WO2020057430A1 - 数据传输方法及终端设备 - Google Patents

数据传输方法及终端设备 Download PDF

Info

Publication number
WO2020057430A1
WO2020057430A1 PCT/CN2019/105602 CN2019105602W WO2020057430A1 WO 2020057430 A1 WO2020057430 A1 WO 2020057430A1 CN 2019105602 W CN2019105602 W CN 2019105602W WO 2020057430 A1 WO2020057430 A1 WO 2020057430A1
Authority
WO
WIPO (PCT)
Prior art keywords
external device
device communication
protocol
data
communication protocol
Prior art date
Application number
PCT/CN2019/105602
Other languages
English (en)
French (fr)
Inventor
吴昱民
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19862469.4A priority Critical patent/EP3855694A1/en
Priority to JP2021516457A priority patent/JP7208367B2/ja
Priority to KR1020217011822A priority patent/KR102557147B1/ko
Priority to SG11202102835PA priority patent/SG11202102835PA/en
Publication of WO2020057430A1 publication Critical patent/WO2020057430A1/zh
Priority to US17/205,996 priority patent/US11910227B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/146Markers for unambiguous identification of a particular session, e.g. session cookie or URL-encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • H04L69/085Protocols for interworking; Protocol conversion specially adapted for interworking of IP-based networks with other networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/04Protocols for data compression, e.g. ROHC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/18Multiprotocol handlers, e.g. single devices capable of handling multiple protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/321Interlayer communication protocols or service data unit [SDU] definitions; Interfaces between layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/323Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the physical layer [OSI layer 1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a data transmission method and a terminal device.
  • IP Internet Protocol
  • MAC Medium Access Control
  • SDU MAC Service Data Unit
  • the Third Generation Partnership Project (3GPP) network protocol may include at least a 4G Long Term Evolution (LTE) network protocol and a 5G New RAT (NR) network protocol.
  • LTE Long Term Evolution
  • NR 5G New RAT
  • the 4G LTE protocol stack of a terminal device such as a user equipment (UE) may include: a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control (RLC) layer, and a MAC layer And the physical (PHY) layer
  • the 5G NR protocol stack of the UE may include: a Service Data Adaptation Protocol (SDAP) layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer.
  • SDAP Service Data Adaptation Protocol
  • WiFi wireless fidelity
  • Bluetooth wireless fidelity
  • wired LAN such as IEEE 802.3
  • network nodes such as WiFi, Bluetooth, or wired LAN may need to pass through the UE's 3GPP network based on service requirements Communicate with other network nodes.
  • WiFi wireless fidelity
  • Bluetooth wireless fidelity
  • wired LAN such as IEEE 802.3
  • network nodes such as WiFi, Bluetooth, or wired LAN may need to pass through the UE's 3GPP network based on service requirements Communicate with other network nodes.
  • the embodiments of the present disclosure provide a data transmission method and a terminal device to solve the problem that when a network node such as WiFi, Bluetooth, or a wired local area network communicates with other network nodes through a 3GPP network of the terminal device, it is not yet clear how to perform data transmission.
  • a network node such as WiFi, Bluetooth, or a wired local area network communicates with other network nodes through a 3GPP network of the terminal device, it is not yet clear how to perform data transmission.
  • a network node such as WiFi, Bluetooth, or a wired local area network
  • an embodiment of the present disclosure provides a data transmission method, including:
  • the first protocol entity of the external device communication protocol stack performs data transmission and reception through the second protocol entity of the 3GPP network protocol stack.
  • an embodiment of the present disclosure provides a terminal device, including:
  • An obtaining module configured to obtain interface information of an external device communication protocol and a 3GPP network protocol
  • a second protocol entity where the second protocol entity is a protocol entity corresponding to a 3GPP network protocol stack of the terminal device;
  • a first protocol entity where the first protocol entity is a protocol entity corresponding to an external device communication protocol stack of the terminal device, and is configured to perform data transmission and reception through the second protocol entity according to the interface information.
  • an embodiment of the present disclosure further provides a terminal device including a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein the computer program is described by the When executed by a processor, the steps of the data transmission method can be implemented.
  • an embodiment of the present disclosure further provides a computer-readable storage medium on which a computer program is stored, wherein when the computer program is executed by a processor, the steps of the foregoing data transmission method can be implemented.
  • the first protocol entity of the external device communication protocol stack of the terminal device performs data transmission and reception through the second protocol entity of the air interface protocol stack of the 3GPP network. It can realize the interaction between the external device communication protocol stack and the air interface protocol stack of the 3GPP network, so that when network nodes such as WiFi, Bluetooth, or wired local area network communicate with other network nodes through the 3GPP network of the terminal device, data transmission can be satisfied. Requirements to ensure the smooth progress of related communications services.
  • FIG. 1 is a flowchart of a data transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a protocol stack in a terminal device according to a specific embodiment of the present disclosure
  • FIG. 3 is a second schematic diagram of a protocol stack in a terminal device according to a specific embodiment of the present disclosure
  • FIG. 4 is a third schematic diagram of a protocol stack in a terminal device according to a specific embodiment of the present disclosure.
  • FIG. 5 is a fourth schematic diagram of a protocol stack in a terminal device according to a specific embodiment of the present disclosure.
  • FIG. 6 is a fifth schematic diagram of a protocol stack in a terminal device according to a specific embodiment of the present disclosure.
  • FIG. 7 is a sixth schematic diagram of a protocol stack in a terminal device according to a specific embodiment of the present disclosure.
  • FIG. 8 is a seventh schematic diagram of a protocol stack in a terminal device according to a specific embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a protocol stack in a terminal device according to a specific embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 11 is a second schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the terminal device and the external device are connected at a physical level. As shown in FIG. 2, data transmission can be performed between the PHY layer of the terminal device and the PHY layer of the external device.
  • the external device may be connected to the terminal device, may not be connected to the terminal device, or may be integrated on the terminal device, which is not limited in the embodiments of the present disclosure.
  • the terminal device and the external device can communicate based on the external device communication protocol, and the protocol entity that the terminal device communicates with the external device is the protocol entity corresponding to the external device communication protocol stack.
  • the above-mentioned external device communication protocol may include any one of the following:
  • WiFi communication protocols such as IEEE 802.11;
  • Wired LAN communication protocol such as IEEE 802.3.
  • an embodiment of the present disclosure provides a data transmission method, which is applied to a terminal device.
  • the method includes the following steps:
  • Step 101 Obtain interface information of an external device communication protocol and a 3GPP network protocol.
  • the above interface information may be configured by the network side or agreed by the protocol.
  • the above 3GPP network protocol can be understood as a 4G network protocol, a 5G network protocol, or a 6G network protocol.
  • Step 102 According to the interface information, the first protocol entity of the external device communication protocol stack performs data transmission and reception through the second protocol entity of the air interface protocol stack of the 3GPP network.
  • the air interface protocol stack of the 3GPP network may be a 4G LTE protocol stack or a 5G NR protocol stack.
  • the first protocol entity of the external device communication protocol stack of the terminal device performs data transmission and reception through the second protocol entity of the air interface protocol stack of the 3GPP network. It can realize the interaction between the external device communication protocol stack and the air interface protocol stack of the 3GPP network, so that when network nodes such as WiFi, Bluetooth, or wired local area network communicate with other network nodes through the 3GPP network of the terminal device, data transmission can be satisfied. Requirements to ensure the smooth progress of related communications services.
  • the foregoing interface information may include at least one of the following:
  • the MAC PDU of the external device communication protocol is used as the PDCP SDU of the first network protocol for data transmission and reception;
  • EPS Evolved Packet System
  • the first network protocol can be understood as a 4G LTE protocol
  • the first network protocol stack can be understood as a 4G LTE protocol stack.
  • the first network protocol stack may include a PDCP layer, an RLC layer, a MAC layer, and a PHY layer
  • an external device communication protocol stack may include a MAC layer and a PHY layer
  • a MAC layer entity of the external device communication protocol stack may communicate with
  • the PDCP layer entity of the first network protocol stack interacts, that is, the data is transmitted and received through the PDCP layer entity of the first network protocol stack.
  • step 102 may include:
  • the MAC layer entity of the external device communication protocol stack sends the MAC PDU to the PDCP layer entity of the first network protocol stack as the PDCP SDU of the PDCP layer entity of the first network protocol stack;
  • the MAC layer entity of the external device communication protocol stack receives the PDCP SDU sent by the PDCP layer entity of the first network protocol stack as the MAC PDU of the MAC layer entity of the external device communication protocol stack.
  • the MAC PDU of the external device can be transmitted through the first network protocol stack.
  • the process of sending data through the LTE protocol stack may be:
  • the PHY layer entity of the external device communication protocol stack sends the PHY SDU to the MAC layer entity of the external device communication protocol stack as the MAC PDU of the MAC layer entity of the external device communication protocol stack;
  • the MAC layer entity of the external device communication protocol stack sends the MAC PDU to the PDCP layer entity of the LTE protocol stack as the PDCP SDU of the PDCP layer entity of the LTE protocol stack.
  • the process of receiving data through the LTE protocol stack can be:
  • the MAC layer entity of the external device communication protocol stack receives the PDCP SDU sent by the PDCP layer entity of the LTE protocol stack, and serves as the MAC PDU of the MAC layer entity of the external device communication protocol stack;
  • the MAC layer entity of the external device communication protocol stack sends the MAC PDU to the PHY layer entity of the external device communication protocol stack as the PHY SDU of the PHY layer entity of the external device communication protocol stack.
  • the foregoing interface information may include at least one of the following:
  • the PHY or SDU of the external device communication protocol or the MAC PDU is used as the PDCP and SDU of the first network protocol for data transmission and reception;
  • the first network protocol can be understood as a 4G LTE protocol
  • the first network protocol stack can be understood as a 4G LTE protocol stack.
  • the first network protocol stack may include a PDCP layer, an RLC layer, a MAC layer, and a PHY layer
  • an external device communication protocol stack may include a MAC layer and a PHY layer
  • a PHY layer entity of the external device communication protocol stack may communicate with The PDCP layer entity of the first network protocol stack interacts, that is, the data is transmitted and received through the PDCP layer entity of the first network protocol stack.
  • step 102 may include:
  • the PHY layer entity of the external device communication protocol stack sends the PHY SDU, or MAC PDU, to the PDCP layer entity of the first network protocol stack as the PDCP SDU of the PDCP layer entity of the first network protocol stack;
  • the PHY layer entity of the external device communication protocol stack receives the PDCP SDU sent by the PDCP layer entity of the first network protocol stack, the PHY SDU as the PHY layer entity of the external device communication protocol stack, or the MAC PDU.
  • the PHY and SDU of the external device can be transmitted through the first network protocol stack.
  • the process of sending data through the LTE protocol stack may be:
  • the PHY layer entity of the external device communication protocol stack sends the PHY SDU or MAC PDU to the PDCP layer entity of the LTE protocol stack as the PDCP SDU of the PDCP layer entity of the LTE protocol stack.
  • the process of receiving data through the LTE protocol stack can be:
  • the PHY layer entity of the communication protocol stack of the external device receives the PDCP SDU sent by the PDCP layer entity of the LTE protocol stack, the PHY SDU, or the MAC PDU as the PHY layer entity of the communication protocol stack of the external device.
  • the foregoing interface information may include at least one of the following:
  • the MAC PDU of the external device communication protocol is used as the SDAP and SDU of the second network protocol for data transmission and reception;
  • the PDU session identifier of the second network protocol corresponding to the data (for example, all data) or the data stream (for example, some data) of the external device communication protocol;
  • QoS flow identifier of the second network protocol corresponding to data (for example, all data) or data flow (for example, partial data) of the external device communication protocol;
  • the second network protocol can be understood as a 5G NR protocol
  • the second network protocol stack can be understood as a 5G NR protocol stack.
  • the second network protocol stack may include an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer; an external device communication protocol stack may include a MAC layer and a PHY layer; and an external device communication protocol stack's MAC layer
  • the entity may interact with the SDAP layer entity of the second network protocol stack, that is, send and receive data through the SDAP layer entity of the second network protocol stack.
  • step 102 may include:
  • the MAC layer entity of the external device communication protocol stack sends the MAC PDU to the SDAP layer entity of the second network protocol stack as the SDAP SDU of the SDAP layer entity of the second network protocol stack;
  • the MAC layer entity of the external device communication protocol stack receives the SDAP SDU sent by the SDAP layer entity of the second network protocol stack as the MAC PDU of the MAC layer entity of the external device communication protocol stack.
  • the MAC PDU of the external device can be transmitted through the second network protocol stack.
  • the process of sending data through the NR protocol stack may be:
  • the PHY layer entity of the external device communication protocol stack sends the PHY SDU to the MAC layer entity of the external device communication protocol stack as the MAC PDU of the MAC layer entity of the external device communication protocol stack;
  • the MAC layer entity of the external device communication protocol stack sends the MAC PDU to the SDAP layer entity of the NR protocol stack as the SDAP SDU of the SDAP layer entity of the NR protocol stack.
  • the process of receiving data through the NR protocol stack can be:
  • the MAC layer entity of the external device communication protocol stack receives the SDAP SDU sent by the SDAP layer entity of the NR protocol stack, and serves as the MAC PDU of the MAC layer entity of the external device communication protocol stack;
  • the MAC layer entity of the external device communication protocol stack sends the MAC PDU to the PHY layer entity of the external device communication protocol stack as the PHY SDU of the PHY layer entity of the external device communication protocol stack.
  • the foregoing interface information may include at least one of the following:
  • the PHY SDU or MAC PDU of the external device communication protocol is used as the SDAP SDU of the second network protocol for data transmission and reception;
  • the PDU session identifier of the second network protocol corresponding to the data (for example, all data) or the data stream (for example, some data) of the external device communication protocol;
  • the QoS flow identifier of the second network protocol corresponding to the data (for example, all data) or data flow (for example, some data) of the external device communication protocol;
  • the second network protocol can be understood as a 5G NR protocol
  • the second network protocol stack can be understood as a 5G NR protocol stack.
  • the second network protocol stack may include an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer
  • an external device communication protocol stack may include a MAC layer and a PHY layer
  • an external device communication protocol stack PHY layer The entity may interact with the SDAP layer entity of the second network protocol stack, that is, send and receive data through the SDAP layer entity of the second network protocol stack.
  • step 102 may include:
  • the PHY layer entity of the external device communication protocol stack sends the PHY SDU, or MAC PDU, to the SDAP layer entity of the second network protocol stack as the SDAP SDU of the SDAP layer entity of the second network protocol stack;
  • the PHY layer entity of the external device communication protocol stack receives the SDAP SDU sent by the SDAP layer entity of the second network protocol stack, the PHY SDU, or the MAC PDU as the PHY layer entity of the external device communication protocol stack.
  • the PHY SDU of the external device can be transmitted through the second network protocol stack.
  • the process of sending data through the NR protocol stack may be:
  • the PHY layer entity of the external device communication protocol stack sends the PHY SDU or MAC PDU to the SDAP layer entity of the NR protocol stack as the SDAP SDU of the SDAP layer entity of the NR protocol stack.
  • the process of receiving data through the NR protocol stack can be:
  • the PHY layer entity of the external device communication protocol stack receives the SDAP SDU sent by the SDAP layer entity of the NR protocol stack, and serves as the PHY SDU or MAC PDU of the PHY layer entity of the external device communication protocol stack.
  • the foregoing interface information may include at least one of the following:
  • the IP PDU of the communication protocol of the external device is used as the PDCP SDU of the first network protocol for data transmission and reception;
  • the first network protocol can be understood as a 4G LTE protocol
  • the first network protocol stack can be understood as a 4G LTE protocol stack.
  • the first network protocol stack may include a PDCP layer, an RLC layer, a MAC layer, and a PHY layer
  • an external device communication protocol stack may include an IP layer, a header compression (ROHC) layer, a MAC layer, and a PHY
  • the ROHC layer is introduced between the IP layer and the MAC layer
  • the IP layer entity of the external device communication protocol stack can interact with the PDCP layer entity of the first network protocol stack, that is, the PDCP layer entity of the first network protocol stack Send and receive data.
  • step 102 may include:
  • the IP layer entity of the external device communication protocol stack sends the IP PDU to the PDCP layer entity of the first network protocol stack as the PDCP SDU of the PDCP layer entity of the first network protocol stack;
  • the IP layer entity of the external device communication protocol stack receives the PDCP SDU sent by the PDCP layer entity of the first network protocol stack as the IP PDU of the IP layer entity of the external device communication protocol stack.
  • IP PDUs of external devices can be sent through the first network protocol stack; and the introduction of the ROHC layer between the IP layer and the MAC layer can realize the compressed or decompressed data packets of the ROHC layer entity through the air interface protocol of the 3GPP network.
  • the stack is transferred.
  • the process of sending data through the LTE protocol stack may be:
  • the PHY layer entity of the external device communication protocol stack sends the PHY SDU to the MAC layer entity of the external device communication protocol stack as the MAC PDU of the MAC layer entity of the external device communication protocol stack;
  • the MAC layer entity of the external device communication protocol stack sends the MAC SDU to the ROHC layer entity of the external device communication protocol stack as the ROHC PDU of the ROHC layer entity of the external device communication protocol stack;
  • the ROHC layer entity of the external device communication protocol stack sends the ROHC SDU to the IP layer entity of the external device communication protocol stack as the IP PDU of the IP layer entity of the external device communication protocol stack;
  • the IP layer entity of the communication protocol stack of the external device sends the IP PDU to the PDCP layer entity of the LTE protocol stack as the PDCP SDU of the PDCP layer entity of the LTE protocol stack.
  • the process of receiving data through the LTE protocol stack can be:
  • the IP layer entity of the external device communication protocol stack receives the PDCP SDU sent by the PDCP layer entity of the LTE protocol stack, and serves as the IP PDU of the IP layer entity of the external device communication protocol stack;
  • the IP layer entity of the external device communication protocol stack sends the IP PDU to the ROHC layer entity of the external device communication protocol stack, and serves as the ROHC layer SDU of the ROHC layer entity of the external device communication protocol stack;
  • the ROHC layer entity of the external device communication protocol stack sends the ROHC PDU to the MAC layer entity of the external device communication protocol stack as the MAC SDU of the MAC layer entity of the external device communication protocol stack.
  • the foregoing interface information may include at least one of the following:
  • the first network protocol can be understood as a 4G LTE protocol
  • the first network protocol stack can be understood as a 4G LTE protocol stack.
  • the first network protocol stack may include a PDCP layer, an RLC layer, a MAC layer, and a PHY layer
  • an external device communication protocol stack may include an IP layer, a ROHC layer, a MAC layer, and a PHY layer, that is, an IP layer and a MAC
  • the ROHC layer between layers; and the ROHC layer entity of the external device communication protocol stack can interact with the PDCP layer entity of the first network protocol stack, that is, the data is transmitted and received through the PDCP layer entity of the first network protocol stack.
  • step 102 may include:
  • the ROHC layer entity of the external device communication protocol stack sends the ROHC SDU, or IP PDU, to the PDCP layer entity of the first network protocol stack as the PDCP layer SDU of the PDCP layer entity of the first network protocol stack;
  • the ROHC layer entity of the external device communication protocol stack receives the PDCP SDU sent by the PDCP layer entity of the first network protocol stack, the ROHC SDU of the ROHC layer entity of the external device communication protocol stack, or IP PDU.
  • the ROHC and SDU of the external device can be sent through the first network protocol stack.
  • the process of sending data through the LTE protocol stack may be:
  • the PHY layer entity of the external device communication protocol stack sends the PHY SDU to the MAC layer entity of the external device communication protocol stack as the MAC PDU of the MAC layer entity of the external device communication protocol stack;
  • the MAC layer entity of the external device communication protocol stack sends the MAC SDU to the ROHC layer entity of the external device communication protocol stack as the ROHC PDU of the ROHC layer entity of the external device communication protocol stack;
  • the ROHC layer entity of the external device communication protocol stack sends the ROHC SDU, or IP PDU, to the PDCP layer entity of the LTE protocol stack as the PDCP layer SDU of the PDCP layer entity of the LTE protocol stack.
  • the process of receiving data through the LTE protocol stack can be:
  • the ROHC layer entity of the external device communication protocol stack receives the PDCP SDU sent by the PDCP layer entity of the LTE protocol stack, and the ROHC layer SDU, or IP PDU, of the ROHC layer entity of the external device communication protocol stack;
  • the ROHC layer entity of the external device communication protocol stack sends the ROHC PDU to the MAC layer entity of the external device communication protocol stack as the MAC SDU of the MAC layer entity of the external device communication protocol stack.
  • the foregoing interface information may include at least one of the following:
  • the IP PDU of the external device communication protocol is used as the SDAP and SDU of the second network protocol for data transmission and reception;
  • the PDU session identifier of the second network protocol corresponding to the data (for example, all data) or the data stream (for example, some data) of the external device communication protocol;
  • the QoS flow identifier of the second network protocol corresponding to the data (for example, all data) or data flow (for example, some data) of the external device communication protocol;
  • the second network protocol can be understood as a 5G NR protocol
  • the second network protocol stack can be understood as a 5G NR protocol stack.
  • the second network protocol stack can include the SDAP layer, the PDCP layer, the RLC layer, the MAC layer, and the PHY layer
  • the external device communication protocol stack can include the IP layer, the ROHC layer, the MAC layer, and the PHY layer, namely The ROHC layer between the MAC layer and the MAC layer
  • the IP layer entity of the external device communication protocol stack can interact with the SDAP layer entity of the second network protocol stack, that is, the data is transmitted and received through the SDAP layer entity of the second network protocol stack.
  • step 102 may include:
  • the IP layer entity of the external device communication protocol stack sends the IP PDU to the SDAP layer entity of the second network protocol stack as the SDAP SDU of the SDAP layer entity of the second network protocol stack;
  • the IP layer entity of the external device communication protocol stack receives the SDAP SDU sent by the SDAP layer entity of the second network protocol stack as the IP PDU of the IP layer entity of the external device communication protocol stack.
  • the IP PDU of the external device can be transmitted through the second network protocol stack.
  • the process of sending data through the NR protocol stack may be:
  • the PHY layer entity of the external device communication protocol stack sends the PHY SDU to the MAC layer entity of the external device communication protocol stack as the MAC PDU of the MAC layer entity of the external device communication protocol stack;
  • the MAC layer entity of the external device communication protocol stack sends the MAC SDU to the ROHC layer entity of the external device communication protocol stack as the ROHC PDU of the ROHC layer entity of the external device communication protocol stack;
  • the ROHC layer entity of the external device communication protocol stack sends the ROHC SDU to the IP layer entity of the external device communication protocol stack as the IP PDU of the IP layer entity of the external device communication protocol stack;
  • the IP layer entity of the external device communication protocol stack sends the IP PDU to the SDAP layer entity of the NR protocol stack as the SDAP SDU of the SDAP layer entity of the NR protocol stack.
  • the process of receiving data through the NR protocol stack can be:
  • the IP layer entity of the external device communication protocol stack receives the SDAP SDU sent by the PDCP layer entity of the NR protocol stack, and serves as the IP PDU of the IP layer entity of the external device communication protocol stack;
  • the IP layer entity of the external device communication protocol stack sends the IP PDU to the ROHC layer entity of the external device communication protocol stack, and serves as the ROHC layer SDU of the ROHC layer entity of the external device communication protocol stack;
  • the ROHC layer entity of the external device communication protocol stack sends the ROHC PDU to the MAC layer entity of the external device communication protocol stack as the MAC SDU of the MAC layer entity of the external device communication protocol stack.
  • the foregoing interface information may include at least one of the following:
  • ROHC SDU of external device communication protocol or IP PDU as SDAP SDU of second network protocol for data transmission and reception;
  • the PDU session identifier of the second network protocol corresponding to the data (for example, all data) or the data stream (for example, some data) of the external device communication protocol;
  • the QoS flow identifier of the second network protocol corresponding to the data (for example, all data) or data flow (for example, some data) of the external device communication protocol;
  • the second network protocol can be understood as a 5G NR protocol
  • the second network protocol stack can be understood as a 5G NR protocol stack.
  • the second network protocol stack may include an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer
  • an external device communication protocol stack may include an IP layer, a ROHC layer, a MAC layer, and a PHY layer, that is, in the IP
  • the ROHC layer entity of the external device communication protocol stack can interact with the SDAP layer entity of the second network protocol stack, that is, send and receive data through the SDAP layer entity of the second network protocol stack.
  • step 102 may include:
  • the ROHC layer entity of the external device communication protocol stack sends the ROHC SDU, or IP PDU, to the SDAP layer entity of the second network protocol stack as the SDAP SDU of the SDAP layer entity of the second network protocol stack;
  • the ROHC layer entity of the communication protocol stack of the external device receives the SDAP SDU sent by the SDAP layer entity of the second network protocol stack, the ROHC SDU of the ROHC layer entity of the external device communication protocol stack, or the IP PDU.
  • the ROHC and SDU of the external device can be transmitted through the second network protocol stack.
  • the process of sending data through the NR protocol stack may be:
  • the ROHC layer entity of the external device communication protocol stack sends the ROHC SDU, or IP PDU, to the SDAP layer entity of the NR protocol stack as the SDAP SDU of the SDAP layer entity of the NR protocol stack.
  • the process of receiving data through the NR protocol stack can be:
  • the ROHC layer entity of the external device communication protocol stack receives the SDAP SDU sent by the SDAP layer entity of the NR protocol stack, the ROHC SDU, or the IP PDU as the ROHC layer entity of the external device communication protocol stack.
  • an embodiment of the present disclosure further provides a terminal device 110, including:
  • An obtaining module 111 configured to obtain interface information of a communication protocol between an external device and a 3GPP network protocol
  • a second protocol entity 112 where the second protocol entity is a protocol entity corresponding to an air interface protocol stack of a 3GPP network of the terminal device;
  • a first protocol entity 113 where the first protocol entity is a protocol entity corresponding to an external device communication protocol stack of the terminal device, and is configured to perform data transmission and reception through the second protocol entity according to the interface information.
  • the first protocol entity of the external device communication protocol stack of the terminal device performs data transmission and reception through the second protocol entity of the air interface protocol stack of the 3GPP network. It can realize the interaction between the external device communication protocol stack and the air interface protocol stack of the 3GPP network, so that when network nodes such as WiFi, Bluetooth, or wired local area network communicate with other network nodes through the 3GPP network of the terminal device, data transmission can be satisfied. Requirements to ensure the smooth progress of related communications services.
  • the external device communication protocol includes any one of the following:
  • Wired LAN communication protocol Wired LAN communication protocol
  • the interface information includes at least one of the following:
  • the MAC PDU of the external device communication protocol is used as the PDCP SDU of the first network protocol for data transmission and reception;
  • the DRB identifier of the first network protocol corresponding to the data or data flow of the external device communication protocol
  • the first protocol entity 113 is a MAC layer entity of an external device communication protocol stack
  • the second protocol entity 112 is a PDCP layer entity of a first network protocol stack
  • the first protocol entity 113 may be configured to:
  • the interface information includes at least one of the following:
  • the PHY or SDU of the external device communication protocol or the MAC PDU is used as the PDCP and SDU of the first network protocol for data transmission and reception;
  • the DRB identifier of the first network protocol corresponding to the data or data flow of the external device communication protocol
  • the first protocol entity 113 is a PHY layer entity of an external device communication protocol stack
  • the second protocol entity 112 is a PDCP layer entity of a first network protocol stack
  • the first protocol entity 113 may be configured to:
  • the interface information includes at least one of the following:
  • the MAC PDU of the external device communication protocol is used as the SDAP and SDU of the second network protocol for data transmission and reception;
  • the PDU session identifier of the second network protocol corresponding to the data or data flow of the external device communication protocol
  • the QoS flow identifier of the second network protocol corresponding to the data or data flow of the external device communication protocol
  • the SDAP entity identifier of the second network protocol corresponding to the data or data flow of the external device communication protocol.
  • the first protocol entity 113 is a MAC layer entity of an external device communication protocol stack
  • the second protocol entity 112 is an SDAP layer entity of a second network protocol stack
  • the first protocol entity 113 may be configured to:
  • the interface information includes at least one of the following:
  • the PHY SDU or MAC PDU of the external device communication protocol is used as the SDAP SDU of the second network protocol for data transmission and reception;
  • the PDU session identifier of the second network protocol corresponding to the data or data flow of the external device communication protocol
  • the QoS flow identifier of the second network protocol corresponding to the data or data flow of the external device communication protocol
  • the SDAP entity identifier of the second network protocol corresponding to the data or data flow of the external device communication protocol.
  • the first protocol entity 113 is a PHY layer entity of an external device communication protocol stack
  • the second protocol entity 112 is an SDAP layer entity of a second network protocol stack
  • the first protocol entity 113 may be configured to:
  • the interface information includes at least one of the following:
  • the IP PDU of the communication protocol of the external device is used as the PDCP SDU of the first network protocol for data transmission and reception;
  • the DRB identifier of the first network protocol corresponding to the data or data flow of the external device communication protocol
  • the first protocol entity 113 is an IP layer entity of an external device communication protocol stack
  • the second protocol entity 112 is a PDCP layer entity of a first network protocol stack
  • the first protocol entity 113 may be configured to:
  • the interface information includes at least one of the following:
  • the DRB identifier of the first network protocol corresponding to the data or data flow of the external device communication protocol
  • the first protocol entity 113 is a ROHC layer entity of an external device communication protocol stack
  • the second protocol entity 112 is a PDCP layer entity of a first network protocol stack
  • the first protocol entity 113 may be configured to:
  • the interface information includes at least one of the following:
  • the IP PDU of the external device communication protocol is used as the SDAP and SDU of the second network protocol for data transmission and reception;
  • the PDU session identifier of the second network protocol corresponding to the data or data flow of the external device communication protocol
  • the QoS flow identifier of the second network protocol corresponding to the data or data flow of the external device communication protocol
  • the SDAP entity identifier of the second network protocol corresponding to the data or data flow of the external device communication protocol.
  • the first protocol entity 113 is an IP layer entity of an external device communication protocol stack
  • the second protocol entity 112 is an SDAP layer entity of a second network protocol stack
  • the first protocol entity 113 may be configured to:
  • the interface information includes at least one of the following:
  • ROHC SDU of external device communication protocol or IP PDU as SDAP SDU of second network protocol for data transmission and reception;
  • the PDU session identifier of the second network protocol corresponding to the data or data flow of the external device communication protocol
  • the QoS flow identifier of the second network protocol corresponding to the data or data flow of the external device communication protocol
  • the SDAP entity identifier of the second network protocol corresponding to the data or data flow of the external device communication protocol.
  • the first protocol entity 113 is an ROHC layer entity of an external device communication protocol stack
  • the second protocol entity 112 is an SDAP layer entity of a second network protocol stack
  • the first protocol entity 113 may be configured to:
  • An embodiment of the present disclosure further provides a terminal device including a processor, a memory, and a computer program stored on the memory and executable on the processor, wherein the computer program is implemented when the computer program is executed by the processor.
  • FIG. 11 is a schematic diagram of a hardware structure of a terminal device implementing various embodiments of the present disclosure.
  • the terminal device 1100 includes, but is not limited to, a radio frequency unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105,
  • the terminal structure shown in FIG. 11 does not constitute a limitation on the terminal, and the terminal device may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • the terminal device includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, and a pedometer.
  • the terminal device 1100 may further include an external device communication protocol stack and an air interface protocol stack of a 3GPP network, and communication between the terminal device 1100 and an external device unit may be implemented by using the external device communication protocol.
  • the processor 1110 is configured to obtain interface information of an external device communication protocol and a 3GPP network protocol, and according to the interface information, control a first protocol entity of the external device communication protocol stack through a second protocol entity of an air interface protocol stack of the 3GPP network. Send and receive data.
  • the terminal device 1100 can implement interaction between an external device communication protocol stack and an air interface protocol stack of a 3GPP network, so that when a network node such as WiFi, Bluetooth, or a wired local area network passes through the 3GPP network of the terminal device and other network nodes When communicating, it can meet the needs of data transmission and ensure the smooth progress of related communication services.
  • a network node such as WiFi, Bluetooth, or a wired local area network
  • the radio frequency unit 1101 may be used to receive and send signals during the process of receiving and sending information or during a call. Specifically, the downlink data from the base station is received and processed by the processor 1110; The uplink data is sent to the base station.
  • the radio frequency unit 1101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 1101 can also communicate with a network and other devices through a wireless communication system.
  • the terminal device provides users with wireless broadband Internet access through the network module 1102, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 1103 may convert audio data received by the radio frequency unit 1101 or the network module 1102 or stored in the memory 1109 into audio signals and output them as sound. Moreover, the audio output unit 1103 may also provide audio output (for example, call signal reception sound, message reception sound, etc.) related to a specific function performed by the terminal device 1100.
  • the audio output unit 1103 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 1104 is used to receive audio or video signals.
  • the input unit 1104 may include a graphics processing unit (GPU) 11041 and a microphone 11042.
  • the graphics processor 11041 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frames may be displayed on the display unit 1106.
  • the image frame processed by the graphics processor 11041 may be stored in the memory 1109 (or other storage medium) or transmitted via the radio frequency unit 1101 or the network module 1102.
  • the microphone 11042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be transmitted to a mobile communication base station via the radio frequency unit 1101 in the case of a telephone call mode and output.
  • the terminal device 1100 further includes at least one sensor 1105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 11061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 11061 and / Or backlight.
  • an accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes).
  • sensor 1105 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared The sensors and the like are not repeated here.
  • the display unit 1106 is used to display information input by the user or information provided to the user.
  • the display unit 1106 may include a display panel 11061.
  • the display panel 11061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 1107 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 1107 includes a touch panel 11071 and other input devices 11072.
  • the touch panel 11071 also known as a touch screen, can collect user's touch operations on or near it (for example, the user uses a finger, a stylus or any suitable object or accessory on the touch panel 11071 or near the touch panel 11071 operating).
  • the touch panel 11071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal caused by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it
  • the processor 1110 receives a command sent by the processor 1110 and executes the command.
  • the touch panel 11071 may be implemented in various types such as a resistive type, a capacitive type, an infrared type, and a surface acoustic wave.
  • the user input unit 1107 may also include other input devices 11072.
  • other input devices 11072 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, and details are not described herein again.
  • the touch panel 11071 may be overlaid on the display panel 11061.
  • the touch panel 11071 detects a touch operation on or near the touch panel 11071, it is transmitted to the processor 1110 to determine the type of the touch event, and the processor 1110 then The type of event provides corresponding visual output on the display panel 11061.
  • the touch panel 11071 and the display panel 11061 are implemented as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 11071 and the display panel 11061 can be integrated and Implement the input and output functions of the terminal, which are not limited here.
  • the interface unit 1108 is an interface through which an external device is connected to the terminal device 1100.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, and audio input / output (Input / Output, I / O) port, video I / O port, headphone port, etc.
  • the interface unit 1108 may be used to receive input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements within the terminal device 1100 or may be used to connect the terminal device 1100 and an external device. Transfer data between devices.
  • the memory 1109 may be used to store software programs and various data.
  • the memory 1109 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store data according to Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 1109 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 1110 is a control center of the terminal device, and uses various interfaces and lines to connect various parts of the entire terminal. By running or executing software programs and / or modules stored in the memory 1109, and calling data stored in the memory 1109, Perform various functions of the terminal and process data to monitor the terminal as a whole.
  • the processor 1110 may include one or more processing units; optionally, the processor 1110 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 1110.
  • the terminal device 1100 may further include a power supply 1111 (such as a battery) for supplying power to various components.
  • a power supply 1111 such as a battery
  • the power supply 1111 may be logically connected to the processor 1110 through a power management system, thereby implementing management of charging, discharging, and power consumption through the power management system. Management and other functions.
  • terminal device 1100 may further include some functional modules that are not shown, and details are not described herein again.
  • An embodiment of the present disclosure further provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the processes of the foregoing data transmission method embodiments are implemented, and the same technology can be achieved. Effect, in order to avoid repetition, it will not be repeated here.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.
  • the disclosed apparatus and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application-specific integrated circuits (ASICs), digital signal processors (DSP), digital signal processing devices (DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general-purpose processor, controller, microcontroller, microprocessor, other for performing functions described in this disclosure Electronic unit or combination thereof.
  • ASICs application-specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • controller microcontroller
  • microprocessor other for performing functions described in this disclosure Electronic unit or combination thereof.
  • the technology described in the embodiments of the present disclosure may be implemented by modules (such as procedures, functions, and the like) that perform the functions described in the embodiments of the present disclosure.
  • Software codes may be stored in a memory and executed by a processor.
  • the memory may be implemented in the processor or external to the processor.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the program may be stored in a computer-readable storage medium.
  • the program When executed, the processes of the embodiments of the methods described above may be included.
  • the storage medium may be a magnetic disk, an optical disk, a ROM, or a RAM.

Abstract

本公开提供一种数据传输方法及终端设备,其中,所述数据传输方法包括:获取外部设备通信协议与3GPP网络协议的接口信息;根据所述接口信息,外部设备通信协议栈的第一协议实体通过3GPP网络的空口协议栈的第二协议实体进行数据收发。

Description

数据传输方法及终端设备
相关申请的交叉引用
本申请主张在2018年9月21日在中国提交的中国专利申请号No.201811109861.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种数据传输方法及终端设备。
背景技术
相关技术中的协议栈中,数据传输是要通过相邻的协议层交互进行传输的。比如,互联网协议(Internet Protocol,IP)层实体和媒体接入控制(Medium Access Control,MAC)层实体进行交互时,IP层实体发送给MAC层实体的数据包具体为IP层实体生成的数据包,称为IP协议数据单元(Protocol Data Unit,PDU),而MAC层实体接收到的来自高层的数据包为MAC服务数据单元(Service Data Unit,SDU)。
第三代合作组织项目(Third Generation Partnership Project,3GPP)网络协议至少可包括4G长期演进(Long Term Evolution,LTE)网络协议和5G新空口(New RAT,NR)网络协议。其中,终端设备比如用户设备(User Equipment,UE)的4G LTE协议栈可包括:包数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路控制(Radio Link Control,RLC)层、MAC层和物理(Physical,PHY)层;而UE的5G NR协议栈可包括:服务数据适配协议(Service Data Adaptation Protocol,SDAP)层、PDCP层、RLC层、MAC层和PHY层。
当UE通过无线保真(Wireless Fidelity,WiFi)、蓝牙或有线局域网(比如IEEE 802.3)等与外部设备通信时,基于业务需求,WiFi、蓝牙或有线局域网等的网络节点可能需要通过UE的3GPP网络与其他网络节点进行通信。然而,针对此通过3GPP网络进行通信的需求,相关技术中却没有相关方法明确如何进行数据传输,以保证相关通信业务顺利的进行。
发明内容
本公开实施例提供一种数据传输方法及终端设备,以解决相关技术中当WiFi、蓝牙或有线局域网等的网络节点通过终端设备的3GPP网络与其他网络节点进行通信时,尚未明确如何进行数据传输的问题。
第一方面,本公开实施例提供了一种数据传输方法,包括:
获取外部设备通信协议与3GPP网络协议的接口信息;
根据所述接口信息,外部设备通信协议栈的第一协议实体通过3GPP网络协议栈的第二协议实体进行数据收发。
第二方面,本公开实施例提供了一种终端设备,包括:
获取模块,用于获取外部设备通信协议与3GPP网络协议的接口信息;
第二协议实体,所述第二协议实体为所述终端设备的3GPP网络协议栈对应的协议实体;
第一协议实体,所述第一协议实体为所述终端设备的外部设备通信协议栈对应的协议实体,用于根据所述接口信息,通过所述第二协议实体进行数据收发。
第三方面,本公开实施例还提供了一种终端设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时可实现上述数据传输方法的步骤。
第四方面,本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时可实现上述数据传输方法的步骤。
本公开实施例中,根据获取的外部设备通信协议与3GPP网络协议的接口信息,终端设备的外部设备通信协议栈的第一协议实体通过3GPP网络的空口协议栈的第二协议实体进行数据收发,可以实现外部设备通信协议栈与3GPP网络的空口协议栈之间的交互,从而当WiFi、蓝牙或有线局域网等的网络节点通过终端设备的3GPP网络与其他网络节点进行通信时,可以满足数据传输的需求,保证相关通信业务顺利的进行。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的数据传输方法的流程图;
图2为本公开具体实施例的终端设备中协议栈的示意图之一;
图3为本公开具体实施例的终端设备中协议栈的示意图之二;
图4为本公开具体实施例的终端设备中协议栈的示意图之三;
图5为本公开具体实施例的终端设备中协议栈的示意图之四;
图6为本公开具体实施例的终端设备中协议栈的示意图之五;
图7为本公开具体实施例的终端设备中协议栈的示意图之六;
图8为本公开具体实施例的终端设备中协议栈的示意图之七;
图9为本公开具体实施例的终端设备中协议栈的示意图之八;
图10为本公开实施例的终端设备的结构示意图之一;
图11为本公开实施例的终端设备的结构示意图之二。
具体实施方式
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
首先说明的是,本公开实施例中,终端设备与外部设备在物理层面是连接的一起的,如图2所示,终端设备的PHY层与外部设备的PHY层之间可以进行数据传输。而从实现角度上,外部设备可以与终端设备连接,也可以不与终端设备连接,也可以集成在终端设备上,本公开实施例不对此进行限制。
其中,终端设备与外部设备可以基于外部设备通信协议进行通信,终端设备与外部设备通信的协议实体为外部设备通信协议栈对应的协议实体。上 述外部设备通信协议可以包括如下任意一项:
WiFi通信协议;比如IEEE 802.11;
蓝牙协议;
有线局域网通信协议;比如IEEE 802.3。
下面将结合实施例和附图对本公开进行详细说明。
参见图1所示,本公开实施例提供了一种数据传输方法,应用于终端设备,所述方法包括如下步骤:
步骤101:获取外部设备通信协议与3GPP网络协议的接口信息。
其中,上述接口信息可以由网络侧配置,或者协议约定。上述3GPP网络协议可以理解为4G网络协议、5G网络协议或6G网络协议等。
步骤102:根据所述接口信息,外部设备通信协议栈的第一协议实体通过3GPP网络的空口协议栈的第二协议实体进行数据收发。
可以理解的,上述3GPP网络的空口协议栈可为4G LTE协议栈或者5G NR协议栈等。
本公开实施例中,根据获取的外部设备通信协议与3GPP网络协议的接口信息,终端设备的外部设备通信协议栈的第一协议实体通过3GPP网络的空口协议栈的第二协议实体进行数据收发,可以实现外部设备通信协议栈与3GPP网络的空口协议栈之间的交互,从而当WiFi、蓝牙或有线局域网等的网络节点通过终端设备的3GPP网络与其他网络节点进行通信时,可以满足数据传输的需求,保证相关通信业务顺利的进行。
本公开具体实施例中,在图2所示的协议栈下,可选的,上述接口信息可以包括如下至少一项:
外部设备通信协议的MAC PDU作为第一网络协议的PDCP SDU进行数据收发;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第一网络协议的数据无线承载(Data Radio Bearer,DRB)标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第一网络协议的进化包系统(Evolved Packet System,EPS)承载标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第一网络协议的PDCP实体标识。
其中,第一网络协议可以理解为4G LTE协议,第一网络协议栈可以理解为4G LTE协议栈。如图2所示,第一网络协议栈可以包括PDCP层、RLC层、MAC层和PHY层;外部设备通信协议栈可以包括MAC层和PHY层;而外部设备通信协议栈的MAC层实体可以与第一网络协议栈的PDCP层实体进行交互,即通过第一网络协议栈的PDCP层实体进行数据收发。
进一步的结合图2所示,上述步骤102可以包括:
外部设备通信协议栈的MAC层实体将MAC PDU发送给第一网络协议栈的PDCP层实体,作为第一网络协议栈的PDCP层实体的PDCP SDU;
和/或,外部设备通信协议栈的MAC层实体接收第一网络协议栈的PDCP层实体发送的PDCP SDU,作为外部设备通信协议栈的MAC层实体的MAC PDU。
这样,可以实现外部设备的MAC PDU通过第一网络协议栈发送。
例如结合图2所示,若第一网络协议栈为LTE协议栈,通过LTE协议栈发送数据的过程可为:
S1:外部设备通信协议栈的PHY层实体将PHY SDU发送给外部设备通信协议栈的MAC层实体,作为外部设备通信协议栈的MAC层实体的MAC PDU;
S2:外部设备通信协议栈的MAC层实体将MAC PDU发送给LTE协议栈的PDCP层实体,作为LTE协议栈的PDCP层实体的PDCP SDU。
而通过LTE协议栈接收数据的过程可为:
S1:外部设备通信协议栈的MAC层实体接收LTE协议栈的PDCP层实体发送的PDCP SDU,作为外部设备通信协议栈的MAC层实体的MAC PDU;
S2:外部设备通信协议栈的MAC层实体将MAC PDU发送给外部设备通信协议栈的PHY层实体,作为外部设备通信协议栈的PHY层实体的PHY SDU。
本公开具体实施例中,在图3所示的协议栈下,可选的,上述接口信息可以包括如下至少一项:
外部设备通信协议的PHY SDU,或MAC PDU作为第一网络协议的PDCP SDU进行数据收发;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第一网络协议的DRB标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第一网络协议的EPS承载标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第一网络协议的PDCP实体标识。
其中,第一网络协议可以理解为4G LTE协议,第一网络协议栈可以理解为4G LTE协议栈。如图3所示,第一网络协议栈可以包括PDCP层、RLC层、MAC层和PHY层;外部设备通信协议栈可以包括MAC层和PHY层;而外部设备通信协议栈的PHY层实体可以与第一网络协议栈的PDCP层实体进行交互,即通过第一网络协议栈的PDCP层实体进行数据收发。
进一步的结合图3所示,上述步骤102可以包括:
外部设备通信协议栈的PHY层实体将PHY SDU,或MAC PDU发送给第一网络协议栈的PDCP层实体,作为第一网络协议栈的PDCP层实体的PDCP SDU;
和/或,外部设备通信协议栈的PHY层实体接收第一网络协议栈的PDCP层实体发送的PDCP SDU,作为外部设备通信协议栈的PHY层实体的PHY SDU,或MAC PDU。
这样,可以实现外部设备的PHY SDU通过第一网络协议栈发送。
例如结合图3所示,若第一网络协议栈为LTE协议栈,通过LTE协议栈发送数据的过程可为:
外部设备通信协议栈的PHY层实体将PHY SDU,或MAC PDU发送给LTE协议栈的PDCP层实体,作为LTE协议栈的PDCP层实体的PDCP SDU。
而通过LTE协议栈接收数据的过程可为:
外部设备通信协议栈的PHY层实体接收LTE协议栈的PDCP层实体发送的PDCP SDU,作为外部设备通信协议栈的PHY层实体的PHY SDU,或MAC PDU。
本公开具体实施例中,在图4所示的协议栈下,可选的,上述接口信息可以包括如下至少一项:
外部设备通信协议的MAC PDU作为第二网络协议的SDAP SDU进行数据收发;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第二网络协议的DRB标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第二网络协议的PDU会话标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第二网络协议的服务质量(Quality of Service,QoS)流标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第二网络协议的SDAP实体标识。
其中,第二网络协议可以理解为5G NR协议,第二网络协议栈可以理解为5G NR协议栈。如图4所示,第二网络协议栈可以包括SDAP层、PDCP层、RLC层、MAC层和PHY层;外部设备通信协议栈可以包括MAC层和PHY层;而外部设备通信协议栈的MAC层实体可以与第二网络协议栈的SDAP层实体进行交互,即通过第二网络协议栈的SDAP层实体进行数据收发。
进一步的结合图4所示,上述步骤102可以包括:
外部设备通信协议栈的MAC层实体将MAC PDU发送给第二网络协议栈的SDAP层实体,作为第二网络协议栈的SDAP层实体的SDAP SDU;
和/或,外部设备通信协议栈的MAC层实体接收第二网络协议栈的SDAP层实体发送的SDAP SDU,作为外部设备通信协议栈的MAC层实体的MAC PDU。
这样,可以实现外部设备的MAC PDU通过第二网络协议栈发送。
例如结合图4所示,若第二网络协议栈为NR协议栈,通过NR协议栈发送数据的过程可为:
S1:外部设备通信协议栈的PHY层实体将PHY SDU发送给外部设备通信协议栈的MAC层实体,作为外部设备通信协议栈的MAC层实体的MAC  PDU;
S2:外部设备通信协议栈的MAC层实体将MAC PDU发送给NR协议栈的SDAP层实体,作为NR协议栈的SDAP层实体的SDAP SDU。
而通过NR协议栈接收数据的过程可为:
S1:外部设备通信协议栈的MAC层实体接收NR协议栈的SDAP层实体发送的SDAP SDU,作为外部设备通信协议栈的MAC层实体的MAC PDU;
S2:外部设备通信协议栈的MAC层实体将MAC PDU发送给外部设备通信协议栈的PHY层实体,作为外部设备通信协议栈的PHY层实体的PHY SDU。
本公开具体实施例中,在图5所示的协议栈下,可选的,上述接口信息可以包括如下至少一项:
外部设备通信协议的PHY SDU,或MAC PDU作为第二网络协议的SDAP SDU进行数据收发;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第二网络协议的DRB标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第二网络协议的PDU会话标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第二网络协议的QoS流标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第二网络协议的SDAP实体标识。
其中,第二网络协议可以理解为5G NR协议,第二网络协议栈可以理解为5G NR协议栈。如图5所示,第二网络协议栈可以包括SDAP层、PDCP层、RLC层、MAC层和PHY层;外部设备通信协议栈可以包括MAC层和PHY层;而外部设备通信协议栈的PHY层实体可以与第二网络协议栈的SDAP层实体进行交互,即通过第二网络协议栈的SDAP层实体进行数据收发。
进一步的结合图5所示,上述步骤102可以包括:
外部设备通信协议栈的PHY层实体将PHY SDU,或MAC PDU发送给 第二网络协议栈的SDAP层实体,作为第二网络协议栈的SDAP层实体的SDAP SDU;
和/或,外部设备通信协议栈的PHY层实体接收第二网络协议栈的SDAP层实体发送的SDAP SDU,作为外部设备通信协议栈的PHY层实体的PHY SDU,或MAC PDU。
这样,可以实现外部设备的PHY SDU通过第二网络协议栈发送。
例如结合图5所示,若第二网络协议栈为NR协议栈,通过NR协议栈发送数据的过程可为:
外部设备通信协议栈的PHY层实体将PHY SDU,或MAC PDU发送给NR协议栈的SDAP层实体,作为NR协议栈的SDAP层实体的SDAP SDU。
而通过NR协议栈接收数据的过程可为:
外部设备通信协议栈的PHY层实体接收NR协议栈的SDAP层实体发送的SDAP SDU,作为外部设备通信协议栈的PHY层实体的PHY SDU,或MAC PDU。
本公开具体实施例中,在图6所示的协议栈下,可选的,上述接口信息可以包括如下至少一项:
外部设备通信协议的IP PDU作为第一网络协议的PDCP SDU进行数据收发;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第一网络协议的DRB标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第一网络协议的EPS承载标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第一网络协议的PDCP实体标识。
其中,第一网络协议可以理解为4G LTE协议,第一网络协议栈可以理解为4G LTE协议栈。如图6所示,第一网络协议栈可以包括PDCP层、RLC层、MAC层和PHY层;外部设备通信协议栈可以包括IP层、头压缩(Robust Header Compression,ROHC)层、MAC层和PHY层,即在IP层和MAC层之间引入ROHC层;而外部设备通信协议栈的IP层实体可以与第一网络协议 栈的PDCP层实体进行交互,即通过第一网络协议栈的PDCP层实体进行数据收发。
进一步的结合图6所示,上述步骤102可以包括:
外部设备通信协议栈的IP层实体将IP PDU发送给第一网络协议栈的PDCP层实体,作为第一网络协议栈的PDCP层实体的PDCP SDU;
和/或,外部设备通信协议栈的IP层实体接收第一网络协议栈的PDCP层实体发送的PDCP SDU,作为外部设备通信协议栈的IP层实体的IP PDU。
这样,可以实现外部设备的IP PDU通过第一网络协议栈发送;而在IP层和MAC层之间引入ROHC层,可以实现将ROHC层实体压缩或解压缩后的数据包通过3GPP网络的空口协议栈进行传输。
例如结合图6所示,若第一网络协议栈为LTE协议栈,通过LTE协议栈发送数据的过程可为:
S1:外部设备通信协议栈的PHY层实体将PHY SDU发送给外部设备通信协议栈的MAC层实体,作为外部设备通信协议栈的MAC层实体的MAC PDU;
S2:外部设备通信协议栈的MAC层实体将MAC SDU发送给外部设备通信协议栈的ROHC层实体,作为外部设备通信协议栈的ROHC层实体的ROHC PDU;
S3:外部设备通信协议栈的ROHC层实体将ROHC SDU发送给外部设备通信协议栈的IP层实体,作为外部设备通信协议栈的IP层实体的IP PDU;
S4:外部设备通信协议栈的IP层实体将IP PDU发送给LTE协议栈的PDCP层实体,作为LTE协议栈的PDCP层实体的PDCP SDU。
而通过LTE协议栈接收数据的过程可为:
S1:外部设备通信协议栈的IP层实体接收LTE协议栈的PDCP层实体发送的PDCP SDU,作为外部设备通信协议栈的IP层实体的IP PDU;
S2:外部设备通信协议栈的IP层实体将IP PDU发送给外部设备通信协议栈的ROHC层实体,作为外部设备通信协议栈的ROHC层实体的ROHC SDU;
S3:外部设备通信协议栈的ROHC层实体将ROHC PDU发送给外部设 备通信协议栈的MAC层实体,作为外部设备通信协议栈的MAC层实体的MAC SDU。
本公开具体实施例中,在图7所示的协议栈下,可选的,上述接口信息可以包括如下至少一项:
外部设备通信协议的ROHC SDU,或IP PDU作为第一网络协议的PDCP SDU进行数据收发;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第一网络协议的DRB标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第一网络协议的EPS承载标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第一网络协议的PDCP实体标识。
其中,第一网络协议可以理解为4G LTE协议,第一网络协议栈可以理解为4G LTE协议栈。如图7所示,第一网络协议栈可以包括PDCP层、RLC层、MAC层和PHY层;外部设备通信协议栈可以包括IP层、ROHC层、MAC层和PHY层,即在IP层和MAC层之间ROHC层;而外部设备通信协议栈的ROHC层实体可以与第一网络协议栈的PDCP层实体进行交互,即通过第一网络协议栈的PDCP层实体进行数据收发。
进一步的结合图6所示,上述步骤102可以包括:
外部设备通信协议栈的ROHC层实体将ROHC SDU,或IP PDU发送给第一网络协议栈的PDCP层实体,作为第一网络协议栈的PDCP层实体的PDCP SDU;
和/或,外部设备通信协议栈的ROHC层实体接收第一网络协议栈的PDCP层实体发送的PDCP SDU,作为外部设备通信协议栈的ROHC层实体的ROHC SDU,或IP PDU。
这样,可以实现外部设备的ROHC SDU通过第一网络协议栈发送。
例如结合图7所示,若第一网络协议栈为LTE协议栈,通过LTE协议栈发送数据的过程可为:
S1:外部设备通信协议栈的PHY层实体将PHY SDU发送给外部设备通 信协议栈的MAC层实体,作为外部设备通信协议栈的MAC层实体的MAC PDU;
S2:外部设备通信协议栈的MAC层实体将MAC SDU发送给外部设备通信协议栈的ROHC层实体,作为外部设备通信协议栈的ROHC层实体的ROHC PDU;
S3:外部设备通信协议栈的ROHC层实体将ROHC SDU,或IP PDU发送给LTE协议栈的PDCP层实体,作为LTE协议栈的PDCP层实体的PDCP SDU。
而通过LTE协议栈接收数据的过程可为:
S1:外部设备通信协议栈的ROHC层实体接收LTE协议栈的PDCP层实体发送的PDCP SDU,作为外部设备通信协议栈的ROHC层实体的ROHC SDU,或IP PDU;
S2:外部设备通信协议栈的ROHC层实体将ROHC PDU发送给外部设备通信协议栈的MAC层实体,作为外部设备通信协议栈的MAC层实体的MAC SDU。
本公开具体实施例中,在图8所示的协议栈下,可选的,上述接口信息可以包括如下至少一项:
外部设备通信协议的IP PDU作为第二网络协议的SDAP SDU进行数据收发;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第二网络协议的DRB标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第二网络协议的PDU会话标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第二网络协议的QoS流标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第二网络协议的SDAP实体标识。
其中,第二网络协议可以理解为5G NR协议,第二网络协议栈可以理解为5G NR协议栈。如图8所示,第二网络协议栈可以包括SDAP层、PDCP 层、RLC层、MAC层和PHY层;外部设备通信协议栈可以包括IP层、ROHC层、MAC层和PHY层,即在IP层和MAC层之间ROHC层;而外部设备通信协议栈的IP层实体可以与第二网络协议栈的SDAP层实体进行交互,即通过第二网络协议栈的SDAP层实体进行数据收发。
进一步的结合图8所示,上述步骤102可以包括:
外部设备通信协议栈的IP层实体将IP PDU发送给第二网络协议栈的SDAP层实体,作为第二网络协议栈的SDAP层实体的SDAP SDU;
和/或,外部设备通信协议栈的IP层实体接收第二网络协议栈的SDAP层实体发送的SDAP SDU,作为外部设备通信协议栈的IP层实体的IP PDU。
这样,可以实现外部设备的IP PDU通过第二网络协议栈发送。
例如结合图8所示,若第二网络协议栈为NR协议栈,通过NR协议栈发送数据的过程可为:
S1:外部设备通信协议栈的PHY层实体将PHY SDU发送给外部设备通信协议栈的MAC层实体,作为外部设备通信协议栈的MAC层实体的MAC PDU;
S2:外部设备通信协议栈的MAC层实体将MAC SDU发送给外部设备通信协议栈的ROHC层实体,作为外部设备通信协议栈的ROHC层实体的ROHC PDU;
S3:外部设备通信协议栈的ROHC层实体将ROHC SDU发送给外部设备通信协议栈的IP层实体,作为外部设备通信协议栈的IP层实体的IP PDU;
S4:外部设备通信协议栈的IP层实体将IP PDU发送给NR协议栈的SDAP层实体,作为NR协议栈的SDAP层实体的SDAP SDU。
而通过NR协议栈接收数据的过程可为:
S1:外部设备通信协议栈的IP层实体接收NR协议栈的PDCP层实体发送的SDAP SDU,作为外部设备通信协议栈的IP层实体的IP PDU;
S2:外部设备通信协议栈的IP层实体将IP PDU发送给外部设备通信协议栈的ROHC层实体,作为外部设备通信协议栈的ROHC层实体的ROHC SDU;
S3:外部设备通信协议栈的ROHC层实体将ROHC PDU发送给外部设 备通信协议栈的MAC层实体,作为外部设备通信协议栈的MAC层实体的MAC SDU。
本公开具体实施例中,在图9所示的协议栈下,可选的,上述接口信息可以包括如下至少一项:
外部设备通信协议的ROHC SDU,或IP PDU作为第二网络协议的SDAP SDU进行数据收发;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第二网络协议的DRB标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第二网络协议的PDU会话标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第二网络协议的QoS流标识;
外部设备通信协议的数据(比如,全部数据)或数据流(比如,部分数据)对应的第二网络协议的SDAP实体标识。
其中,第二网络协议可以理解为5G NR协议,第二网络协议栈可以理解为5G NR协议栈。如图9所示,第二网络协议栈可以包括SDAP层、PDCP层、RLC层、MAC层和PHY层;外部设备通信协议栈可以包括IP层、ROHC层、MAC层和PHY层,即在IP层和MAC层之间ROHC层;而外部设备通信协议栈的ROHC层实体可以与第二网络协议栈的SDAP层实体进行交互,即通过第二网络协议栈的SDAP层实体进行数据收发。
进一步的结合图9所示,上述步骤102可以包括:
外部设备通信协议栈的ROHC层实体将ROHC SDU,或IP PDU发送给第二网络协议栈的SDAP层实体,作为第二网络协议栈的SDAP层实体的SDAP SDU;
和/或,外部设备通信协议栈的ROHC层实体接收第二网络协议栈的SDAP层实体发送的SDAP SDU,作为外部设备通信协议栈的ROHC层实体的ROHC SDU,或IP PDU。
这样,可以实现外部设备的ROHC SDU通过第二网络协议栈发送。
例如结合图9所示,若第二网络协议栈为NR协议栈,通过NR协议栈 发送数据的过程可为:
外部设备通信协议栈的ROHC层实体将ROHC SDU,或IP PDU发送给NR协议栈的SDAP层实体,作为NR协议栈的SDAP层实体的SDAP SDU。
而通过NR协议栈接收数据的过程可为:
外部设备通信协议栈的ROHC层实体接收NR协议栈的SDAP层实体发送的SDAP SDU,作为外部设备通信协议栈的ROHC层实体的ROHC SDU,或IP PDU。
上述实施例对本公开的数据传输方法进行了说明,下面将结合实施例和附图对本公开的终端设备进行说明。
参见图10所示,本公开实施例还提供了一种终端设备110,包括:
获取模块111,用于获取外部设备通信协议与3GPP网络协议的接口信息;
第二协议实体112,所述第二协议实体为所述终端设备的3GPP网络的空口协议栈对应的协议实体;
第一协议实体113,所述第一协议实体为所述终端设备的外部设备通信协议栈对应的协议实体,用于根据所述接口信息,通过所述第二协议实体进行数据收发。
本公开实施例中,根据获取的外部设备通信协议与3GPP网络协议的接口信息,终端设备的外部设备通信协议栈的第一协议实体通过3GPP网络的空口协议栈的第二协议实体进行数据收发,可以实现外部设备通信协议栈与3GPP网络的空口协议栈之间的交互,从而当WiFi、蓝牙或有线局域网等的网络节点通过终端设备的3GPP网络与其他网络节点进行通信时,可以满足数据传输的需求,保证相关通信业务顺利的进行。
本公开实施例中,可选的,所述外部设备通信协议包括如下任意一项:
WiFi通信协议;
蓝牙协议;
有线局域网通信协议。
可选的,所述接口信息包括如下至少一项:
外部设备通信协议的MAC PDU作为第一网络协议的PDCP SDU进行数据收发;
外部设备通信协议的数据或数据流对应的第一网络协议的DRB标识;
外部设备通信协议的数据或数据流对应的第一网络协议的EPS承载标识;
外部设备通信协议的数据或数据流对应的第一网络协议的PDCP实体标识。
进一步的,所述第一协议实体113为外部设备通信协议栈的MAC层实体,所述第二协议实体112为第一网络协议栈的PDCP层实体;所述第一协议实体113可用于:
将MAC PDU发送给第一网络协议栈的PDCP层实体;
和/或,接收第一网络协议栈的PDCP层实体发送的PDCP SDU。
可选的,所述接口信息包括如下至少一项:
外部设备通信协议的PHY SDU,或MAC PDU作为第一网络协议的PDCP SDU进行数据收发;
外部设备通信协议的数据或数据流对应的第一网络协议的DRB标识;
外部设备通信协议的数据或数据流对应的第一网络协议的EPS承载标识;
外部设备通信协议的数据或数据流对应的第一网络协议的PDCP实体标识。
进一步的,所述第一协议实体113为外部设备通信协议栈的PHY层实体,所述第二协议实体112为第一网络协议栈的PDCP层实体;所述第一协议实体113可用于:
将PHY SDU,或MAC PDU发送给第一网络协议栈的PDCP层实体;
和/或,接收第一网络协议栈的PDCP层实体发送的PDCP SDU。
可选的,所述接口信息包括如下至少一项:
外部设备通信协议的MAC PDU作为第二网络协议的SDAP SDU进行数据收发;
外部设备通信协议的数据或数据流对应的第二网络协议的DRB标识;
外部设备通信协议的数据或数据流对应的第二网络协议的PDU会话标识;
外部设备通信协议的数据或数据流对应的第二网络协议的QoS流标识;
外部设备通信协议的数据或数据流对应的第二网络协议的SDAP实体标 识。
进一步的,所述第一协议实体113为外部设备通信协议栈的MAC层实体,所述第二协议实体112为第二网络协议栈的SDAP层实体;所述第一协议实体113可用于:
将MAC PDU发送给第二网络协议栈的SDAP层实体;
和/或,接收第二网络协议栈的SDAP层实体发送的SDAP SDU。
可选的,所述接口信息包括如下至少一项:
外部设备通信协议的PHY SDU,或MAC PDU作为第二网络协议的SDAP SDU进行数据收发;
外部设备通信协议的数据或数据流对应的第二网络协议的DRB标识;
外部设备通信协议的数据或数据流对应的第二网络协议的PDU会话标识;
外部设备通信协议的数据或数据流对应的第二网络协议的QoS流标识;
外部设备通信协议的数据或数据流对应的第二网络协议的SDAP实体标识。
进一步的,所述第一协议实体113为外部设备通信协议栈的PHY层实体,所述第二协议实体112为第二网络协议栈的SDAP层实体;所述第一协议实体113可用于:
将PHY SDU,或MAC PDU发送给第二网络协议栈的SDAP层实体;
和/或,接收第二网络协议栈的SDAP层实体发送的SDAP SDU。
可选的,所述接口信息包括如下至少一项:
外部设备通信协议的IP PDU作为第一网络协议的PDCP SDU进行数据收发;
外部设备通信协议的数据或数据流对应的第一网络协议的DRB标识;
外部设备通信协议的数据或数据流对应的第一网络协议的EPS承载标识;
外部设备通信协议的数据或数据流对应的第一网络协议的PDCP实体标识。
进一步的,所述第一协议实体113为外部设备通信协议栈的IP层实体,所述第二协议实体112为第一网络协议栈的PDCP层实体;所述第一协议实 体113可用于:
将IP PDU发送给第一网络协议栈的PDCP层实体;
和/或,接收第一网络协议栈的PDCP层实体发送的PDCP SDU。
可选的,所述接口信息包括如下至少一项:
外部设备通信协议的ROHC SDU,或IP PDU作为第一网络协议的PDCP SDU进行数据收发;
外部设备通信协议的数据或数据流对应的第一网络协议的DRB标识;
外部设备通信协议的数据或数据流对应的第一网络协议的EPS承载标识;
外部设备通信协议的数据或数据流对应的第一网络协议的PDCP实体标识。
进一步的,所述第一协议实体113为外部设备通信协议栈的ROHC层实体,所述第二协议实体112为第一网络协议栈的PDCP层实体;所述第一协议实体113可用于:
将ROHC SDU,或IP PDU发送给第一网络协议栈的PDCP层实体;
和/或,接收第一网络协议栈的PDCP层实体发送的PDCP SDU。
可选的,所述接口信息包括如下至少一项:
外部设备通信协议的IP PDU作为第二网络协议的SDAP SDU进行数据收发;
外部设备通信协议的数据或数据流对应的第二网络协议的DRB标识;
外部设备通信协议的数据或数据流对应的第二网络协议的PDU会话标识;
外部设备通信协议的数据或数据流对应的第二网络协议的QoS流标识;
外部设备通信协议的数据或数据流对应的第二网络协议的SDAP实体标识。
进一步的,所述第一协议实体113为外部设备通信协议栈的IP层实体,所述第二协议实体112为第二网络协议栈的SDAP层实体;所述第一协议实体113可用于:
将IP PDU发送给第二网络协议栈的SDAP层实体;
和/或,接收第二网络协议栈的SDAP层实体发送的SDAP SDU。
可选的,所述接口信息包括如下至少一项:
外部设备通信协议的ROHC SDU,或IP PDU作为第二网络协议的SDAP SDU进行数据收发;
外部设备通信协议的数据或数据流对应的第二网络协议的DRB标识;
外部设备通信协议的数据或数据流对应的第二网络协议的PDU会话标识;
外部设备通信协议的数据或数据流对应的第二网络协议的QoS流标识;
外部设备通信协议的数据或数据流对应的第二网络协议的SDAP实体标识。
进一步的,所述第一协议实体113为外部设备通信协议栈的ROHC层实体,所述第二协议实体112为第二网络协议栈的SDAP层实体;所述第一协议实体113可用于:
将ROHC SDU,或IP PDU发送给第二网络协议栈的SDAP层实体;和/或
接收第二网络协议栈的SDAP层实体发送的SDAP SDU。
本公开实施例还提供一种终端设备,包括处理器,存储器,存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时实现上述数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体的,图11为实现本公开各个实施例的一种终端设备的硬件结构示意图,终端设备1100包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109、处理器1110、以及电源1111等部件。本领域技术人员可以理解,图11中示出的终端结构并不构成对终端的限定,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端设备包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
在本公开实施例中,终端设备1100还可包括外部设备通信协议栈和3GPP网络的空口协议栈,借助外部设备通信协议可实现终端设备1100与外部设备 部之间的通信。
其中,处理器1110,用于获取外部设备通信协议与3GPP网络协议的接口信息,根据所述接口信息,控制外部设备通信协议栈的第一协议实体通过3GPP网络的空口协议栈的第二协议实体进行数据收发。
本公开实施例的终端设备1100,可以实现外部设备通信协议栈与3GPP网络的空口协议栈之间的交互,从而当WiFi、蓝牙或有线局域网等的网络节点通过终端设备的3GPP网络与其他网络节点进行通信时,可以满足数据传输的需求,保证相关通信业务顺利的进行。
应理解的是,本公开实施例中,射频单元1101可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1110处理;另外,将上行的数据发送给基站。通常,射频单元1101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元1101还可以通过无线通信系统与网络和其他设备通信。
终端设备通过网络模块1102为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元1103可以将射频单元1101或网络模块1102接收的或者在存储器1109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元1103还可以提供与终端设备1100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元1103包括扬声器、蜂鸣器以及受话器等。
输入单元1104用于接收音频或视频信号。输入单元1104可以包括图形处理器(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元1106上。经图形处理器11041处理后的图像帧可以存储在存储器1109(或其它存储介质)中或者经由射频单元1101或网络模块1102进行发送。麦克风11042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元1101发送到移动通信基站的格式输出。
终端设备1100还包括至少一种传感器1105,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板11061的亮度,接近传感器可在终端设备1100移动到耳边时,关闭显示面板11061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器1105还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元1106用于显示由用户输入的信息或提供给用户的信息。显示单元1106可包括显示面板11061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板11061。
用户输入单元1107可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元1107包括触控面板11071以及其他输入设备11072。触控面板11071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板11071上或在触控面板11071附近的操作)。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1110,接收处理器1110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板11071。除了触控面板11071,用户输入单元1107还可以包括其他输入设备11072。具体地,其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板11071可覆盖在显示面板11061上,当触控面板11071检测到在其上或附近的触摸操作后,传送给处理器1110以确定触摸事件的类 型,随后处理器1110根据触摸事件的类型在显示面板11061上提供相应的视觉输出。虽然在图11中,触控面板11071与显示面板11061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板11071与显示面板11061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元1108为外部装置与终端设备1100连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(Input/Output,I/O)端口、视频I/O端口、耳机端口等等。接口单元1108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端设备1100内的一个或多个元件或者可以用于在终端设备1100和外部装置之间传输数据。
存储器1109可用于存储软件程序以及各种数据。存储器1109可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1110是终端设备的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器1109内的软件程序和/或模块,以及调用存储在存储器1109内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1110可包括一个或多个处理单元;可选的,处理器1110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
终端设备1100还可以包括给各个部件供电的电源1111(比如电池),可选的,电源1111可以通过电源管理系统与处理器1110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端设备1100还可包括一些未示出的功能模块,在此不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,该计算机可读存储介质,例如为只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例 如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计 算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、ROM或RAM等。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (14)

  1. 一种数据传输方法,应用于终端设备,包括:
    获取外部设备通信协议与第三代合作组织项目3GPP网络协议的接口信息;
    根据所述接口信息,外部设备通信协议栈的第一协议实体通过3GPP网络的空口协议栈的第二协议实体进行数据收发。
  2. 根据权利要求1所述的方法,其中,所述外部设备通信协议包括如下任意一项:
    无线保真WiFi通信协议;
    蓝牙协议;
    有线局域网通信协议。
  3. 根据权利要求1或2所述的方法,其中,所述接口信息包括如下至少一项:
    外部设备通信协议的媒体接入控制MAC协议数据单元PDU作为第一网络协议的包数据汇聚协议PDCP服务数据单元SDU进行数据收发;
    外部设备通信协议的数据或数据流对应的第一网络协议的数据无线承载DRB标识;
    外部设备通信协议的数据或数据流对应的第一网络协议的进化包系统EPS承载标识;
    外部设备通信协议的数据或数据流对应的第一网络协议的PDCP实体标识;
    所述根据所述接口信息,外部设备通信协议栈的第一协议实体通过3GPP网络的空口协议栈的第二协议实体进行数据收发,包括:
    所述外部设备通信协议栈的MAC层实体将MAC PDU发送给第一网络协议栈的PDCP层实体;和/或
    所述外部设备通信协议栈的MAC层实体接收第一网络协议栈的PDCP层实体发送的PDCP SDU。
  4. 根据权利要求1或2所述的方法,其中,所述接口信息包括如下至少 一项:
    外部设备通信协议的物理层PHY SDU,或MAC PDU作为第一网络协议的PDCP SDU进行数据收发;
    外部设备通信协议的数据或数据流对应的第一网络协议的DRB标识;
    外部设备通信协议的数据或数据流对应的第一网络协议的EPS承载标识;
    外部设备通信协议的数据或数据流对应的第一网络协议的PDCP实体标识;
    所述根据所述接口信息,外部设备通信协议栈的第一协议实体通过3GPP网络的空口协议栈的第二协议实体进行数据收发,包括:
    所述外部设备通信协议栈的PHY层实体将PHY SDU,或MAC PDU发送给第一网络协议栈的PDCP层实体;和/或
    所述外部设备通信协议栈的PHY层实体接收第一网络协议栈的PDCP层实体发送的PDCP SDU。
  5. 根据权利要求1或2所述的方法,其中,所述接口信息包括如下至少一项:
    外部设备通信协议的MAC PDU作为第二网络协议的服务数据适配协议SDAP SDU进行数据收发;
    外部设备通信协议的数据或数据流对应的第二网络协议的DRB标识;
    外部设备通信协议的数据或数据流对应的第二网络协议的PDU会话标识;
    外部设备通信协议的数据或数据流对应的第二网络协议的服务质量QoS流标识;
    外部设备通信协议的数据或数据流对应的第二网络协议的SDAP实体标识;
    所述根据所述接口信息,外部设备通信协议栈的第一协议实体通过3GPP网络的空口协议栈的第二协议实体进行数据收发,包括:
    所述外部设备通信协议栈的MAC层实体将MAC PDU发送给第二网络协议栈的SDAP层实体;和/或
    所述外部设备通信协议栈的MAC层实体接收第二网络协议栈的SDAP 层实体发送的SDAP SDU。
  6. 根据权利要求1或2所述的方法,其中,所述接口信息包括如下至少一项:
    外部设备通信协议的PHY SDU,或MAC PDU作为第二网络协议的SDAP SDU进行数据收发;
    外部设备通信协议的数据或数据流对应的第二网络协议的DRB标识;
    外部设备通信协议的数据或数据流对应的第二网络协议的PDU会话标识;
    外部设备通信协议的数据或数据流对应的第二网络协议的QoS流标识;
    外部设备通信协议的数据或数据流对应的第二网络协议的SDAP实体标识;
    所述根据所述接口信息,外部设备通信协议栈的第一协议实体通过3GPP网络的空口协议栈的第二协议实体进行数据收发,包括:
    所述外部设备通信协议栈的PHY层实体将PHY SDU,或MAC PDU发送给第二网络协议栈的SDAP层实体;和/或
    所述外部设备通信协议栈的PHY层实体接收第二网络协议栈的SDAP层实体发送的SDAP SDU。
  7. 根据权利要求1或2所述的方法,其中,所述接口信息包括如下至少一项:
    外部设备通信协议的互联网协议IP PDU作为第一网络协议的PDCP SDU进行数据收发;
    外部设备通信协议的数据或数据流对应的第一网络协议的DRB标识;
    外部设备通信协议的数据或数据流对应的第一网络协议的EPS承载标识;
    外部设备通信协议的数据或数据流对应的第一网络协议的PDCP实体标识;
    所述根据所述接口信息,外部设备通信协议栈的第一协议实体通过3GPP网络的空口协议栈的第二协议实体进行数据收发,包括:
    所述外部设备通信协议栈的IP层实体将IP PDU发送给第一网络协议栈的PDCP层实体;和/或
    所述外部设备通信协议栈的IP层实体接收第一网络协议栈的PDCP层实体发送的PDCP SDU。
  8. 根据权利要求1或2所述的方法,其中,所述接口信息包括如下至少一项:
    外部设备通信协议的头压缩ROHC SDU,或IP PDU作为第一网络协议的PDCP SDU进行数据收发;
    外部设备通信协议的数据或数据流对应的第一网络协议的DRB标识;
    外部设备通信协议的数据或数据流对应的第一网络协议的EPS承载标识;
    外部设备通信协议的数据或数据流对应的第一网络协议的PDCP实体标识;
    所述根据所述接口信息,外部设备通信协议栈的第一协议实体通过3GPP网络的空口协议栈的第二协议实体进行数据收发,包括:
    所述外部设备通信协议栈的ROHC层实体将ROHC SDU,或IP PDU发送给第一网络协议栈的PDCP层实体;和/或
    所述外部设备通信协议栈的ROHC层实体接收第一网络协议栈的PDCP层实体发送的PDCP SDU。
  9. 根据权利要求1或2所述的方法,其中,所述接口信息包括如下至少一项:
    外部设备通信协议的IP PDU作为第二网络协议的SDAP SDU进行数据收发;
    外部设备通信协议的数据或数据流对应的第二网络协议的DRB标识;
    外部设备通信协议的数据或数据流对应的第二网络协议的PDU会话标识;
    外部设备通信协议的数据或数据流对应的第二网络协议的QoS流标识;
    外部设备通信协议的数据或数据流对应的第二网络协议的SDAP实体标识;
    所述根据所述接口信息,外部设备通信协议栈的第一协议实体通过3GPP网络的空口协议栈的第二协议实体进行数据收发,包括:
    所述外部设备通信协议栈的IP层实体将IP PDU发送给第二网络协议栈 的SDAP层实体;和/或
    所述外部设备通信协议栈的IP层实体接收第二网络协议栈的SDAP层实体发送的SDAP SDU。
  10. 根据权利要求1或2所述的方法,其中,所述接口信息包括如下至少一项:
    外部设备通信协议的ROHC SDU,或IP PDU作为第二网络协议的SDAP SDU进行数据收发;
    外部设备通信协议的数据或数据流对应的第二网络协议的DRB标识;
    外部设备通信协议的数据或数据流对应的第二网络协议的PDU会话标识;
    外部设备通信协议的数据或数据流对应的第二网络协议的QoS流标识;
    外部设备通信协议的数据或数据流对应的第二网络协议的SDAP实体标识;
    所述根据所述接口信息,外部设备通信协议栈的第一协议实体通过3GPP网络的空口协议栈的第二协议实体进行数据收发,包括:
    所述外部设备通信协议栈的ROHC层实体将ROHC SDU,或IP PDU发送给第二网络协议栈的SDAP层实体;和/或
    所述外部设备通信协议栈的ROHC层实体接收第二网络协议栈的SDAP层实体发送的SDAP SDU。
  11. 一种终端设备,包括:
    获取模块,用于获取外部设备通信协议与第三代合作组织项目3GPP网络协议的接口信息;
    第二协议实体,所述第二协议实体为所述终端设备的3GPP网络的空口协议栈对应的协议实体;
    第一协议实体,所述第一协议实体为所述终端设备的外部设备通信协议栈对应的协议实体,用于根据所述接口信息,通过所述第二协议实体进行数据收发。
  12. 根据权利要求11所述的终端设备,其中,所述外部设备通信协议包括如下任意一项:
    无线保真WiFi通信协议;
    蓝牙协议;
    有线局域网通信协议。
  13. 一种终端设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至10中任一项所述的数据传输方法的步骤。
  14. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的数据传输方法的步骤。
PCT/CN2019/105602 2018-09-21 2019-09-12 数据传输方法及终端设备 WO2020057430A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19862469.4A EP3855694A1 (en) 2018-09-21 2019-09-12 Data transmission method and terminal device
JP2021516457A JP7208367B2 (ja) 2018-09-21 2019-09-12 データ伝送方法および端末装置
KR1020217011822A KR102557147B1 (ko) 2018-09-21 2019-09-12 데이터 전송 방법 및 단말 기기
SG11202102835PA SG11202102835PA (en) 2018-09-21 2019-09-12 Data transmission method and terminal device
US17/205,996 US11910227B2 (en) 2018-09-21 2021-03-18 Data transmission method and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811109861.8 2018-09-21
CN201811109861.8A CN110943963B (zh) 2018-09-21 2018-09-21 数据传输方法及终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/205,996 Continuation US11910227B2 (en) 2018-09-21 2021-03-18 Data transmission method and terminal device

Publications (1)

Publication Number Publication Date
WO2020057430A1 true WO2020057430A1 (zh) 2020-03-26

Family

ID=69888319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105602 WO2020057430A1 (zh) 2018-09-21 2019-09-12 数据传输方法及终端设备

Country Status (7)

Country Link
US (1) US11910227B2 (zh)
EP (1) EP3855694A1 (zh)
JP (1) JP7208367B2 (zh)
KR (1) KR102557147B1 (zh)
CN (1) CN110943963B (zh)
SG (1) SG11202102835PA (zh)
WO (1) WO2020057430A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114125762A (zh) * 2020-08-28 2022-03-01 上海朗帛通信技术有限公司 一种副链路无线通信的方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107005884A (zh) * 2014-11-06 2017-08-01 诺基亚通信公司 用于ran‑wlan无线电聚合的接口功能
CN107950048A (zh) * 2015-04-10 2018-04-20 三星电子株式会社 用于在lte‑wlan聚合系统中将数据分组路由到用户设备的装置和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198241A (ja) * 2005-01-21 2006-08-03 Olympus Corp 医療機器制御装置
EP3133843B1 (en) 2014-04-13 2018-12-12 LG Electronics Inc. Proximity-based notification in a wireless communication system
KR102176428B1 (ko) * 2014-05-23 2020-11-09 삼성전자주식회사 무선 랜으로 미디어 전송 시 사용자 체감 서비스 품질을 높이는 방법 및 장치
US10536881B2 (en) * 2014-05-23 2020-01-14 Samsung Electronics Co., Ltd. Method and apparatus for improving quality of service that a user experiences when media is transmitted through WLAN
US9503842B2 (en) 2015-03-27 2016-11-22 Intel Corporation Techniques to support integrated bluetooth/3GPP radio access technologies
WO2018084646A1 (en) 2016-11-03 2018-05-11 Lg Electronics Inc. Method and apparatus for transmitting and receiving data in a wireless communication system
KR102621810B1 (ko) * 2017-01-16 2024-01-09 삼성전자주식회사 복수의 프로토콜을 이용한 통신 방법 및 그 전자 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107005884A (zh) * 2014-11-06 2017-08-01 诺基亚通信公司 用于ran‑wlan无线电聚合的接口功能
CN107950048A (zh) * 2015-04-10 2018-04-20 三星电子株式会社 用于在lte‑wlan聚合系统中将数据分组路由到用户设备的装置和方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "User plane aspects of LTE-WLAN aggregation", 3GPP TSG-RAN WG2 #91BIS TDOC R2-154766, 9 October 2015 (2015-10-09), XP051005246 *
HUAWEI: "Report of email discussion [96#57][LTE/FeD2D] - Adapter layer and bearer handling", 3GPP TSG-RAN WG2 MEETING #97 R2-1701133, 17 February 2017 (2017-02-17), XP051211844 *
See also references of EP3855694A4 *
VIVO: "Protocol architecture for I-IOT", 3GPP TSG-RAN WG2 MEETING #104 R2-1816939, 16 November 2018 (2018-11-16), XP051556501 *

Also Published As

Publication number Publication date
JP7208367B2 (ja) 2023-01-18
KR102557147B1 (ko) 2023-07-18
US11910227B2 (en) 2024-02-20
CN110943963B (zh) 2021-04-23
KR20210062059A (ko) 2021-05-28
EP3855694A4 (en) 2021-07-28
SG11202102835PA (en) 2021-04-29
CN110943963A (zh) 2020-03-31
JP2022500958A (ja) 2022-01-04
EP3855694A1 (en) 2021-07-28
US20210258819A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
WO2020063263A1 (zh) 旁链路的链路释放方法及终端
WO2020057418A1 (zh) 一种测量配置方法、设备及系统
JP7179087B2 (ja) Rrc接続再確立のベアラ設定方法、端末及びネットワーク機器
WO2021208815A1 (zh) 业务处理方法、用户设备及计算机可读存储介质
WO2021052419A1 (zh) 无线能力标识传输方法、终端设备和网络节点
WO2019141132A1 (zh) 业务处理方法及移动通信终端
CN110311751B (zh) 一种数据的发送方法及终端
WO2020001424A1 (zh) 载波聚合配置信息的处理方法和终端
WO2020020029A1 (zh) 密钥更新方法、终端及网络侧设备
US20230006711A1 (en) Audio transmission method and electronic device
WO2019184703A1 (zh) 接收方法、发送方法及通信设备
WO2019056959A1 (zh) 完整性保护方法、终端和基站
WO2019184763A1 (zh) 通信范围信息的处理方法及终端
WO2019242633A1 (zh) 测量间隔的处理方法、终端及网络节点
WO2021175244A1 (zh) 授权和策略参数配置方法、终端及网络功能
US11622296B2 (en) Data sending method and receiving method and user equipment
WO2020057430A1 (zh) 数据传输方法及终端设备
WO2020114382A1 (zh) 接入网络的控制方法及通信设备
WO2019137425A1 (zh) 重配置方法、终端及基站
WO2022152017A1 (zh) 信息传输方法、终端及网络设备
WO2021052435A1 (zh) 数据传输方法、终端及网络节点
WO2021027714A1 (zh) 数据传输方法、接收设备及发送设备
WO2020063282A1 (zh) 信息指示方法、指示接收方法、终端及网络侧设备
CN110839298B (zh) 一种移动性管理方法及相关设备
CN111800826B (zh) 一种rohc反馈处理方法及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516457

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217011822

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019862469

Country of ref document: EP

Effective date: 20210421