WO2020057297A1 - 一种漫反射装置及其制备方法、波长转换装置 - Google Patents

一种漫反射装置及其制备方法、波长转换装置 Download PDF

Info

Publication number
WO2020057297A1
WO2020057297A1 PCT/CN2019/100481 CN2019100481W WO2020057297A1 WO 2020057297 A1 WO2020057297 A1 WO 2020057297A1 CN 2019100481 W CN2019100481 W CN 2019100481W WO 2020057297 A1 WO2020057297 A1 WO 2020057297A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuse reflection
ceramic microspheres
layer
ceramic
particles
Prior art date
Application number
PCT/CN2019/100481
Other languages
English (en)
French (fr)
Inventor
陈雨叁
李乾
简帅
许颜正
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020057297A1 publication Critical patent/WO2020057297A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence

Definitions

  • the present invention relates to the field of lighting and projection display, and in particular to a diffuse reflection device, a method for manufacturing the same, and a wavelength conversion device.
  • a diffuse reflection device generally includes a diffuse reflection layer.
  • the diffuse reflection layer is a functional layer with low thermal conductivity.
  • the diffuse reflection layer is mainly composed of fine white diffuse reflection particles (such as titanium oxide or aluminum oxide).
  • Adhesive phase (silica gel or glass, etc.) is used for bonding, and the fine white titanium dioxide and other diffuse reflective particles and the adhesive phase have poor thermal conductivity, and it is difficult to increase the excitation power, thereby failing to improve brightness or luminous efficiency. ; Therefore, for a diffuse reflection layer, it needs not only higher reflectivity but also better thermal conductivity.
  • the reflectivity of the reflective layer it is mainly through increasing the content of diffusely reflecting particles or increasing the thickness of the reflective layer.
  • Increasing the content of diffusely reflecting particles in the diffuse reflection layer will inevitably require more binder phases to wet and cover the surface of the particles to form a continuous and compact reflecting layer; however, as the content of diffusely reflecting particles in the diffusely reflecting layer increases, the content of the binding phase must be
  • the formation of the reflective layer is reduced, and more pores are formed.
  • the looseness of the reflective layer is not conducive to its good adhesion to the heat dissipation substrate. At the same time, the loose structure is not conducive to the improvement of thermal conductivity.
  • the diffuse reflective layer is added.
  • Thickness although its reflectivity will be improved, but its thermal conductivity is bound to decrease. This is not conducive to improving the efficiency and brightness of the diffuse reflection device or the wavelength conversion device. Therefore, it is necessary to provide a diffuse reflection device to have a high reflectance at the same time as it has a good thermal conductivity.
  • the main purpose of the present invention is to provide a diffuse reflection device, which aims to solve the technical problem of low reflectance in the prior art.
  • the present invention provides a diffuse reflection device, which is characterized by comprising a stacked substrate and a diffuse reflection layer, wherein the diffuse reflection layer includes ceramic microspheres and covering the surface of the ceramic microspheres and / or filling the ceramic microspheres. Diffuse reflection particles and adhesives between the ball gaps;
  • the particle size of the ceramic microspheres is 0.1 mm to 0.5 mm, and the particle size of the diffuse reflection particles is 20 nm to 200 nm.
  • the ceramic microsphere is at least one of alumina, magnesia or boron nitride.
  • the diffuse reflection particles are at least one of barium sulfate, aluminum oxide, magnesium oxide, titanium oxide, or zirconia.
  • the adhesive is one of glass, water glass, silica gel, or resin.
  • the substrate is a metal substrate or a ceramic substrate.
  • the mass ratio of the diffuse reflection particles, the ceramic microspheres, and the adhesive is (0.6 to 10): (0.3 to 8): (1 to 5).
  • the ceramic microspheres are arranged in a single layer in the diffuse reflection layer.
  • the ceramic microspheres are tiled in a single layer in the diffuse reflection layer.
  • the thickness of the diffuse reflection layer is 0.1 mm to 0.5 mm.
  • a light emitting device including the diffuse reflection device according to any one of the above, further comprising a fluorescent layer provided on the diffuse reflection layer, the fluorescent layer It can emit excited light under the excitation of excitation light.
  • the third aspect of the present invention also provides a method for preparing a diffuse reflection device, which is characterized by including the following steps:
  • Raw materials are mixed and dispersed
  • step B Use silk screen or stencil screen printing to apply the paste obtained in step A to the substrate;
  • FIG. 1 is a schematic structural diagram of an embodiment of a diffuse reflection device according to the present invention.
  • FIG. 2 is a schematic structural diagram of another embodiment of a diffuse reflection device according to the present invention.
  • FIG. 3 is a schematic structural schematic diagram of an embodiment of a diffuse reflection device according to the present invention.
  • FIG. 4 is a schematic structural diagram of an embodiment of the ceramic microsphere tile according to the present invention.
  • FIG. 5 is a schematic structural diagram of an embodiment of ceramic microspheres closely packed in the present invention.
  • FIG. 6 is a schematic structural view of another embodiment of ceramic microspheres closely packed in the present invention.
  • FIG. 7 is a schematic structural view of still another embodiment of ceramic microspheres closely packed in the present invention.
  • FIG. 8 is a schematic structural diagram of a light emitting device according to the present invention.
  • FIG. 9 is a test chart of reflectance of the embodiment of the diffuse reflection device in the present invention.
  • FIG. 10 is a test chart of light emission intensity according to an embodiment of the light emitting device of the present invention.
  • a diffuse reflection device 100 provided by the present invention includes a stacked substrate 110 and a diffuse reflection layer 120.
  • the diffuse reflection layer 120 includes ceramic microspheres 121 and covers the surface of the ceramic microspheres. And / or filling the ceramic microsphere gap between the diffuse reflection particles 122 and an adhesive (not shown in the figure); wherein the particle diameter of the ceramic microspheres is 0.1 mm to 0.5 mm; the particle diameter of the diffuse reflection particles It is 20 nm to 200 nm.
  • the adhesive mainly plays the role of adhesion and packaging. And because the adhesive cannot be completely uniformly dispersed, when the adhesive aggregates, a certain amount of glass phase will be formed; the glass phase here refers to the part composed of an amorphous solid, which It exists between particles and plays an adhesive role; in general, it is mainly composed of an adhesive component.
  • the glass phase is generally transparent, and light can directly pass through the glass phase, thereby reducing the reflectivity of the reflective layer. Therefore, in order to improve the reflectivity of the reflective layer, it is necessary to shield the glass phase in the reflective layer as much as possible.
  • micron-sized ceramic microspheres in the diffuse reflection layer, other finer nanometer-scale diffuse reflection particles cover the surface of the ceramic microspheres and / or fill the gap between the alumina spheres; relatively dense ceramic microspheres are used
  • the main body of the network structure is formed, and the relatively uniform pores formed between the ceramic microspheres can be controlled relatively smaller, which can refine the pore structure of the diffuse reflection layer, which can effectively improve the diffuse reflection particle pair in the diffuse reflection layer.
  • the shielding effect of the surface of the pores and the glass phase further improves the reflectivity of the diffuse reflection device.
  • the size and shape of the diffuse reflection particles are different.
  • the micron-sized ceramic microspheres in the present invention make it easy to form a uniform network structure main body, and a relatively uniform pore structure is formed between the ceramic microspheres, and nano-level diffuse reflection particles are coated and / filled between the pores, It can form a denser stacked structure and improve the shielding effect on the glass phase; thereby improving the reflectivity of the diffuse reflection layer.
  • the particle sizes of the ceramic microspheres 121 are the same. It should be noted that “the particle size is the same” here means that the ceramic microspheres are selected according to the same particle size within the particle size range, and the ceramic microspheres in the same embodiment have the same particle size. Specifically, for example, ceramic microspheres having a particle size of any one of 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, or 0.5 mm are used. It can be understood that the relatively consistent particle size can achieve easier process control during the preparation process; the consistency of the product is relatively good.
  • the particle sizes of the ceramic microspheres 121 are inconsistent.
  • the “inconsistent particle size” here means that the ceramic microspheres are selected according to different particle sizes within the particle diameter range, and the ceramic microspheres in the same embodiment have different particle sizes. Specifically, for example, a certain proportion by weight of ceramic microspheres having a particle diameter of 0.1mm, 0.2mm, 0.3mm, 0.4mm, and 0.5mm is used, and then mixed for use; the ceramic microspheres in the diffuse reflection layer are in the range of 0.1 to 0.5mm particles. The diameter range contains 5 ceramic microspheres with different particle sizes.
  • ceramic microspheres with inconsistent particle sizes, and ceramic microspheres with smaller particle sizes can mutually fill the pores between ceramic microspheres with larger particle sizes, making the network microstructure formed by ceramic microspheres denser, The pores between the ceramic microspheres are smaller and more uniform, so that the diffuse reflection particles 122 are evenly coated on the surface of the ceramic microspheres and / or filled between the pores of the ceramic microspheres; it can further improve the reflectance and Thermal conductivity.
  • the ceramic microsphere 121 is one or more of alumina, magnesia or boron nitride.
  • the ceramic microspheres are alumina. It can be understood that, compared with other ceramic materials, alumina has higher thermal conductivity and thermal stability, and is an ideal material as the main body of the network skeleton structure. Of course, other ceramic materials or high-temperature-resistant glass materials can also implement the present invention, and those skilled in the art can choose according to actual needs, which will not be described again here.
  • the diffuse reflection particles 122 are at least one of barium sulfate, aluminum oxide, magnesium oxide, titanium oxide, or zirconia. It can be understood that the diffuse reflection particles are mainly white particles, which can realize the scattering or reflection of light.
  • the adhesive is one of glass, water glass, silica gel, or resin.
  • an inorganic material such as glass or water glass is preferred.
  • glass has higher thermal stability and thermal conductivity, and its chemical and physical properties are also very stable. It can more easily achieve synergy with other materials; for example, when the glass is in contact with the phosphor, it does not affect the fluorescence
  • the luminous properties of the powder can also provide excellent bonding and packaging effects.
  • the substrate 110 is a metal substrate or a ceramic substrate.
  • the metal substrate may be a pure metal substrate such as an aluminum substrate or a copper substrate; it may also be an alloy metal substrate such as an aluminum alloy, a copper alloy, and a nickel alloy.
  • the ceramic substrate may be any of Al 2 O 3 , AlN, SiC, SiN, or sapphire. It can be understood that the substrate mainly plays a role of carrying and dissipating heat in the present invention. On the one hand, the substrate can play a role of carrying in the preparation process. Therefore, the substrate is required to have a certain thermal stability and a high melting point to make it The substrate is not damaged or melted during the high temperature during preparation and use. On the other hand, in order to achieve better heat dissipation, the substrate should also have a high thermal conductivity. Further, the thickness of the substrate can be selected according to actual needs. Specifically, the substrate has a thickness of 0.5 mm to 200 mm.
  • the reflection efficiency of a diffuse reflection device cannot be 100%, so the lost light will be concentrated in the form of heat in the diffuse reflection layer; at the same time, when the diffuse reflection device is matched with a fluorescent material as a light emitting device At the same time, the fluorescent layer also generates a lot of heat during the light emission process; the above-mentioned heat concentration in the diffuse reflection layer may destroy the structure of the diffuse reflection layer on the one hand, reduce the reflectivity of the diffuse reflection layer, and on the other hand, the extremely high temperature will Affects the luminous efficiency of the fluorescent layer. When the temperature exceeds a certain value, the phenomenon of "thermal quenching" of the fluorescent layer will also be caused, causing the entire light-emitting device to fail. "Thermal quenching” refers to the phenomenon that the luminous efficiency of a fluorescent material or a wavelength conversion material is greatly reduced with an increase in temperature.
  • the mass ratio of the diffuse reflection particles, the ceramic microspheres and the adhesive is (0.6 to 10): (0.3 to 8): (1 to 5). It can be understood that an appropriate proportion of the adhesive can satisfy the infiltration and dispersion of the powder material, and play a role in bonding and encapsulating the diffuse reflection particles and the ceramic microspheres without forming more glass phases and reducing the diffuse reflection device. Reflectivity.
  • the ceramic microspheres 121 are arranged in a single layer in the diffuse reflection layer 120.
  • the “single-layer tiled arrangement” here means that the ceramic microspheres have only one layer of ceramic microspheres in the thickness direction of the diffuse reflection layer, and are tiled and spread out along the plane direction of the diffuse reflection layer. It can be understood that, in some embodiments, the ceramic microspheres can be tiled on the same plane; as shown in FIG. 1, the ceramic microspheres 121 are single-layered and tiled on a plane parallel to the diffuse reflection layer 120.
  • the single-layer ceramic microspheres are allowed to have a certain displacement in the thickness direction, that is, the ceramic microspheres can be tiled on at least 2 planes; as shown in FIG. 2, a part of the ceramic microspheres 121 a is located at On one plane parallel to the diffuse reflection layer 120, another part of the ceramic microspheres 121 b is located on another plane parallel to the diffuse reflection layer 120. And, it is further preferred that a distance between any two different planes is less than or equal to a diameter of the ceramic microsphere. It can be understood that such a benefit is that a single-layer tile arrangement can be realized.
  • the ceramic microspheres 121 can have a particle size range of 100 ⁇ m to 500 ⁇ m because of their particle size range; therefore, a single layer arrangement can achieve better heat dissipation effects.
  • the diffuse reflection layer 120 generates a certain amount of heat. Due to the small diameter of the diffuse reflection particles 122, there are more pores between the diffuse reflection particles 122, and the thermal conductivity is relatively Low; but in the present invention, since the ceramic microsphere 121 directly uses a micron-level ceramic material, it has extremely high density and good thermal conductivity.
  • the heat of the diffuse reflection particles 122 can be quickly transferred to the ceramic microspheres 121.
  • the ceramic microspheres 121 conduct heat to the substrates through direct thermal contact with the substrates to achieve Fast heat dissipation from the heat sink.
  • the ceramic microspheres are much larger than the size of the diffuse reflection particles, the volume of a single ceramic microsphere is more than ten million times the volume of a single diffuse reflection particle, so the ceramic microspheres play a role of heat sink.
  • the heat sink here means that its temperature does not change with the amount of heat energy transferred to it. Therefore, the micro-scale ceramic microspheres make the thermal stability of the diffuse reflection layer higher, prevent the diffuse reflection layer from being destroyed at high temperatures, and improve the reflectance of the reflection layer at higher temperatures.
  • the distance between two different planes may be greater than the diameter of the ceramic microsphere.
  • the ceramic microspheres in these embodiments can be considered as being arranged in multiple layers. Especially in the case of using a plurality of ceramic microspheres with different particle sizes, the ceramic microspheres with a smaller particle size will fill the pores formed between the ceramic microspheres with a larger particle size to a certain extent. In fact, a multilayered structure of ceramic microspheres is formed in these embodiments.
  • the ceramic microspheres in the diffuse reflection layer may also adopt different tile arrangements.
  • the plane on which the diffuse reflection layer or substrate is located is set to the reference direction "X" axis direction and "Y" axis direction, which are perpendicular to each other and parallel to the plane on which the diffuse reflection layer or substrate is located.
  • the ceramic microspheres 121 are loosely tiled in a single layer in the diffuse reflection layer 120.
  • loose tiling means that any ceramic microsphere is not in contact with any other ceramic microsphere.
  • the ceramic microsphere 121 is not in contact with any other ceramic microsphere.
  • the ceramic microspheres 121 are neatly and uniformly arranged on the "X" axis and the "Y” axis, that is, the ceramic microspheres are spaced equally on the "X" axis and the "Y” axis. It can be understood that such a benefit is that the ceramic microspheres can be positioned by a fixed template during the preparation process, and the consistency is better. Of course, in other embodiments, it can also be arranged randomly at any distance.
  • the ceramic microspheres 121 are tiled in a single layer in the diffuse reflection layer 120.
  • “close-packed tiling” here means that any ceramic microsphere is in contact with at least one other ceramic microsphere.
  • the ceramic microspheres 121 are in contact with other ceramic microspheres in the “X” axis and “Y” axis directions; and the contact positions are all on the “X” axis On a straight line parallel to the "Y" axis.
  • any three ceramic microspheres closest to each other are in contact with each other.
  • any ceramic microsphere does not contact other ceramic microspheres in the X-axis direction, and contacts at least one ceramic microsphere nearest to it in the Y-axis direction.
  • the above-mentioned "contact” does not necessarily mean that the spatial distance in the absolute sense is zero; and it is also difficult to achieve an absolute zero spatial distance in the actual process. Therefore, those skilled in the art should understand that the “contact” according to the present invention means that the distance between the ceramic microspheres is sufficiently small in spatial distance so as to be considered as contact. So that it is possible to form a network main frame between the ceramic microspheres. On the one hand, the pores formed between the ceramic microspheres are uniform and the pore diameter is relatively smaller. The pore structure of the diffuse reflection layer can be refined, so that the diffuse reflection layer can be effectively improved.
  • the thermal resistance is small, and the rapid heat transfer in the plane direction can be realized, and the damage and failure of the diffuse reflection device due to the local temperature being too high during use can be avoided. It makes the diffuse reflection device dissipate heat more uniformly and efficiently, and improves the thermal stability and reflectivity under high temperature conditions.
  • the main body structure of the network can also be understood as including at least one network structure in the thickness direction of the diffuse reflection device or in the plane direction; it can be understood that the closer the main body structure is, the more thermal Contact ", and the better the” thermal contact ", the higher the thermal stability of the diffuse reflection device.
  • the thickness of the diffuse reflection layer is 0.1 mm to 0.5 mm. It can be understood that the thickness of the diffuse reflection layer is almost equal to the particle size of the ceramic microspheres.
  • the second aspect of the present invention also provides a light emitting device.
  • the light-emitting device includes the diffuse reflection device according to any one of the above, and further includes a fluorescent layer 230 disposed on the diffuse reflection layer 220.
  • the fluorescent layer 230 can emit light when excited by excitation light. Excitation light.
  • the light-emitting device 200 includes a substrate 210, a diffuse reflection layer 220, and a fluorescent layer 230 stacked in this order.
  • the diffuse reflection layer 220 includes ceramic microspheres 221, and covers and / or fills the ceramic microspheres 221. Diffuse reflection particles 222 between the ceramic microsphere 221 gap and an adhesive;
  • the particle diameter of the ceramic microspheres 221 is 0.1 mm to 0.5 mm; and the particle diameter of the diffuse reflection particles 222 is 20 nm to 200 nm.
  • the fluorescent layer may be at least one of a fluorescent material single crystal, a fluorescent ceramic, a fluorescent glass, and a silicone or resin-encapsulated fluorescent layer.
  • the fluorescent layer is a fluorescent ceramic or a fluorescent glass.
  • common fluorescent ceramics are generally divided into two types: one is a pure-phase luminescent ceramic (ie, a single-phase luminescent ceramic), such as YAG: Ce or LuAG: Ce ceramic, the ceramic-forming phase and the luminescent phase are the same phase and It can be sintered into ceramics with higher transparency, but the thermal conductivity of YAG: Ce or LuAG: Ce ceramics is low.
  • the other is a multi-phase luminescent ceramic, such as Al 2 O 3 & YAG: Ce ceramic or AlN & YAG: Ce ceramic.
  • the bonding phase is Al 2 O 3 or AlN
  • the luminescent phase is YAG: Ce phosphor.
  • fluorescent glass that is, glass is used as a bonding phase, and phosphors as a light-emitting phase are encapsulated and bonded together. It can be understood that those skilled in the art can arbitrarily select any existing light-emitting material as the fluorescent layer according to actual needs, and details are not described herein.
  • a third aspect of the present invention also provides a method for preparing a diffuse reflection device, including the following steps:
  • Raw materials are mixed and dispersed
  • step B Use silk screen or stencil screen printing to apply the paste obtained in step A to the substrate;
  • step A includes: selecting raw material diffuse reflection particles, ceramic microspheres, and an adhesive according to a mass ratio, and mixing and dispersing them.
  • the particle size of the ceramic microspheres is 0.1 mm to 0.5 mm, and the particle size of the diffuse reflection particles is 20 nm to 200 nm.
  • the mass ratio of the diffuse reflection particles, the ceramic microspheres and the adhesive is (0.6 to 10): (0.3 to 8): (1 to 5).
  • the diffuse reflection particles are at least one of barium sulfate, aluminum oxide, magnesium oxide, titanium oxide, or zirconia.
  • the ceramic microsphere is at least one of alumina, magnesia or boron nitride.
  • the adhesive is one of glass, water glass, silica gel, or resin.
  • the glass is one or more of silicate glass, lead silicate glass, aluminoborosilicate glass, aluminate glass, soda lime glass, and quartz glass.
  • the aforementioned glasses have different softening points.
  • silicate glass with a low expansion coefficient is selected as the glass.
  • the particle size of the raw glass frit is selected from 1 to 5 um, and preferably ⁇ 1 um.
  • the refractive index of the glass powder can be selected from various refractive indexes of the existing commercial glass powder. Since there is no commercial glass powder below 1 um, in some specific embodiments, the particle size of the raw glass powder is 1 um.
  • the substrate is a metal substrate or a ceramic substrate.
  • step B includes: applying a screen or a stencil screen to apply the slurry obtained in step A to the substrate.
  • the thickness of the coating layer is 0.1 to 0.6 mm.
  • step C includes: sintering or curing to obtain the diffuse reflection device.
  • a curing process is used.
  • the curing process is light curing or temperature curing. It can be understood that those skilled in the art can select a suitable curing temperature or light curing time according to the specific type of water glass, silica gel or resin.
  • the curing temperature is 80-200 ° C.
  • the glass When glass is used as the adhesive, a sintering process is used.
  • the glass may be one or more of silicate glass, lead silicate glass, aluminoborosilicate glass, aluminate glass, soda lime glass, and quartz glass.
  • the above-mentioned glass has different softening points, and those skilled in the art can determine the sintering temperature based on the glass type actually selected.
  • the reflection device when used in conjunction with the fluorescent layer, its sintering temperature should be lower than the destruction temperature of the phosphor.
  • the sintering temperature is 400 to 1000 ° C.
  • Step A TiO 2 powder with a particle diameter of 20 nm to 200 nm, alumina ceramic microspheres with a diameter of 0.1 mm, and silica gel are mixed according to a mass ratio of 1: 0.8: 1.
  • the purity of the alumina ceramic ball with a diameter of 0.1mm is 99.99%, and the diameter is optimized to 0.1mm.
  • the silica gel has a viscosity of 3000 to 5000 cp and a curing condition of 150 ° C.
  • the refractive index of the silica gel is preferably low refractive index silica gel of 1.41.
  • Step B Apply the above paste to the substrate by screen printing, and the thickness of the applied layer is 0.1 to 0.12 mm.
  • the substrate is an Al 2 O 3 substrate (alumina ceramic substrate).
  • Step C Using a curing temperature of 150 ° C. and a baking time of 120 min, a diffuse reflection device is prepared.
  • the diffuse reflection device prepared in Embodiment 1 includes a stacked alumina ceramic substrate and a diffuse reflection layer; wherein the diffuse reflection layer includes alumina ceramic microspheres and is coated on the surface of the alumina ceramic microspheres and / or filled with alumina
  • the mass ratio of TiO 2 , alumina ceramic microspheres and silica gel is approximately 1: 0.8: 1.
  • the difference between the second embodiment and the first embodiment is that the diffuse reflection particles further include Al 2 O 3 powders of 20 nm to 200 nm. And the mass ratio of TiO2 powder, Al 2 O 3 powder, alumina ceramic ball and silica gel is 3: 2: 1: 3. The remaining process parameters and process are the same as those of the first embodiment.
  • the diffuse reflection device prepared in Embodiment 2 includes diffuse reflection particles including TiO 2 and Al 2 O 3 with a particle diameter of 20 nm to 200 nm; and TiO 2 powder, Al 2 O 3 powder, alumina ceramic ball, and silica gel.
  • the mass ratio is 3: 2: 1: 3.
  • Step A TiO 2 powder with a particle size of 20 nm to 200 nm, Al 2 O 3 powder with a size of 20 nm to 200 nm, alumina ceramic balls with a diameter of 0.1 mm, and a glass powder in a mass ratio of 3: 2: 1: 4 for matching.
  • the four materials are mixed with an organic carrier and stirred for primary dispersion, and then dispersed by a revolution rotation dispersion (or ball mill) dispersion device.
  • the purity of the alumina ceramic ball with a diameter of 0.1 mm was 99.99%.
  • the glass powder may be one or more of silicate glass, lead silicate glass, aluminoborosilicate glass, aluminate glass, soda lime glass, and quartz glass with different softening points. In this embodiment, silicate glass with a low expansion coefficient is preferred.
  • the particle size of the glass frit is selected from 1 to 5 um, and preferably ⁇ 1 um. In this embodiment, the particle size of the glass powder is selected to be 1 um.
  • the refractive index of the glass powder can be selected from various refractive indexes of the existing commercial glass powder.
  • Organic carriers are used to mix and disperse raw material powders.
  • the organic vehicle specifically includes an organic vehicle formed by mixing and dissolving ethyl cellulose, terpineol, butylcarbitol, and butylcarbitol ester.
  • the organic carrier may also be composed of other types of cellulose and alcohols; those skilled in the art may arbitrarily choose according to actual needs.
  • Step B applying the screen printing method to apply the paste obtained in step A to the substrate, and the thickness of the applied layer is 0.1 to 0.12 mm.
  • the substrate is an Al 2 O 3 substrate.
  • Step C pre-baking the substrate coated with the paste in step B.
  • the drying temperature is 60 ° C. to 200 ° C., and the pre-baking is performed for 2 min to 60 min. 1h; finally made a diffuse reflection device.
  • the sintering time may be 2 min to 1 h.
  • the diffuse reflection device prepared in Embodiment 3 includes a laminated alumina ceramic substrate and a diffuse reflection layer; wherein, the diffuse reflection layer includes alumina ceramic microspheres and covering the surface of the alumina ceramic microspheres and / or filling with oxidation TiO 2 and Al 2 O 3 diffuse reflection particles and glass bonding phase between the gaps of aluminum ceramic microspheres; meanwhile, the particle size of alumina ceramic microspheres is 0.1mm; the particles of TiO 2 and Al 2 O 3 diffuse reflection particles The diameter is 20 nm to 200 nm.
  • the mass ratio of TiO 2 , Al 2 O 3 , alumina ceramic microspheres and glass is about 3: 2: 1: 4.
  • the difference between the fourth embodiment and the first embodiment is that the ceramic microspheres use boron nitride ceramic microspheres.
  • the particle size of the boron nitride ceramic microspheres was also 0.1 mm.
  • the diffuse reflection device prepared in Embodiment 4 includes diffuse reflection particles including TiO 2 and Al 2 O 3 with a particle diameter of 20 nm to 200 nm; and TiO 2 powder, Al 2 O 3 powder, boron nitride ceramic balls, and silica gel.
  • the mass ratio is 3: 2: 1: 4.
  • a fluorescent layer is further prepared on the diffuse reflection layer obtained in Example 1.
  • the fluorescent ceramic sheet that has been prepared is used as a fluorescent layer, and the fluorescent ceramic is directly adhered on the diffuse reflection layer of the diffuse reflection device prepared in the embodiment. Since the diffuse reflection layer of the embodiment is encapsulated by silica gel, this embodiment also uses silica gel as an adhesive between the fluorescent layer and the diffuse reflection layer.
  • the light-emitting device prepared in Embodiment 5 includes a stacked alumina ceramic substrate, a diffuse reflection layer, and a fluorescent layer; wherein the diffuse reflection layer includes alumina ceramic microspheres and is coated on the surface of the alumina ceramic microspheres and / or filled.
  • TiO 2 diffuse reflection particles between the alumina ceramic microsphere gaps and a silica gel adhesive; meanwhile, the particle size of the alumina ceramic microspheres is 0.1 mm; and the particle size of the TiO 2 diffuse reflection particles is 20 nm to 200 nm.
  • the mass ratio of TiO 2 , alumina ceramic microspheres and silica gel is approximately 1: 0.8: 1.
  • a fluorescent layer is further prepared on the diffuse reflection layer obtained in the third embodiment.
  • a fluorescent ceramic sheet that has been prepared is used as the fluorescent layer.
  • the fluorescent ceramic is directly adhered on the diffuse reflection layer of the diffuse reflection device prepared in the third embodiment.
  • a high temperature resistant adhesive is used for bonding the fluorescent layer and the diffuse reflection layer.
  • the light-emitting device prepared in Embodiment 6 includes a laminated alumina ceramic substrate, a diffuse reflection layer, and a fluorescent layer; wherein the diffuse reflection layer includes alumina ceramic microspheres and is coated on the surface of the alumina ceramic microspheres and / or filled.
  • TiO 2 and Al 2 O 3 diffuse reflection particles between glass alumina ceramic microspheres and glass bonding phase; meanwhile, the particle size of alumina ceramic microspheres is 0.1 mm; TiO 2 and Al 2 O 3 diffuse reflection particles The particle diameter is 20 nm to 200 nm.
  • the mass ratio of TiO 2 , Al 2 O 3 , alumina ceramic microspheres and glass is about 3: 2: 1: 4.
  • This embodiment further prepares a fluorescent layer on the diffuse reflection layer obtained in the fourth embodiment.
  • the fluorescent ceramic sheet already prepared is also used as the fluorescent layer.
  • the fluorescent ceramic is directly adhered on the diffuse reflection layer of the diffuse reflection device prepared in the fourth embodiment.
  • a high temperature resistant adhesive is used for bonding the fluorescent layer and the diffuse reflection layer.
  • the difference between the light-emitting device prepared in Embodiment 7 and Embodiment 6 is that the ceramic microspheres are made of boron nitride ceramic microspheres.
  • the mass ratio of TiO 2 powder and silica gel with a particle diameter of 20 nm to 200 nm was 1.8: 1.
  • the viscosity of the silica gel is 3000-5000cp, the curing condition is 150 ° C for 120min, and the refractive index of the silica gel is 1.41.
  • After the two materials are dispersed by stirring, they are dispersed by a revolution and rotation dispersion device. It is applied to the substrate by screen or stencil screen printing, and the thickness of the applied layer is 0.1 to 0.12 mm.
  • the substrate is an Al2O3 ceramic substrate.
  • the diffuse reflection device prepared in Comparative Example 1 contained only TiO 2 diffuse reflection particles of 20 nm to 200 nm.
  • a fluorescent layer is further prepared on the diffuse reflection layer prepared in comparative example 1.
  • the fluorescent ceramic sheet that has been prepared is used as a fluorescent layer, and the fluorescent ceramic is directly adhered to the diffuse reflection layer of a diffuse reflection device prepared in a comparative example. Since the diffuse reflection layer of the comparative example is encapsulated by silica gel, this embodiment also uses silica gel as an adhesive between the fluorescent layer and the diffuse reflection layer.
  • the diffuse reflectance layers prepared in the above Examples 1, 3, and 4 and Comparative Example 1 were tested for reflectance using a spectrophotometer, and the test results are shown in FIG. 9. It can be seen from FIG. 9 that the reflectance of the diffuse reflection device added with ceramic microspheres is higher than that of Comparative Example 1 without the diffuse reflection device of ceramic microspheres. Thick, and its internal pores are small, the shielding effect of diffuse reflection particles is better.
  • the luminous intensity of the fluorescent layer was measured at different excitation light powers in the foregoing Examples 5-7 and Comparative Example 2, and the results are shown in FIG. 10. It can be seen from FIG. 10 that the diffuse reflection layer after adding the ceramic microspheres is beneficial to improve the luminous efficiency of the fluorescent layer. This is mainly because the reflectivity of the diffuse reflection device after adding ceramic microspheres has been improved, the utilization rate of the excitation light by the fluorescent layer has been improved, and the fluorescence absorption loss excited by the fluorescent layer has been reduced. At the same time, it can be seen from the results of Fig. 10 that the fluorescent layer also has an increasing luminous intensity with increasing power, and has a good linear relationship. This shows that the diffuse reflection layer after adding ceramic microspheres has not increased due to the increased thickness.
  • Ceramic microspheres form a network structure in the diffuse reflection layer, which can well transfer the heat generated when the fluorescent layer is excited to In the substrate, ceramic microspheres not only play a good role in reflecting in the diffuse reflection layer, but also have excellent thermal conductivity.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Multimedia (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Led Device Packages (AREA)

Abstract

一种漫反射装置(100),包括叠置的基板(110)和漫反射层(120),漫反射层(120)包括陶瓷微球(121)以及包覆在陶瓷微球(121)表面和/或填充陶瓷微球(121)间隙之间的漫反射粒子(122)和粘接剂;其中,陶瓷微球(121)的粒径为0.1mm~0.5mm;漫反射粒子(122)的粒径为20nm~200nm。通过在漫反射层(120)中引入微米级陶瓷微球(121),其他更细小的漫反射粒子(122)包覆陶瓷微球(121)表面和/或填充至陶瓷微球(121)间隙中;用相对致密的陶瓷微球(121)形成了网络结构主体,并且陶瓷微球(121)之间所形成的孔隙均匀,孔径相对更小,能够细化漫反射层(120)的孔隙结构,从而可以有效提高漫反射层(120)中漫反射粒子(122)对孔隙、玻璃相表面的遮蔽效果,进而提高漫反射装置(100)的反射率。

Description

一种漫反射装置及其制备方法、波长转换装置 技术领域
本发明涉及照明及投影显示领域,尤其涉及一种漫反射装置及其制备方法、波长转换装置。
背景技术
当前,激光光源技术以其高亮度、高电光效率成为照明领域关注的焦点。激光光源技术路线中又以波长转换方案兼具效率和成本优势,已经成为主流技术路线之一;其中,漫反射装置或波长转换装置是激光光源中的重要部件,其是直接决定激光光源性能的重要部件之一。现有技术中,漫反射装置中一般包括有一漫反射层,漫反射层为一种热导率较低的功能层,漫反射层主要是将细小的白色漫反射粒子(氧化钛或氧化铝等)通过粘结相(硅胶或者玻璃等)粘结而成,其中细小的氧化钛等白色漫反射粒子和粘结相的热导率均较差,难以提高激发功率,进而无法提高亮度或发光效率;因此,对于漫反射层而言,其不仅需要较高的反射率又需要较好的导热性能。
目前为了提高反射层的反射率主要是通过提高漫反射粒子含量或者增加反射层的厚度。漫反射层中漫反射粒子含量的增加势必需要更多的粘结相来浸润、包覆粒子表面以形成连续而紧密的反射层;但是漫反射层中漫反射粒子含量增加,粘结相含量必定减少,进而所形成的反射层中孔隙等较多,反射层较疏松不利于其很好附着于散热基板上,同时,疏松的结构也不利于导热性能的提高;另一方面,增加漫反射层厚度,虽然其反射率会有所提升,但是同时其导热性能势必会降低。这均不利于漫反射装置或波长转换装置效率和亮度的提高。因此,有必要提供一种漫反射装置,使其在具备较好导热率的情况下同时具备较高的反射率。
发明内容
本发明的主要目的在于提供一种漫反射装置,旨在解决现有技术中反射率低的技术问题。
本发明提供一种漫反射装置,其特征在于,包括叠置的基板和漫反射层, 所述漫反射层包括陶瓷微球以及包覆在所述陶瓷微球表面和/或填充所述陶瓷微球间隙之间的漫反射粒子和粘接剂;
其中,所述陶瓷微球的粒径为0.1mm~0.5mm;所述漫反射粒子的粒径为20nm~200nm。
优选地,所述陶瓷微球为氧化铝、氧化镁或氮化硼中的至少一种。
优选地,所述漫反射粒子为硫酸钡、氧化铝、氧化镁、氧化钛或氧化锆中的至少一种。
优选地,所述粘接剂为玻璃、水玻璃、硅胶或树脂中的一种。
优选地,所述基板为金属基板或陶瓷基板。
优选地,所述漫反射粒子、所述陶瓷微球以及所述粘接剂的质量比为(0.6~10):(0.3~8):(1~5)。
优选地,所述陶瓷微球在所述漫反射层中呈单层平铺排列。
优选地,所述陶瓷微球在所述漫反射层中单层密排平铺。
优选地,所述漫反射层厚度为0.1mm~0.5mm。
本发明第二方面还提供一种的发光装置,其特征在于,包括上述的任一项所述的漫反射装置,其中,还包括设置于所述漫反射层上的荧光层,所述荧光层能在激发光的激发下发出受激发光。
本发明第三方面还提供一种漫反射装置的制备方法,其特征在于,包括以下步骤:
A、原料混合分散;
B、采用丝网或钢网网板印刷,将步骤A中所得到的浆料涂覆到基板上;
C、烧结或固化,得到所述漫反射装置。
有益效果:本发明中通过在漫反射层中引入微米级陶瓷微球,其他更细小的纳米级漫反射粒子包覆陶瓷微球表面和/或填充至陶瓷微球的间隙中;用相对致密的陶瓷微球形成了网络结构主体,并且陶瓷微球之间所形成的孔隙均匀,孔隙相对更小,能够细化漫反射层中的孔隙结构,从而可以有效提高漫反射层中漫反射粒子对孔隙、玻璃相表面的遮蔽效果,进而提高漫反射装置的反射率。
附图说明
图1是本发明漫反射装置的一种实施方式的结构示意图;
图2为本发明漫反射装置的另一种实施方式的结构示意图;
图3为本发明漫反射装置的一种实施方式的原理结构示意图;
图4为本发明陶瓷微球平铺的一种实施方式的结构示意图;
图5为本发明中陶瓷微球密排平铺的一种实施方式的结构示意图;
图6为本发明中陶瓷微球密排平铺的另一种实施方式的结构示意图;
图7为本发明中陶瓷微球密排平铺的又一种实施方式的结构示意图;
图8为本发明发光装置的结构示意图;
图9为本发明中漫反射装置的实施例反射率的测试图;
图10为本发明发光装置的实施例发光强度的测试图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不用于限定本发明。
如图1~7所示,本发明提供的一种漫反射装置100,包括叠置的基板110和漫反射层120;漫反射层120包括陶瓷微球121以及包覆在所述陶瓷微球表面和/或填充所述陶瓷微球间隙之间的漫反射粒子122和粘接剂(图中未示出);其中,陶瓷微球的粒径为0.1mm~0.5mm;漫反射粒子的粒径为20nm~200nm。
需要说明的是,粘接剂主要起到胶黏、封装作用。并且由于粘接剂不可能完全均匀的分散,因此当粘接剂聚集的情况下,则会形成一定量的玻璃相;这里的玻璃相(glass phase)是指非晶态固体构成的部分,它存在于颗粒与颗粒之间,起着胶黏作用;一般情况下,其主要由粘接剂成分组成。玻璃相一般为透明状态,光线能直接透过玻璃相,进而降低反射层的反射率。因此,为了提高反射层的反射率,需要尽量实现对反射层中玻璃相的遮蔽。本发明中通过在漫反射层中引入微米级陶瓷微球,其他更细小的纳米级的漫反射粒子包覆陶瓷微球表面和/或填充至氧化铝球间隙中;用相对致密的陶瓷微球形 成了网络结构主体,并且陶瓷微球之间形成的相对均匀孔隙,孔隙尺寸能被控制的相对更小,能够细化漫反射层的孔隙结构,从而可以有效提高漫反射层中漫反射粒子对孔隙、玻璃相表面的遮蔽效果,进而提高漫反射装置的反射率。更进一步地,现有技术中,漫反射粒子的大小、形状不一,同粘结剂(硅胶或玻璃等)混合形成浆料时,容易导致浆料粘度较大,漫反射粒子也难以形成密堆积结构,且颗粒堆积时颗粒间容易产生大小不一的孔隙。本发明中的微米级陶瓷微球使得能够容易的形成均匀的网络结构主体,并且陶瓷微球之间形成相对均匀的孔隙结构,纳米级的漫反射粒子在包覆和/填充在孔隙之间,能形成更为密集的堆积结构,并提高对玻璃相的遮蔽效果;进而提高漫反射层的反射率。
进一步地,在一些实施方式中,陶瓷微球121的粒径大小一致。需要说明的是,这里的“粒径大小一致”是指陶瓷微球在粒径范围内按照同一粒径大小选取,在同一实施方式中的陶瓷微球的粒径大小一致。具体的,如采用粒径为0.1mm、0.2mm、0.3mm、0.4mm或0.5mm中任一种粒径大小的陶瓷微球。可以理解,相对一致的粒径大小在制备过程中能实现更容易的工艺控制;产品的一致性相对较好。
进一步地,在另一些实施方式中,陶瓷微球121的粒径大小不一致。需要说明的是,这里的“粒径大小不一致”是指陶瓷微球在粒径范围内按照不同粒径大小选取,在同一实施方式中的陶瓷微球的粒径大小不一致。具体的,如采用粒径为0.1mm、0.2mm、0.3mm、0.4mm和0.5mm的陶瓷微球各一定比例重量份,然后混合使用;漫反射层中的陶瓷微球在0.1~0.5mm粒径范围内包含有5中不同粒径的陶瓷微球。可以理解,不一致的粒径大小陶瓷微球,较小粒径的陶瓷微球能够相互填充较大粒径陶瓷微球之间的孔隙,使得陶瓷微球形成的网络结构主体致密度更高,使得陶瓷微球之间的孔隙更加的小且均匀,便于漫反射粒子122均匀的包覆在陶瓷微球表面和/或填充在陶瓷微球的孔隙之间;能够进一步提高漫反射层的反射率和导热率。
优选地,陶瓷微球121为氧化铝、氧化镁或氮化硼中的一种或多种。在一些具体的实施方式,陶瓷微球为氧化铝。可以理解,相对于其他陶瓷材料而言,氧化铝具有更高的导热率和热稳定性,是作为网络骨架结构主体较为理想的材料。当然,其他陶瓷材料或耐高温的玻璃材料也能实现本发明,本 领域技术人员可以根据实际需要进行选择,这里不再赘述。
优选地,漫反射粒子122为硫酸钡、氧化铝、氧化镁、氧化钛或氧化锆中的至少一种。可以理解,漫反射粒子主要为白色的粒子,能实现对光的散射或反射。
优选地,粘接剂为玻璃、水玻璃、硅胶或树脂中的一种。在一些具体的实施方式中,为了提高反射层的热稳定性和导热率,优选玻璃或水玻璃等无机材料。其中,玻璃具备更高热稳定性和导热率,并且其化学性质和物理性质也十分稳定,能够比较方便的实现与其他材料的相互协同配合;比如,当玻璃与荧光粉接触时,既不影响荧光粉的发光性能,也能提供极佳的粘接与封装效果。
优选地,基板110为金属基板或陶瓷基板。具体的,金属基板可以为铝基板或铜基板等纯金属基板;还可以为铝合金、铜合金以及镍合金等合金金属基板。陶瓷基板可以为Al 2O 3、AlN、SiC、SiN或蓝宝石等中的任一种。可以理解,基板在本发明中主要起到承载和散热的作用,一方面基板能够在制备过程中起到承载的作用,因此,要求基板具备一定的热稳定性和较高的熔点,使其在制备过程中和使用过程的高温情况下不被破坏或熔化;另一方面为了实现较好的散热效果,基板也应具备较高的导热率。进一步地,基板的厚度可以根据实际需要进行选择。具体地,基板厚度为0.5mm~200mm。
进一步需要说明的是,一般而言,漫反射装置的反射效率不可能为百分之百,因此损失的光将会以热量的形式集聚在漫反射层当中;同时,当漫反射装置配合荧光材料作为发光装置时,荧光层在发光过程中也会产生大量的热;上述的热量集聚在漫反射层一方面可能会破坏漫反射层的结构,降低漫反射层的反射率,另一方面极高的温度会影响荧光层的发光效率,当温度超一定值后还会造成荧光层的“热淬灭”现象,使得整个发光装置失效。“热淬灭”(Thermal quenching)是指荧光材料或波长转换材料的发光效率随温度的增加而大幅降低的现象。
优选地,漫反射粒子、陶瓷微球以及粘接剂的质量比为(0.6~10):(0.3~8):(1~5)。可以理解,恰当比例的粘接剂能够满足对粉体材料的浸润、分散,并起到对漫反射粒子和陶瓷微球粘接、封装的同时并不形成较多的玻璃相而降低漫反射装置的反射率。
优选地,陶瓷微球121在漫反射层120中呈单层平铺排列。需要说明的是,这里的“单层平铺排列”是指陶瓷微球在漫反射层的厚度方向上仅有一层陶瓷微球,并且沿漫反射层平面方向平铺展开。可以理解,在一些实施方式中,陶瓷微球可以平铺于同一平面上;如附图1中所示,陶瓷微球121单层平铺于平行于漫反射层120的一个所在平面上。在另一些实施方式中,允许单层陶瓷微球在厚度方向上有一定的错位,也即陶瓷微球可以平铺于至少2个平面上;如附图2所示,一部分陶瓷微球121a位于平行于漫反射层120的一个所在平面上,另一部分陶瓷微球121b位于平行于漫反射层120的另一个所在平面上。并且,进一步优选地,任意两个不同的平面之间的距离小于或等于陶瓷微球的直径。可以理解,这样的好处在于能够实现单层平铺排列。
可以理解,陶瓷微球121由于其粒径范围在微米级别,具体可以为100um~500um;因此,单层排列能够实现较好的散热效果。如附图3所示,在实际的使用过程中,漫反射层120会产生一定的热量,由于漫反射粒子122的粒径较小,所以漫反射粒子122之间的孔隙较多,导热率较低;但是本发明中,由于陶瓷微球121直接采用了微米级的陶瓷材料,因此致密性极高、导热率也很好,因此,当漫反射粒子122包覆在陶瓷微球121表面和/或填充陶瓷微球121的间隙之间时,漫反射粒子122的热量能迅速的传导到陶瓷微球121上,陶瓷微球121在通过与基板直接的热接触,将热量传导到基板上,实现散热层的的快速散热。事实上,由于陶瓷微球远远大于漫反射粒子的尺寸,单颗陶瓷微球的体积是单颗漫反射粒子体积的千万倍以上,因此,陶瓷微球起到了热沉的作用。这里的热沉(heat sink)是指它的温度不随传递到它的热能的大小变化。因此,微米级的陶瓷微球使得漫反射层的热稳定性更高,防止漫反射层在高温下被破坏,提高了反射层在较高温度下的反射率。
当然,在一些其他的实施方式中,两个不同的平面之间的距离可以大于陶瓷微球的直径。这些实施方式中的陶瓷微球可以认为是呈多层排列。特别是在采用多种不同粒径大小的陶瓷微球的情况下,粒径较小的陶瓷微球会一定程度上填充在粒径较大的陶瓷微球之间形成的孔隙中。事实上,这些实施方式中就会形成陶瓷微球的多层排列结构。
在一些实施方式中,漫反射层中的陶瓷微球为了能实现较好的网络结构,也可以采用不同的平铺排列方式。为了描述方便,将漫反射层或基板的所在 平面设置参考方向“X”轴方向和“Y”轴方向,二者相互垂直并平行于漫反射层或基板的所在平面。在一些实施方式中,陶瓷微球121在漫反射层120中单层疏松平铺。这里的“疏松平铺”是指任一陶瓷微球不与其他任一陶瓷微球接触。在一具体的实施方式中,如附图4所示,陶瓷微球121不与其他任一陶瓷微球接触。同时,陶瓷微球121在“X”轴和“Y”轴均整齐均匀排列,也即陶瓷微球在“X”轴和“Y”轴的间距相等。可以理解,这样的好处在于在制备过程中能够通过固定的模板使得陶瓷微球定位,并且一致性较好。当然,其他实施方式中,还可以随机任意距离的排列。
优选地,陶瓷微球121在漫反射层120中单层密排平铺。需要要说明的是,这里的“密排平铺”是指任陶瓷微球至少与一个其他的陶瓷微球接触。具体的一些实施方式中,如附图5所示,陶瓷微球121在“X”轴和“Y”轴方向上均与另一些陶瓷微球接触;并且,接触的位置均位于“X”轴和“Y”轴所在的直线或相平行的直线上。具体的另一些实施方式中,如附图6所示,任意三个相互之间距离最近的陶瓷微球之间两两之间相互接触。具体的又一些实施方式中,如附图7所示,任意一个陶瓷微球在X轴方向上不与其他陶瓷微球接触,在Y轴方向上与距离其最近的至少一个陶瓷微球接触。
需要说明的是,上述的“接触”并非一定为绝对意义上的空间距离为零;并且实际过程中也很难实现空间距离绝对为零。因此,本领域技术人员应该理解,本发明所述的“接触”应该是指陶瓷微球之间的距离在空间距离上足够小,以至于可以认为是接触的。以至于能够实现陶瓷微球之间形成网络主体构架,一方面实现陶瓷微球之间所形成的孔隙均匀,孔径相对更小,能够细化漫反射层的孔隙结构,从而可以有效提高漫反射层中漫反射粒子对孔隙、玻璃相表面的遮蔽效果,进而提高漫反射装置的反射率;另一方面,足够小的距离,能实现较好的“热接触”,也即陶瓷微球之间的热阻较小,并能够实现在平面方向上的热量快速传递,能够避免漫反射装置在使用过程中因为局部温度过高而造成的装置损坏失效。使得漫反射装置散热更均匀、高效,提高了热稳定性和在高温情况下的反射率。同时,网络主体构架也可以理解为至少包括在漫反射装置厚度方向或在平面方向上至少一种网络结构;可以理解,主体结构越紧密,也即可以在厚度方向和在平面方向均有“热接触”,并且“热接触”越好,漫反射装置的热稳定性越高。
优选地,所述漫反射层厚度为0.1mm~0.5mm。可以理解,漫反射层的厚度几乎是等于陶瓷微球的粒径大小。
本发明第二方面还提供一种的发光装置。如附图8所示,发光装置包括上述的任一项所述的漫反射装置,其中,还包括设置于漫反射层220上的荧光层230,荧光层230能在激发光的激发下发出受激发光。
具体而言,发光装置200包括依次叠置的基板210、漫反射层220和荧光层230,所述漫反射层220包括陶瓷微球221以及包覆在所述陶瓷微球221表面和/或填充所述陶瓷微球221间隙之间的漫反射粒子222和粘接剂;
其中,所述陶瓷微球221的粒径为0.1mm~0.5mm;所述漫反射粒子222的粒径为20nm~200nm。
优选地,荧光层可以为荧光材料单晶、荧光陶瓷、荧光玻璃以及硅胶或树脂封装的荧光层中的至少一种。进一步优选地,荧光层为荧光陶瓷或荧光玻璃。具体地,常见的荧光陶瓷一般分为两种:一种是纯相发光陶瓷(即,单相发光陶瓷),如YAG:Ce或者LuAG:Ce陶瓷,其成瓷相和发光相为同一相并且可以烧结成透明度较高的陶瓷,但是YAG:Ce或者LuAG:Ce陶瓷的热导率较低。另一种是复相发光陶瓷,如Al 2O 3&YAG:Ce陶瓷或者AlN&YAG:Ce陶瓷等,其粘接相为Al 2O 3或AlN等,发光相为YAG:Ce荧光粉。具体地,荧光玻璃,也即采用玻璃作为粘接相,将作为发光相的荧光粉封装、粘接在一起。可以理解,本领域技术人员可以根据实际需要任意的选择现有的任意一种发光材料作为荧光层,这里不再赘述。
本发明第三方面还提供一种漫反射装置的制备方法,包括以下步骤:
A、原料混合分散;
B、采用丝网或钢网网板印刷,将步骤A中所得到的浆料涂覆到基板上;
C、烧结或固化,得到所述漫反射装置。
具体地,步骤A包括:按照质量比选取原料漫反射粒子、陶瓷微球以及粘接剂,并混合分散。
其中,所述陶瓷微球的粒径为0.1mm~0.5mm;所述漫反射粒子的粒径为20nm~200nm。
优选地,漫反射粒子、陶瓷微球以及粘接剂的质量比为(0.6~10):(0.3~8):(1~5)。
优选地,漫反射粒子为硫酸钡、氧化铝、氧化镁、氧化钛或氧化锆中的至少一种。
优选地,所述陶瓷微球为氧化铝、氧化镁或氮化硼中的至少一种。
优选地,所述粘接剂为玻璃、水玻璃、硅胶或树脂中的一种。优选地,玻璃是硅酸盐玻璃、铅硅酸盐玻璃、铝硼硅酸盐玻璃、铝酸盐玻璃、钠钙玻璃、石英玻璃中的一种或多种。上述玻璃具有不同软化点。特别优选地,玻璃选用低膨胀系数的硅酸盐玻璃。
优选地,原料玻璃粉的粒径选择为1~5um,优选为≤1um。玻璃粉的折射率可选择现有商业玻璃粉的多种折射率。由于暂时还没有1um以下的商业玻璃粉,在一些具体的实施方式中,原料玻璃粉的粒径为1um。
优选地,所述基板为金属基板或陶瓷基板。
具体地,步骤B包括:采用丝网或钢网网板印刷,将步骤A中所得到的浆料涂覆到基板上。其中,涂覆层厚度为0.1~0.6mm。
具体地,步骤C包括:烧结或固化,得到所述漫反射装置。其中,当采用水玻璃、硅胶或树脂等作为粘接剂时,采用固化工艺。优选地,所述固化工艺为光固化或温度固化。可以理解,本领域技术人员可以根据具体的水玻璃、硅胶或树脂种类选择合适的固化温度或光固化时间。优选地,固化温度为80~200℃。
当采用玻璃作为粘接剂是,采用烧结工艺。优选地,玻璃可以是硅酸盐玻璃、铅硅酸盐玻璃、铝硼硅酸盐玻璃、铝酸盐玻璃、钠钙玻璃、石英玻璃中的一种或多种。上述玻璃具有不同软化点,本领域技术人员可以更具实际选择的玻璃种类确定烧结温度。但是应当注意的是,当反射装置与荧光层配合使用时,其烧结温度应当低于荧光粉的破坏温度。具体地,烧结温度为400~1000℃。
下面结合具体的实施例对本发明进行说明。
实施例一
步骤A:将粒径为20nm~200nm的TiO 2粉体、直径为0.1mm的氧化铝陶 瓷微球与硅胶按照质量比例为1:0.8:1进行配比。其中直径为0.1mm的氧化铝陶瓷球的纯度为99.99%,直径优化为0.1mm。硅胶采用粘度为3000~5000cp,固化条件为150℃的硅胶。硅胶折射率优选为1.41的低折射率硅胶。三种物料采用搅拌初级分散后,再采用公转自转分散设备分散。
步骤B:采用丝网印刷的方式,将上述浆料进行涂覆到基板上,所涂覆层厚度为0.1~0.12mm。其中基板选用Al 2O 3基板(氧化铝陶瓷基板)。
步骤C:采用固化温度为150℃,烘烤时间为120min,制得漫反射装置。
实施例一制得的漫反射装置,包括叠置的氧化铝陶瓷基板和漫反射层;其中,漫反射层包括氧化铝陶瓷微球以及包覆在氧化铝陶瓷微球表面和/或填充氧化铝陶瓷微球间隙之间的TiO 2漫反射粒子和硅胶粘接剂;同时,氧化铝陶瓷微球的粒径为0.1mm;TiO 2漫反射粒子的粒径为20nm~200nm。TiO 2、氧化铝陶瓷微球与硅胶的质量比例约为1:0.8:1。
实施例二
与实施例一类似,实施例二与实施例一的区别在于漫反射粒子还包括了20nm~200nm的Al 2O 3粉体。并且TiO2粉体、Al 2O 3粉体、氧化铝陶瓷球与硅胶的质量比例为3:2:1:3。其余工艺参数和工艺流程与实施例一相同。
实施例二制得的漫反射装置,漫反射粒子包括了的粒径为20nm~200nm的TiO 2和Al 2O 3;并且TiO2粉体、Al 2O 3粉体、氧化铝陶瓷球与硅胶的质量比例为3:2:1:3。
实验表明,实施例二所制得的漫反射装置与实施例一所制得的漫反射装置具有基本相当的光反射特性。
实施例三
步骤A:将粒径为20nm~200nm的TiO 2粉体、20nm~200nm的Al 2O 3粉体、直径为0.1mm的氧化铝陶瓷球、与玻璃粉按照质量比例为3:2:1:4进行配比。四种物料与有机载体混合并搅拌初级分散后,再采用公转自转分散(或者球磨)分散设备分散。
其中直径为0.1mm的氧化铝陶瓷球的纯度为99.99%。玻璃粉可以是不同软化点的硅酸盐玻璃、铅硅酸盐玻璃、铝硼硅酸盐玻璃、铝酸盐玻璃、钠钙 玻璃、石英玻璃中的一种或多种。本实施例,优选低膨胀系数的硅酸盐玻璃。玻璃粉的粒径选择为1~5um,优选为≤1um。本实施例中玻璃粉的粒径选择为1um。玻璃粉的折射率可选择现有商业玻璃粉的多种折射率。
有机载体用于混合、分散原料粉体。本实施例中,有机载体具体包括乙基纤维素、松油醇、丁基卡比醇、丁基卡比醇酯混合溶解形成的有机载体。在其他实施方式中,有机载体还可以为其他种类的纤维素和醇组成;本领域技术人员可以根据实际需求任意选择。
步骤B:采用丝网网板印刷的方式,将步骤A中得到的浆料涂覆到基板上,所涂覆层厚度为0.1~0.12mm。其中基板为Al 2O 3基板。
步骤C:将步骤B中的涂覆有浆料的基板进行预烘干,烘干温度为60℃~200℃,预烘干2min~60min,后置于马弗炉中800℃~1000℃烧结1h;最后制得漫反射装置。在其他实施例中,烧结时间可以为2min~1h。
实施例三所制得的漫反射装置,包括叠置的氧化铝陶瓷基板和漫反射层;其中,漫反射层包括氧化铝陶瓷微球以及包覆在氧化铝陶瓷微球表面和/或填充氧化铝陶瓷微球间隙之间的TiO 2和Al 2O 3漫反射粒子和玻璃粘接相;同时,氧化铝陶瓷微球的粒径为0.1mm;TiO 2和Al 2O 3漫反射粒子的粒径为20nm~200nm。TiO 2、Al 2O 3、氧化铝陶瓷微球与玻璃的质量比例约为3:2:1:4。
实施例四
与实施例三类似,实施例四与实施例一的区别在于陶瓷微球采用了氮化硼陶瓷微球。氮化硼陶瓷微球粒径为同样为0.1mm。
实施例四制得的漫反射装置,漫反射粒子包括了的粒径为20nm~200nm的TiO 2和Al 2O 3;并且TiO2粉体、Al 2O 3粉体、氮化硼陶瓷球与硅胶的质量比例为3:2:1:4。
实施例五
本实施例在实施例一所制得的漫反射层上进一步制备一层荧光层。
采用已经制得的荧光陶瓷片作为荧光层,将荧光陶瓷直接贴合于实施例一种制备的漫反射装置的漫反射层之上。由于实施例一种的漫反射层采用硅胶封装,因此本实施例也采用硅胶作为荧光层和漫反射层之间的粘接剂。
实施例五制得的发光装置,包括叠置的氧化铝陶瓷基板、漫反射层和荧光层;其中,漫反射层包括氧化铝陶瓷微球以及包覆在氧化铝陶瓷微球表面和/或填充氧化铝陶瓷微球间隙之间的TiO 2漫反射粒子和硅胶粘接剂;同时,氧化铝陶瓷微球的粒径为0.1mm;TiO 2漫反射粒子的粒径为20nm~200nm。TiO 2、氧化铝陶瓷微球与硅胶的质量比例约为1:0.8:1。
实施例六
本实施例在实施例三所制得的漫反射层上进一步制备一层荧光层。
采用已经制得的荧光陶瓷片作为荧光层。将荧光陶瓷直接贴合于实施例三制备的漫反射装置的漫反射层之上。并采用耐高温胶用于粘接荧光层与漫反射层。
实施例六制得的发光装置,包括叠置的氧化铝陶瓷基板、漫反射层和荧光层;其中,漫反射层包括氧化铝陶瓷微球以及包覆在氧化铝陶瓷微球表面和/或填充氧化铝陶瓷微球间隙之间的TiO 2和Al 2O 3漫反射粒子和玻璃粘接相;同时,氧化铝陶瓷微球的粒径为0.1mm;TiO 2和Al 2O 3漫反射粒子的粒径为20nm~200nm。TiO 2、Al 2O 3、氧化铝陶瓷微球与玻璃的质量比例约为3:2:1:4。
实施例七
本实施例在实施例四所制得的漫反射层上进一步制备一层荧光层。
同实施例六类似,同样采用已经制得的荧光陶瓷片作为荧光层。将荧光陶瓷直接贴合于实施例四种制备的漫反射装置的漫反射层之上。并采用耐高温胶用于粘接荧光层与漫反射层。
实施例七制得的发光装置与实施例六的区别在于陶瓷微球选用了氮化硼陶瓷微球。
对比例一
将粒径为20nm~200nm的TiO 2粉体与硅胶按照质量比例为1.8:1。
硅胶采用粘度为3000~5000cp,固化条件为150℃烘烤120min,硅胶折射率1.41。两种物料采用搅拌初级分散后,再采用公转自转分散设备分散。采用丝网或钢网网板印刷的方式,进行涂覆到基板上,所涂覆层厚度为 0.1~0.12mm。其中基板为Al2O3陶瓷基板。
对比例一所制得的漫反射装中仅包含有20nm~200nm的TiO 2漫反射粒子。
对比例二
本对比例在对比例一所制得的漫反射层上进一步制备一层荧光层。采用已经制得的荧光陶瓷片作为荧光层,将荧光陶瓷直接贴合于对比例一种制备的漫反射装置的漫反射层之上。由于对比例一种的漫反射层采用硅胶封装,因此本实施例也采用硅胶作为荧光层和漫反射层之间的粘接剂。
将上述实施例一、三和四以及对比例一所制备成的漫反射层采用分光光度计测试其反射率,其测试结果如图9所示。在从图9中可以看出,添加了陶瓷微球的漫反射装置的反射率较对比例一未添加陶瓷微球的漫反射装置要高,这得益于添加了陶瓷球的漫反射层较厚,且其内部孔隙等较小,漫反射粒子的遮蔽效果更好。
将上述实施例五~七以及对比例二,在不同激发光功率下测得荧光层发光强度,其结果如图10所示。从图10中可以看出,添加陶瓷微球后的漫反射层有利于提高荧光层的发光效率。这主要是由于添加陶瓷微球后的漫反射装置的反射率有了提升,提高了荧光层对激发光利用率并且减少了荧光层所激发的荧光吸收损耗。同时图10的结果也可看出,荧光层随着功率增加其发光强度也不断增加,且有较好的线性关系,这说明,添加了陶瓷微球后的漫反射层并未因厚度增加而降低了导热性能,这主要是由于所添加的陶瓷球导热系数均较高,并且陶瓷微球在漫反射层中形成了网络结构,可以很好将荧光层的受激发时所产生的热量传递至基板中,陶瓷微球在漫反射层中不仅起到很好反射作用还兼具优良导热性能。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。以上仅为本发明的部分实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种漫反射装置,其特征在于,包括叠置的基板和漫反射层,所述漫反射层包括陶瓷微球以及包覆在所述陶瓷微球表面和/或填充所述陶瓷微球间隙之间的漫反射粒子和粘接剂;
    其中,所述陶瓷微球的粒径为0.1mm~0.5mm;所述漫反射粒子的粒径为20nm~200nm。
  2. 如权利要求1所述的漫反射装置,其特征在于,所述陶瓷微球为氧化铝、氧化镁或氮化硼中的至少一种。
  3. 如权利要求1所述的漫反射装置,其特征在于,所述漫反射粒子为硫酸钡、氧化铝、氧化镁、氧化钛或氧化锆中的至少一种。
  4. 如权利要求1所述的漫反射装置,其特征在于,所述粘接剂为玻璃、水玻璃、硅胶或树脂中的一种;或,所述基板为金属基板或陶瓷基板。
  5. 如权利要求1所述的漫反射装置,其特征在于,所述漫反射粒子、所述陶瓷微球以及所述粘接剂的质量比为(0.6~10):(0.3~8):(1~5)。
  6. 如权利要求1所述的漫反射装置,其特征在于,所述陶瓷微球在所述漫反射层中呈单层平铺排列。
  7. 如权利要求6所述的漫反射装置,其特征在于,所述陶瓷微球在所述漫反射层中单层密排平铺。
  8. 如权利要求1所述的漫反射装置,其特征在于,所述漫反射层厚度为0.1mm~0.5mm。
  9. 一种的发光装置,其特征在于,包括权利要求1~8中的任一项所述的漫反射装置,其中,还包括设置于所述漫反射层上的荧光层,所述荧光层能在激发光的激发下发出受激发光。
  10. 一种漫反射装置的制备方法,其特征在于,包括以下步骤:
    A、原料混合分散;
    B、采用丝网或钢网网板印刷,将步骤A中所得到的浆料涂覆到基板上;
    C、烧结或固化,得到所述漫反射装置。
PCT/CN2019/100481 2018-09-20 2019-08-14 一种漫反射装置及其制备方法、波长转换装置 WO2020057297A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811099651.5A CN110927844B (zh) 2018-09-20 2018-09-20 一种漫反射装置及其制备方法、波长转换装置
CN201811099651.5 2018-09-20

Publications (1)

Publication Number Publication Date
WO2020057297A1 true WO2020057297A1 (zh) 2020-03-26

Family

ID=69856177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100481 WO2020057297A1 (zh) 2018-09-20 2019-08-14 一种漫反射装置及其制备方法、波长转换装置

Country Status (2)

Country Link
CN (1) CN110927844B (zh)
WO (1) WO2020057297A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090002832A1 (en) * 2007-06-27 2009-01-01 Toppan Printing Co., Ltd. Antiglare film and transmissive liquid crystal display
CN105278225A (zh) * 2014-07-21 2016-01-27 深圳市绎立锐光科技开发有限公司 波长转换装置及其制备方法、相关发光装置和投影装置
CN105322433A (zh) * 2014-05-28 2016-02-10 深圳市绎立锐光科技开发有限公司 波长转换装置及其相关发光装置
CN105716039A (zh) * 2016-04-12 2016-06-29 杨阳 光转换装置及其制备方法和应用
CN106195924A (zh) * 2013-06-08 2016-12-07 深圳市绎立锐光科技开发有限公司 一种波长转换装置及其制作方法、相关发光装置
CN206671596U (zh) * 2017-04-20 2017-11-24 深圳市光峰光电技术有限公司 发光装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102443774B (zh) * 2010-09-30 2016-08-03 中国钢铁股份有限公司 薄膜结构
JP6153093B2 (ja) * 2013-09-03 2017-06-28 株式会社豊田中央研究所 反射防止膜及びその製造方法
CN104503010B (zh) * 2014-12-23 2016-09-21 浙江大学宁波理工学院 一种抗划伤型光学扩散膜及其制备方法
CN105589117A (zh) * 2015-12-21 2016-05-18 佛山佛塑科技集团股份有限公司 一种具有遮盖率和透光率协调性的光学扩散膜及其制备方法
CN107340553B (zh) * 2017-08-10 2020-02-28 宁波激智科技股份有限公司 一种高遮盖高辉度的雾化膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090002832A1 (en) * 2007-06-27 2009-01-01 Toppan Printing Co., Ltd. Antiglare film and transmissive liquid crystal display
CN106195924A (zh) * 2013-06-08 2016-12-07 深圳市绎立锐光科技开发有限公司 一种波长转换装置及其制作方法、相关发光装置
CN105322433A (zh) * 2014-05-28 2016-02-10 深圳市绎立锐光科技开发有限公司 波长转换装置及其相关发光装置
CN105278225A (zh) * 2014-07-21 2016-01-27 深圳市绎立锐光科技开发有限公司 波长转换装置及其制备方法、相关发光装置和投影装置
CN105716039A (zh) * 2016-04-12 2016-06-29 杨阳 光转换装置及其制备方法和应用
CN206671596U (zh) * 2017-04-20 2017-11-24 深圳市光峰光电技术有限公司 发光装置

Also Published As

Publication number Publication date
CN110927844A (zh) 2020-03-27
CN110927844B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
US20210404631A1 (en) Wavelength conversion device, manufacturing method thereof, and related illumination device
CN104595852B (zh) 一种波长转换装置、漫反射层、光源系统及投影系统
JP6348189B2 (ja) 波長変換装置及びその関連発光装置
CN203489181U (zh) 色轮及其光源系统、投影系统
JP5468985B2 (ja) 照明装置
WO2016173527A1 (zh) 一种波长转换装置、荧光色轮及发光装置
WO2016173525A1 (zh) 一种波长转换装置、发光装置及投影装置
US11578264B2 (en) Phosphor wheel with inorganic binder
JP2019525232A (ja) 波長変換装置およびその製造方法
JP6997869B2 (ja) 波長変換素子および光源装置
JP2024052910A (ja) 改良された無機結合剤を伴う光変換デバイス
WO2020057297A1 (zh) 一种漫反射装置及其制备方法、波长转换装置
CN108870119A (zh) 波长转换装置及其制备方法、激光荧光转换型光源
WO2020063154A1 (zh) 光反射材料、反射层及其制备方法
WO2013159664A1 (zh) 一种白光led发光装置及制备方法
WO2019153620A1 (zh) 波长转换装置
CN205282499U (zh) 一种陶瓷荧光基板及发光装置
JP2018131577A (ja) 波長変換部材
TWI712185B (zh) 發光裝置、應用其的背光模組、光源模組及其製備方法
CN109282169B (zh) 波长转换装置、包含其的光源及投影装置
CN104900793A (zh) 一种高导热高反射率的绝缘核壳复合结构的制备及应用
CN110017434A (zh) 波长转换装置及其光源
CN112305844B (zh) 荧光芯片及其制造方法和发光装置
TW201210977A (en) Method for manufacturing substrate containing fluorescent powder and light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862447

Country of ref document: EP

Kind code of ref document: A1