应活性末端的分子,其一个末端可与抗体相偶联,另一个末端用于与活性化合物,例如细胞毒素相偶联。连接子的抗体偶联性末端通常为能够通过抗体上的半胱氨酸的巯基或赖氨酸胺基相偶联的位点,连接子的毒素的偶联性末端通常为能够通过毒素分子中的上的巯基、氨基、羧基或羟基等活性位点,当术语连接子用于描述偶联形式的连接子时,由于连接子已与抗体和细胞毒素中的一个或两个相反应形成共价键,因此,其可能将不再不包括一个或两个反应性末端反应位点(如巯基反应性基团的离去基团、胺基反应性基团的离去基团)。
如本文所用,术语“抗体偶联药物”或“ADC”是各自通过连接子偶联多分子(通常为1-8个)的细胞毒素于抗体分子上形成的产物。缀合于一个或多个细胞毒素的抗体。抗体通常为对癌症的特异抗原具有选择性的单克隆抗体。
如本文所用,术语“约”可理解为在所述值的+/-20%、+/-18%、+/-15%、+/-12%、+/-10%、+/-9%、+/-8%、+/-7%、+/-6%、+/-5%、+/-4%、+/-3%、+/-2%、+/-1%、+/-0.5%、+/-0.4%、+/-0.3%、+/-0.2%、+/-0.1%以内。除非另外根据上下文显而易见,否则本文提供的所有数值都由术语“约”修饰。
本申请所述的抗体偶联药物所关注的肿瘤疾病类型包括但不限于癌症、乳腺癌、淋巴瘤、淋巴样肿瘤、母细胞瘤、肉瘤和白血病。这样的癌症的更具体的实例包括鳞状细胞癌(例如,上皮鳞状细胞癌);肺癌,包括小细胞肺癌、非小细胞肺癌、肺的腺癌和肺的鳞癌;腹膜癌;肝癌;胃癌或胃癌,包括胃肠癌;膜腺癌;胶质母细胞瘤;宫颈癌;卵巢癌;肝癌;膀肮癌;尿道癌;肝细胞瘤;乳腺癌,包括例如HER2阳性乳腺癌;结肠癌;直肠癌;结肠直肠癌;子宫内膜或子宫癌;唾液腺癌;肾癌或肾癌;前列腺癌;外阴癌;甲状腺癌;肝癌;肛门癌;阴茎癌;黑色素瘤;骨髓瘤和B细胞淋巴瘤;脑癌;头颈癌和相关转移瘤。
术语“盐”指保留某化合物的生物有效性和性质的盐,它们对于用于药物中在生物学或其它方面不适不符合需要的。在许多情况下,本文所公开的化合物能够借助氨基和/或竣基或类似基团的存在形成酸和/或碱盐。药学上可接受的酸加成盐可由无机酸和有机酸组成。可以衍生形成盐的无机酸包括,例如,盐酸、氢溴酸、硫酸、硝酸、磷酸等。可以衍生形成盐的有机酸包括,例如,醋酸、丙酸、羟基乙酸、丙酮酸、草酸、马来酸、丙二酸、琥珀酸、反丁烯二酸、酒石酸、柠檬酸、苯甲酸、肉桂酸、扁桃酸、甲磺酸、乙磺酸、对甲苯磺酸、水杨酸等。药学上可接受的碱加成盐可由无机碱和有机碱组成。可以衍生形成盐的无机碱包括,比如,钠、钾、锂、铵、钙、镁、铁、锌、铜、猛、铝等;特别优选的是铵,钾,钠,钙和镁盐。可以衍生形成盐的有机碱包括,例如,伯,仲和叔胺,取代的胺,包括天然存在的取代胺,环胺,碱性离子交换树脂等,具体地例如异丙胺,三甲胺,二乙胺,三乙胺,三丙胺和乙醇胺。许多这类盐是本领域已知的,如W087/05297,Johnston等人描述的,出版于1987年9月11日(通过引用将其整体并入本文)。
如本文所用,C
l-C
6中“1和6”是指在指定基团中碳原子的数目。也就是说,该组可以包含从“1”到“6”的(包括端点的)碳原子数。因此,例如,“C
1-C
4烷基”或“C
1-4烷基”指的是具有1~4个碳原子的所有烷基,即,CH
3、CH
3CH
2、CH
3CH
2CH
2-、(CH
3)
2CH-、CH
3CH
2CH
2CH
2-、CH
3CH
2CH(CH
3)-和(CH
3)
3C-。
如本文所用的术语“卤素”,是指该元素周期表第7列中的放射性稳定的原子中的任何一个,例如,氟、氯、溴、碘等,其中氯为首选。
如本文所用,术语“芳基”是指具有共轭π电子体系的一个单环或两个或多个稠合环的5-14个碳原子的不饱和芳族碳环基。所述“芳基”优选具有5-10、5-8或5-6个碳原子。“芳基”的典型实例包括但不限于苯基、萘基、蒽基等。
在本文中,术语“杂芳基”是指,至少一个环成员为选自氮、氧或硫的杂原子的如本文所定义的芳基。所述“杂芳基”优选具有5-10、5-8或5-6个环成员。“杂芳基”的典型实例包括但不限于呋喃基,咪唑基,噻吩基、三氮唑基、吲哚基,四氮唑基、吡啶基,蝶啶基,嘧啶基,三唑基,喹啉基,异喹啉基,喹唑啉基,喹喔啉基等。
在本文中,术语“芳并杂环基”是指具有两个或多个稠合环的环状基团,其中两个或更多个碳为两个相邻环共用,其中至少一个环为本文所定义的芳基,并且至少一个 环为杂环基。
在本文中,术语“杂芳并杂环基”是指具有两个或多个稠合环的环状基团,其中两个或更多个碳为两个相邻环共用,其中至少一个环为本文所定义的杂芳基,并且至少一个环为杂环基。
在本文中,术语“杂环基”是指具有3至12个环成员的单环或二环或多个稠合环(包括稠合、桥连和螺环)的饱和或部分不饱和环状烃基,并且至少一个环成员为选自氮、氧或硫的杂原子。所述“杂环基”优选具有3-10,3-8,5-8,3-6或5-6个环成员。“杂环基”的典型实例包括但不限于四氢呋喃基,四氢噻吩基,吡咯烷基,哌嗪基,噻嗪基,哌啶基和吗啉基等。
缩写/缩略语
ADC(antibody-drug conjugate):抗体偶联药物;
DAR(Drug to antibody ratio):药物/抗体摩尔比;
DCM(Dichloromethane):二氯甲烷;
DIPEA(N,N-Diisopropylethylamine):二异丙基乙胺;
DMAC(Dimethylacetamide):N,N-二甲基乙酰胺;
DMF(N,N-Dimethylformamide):N,N-二甲基甲酰胺;
DMSO(Dimethyl Sulphoxide):二甲基亚砜;
EA(Ethyl acetate):乙酸乙酯;
EDCI(1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide Hydrochloride):1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐;
HOBt(1-Hydroxybenzotriazole):1-羟基苯并三唑;
HER2(Human epidermal growth factor receptor 2):人表皮生长因子受体2;
MAB(Monoclonal Antibody):单克隆抗体
MMAE(Monomethyl auristatin E):单甲基奥里斯他汀E;
NAC(N-Acetyl-L-cysteine):N-乙酰半胱氨酸;
TCEP(Tris(2-carboxyethyl)phosphine):三(2-羧乙基)膦;
THF(Tetrahydrofuran):四氢呋喃;
Tris(Tris(hydroxymethyl)aminomethane):三羟甲基氨基甲烷;
本文中使用的化合物名称与化学结构式不一致时,以化学结构式为准。
如本文所述的药物组合物包含本申请式Ⅳ所示化合物,或其盐、溶剂化物,与常规药用载体或赋形剂。该药物组合物可通过例如口服或非肠道,例如静脉注射、腹腔注射、肌肉注射、皮下注射,等途径给药。
如本文所用,术语“有效量”是指足以实现所需治疗效果的量,例如,实现减轻与 待治疗疾病相关的症状的量。
另外需要指出,本申请化合物使用剂量和使用方法取决于诸多因素,包括患者的年龄、体重、性别、自然健康状况、营养状况、化合物的活性强度、服用时间、代谢速率、病症的严重程度以及诊治医师的主观判断。优选的使用剂量介于0.01-100mg/kg体重/天。
某些实施方案中,本申请所述的ADC的合成路线如下:
其中L
1和a的定义如本申请所述。
本申请的有益技术效果
本申请所提供的抗体偶联药物,其在缺氧条件选择性裂解释放出毒素,而在常氧条件下释药过程不能顺利发生。药物释放的过程,在酶水平、细胞水平均表现出了对缺氧因素高度的选择性。
图1示出在缺氧和常氧条件下,不同的时间点L1-MMAE偶联物在硝基还原酶的作用下释放的MMAE的量;
图2示出在缺氧和常氧条件下,不同的时间点L2-MMAE偶联物在硝基还原酶的 作用下释放的MMAE的量;
图3示出在缺氧和常氧条件下,不同的时间点ADC-I和ADC-II在乳腺癌细胞系HCC1954中释放的MMAE的量;
图4示出在缺氧和常氧条件下,不同的时间点ADC-I和ADC-II在乳腺癌细胞系BT-474中释放的MMAE的量;
图5示出在缺氧和常氧条件下,不同的时间点ADC-I和ADC-II在胃细胞系NCI-N87中释放的MMAE的量。
下面将结合实施例对本申请的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本申请,而不应视为限定本申请的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1:连接子L1和L2的制备
1)中间体S3的制备:
将马来酸酐(S1,4.86g,49.55mmol)加入到6-氨基己酸(S2,5.0g,38.11mmol)的乙酸(AcOH,150mL)溶液中,得到的混合物在120℃下搅拌回流反应6小时。冷却至室温后,将反应混合物倒入水中,用乙酸乙酯(EA,3×20mL)进行萃取,合并有机层后采用饱和食盐水洗涤,并采用无水Na
2SO
4进行干燥,减压蒸发得到粗产物,粗品进一步经柱层析纯化得到目标产物S3为白色固体粉末(5.92g,74%yield)。
1H-NMR(400MHz,DMSO-d6):δ11.98(br,1H),7.01(s,2H),3.39(m,2H),2.17(t,J=7.4Hz,2H),1.51-1.44(m,2H),1.24-1.17(m,2H)。MS(ESI)m/z:210.0[M-H]
-。
2)中间体S4的制备:
将S3(4.66g,22.0mmol),2,4,6-三甲基吡啶(11.6mL,88.0mmol)和N-羟基琥珀酰亚胺(NHS,5.08g,44.0mmol)加入到四氢呋喃(THF,100mL)溶液中, 冷却至0℃,并在30分钟内逐滴加入三氟乙酸酐(6.12mL,44.0mmol)。将得到的混合物在室温下继续搅拌反应1小时,然后减压浓缩去除溶剂,所得残渣再次溶解于EA(200mL)中。将所得的EA溶液用HCl溶液(1mol/L)和饱和食盐水分别洗涤3次,所得的有机相采用无水Na
2SO
4进行干燥,减压浓缩去除EA后得到粗产物,粗品进一步经柱层析纯化得到目标产物S4为无色油状液体,低温放置时转化为白色固体(4.71g,69%yield)。
1H-NMR(400MHz,CDCl
3):δ6.69(s,2H),3.53(t,J=7.3Hz,2H),2.84(s,4H),2.61(t,J=7.4Hz,2H),1.78(m,2H),1.63(m,2H),1.45-1.37(m,2H)。MS(ESI)m/z:309.4[M+H]
+;331.2[M+Na]
+。
3)中间体S7的制备:
将S5(7.86g,50.0mmol)和S1(4.90g,50.0mmol)加入到AcOH溶液(100mL)中,在120℃下搅拌反应6小时,冷却至室温,将反应液倒入水中,采用EA萃取(3×50mL)后合并有机层,用饱和食盐水洗涤后采用无水Na
2SO
4干燥,减压去除溶剂得到粗产物为白色固体(9.96g,84%yield),不经纯化直接应用到下一步。取上述白色固体(13.1g,55mmol),2,4,6-三甲基吡啶(26.4mL,200mmol)和NHS(23.0g,200mmol),一同溶解于THF(250mL)中,全部溶解后冷却至0℃,在45分钟内逐滴加入三氟乙酸酐(27.8mL,200mmol),在室温下继续搅拌18小时,然后将氯仿(300mL)和盐酸溶液(1mol/L,250mL)加入到反应混合物中,再采用二氯甲烷进行萃取(DCM,3×100mL)。萃取得到的有机层用盐酸(1N,250mL)洗涤两次,使用Na
2SO
4干燥后,减压浓缩去除DCM得到粗品为黄色固体。将上述黄色固体用乙醚(3×200mL)进行打浆,得到目标产物S7为白色粉末状固体(15g,90%yield)。
1H-NMR(400MHz,DMSO-d6):δ6.71(s,1H),3.39(d,J=7.2Hz,2H),2.82(d,J=7.3Hz,4H),2.58(m,1H),2.15(m,2H),1.80(m,2H),1.56(m,1H),1.54(m,2H),1.06(m,2H)。MS(ESI)m/z:352.6[M+NH
4]
+;357.4[M+Na]
+。
4)中间体S9的制备:
向S8(1.0g,5.52mmol)的甲醇溶液(MeOH,30mL)中加入浓H
2SO
4(2mL), 并在75℃下搅拌回流18小时,然后在减压下蒸发去除溶剂得到粗产物,进一步经柱层析纯化得到目标产物S9为白色固体粉末(920mg,75%yield)。
1H-NMR(400MHz,DMSO-d6):δ8.00(d,J=8.4Hz,1H),7.66(d,J=1.4Hz,1H),7.61(dd,J=8.4Hz,1H),3.84(s,3H),2.45(s,3H)。MS(ESI)m/z:196.0[M+H]
+;213.0[M+NH
4]
+。
5)中间体S10的制备:
将S9(1.0g,5.1mmol),AIBN(催化量,50mg)和N-溴琥珀酰亚胺(NBS,1.0g,5.6mmol)溶于苯(50mL)中,并在搅拌状态下加热回流18小时。反应结束后,在减压状态下蒸除溶剂得到粗产物,进一步经柱层析纯化得到目标产物S10为白色固体粉末(1.14g,81%yield)。
1H-NMR(400MHz,CDCl
3):δ7.91(d,J=8.4Hz,1H),7.75(d,J=2.0Hz,1H),7.64(dd,J=8.4Hz,1H),5.50(s,2H),3.94(s,1H)。MS(ESI)m/z:272.9[M+H]
+。
6)中间体S11的制备:
向S10(250mg,0.91mmol)的丙酮/水的混合溶液(1:1(v/v),10mL)中加入Na
2CO
3(0.48g,4.55mmol),并在搅拌状态下加热至65℃保持反应6小时,然后再加入额外的NaOH(0.18g,5当量)并继续回流反应1小时。在反应停止后,减压浓缩除去丙酮,并用浓HCl将溶液的pH调节至约2,并用EA萃取多次。合并有机相,用饱和食盐水洗涤三次并用MgSO
4进行干燥。在减压状态下蒸除溶剂得到粗产物,进一步经柱层析纯化得到目标产物S11为红棕色片状固体(140mg,76%yield)。
1H-NMR(400MHz,DMSO-d6):δ7.97(d,J=8.4Hz,1H),7.74(d,J=2.0Hz,1H),7.65(dd,J=8.4Hz,1H),5.59(s,1H),4.63(d,J=3.18.4Hz,2H)。MS(ESI)m/z:195.9[M-H]
-。
7)中间体S12的制备:
将S11(500mg,2.53mmol),EDCI(0.73g,3.8mmol),HOBt(0.51g,3.8mmol)和DIPEA(0.49g,3.8mmol)溶解于DMF(15mL)中,并将此混合物溶液在室温下搅拌反应1小时,然后加入2-氨基-乙基氨基-甲酸叔丁酯(0.81g,5.06mmol),将混合物继续在室温下搅拌反应18小时,反应停止后减压浓缩去除溶剂得到粗产物,进一步经柱层析纯化得到目标产物S12为黄色凝胶状固体(760mg,89%yield)。
1H-NMR(400MHz,DMSO-d6):δ8.66(t,J=5.6Hz,1H),8.02(d,J=8.4Hz,1H),7.59(d,J=8.4Hz,1H),7.53(s,1H),6.88(t,J=11.5Hz,1H),5.59(t,J=5.6Hz,1H),4.62(d,J=5.6Hz,2H),3.23(q,J=6.2Hz,2H),3.09(q,J=6.2Hz,2H),1.39(s,9H)。MS(ESI)m/z:340.2[M+H]
+;362.2[M+Na]
+。
8)中间体S13的制备:
将S12(760mg,2.24mmol)溶于浓度为2mol/L的HCl的EA溶液(3mL)中并在室温下搅拌过夜。反应结束后减压除去溶剂得到粗产物,粗品进一步经柱层析纯化得到目标产物S13为浅黄色固体粉末(0.58g,94%yield)。
1H-NMR(400MHz,DMSO-d6):δ8.94(t,J=5.6Hz,1H),8.04(d,J=8.4Hz,1H),7.90(br,1H),7.67(s,1H),7.62(d,J=8.4Hz,1H),5.69(br,1H),4.63(s,2H),3.49(q,J=5.9Hz,2H),2.95(t,J=6.7Hz,2H)。MS(ESI)m/z:240.2[M+H]
+;262.2[M+Na]
+。
9)中间体S14的制备:
向S13(760mg,2.24mmol)的DMF(20mL)溶液中加入S4(1.18g,3.82mmol)和DIPEA(0.49g,3.82mmol)。将混合物在室温下搅拌过夜,然后在减压下蒸发溶 剂得到粗产物,并进一步经柱层析纯化得到目标产物S14为浅黄色玻璃状固体(1.14g,81%yield)。
1H-NMR(400MHz,DMSO-d6):δ8.67(t,J=5.6Hz,1H),8.02(d,J=8.4Hz,1H),7.87(t,J=5.4Hz,1H),7.59(d,J=9.4Hz,1H),7.52(s,1H),7.00(s,2H),5.61(t,J=5.7Hz,1H),4.62(d,J=5.6Hz,2H),3.39(q,J=7.2Hz,2H),3.22(m,4H),2.05(t,J=7.5Hz,2H),1.48(m,4H),1.18(m,2H)。MS(ESI)m/z:433.6[M+H]
+;455.4[M+Na]
+。
10)中间体S15的制备:
向S13(530mg,2.22mmol)的DMF溶液(20mL)中加入S7(815mg,2.44mmol)和DIPEA(0.31g,2.44mmol)。将混合物在室温搅拌过夜,然后在减压下蒸发溶剂得到粗产物,粗产品经进一步经柱层析纯化得到目标产物S15为浅黄色玻璃状固体(660mg,65%yield)。
1H-NMR(400MHz,DMSO-d6):δ8.65(t,J=5.6Hz,1H),8.02(d,1H),7.77(t,J=5.6Hz,1H),7.59(d,J=9.4Hz,1H),7.51(s,1H),7.01(s,2H),5.59(t,J=5.7Hz,1H),4.62(d,J=5.6Hz,2H),3.25-3.18(m,6H),3.22(m,4H),2.00(tt,J=3.4Hz,1H),1.72(d,J=10.6Hz,2H),1.62(d,J=10.6Hz,2H),1.52(m,1H),1.26(qd,J=4.2Hz,2H),0.89(qd,J=3.4Hz,2H)。MS(ESI)m/z:459.5[M+H]
+;481.2[M+Na]
+。
11)连接子L1的制备:
向S14(1.10g,2.54mmol)的DMF溶液(10mL)中加入双(4-硝基苯基)碳酸酯(1.55mg,5.09mmol)和DIPEA(0.66g,5.09mmol)并在室温下搅拌过夜。反应结束后减压浓缩去除溶剂得到粗产品,粗产品经进一步经柱层析纯化得到目标产物L1为浅黄色玻璃状固体(1.38g,97%yield)。
1H-NMR(400MHz,DMSO-d6):δ8.75(t,J=5.3Hz,1H),8.34(dt,J=9.2Hz,2H),8.11(d,J=8.1Hz,1H),7.86(t,J=5.7Hz,1H),7.76(dd,J=8.3Hz,1H),7.71(d,J=1.7Hz,1H),7.61(dt,J=9.2Hz,2H),7.00(s,2H),5.44(s,2H),3.35(t,J=6.6Hz,2H),3.24(m,4H),3.05(t,J=7.4Hz,2H),1.47(m,4H),1.17(m,2H)。 MS(ESI)m/z:598.4[M+H]
+;615.3[M+NH
4]
+。
12)连接子L2的制备:
向S15(0.46g,1.0mmol)的DCM溶液(10mL)中加入氯甲酸4-硝基苯酯(0.40mg,2mmol)和吡啶(5mL),并在室温下搅拌过夜。反应完成后减压浓缩去除溶剂得到的固体残渣进一步经柱层析纯化得到目标产物L2为白色固体粉末(0.30g,48%yield)。
1H-NMR(400MHz,DMSO-d6):δ8.75(t,J=5.2Hz,1H),8.34(d,J=9.0Hz,2H),8.10(d,J=8.4Hz,1H),7.77(m,2H),7.70(s,1H),7.60(d,J=9.0Hz,2H),7.00(s,2H),5.43(s,2H),3.21(m,6H),2.00(tt,J=12.3Hz,1H),1.72(d,J=11.2Hz,2H),1.59(d,J=11.8Hz,2H),1.48(m,1H),1.27(qd,J=4.3Hz,2H),0.86(qd,J=3.3Hz,2H)。MS(ESI)m/z:624.4[M+H]
+;646.4[M+Na]
+。
实施例2:连接子-MMAE偶联物的制备
1)L1-MMAE的制备:
将L1(73.24mg,0.12mmol)、MMAE(80.0mg,0.11mmol,购自Concortis Biosystems)和HOBt(15.06mg,0.11mmol)溶解于DMF(6mL)中,全部溶解后加入DIPEA(28.80mg,0.22mmol)。将反应液在室温下搅拌过夜,反应结束后将其倒入水(20mL)中,并采用EA(3×20mL)进行萃取。合并EA有机层,用饱和食盐水进行洗涤,并经无水Na
2SO
4干燥后,减压浓缩去除溶剂粗产物。粗品进一步 经柱层析纯化,采用80:1~10:1的DCM/MeOH(v/v)进行洗脱,得到目标产物L1-MMAE为白色固体粉末(83mg,64%yield)。
1H-NMR(400MHz,DMSO-d6):δ8.70(br,1H)),8.44(t,J=8.9Hz,0.5H),8.19(d,J=8.7Hz,0.5H),8.04(dd,J=8.4Hz,1H),7.73-7.84(m,1.5H),7.73-7.57(m,2.5H),7.31-7.15(m,5H),7.00(s,2H),5.44-5.36(dd,J=5.0Hz,1H),5.31-5.12(m,2H),4.76-4.65(br,1H),4.54-4.24(m,3H),4.00(m,2H),3.79(m,0.5H),3.58-3.46(m,1.5H),3.38(m,2H),3.24-3.12(m,12H),2.97-2.81(m,4H),2.41(d,J=16.0Hz,1H),2.25(m,1H),2.14-1.99(m,5H),1.80-1.74(br,3H),1.52-1.43(m,5H),1.29-1.09(m,7H),1.05-0.94(m,6H),0.88-0.75(m,18H)。HRMS(ESI)m/z:588.7847[M+2H]
2+;1198.6376[M+Na]
+。
2)L2-MMAE的制备:
将L2(36.50mg,0.0585mmol)、MMAE(40.0mg,0.0557mmol)和HOBt(8.0mg,0.0585mmol)溶解于DMF(3mL)中,全部溶解后加入DIPEA(7.56mg,0.0585mmol)。将反应液在室温下搅拌过夜,反应结束后将其倒入水(15mL)中,并采用EA(3×30mL)进行萃取。合并EA有机层,用饱和食盐水进行洗涤,并经无水Na
2SO
4干燥后,减压浓缩去除溶剂粗产物。粗品进一步经柱层析纯化,采用80:1~10:1的DCM/MeOH(v/v)进行洗脱,得到目标产物L2-MMAE为白色固体粉末(40mg,59%yield)。
1H-NMR(400MHz,DMSO-d6):δ8.29-7.98(m,2H),7.62-7.50(m,3H),7.37-7.30(m,4H),7.28-7.23(m,1H),6.69(s,2H),6.64-6.53(m,2H),5.64-5.46(m,0.5H),5.37-5.10(m,1.5H),4.96-4.91(m,1H),4.73-4.61(m,2H),4.23-3.99(m,4H),3.84-3.69(m,1H),3.62-3.28(m,14H),2.97-2.83(m,5H),2.47-2.21 (m,3H),2.11-2.02(m,3H),1.89-1.68(m,9H),1.43-1.23(m,9H),1.02-0.67(m,24H)。HRMS(ESI)m/z:601.8398[M+2H]
2+;1224.6522[M+Na]
+。
实施例3:ADCs的制备
1)常用缓冲盐溶液的配制:
缓冲盐溶液-1(buffer-1):取3.11g的L-组氨酸,溶于1L二次蒸馏水中,全部溶解后,采用医用冰醋酸调其pH=5.50左右(±0.05);经0.22μm的滤膜过滤除菌后,装瓶并置于4℃下短期存储,待用。
缓冲盐溶液-2(buffer-2):称取TRIS·base 6.06g、EDTA·2Na 0.93g溶解后,定容到100mL;另称取TRIS·HCl 7.88g、EDTA·2Na 0.93g溶解后,同样也定容到100mL;向TRIS·base溶液中加入TRIS·HCl溶液,互调使其pH=8.50(±0.05);经0.22μm的滤膜过滤除菌后,装瓶并置于4℃下短期存储,待用。
缓冲盐溶液-3(buffer-3):采用移液枪量取医用冰醋酸1.715mL,溶解于200mL二次蒸馏水中,充分混匀后,经0.22μm的滤膜过滤除菌后,装瓶并置于4℃下短期存储,待用。
2)抗体偶联反应:
①药用抗体的置换:偶联所采用的抗HER2人源化单克隆抗体mil40(购买于浙江海正药业股份有限公司),为赫赛汀的生物仿制药,其初始的制剂溶液中包含盐酸组氨酸(一水)0.616mg/ml、L-组氨酸0.364mg/ml、海藻糖22.727mg/mL、吐温-20100mg/mL等药用辅料,为去除辅料干扰,首先将冻融的抗体原液置于室温缓慢融化,并经G25葡聚糖凝胶柱,将其置换到缓冲液-1中。置换完成后,通过超滤离心进行浓缩(终浓度>5mg/mL),并通过紫外分光光度计对其浓度进行测定。
②偶联反应液的准备:根据所需偶联抗体的量(1eq),采用移液枪精确移取抗体的buffer-1溶液,并补加一定量的buffer-1,使得抗体浓度约为10mg/mL。采用buffer-2调其pH=6~8左右,并用移液枪将其转移至洁净的反应小瓶中。
③抗体的还原:缓慢搅拌小瓶中的反应液(100rpm),并加入2~5eq的2.87mg/mL的TCEP·HCl溶液,加完后,室温下徐徐搅拌,反应60~180min。
④抗体的偶联:计算需要加入有机溶剂(DMAC或DMSO)的体积,使其占总体积的5%~15%;同时计算需要加入的小分子荷载(连接子-MMAE偶联物)的质量,通常小分子荷载需要稍微过量(通常为8eq),进而计算出所需加入的荷载的有机溶剂的浓度。精确配制荷载的溶液后,将其缓慢滴加到已经还原的抗体反应液中。室温下继续缓慢搅拌,根据具体偶联情况反应0.5~5h。
⑤反应的终止:反应液达到预定的偶联时间后,加入过量的包含还原性巯基的 水溶性小分子N-乙酰基半胱氨酸溶液(1.63mg/mL),缓慢搅拌继续反应30min。
⑥产物初步纯化:待偶联的终止反应结束后,加入buffer-3回调反应液的pH约为5.50;所得的反应液经过滤后,采用G25葡聚糖凝胶柱进行初步纯化,收集前段(约为80%)的组分流出液,再次经超滤浓缩后,无菌过滤并进行样品分装;除预留的用于产品分析的部分样品置于4℃下短期存储外,其它产品置于-80℃下存储待用。
采用上述方法,将L1-MMAE、L2-MMAE分别偶联于抗HER2人源化单克隆抗体mil40抗体之上,分别制备得到对应的ADC-I和ADC-II:
ADC-I:
其中:MAB为抗体,a约为4。
ADC-II:
其中:MAB为抗体,a约为4。
实施例3制备的ADCs及其相关质量信息如下:
实施例4:L1-MMEA偶联物的酶解释药释放性能及缺氧选择性评估
按照相关文献(Bioconjug.Chem.2006,17,831-840.)中描述的操作方法,向N-乙酰基-L-半胱氨酸的PBS溶液(NAC,900μL,0.31mg/mL,pH=7.4)中加入 L1-MMAE偶联物的DMSO溶液(100μL,2mg/mL),混匀后将其置于30℃的水浴中孵育10分钟,10分钟后HPLC检测显示L1-MMAE全部转化为NAC-L1-MMAE偶联物,该偶联物无需进一步纯化而作为储备液直接使用。
向PBS缓冲液(390μL,100mM,pH=7.4)中充入氮气并快速加入NADPH(75μL,20mM,购买于ARK)、NADPH-CYP reductase(10μL,3mg,货号CYP004,购买于Cypex公司)。将混合物在37℃下孵育10分钟后加入NAC-L1-MMAE偶联物的储备溶液(25μL),然后在37℃下的缺氧培养箱中继续孵育(0.1%O
2),其中酶与底物的比例为1:400。同时设置常氧对照组(20.0%O
2)。在随后的时间点(0h、0.25h、0.5h、1h、2h、4h、6h、12h、24h)分别取样50μL,并加入冷的乙腈(200μL)进行涡旋淬灭,然后在-80℃冷冻,每个时间点平行3个样品。取样完成后,将所有样品在室温下熔化并离心除去蛋白质,取上层清夜进行LC/MS分析。结果是基于每个时间点对应的释放的MMAE的AUC,释放的MMAE的含量根据标准曲线法进行确定。在缺氧和常氧条件下,不同的时间点L1-MMAE偶联物在硝基还原酶酶的作用下释放的MMAE的量如图1所示。
肿瘤相比于正常组织具有着特殊的微环境,其中缺氧是实体瘤普遍存在的特征。本实施例评估了偶联物L1-MMAE的酶解释药性能以及释药过程对缺氧的选择性。连接子L1中的芳硝基基团的还原依赖于硝基还原酶NADPH-CYP reductase(E.C.1.6.2.4)、还原态NADPH、以及缺氧环境。如图1所示,在缺氧环境中底物L1-MMAE可以在硝基还原酶的作用下选择性地释放所携带的细胞毒素MMAE,MMAE的释放量随时之间的延长逐渐增多。相比之下,常氧对照组中,MMAE的释放量较少,而且随着时间的延长释放量也没有显著性的增多。该试验证明了连接子L1的裂解及后期引发的酶解释药过程具有着明显的对缺氧的选择性。
实施例5:L2-MMAE的酶解释药释放性能及缺氧选择性评估
本实施例进一步评估了连接子L2与细胞毒素MMAE的偶联物L2-MMAE的酶解释药性能。操作过程参考实施例4中的描述进行。在缺氧和常氧条件下,不同的时间点L2-MMAE偶联物在硝基还原酶的作用下释放的MMAE的量如图2所示。试验结果显示,L2-MMAE偶联物与L1-MMAE偶联物相似,连接子的断裂以及其所携带毒素MMAE的酶解释放过程均具有对缺氧的选择性,并且MMAE释放量同样随着时间的延长逐渐增多,相对的常氧对照组在较长的时间里也仅有少量MMAE脱落。本实施例进一步证实了连接子L2的释药过程具有对缺氧的选择性。
实施例6:ADCs在乳腺癌细胞HCC1954中释药缺氧选择性评估
本实施例评估了ADCs在细胞水平上的释药可行性及释药过程对缺氧的选择性。本实施所用的细胞系为抗原(HER2)阳性的人乳腺癌细胞系HCC1954(购买于ATCC)。受试的ADCs为实施例1制备的ADC-I和ADC-II。HCC1954细胞的培养基由10%胎牛血清(FBS)和包含1%青霉素-链霉素(PS)的RPMI培养基组成。在37℃,5%CO
2,95%相对湿度的烧瓶中培养细胞。当细胞达到80%~90%汇合时,开始分离并接种细胞。将1.0×10
6个HCC1954细胞接种在T75烧瓶中,在37℃,5%CO
2,95%相对湿度下培养2天。将HCC1954细胞分为空白组和ADC给药组,其中每个给药组包括两个重复。给药组分别采用含有15mL包含约100ng ADC的上述HCC1954细胞培养基重新培养细胞,空白对照组内不加入受试ADC。处理完成后,分别在缺氧(1%O
2)和常氧(20%O
2)的条件下培养细胞12h、24h和48h。弃去培养基,用胰蛋白酶/EDTA分离细胞,并通过加入含有过量血清的培养基灭活胰蛋白酶,然后以120g离心5分钟,加入10mL的HCC1954细胞的培养基进行混合,然后使用自动细胞计数器(Nexcelom
Cell Profiler)计数细胞数和活力。离心并用冰冷的PBS(pH=7.4)洗涤细胞沉淀两次。加入6mL冷甲醇提取细胞沉淀,然后将悬浮液在-20℃保持30分钟,并以13000g离心20分钟。通过吹氮气蒸发上清液。将得到的残余物重新溶解在600μL甲醇中,该甲醇内含有内标物(IS=100nmol/L阿普唑仑)。通过LC-MS/MS分析样品并进行定量。在缺氧和常氧条件下,不同的时间点ADC-I和ADC-II在乳腺癌细胞系HCC1954中释放的MMAE的量如图3所示。
试验结果显示,受试的两个ADCs(ADC-I和ADC-II)在抗原(HER2)阳性的HCC1954乳腺癌细胞系上,所携带的毒素MMAE的释放均表现出了显著的缺氧选择性,缺氧条件下(0.1%O
2),细胞内的毒素释放量也随着时间的延长而增多;相比之下,在常氧条件下培养的细胞内仅检测到少量的MMAE释放,而且其释放量几乎不伴随时间的延长而增多,如图3所示。该实施例证明了ADC-I和ADC-II可以在HCC1954乳腺癌细胞内顺利释放出所携带的毒素,并且释药过程具有对缺氧的选择性。
实施例7:ADCs在乳腺癌细胞BT-474中的释药缺氧选择性评估
本实施例进一步评估了ADCs在抗原(HER2)阳性的人乳腺癌细胞系BT-474细胞(购买于ATCC)中的释药性能以及释药过程对缺氧的依赖性。本实施所用的受试的ADCs为实施例1制备的ADC-I和ADC-II。操作过程参考实施例6中的类似描述进行。BT-474细胞在内含10%FBS、1%PS和0.01mg/mL胰岛素的DMEM培养基中培养;在37℃,5%CO
2,95%相对湿度的烧瓶中培养细胞。当细胞达到80%~90%汇合时,开始分离并接种细胞。将数量约为2.0×10
6的BT-474细胞接种在T75烧瓶中,在37℃,5%CO
2,95%相对湿度下培养2天。将细胞分为空白组以及ADC给药组, 给药组包含两个重复。给药组分别采用含有15mL包含约1500ng ADC的上述BT-474细胞培养基重新培养细胞,空白对照组内不加入受试ADC。分别在缺氧(1%O
2)和常氧(20%O
2)的条件下培养细胞12h、24h和48h。弃去培养基,用胰蛋白酶/EDTA分离细胞,加入含有过量血清的培养基灭活胰蛋白酶,120g离心5分钟,加入10mL BT-474细胞培养基进行混合,然后使用自动细胞计数器(Nexcelom
Cell Profiler)来计算细胞数量和活力。离心并用冷的PBS溶液(pH=7.4)洗涤细胞沉淀两次。加入6mL冷甲醇提取细胞沉淀;然后将悬浮液在-20℃保持30分钟,并以13000g离心20分钟。通过吹氮气蒸发上清液。将得到的残余物重新溶解在600μL甲醇中,该甲醇含有内标(IS=100nmol/L阿普唑仑),通过LC-MS/MS分析样品并进行定量。在缺氧和常氧条件下,不同的时间点ADC-I和ADC-II在乳腺癌细胞系BT-474中释放的MMAE的量如图4所示。
试验结果显示,受试的两个ADCs(ADC-I和ADC-II)在抗原(HER2)阳性的BT-474乳腺癌细胞系上,所携带的毒素MMAE的释放表现出了显著的缺氧选择性,缺氧条件下(0.1%O
2)细胞内的毒素释放量也随着时间的延长而增多;相比之下,在常氧条件下培养的细胞内仅检测到少量的MMAE释放,而且其释放量几乎不伴随时间的延长而增多。该实施例进一步证明了ADC-I和ADC-II可以在BT-474乳腺癌细胞内顺利释放出所携带的毒素,并且释药过程具有对缺氧的选择性。
实施例8:ADCs在胃癌细胞NCI-N87中的释药缺氧选择性评估
本实施例进一步评估了该类ADCs在抗原(HER2)阳性的人胃癌细胞系NCI-N87细胞(购买于ATCC)中的释药性能以及释药过程对缺氧的依赖性。本实施所用的受试的ADCs为实施例1制备的ADC-I和ADC-II。操作过程参考实施例6中的类似描述进行。NCI-N87细胞在内包含10%FBS、1%PS和0.01mg/mL胰岛素的DMEM培养基中培养;在37℃,5%CO
2,95%相对湿度的烧瓶中培养细胞。当细胞达到50%~60%汇合时,开始分离并接种细胞。将数量约为3.0×10
6的NCI-N87细胞接种在T75烧瓶中,在37℃,5%CO
2,95%相对湿度下培养3天。将细胞分为空白组以及ADCs给药组,给药组包含两个重复。给药组分别采用含有15mL包含约1000ng ADC的上述NCI-N87细胞培养基重新培养细胞,空白对照组内不加入受试ADCs,分别在缺氧(1%O
2)和常氧的条件下培养细胞12h、24h和48h。弃去培养基,用胰蛋白酶/EDTA分离细胞,加入含有过量血清的培养基灭活胰蛋白酶,120g离心5分钟,加入10mL的NCI-N87细胞培养基进行混合,然后使用自动细胞计数器(Nexcelom
Vision Cell Profiler)来计算细胞数量和活力。离心并用冷的PBS溶液(pH=7.4)洗涤细胞沉淀两次。加入6mL冷甲醇提取细胞沉淀;然后将悬浮液在-20℃保持30分 钟,并以13000g离心20分钟。通过吹氮气蒸发上清液。将得到的残余物重新溶解在600μL甲醇中,该甲醇含有内标(IS=100nmol/L阿普唑仑),通过LC-MS/MS分析样品并进行定量。在缺氧和常氧条件下,不同的时间点ADC-I和ADC-II在胃细胞系NCI-N87中释放的MMAE的量如图5所示。
试验结果显示,受试的两个ADCs(ADC-I和ADC-II)在抗原(HER2)阳性的NCI-N87胃癌细胞系上,毒素MMAE的释放过程同样表现出了显著的缺氧选择性,缺氧条件下(0.1%O
2),细胞内的毒素释放量也随着时间的延长而增多;相比之下,在常氧条件下培养的细胞内仅检测到少量的MMAE释放,而且其释放量几乎不伴随时间的延长而明显增多。该实施例进一步证明了ADC-I和ADC-II可以在NCI-N87胃癌细胞内顺利释放出所携带的毒素,并且释药过程具有对缺氧的选择性。
实施例6、7、8证明了ADC-I和ADC-II可以在多种肿瘤细胞内顺利释放出所携带的毒素,并且释药过程具有对缺氧的选择性。
实施例9:ADCs(ADC-I和ADC-II)的体外细胞毒性评价
本实施例评估了ADCs(ADC-I和ADC-II)在缺氧条件下(0.1%O
2)的体外细胞毒性。本实施例所用抗原HER2阳性细胞系(BT-474,HCC1954和NCI-N87)和HER2阴性细胞系MCF-7,MDA-MB-468均购买于ATCC。所有细胞系在补充有10%胎牛血清的培养基(细胞系BT-474、MCF-7使用DMEM培养基,细胞系NCI-N87、HCC1954和MDA-MB-468使用RPMI1640培养基;下文所述的培养基与此处相同)中于37℃,含5%CO
2的湿润环境中培养,细胞以1:4的比例每周传代三次,各培养基中含有10%的FBS(热灭活)和1%的青霉素/链霉素。细胞培养环境中的氧浓度由
培养箱(48R,#CO48312044)进行控制。
将细胞(3.3×10
4个细胞/mL)加入到384孔板的各个孔中,之后再将10μL化合物溶液(受试药物溶解于pH=7.4的PBS中,初始浓度约为250μg/mL,采用10倍稀释法向下稀释得到10个待测浓度的溶液)加入到测定板的各个孔中。将板在37℃,5%CO
2,0.1%O
2,95%湿度下孵育7天。然后将板置于室温下温育约10分钟,并向每个孔中加入40μL的CTG试剂(Promega,
),并将板在室温下温育30分钟。使用EnSpire Plate Reader检测发光,并使用Prism5for Windows(Graphpad software,Inc.,La Jolla,CA,USA)进行数据分析和IC
50的计算。受试药物包括两个ADCs(ADC-I和ADC-II),并设置未经偶联的裸抗体mil40作为对照。
试验结果如表1所示,ADC-I和ADC-II在抗原阳性肿瘤细胞中具有显著的细胞毒性,相比于抗原阴性细胞,细胞毒性(IC
50)可普遍提高300~5000倍。相比于裸 抗体,细胞毒性(IC
50)具有不同程度的提高,另外最大程度抑制率(MaxInhibition)则具有显著性的提升。受试的两个ADCs(ADC-I和ADC-II)仅在连接子的结构上具有微小差异,但两者在各株阳性和阴性的受试细胞上的活性基本相当。本实施例进一步证实了基于本申请所示的连接子的ADCs潜在的成药性。
表1:ADCs在缺氧下的体外细胞毒性
最后应当说明的是:以上实施例仅用以说明本申请的技术方案而非对其限制;尽管参照较佳实施例对本申请进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本申请的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本申请技术方案的精神,其均应涵盖在本申请请求保护的技术方案范围当中。
Claims (17)
- 式I所示化合物或其盐,其中:R 3为氢、氟、氯、溴、碘、C 1-4烷基、硝基或C 1-4烷氧基;r为0、1、2、3或4;Ar为芳基、杂芳基、芳并杂环基或杂芳并杂环基,优选为五元或六元的芳基或杂芳基;优选地,Ar上的硝基与Z处于芳香体系的共轭位置,并且更优选地,当Ar为六元的芳基或杂芳基时,Ar上的硝基与Z是对位或邻位;L 1选自:-(CH 2) m-,-(CH 2) mO-,-(CH 2) mNH-,-(CH 2) mC(O)-,-(CH 2CH 2O) n-,-(CH 2CH 2O) n-(CH 2) m-、-(CH 2) m-(CH 2CH 2O) n-、-O-、-NH-、-S-、-NCH 3-、-NH(CH 2) m-、-C(O)-、 其中m为0、1、2、3、4、5、6、7、8、9、10、11或12,n为0、1、2、3、4、5、6、7、8、9、10、11或12,且m和n不同时为0;R 5为氢、氟、氯、溴、碘、C 1-4烷基、硝基或C 1-4烷氧基,q为0、1、2、3或4;L 2选自:-C(O)NH(CH 2) iNH-,-NH(CH 2) iNH-,-NH(CH 2) iC(O)-,-C(O)(CH 2) iNH-,-NH(CH 2) iO-,-NH(CH 2) iS-,-N(CH 3)(CH 2) iNH-,-N(CH 3)(CH 2) iN(CH 3)-,-O(CH 2) iNH-,-C(O)NH-CH[(CH 2) d-NHC(O)-(CH 2CH 2O) e-(CH 2) f-CH 3]-,-O(CH 2) iC(O)-,-O(CH 2) iO-,-O(CH 2) iS-,-O-,-NH-,-S-,-S(O)-,-S(O) 2-,-NCH 3-,-NH(CH 2) 2NH-,-C(O)-,或L 2为空,其中i为1、2、3、4、5、6、7、8、9、10、11或12;d为1、2、3、4、5或6;e为1、2、3、4、5、6、7、8、9、10、11或12;f为1、2、3、4、5或6;优选地,L 2选自:-C(O)NH(CH 2) iNH-,-NH(CH 2) iNH-,-NH(CH 2) iC(O)-,-C(O)(CH 2) iNH-,-NH(CH 2) iO-,-NH(CH 2) iS-,-N(CH 3)(CH 2) iNH-,-N(CH 3)(CH 2) iN(CH 3)-,-O(CH 2) iNH-,-O(CH 2) iC(O)-,-O(CH 2) iO-,-O(CH 2) iS-,-O-,-NH-,-S-,-S(O)-,-S(O) 2-,-NCH 3-,-NH(CH 2) 2NH-,-C(O)-,或L 2为空,其中每个i各自独立地为1、2、3、4、5、6、7、8、9、10、11或12;X选自:-C(O)-,-O-,-NH-,-NCH 3-,-CH 2O-,-CH(CH 3)O-,-C(CH 3) 2O-,-CH 2NH-,-CH(CH 3)NH-,-C(CH 3) 2NH-,-S-,-S(O)-或-S(O) 2-;Z为-CH 2-,-CH(CH 3)-或-C(CH 3) 2-。
- 权利要求1或2所述的化合物或其盐,其中:优选地,R 2为 其中R 4为氢、氟、氯、溴、碘、C 1-4烷基、硝基或C 1-4烷氧基,p为0、1、2、3或4;进一步优选地,R 4为氢、氟、氯、溴、碘、硝基、甲基、乙基、甲氧基或乙氧基,更进一步优选地,p为0或1;优选地,Ar为苯环;优选地,Ar上的硝基与Z是对位或邻位;优选地,R 3为氢、氟、氯、溴、碘、甲氧基、乙氧基、丙氧基、甲基、乙基、正丙基或异丙基;优选地,r为0或1;优选地,L 2为-C(O)NH(CH 2) iNH-,-NH(CH 2) iNH-,-NH(CH 2) iC(O)-或-C(O)(CH 2) iNH-,其中i为1、2、3、4、5、6、7、8、9、10、11或12;进一步优选地,i为1、2或3;优选地,X为-C(O)-,-O-,-NH-,-NCH 3-,-CH 2O-,或-S-;优选地Z为-CH 2-。
- 权利要求1至4任一项任一项的化合物或其盐在制备抗体偶联药物中的用途。
- 式II所示化合物或其盐,其中:R 3为氢、氟、氯、溴、碘、C 1-4烷基、硝基或C 1-4烷氧基;r为0、1、2、3或4;Ar为芳基、杂芳基、芳并杂环基或杂芳并杂环基,优选为五元或六元的芳基或杂芳基;优选地,Ar上的硝基与Z处于芳香体系的共轭位置,并且更优选地,当Ar为六元的芳基或杂芳基时,Ar上的硝基与Z是对位或邻位;L 1选自-(CH 2) m-,-(CH 2) mO-,-(CH 2) mNH-,-(CH 2) mC(O)-,-(CH 2CH 2O) n-,-(CH 2CH 2O) n-(CH 2) m-、-(CH 2) m-(CH 2CH 2O) n-、-(CH 2CH 2O) n-、-O-、-NH-、-S-、-NCH 3-、-NH(CH 2) m-、-C(O)-、 其中m为0、1、2、3、4、5、6、7、8、9、10、11或12,n为0、1、2、3、4、5、6、7、8、9、10、11或12,且m和n不同时为0;R 5为氢、氟、氯、溴、碘、C 1-4烷基、硝基或C 1-4烷氧基,q为0、1、2、3或4;L 2选自:-C(O)NH(CH 2) iNH-,-NH(CH 2) iNH-,-NH(CH 2) iC(O)-,-C(O)(CH 2) iNH-,-NH(CH 2) iO-,-NH(CH 2) iS-,-N(CH 3)(CH 2) iNH-,-N(CH 3)(CH 2) iN(CH 3)-,-O(CH 2) iNH-,-C(O)NH-CH[(CH 2) d-NHC(O)-(CH 2CH 2O) e-(CH 2) f-CH 3]-,-O(CH 2) iC(O)-,-O(CH 2) iO-,-O(CH 2) iS-,-O-,-NH-,-S-,-S(O)-,-S(O) 2-,-NCH 3-,-NH(CH 2) 2NH-和-C(O)-,或L 2为空,其中i为1、2、3、4、5、6、7、8、9、10、11或12;d为1、2、3、4、5或6;e为1、2、3、4、5、6、7、8、9、10、11或12;f为1、2、3、4、5或6;优选地,L 2选自:-C(O)NH(CH 2) iNH-,-NH(CH 2) iNH-,-NH(CH 2) iC(O)-,-C(O)(CH 2) iNH-,-NH(CH 2) iO-,-NH(CH 2) iS-,-N(CH 3)(CH 2) iNH-,-N(CH 3)(CH 2) iN(CH 3)-,-O(CH 2) iNH-,-O(CH 2) iC(O)-,-O(CH 2) iO-,-O(CH 2) iS-,-O-,-NH-,-S-,-S(O)-,-S(O) 2-,-NCH 3-,-NH(CH 2) 2NH-,-C(O)-,或L 2为空,其中每个i各自独立地为1、2、3、4、5、6、7、8、9、10、11或12;X选自:-C(O)-,-O-,-NH-,-NCH 3-,-CH 2O-,-CH(CH 3)O-,-C(CH 3) 2O-,-CH 2NH-,-CH(CH 3)NH-,-C(CH 3) 2NH-,-S-,-S(O)-和-S(O) 2-;Z为-CH 2-,-CH(CH 3)-或-C(CH 3) 2-;t为0或1;B为活性化合物,选自药物,细胞毒素,检测试剂,诊断试剂或靶向载体;优选地,B为细胞毒素,抗肿瘤药物,抗病毒药物,抗感染药物或免疫调节剂药物;进一步优选地,B为细胞毒素,例如微管蛋白抑制剂、DNA烷化剂、DNA嵌合剂、酶抑制剂、抗代谢药物、肽或核苷酸;优选地,B通过活性化合物分子中的N原子或O原子偶联至羰基(即位点*)或Z基团。
- 优选地,R 3为氢、氟、氯、溴、碘、甲氧基、乙氧基、丙氧基、甲基、乙基、正丙基或异丙基;优选地,r为0或1;优选地,Ar为苯环;优选地,Ar上的硝基与Z是对位或邻位;优选地,L 2为-C(O)NH(CH 2) iNH-,-NH(CH 2) iNH-,-NH(CH 2) iC(O)-或-C(O)(CH 2) iNH-,其中i为1、2、3、4、5、6、7、8、9、10、11或12;进一步优选地,i为1、2或3;优选地,X为-C(O)-,-O-,-NH-,-NCH 3-,-CH 2O-,或-S-;优选地Z为-CH 2-;优选地,t为1;优选地,B为奥里斯他汀(auristatin),单甲基奥里斯他汀E(MMAE),美登木素(maytansine)或其衍生物(例如类美登木素、DM1、DM3、DM4),紫杉醇,卡里奇霉素,倍癌霉素,多柔比星,喜树碱,PBD(pyrrolobenzodiazepines)类细胞毒素及其衍生物;更优选地,B为单甲基奥里斯他汀E(MMAE)。
- 权利要求6至9任一项所述的化合物或其盐在制备抗体偶联药物中的用途。
- 式IV所示化合物或其盐,其中:Ar为芳基、杂芳基、芳并杂环基或杂芳并杂环基,优选为五元或六元的芳基或杂芳基;优选地,Ar上的硝基与Z处于芳香体系的共轭位置,并且更优选地,当Ar为六元的芳基或杂芳基时,Ar上的硝基与Z是对位或邻位;R 3为氢、氟、氯、溴、碘、C 1-4烷基、硝基或C 1-4烷氧基;r为0、1、2、3或4;L 1选自:-(CH 2) m-,-(CH 2) mO-,-(CH 2) mNH-,-(CH 2) mC(O)-,-(CH 2CH 2O) n-,-(CH 2CH 2O) n-(CH 2) m-、-(CH 2) m-(CH 2CH 2O) n-、-O-、-NH-、-S-、-NCH 3-、-NH(CH 2) m-、-C(O)-、 其中m为0、1、2、3、4、5、6、7、8、9、10、11或12,n为0、1、2、3、4、5、6、7、8、9、10、11或12,且m和n不同时为0;R 5为氢、氟、氯、溴、碘、C 1-4烷基、硝基或C 1-4烷氧基,q为0、1、2、3或4;L 2选自:-C(O)NH(CH 2) iNH-,-NH(CH 2) iNH-,-NH(CH 2) iC(O)-,-C(O)(CH 2) iNH-,-NH(CH 2) iO-,-NH(CH 2) iS-,-N(CH 3)(CH 2) iNH-,-N(CH 3)(CH 2) iN(CH 3)-,-O(CH 2) iNH-,-C(O)NH-CH[(CH 2) d-NHC(O)-(CH 2CH 2O) e-(CH 2) f-CH 3]-,-O(CH 2) iC(O)-,-O(CH 2) iO-,-O(CH 2) iS-,-O-,-NH-,-S-,-S(O)-,-S(O) 2-,-NCH 3-,-NH(CH 2) 2NH-,-C(O)-,或L 2为空,其中i为1、2、3、4、5、6、7、8、9、10、11或12;d为1、2、3、4、5或6;e为1、2、3、4、5、6、7、8、9、10、11或12;f为1、2、3、4、5或6;优选地,L 2选自:-C(O)NH(CH 2) iNH-,-NH(CH 2) iNH-,-NH(CH 2) iC(O)-,-C(O)(CH 2) iNH-,-NH(CH 2) iO-,-NH(CH 2) iS-,-N(CH 3)(CH 2) iNH-,-N(CH 3)(CH 2) iN(CH 3)-,-O(CH 2) iNH-,-O(CH 2) iC(O)-,-O(CH 2) iO-,-O(CH 2) iS-,-O-,-NH-,-S-,-S(O)-,-S(O) 2-,-NCH 3-,-NH(CH 2) 2NH-,-C(O)-,或L 2为空,其中每个i各自独立地为1、2、3、4、5、6、7、8、9、10、11或12;X选自:-C(O)-,-O-,-NH-,-NCH 3-,-CH 2O-,-CH(CH 3)O-,-C(CH 3) 2O-,-CH 2NH-,-CH(CH 3)NH-,-C(CH 3) 2NH-,-S-,-S(O)-和-S(O) 2-;Z为-CH 2-,-CH(CH 3)-或-C(CH 3) 2-;t为0或1;A为为靶向化合物,选自蛋白、抗体、多肽、酶和小分子;优选地,A通过靶向化合物分子中的S原子偶联至位点#上;B为活性化合物,选自药物,细胞毒素,检测试剂,诊断试剂或靶向载体;优选地,B为细胞毒素,抗肿瘤药物,抗病毒药物,抗感染药物或免疫调节剂药物;进一步优选地,B为细胞毒素,例如微管蛋白抑制剂、DNA烷化剂、DNA嵌合剂、酶抑制剂、抗代谢药物、肽或核苷酸;优选地,B通过活性化合物分子中的N原子或O原子偶联至羰基(即位点*)或Z基团;a为为0.5至8.5之间的数,例如0.8至5之间的数,1至4之间的数,2至6之间的数,3至7之间的数,4至8之间的数,3.5至8.5之间的数,3.5至4.5之间的数,或6.5至8.5之间的数,优选地a约为4、5、6、7或8。
- 权利要求11所述的化合物或其盐,其中,R 3为氢、氟、氯、溴、碘、甲氧基、乙氧基、丙氧基、甲基、乙基、正丙基或异丙基;优选地,r为0或1;优选地,Ar为苯环;优选地,Ar上的硝基与Z是对位或邻位;优选地,L 2为-C(O)NH(CH 2) iNH-,-NH(CH 2) iNH-,-NH(CH 2) iC(O)-或-C(O)(CH 2) iNH-,其中i为1、2、3、4、5、6、7、8、9、10、11或12;进一步优选地,i为1、2或3;优选地,X为-C(O)-,-O-,-NH-,-NCH 3-,-CH 2O-,或-S-;优选地,Z为-CH 2-;优选地,t为1;优选地,B为奥里斯他汀(auristatin),单甲基奥里斯他汀E(MMAE),美登木素(maytansine)或其衍生物(例如类美登木素、DM1、DM3、DM4),紫杉醇,卡里奇霉素,倍癌霉素,多柔比星,喜树碱,PBD(pyrrolobenzodiazepines)类细胞 毒素及其衍生物;更优选地,B为单甲基奥里斯他汀E(MMAE);优选地,A是以巯基为偶联位点的单克隆抗体,或以巯基为偶联位点的定点突变或修饰的单克隆抗体,优选地,A选自:抗HER2人源化单克隆抗体mil40、曲妥珠单抗(HERCEPTIN),帕妥珠单抗(PERJETA),西妥昔单抗(ERBITUX),帕尼单抗(VECTIBIX),利妥昔单抗(RITUXAN),阿仑单抗(CAMPATH),替伊莫单抗(ZEVALIN),托西莫单抗(BEXXAR),奥法木单抗(ARZERRA),贝伐单抗(AVASTIN),伊匹单抗(YERVOY),地诺单抗(XGEVA),派姆单抗(KEYTRUDA),纳武单抗(Opdivo),Avelumab(Bavencio),Atezolizumab(Tecentriq),durvalumab(Imfinzi),sacituzumab,rovalpituzumab,及其生物类似物,更优选地,A为抗HER2人源化单克隆抗体mil40;优选地,a为2至7之间的数,或者a为3至6之间的数或4至5之间的数,优选地,a约为4、5、6、7或8。
- 药物组合物,其包含至少一种式权利要求11至13中任一项所述的化合物或其盐,以及一种或多种药用载体或赋形剂。
- 权利要求11至13中任一项所述的化合物或其盐或权利要求14所述的药物组合物在制备用于治疗疾病或病症或减轻所述疾病或病症严重性的药物中的用途,其中所述疾病或病症选自肿瘤、感染性疾病、血液学疾病、代谢性疾病、炎症,优选地,所述肿瘤选自癌症、淋巴瘤、淋巴样肿瘤、母细胞瘤、肉瘤和白血病,优选地,所述癌症选自:乳腺癌(例如,HER2阳性的乳腺癌);鳞状细胞癌(例如,上皮鳞状细胞癌);肺癌,包括小细胞肺癌、非小细胞肺癌、肺的腺癌和肺的鳞癌;腹膜癌;肝癌;胃癌;胃肠癌;膜腺癌;胶质母细胞瘤;宫颈癌;卵巢癌;肝癌;膀肮癌;尿道癌;肝细胞瘤;乳腺癌;肠癌;结肠癌;直肠癌;结肠直肠癌;子宫内膜癌;子宫癌;唾液腺癌;肾癌或肾癌;前列腺癌;外阴癌;甲状腺癌;肝癌;肛门癌;阴茎癌;黑色素瘤;多发性骨髓瘤和B细胞淋巴瘤;脑癌;胆囊癌;食管癌;胆管癌;头颈癌和相关转移瘤。
- 权利要求11至13中任一项所述的化合物或其盐或权利要求14所述的药物组合物,其用于治疗疾病或病症或减轻所述疾病或病症严重性,其中所述疾病或病症选自肿瘤、感染性疾病、血液学疾病、代谢性疾病、炎症,优选地,所述肿瘤选自癌症、淋巴瘤、淋巴样肿瘤、母细胞瘤、肉瘤和白血病,优选地,所述癌症选自:乳腺癌(例如,HER2阳性的乳腺癌);鳞状细胞癌(例如,上皮鳞状细胞癌);肺癌,包括小细胞肺癌、非小细胞肺癌、肺的腺癌和肺的鳞癌;腹膜癌;肝癌;胃癌;胃肠癌;膜腺癌;胶质母细胞瘤;宫颈癌;卵巢癌;肝癌;膀肮癌;尿道癌;肝细胞瘤;乳腺癌;肠癌;结肠癌;直肠癌;结肠直肠癌;子宫内膜癌;子宫癌;唾液腺癌;肾癌或肾癌;前列腺癌;外阴癌;甲状腺癌;肝癌;肛门癌;阴茎癌;黑色素瘤;多发性骨髓瘤和B细胞淋巴瘤;脑癌;胆囊癌;食管癌;胆管癌;头颈癌和相关转移瘤。
- 治疗疾病或病症或减轻所述疾病或病症严重性的方法,所述方法包括给予需要这种治疗的患者治疗有效量的权利要求11至13中任一项所述的化合物或其盐或权利要求14所述的药物组合物,其中所述疾病或病症选自肿瘤、感染性疾病、血液学疾病、代谢性疾病、炎症,优选地,所述肿瘤选自癌症、淋巴瘤、淋巴样肿瘤、母细胞瘤、肉瘤和白血病,优选地,所述癌症选自:乳腺癌(例如,HER2阳性的乳腺癌);鳞状细胞癌(例如,上皮鳞状细胞癌);肺癌,包括小细胞肺癌、非小细胞肺癌、肺的腺癌和肺的鳞癌;腹膜癌;肝癌;胃癌;胃肠癌;膜腺癌;胶质母细胞瘤;宫颈癌;卵巢癌;肝癌;膀肮癌;尿道癌;肝细胞瘤;乳腺癌;肠癌;结肠癌;直肠癌;结肠直肠癌;子宫内膜癌;子宫癌;唾液腺癌;肾癌或肾癌;前列腺癌;外阴癌;甲状腺癌;肝癌;肛门癌;阴茎癌;黑色素瘤;多发性骨髓瘤和B细胞淋巴瘤;脑癌;胆囊癌;食管癌;胆管癌;头颈癌和相关转移瘤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980056464.5A CN112638426B (zh) | 2018-09-21 | 2019-09-18 | 基于芳硝基的连接子、含连接子的抗体偶联药物及连接子的用途 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811106544 | 2018-09-21 | ||
CN201811106544.0 | 2018-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020057543A1 true WO2020057543A1 (zh) | 2020-03-26 |
Family
ID=69888377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/106418 WO2020057543A1 (zh) | 2018-09-21 | 2019-09-18 | 基于芳硝基的连接子、含连接子的抗体偶联药物及连接子的用途 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112638426B (zh) |
WO (1) | WO2020057543A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115215780B (zh) * | 2022-04-22 | 2023-08-08 | 上海格苓凯生物科技有限公司 | 一种利用n,n-二琥珀酰亚胺基碳酸酯制备异双功能交联剂smcc的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011106639A1 (en) * | 2010-02-25 | 2011-09-01 | Purdue Research Foundation | Psma binding ligand-linker conjugates and methods for using |
WO2018002902A1 (en) * | 2016-07-01 | 2018-01-04 | Glaxosmithkline Intellectual Property (No.2) Limited | Antibody-drug conjugates and therapeutic methods using the same |
WO2018095422A1 (zh) * | 2016-11-25 | 2018-05-31 | 上海青润医药科技有限公司 | 用于抗体-药物偶联的双取代马来酰胺类连接子及其制备方法和用途 |
CN108452319A (zh) * | 2017-02-20 | 2018-08-28 | 浙江特瑞思药业股份有限公司 | 靶向cd20的抗体偶联药物制剂 |
CN108452318A (zh) * | 2017-02-17 | 2018-08-28 | 浙江特瑞思药业股份有限公司 | 靶向cd20的抗体偶联药物及其制备方法和用途 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3273998B1 (en) * | 2015-03-27 | 2019-09-04 | Regeneron Pharmaceuticals, Inc. | Maytansinoid derivatives, conjugates thereof, and methods of use |
-
2019
- 2019-09-18 CN CN201980056464.5A patent/CN112638426B/zh active Active
- 2019-09-18 WO PCT/CN2019/106418 patent/WO2020057543A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011106639A1 (en) * | 2010-02-25 | 2011-09-01 | Purdue Research Foundation | Psma binding ligand-linker conjugates and methods for using |
WO2018002902A1 (en) * | 2016-07-01 | 2018-01-04 | Glaxosmithkline Intellectual Property (No.2) Limited | Antibody-drug conjugates and therapeutic methods using the same |
WO2018095422A1 (zh) * | 2016-11-25 | 2018-05-31 | 上海青润医药科技有限公司 | 用于抗体-药物偶联的双取代马来酰胺类连接子及其制备方法和用途 |
CN108452318A (zh) * | 2017-02-17 | 2018-08-28 | 浙江特瑞思药业股份有限公司 | 靶向cd20的抗体偶联药物及其制备方法和用途 |
CN108452319A (zh) * | 2017-02-20 | 2018-08-28 | 浙江特瑞思药业股份有限公司 | 靶向cd20的抗体偶联药物制剂 |
Non-Patent Citations (1)
Title |
---|
WANG Y.M. ET AL.: "Development and Properties of Valine-Alanine based Antibody-Drug Conjugates with Monomethyl Auristatin E as the Potent Payload", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 25 August 2017 (2017-08-25), pages 1 - 19, XP055694898 * |
Also Published As
Publication number | Publication date |
---|---|
CN112638426B (zh) | 2023-06-16 |
CN112638426A (zh) | 2021-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114456186B (zh) | 一种喜树碱类衍生物及其配体-药物偶联物 | |
KR102097876B1 (ko) | 항체-약물 접합체 중의 공유결합 링커 및 이의 제조방법 및 사용방법 | |
US20230226207A1 (en) | Camptothecin Drug Having High-Stability Hydrophilic Connecting Unit And Conjugate Thereof | |
JP2023182569A (ja) | トル様受容体7(TLR7)アゴニストとしての1H-ピラゾロ[4,3-d]ピリミジン化合物ならびにその方法および使用 | |
CN111689980A (zh) | 一种喜树碱药物及其抗体偶联物 | |
WO2022253284A1 (zh) | 药物偶联物及其用途 | |
JP2018510163A (ja) | イソキノリジノベンゾジアゼピン | |
WO2020035027A1 (zh) | 连接子、含连接子的抗体偶联药物及连接子的用途 | |
TWI712605B (zh) | 含有cti藥效基團之雙功能性細胞毒性劑 | |
US20230123041A1 (en) | Immunoconjugates and methods | |
US20150368261A1 (en) | Conjugates and small molecules which interact with the cd16a receptor | |
CN112341521B (zh) | 一种小分子活性化合物及其抗体偶联物、其制备方法和医药用途 | |
KR20240120744A (ko) | 캄프토테신 화합물 및 이의 접합체 | |
CN114053426B (zh) | 一种双药链接组装单元及双药靶向接头-药物偶联物 | |
WO2020057543A1 (zh) | 基于芳硝基的连接子、含连接子的抗体偶联药物及连接子的用途 | |
CN112601556B (zh) | 含有芳硝基的连接子、含连接子的抗体偶联药物及连接子的用途 | |
CN110759940A (zh) | 连接子、含连接子的抗体偶联药物及连接子的用途 | |
WO2023232145A1 (zh) | 一种高喜树碱类小分子及其应用 | |
US11806405B1 (en) | Immunoconjugates and methods | |
WO2023198079A1 (zh) | 治疗her2阳性实体瘤的方法 | |
WO2024002042A1 (zh) | 治疗实体瘤的方法 | |
WO2024208176A1 (zh) | 一种抗体-药物偶联物及其制备方法和用途 | |
CN114409562B (zh) | 一种ca4衍生物及其配体-药物偶联物 | |
WO2023083381A1 (zh) | 双特异性抗体-喜树碱类药物偶联物及其医药用途 | |
CN114605367A (zh) | 含香豆素的连接子及含该连接子的抗体偶联药物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19861870 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19861870 Country of ref document: EP Kind code of ref document: A1 |