WO2020057453A1 - 一种用于海上编队的雷达目标球面投影方法 - Google Patents

一种用于海上编队的雷达目标球面投影方法 Download PDF

Info

Publication number
WO2020057453A1
WO2020057453A1 PCT/CN2019/105868 CN2019105868W WO2020057453A1 WO 2020057453 A1 WO2020057453 A1 WO 2020057453A1 CN 2019105868 W CN2019105868 W CN 2019105868W WO 2020057453 A1 WO2020057453 A1 WO 2020057453A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
projection
radar
spherical
plane
Prior art date
Application number
PCT/CN2019/105868
Other languages
English (en)
French (fr)
Inventor
毛亿
李云茹
陈平
王冠
黄大庆
王博
Original Assignee
中国电子科技集团公司第二十八研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第二十八研究所 filed Critical 中国电子科技集团公司第二十八研究所
Priority to US16/605,077 priority Critical patent/US11054503B2/en
Publication of WO2020057453A1 publication Critical patent/WO2020057453A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • G01S13/726Multiple target tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/295Means for transforming co-ordinates or for evaluating data, e.g. using computers
    • G01S7/2955Means for determining the position of the radar coordinate system for evaluating the position data of the target in another coordinate system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to a spherical projection method of a radar target for a sea formation, and belongs to the field of radar target monitoring.
  • the network-centric architecture is an inevitable product of the information age.
  • the essence of the network-centric architecture is to use the situation map as the center to plan and assign the formation platform tasks.
  • Offshore formation situation sharing is based on the data link networking.
  • Each platform uses target tracking, edge computing, and exchange services to perform a composite tracking process so that all members in the formation share an accurate synthetic situation picture (SIP-Single Integrated Picture) for payload Control and support cooperative operation.
  • SIP-Single Integrated Picture an accurate synthetic situation picture
  • Compound tracking is performed between multiple sensor platforms.
  • Real-time information such as the unified identification number, geographical location, altitude, true speed vector, and target attributes are determined through real-time exchange and correlation calculation of radar targets according to their reporting responsibilities.
  • Each platform naturally forms a consistent, non-missing, heavy, and undisturbed target track.
  • the edge calculation must first project the radar target of this platform to reduce the influence of the target parameter error on the compound tracking system.
  • the existing sea formation radar data processing has not adopted the edge computing method to realize the unification and sharing of distributed target situations.
  • the existing multi-radar track fusion adopts centralized processing.
  • the system error correction uses sensor position calibration or real-time calibration methods. Considering the problem of correction of the projection error caused by the curvature of the earth, single-platform radar data processing, because whether the correction of the projection error does not affect the continuity of the target track tracking, it also lacks the consideration of projection error correction.
  • the invention aims at generating a single synthetic situation map for maritime formations, and provides a method for spherical projection of radar targets for maritime formations.
  • each sensor platform Before each sensor platform performs composite tracking processing on the target, it corrects the projection error of the radar target, converts the target height measured by the local radar to an altitude, and converts the polar position of the target to the ground (spherical) position, so that it is scattered at sea
  • the target data detected by the platforms at different positions are all based on the spherical representation, which guarantees that the distributed processing of radar points in composite tracking will not add a new loss of accuracy.
  • the present invention specifically includes the following steps:
  • Step 1 perform target projection modeling
  • Step 2 Calculate the target altitude
  • Step 3 Calculate the projection of the target on the radar plane
  • Step 4 Calculate the projection of the target on the large earth surface
  • Step 5 The projection of the target on the large earth surface is used for radar data pre-processing to generate a situation picture (SIP-Single Integrated Picture).
  • the situation picture can be widely used in marine police patrols, ocean escort, deep sea vision, fleet operations and other oceans. District formations run.
  • Step 1 includes: using the radar antenna position as the origin, using polar coordinates ( ⁇ , ⁇ , ⁇ ) to represent the target position detected by the radar, ⁇ is the target slope distance, ⁇ is the target azimuth relative to true north, and ⁇ is the target elevation angle. Converting ( ⁇ , ⁇ , ⁇ ) to rectangular coordinates (x ⁇ , y ⁇ , h), we have:
  • x ⁇ represents the abscissa of the target
  • y ⁇ represents the ordinate of the target
  • h represents the vertical coordinate of the target.
  • the target plane projection model is:
  • D is the projection length of ⁇ on the radar plane
  • Z is the altitude of the target
  • R is the radius of the earth (6371.3km)
  • a is the altitude of the radar antenna.
  • Step 2 includes:
  • Step 3 includes:
  • K 1 the plane projection coefficient
  • the target plane projection model is converted into:
  • the projection coordinates of the target on the radar plane are proportional.
  • x represents the abscissa of the projection of the target on the radar plane
  • y represents the ordinate of the projection of the target on the radar plane
  • Step 4 includes:
  • represents the center angle formed by the target projection point Q and the radar position point S on the sphere Is the circumferential angle
  • d is The side length of the edge-cut radar position, assuming P point, the side length is
  • Step 4-2. Replace formula h with formula (1).
  • Step 4-3 let K 2 is called the spherical projection coefficient, then,
  • Step 4-4 Use the P point approximation to replace the projection point of the target on the spherical surface.
  • the spherical projection point coordinate P (X Q , Y Q ) of the target can be obtained, that is,
  • X Q represents the east coordinate of the projection of the target on the sphere
  • Y Q represents the north coordinate of the projection of the target on the sphere
  • the spherical projection coordinates and altitude calculation formulas of the radar target are:
  • Step 5 includes:
  • the spherical projection coordinates and altitude calculation formulas of radar targets are used for radar data preprocessing, mainly to correct the projection errors of radar target data, solve the problem of spatial consistency of target data between multiple platforms in formation, and then enter composite tracking processing. Generate a single synthetic situation map to support the platform's load control or formation cooperative control.
  • the present invention is helpful for generating a shareable single integrated situation picture (SIP-Single Integrated Picture) among formation members.
  • SIP single integrated situation picture
  • the important role of SIP is to support remote data control, that is, to use the radar observation of other platforms to implement the load control of the platform.
  • remote data control that is, to use the radar observation of other platforms to implement the load control of the platform.
  • the target accuracy of composite tracking needs to reach the real-time control level, which requires radar data processing to first correct the projection error of target data First, reduce the radar target positioning error, and second, reduce the radar coordinate conversion error between multiple platforms.
  • the target measurement parameters based on the radar polar coordinate system are converted into mathematical algorithms of spherical position and altitude through projection modeling and mathematical derivation, which is convenient for engineering applications;
  • FIG. 1 is a schematic diagram of a target plane projection.
  • FIG. 2 is a schematic diagram of a target spherical projection.
  • FIG. 3 is a brief flowchart of distributed processing of maritime formation radar data.
  • Radar usually uses the antenna position as the origin, and uses polar coordinates ( ⁇ , ⁇ , ⁇ ) to represent the detected target position, ⁇ is the target slope distance, ⁇ is the target azimuth relative to true north, and ⁇ is the target elevation angle. Converted to Cartesian coordinates, there are:
  • the target points Due to the influence of the curvature of the earth and the radar antenna has a certain height, h in the formula does not represent the true height of the target, and (x ⁇ , y ⁇ ) is far from the projection position of the target on the ground. In the practical application of unknown target verification, search and rescue, etc., its error has a great impact. Therefore, in the distributed processing of radar data, the target points must be projectively transformed to obtain the target's projection position and altitude on the ground.
  • a plane projection model and a spherical projection model of the target are established, as shown in Figs. 1 and 2.
  • Altitude, T stands for aerial target.
  • the relationship between the target altitude Z and the radar measurement height h can be derived.
  • the spherical projection model of the target can be expressed as:
  • the target is projected onto the radar plane, and the projection relationship is shown in Figure 1.
  • the plane projection model of the target can be expressed as:
  • the projection coordinates of the target on the radar plane can be obtained as
  • the projection of the target T on the ground is the Q point, which is replaced by the P point approximation.
  • P (X Q , Y Q ) can be obtained according to the principle that the sides of the similar shape are the same proportion, that is,
  • the spherical projection coordinates and altitude algorithm of the radar target are:
  • Radar target spherical projection method is used for radar data preprocessing to generate situation map
  • the brief process of distributed processing of maritime formation radar data is shown in Figure 3.
  • Each platform that undertakes target surveillance tasks performs the same process.
  • the preprocessing of radar data is mainly to perform spatio-temporal consistency processing of formation multi-platform target data, that is, to calculate the projection error of local radar target data through altitude calculation, plane projection, and spherical projection calculation, and coordinate the remote target report. Transformation and precise grid locking to achieve spatial unification of the two, time alignment processing of local and remote target data to achieve time unification, and then enter composite tracking processing, including target correlation, fusion, filtering, prediction, and consistent identification numbers Performance management, reporting responsibility processing, etc., to generate a single synthetic situation map SIP, supporting the platform's load control or formation collaborative control.
  • the present invention provides a radar target spherical projection method for maritime formations.
  • the above are only the preferred embodiments of the present invention. It should be noted that for the ordinary technology in the technical field, As far as the person is concerned, without departing from the principle of the present invention, several improvements and retouches can be made, and these improvements and retouches should also be regarded as the protection scope of the present invention.
  • Each component that is not specified in this embodiment can be implemented by using existing technologies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种用于海上编队的雷达目标球面投影方法,包括雷达目标高度到海拔高度变换、雷达目标位置到球面位置变换,可用于雷达数据预处理,支持基于数据链的多平台复合跟踪,有助于在编队成员之间生成可共享的单一合成态势图。

Description

一种用于海上编队的雷达目标球面投影方法 技术领域
本发明涉及一种用于海上编队的雷达目标球面投影方法,属雷达目标监视领域。
背景技术
信息技术的迅猛发展和广泛应用,促进了监视感知理论的不断创新,网络中心架构是信息时代的必然产物,网络中心架构的本质是以态势图为中心进行编队平台任务筹划分配。
海上编队态势共享基于数据链组网进行,各平台通过目标感知、边缘计算、交换服务等复合跟踪处理,实现编队内所有成员共享一张精确合成态势图(SIP-Single Integrated Picture),用于载荷控制,支持协同运行。
复合跟踪在多个传感器平台之间进行,通过对雷达目标按报告职责实时交换和关联解算,确定目标的统一编识号、地理位置、海拔高度、真速度矢量以及目标属性等实时信息,在各个平台之间自然形成一致的,且不丢、不重、不乱的目标航迹。为了使目标航迹精度达到实时协同控制要求,边缘计算首先要对本平台雷达目标进行投影变换,以降低目标参数误差对复合跟踪系统的影响。
现有的海上编队雷达数据处理尚未采用边缘计算方法实现分布式目标态势统一与共享,现有的多雷达航迹融合均采用中心集中式处理,系统误差修正采用传感器位置校准或实时校准方法,缺少考虑地球曲率产生的投影误差修正问题,单平台雷达数据处理,由于投影误差是否修正不影响目标航迹跟踪的连续性,也缺少考虑投影误差修正。
发明内容
本发明针对海上编队生成单一合成态势图,提供了一种用于海上编队的雷达目标球面投影方法。每一个传感器平台在对目标进行复合跟踪处理之前,对雷达目标进行投影误差修正,将本地雷达测量的目标高度转换为海拔高度,目标极坐标位置转换为地(球)面位置,使得分散在海上不同位置的平台探测到的目标数据都基于球面表述,保障复合跟踪中雷达点迹分布式处理不会增加新的精度损失。
本发明具体包括如下步骤:
步骤1,进行目标投影建模;
步骤2,计算目标海拔高度;
步骤3,计算目标在雷达平面的投影;
步骤4,计算目标在大地球面的投影;
步骤5,将得到目标在大地球面的投影用于雷达数据预处理,生成态势图(SIP-Single Integrated Picture),态势图可广泛应用于海警巡逻、远洋护航、深海远望、舰队作战等洋区编队运行。
步骤1包括:以雷达天线位置为原点,用极坐标(ρ,α,θ)表示雷达探测的目标位置,ρ为目标斜距、α为相对于正北的目标方位角、θ为目标仰角,将(ρ,α,θ)转换为直角坐标(x ρ,y ρ,h),有:
Figure PCTCN2019105868-appb-000001
其中,x ρ表示目标的横坐标,y ρ表示目标的纵坐标,h表示目标的垂直坐标。
建立目标的平面投影模型和球面投影模型,其中,
目标平面投影模型为:
Figure PCTCN2019105868-appb-000002
目标球面投影模型为:(Z+R) 2=D 2+[(a+R+h)] 2
式中,D表示ρ在雷达平面上的投影长度,Z表示目标的海拔高度,R表示地球半径(6371.3km),a表示雷达天线海拔高度。
步骤2包括:
将D=ρcosθ,h=ρsinθ代入目标球面投影模型中,得到,
Z(Z+2R)=2(a+R)ρsinθ+a(a+2R)+ρ 2,即,
Figure PCTCN2019105868-appb-000003
由于R>>a,R>>Z,上式转换为,
Figure PCTCN2019105868-appb-000004
步骤3包括:
Figure PCTCN2019105868-appb-000005
K 1称为平面投影系数,则目标平面投影模型转换为:
D=K 1·ρ         (2)
根据相似形各边同比例原理,可得目标在雷达平面上的投影坐标为,
Figure PCTCN2019105868-appb-000006
其中,x表示目标在雷达平面上的投影的横坐标,y表示目标在雷达平面上的投影的纵坐标。
步骤4包括:
步骤4-1,
Figure PCTCN2019105868-appb-000007
其中,β表示球面上的目标投影点Q与雷达位置点S构成的圆心角,
Figure PCTCN2019105868-appb-000008
为圆周角,d为
Figure PCTCN2019105868-appb-000009
的对边切雷达位置的边长,假设有P点,边长为
Figure PCTCN2019105868-appb-000010
由于
Figure PCTCN2019105868-appb-000011
Figure PCTCN2019105868-appb-000012
则,
Figure PCTCN2019105868-appb-000013
步骤4-2,用公式(1)代换上式h,得,
Figure PCTCN2019105868-appb-000014
步骤4-3,令
Figure PCTCN2019105868-appb-000015
K 2称为球面投影系数,则,
d=K 2·D
将公式(2)代入上式,得,
d=K 1·K 2·ρ          (3)
步骤4-4,用P点近似代替目标在球面上的投影点,根据相似形各边同比例原理,可求得目标的球面投影点坐标P(X Q,Y Q),即,
Figure PCTCN2019105868-appb-000016
其中,X Q表示目标在球面上的投影的东向坐标,Y Q表示目标在球面上的投影的北向坐标。
则雷达目标的球面投影坐标和海拔高度计算公式为:
Figure PCTCN2019105868-appb-000017
步骤5包括:
将雷达目标的球面投影坐标和海拔高度计算公式用于雷达数据预处理,主要是对雷达目标数据进行投影误差修正,解决编队多平台之间的目标数据空间一致性问题,然后进入复合跟踪处理,生成单一合成态势图,支持本平台载荷控制或编队协同控制。
本发明有助于在编队成员之间生成可共享的单一合成态势图(SIP-Single Integrated Picture),SIP的重要作用是支持远程数据控制,即利用他平台的雷达观测实施对本平台的载荷控制,克服本平台传感器对目标跟踪的视距限制,解决海上单平台监视范围不足问题,因此,复合跟踪的目标精度需达到实时控制级水平,这就要求雷达数据处理必须首先对目标数据进行投影误差修正,一是减小雷达目标定位误差,二是减低多平台之间的雷达坐标转换误差。
本发明的优点主要体现在:
(1)将基于雷达极坐标系的目标测量参数,经过投影建模、数学推导,转换为球面位置和海拔高度的数学算法,方便工程应用;
(2)能够有效提高雷达目标定位精度和减低多平台之间雷达坐标转换误差;
(3)便于以网络为中心的多传感器平台实现空间统一,提高目标复合跟踪的精度。
附图说明
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述或其他方面的优点将会变得更加清楚。
图1是目标平面投影示意图。
图2是目标球面投影示意图。
图3是海上编队雷达数据分布式处理的简要流程图。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
1、投影建模
雷达通常以天线位置为原点,用极坐标(ρ,α,θ)表示所探测的目标位置,ρ为目标斜距、α为相对于正北的目标方位角、θ为目标仰角。转换为直角坐标,有:
Figure PCTCN2019105868-appb-000018
由于地球曲率的影响以及雷达天线有一定的高度,式中h并不代表目标的真实高度, (x ρ,y ρ)也与目标在地面上的投影位置相差甚远。在不明目标查证、搜索营救等实际应用中,其误差造成的影响很大。因此,在雷达数据分布式处理中,必须首先对目标点迹进行投影变换,以获得目标在地面的投影位置和海拔高度。
为了将雷达目标坐标转换为球面投影坐标,建立目标的平面投影模型和球面投影模型,如图1、图2所示,R表示地球半径(6371.3km),S表示雷达的位置,a表示雷达天线海拔高度,T表示空中目标。
2、目标海拔高度计算
根据图2,可推导目标海拔高度Z与雷达测量高度h之间的关系。
由ΔOS′T,可将目标的球面投影模型表述为:
(Z+R) 2=D 2+[(a+R+h)] 2
将D=ρcosθ,h=ρsinθ代入式中,得
Z(Z+2R)=2(a+R)ρsinθ+a(a+2R)+ρ 2,即,
Figure PCTCN2019105868-appb-000019
由于R>>a,R>>Z,上式可转换为,
Figure PCTCN2019105868-appb-000020
3、目标在雷达平面的投影计算
将目标投影到雷达平面上,投影关系如图1所示。
可将目标的平面投影模型表述为:
D 2=ρ 2-h 2,即
Figure PCTCN2019105868-appb-000021
Figure PCTCN2019105868-appb-000022
称为平面投影系数,则
D=K 1·ρ              (2)
根据相似形各边同比例原理,可求得目标在雷达平面上的投影坐标为,
Figure PCTCN2019105868-appb-000023
4、目标在大地球面的投影计算
根据图2,目标T在地面上的投影为Q点,用P点近似代替。
由ΔO′SP,可知,
Figure PCTCN2019105868-appb-000024
由于
Figure PCTCN2019105868-appb-000025
Figure PCTCN2019105868-appb-000026
所以有,
Figure PCTCN2019105868-appb-000027
用(1)式代换上式h,得
Figure PCTCN2019105868-appb-000028
Figure PCTCN2019105868-appb-000029
称为球面投影系数,则
d=K 2·D
将(2)式代入,得
d=K 1·K 2·ρ            (3)
同样,根据相似形各边同比例原理,可求得P(X Q,Y Q),即
Figure PCTCN2019105868-appb-000030
综上所述,雷达目标的球面投影坐标和海拔高度算法为:
Figure PCTCN2019105868-appb-000031
其中,
Figure PCTCN2019105868-appb-000032
Figure PCTCN2019105868-appb-000033
h=ρsinθ
ρ-雷达目标斜距
α-雷达目标方位角
θ-雷达目标仰角
a-雷达天线位置的海拔高度
R-地球半径
5、将雷达目标球面投影方法用于雷达数据预处理,生成态势图
海上编队雷达数据分布式处理的简要流程如图3所示,每个承担目标监视任务的平台执行相同的流程。其中,雷达数据预处理主要是对编队多平台目标数据进行时空一致性处理,即对本地雷达目标数据通过海拔高度计算、平面投影和球面投影计算,实现投影误差修正,对远端目标报告进行坐标转换、精确栅格锁定,实现二者空间统一,对本地和远端目标数据进行时间对准处理,实现时间统一,然后进入复合跟踪处理,包括目标相关、融合、滤波、预测、编识号一致性管理、报告责任处理等,生成单一合成态势图SIP,支持本平台载荷控制或编队协同控制。
本发明提供了一种用于海上编队的雷达目标球面投影方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (5)

  1. 一种用于海上编队的雷达目标球面投影方法,其特征在于,包括如下步骤:
    步骤1,进行目标投影建模;
    步骤2,计算目标海拔高度;
    步骤3,计算目标在雷达平面的投影;
    步骤4,计算目标在大地球面的投影;
    步骤5,将得到目标在大地球面的投影用于雷达数据预处理,生成态势图。
  2. 根据权利要求1所述的方法,其特征在于,步骤1包括:
    以雷达天线位置为原点,用极坐标(ρ,α,θ)表示雷达探测的目标位置,ρ为目标斜距、α为相对于正北的目标方位角、θ为目标仰角,将(ρ,α,θ)转换为直角坐标(x ρ,y ρ,h),有:
    Figure PCTCN2019105868-appb-100001
    其中,x ρ表示目标的横坐标,y ρ表示目标的纵坐标,h表示目标的垂直坐标。
    建立目标的平面投影模型和球面投影模型,其中,
    目标平面投影模型为:
    Figure PCTCN2019105868-appb-100002
    目标球面投影模型为:(Z+R) 2=D 2+[(a+R+h)] 2
    式中,D表示ρ在雷达平面上的投影长度,Z表示目标的海拔高度,R表示地球半径,a表示雷达天线位置的海拔高度。
  3. 根据权利要求2所述的方法,其特征在于,步骤2包括:
    将D=ρcosθ,h=ρsinθ代入目标球面投影模型中,得到:
    Z(Z+2R)=2(a+R)ρsinθ+a(a+2R)+ρ 2,即:
    Figure PCTCN2019105868-appb-100003
    由于R>>a,R>>Z,对上式进行转换,得到目标的海拔高度计算公式为:
    Figure PCTCN2019105868-appb-100004
  4. 根据权利要求3所述的方法,其特征在于,步骤3包括:
    Figure PCTCN2019105868-appb-100005
    K 1称为平面投影系数,则目标平面投影模型转换为:
    D=K 1·ρ  (2)
    根据相似形各边同比例原理,可得目标在雷达平面上的投影坐标为,
    Figure PCTCN2019105868-appb-100006
    其中,x表示目标在雷达平面上的投影的横坐标,y表示目标在雷达平面上的投影的纵坐标。
  5. 根据权利要求4所述的方法,其特征在于,步骤4包括:
    步骤4-1,
    Figure PCTCN2019105868-appb-100007
    其中,β表示球面上的目标投影点Q与雷达位置点S构成的圆心角,
    Figure PCTCN2019105868-appb-100008
    为圆周角,d为
    Figure PCTCN2019105868-appb-100009
    的对边切雷达位置的边长,假设有P点,边长为
    Figure PCTCN2019105868-appb-100010
    由于
    Figure PCTCN2019105868-appb-100011
    Figure PCTCN2019105868-appb-100012
    则,
    Figure PCTCN2019105868-appb-100013
    步骤4-2,用公式(1)代换步骤4-1公式
    Figure PCTCN2019105868-appb-100014
    中的h,得到:
    Figure PCTCN2019105868-appb-100015
    步骤4-3,令
    Figure PCTCN2019105868-appb-100016
    K 2称为球面投影系数,则:
    d=K 2·D,
    将公式(2)代入上式,得:
    d=K 1·K 2·ρ  (3)
    步骤4-4,用P点近似代替目标在球面上的投影点,根据相似形各边同比例原理,可求得目标的球面投影点坐标P(X Q,Y Q),即:
    Figure PCTCN2019105868-appb-100017
    其中,X Q表示目标在球面上的投影的东向坐标,X Q表示目标在球面上的投影的北向坐标。
    则雷达目标的球面投影坐标和海拔高度计算公式为:
    Figure PCTCN2019105868-appb-100018
PCT/CN2019/105868 2018-09-17 2019-09-16 一种用于海上编队的雷达目标球面投影方法 WO2020057453A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/605,077 US11054503B2 (en) 2018-09-17 2019-09-16 Radar target spherical projection method for maritime formation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811079124.8A CN109100698B (zh) 2018-09-17 2018-09-17 一种用于海上编队的雷达目标球面投影方法
CN201811079124.8 2018-09-17

Publications (1)

Publication Number Publication Date
WO2020057453A1 true WO2020057453A1 (zh) 2020-03-26

Family

ID=64866318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105868 WO2020057453A1 (zh) 2018-09-17 2019-09-16 一种用于海上编队的雷达目标球面投影方法

Country Status (3)

Country Link
US (1) US11054503B2 (zh)
CN (1) CN109100698B (zh)
WO (1) WO2020057453A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109100698B (zh) * 2018-09-17 2019-08-30 中国电子科技集团公司第二十八研究所 一种用于海上编队的雷达目标球面投影方法
CN110598184B (zh) * 2019-09-18 2020-04-28 南京山鹞航空科技有限公司 一种编队复合跟踪系统数据注册误差校准方法
CN111367195A (zh) * 2020-02-18 2020-07-03 上海机电工程研究所 基于层次化的指挥控制系统建模方法
CN113625236B (zh) * 2021-06-30 2024-05-24 嘉兴聚速电子技术有限公司 多雷达数据融合方法、装置、存储介质和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926126A (en) * 1997-09-08 1999-07-20 Ford Global Technologies, Inc. Method and system for detecting an in-path target obstacle in front of a vehicle
CN101206260A (zh) * 2007-12-20 2008-06-25 四川川大智胜软件股份有限公司 航管自动化系统中雷达目标信息的处理方法
CN101270993A (zh) * 2007-12-12 2008-09-24 北京航空航天大学 一种远程高精度自主组合导航定位方法
CN103413463A (zh) * 2013-08-07 2013-11-27 四川九洲空管科技有限责任公司 一种ads-b目标和雷达目标的数据容融合实现方法
CN109100698A (zh) * 2018-09-17 2018-12-28 中国电子科技集团公司第二十八研究所 一种用于海上编队的雷达目标球面投影方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899161A (en) * 1988-07-21 1990-02-06 International Business Machines Corporation High accuracy coordinate conversion method for air traffic control applications
US5361070B1 (en) * 1993-04-12 2000-05-16 Univ California Ultra-wideband radar motion sensor
FR2712095B1 (fr) * 1993-11-05 1995-12-22 Europ Agence Spatiale Procédé de mesures altimétriques aériennes ou spatiales, notamment destiné à l'altimétrie des océans, et dispositif mettant en Óoeuvre un tel procédé.
US6922493B2 (en) * 2002-03-08 2005-07-26 Anzus, Inc. Methods and arrangements to enhance gridlocking
US8234689B2 (en) * 2009-07-21 2012-07-31 Bae Systems Information And Electronic Systems Integration Inc. System and method for generating target area information of a battlefield using information acquired from multiple classification levels
CN103049912B (zh) * 2012-12-21 2015-03-11 浙江大学 一种基于任意三面体的雷达-相机系统外部参数标定方法
CN103247030A (zh) * 2013-04-15 2013-08-14 丹阳科美汽车部件有限公司 基于球面投影模型和逆变换模型的车辆全景显示系统鱼眼图像校正方法
US10254392B2 (en) * 2015-09-09 2019-04-09 The United States Of America As Represented By The Secretary Of The Navy Reverse-ephemeris method for determining position, attitude, and time

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926126A (en) * 1997-09-08 1999-07-20 Ford Global Technologies, Inc. Method and system for detecting an in-path target obstacle in front of a vehicle
CN101270993A (zh) * 2007-12-12 2008-09-24 北京航空航天大学 一种远程高精度自主组合导航定位方法
CN101206260A (zh) * 2007-12-20 2008-06-25 四川川大智胜软件股份有限公司 航管自动化系统中雷达目标信息的处理方法
CN103413463A (zh) * 2013-08-07 2013-11-27 四川九洲空管科技有限责任公司 一种ads-b目标和雷达目标的数据容融合实现方法
CN109100698A (zh) * 2018-09-17 2018-12-28 中国电子科技集团公司第二十八研究所 一种用于海上编队的雷达目标球面投影方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DONG, JIANKANG ET AL.: "Fusion of Radar and QAR Data", MESASUREMENT & CONTROL TECHNOLOGY, vol. 29, no. 6, 31 December 2010 (2010-12-31), pages 81 - 82, ISSN: 1000-8829 *

Also Published As

Publication number Publication date
US11054503B2 (en) 2021-07-06
CN109100698A (zh) 2018-12-28
US20200309907A1 (en) 2020-10-01
CN109100698B (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2020057453A1 (zh) 一种用于海上编队的雷达目标球面投影方法
JP6516111B2 (ja) 船舶補助ドッキング方法およびシステム
JP6507437B2 (ja) 船舶補助ドッキング方法およびシステム
CN111708038A (zh) 基于姿态传感器和gnss的无人船激光雷达点云数据校正方法
US10670689B2 (en) System and method for determining geo location of a target using a cone coordinate system
JP7088288B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
CN111273312B (zh) 一种智能车辆定位与回环检测方法
CN107300382B (zh) 一种用于水下机器人的单目视觉定位方法
CN108061889A (zh) Ais与雷达角度系统偏差的关联方法
CN109472802B (zh) 一种基于边缘特征自约束的表面网格模型构建方法
CN110487266A (zh) 一种适用于海面目标的机载光电高精度无源定位方法
CN108061572B (zh) 一种海洋核动力平台综合态势显控系统及方法
WO2022193106A1 (zh) 一种通过惯性测量参数将gps与激光雷达融合定位的方法
WO2020151213A1 (zh) 一种空地结合的潮间带一体化测绘方法
CN110850457A (zh) 一种用于室内煤场的无人机定位导航方法
CN110068817B (zh) 一种基于激光测距和InSAR的地形测图方法、仪器和系统
CN110018450A (zh) Ais与雷达角度系统偏差的关联校准方法
CN112859134B (zh) 一种基于雷达与北斗数据的船舶目标精确关联方法
Menna et al. Towards real-time underwater photogrammetry for subsea metrology applications
CN112859133B (zh) 一种基于雷达与北斗数据的船舶深度融合定位方法
CN112348882A (zh) 一种基于多源探测器的低空目标跟踪信息融合方法和系统
CN112487912A (zh) 基于改进YOLOv3的任意方向舰船检测方法
CN110598184B (zh) 一种编队复合跟踪系统数据注册误差校准方法
CN114035188B (zh) 一种地基雷达冰川流速高精度监测方法与系统
CN116087982A (zh) 一种融合视觉和雷达系统的海上落水人员识别及定位方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862721

Country of ref document: EP

Kind code of ref document: A1