WO2020057066A1 - Procédé de diagnostic de défaut utilisant une analyse bispectrale de signal de modulation améliorée pour palier à roulement - Google Patents

Procédé de diagnostic de défaut utilisant une analyse bispectrale de signal de modulation améliorée pour palier à roulement Download PDF

Info

Publication number
WO2020057066A1
WO2020057066A1 PCT/CN2019/077955 CN2019077955W WO2020057066A1 WO 2020057066 A1 WO2020057066 A1 WO 2020057066A1 CN 2019077955 W CN2019077955 W CN 2019077955W WO 2020057066 A1 WO2020057066 A1 WO 2020057066A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling bearing
vibration signal
msb
noise reduction
fault
Prior art date
Application number
PCT/CN2019/077955
Other languages
English (en)
Chinese (zh)
Inventor
甄冬
郭俊超
谷丰收
张琛
张�浩
师占群
Original Assignee
河北工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北工业大学 filed Critical 河北工业大学
Publication of WO2020057066A1 publication Critical patent/WO2020057066A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis

Definitions

  • the invention relates to the technical field of mechanical equipment condition monitoring and fault diagnosis, and in particular to a rolling bearing fault diagnosis method based on enhanced modulation bispectrum analysis.
  • Rolling bearings are the most widely used mechanical parts in rotating machinery and one of the most vulnerable components.
  • vibration signals of rotating machinery a large number of signals are non-stationary and non-Gaussian distribution signals, especially when faults occur.
  • traditional power spectrum analysis and time-frequency analysis cannot reflect the phase information between frequency components, and generally cannot handle non-minimum phase systems and non-Gaussian signals.
  • Modulation bispectral analysis is used to analyze non-stationary and non-Gaussian signals. Powerful tool. MSB makes up for the shortcomings of second-order statistics that do not contain phase information and has modulation characteristics. Therefore, it is easier to obtain useful fault characteristic information by modulating bispectral vibration signals.
  • MSB can completely suppress Gaussian noise and is powerless to non-Gaussian noise.
  • the existence of these non-Gaussian noises interferes with the higher-order spectrum of the signal, which adversely affects the extraction and analysis of fault features.
  • the mechanical fault signal often contains various noises, and the signal to noise ratio of the signal is generally low, especially when the machine has an early fault, the fault signal is very weak. How to effectively extract the fault characteristic information from the strong noise background directly affects The accuracy of fault diagnosis and the reliability of early fault prediction.
  • an autoregressive (AR) model and MSB are combined to propose a rolling bearing fault diagnosis method based on enhanced modulation bispectrum analysis.
  • This research idea is derived from the respective characteristics of the two signal analysis methods.
  • the AR model can effectively deal with the non-Gaussian noise in the signal, and the MSB analysis suppresses the Gaussian noise.
  • the technical solution of the present invention to solve the technical problem is to design a rolling bearing fault diagnosis method based on enhanced modulation bispectrum analysis, and the specific steps are as follows:
  • Step 1 measuring the vibration signal of the detected rolling bearing through a vibration sensor
  • Step 2 Perform an AR model on the obtained vibration signal to perform noise reduction processing to obtain a noise reduction vibration signal x (t);
  • Step 3 Separate the modulation component of the noise reduction vibration signal x (t) with MSB to extract the characteristic frequency of the fault;
  • the present invention has the following beneficial effects:
  • Embodiment 1 is a time-domain waveform diagram of a vibration signal of an inner ring of a rolling bearing according to Embodiment 1;
  • FIG. 4 is a frequency domain diagram of a rolling bearing fault diagnosis method of the rolling bearing inner ring according to the embodiment 1 using the enhanced modulation bispectrum analysis of the present invention
  • FIG. 5 is a frequency domain diagram obtained by using the MSB for the vibration signal of the inner ring of the rolling bearing of Embodiment 1.
  • FIG. 5 is a frequency domain diagram obtained by using the MSB for the vibration signal of the inner ring of the rolling bearing of Embodiment 1.
  • the invention provides a rolling bearing fault diagnosis method based on enhanced modulation bispectrum analysis.
  • the specific steps are as follows:
  • Step 1 measuring the vibration signal of the detected rolling bearing through a vibration sensor
  • Step 2 Perform an AR model on the obtained vibration signal to perform noise reduction processing to obtain a noise reduction vibration signal x (t);
  • the step two specifically includes the following steps:
  • Step 101 Determine an appropriate order range of the AR model.
  • the general signal can be taken within 100.
  • Step 103 Compare the kurtosis values of the vibration signals calculated at different orders to find the maximum kurtosis value, and the corresponding order is the optimal order to be determined, and then obtain the noise reduction vibration signal x (t);
  • Step 3 Separate the modulation component of the noise reduction vibration signal x (t) with MSB to extract the characteristic frequency of the fault;
  • the step three specifically includes the following steps:
  • Step 104 In the frequency domain, the MSB of the noise reduction vibration signal x (t) expressed in the form of a discrete Fourier transform X (f) can be defined as:
  • B MS (f c , f x ) represents the bispectrum of the signal x (t)
  • E ⁇ > represents the expectation
  • f c is the modulation frequency
  • f x is the carrier frequency
  • (f c + f x ) and (f c- f x ) are the upper and lower sideband frequencies, respectively.
  • Step 104 MSB of the resulting improvements to modify the carrier frequency f c by eliminating substantial influence component, in order to more accurately quantify sideband amplitude.
  • the improved MSB is MSB-SE, which is defined as follows:
  • Step 106 Calculate the average value of MSB in the f x increment direction to obtain f c slice:
  • ⁇ f represents the resolution of f x .
  • Step 107 Calculate the average value of multiple optimal MSB slices to obtain the fault characteristic frequency of the rolling bearing, which is expressed as:
  • N is the total number of selected f c slices.
  • Step 1 The vibration signal of the inner ring of the rolling bearing is measured by a vibration sensor.
  • the sampling frequency of the vibration signal is 96kHz, the sampling length is 2.880000, and the frequency of the bearing outer ring failure is 65.17Hz.
  • the waveform and frequency domain diagrams of the vibration signal are shown in Figures 1 and 2, respectively. It can be seen that there is a lot of noise and the component of the fault characteristic frequency cannot be extracted.
  • Step 2 Use the principle of maximum kurtosis to adaptively determine the optimal order of the AR model, as shown in Figure 3. By selecting the order of the best AR model, the vibration model is denoised to obtain noise reduction. Vibration signal
  • the third step the noise reduction vibration signal is subjected to MSB separation and modulation components, and the characteristic frequency of the fault is extracted to obtain a frequency domain diagram as shown in FIG. Accurately extracted the fault feature information of the rolling bearing outer ring.
  • the vibration signals of the inner ring of the rolling bearing in Example 1 are compared using MSB.
  • the structure obtained using MSB is shown in Figure 5.
  • the spectrum and noise are mixed, and the effects of harmonics still exist.
  • the method designed by the invention can obtain more accurate results in the diagnosis of rolling bearing faults, and is suitable for popularization and application.

Abstract

L'invention concerne un procédé de diagnostic de défaut utilisant une analyse bispectrale de signal de modulation améliorée pour un palier à roulement, proposé pour remédier à l'inconvénient de l'analyse bispectrale de signal de modulation dans lequel un bruit gaussien peut être supprimé en théorie, mais où les bruits non gaussiens ne peuvent être traités. Le procédé comprend plus précisément : la mesure d'un signal de vibration d'un palier à roulement à l'essai au moyen d'un capteur de vibration ; la réalisation d'un traitement de réduction de bruit sur le signal de vibration obtenu selon un modèle AR, et l'obtention d'un signal de vibration à bruit réduit ; et la réalisation d'une séparation du signal de modulation bispectral sur le signal de vibration à bruit réduit pour obtenir des composantes de modulation, et l'extraction d'une fréquence caractéristique de défaut. Le procédé de diagnostic de défaut utilisant une analyse bispectrale de signal de modulation améliorée pour un palier à roulement extrait efficacement des informations caractéristiques faibles d'un palier défectueux dans un bruit de fond élevé, ce qui facilite la détection précoce des défaillances de paliers.
PCT/CN2019/077955 2018-09-19 2019-03-13 Procédé de diagnostic de défaut utilisant une analyse bispectrale de signal de modulation améliorée pour palier à roulement WO2020057066A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811097318.0 2018-09-19
CN201811097318.0A CN109029999B (zh) 2018-09-19 2018-09-19 基于增强调制双谱分析的滚动轴承故障诊断方法

Publications (1)

Publication Number Publication Date
WO2020057066A1 true WO2020057066A1 (fr) 2020-03-26

Family

ID=64617030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077955 WO2020057066A1 (fr) 2018-09-19 2019-03-13 Procédé de diagnostic de défaut utilisant une analyse bispectrale de signal de modulation améliorée pour palier à roulement

Country Status (2)

Country Link
CN (1) CN109029999B (fr)
WO (1) WO2020057066A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391244A (zh) * 2021-06-13 2021-09-14 河海大学 一种基于vmd的变压器合闸振动信号特征频率计算方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109029999B (zh) * 2018-09-19 2020-12-11 河北工业大学 基于增强调制双谱分析的滚动轴承故障诊断方法
CN111207926B (zh) * 2019-12-27 2022-02-01 三明学院 一种基于滚动轴承故障诊断方法、电子装置及存储介质
CN114459760A (zh) * 2021-12-31 2022-05-10 南京理工大学 一种强噪声环境下的滚动轴承故障诊断方法及系统
CN114778114B (zh) * 2022-04-01 2022-11-22 西南交通大学 一种基于信号冲击性和周期性的轴承健康指标构建方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831013A (zh) * 2017-10-11 2018-03-23 温州大学 一种利用概率主分量分析增强循环双谱的轴承故障诊断方法
CN108120598A (zh) * 2017-12-19 2018-06-05 胡文扬 二次相位耦合与改进双谱算法的轴承早期故障检测方法
CN109029999A (zh) * 2018-09-19 2018-12-18 河北工业大学 基于增强调制双谱分析的滚动轴承故障诊断方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831013A (zh) * 2017-10-11 2018-03-23 温州大学 一种利用概率主分量分析增强循环双谱的轴承故障诊断方法
CN108120598A (zh) * 2017-12-19 2018-06-05 胡文扬 二次相位耦合与改进双谱算法的轴承早期故障检测方法
CN109029999A (zh) * 2018-09-19 2018-12-18 河北工业大学 基于增强调制双谱分析的滚动轴承故障诊断方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CONG, FEIYUN ET AL.: "Order Selection of AR Predicting Filter for Rolling Bearing Diagnosis", JOURNAL OF VIBRATION AND SHOCK, vol. 31, no. 4, 29 February 2012 (2012-02-29), pages 44 - 46 *
JUNCHAO QUO ET AL.: "Early Fault Diagnosis for Planetary Gearbox Based wavelet Packet Energy and Modulation Signal Bispectrum Analysis", SENSORS, 1 September 2018 (2018-09-01), XP055694681 *
LIU, SHANGKUN: "Rolling Bearing's Fault Diagnosis Based on AR Model and Total Variation De-noising", CHINESE JOURNAL OF SCIENTIFIC INSTRUMENT, vol. 36, 31 December 2015 (2015-12-31), pages entire document *
XIANGE TIAN: "A robust detector for rolling element bearing condition monitoring based on the modulation signal bispectrum and its performance evaluation against the kurtogram", MECHANICAL SYSTEM AND SIGNAL PROCESSING, 27 July 2017 (2017-07-27), XP055637315 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391244A (zh) * 2021-06-13 2021-09-14 河海大学 一种基于vmd的变压器合闸振动信号特征频率计算方法
CN113391244B (zh) * 2021-06-13 2024-01-12 河海大学 一种基于vmd的变压器合闸振动信号特征频率计算方法

Also Published As

Publication number Publication date
CN109029999A (zh) 2018-12-18
CN109029999B (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
WO2020057066A1 (fr) Procédé de diagnostic de défaut utilisant une analyse bispectrale de signal de modulation améliorée pour palier à roulement
Qin A new family of model-based impulsive wavelets and their sparse representation for rolling bearing fault diagnosis
Miao et al. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings
Wang et al. Rolling element bearing fault diagnosis via fault characteristic order (FCO) analysis
Yu et al. An adaptive sensitive frequency band selection method for empirical wavelet transform and its application in bearing fault diagnosis
Yan et al. Fault diagnosis of rolling element bearing using a new optimal scale morphology analysis method
WO2019179340A1 (fr) Procédé d'extraction de caractéristique de défaillance basée sur eemd et msb pour palier à roulements
Li et al. Research on test bench bearing fault diagnosis of improved EEMD based on improved adaptive resonance technology
WO2019205826A1 (fr) Procédé de diagnostic de défaillance de palier de roulement basé sur un spectre d'énergie de paquet d'ondelettes et une analyse bispectrale de signal de modulation
CN105784366A (zh) 一种变转速下的风电机组轴承故障诊断方法
CN109883703B (zh) 一种基于振动信号相干倒谱分析的风机轴承健康监测诊断方法
Xiang et al. A fault detection strategy using the enhancement ensemble empirical mode decomposition and random decrement technique
Jiang et al. A novel rolling bearing defect detection method based on bispectrum analysis and cloud model-improved EEMD
Liao et al. Bearing fault feature enhancement and diagnosis based on statistical filtering and 1.5-dimensional symmetric difference analytic energy spectrum
Zhang et al. Improved local cepstrum and its applications for gearbox and rolling bearing fault detection
Liu et al. An online bearing fault diagnosis technique via improved demodulation spectrum analysis under variable speed conditions
Zhu et al. A detection method for bearing faults using null space pursuit and S transform
Lin et al. A review and strategy for the diagnosis of speed-varying machinery
CN107831013A (zh) 一种利用概率主分量分析增强循环双谱的轴承故障诊断方法
Zhao et al. Vibration health monitoring of rolling bearings under variable speed conditions by novel demodulation technique
Wang et al. A novel optimal demodulation frequency band extraction method of fault bearing based on power spectrum screening combination-gram
Wang et al. Improved cyclostationary analysis method based on TKEO and its application on the faults diagnosis of induction motors
Li et al. Biphase randomization wavelet bicoherence for mechanical fault diagnosis
Masmoudi et al. Single point bearing fault diagnosis using simplified frequency model
CN102680080B (zh) 一种基于改进的自适应形态滤波的非稳态信号检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862492

Country of ref document: EP

Kind code of ref document: A1