WO2020057227A1 - 电视机声音调整方法、电视机和存储介质 - Google Patents

电视机声音调整方法、电视机和存储介质 Download PDF

Info

Publication number
WO2020057227A1
WO2020057227A1 PCT/CN2019/094231 CN2019094231W WO2020057227A1 WO 2020057227 A1 WO2020057227 A1 WO 2020057227A1 CN 2019094231 W CN2019094231 W CN 2019094231W WO 2020057227 A1 WO2020057227 A1 WO 2020057227A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio signal
television
sound
sound pressure
frequency
Prior art date
Application number
PCT/CN2019/094231
Other languages
English (en)
French (fr)
Inventor
付华东
王余生
Original Assignee
深圳创维-Rgb电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳创维-Rgb电子有限公司 filed Critical 深圳创维-Rgb电子有限公司
Publication of WO2020057227A1 publication Critical patent/WO2020057227A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/60Receiver circuitry for the reception of television signals according to analogue transmission standards for the sound signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/439Processing of audio elementary streams

Definitions

  • the present application relates to the technical field of televisions, and in particular, to a television sound adjustment method, a television, and a storage medium.
  • TV As one of the household appliances with the highest holdings, has become a part of people's daily life. People not only have higher and higher requirements for the clarity of television display screens, but also the sound of televisions. The effect also raises higher demands.
  • the audio parameters of TVs are currently debugged by sound engineers in a fixed test room environment.
  • the audio parameters for debugging include: sound curve, corresponding to each sound mode. Frequency response, surround sound, advanced sound effects and subwoofer parameters. Because the environment in which each television is located in each user's home is different, when the sound is transmitted indoors, it must be reflected by obstacles such as walls, ceilings, and floors. Each reflection must be absorbed by the obstacles. These will cause different degrees of attenuation to the sound.
  • a microphone is provided in the TV to collect the original sound emitted by the TV, and the reflected sound reflected by people or things in the environment (such as walls, homes, etc.), according to Reflect the sound to adjust the audio parameters of the TV.
  • This method is not very practical, because users watch TV in different places in the room, the sound is reflected by the environment, and the degree of absorption is different, resulting in that the audio parameters adjusted by this method do not match the use environment.
  • the main purpose of the present application is to provide a television sound adjustment method, a television, and a storage medium, which are aimed at solving the problems of mismatching the adjustment of audio parameters and the use environment in the existing television sound adjustment technology.
  • the television sound adjustment method includes the following steps:
  • the actual audio signal is an audio signal collected by the sound collector within a preset range of the television
  • the step of transmitting the original audio signal before includes:
  • the step of adjusting the original audio signal according to the actual audio signal includes:
  • the equalizer parameter is used to control the equalizer to perform frequency response calibration on the original audio signal.
  • the step of obtaining a calibration gain of the original audio signal based on the actual audio signal as a reference includes:
  • a calibration gain is calculated according to the frequency response parameter.
  • the step of obtaining frequency response parameters of the digital audio signal according to the digital audio signal includes:
  • the step of calculating a calibration gain according to the frequency response parameter includes:
  • the frequency response parameter includes a sound pressure of each frequency band in each group of frequency bands; and the step of calculating an average sound pressure of each group of frequency bands according to the frequency response parameter includes:
  • SPLn represents the average sound pressure of each frequency band in the n group
  • SPLm represents the sound pressure of the m frequency band in the group
  • n and m are integers greater than 0.
  • the step of adjusting the original audio signal according to the actual audio signal includes:
  • the present application also provides a television
  • the television includes: a memory, a processor, and a television sound adjustment program stored in the memory and operable on the processor. The steps of implementing the television sound adjustment method as described above when the television sound adjustment program is executed by the processor.
  • the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores a television sound adjustment program, and the television sound adjustment program is implemented as described above when executed by a processor.
  • the steps of the TV sound adjustment method are described below.
  • a television sound adjustment method, a television and a storage medium provided in the embodiments of the present application are obtained by transmitting original audio signals from the television and collecting the original audio signals through a sound collector within a preset range of the television to obtain the original audio signal.
  • the audio signal is an actual audio signal formed by environmental factors during the propagation process.
  • the actual audio signal and the original audio signal are analyzed and calculated, and the original audio signal is adjusted according to the analysis and calculation result.
  • FIG. 1 is a schematic structural diagram of a device involved in a solution according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a first embodiment of a television sound adjustment method of the present application
  • FIG. 3 is a schematic flowchart of a second embodiment of a sound adjustment method for a television set of the present application
  • FIG. 4 is a detailed flowchart of step S32 in a third embodiment of a television sound adjustment method of the present application.
  • FIG. 5 is a detailed flowchart of step S31 in a fourth embodiment of a television sound adjustment method of the present application.
  • FIG. 6 is a detailed flowchart of step S312 in a fourth embodiment of a sound adjustment method for a television set of the present application.
  • step S313 is a detailed flowchart of step S313 in the fourth embodiment of the method for adjusting sound of a television set of the present application;
  • FIG. 8 is a schematic flowchart of a fifth embodiment of a television sound adjustment method of the present application.
  • FIG. 1 is a schematic structural diagram of a device for a hardware operating environment involved in the solution of the embodiment of the present application.
  • the terminal is a television, and may also be a smart phone, a tablet computer, an e-book reader, or MP3 (Moving Picture). Experts Group Audio Layer III, standard video layer 3) player, MP4 (Moving Picture Experts Group Audio Layer IV, compression standard audio layer for motion picture experts 4) Portable terminal devices with power amplifier functions such as players and portable computers.
  • MP3 Moving Picture
  • Experts Group Audio Layer III standard video layer 3
  • MP4 Moving Picture Experts Group Audio Layer IV, compression standard audio layer for motion picture experts 4
  • Portable terminal devices with power amplifier functions such as players and portable computers.
  • the terminal may include a processor 1001, such as a CPU, a communication bus 1002, a user interface 1003, a network interface 1004, and a memory 1005.
  • the communication bus 1002 is used to implement connection and communication between these components.
  • the user interface 1003 may include a display, a power amplifier, and an input unit such as a keyboard.
  • the optional user interface 1003 may further include a standard wired interface and a wireless interface.
  • the network interface 1004 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 1005 may be a high-speed RAM memory or a non-volatile memory. memory), such as disk storage.
  • the memory 1005 may optionally be a storage device independent of the foregoing processor 1001.
  • the terminal may further include a camera, RF (Radio Frequency) circuits, sensors, audio circuits, WiFi modules, and more.
  • RF Radio Frequency
  • the hardware device may also be configured with other sensors such as a gyroscope, a barometer, a hygrometer, a thermometer, an infrared sensor, and the like, and will not be repeated here.
  • the processor 1001 may be configured to call a television sound adjustment program stored in the memory 1005, and execute the steps described in each of the following television sound adjustment methods:
  • the actual audio signal is an audio signal collected by the sound collector within a preset range of the television
  • the processor 1001 may be configured to call a television sound adjustment program stored in the memory 1005, and further perform the following operations:
  • the processor 1001 may be configured to call a television sound adjustment program stored in the memory 1005, and further perform the following operations:
  • the equalizer parameter is used to control the equalizer to perform frequency response calibration on the original audio signal.
  • the processor 1001 may be configured to call a television sound adjustment program stored in the memory 1005, and further perform the following operations:
  • a calibration gain is calculated according to the frequency response parameter.
  • the processor 1001 may be configured to call a television sound adjustment program stored in the memory 1005, and further perform the following operations:
  • the processor 1001 may be configured to call a television sound adjustment program stored in the memory 1005, and further perform the following operations:
  • the processor 1001 may be configured to call a television sound adjustment program stored in the memory 1005, and further perform the following operations:
  • terminal structure shown in FIG. 1 does not constitute a limitation on the terminal, and may include more or fewer components than shown in the figure, or some components may be combined, or different components may be arranged.
  • FIG. 2 is a schematic flowchart of a first embodiment of a television sound adjustment method of the present application.
  • the television sound adjustment method includes the following steps:
  • Step S10 the original audio signal is sent
  • a television sound adjustment program is installed on a terminal, and the terminal may be a television, or a smart phone, a tablet computer, an e-book reader, MP3 (Moving Picture Experts Group Audio Layer III, standard audio layer 3) player, MP4 (Moving Picture Experts Group Audio Layer IV, standard audio layer for compression of motion picture experts 4) Portable terminal devices with power amplifier functions such as players and portable computers.
  • a television is taken as an example for description.
  • the audio signal refers to an information carrier of frequency and amplitude changes of regular sound waves with voice, music, and sound effects.
  • the frequency band width of the audio signal is usually called the bandwidth, and the range is 20Hz-20KHz, which is an audio signal that conforms to the hearing range of the human ear.
  • the audio signal sent by the TV is the original audio signal without calibration adjustment.
  • Step S20 Receive an actual audio signal sent by a sound collector, where the actual audio signal is an audio signal collected by the sound collector within a preset range of the television;
  • the sound collector refers to a device capable of collecting the original audio signal sent by the television. Because the original audio signal sent by the television is affected by the environment during the propagation process, the audio parameters in the original audio signal change. Therefore, the audio signal collected by the sound collector is an actual audio signal, and the actual audio signal is an audio signal collected by the sound collector after the original audio signal is propagated.
  • the sound collector is set in a preset range around the TV, and the preset range of the TV includes the user's listening position when the TV is actually used, that is, the set of positions where the user can listen to the sound of the TV.
  • the actual audio signal collected by the sound collector corresponds to the sound quality and sound effect of the sound that the user has heard at that location.
  • the actual audio signal is collected by the sound collector, which can accurately obtain the listening experience of the user at the location.
  • the way in which the television receives the actual audio signal collected by the sound collector within the preset range of the television may be a wireless data transmission mode.
  • the sound collector may transmit the collected actual audio signal to the television through a Wi-Fi (WIreless-FIdelity, wireless fidelity) connection.
  • the sound collector can also transmit actual audio signals to the TV through a Bluetooth connection, or other wireless data transmission methods to transmit actual audio signals, which are not described in detail here.
  • Step S30 Adjust the original audio signal according to the actual audio signal.
  • the TV sound adjustment program can adjust the audio parameters in the original audio signal, so that the sound quality and sound effect of the sound heard by the user is improved to meet the user's needs for adjusting the audio signal.
  • the TV After the TV receives the actual audio signal collected by the sound collector, it can analyze the actual audio signal to obtain the influence of the environment on the original audio signal during the propagation process, and adjust the original audio signal based on the analysis result of the actual audio signal. Solve the problem that the sound quality and sound effects of the sound caused by the difference of the surrounding environment when the TV sends the original audio signal, and improve the user's sound experience.
  • the television sends the original audio signal outward, and the sound collector receives the actual audio signal formed by the influence and interference of environmental factors within the preset range of the television, that is, the range of the user's listening, and The actual audio signal is transmitted to the television.
  • the television analyzes the actual audio signal to obtain the influence of the environment on the propagation of the original audio signal, and then adjusts the original audio signal to solve the existing problem.
  • the problem of adjusting the audio parameters and the use environment mismatch in the technology of adjusting the sound of TVs, improving the sound quality and sound effects of the sounds heard by users, and improving the listening and viewing experience of users.
  • the original audio signal sent by the television is pink noise.
  • the frequency range of the sound that can be received by the human ear is mainly analyzed, and the frequency range is 20Hz-20KHz.
  • the power of the frequency component of pink noise is mainly distributed in the low and middle frequency bands.
  • the energy contained in audio signals of different frequencies in pink noise is continuously attenuated as the frequency increases, which is usually suitable for acoustic testing.
  • pink noise is used as the original audio signal, it can cover the receiving frequency range of the human ear, and the main energy is distributed in the low and medium frequency bands, that is, the most sensitive sound band of the human ear. After processing the actual audio signal obtained, it can be obtained Clear and accurate sound information to better enhance the sound effect that users hear.
  • the user ’s actual position of listening and watching on the TV is usually easy to change
  • the TV adjusts the original audio signal
  • the sound adjustment function readjusts the original audio signal, sends the original audio signal through the TV, and obtains the actual audio signal through the sound collector at the position changed by the user, and transmits the actual audio signal to the TV.
  • the TV After receiving the actual audio signal, the original audio signal is adjusted according to the actual audio signal to readjust the original audio signal after the user changes the listening position to improve the user's listening experience.
  • FIG. 3 is a schematic flowchart of a second embodiment of a sound adjustment method for a television set of the present application.
  • the step of sending out an original audio signal includes:
  • Step S11 Receive a control signal sent by the controller, and obtain a function mode of the television according to the control signal;
  • step S12 when the function mode is sound adjustment, a step is executed: the original audio signal is sent.
  • the television enters the function mode corresponding to the control signal by receiving the control signal sent by the controller of the television.
  • the function mode corresponding to the control signal sent by the controller is sound adjustment
  • the TV enters the sound adjustment mode.
  • the TV sends out the original audio signal, and the audio signal is collected by the sound collector at the user's listening position to complete the sound adjustment.
  • the TV When the TV is running, the user's listening position may change continuously. However, in real life, if the TV adjusts the sound in real time and continuously adjusts the original audio signal according to the user's listening position, it is easy for the user to listen and watch normally The sound effects heard during the TV program constantly change, which in turn affects the user's listening experience. Therefore, after the TV receives the control signal from the controller, when the control signal corresponds to the sound adjustment mode, the TV enters the sound adjustment function and sends out the original audio signal to complete the sound adjustment.
  • FIG. 4 is a detailed flowchart of a third embodiment of a television sound adjustment method of the present application.
  • the step S32 is a step of adjusting an original audio signal according to the calibration gain.
  • Step S321 using the actual audio signal as a reference, obtaining a calibration gain of the original audio signal
  • Step S322 obtaining equalizer parameters according to the calibration gain
  • step S323 the equalizer parameter is used to control the equalizer to perform frequency response calibration on the original audio signal.
  • the television acquires the actual audio signal collected by the sound collector, it calculates and analyzes the actual audio signal to obtain the change of the actual audio signal relative to the original audio signal. Because the original audio signal is in the propagation process, The actual audio signal is formed by the influence of environmental factors. Therefore, the calibration gain of the original audio signal can be obtained based on the actual audio signal. After the calibration gain is obtained, the corresponding equalizer parameters can be obtained according to the obtained calibration gain.
  • An equalizer is a component set in a television that can be used to correct the amplitude frequency characteristics and phase frequency characteristics of a transmission channel. The equalizer can adjust the gain value of each frequency band signal of the original audio signal to achieve sound quality and sound effect adjustment.
  • Frequency response refers to frequency response, also called frequency response curve.
  • the frequency response curve In an ideal frequency response curve, in order to ensure that the sound is not distorted, the frequency response curve should be straight. However, after the original audio signal passes the influence of environmental factors during the propagation process, the frequency response curve of the actual audio signal formed is not straight, which also affects the sound quality and color of the sound and causes distortion of the sound.
  • the frequency response parameters can be adjusted so that the frequency response curve is close to the ideal flat state, and the audio signal is prevented from deviating from the original audio signal during transmission.
  • the equalizer in the technical solution of the present application is a GEQ equalizer, that is, a graphic equalizer.
  • the graphic equalizer can divide the audio signal of the sound into different frequency bands, and control the timbre of the sound by adjusting each frequency band.
  • the human ear can hear sound in the range of 20Hz-20KHz.
  • the spatial sense of the tone can be adjusted.
  • 60Hz-100Hz is used as the fundamental tone of the bass, and the sound signal in the 60Hz-100Hz frequency band can be adjusted.
  • Adjust the thickness of the sound adjust the frequency range of 150Hz-300Hz, which can adjust the strength of the sound, 150Hz-300Hz belongs to the frequency range of the bass bass; adjust 300Hz-500Hz can adjust the thickness and strength of the tone, because the most sensitive frequency band of the human ear is Below 2KHz, so when the GEQ equalizer groups the frequency bands, it mainly focuses on adjusting the low-frequency audio signals to adjust the tone of the sound.
  • FIG. 5 is a schematic flowchart of a fourth embodiment of a sound adjustment method for a television set of the present application.
  • the step S31 obtains the original audio by using the actual audio signal as a reference.
  • the steps of calibrating the gain of the signal include:
  • Step S311 sampling the actual audio signal to obtain a digital audio signal
  • Step S312 obtaining a frequency response parameter of the digital audio signal according to the digital audio signal
  • Step S313 Calculate a calibration gain according to the frequency response parameter.
  • the actual audio signal collected by the sound collector is an analog audio signal.
  • the television acquires the actual audio signal, it is necessary to sample the actual audio signal to obtain a digital audio signal of the actual audio signal.
  • the frequency range of the actual audio signal is 20Hz-20KHz, according to the Shannon sampling theorem, when the sampling frequency is greater than twice the highest frequency in the signal, the sampled digital audio signal can completely retain the information in the original analog signal. Therefore, in the technical solution of the present application, a sampling signal with a sampling frequency of 48 KHz may be used to completely obtain the sound information contained in the actual audio signal.
  • the digital audio signal is analyzed and calculated to obtain the frequency response curve of the audio signal. According to the frequency response curve of the digital audio signal containing all the information of the actual audio signal, the frequency response parameters are calculated and further obtained. Calibration gain.
  • FIG. 6 is a detailed flowchart of a fourth embodiment of a television sound adjustment method of the present application.
  • the step S312 obtains the digital audio according to the digital audio signal.
  • the steps of the signal's frequency response parameters include:
  • step S3121 a fast Fourier transform is performed on the digital audio signal to generate multiple frequency bands and frequency response parameters corresponding to each frequency band, and the bandwidths of the multiple frequency bands are equal.
  • FFT Fast Fourier Transformation
  • 1024 frequency bands with a frequency of 20Hz-20480Hz and a bandwidth of 20Hz can be obtained. Since the most sensitive acoustic and audio range of the human ear is below 2KHz, 1024 frequency bands are unequally grouped, and each group of frequency bands is integrated to calculate the frequency response parameters of the digital audio signal. Of course, multiple frequency bands can also be grouped in an equal grouping manner.
  • FIG. 7 is a detailed flowchart of a fourth embodiment of a sound adjustment method for a television set of the present application.
  • step S313 a step of obtaining a calibration gain according to the frequency response parameter is calculated.
  • Step S3131 group the multiple frequency bands, and calculate an average sound pressure of each group of frequency bands according to the frequency response parameters;
  • Step S3132 determining a reference sound pressure according to the average sound pressure of each group of frequency bands
  • step S3133 a calibration gain of each frequency band is obtained according to the reference sound pressure.
  • multiple frequency bands obtained through the FFT algorithm are grouped according to frequency bands. Because when adjusting the sound that can be heard by the human ear, the audio signals in the low frequency band are mainly adjusted, therefore, the frequency bands are adjusted.
  • the grouping focuses on the low frequency band, that is, the frequency band at 2KHz is used as the main grouping basis.
  • the TV calculates the average sound pressure of each frequency band according to the frequency response parameters included in the grouped frequency bands. After calculating the average sound pressure of each frequency band, the reference sound is determined based on the average sound pressure of each frequency band. Pressure.
  • the reference sound pressure may be a frequency band in which a group of human ears is most sensitive in each frequency band, and the average sound pressure calculated by the frequency band is used as the reference sound pressure; the reference sound pressure may also be an average of the frequency bands in each group.
  • the reference sound pressure is compared with the average sound pressure calculated in each frequency band to obtain the calibration gain of each group of frequency bands, and the audio signal is adjusted by adjusting the equalizer.
  • the frequency response parameter includes the sound pressure of each frequency band in each group of frequency bands; step S3131, the step of calculating the average sound pressure of each group of frequency bands according to the frequency response parameter includes:
  • SPLn represents the average sound pressure of each frequency band in the n group
  • SPLm represents the sound pressure of the m frequency band in the group
  • n and m are integers greater than 0.
  • the 1024 frequency bands with a frequency range of 20Hz-20480Hz are divided into ten groups, which are grouped as follows: 20Hz-40Hz, 40Hz-80Hz, 80Hz-160Hz, 160Hz-320Hz, 320Hz-640Hz, 640Hz-1280Hz, 1280Hz-2560Hz, 2560Hz-5120Hz, 5120Hz-10240Hz, 10240Hz-20480Hz.
  • n 10
  • SPLn represents the average sound pressure of the tenth frequency band.
  • m 512
  • SPLm represents the sound pressure of the 512th frequency band
  • the bandwidth of each frequency band is 20Hz.
  • the average sound pressure formula can calculate the average sound pressure of each frequency band.
  • the average sound pressure calculation formula is:
  • SPLn is the average sound pressure in the frequency band of 80Hz-160Hz
  • SPL1 is the sound pressure in the 80Hz-100Hz frequency band
  • SPL2 is the sound pressure in the 100Hz-120Hz frequency band
  • SPL3 is the sound pressure in the 120Hz-140Hz frequency band
  • SPL4 Sound pressure in the frequency band of 140Hz-160Hz.
  • the average sound pressure of the frequency band of 640Hz-1280Hz is used as the preset reference sound pressure SPLr, and the other The average sound pressure of the group frequency band is based on the reference sound pressure SPLr, and the compensation spectrum of the average sound pressure of the other frequency bands relative to the reference sound pressure is obtained.
  • the equalizer parameters are calculated based on the compensated spectrum.
  • FIG. 8 is a schematic flowchart of a fifth embodiment of a television sound adjustment method of the present application.
  • the step of adjusting the original audio signal according to the actual audio signal includes: :
  • Step S40 comparing the actual audio signal with the original audio signal to obtain a comparison result
  • Step S50 Obtain a calibration gain of the original audio signal according to the comparison result.
  • Step S60 Adjust the original audio signal according to the calibration gain.
  • the actual audio signal is compared with the original audio signal, and the deviation of the original audio signal due to the influence of environmental factors in the propagation process can be obtained. According to the comparison result , Calculate the calibration gain of the original audio signal, and adjust the original audio signal according to the calibration gain, so that the actual audio signal can maintain the timbre and quality of the sound, and avoid distortion of the sound.
  • an embodiment of the present application further provides a computer-readable storage medium on which a television sound adjustment program is stored.
  • the storage medium may be the memory 1005 in the terminal of FIG. 1, or may be a ROM (Read-Only Memory (Read Only Memory) / RAM (Random Access Memory, at least one of random access memory, magnetic disk, and optical disk.
  • the computer-readable storage medium includes several instructions to enable a terminal device (such as a mobile phone, computer, server, or television) with a processor. Machine, etc.) perform the methods described in the various embodiments of this application.
  • the methods in the above embodiments can be implemented by means of software plus a necessary universal hardware platform, and of course, also by hardware, but in many cases the former is better.
  • Implementation Based on such an understanding, the technical solution of this application that is essentially or contributes to the exemplary technology may be embodied in the form of a software product, which is stored in a storage medium such as ROM / RAM as described above , Magnetic disk, optical disc), including a number of instructions to enable a terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in the embodiments of this application.
  • a terminal device which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Abstract

本申请公开了一种电视机声音调整方法、电视机和存储介质,所述方法包括以下步骤:发出原始音频信号;接收声音采集器发送的实际音频信号,其中所述实际音频信号为所述声音采集器在所述电视机预设范围内采集的音频信号;根据所述实际音频信号,调整原始音频信号。

Description

电视机声音调整方法、电视机和存储介质
本申请要求于2018年09月19日提交中国专利局、申请号为201811096965.X、发明名称为“电视机声音调整方法、电视机和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
技术领域
本申请涉及电视机技术领域,尤其涉及一种电视机声音调整方法、电视机和存储介质。
背景技术
随着人们生活水平的不断提高,电视作为保有量最高的家用电器之一,已经成为人们日常生活中的一部分,人们不仅对电视机显示画面的清晰度要求越来越高,对于电视机的声音效果同样提出了更高的需求。
电视机的音频参数作为衡量电视机声音效果的一项重要技术指标,目前都是由音响工程师在固定的测试房间环境下进行调试的,调试的音频参数包含:声音曲线,每种声音模式对应的频响,环绕声,高级音效以及重低音等参数。由于电视机在每个用户家里面所处的环境不一样,声音在室内传播时,要被墙壁、天花板、地板等障碍物反射,每反射一次都要被障碍物吸收一些。这些都会对声音造成不同程度的衰减。当前通过如下方法来减少外部环境对声音效果造成的影响:在电视机内设有麦克风来采集电视机发出的原始声音经环境中人或物(例如墙壁、家居等)反射回来的反射声音,根据反射声音来调整电视机的音频参数。这种方法实用性不强,因为用户在房间不同的地方看电视,声音经过环境环境反射,吸收的程度是不一样的,导致通过这种方法调整的音频参数和使用环境不匹配。
发明内容
本申请的主要目的在于提供一种电视机声音调整方法、电视机和存储介质,旨在解决现有的电视机调整声音技术中调整音频参数和使用环境不匹配的问题。
为实现上述目的,本申请提供一种电视机声音调整方法,所述电视机声音调整方法包括以下步骤:
发出原始音频信号;
接收声音采集器发送的实际音频信号,其中所述实际音频信号为所述声音采集器在所述电视机预设范围内采集的音频信号;
根据所述实际音频信号,调整原始音频信号。
可选地,所述发出原始音频信号的步骤之前包括:
接收控制器发送的控制信号,并根据控制信号获取所述电视机的功能模式;
当所述功能模式为声音调整时,执行步骤:发出原始音频信号。
可选地,所述根据所述实际音频信号,调整原始音频信号的步骤包括:
以所述实际音频信号为基准,获取所述原始音频信号的校准增益;
根据所述校准增益,获得均衡器参数;
利用所述均衡器参数控制所述均衡器对原始音频信号进行频响校准。
可选地,所述根据所述以所述实际音频信号为基准,获取所述原始音频信号的校准增益的步骤包括:
对所述实际音频信号进行采样,得到数字音频信号;
根据所述数字音频信号,得到所述数字音频信号的频率响应参数;
根据所述频率响应参数计算得到校准增益。
可选地,所述根据所述数字音频信号,得到所述数字音频信号的频率响应参数的步骤包括:
对所述数字音频信号进行快速傅里叶变换,生成多个频率带以及每个频率带分别对应的频率响应参数,所述多个频率带的带宽相等。
可选地,所述根据所述频率响应参数计算得到校准增益的步骤包括:
对所述多个频率带进行分组,并根据所述频率响应参数,计算各组频率带的平均声压;
根据各组频率带的平均声压,确定参考声压;
根据所述参考声压,得到所述各组频率带的校准增益。
可选地,所述频率响应参数包括各组频率带中每个频率带的声压;所述根据所述频率响应参数,计算各组频率带的平均声压的步骤包括:
采用如下公式计算各组频率带的平均声压:
SPLn=10lg[10^(SPL1/10)+10^(SPL2/10)+10^(SPL3/10)+10^(SPL4/10)+...+10^(SPLm/10)]
其中,SPLn表示第n组中各频率带的平均声压;SPLm分别表示该组中第m个频率带的声压;n和m均为大于0的整数。
可选地,所述根据所述实际音频信号,调整原始音频信号的步骤包括:
对所述实际音频信号和所述原始音频信号进行比对,得到比对结果;
根据所述比对结果,获取所述原始音频信号的校准增益;
根据所述校准增益,调整原始音频信号。
此外,为实现上述目的,本申请还提供一种电视机,所述电视机包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的电视机声音调整程序,所述电视机声音调整程序被所述处理器执行时实现如上所述的电视机声音调整方法的步骤。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有电视机声音调整程序,所述电视机声音调整程序被处理器执行时实现如上所述的电视机声音调整方法的步骤。
本申请实施例提出的一种电视机声音调整方法、电视机和存储介质,通过由电视机发出原始音频信号,并在电视机预设范围内通过声音采集器对原始音频信号进行采集,获得原始音频信号在传播过程中受到环境因素而形成的实际音频信号,对实际音频信号与原始音频信号进行分析运算,根据分析运算结果调整原始音频信号。从而避免了电视机未因环境差异调整音频参数而导致用户所听到的声音失真和音质受损问题,并且能够提升用户观看电视时的音效体验。解决现有的电视机调整声音技术中调整音频参数和使用环境不匹配的问题。
附图说明
图1是本申请实施例方案涉及的的装置结构示意图;
图2为本申请电视机声音调整方法第一实施例的流程示意图;
图3为本申请电视机声音调整方法第二实施例的流程示意图;
图4为本申请电视机声音调整方法第三实施例中步骤S32的细化流程示意图;
图5为本申请电视机声音调整方法第四实施例中步骤S31的细化流程示意图;
图6为本申请电视机声音调整方法第四实施例中步骤S312的细化流程示意图;
图7为本申请电视机声音调整方法第四实施例中步骤S313的细化流程示意图;
图8为本申请电视机声音调整方法第五实施例的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的实施例仅仅用以解释本申请,并不用于限定本申请。
如图1所示,图1是本申请实施例方案涉及的硬件运行环境的装置结构示意图。
本申请实施例终端为电视机,也可以是智能手机、平板电脑、电子书阅读器、MP3(Moving Picture Experts Group Audio Layer III,动态影像专家压缩标准音频层面3)播放器、MP4(Moving Picture Experts Group Audio Layer IV,动态影像专家压缩标准音频层面4)播放器、便携计算机等具有功放功能的可移动式终端设备。
如图1所示,该终端可以包括:处理器1001,例如CPU,通信总线1002,用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、功放、输入单元比如键盘(Keyboard),可选的用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
可选地,终端还可以包括摄像头、RF(Radio Frequency,射频)电路,传感器、音频电路、WiFi模块等等。当然,硬件设备还可配置陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
处理器1001可以用于调用存储器1005中存储的电视机声音调整程序,并执行如下电视机声音调整方法中各实施所述的步骤:
发出原始音频信号;
接收声音采集器发送的实际音频信号,其中所述实际音频信号为所述声音采集器在所述电视机预设范围内采集的音频信号;
根据所述实际音频信号,调整原始音频信号。
进一步地,处理器1001可以用于调用存储器1005中存储的电视机声音调整程序,还执行以下操作:
接收控制器发送的控制信号,并根据控制信号获取所述电视机的功能模式;
当所述功能模式为声音调整时,执行步骤:发出原始音频信号。
进一步地,处理器1001可以用于调用存储器1005中存储的电视机声音调整程序,还执行以下操作:
以所述实际音频信号为基准,获取所述原始音频信号的校准增益;
根据所述校准增益,获得均衡器参数;
利用所述均衡器参数控制所述均衡器对原始音频信号进行频响校准。
进一步地,处理器1001可以用于调用存储器1005中存储的电视机声音调整程序,还执行以下操作:
对所述实际音频信号进行采样,得到数字音频信号;
根据所述数字音频信号,得到所述数字音频信号的频率响应参数;
根据所述频率响应参数计算得到校准增益。
进一步地,处理器1001可以用于调用存储器1005中存储的电视机声音调整程序,还执行以下操作:
对所述数字音频信号进行快速傅里叶变换,生成多个频率带以及每个频率带分别对应的频率响应参数,所述多个频率带的带宽相等。
进一步地,处理器1001可以用于调用存储器1005中存储的电视机声音调整程序,还执行以下操作:
对所述多个频率带进行分组,并根据所述频率响应参数,计算各组频率带的平均声压;
根据各组频率带的平均声压,确定参考声压;
根据所述参考声压,得到所述各组频率带的校准增益。
进一步地,处理器1001可以用于调用存储器1005中存储的电视机声音调整程序,还执行以下操作:
对所述实际音频信号和所述原始音频信号进行比对,得到比对结果;
根据所述比对结果,获取所述原始音频信号的校准增益;
根据所述校准增益,调整原始音频信号。
本领域技术人员可以理解,图1中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
请参照图2,图2为本申请电视机声音调整方法第一实施例的流程示意图,其中,所述电视机声音调整方法包括如下步骤:
步骤S10,发出原始音频信号;
本实施例中,电视机声音调整程序安装在终端上,该终端可以是电视机,也可以是是智能手机、平板电脑、电子书阅读器、MP3(Moving Picture Experts Group Audio Layer III,动态影像专家压缩标准音频层面3)播放器、MP4(Moving Picture Experts Group Audio Layer IV,动态影像专家压缩标准音频层面4)播放器、便携计算机等具有功放功能的可移动式终端设备。本实施例中,以电视机为例进行说明。当电视机处于正常工作状态时,电视机向外发出原始音频信号,音频信号指带有语音、音乐和音效的有规律的声波的频率和幅度变化信息载体。该音频信号的频带宽度通常被称为带宽,范围为20Hz-20KHz,即符合人耳听力范围的音频信号,此时电视机发出的音频信号为未经过校准调整的原始音频信号。
步骤S20,接收声音采集器发送的实际音频信号,其中所述实际音频信号为所述声音采集器在所述电视机预设范围内采集的音频信号;
本实施例中,声音采集器指能够将电视机发出的原始音频信号进行采集的设备,由于电视机发出的原始音频信号在传播过程中受到环境的影响后,原始音频信号中的音频参数发生改变,因此,声音采集器所采集到的音频信号为实际音频信号,实际音频信号为原始音频信号在经过传播后被声音采集器采集到的音频信号。声音采集器设置于电视机周围的预设范围内,电视机的预设范围包括电视机实际使用时用户听音位置,即用户能够收听电视机声音的位置的集合。以声音采集器设置的地点作为用户实际收听到电视机发出的原始音频信号的地点,则声音采集器所采集到的实际音频信号对应于该地点的用户所收听到的声音的音质与音效。通过声音采集器采集到实际音频信号,能够准确地获取到用户在该位置的收听体验。
需要说明的是,电视机接收声音采集器在电视机预设范围内采集到的实际音频信号的方式可以是无线数据传输方式。可选地,声音采集器可以通过Wi-Fi(WIreless-FIdelity,无线保真)连接的方式,将采集到的实际音频信号传送至电视机内。声音采集器还可以通过蓝牙连接的方式传送实际音频信号至电视机,或者其他的无线数据传输方式传输实际音频信号,在此则不一一赘述。
步骤S30,根据所述实际音频信号,调整原始音频信号。
由于电视机在发出原始音频信号时所处的环境不同,音频信号在室内或室外进行传播时受到环境因素的影响也不同,因此,原始音频信号在经过环境的影响后,无法满足用户的需求。电视机声音调整程序能够对原始音频信号中的音频参数进行调整,使得用户所听到的声音的音质和音效得到提高,以满足用户调整音频信号的需求。
电视机接收到声音采集器采集到的实际音频信号后,能够对实际音频信号进行分析,得到环境对原始音频信号在传播过程中的影响,并根据实际音频信号的分析结果,调整原始音频信号,解决电视机在发送原始音频信号时由于周围环境差异导致的声音的音质和音效受损的问题,提升用户音效体验。
本实施例中,电视机将原始音频信号向外进行发送,声音采集器在电视机的预设范围内,即用户听音的范围内接收经过环境因素影响和干扰而形成的实际音频信号,并将实际音频信号传送至电视机内,电视机在接收到实际音频信号后,对实际音频信号进行分析,以得到环境对原始音频信号传播过程中的影响,进而调整原始音频信号,解决了现有的电视机调整声音技术中调整音频参数和使用环境不匹配的问题,改善用户收听到的声音音质和音效,提升用户收听和观看体验。
可选地,在本实施例中,电视机发出的原始音频信号为粉红噪声。在发出原始音频信号并对原始音频信号采集处理的过程中,主要对人耳所能够接收到的声音频率范围进行分析,该频率范围为20Hz-20KHz。粉红噪声的频率分量功率主要分布在中低频段,粉红噪声中的不同频率的音频信号所包含的能量随频率的增加而不断衰减,通常适用于进行声学测试。当采用粉红噪声作为原始音频信号时,能够覆盖人耳接收频率范围,并且主要能量分布在中低频段,即人耳最为敏感的声音频段,使得对获取到的实际音频信号进行处理后,能够得到清晰而准确的声音信息,以更好地提升用户收听到的声音效果。
需要说明的是,由于用户实际使用电视机收听和收看的位置通常容易发生变化,在电视机调整原始音频信号后,若用户更换了收听和收看电视节目的位置,相应的,可以通过电视机的声音调整功能,重新对原始音频信号进行调整,通过电视机发送原始音频信号,并在用户更改后的位置通过声音采集器获取到实际音频信号,并将实际音频信号传送至电视机内,电视机在接收到实际音频信号后,根据实际音频信号调整原始音频信号,以在用户更改收听位置后重新对原始音频信号进行调整,提升用户收听体验。
进一步地,参照图3,图3为本申请电视机声音调整方法第二实施例的流程示意图,在本实施例中,所述步骤S10,发出原始音频信号的步骤之前包括:
步骤S11,接收控制器发送的控制信号,并根据控制信号获取所述电视机的功能模式;
步骤S12,当所述功能模式为声音调整时,执行步骤:发出原始音频信号。
本实施例中,电视机通过接收电视机的控制器发出的控制信号,进入控制信号对应的功能模式中,当控制器发出的控制信号对应的功能模式为声音调整时,电视机进入声音调整模式,在声音调整模式下,电视机发出原始音频信号,通过用户听音位置的声音采集器实现音频信号的采集并完成声音调整。
电视机在运行时,用户的听音位置可能会不断发生变化,而实际生活中若电视机实时进行声音调整,并根据用户的听音位置不断调整原始音频信号,易导致用户在正常收听和收看电视节目的过程中所听到的声音效果不停地发生改变,进而影响用户的听音体验。因此,电视机在接收到控制器发出的控制信号后,当控制信号对应声音调整模式时,电视机进入声音调整功能,发出原始音频信号完成声音调整。
进一步地,参照图4,图4为本申请电视机声音调整方法第三实施例的细化流程示意图,在本实施例中,所述步骤S32,根据所述校准增益,调整原始音频信号的步骤包括:
步骤S321,以所述实际音频信号为基准,获取所述原始音频信号的校准增益;
步骤S322,根据所述校准增益,获得均衡器参数;
步骤S323,利用所述均衡器参数控制所述均衡器对原始音频信号进行频响校准。
在本实施例中,电视机在获取到声音采集器采集到的实际音频信号后,对实际音频信号进行计算分析,获取实际音频信号相对于原始音频信号的变化,由于原始音频信号在传播过程中受到环境因素的影响而形成实际音频信号,因此,根据实际音频信号能够得到原始音频信号的校准增益,在得到校准增益后,根据得到的校准增益,能够得出相应的均衡器参数。均衡器是指电视机内设置的能够用于校正传输信道幅度频率特性和相位频率特性的部件,均衡器能够调节原始音频信号各个频率段信号的增益值,实现音质与音效的调整。在获取到均衡器参数后,将均衡器参数输入均衡器,即能够实现原始音频信号的频响校准。频响指频率响应,也称频率响应曲线,在理想的频率响应曲线中,为了保证声音的不失真,频率响应的曲线应当是平直的。而原始音频信号在传播过程中经过环境因素的影响后,所形成的实际音频信号的频率响应曲线并不平直,也因此影响声音的音质与音色,使声音产生失真。经过均衡器对原始音频信号进行校准后,能够调整频率响应参数,使得频响曲线接近理想的平直状态,避免音频信号在传输过程中相对于原始音频信号发生偏差。
其中,本申请的技术方案中均衡器为GEQ均衡器,即图形式均衡器。图形式均衡器能够将声音的音频信号分成不同频段,通过调节每一个频段来对声音的音色进行控制。人耳所能听到的声音范围为20Hz-20KHz,通过调节20Hz-60Hz频段的声音信号,能够调节音色的空间感;60Hz-100Hz作为低音的基音区,调节60Hz-100Hz频段的声音信号则能够调节声音的浑厚感;调整150Hz-300Hz频段,能够调节声音的力度,150Hz-300Hz属于男低音基音的频率范围;调整300Hz-500Hz则能够调节音色的厚度和力度,由于人耳最为敏感的频段为2KHz以下,因此GEQ均衡器在对频段进行分组时主要侧重于调节低频段的音频信号,以调节声音的音色。
进一步地,参照图5,图5为本申请电视机声音调整方法第四实施例的流程示意图,在本实施例中,所述步骤S31,以所述实际音频信号为基准,获取所述原始音频信号的校准增益的步骤包括:
步骤S311,对所述实际音频信号进行采样,得到数字音频信号;
步骤S312,根据所述数字音频信号,得到所述数字音频信号的频率响应参数;
步骤S313,根据所述频率响应参数计算得到校准增益。
在本实施例中,声音采集器所采集到的实际音频信号为模拟音频信号,在电视机获取到实际音频信号后,需要对实际音频信号进行采样,以得到实际音频信号的数字音频信号。由于实际音频信号的频率范围为20Hz-20KHz,根据香农采样定理,采样频率大于信号中最高频率的两倍时,采样得到的数字音频信号能够完整保留原始模拟信号中的信息。因此,在本申请的技术方案中,可以采用采样频率为48KHz的采样信号,以完整获取实际音频信号中包含的声音信息。在获取到数字音频信号后,对数字音频信号进行分析运算,能够得到音频信号的频响曲线,根据包含实际音频信号所有信息的数字音频信号的频响曲线,计算得到频率响应参数,并进一步得到校准增益。
进一步地,参照图6,图6为本申请电视机声音调整方法第四实施例的细化流程示意图,在本实施例中,所述步骤S312,根据所述数字音频信号,得到所述数字音频信号的频率响应参数的步骤包括:
步骤S3121,对所述数字音频信号进行快速傅里叶变换,生成多个频率带以及每个频率带分别对应的频率响应参数,所述多个频率带的带宽相等。
在本实施例中,通过FFT(Fast Fourier Transformation,快速傅立叶变换)算法,对数字音频信号进行处理,得到多个带宽相等的频率带。在本案的技术方案中,采用1024个点的FFT算法时,能够得到频率在20Hz-20480Hz,带宽为20Hz的1024个频率带。由于人耳最敏感的声音频响范围为2KHz以下,因此,将1024个频率带进行不均等分组,并对每组频率带进行整合计算,得到数字音频信号的频率响应参数。当然也可以采用均等分组的方式对多个频率带进行分组。
进一步地,参照图7,图7为本申请电视机声音调整方法第四实施例的细化流程示意图,在本实施例中,所述步骤S313,根据所述频率响应参数计算得到校准增益的步骤包括:
步骤S3131,对所述多个频率带进行分组,并根据所述频率响应参数,计算各组频率带的平均声压;
步骤S3132,根据各组频率带的平均声压,确定参考声压;
步骤S3133,根据所述参考声压,得到所述各组频率带的校准增益。
在本实施例中,将经过FFT算法得到的多个频率带根据频段进行分组,由于在调整人耳所能听到的声音时,主要是对于低频段的音频信号进行调整,因此,对频率带进行分组侧重于低频段,即在2KHz下频段作为主要分组依据。电视机根据分组后的频率带所包含的频率响应参数,计算各组频率带的平均声压,在计算得到各种频率带的平均声压后,根据各组频率带的平均声压确定参考声压。参考声压可以是在各组频率带中选择一组人耳最为敏感的频率带,采用该组频率带计算得到的平均声压作为参考声压;参考声压还可以是各组频率带的平均声压的平均值,或根据各组频率带包含的频率带个数通过加权计算的方式计算各组频率带平均声压的平均值。在确定参考声压后,将参考声压与每个频率带计算得出的平均声压进行比对,得到各组频率带的校准增益,通过调节均衡器,实现音频信号的调整。
进一步地,本实施例中,频率响应参数包括各组频率带中每个频率带的声压;步骤S3131,根据所述频率响应参数,计算各组频率带的平均声压的步骤包括:
采用如下公式计算各组频率带的平均声压:
SPLn=10lg[10^(SPL1/10)+10^(SPL2/10)+10^(SPL3/10)+10^(SPL4/10)+...+10^(SPLm/10)]
其中,SPLn表示第n组中各频率带的平均声压;SPLm分别表示该组中第m个频率带的声压;n和m均为大于0的整数。
例如由于采用的均衡器为十段分组的GEQ均衡器,频率范围为20Hz-20480Hz的1024个频率带分为十组,分组如下:20Hz-40Hz、40Hz-80Hz、80Hz-160Hz、160Hz-320Hz、320Hz-640Hz、640Hz-1280Hz、1280Hz-2560Hz、2560Hz-5120Hz、5120Hz-10240Hz、10240Hz-20480Hz。n=10时,SPLn表示第十组频率带的平均声压,在第十组中,m=512,即SPLm表示第512个频率带的声压,每个频率带的带宽均为20Hz,根据平均声压公式能够计算各组频率带的平均声压。
以80Hz-160Hz这组频率带的平均声压计算为例,通过平均声压计算公式:
SPLn=10lg[10^(SPL1/10)+10^(SPL2/10)+10^(SPL3/10)+10^(SPL4/10)]
其中,SPLn为80Hz-160Hz这组频率带的平均声压,SPL1为80Hz-100Hz频率带的声压,SPL2为100Hz-120Hz频率带的声压,SPL3为120Hz-140Hz频率带的声压,SPL4为140Hz-160Hz频率带的声压。
在计算得到十组频率带的平均声压后,由于人耳最敏感的声音频响范围为2KHz以下,因此以640Hz-1280Hz频率带的平均声压作为预设的参考声压SPLr,将其他各组频率带的平均声压以参考声压SPLr为基准,得到其他各组频率带的平均声压相对于参考声压的补偿频谱,根据补偿频谱计算得出均衡器参数,通过调节均衡器,即可调整原始音频信号的频率响应参数,避免电视机发出的声音在传播过程中发生失真,提升电视机声音的音色和音质。
进一步地,参照图8,图8为本申请电视机声音调整方法第五实施例的流程示意图,在本实施例中,所述步骤S30,根据所述实际音频信号,调整原始音频信号的步骤包括:
步骤S40,对所述实际音频信号和所述原始音频信号进行比对,得到比对结果;
步骤S50,根据所述比对结果,获取所述原始音频信号的校准增益;
步骤S60,根据所述校准增益,调整原始音频信号。
在本实施例中,电视机获取到实际音频信号后,将实际音频信号与原始音频信号进行比对,即可得出原始音频信号在传播过程中受到环境因素影响产生的偏差,根据比对结果,计算原始音频信号的校准增益,根据校准增益对原始音频信号进行调整,即可使得实际音频信号能够保持声音的音色与音质,避免产生声音的失真。
此外本申请实施例还提出一种计算机可读存储介质,其上存储有电视机声音调整程序,所述存储介质可以是图1的终端中的存储器1005,也可以是如ROM(Read-Only Memory,只读存储器)/RAM(Random Access Memory,随机存取存储器)、磁碟、光盘中的至少一种,所述计算机可读存储介质包括若干指令用以使得一台具有处理器的终端设备(可以是手机,计算机,服务器,或者电视机等)执行本申请各个实施例所述的方法。
可以理解的是,在本说明书的描述中,参考术语“一实施例”、“另一实施例”、“其他实施例”、 或“第一实施例~第N实施例”等的描述意指结合该实施例或示例描述的特征、 结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对示例性技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种电视机声音调整方法,其中,所述电视机声音调整方法包括以下步骤:
    发出原始音频信号;
    接收声音采集器发送的实际音频信号,其中所述实际音频信号为所述声音采集器在所述电视机预设范围内采集的音频信号;
    根据所述实际音频信号,调整原始音频信号。
  2. 如权利要求1所述的电视机声音调整方法,其中,所述发出原始音频信号的步骤之前包括:
    接收控制器发送的控制信号,并根据控制信号获取所述电视机的功能模式;
    确定所述功能模式为声音调整,执行步骤:发出原始音频信号。
  3. 如权利要求1所述的电视机声音调整方法,其中,所述根据所述实际音频信号,调整原始音频信号的步骤包括:
    以所述实际音频信号为基准,获取所述原始音频信号的校准增益;
    根据所述校准增益,获得均衡器参数;
    利用所述均衡器参数控制所述均衡器对原始音频信号进行频响校准。
  4. 如权利要求3所述的电视机声音调整方法,其中,所述根据所述以所述实际音频信号为基准,获取所述原始音频信号的校准增益的步骤包括:
    对所述实际音频信号进行采样,得到数字音频信号;
    根据所述数字音频信号,得到所述数字音频信号的频率响应参数;
    根据所述频率响应参数计算得到校准增益。
  5. 如权利要求4所述的电视机声音调整方法,其中,所述根据所述数字音频信号,得到所述数字音频信号的频率响应参数的步骤包括:
    对所述数字音频信号进行快速傅里叶变换,生成多个频率带以及每个频率带分别对应的频率响应参数,所述多个频率带的带宽相等。
  6. 如权利要求5所述的电视机声音调整方法,其中,所述根据所述频率响应参数计算得到校准增益的步骤包括:
    对所述多个频率带进行分组,并根据所述频率响应参数,计算各组频率带的平均声压;
    根据各组频率带的平均声压,确定参考声压;
    根据所述参考声压,得到所述各组频率带的校准增益。
  7. 如权利要求6所述的电视机声音调整方法,其中,所述频率响应参数包括各组频率带中每个频率带的声压;所述根据所述频率响应参数,计算各组频率带的平均声压的步骤包括:
    采用如下公式计算各组频率带的平均声压:
    SPLn=10lg[10^(SPL1/10)+10^(SPL2/10)+10^(SPL3/10)+10^(SPL4/10)+...+10^(SPLm/10)]
    其中,SPLn表示第n组中各频率带的平均声压;SPLm分别表示该组中第m个频率带的声压;n和m均为大于0的整数。
  8. 如权利要求1所述的电视机声音调整方法,其中,所述根据所述实际音频信号,调整原始音频信号的步骤包括:
    对所述实际音频信号和所述原始音频信号进行比对,得到比对结果;
    根据所述比对结果,获取所述原始音频信号的校准增益;
    根据所述校准增益,调整原始音频信号。
  9. 一种电视机,其中,所述电视机包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的电视机声音调整程序,所述电视机声音调整程序被所述处理器执行时实现如下步骤:
    发出原始音频信号;
    接收声音采集器发送的实际音频信号,其中所述实际音频信号为所述声音采集器在所述电视机预设范围内采集的音频信号;
    根据所述实际音频信号,调整原始音频信号。
  10. 如权利要求9所述的电视机,其中,所述根据所述实际音频信号,调整原始音频信号的步骤包括:
    以所述实际音频信号为基准,获取所述原始音频信号的校准增益;
    根据所述校准增益,获得均衡器参数;
    利用所述均衡器参数控制所述均衡器对原始音频信号进行频响校准。
  11. 如权利要求10所述的电视机,其中,所述根据所述以所述实际音频信号为基准,获取所述原始音频信号的校准增益的步骤包括:
    对所述实际音频信号进行采样,得到数字音频信号;
    根据所述数字音频信号,得到所述数字音频信号的频率响应参数;
    根据所述频率响应参数计算得到校准增益。
  12. 如权利要求11所述的电视机,其中,所述根据所述数字音频信号,得到所述数字音频信号的频率响应参数的步骤包括:
    对所述数字音频信号进行快速傅里叶变换,生成多个频率带以及每个频率带分别对应的频率响应参数,所述多个频率带的带宽相等。
  13. 如权利要求12所述的电视机,其中,所述根据所述频率响应参数计算得到校准增益的步骤包括:
    对所述多个频率带进行分组,并根据所述频率响应参数,计算各组频率带的平均声压;
    根据各组频率带的平均声压,确定参考声压;
    根据所述参考声压,得到所述各组频率带的校准增益。
  14. 如权利要求13所述的电视机,其中,所述频率响应参数包括各组频率带中每个频率带的声压;所述根据所述频率响应参数,计算各组频率带的平均声压的步骤包括:
    采用如下公式计算各组频率带的平均声压:
    SPLn=10lg[10^(SPL1/10)+10^(SPL2/10)+10^(SPL3/10)+10^(SPL4/10)+...+10^(SPLm/10)]
    其中,SPLn表示第n组中各频率带的平均声压;SPLm分别表示该组中第m个频率带的声压;n和m均为大于0的整数。
  15. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有电视机声音调整程序,所述电视机声音调整程序被处理器执行时实现如下步骤:
    发出原始音频信号;
    接收声音采集器发送的实际音频信号,其中所述实际音频信号为所述声音采集器在所述电视机预设范围内采集的音频信号;
    根据所述实际音频信号,调整原始音频信号。
  16. 如权利要求15所述的计算机可读存储介质,其中,所述根据所述实际音频信号,调整原始音频信号的步骤包括:
    以所述实际音频信号为基准,获取所述原始音频信号的校准增益;
    根据所述校准增益,获得均衡器参数;
    利用所述均衡器参数控制所述均衡器对原始音频信号进行频响校准。
  17. 如权利要求16所述的计算机可读存储介质,其中,所述根据所述以所述实际音频信号为基准,获取所述原始音频信号的校准增益的步骤包括:
    对所述实际音频信号进行采样,得到数字音频信号;
    根据所述数字音频信号,得到所述数字音频信号的频率响应参数;
    根据所述频率响应参数计算得到校准增益。
  18. 如权利要求17所述的计算机可读存储介质,其中,所述根据所述数字音频信号,得到所述数字音频信号的频率响应参数的步骤包括:
    对所述数字音频信号进行快速傅里叶变换,生成多个频率带以及每个频率带分别对应的频率响应参数,所述多个频率带的带宽相等。
  19. 如权利要求18所述的计算机可读存储介质,其中,所述根据所述频率响应参数计算得到校准增益的步骤包括:
    对所述多个频率带进行分组,并根据所述频率响应参数,计算各组频率带的平均声压;
    根据各组频率带的平均声压,确定参考声压;
    根据所述参考声压,得到所述各组频率带的校准增益。
  20. 如权利要求19所述的计算机可读存储介质,其中,所述频率响应参数包括各组频率带中每个频率带的声压;所述根据所述频率响应参数,计算各组频率带的平均声压的步骤包括:
    采用如下公式计算各组频率带的平均声压:
    SPLn=10lg[10^(SPL1/10)+10^(SPL2/10)+10^(SPL3/10)+10^(SPL4/10)+...+10^(SPLm/10)]
    其中,SPLn表示第n组中各频率带的平均声压;SPLm分别表示该组中第m个频率带的声压;n和m均为大于0的整数。
PCT/CN2019/094231 2018-09-19 2019-07-01 电视机声音调整方法、电视机和存储介质 WO2020057227A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811096965.X 2018-09-19
CN201811096965.XA CN109274909B (zh) 2018-09-19 2018-09-19 电视机声音调整方法、电视机和存储介质

Publications (1)

Publication Number Publication Date
WO2020057227A1 true WO2020057227A1 (zh) 2020-03-26

Family

ID=65198325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094231 WO2020057227A1 (zh) 2018-09-19 2019-07-01 电视机声音调整方法、电视机和存储介质

Country Status (2)

Country Link
CN (1) CN109274909B (zh)
WO (1) WO2020057227A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109274909B (zh) * 2018-09-19 2021-04-16 深圳创维-Rgb电子有限公司 电视机声音调整方法、电视机和存储介质
CN110933559B (zh) * 2019-11-28 2021-08-31 深圳创维-Rgb电子有限公司 一种智能音箱音效自适应调整方法、系统及存储介质
CN111918123A (zh) * 2020-08-07 2020-11-10 冠捷显示科技(厦门)有限公司 根据用户环境自适应调整电视音效的方法及其电视系统
CN112165670B (zh) * 2020-09-28 2022-06-03 深圳创维-Rgb电子有限公司 音效频响参数动态调整方法、装置、智能终端及存储介质
CN113849149A (zh) * 2020-10-19 2021-12-28 广东朝歌智慧互联科技有限公司 应用于蓝牙终端的等响度音量调节方法、装置和电子设备
CN112289331B (zh) * 2020-10-20 2023-01-31 一汽奔腾轿车有限公司 一种基于软件算法的娱乐系统音效提升方法
CN112492450B (zh) * 2020-11-25 2023-09-19 努比亚技术有限公司 一种声音参数调控方法、设备及计算机可读存储介质
CN113655983B (zh) * 2021-07-27 2023-09-08 深圳市冠旭电子股份有限公司 音频播放方法、装置、音频播放设备及可读存储介质
CN113709629A (zh) * 2021-08-26 2021-11-26 深圳创维-Rgb电子有限公司 频响参数调节方法、装置、设备及存储介质
CN114071220B (zh) * 2021-11-04 2024-01-19 深圳Tcl新技术有限公司 音效调节方法、装置、存储介质及电子设备
CN116320905A (zh) * 2021-12-10 2023-06-23 北京荣耀终端有限公司 频率响应一致性的校准方法及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080304673A1 (en) * 2007-06-11 2008-12-11 Fujitsu Limited Multipoint communication apparatus
CN101600132A (zh) * 2009-06-05 2009-12-09 北京中星微电子有限公司 在便携式手持设备上调节音频文件播放效果的方法及装置
CN206743522U (zh) * 2017-01-19 2017-12-12 匡留生 音效调整终端和智能定制音响系统
CN109274909A (zh) * 2018-09-19 2019-01-25 深圳创维-Rgb电子有限公司 电视机声音调整方法、电视机和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080304673A1 (en) * 2007-06-11 2008-12-11 Fujitsu Limited Multipoint communication apparatus
CN101600132A (zh) * 2009-06-05 2009-12-09 北京中星微电子有限公司 在便携式手持设备上调节音频文件播放效果的方法及装置
CN206743522U (zh) * 2017-01-19 2017-12-12 匡留生 音效调整终端和智能定制音响系统
CN109274909A (zh) * 2018-09-19 2019-01-25 深圳创维-Rgb电子有限公司 电视机声音调整方法、电视机和存储介质

Also Published As

Publication number Publication date
CN109274909A (zh) 2019-01-25
CN109274909B (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
WO2020057227A1 (zh) 电视机声音调整方法、电视机和存储介质
WO2018147701A1 (ko) 오디오 신호 처리 방법 및 장치
WO2018182274A1 (ko) 오디오 신호 처리 방법 및 장치
WO2020215373A1 (zh) 健康监护方法、系统及计算机可读存储介质
WO2018205413A1 (zh) 音频音量的调整方法、终端及计算机可读存储介质
EP3583783A1 (en) Method and apparatus for in-room low-frequency sound power optimization
WO2018056624A1 (en) Electronic device and control method thereof
WO2018205423A1 (zh) 音频播放方法、终端及计算机可读存储介质
WO2017111319A1 (ko) 전자 장치 및 전자 장치의 동작 제어 방법
WO2019004524A1 (ko) 6자유도 환경에서 오디오 재생 방법 및 오디오 재생 장치
WO2020032333A1 (en) Nonlinear control of loudspeaker systems with current source amplifier
WO2019009562A1 (en) SOUND OUTPUT APPARATUS AND ASSOCIATED SIGNAL PROCESSING METHOD
WO2020252886A1 (zh) 定向拾音方法、录音设备和存储介质
EP3017593A1 (en) Audio output apparatus capable of outputting multi channel audio and display apparatus applying the same
WO2021118107A1 (en) Audio output apparatus and method of controlling thereof
WO2023070920A1 (zh) 耳机频响校准方法, 装置, 耳机设备及存储介质
WO2018186656A1 (ko) 오디오 신호 처리 방법 및 장치
WO2019031767A1 (en) DISPLAY APPARATUS AND CONTROL METHOD THEREOF
CN112866853A (zh) 一种通透模式下啸叫耳机的产线校准方法及装置
TWI713374B (zh) 用於主動式降噪的音頻調校方法以及相關音頻調校裝置
WO2021010781A1 (en) Personalized headphone equalization
WO2021118106A1 (en) Electronic apparatus and controlling method thereof
Dajani et al. Real-time method for the measurement of noise exposure from communication headsets
WO2023008749A1 (en) Method and apparatus for calibration of a loudspeaker system
WO2020130461A1 (en) Electronic apparatus and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863341

Country of ref document: EP

Kind code of ref document: A1