WO2020056892A1 - 阻抗差异补偿电路、显示面板及移动终端 - Google Patents

阻抗差异补偿电路、显示面板及移动终端 Download PDF

Info

Publication number
WO2020056892A1
WO2020056892A1 PCT/CN2018/115224 CN2018115224W WO2020056892A1 WO 2020056892 A1 WO2020056892 A1 WO 2020056892A1 CN 2018115224 W CN2018115224 W CN 2018115224W WO 2020056892 A1 WO2020056892 A1 WO 2020056892A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
signal transmission
circuit
signal
resistance value
Prior art date
Application number
PCT/CN2018/115224
Other languages
English (en)
French (fr)
Inventor
黄北洲
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Priority to US16/312,332 priority Critical patent/US20200098320A1/en
Publication of WO2020056892A1 publication Critical patent/WO2020056892A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters

Definitions

  • the present application belongs to the field of display technology, and particularly relates to an impedance difference compensation circuit, a display panel, and a mobile terminal.
  • the transmission path length of each image signal between the signal transmission link and the display trace will be different, and the equivalent parameter between each signal transmission link and the corresponding display trace. It will be different, and the image signals received by different display traces in the display panel will be inconsistent. At this time, the display panel will display an uneven image; therefore, in the traditional technology, due to the difference in equivalent parameters in the signal transmission path, It will reduce the sharpness of the image in the display panel and the user experience will be poor.
  • An object of the present application is to provide an impedance difference compensation circuit, a display panel, and a mobile terminal, including but not limited to solving: the equivalent parameters of each signal transmission path in the display panel driving circuit are different, resulting in the transmission efficiency and transmission of each signal Inconsistent technical issues.
  • an impedance difference compensation circuit which is applied to a display panel driving circuit
  • the display panel driving circuit includes:
  • a driving integrated circuit comprising a plurality of signal transmission channels arranged to access the driving signal and arranged at intervals;
  • the first signal processing circuit is electrically connected to each of the signal transmission channels, and is configured to transmit each of the driving signals;
  • a second signal processing circuit electrically connected to the first signal processing circuit and configured to perform integrated conversion on each of the driving signals
  • the signal transmission circuit is electrically connected to the second signal processing circuit.
  • the signal transmission circuit includes a plurality of display wires arranged to output the driving signal and arranged in an array. Each of the signal transmission channels is connected to the signal transmission circuit. One-to-one corresponding setting for each of the display traces;
  • the impedance difference compensation circuit includes a resistance module.
  • the resistance module is connected in series or in parallel to an input end of the first signal processing circuit, and is configured to enable a signal between each of the signal transmission channels and each of the display traces. Equivalent resistance
  • the resistance module includes at least one resistor.
  • Another object of the present application is to provide a display panel, including:
  • the driving integrated circuit includes a plurality of signal transmission channels arranged to access the driving signals and arranged at intervals;
  • a first signal processing circuit which is electrically connected to each of the signal transmission channels and is configured to transmit each of the driving signals separately;
  • a second signal processing circuit electrically connected to the first signal processing circuit and configured to perform integrated conversion on each of the driving signals
  • the signal transmission circuit is electrically connected to the second signal processing circuit.
  • the signal transmission circuit includes a plurality of display wires arranged to output the driving signal and arranged in an array. Each of the signal transmission channels is connected to the signal transmission circuit. One-to-one corresponding setting for each of the display traces;
  • a video display circuit connected to the signal transmission circuit and configured to perform video display according to a plurality of the driving signals
  • a resistance module which is connected in series or in parallel at the input end of the first signal processing circuit, so as to make the equivalent resistance between each of the signal transmission channels and each of the display traces equal; Includes at least one resistor.
  • Another object of the present application is to provide a mobile terminal, including:
  • a signal collector configured to generate multiple driving signals based on image information
  • a display panel connected to the signal collector and configured to perform video display according to multiple driving signals
  • the display panel includes:
  • the driving integrated circuit includes a plurality of signal transmission channels arranged to access the driving signals and arranged at intervals;
  • a first signal processing circuit which is electrically connected to each of the signal transmission channels and is configured to transmit each of the driving signals separately;
  • a second signal processing circuit electrically connected to the first signal processing circuit and configured to perform integrated conversion on each of the driving signals
  • the signal transmission circuit is electrically connected to the second signal processing circuit.
  • the signal transmission circuit includes a plurality of display wires arranged to output the driving signal and arranged in an array. Each of the signal transmission channels is connected to the signal transmission circuit. One-to-one corresponding setting for each of the display traces;
  • a video display circuit connected to the signal transmission circuit and configured to perform video display according to a plurality of the driving signals
  • a resistance module which is connected in series or in parallel at the input end of the first signal processing circuit, so as to make the equivalent resistance between each of the signal transmission channels and each of the display traces equal; Includes at least one resistor.
  • the impedance difference compensation circuit compensates the impedance difference in each signal transmission path through a resistance module, so that the equivalent resistance in each signal transmission path is equal, and all display traces can be received at the same time.
  • the display panel displays a uniform image based on these completely identical multiple driving signals; this application does not need to change the specific circuit structure of each circuit module in the display panel driving circuit, and each signal can be made through the resistance module
  • the equivalent resistances in the transmission paths are kept the same, which solves the problem that the equivalent parameters of the signal transmission paths in the display panel drive circuit in the exemplary technology are different, and the user experience is poor.
  • FIG. 1 is a module structural diagram of a display panel driving circuit according to an embodiment of the present application
  • FIG. 2 is an application framework diagram of an impedance difference compensation circuit according to an embodiment of the present application
  • FIG. 3 is an application frame diagram of another impedance difference compensation circuit provided by an embodiment of the present application.
  • FIG. 4 is a circuit structural diagram of a resistance module according to an embodiment of the present application.
  • FIG. 5 is a circuit structural diagram of another resistance module according to an embodiment of the present application.
  • FIG. 6 is a circuit structural diagram of another resistance module according to an embodiment of the present application.
  • FIG. 7 is a circuit structural diagram of another resistance module according to an embodiment of the present application.
  • FIG. 8 is a module structure diagram of a display panel according to an embodiment of the present application.
  • FIG. 9 is a module structural diagram of a mobile terminal according to an embodiment of the present application.
  • FIG. 10 is a module structural diagram of an impedance difference compensation system for a display panel driving circuit provided by an embodiment of the present application.
  • FIG. 1 shows the module structure of the display panel driving circuit provided in the embodiment of the present application, as shown in FIG. 1
  • the display panel driving circuit includes: a driving integrated circuit 101, a first signal processing circuit 102, a second signal processing circuit 103, and a signal transmission circuit 104; wherein the driving integrated circuit 101 includes a plurality of signal transmission channels, and transmits through the signals.
  • the channels can be connected to the drive signals separately, and multiple signal transmission channels are arranged at intervals.
  • multiple signal transmission channels are arranged in an equally spaced distribution in the driving integrated circuit, and each signal transmission channel can stably transmit the drive.
  • Signal which improves the electronic elements in the driving integrated circuit 101 of this embodiment.
  • the degree of integration of the components simplifies the spatial layout in the driving integrated circuit 101.
  • the driving integrated circuit 101 includes eight signal transmission channels H1, H2, ..., H7, and H8, in which each signal is transmitted through One channel can be connected to one driving signal, and the driving integrated circuit 101 can simultaneously access eight driving signals.
  • These display panel driving circuits can drive the display panel to display images in real time. Therefore, in the embodiment of the present application, the driving integrated circuit is used.
  • each signal transmission channel in the driving integrated circuit 101 can maintain an independent signal transmission state without affecting each other, and thus extremely The safety and speed of signal transmission in the embodiments of the present application are greatly improved, and the driving integrated circuit 101 can quickly access a large amount of image data to enhance the efficiency of signal transmission in the display panel driving circuit and its applicable range.
  • the first signal processing circuit 102 is electrically connected to each signal transmission channel, and the driving integrated circuit 101 transmits multiple driving signals to the first signal processing circuit 102.
  • the first signal processing circuit 102 has a signal transmission function, and the first signal processing The circuit 102 is used to transmit each driving signal separately; since the signal transmission chip and the flexible substrate circuit are integrated on the first signal processing circuit 102, the first signal processing circuit 102 has a low signal transmission error rate, a fast transmission rate, and is compatible with The extremely strong characteristic, the first signal processing circuit 102 serves as a signal transmission link between different circuit modules.
  • the first signal processing circuit 102 can completely maintain the integrity of the data in the signal; therefore, the first signal processing circuit 102 can The drive signal is transmitted to the second signal processing circuit 103, and the drive signal can be transmitted quickly and completely in the display panel drive circuit.
  • the first signal processing circuit 102 in the embodiment of the present application reduces the error of the drive signal during the transmission process. To enhance the compatibility of the display panel drive circuit and save the above display panel drive The manufacturing cost of the road.
  • the second signal processing circuit 103 is connected to the first signal processing circuit 102.
  • the first signal processing circuit 102 transmits multiple driving signals to the second signal processing circuit 103.
  • the second signal processing circuit 103 performs integrated conversion on each driving signal.
  • the display panel can be driven to display higher-definition images by using multiple driving signals.
  • the second signal processing circuit 103 is a sector centralized processing circuit, which can implement centralized conversion and processing of signals.
  • information between different numbers of signals can be exchanged to increase the complexity of the circuit functions implemented by the multiple signals, so that the multiple driving signals output by the second signal processing circuit 103 can drive the electronic circuit to achieve more complex actions.
  • each driving signal can achieve a specific function in the display panel, and the second signal processing circuit 103 Capable of integrating multiple driving signals for multiple driving signals It can cooperate with each other to realize the overall circuit function.
  • the display panel displays dynamic and clear images according to multiple driving signals, so that the display panel in the embodiment of the present application can process and receive different types of image data, and the user has a better viewing experience. , The images in the display panel can meet different viewing needs of users.
  • both the specific circuit structure of the first signal processing circuit 102 and the specific circuit structure of the second signal processing circuit 103 are circuit structures in the exemplary technology.
  • the first signal processing signal 102 is in the field of traditional display panels.
  • COF circuit Chip, Flex, flip-chip film
  • the first signal processing circuit 102 includes electronic devices such as rectifiers and logic gates, and can realize conversion between different amplitude signals and signal transmission control through the rectifiers and logic gates.
  • the first signal processing circuit 102 accesses different types of driving signals, the first signal processing circuit 102 can make the driving signals between different circuit modules through the conversion and transmission functions of the electronic devices in the first signal processing circuit 102.
  • the second signal processing circuit 103 is a fanout circuit in the field of traditional display panels.
  • the second signal processing circuit 103 includes electronic devices such as a plurality of MOS tubes and a plurality of diodes.
  • the MOS tubes are distributed in an array on the printed circuit board.
  • the MOS tube array in the second signal processing circuit 103 is connected to a multi-channel driver,
  • signals are turned on or off, by controlling the on or off of the MOS tube, multiple MOS tubes and multiple diodes can perform integrated processing of each driving signal, so that the multiple driving signals output by the second signal processing circuit 103 can serve as a function
  • the display panel is driven to display clearer and more complex images.
  • the signal transmission circuit 104 is electrically connected to the second signal processing circuit 103.
  • the second signal processing circuit 103 transmits multiple driving signals to the signal transmission circuit 104.
  • the signal transmission circuit 104 can quickly transmit multiple driving signals, thereby enabling display.
  • the panel can receive image data in real time; wherein the signal transmission circuit 104 includes: a plurality of display lines arranged in an array.
  • the plurality of display lines are arranged in an equidistant distribution in the signal transmission circuit 104.
  • the wiring arrangement can be such that the display panel can receive image data uniformly, so that the picture presented by the display panel is more stable and coordinated. Therefore, the display wiring can output driving signals, and then transfer image data to the display panel to the user.
  • the signal transmission circuit 104 includes 8 display lines L1, L2 ... L7, L8, each of which is used to transmit one drive Signal, 8 display traces can simultaneously transmit 8 drive signals, and then the drive signals in the traces can be driven in real time Dynamic display panel image display to protect the display panel can work in a stable state.
  • each signal transmission channel is set to correspond to each display trace. Therefore, when the signal transmission channel is connected to the driving signal, the transmission path of each driving signal is: the signal transmission channel, the first The signal processing circuit 102, the second signal processing circuit 103, and the display wiring.
  • the display panel receives a driving signal through the display wiring.
  • the driving signal can drive the display panel in a normal working state in real time, and the display panel can display a high-definition image in real time.
  • each signal transmission channel has a unique relative position to the corresponding display trace; then in multiple signal transmission paths, the distance between the signal transmission channel and the display trace is also different.
  • the first signal processing circuit 102 and the second signal No are arranged at intervals, and multiple display traces are also arranged in an array; In the transmission path, each signal transmission channel has a unique relative position to the corresponding display trace; then in multiple signal transmission paths, the distance between the signal transmission channel and the display trace is also different.
  • the equivalent resistance between the signal transmission channel and the display trace will be different, which will cause the rate of the drive signal in each signal transmission path, Loss and transmission time will also be different; taking the display panel drive circuit in Figure 1 as an example, since the display panel drive circuit can simultaneously transmit eight drive signals, there are eight signal transmission paths m1 and m2 in the display panel drive circuit. ... M7, m8, in the first signal transmission path, the distance between the first signal transmission channel H1 and the first display trace L1 is the longest, and its equivalent resistance is the largest.
  • the loss and time of the first drive signal during signal transmission are the largest, and the first display trace L1 receives the first drive signal at the latest; otherwise, in the eight signal transmission paths,
  • the distance between the fourth signal transmission channel H4 and the fourth display trace L4 is the shortest, and the equivalent resistance between the fourth signal transmission channel H4 and the fourth display trace L4 is the smallest.
  • the four drive signals have the least loss and time during the transmission process.
  • the fourth display trace L4 can receive the fourth drive signal as quickly as possible; and so on, because during the transmission of multiple drive signals, each signal transmission channel There are differences in the equivalent resistance between the corresponding display traces, so multiple display traces cannot receive multiple drive signals at the same time, the display panel will receive inconsistent multiple drive signals, and the display panel will Driven by a road driving signal, an uneven image is displayed, and the image quality and sharpness in the display panel are also greatly reduced, and the user ’s visual experience is poor.
  • the driving integrated circuit 101 and the signal transmission circuit 104 since the relative position between each signal transmission path and the corresponding display trace is different, furthermore, in each signal transmission path, the signal transmission The equivalent resistance between the channel and the display trace is not the same. The transmission time of each drive signal in the signal transmission path will be different. The display panel will receive inconsistent multiple drive signals, and the image in the display panel will be different.
  • the present application provides an impedance difference compensation circuit 20.
  • the impedance difference compensation circuit 20 is applied to the display panel drive circuit described above.
  • Each drive signal is kept consistent during the transmission process, and the equivalent resistance between each signal transmission channel and the corresponding display trace is exactly the same, so that all display traces can receive consistent drive signals and display panels.
  • FIG. 2 shows an application framework of the impedance difference compensation circuit 20 provided in the embodiment of the present application.
  • the impedance difference compensation circuit 20 includes a resistance module 201, where The resistance module 201 is connected in series or in parallel to the input terminal of the first signal processing circuit 102.
  • the resistance module 201 can change the equivalent resistance between the signal transmission channel and the corresponding display trace, so that each signal transmission channel and each display The equivalent resistance between the traces is equal, then the loss of each drive signal during transmission Same as time, multiple display traces can receive multiple driving signals at the same time. Under the driving of the driving signals, the display panel can display clear and consistent images to improve the visual effect of the user.
  • the resistance module 201 includes at least one resistor, and the equivalent resistance of the output end of each signal transmission channel can be adjusted through this resistance, so that the driving signal in each signal transmission path The loss and transmission rate remain the same; for example, as shown in FIG.
  • the display panel driving circuit can simultaneously access 8 driving signals, of which the first signal transmission path m1, the first signal transmission channel H1 and The first shows that the equivalent resistance between traces L1 is the largest, then the equivalent resistance in the first signal transmission path m1 is reduced by the resistance module 201; the fourth signal transmission path m4 is the shortest, then the fourth signal transmission channel The resistance between H4 and the fourth display trace L4 is the smallest, and the equivalent resistance in the fourth signal transmission path m4 is increased through the resistance module 201. In this way, the display panel driving circuit is respectively made through the resistance module 201 The equivalent resistances of the eight signal transmission paths remain the same, and all display traces can receive completely the same driving signals, so that the display panel can Display uniform and complete images to meet users' viewing needs.
  • the equivalent resistance between each signal transmission channel and the corresponding display trace can be made equal through the resistance module 201, and the display panel driving circuit can simultaneously receive multiple driving signals and output at the same time. Multiple driving signals, the driving signals remain consistent in different signal transmission paths, and then the display panel can be driven to display a completely uniform image through the consistent driving signals, thereby improving the practical performance of the display panel driving circuit; therefore, the embodiment of this application
  • the input end of the integrated circuit 101 is connected to the impedance difference compensation circuit 20, and the equivalent resistance difference in each signal transmission path can be compensated through the impedance difference compensation circuit 20, so that each signal transmission channel and the corresponding display trace Equivalent resistance remains the same, multiple display traces can receive completely consistent driving signals, and the structure is simple.
  • the impedance difference compensation circuit 20 can be applied to different types of display panels.
  • the display panel can display uniform and coordinated images to Enhance the user's sense of real viewing experience; It is determined that the driving parameters received by the display panel are inconsistent due to the difference in equivalent parameters in the multiple signal transmission paths in the display panel drive circuit in the exemplary technology, the image in the display panel is uneven, and the user's visual experience is poor. The problem.
  • the impedance difference compensation circuit 20 is disposed on a line between the driving integrated circuit 101 and the first signal processing circuit 102, and a resistance module 201 on a signal transmission path is disposed on the driving The external of the integrated circuit 101, so that the equivalent resistance on each transmission path can be made equal through the resistance module 201, so that multiple display traces can receive completely consistent driving signals, effectively reducing the image in the display panel. Inconsistency and heterogeneity.
  • FIG. 3 shows an application framework of the impedance difference compensation circuit 20 provided in the embodiment of the present application.
  • the impedance The difference compensation circuit 20 is arranged in the driving integrated circuit 20, and the equivalent resistance between each signal transmission channel and the corresponding display trace can be made equal by the resistance module 201 during the transmission of the driving signal, so that the display panel can Displaying clearer and more realistic images, and arranging the resistance module 201 inside the driving integrated circuit 20 is helpful to simplify the circuit structure inside the display panel, and the structure of the display panel driving circuit is more integrated and miniaturized.
  • the impedance difference compensation circuit 20 has a lower application cost, is easy to implement, and effectively improves the practicability of the difference compensation circuit and the use experience of the display panel.
  • FIG. 4 shows a circuit structure of the resistance module 201 provided in the embodiment of the present application.
  • the resistance module 201 includes two resistors connected in parallel, and two resistors connected in parallel. They are: a first resistor R1 and a second resistor R2; wherein the first terminal of the first resistor R1 and the first terminal of the second resistor R2 are connected in common to a signal transmission channel for accessing the driving signal.
  • the second terminal of the resistor R1 and the second terminal of the second resistor R2 are commonly connected to the first signal processing circuit 102, and are configured to transmit the driving signal to the first signal processing circuit 102; and the resistance value of the first resistor R1 and the second resistance The resistance of the resistor R2 satisfies the following conditions:
  • R 1 is the resistance value of the first resistor R1
  • R 2 is the resistance value of the second resistor R2
  • R 0 is a preset equivalent parameter
  • R 0 is set in advance parameter
  • R 0 is set by the size of each of the signal transmission path equivalent resistance of the first signal processing circuit 102 and the second signal processing circuit 103, such as the R 0 is set to 100 ohms; in the present application therefore
  • the resistance module 201 can keep the equivalent resistance between each signal transmission channel and the corresponding display trace according to the parallel resistance value of the first resistance R1 and the second resistance R2.
  • the display traces can receive completely consistent drive signals, which is easy to operate.
  • FIG. 5 shows another circuit structure of the resistance module 201 provided in the embodiment of the present application, as shown in FIG. 5, where the resistance module 201 includes three resistors connected in parallel.
  • the three resistors connected in parallel are: a third resistor R3, a fourth resistor R4, and a fifth resistor R5; wherein the first terminal of the third resistor R3, the first terminal of the fourth resistor R4, and the first resistor of the fifth resistor R5 Terminals are commonly connected to the signal transmission channel, the second terminal of the third resistor R3, the second terminal of the fourth resistor E4, and the second terminal of the fifth resistor R5 are commonly connected to the first signal processing circuit 102, and the third resistor R3
  • the resistance value, the resistance value of the fourth resistor R4, and the resistance value of the fifth resistor R5 satisfy the following conditions:
  • R 3 is the resistance of the third resistor R3, R 4 is the resistance of the fourth resistor R4, R 5 is the resistance of the fifth resistor R5, and R 0 is a preset equivalent parameter;
  • the size of R 0 is set according to the equivalent resistance between the first signal processing circuit 102 and the second signal processing circuit 103 in each signal transmission path. Therefore, in the embodiment of the present application, the resistance module 201 is The resistance values of the three resistors R3, the fourth resistor R4, and the fifth resistor R5 in parallel make the equivalent resistance between each signal transmission channel and the corresponding display trace equal to achieve the impedance in each signal transmission path. The difference is dynamically compensated to improve the consistency of the image in the display panel.
  • the resistance module 201 includes multiple parallel resistors, and each signal transmission path can be changed correspondingly by adjusting the parallel resistance value of the resistance module 201
  • the equivalent resistance between each signal transmission channel and the corresponding display trace is completely the same; the circuit structure of the resistance module 201 is simple and easy to implement, which greatly reduces the impedance difference compensation circuit 20
  • the manufacturing cost and the cost of industrial application can effectively compensate the impedance difference in each signal transmission path, and improve the consistency of the driving signals output by the display panel driving circuit.
  • FIG. 4 and FIG. 5 are only embodiments of the resistance module 201, they do not constitute a technical limitation for the resistance module 201 in the embodiment of the present application.
  • a technician can use four parallel Resistors, 5 resistors in parallel, etc. to implement the circuit function implemented by the resistance module 201; therefore, the resistance module 201 in the embodiment of the present application has a very flexible circuit structure, which further improves the compatibility of the impedance difference compensation circuit 20, the impedance
  • the difference compensation circuit 20 can be applied to various types of display panels to compensate the impedance difference of the signal transmission path in the display panel driving circuit, so as to effectively ensure that the display panel can improve the uniform and high-quality image or video to the user. Extremely practical.
  • FIG. 6 shows another circuit structure of the resistance module 201 provided in the embodiment of the present application.
  • the resistance module 201 includes two series resistors, two The series resistors are: a sixth resistor R6 and a seventh resistor R7; wherein the first terminal of the sixth resistor R6 is connected to the signal transmission channel, the second terminal of the sixth resistor R6 is connected to the first terminal of the seventh resistor R7, The second terminal of the seventh resistor R7 is connected to the first signal processing circuit 102, and the resistance of the sixth resistor R6 and the resistance of the seventh resistor R7 satisfy the following conditions:
  • R 6 is the resistance value of the sixth resistor R6, R 7 is the resistance value of the seventh resistor R7, and R 0 is a preset equivalent parameter, where R 0 is a signal transmission path of each channel Equivalent parameters set in advance; in the embodiment of the present application, the resistor module 201 can adjust each signal transmission channel and the corresponding display wiring through two resistors connected in series (including the sixth resistor R6 and the seventh resistor R7).
  • Equivalent resistance, circuit structure is simple, easy to implement, so that each drive signal in the display panel drive circuit has the same transmission time and loss during the transmission process, the display panel can receive completely consistent multiple drive signals, So that the display panel can dynamically display completely consistent and coordinated images or videos.
  • FIG. 7 illustrates another circuit structure of the resistance module 201 provided in the embodiment of the present application.
  • the resistance module 201 includes three resistors connected in series, and three The series resistors are: the eighth resistor R8, the ninth resistor R9, and the tenth resistor R10. Among them, the first terminal of the eighth resistor R8 is connected to the signal transmission channel, and the first terminal of the ninth resistor R9 is connected to the eighth resistor R8.
  • the second terminal, the second terminal of the ninth resistor R9 is connected to the first terminal of the tenth resistor R10, the second terminal of the tenth resistor R10 is connected to the first signal processing circuit 102, and the resistance of the eighth resistor R8 and the ninth resistor
  • the resistance of R9 and the resistance of the tenth resistor R10 meet the following conditions:
  • R 8 is the resistance of the eighth resistor R8
  • R 9 is the resistance of the ninth resistor R9
  • R 10 is the resistance of the tenth resistor R10
  • R 0 is a preset equivalent parameter
  • R 0 is an equivalent parameter set by a technician in advance; therefore, the resistor module 201 in the embodiment of the present application passes three resistors connected in series (including an eighth resistor R8, a ninth resistor R9, and a tenth resistor R10), that is,
  • the equivalent resistances in multiple signal transmission paths in the display panel can be made completely equal, and each display trace in the signal transmission circuit 104 can receive a completely identical driving signal to avoid impedance differences in the transmission process of the driving signal.
  • the problem of uneven and uncoordinated images greatly improves the practicability of the driving circuit of the display panel.
  • the specific circuit structure of the resistance module 201 shown in FIG. 6 and FIG. 7 is only an embodiment of the present application, and does not constitute a technical limitation on the impedance difference compensation circuit 20 in the present application; in the actual application process
  • the resistance module 201 four or five resistors can be connected in series to adjust the equivalent resistance between each signal transmission channel and the corresponding display trace, so that the equivalent resistance in each signal transmission path remains the same.
  • Users can view uniform and coordinated images through the display panel; at the same time, the resistance module 201 has a very flexible circuit structure.
  • the user can adjust the specific circuit structure of the resistance module 201 according to the scale and specific functions of the driving signal, which has strong compatibility. It can be applied to different types of display panels, bringing a good visual experience to the user, and improving the practical value of the display panel.
  • the signal transmission channel includes a buffer, and when the signal traditional channel is connected to the driving signal, the buffer can temporarily store the driving signal to avoid driving.
  • the phenomenon of image data loss occurs when signals are transmitted in the signal transmission channel; since the display panel drive circuit needs to access large-capacity image data in real time through the signal transmission channel during the display of the display panel, the buffer can Drive signals are buffered and retained in real time, and then a large number of drive signals can be quickly accessed through the signal transmission channel, which improves the signal transmission capability of the display panel drive circuit in the embodiment of the present application, so that the display panel can dynamically display images or videos according to the drive signals. To meet the actual needs of users.
  • the number of signal transmission channels is equal to the number of display traces; for example, the driving integrated circuit 101 includes eight signal transmission channels , The signal transmission circuit 104 also includes eight display traces.
  • each channel is driven
  • the signal transmission path includes a signal transmission channel and a display trace. There will be no extra signal transmission channels or extra display traces in the display panel driving circuit, which avoids signal transmission in the driving integrated circuit 101 and the signal transmission circuit 104.
  • the problem of mismatch greatly improves the signal transmission efficiency of the display panel driving circuit in the embodiment of the present application, and avoids the problem of waste of electronic devices in the display panel driving circuit.
  • FIG. 8 shows a module structure of a display panel 50 provided in an embodiment of the present application.
  • the display panel 50 includes a driving integrated circuit 101, a resistance module 201, a first signal processing circuit 102, and a second signal processing circuit. 103.
  • the driving integrated circuit 101 includes a plurality of signal transmission channels arranged for accessing a driving signal and arranged at intervals.
  • the resistance module 201 is connected in series or parallel to the first signal processing circuit 102.
  • the input terminal can adjust the equivalent resistance of the driving signal in the transmission path through the resistance module 201, and the resistance module 201 includes at least one resistance; each signal transmission channel is connected to the first signal processing circuit 102 through the resistance module 201, A signal processing circuit 102 can transmit each driving signal separately; a second signal processing circuit 103 is electrically connected to the first signal processing circuit 102, and each driving signal can be integrated and converted through the second signal processing circuit 103; a signal transmission circuit 104 is electrically connected to the second signal processing circuit 103.
  • the signal transmission circuit 104 includes a plurality of Drive signals and display lines arranged in an array; each of the signal output channels is set one-to-one with each display line; the video display circuit 501 is connected to the signal transmission circuit 104, and when the signal transmission circuit 104 drives multiple channels When the signal is transmitted to the video display circuit 501, the video display circuit 501 performs video display according to multiple driving signals. Since the video display circuit 501 can receive and recognize the driving signals, the video display circuit 501 can decode the driving signals and obtain corresponding image data.
  • the video display circuit 501 is a video signal display circuit in the exemplary technology, where the traditional video signal display circuit includes a light emitting diode,
  • the driving signal can drive the light emitting diode to emit the corresponding light source, and the color and brightness of the light source in the light emitting diode can be adjusted by the driving signal.
  • the user uses the video message Display circuit can watch the moving images, giving users a good visual experience.
  • the resistance module 201 is disposed in the driving integrated circuit 101, or the resistance module 201 is disposed on a line between the driving integrated circuit 101 and the first signal processing circuit 102.
  • the resistance module 201 includes two resistors connected in parallel, and the two resistors connected in parallel are: an eleventh resistor and a twelfth resistor.
  • the first end of the eleventh resistor and the first end of the twelfth resistor are connected in common to the signal transmission channel, and the second end of the eleventh resistor and the second end of the twelfth resistor are connected in common to the first signal processing.
  • Circuit 102, and the resistance of the eleventh resistor and the resistance of the twelfth resistor satisfy the following conditions:
  • R 11 is the resistance value of the eleventh resistor
  • the R 12 is the resistance value of the twelfth resistor
  • R 0 is a preset equivalent parameter.
  • the resistance module 201 includes three resistors connected in parallel, and the three resistors connected in parallel are: a thirteenth resistor, a fourteenth resistor, and a fifteenth resistor.
  • the first end of the thirteenth resistor, the first end of the fourteenth resistor, and the first end of the fifteenth resistor are connected to the signal transmission channel in common.
  • the second end of the thirteenth resistor and the first end of the fourteenth resistor are connected in common.
  • the two terminals and the second terminal of the fifteenth resistor are commonly connected to the first signal processing circuit 102, and the resistance value of the thirteenth resistor, the resistance value of the fourteenth resistor, and the resistance value of the fifteenth resistor satisfy the following conditions:
  • the R 13 is the resistance value of the thirteenth resistor
  • the R 14 is the resistance value of the fourteenth resistor
  • the R 15 is the resistance value of the fifteenth resistor
  • the R is 0 is the preset equivalent parameter.
  • the resistance module 201 includes two resistors connected in series, and the two resistors connected in series are: a sixteenth resistor and a seventeenth resistor.
  • the first terminal of the sixteenth resistor is connected to the signal transmission channel
  • the second terminal of the sixteenth resistor is connected to the first terminal of the seventeenth resistor
  • the second terminal of the seventeenth resistor is connected to the first signal processing circuit 102
  • the resistance of the sixteenth resistor and the resistance of the seventeenth resistor satisfy the following conditions:
  • R 16 is the resistance value of the sixteenth resistor
  • R 17 is the resistance value of the seventeenth resistor
  • R 0 is a preset equivalent parameter.
  • the resistance module 201 includes three resistors connected in series, and the three resistors connected in series are: an eighteenth resistor, a nineteenth resistor, and a twentieth resistor.
  • the first terminal of the eighteenth resistor is connected to the signal transmission channel
  • the second terminal of the eighteenth resistor is connected to the first terminal of the nineteenth resistor
  • the second terminal of the nineteenth resistor is connected to the first terminal of the twentieth resistor.
  • the second terminal of the twenty resistor is connected to the first signal processing circuit 102, and the resistance value of the eighteenth resistor, the resistance value of the nineteenth resistor, and the resistance value of the twentieth resistor satisfy the following conditions:
  • the R 18 is the resistance value of the eighteenth resistor
  • the R 19 is the resistance value of the nineteenth resistor
  • the R 20 is the resistance value of the twentieth resistor. Resistance value
  • the R 0 is a preset equivalent parameter.
  • the signal transmission channel includes:
  • the buffer is configured to buffer the driving signal.
  • the number of the signal transmission channels is equal to the number of the display traces.
  • a plurality of the signal transmission channels are arranged at equal intervals in the driving integrated circuit 101; a plurality of display traces are arranged at equal intervals in the signal transmission circuit 104.
  • the equivalent resistance in each signal transmission path can be adjusted through the resistance module 201, so that each signal transmission channel and each The equivalent resistances between the display traces are equal; each drive signal has the same transmission rate and power loss during the transmission process.
  • the video display circuit 501 receives a consistent multiple drive signals, and the drive signals can drive the video.
  • the display circuit 501 displays a uniform and real image in real time, and the user can view the real and high-definition image on the display panel 50, which greatly improves the visual experience effect of the user; therefore, the embodiment of the present application only needs to
  • the signal transmission path of the driving signal has the same equivalent parameters without changing the internal circuit structure and the wiring structure of the display panel 50.
  • the video display circuit 501 can receive completely identical multiple driving signals in real time, and the display panel 50 can display More realistic and coordinated images or videos; effectively solve In the exemplary technology, the driving signals are inconsistent during the transmission process, and different signal transmission paths have different impedances, which causes the image displayed in the display panel to be uneven, and the quality of the image or video in the display panel is poor, which reduces the user's viewing Question of experience.
  • the display panel 50 is a thin film transistor display (TFT-LCD), a liquid crystal display (TFT display), an LCD (liquid crystal display), an OLED (Organic Electroluminesence Display), and an organic electric laser display. ), QLED (Quantum Dot Light Emitting Diodes); furthermore, the above-mentioned resistance module 201 can make various types of display panels display clearer and more uniform images, and the display panel 50 is more practical and can be applied to In various industrial fields, to meet the actual needs of users.
  • TFT-LCD thin film transistor display
  • TFT display liquid crystal display
  • LCD liquid crystal display
  • OLED Organic Electroluminesence Display
  • organic electric laser display organic electric laser display.
  • QLED Quadantum Dot Light Emitting Diodes
  • the above-mentioned resistance module 201 can make various types of display panels display clearer and more uniform images, and the display panel 50 is more practical and can be applied to In various industrial fields, to meet the actual needs of users.
  • FIG. 9 shows a module structure of a mobile terminal 60 provided in an embodiment of the present application.
  • the mobile terminal 60 includes a signal collector 601 and a display panel 50, where the display panel 50 is the one shown in FIG. 8 described above.
  • the display panel 50 therefore, the specific implementation of the display panel 50 in FIG. 9 can be referred to the embodiment of FIG. 8 and will not be repeated here;
  • the signal collector 601 can collect external image information and generate multiple driving signals according to the image information ;
  • the signal collector 601 has the functions of data conversion and signal encoding. Therefore, the external image information is encoded and converted by the signal collector 601 to obtain multiple driving signals.
  • the driving signal includes a large amount of image data, and the driving signal can be displayed on the display. Fast transmission is performed in the panel driving circuit; further, the mobile terminal 60 can quickly collect and convert signals through the signal collector 601, which enhances signal transmission efficiency.
  • the signal collector 601 is a signal acquisition circuit or a signal acquisition chip in the exemplary technology; the type of the signal acquisition chip is ITUBT601656 or AD7656; the signal acquisition circuit includes electronic components such as operational amplifiers, resistors, capacitors, etc.
  • the image information is input through the signal input terminal of the signal acquisition circuit, and electrical energy is converted through electronic components such as operational amplifiers, resistors, and so on.
  • the signal output terminal of the signal acquisition circuit can output multiple driving signals in real time;
  • the signal collector 601 receives image information in real time and completes signal conversion.
  • the mobile terminal 60 can perform information interactive operations with external devices through the signal collector 601.
  • the display panel 50 is connected to a signal collector 601.
  • the signal collector 601 transmits multiple driving signals to the display panel 50.
  • the display panel 50 performs video display according to the multiple driving signals.
  • the display panel 50 can transmit and decode multiple driving signals. Operate to obtain image data, and then the user can watch a dynamic, clear image in real time on the display panel 50; wherein the working principle and internal structure of the display panel 50 in FIG. 9 can refer to the embodiment of FIG. 8, which will not be repeated here. To repeat.
  • the information acquisition between the mobile terminal 60 and an external device is realized through the signal collector 601, and then external image information is obtained; when the signal collector 601 transmits multiple driving signals to In the display panel 50, when the driving signals are transmitted in the display panel 50, the equivalent impedance in each signal transmission path is the same, so different driving signals have the same transmission rate and transmission time, and the display panel 50 can After receiving the identical multiple driving signals, the display panel 50 comprehensively acquires image data according to the multiple driving signals, and the display panel 50 can dynamically display clearer images or videos; therefore, the mobile terminal 60 in this embodiment can display uniform, Consistent images, the mobile terminal 60 can be applied in different industrial fields to provide users with high-definition images or videos, which has high practical value; effectively solves the unevenness and inconsistency of video in mobile terminals in the exemplary technology , Thereby causing a problem that the mobile terminal cannot be universally applied.
  • the mobile terminal 60 is a mobile phone or a tablet computer; therefore, the display panel 50 is applied to a mobile phone or a tablet computer to meet different actual needs of the user and improve the user experience.
  • FIG. 10 shows a module structure of an impedance difference compensation system 70 of a display panel driving circuit according to an embodiment of the present application.
  • the impedance difference compensation system 70 of the display panel driving circuit includes the above-mentioned impedance difference compensation circuit 701;
  • the impedance difference compensation circuit 701 is applied to a display panel driving circuit.
  • the circuit 701 can compensate the impedance difference of the driving signal in the signal transmission path, so that the multiple driving signals can maintain a consistent transmission rate and transmission time in the display panel driving circuit, and the display panel can receive multiple driving signals at the same time.
  • the display panel can display a uniform and dynamic image in real time to avoid the problem of uneven image caused by the inconsistency of the driving signals during the signal transmission process and enhance the user's true visual experience effect; therefore, the embodiments of the present application
  • the impedance difference compensation system 70 in the In the exemplary technology in the transmission process of the driving signal, there are differences in impedance in different signal transmission paths, which causes the display panel to fail to display a coordinated image, which is difficult to be universally applied to problems in different industrial fields.
  • the impedance difference compensation circuit in the embodiment of the present application can greatly improve the quality and clarity of the image in the display panel, and bring a good visual reality experience to the user. It can be widely used in various industrial fields. Extremely high industrial application value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种阻抗差异补偿电路、显示面板以及移动终端,该阻抗差异补偿电路应用于显示面板驱动电路,阻抗差异补偿电路包括电阻模块,其中,所述电阻模块包括至少一个电阻。

Description

阻抗差异补偿电路、显示面板及移动终端 技术领域
本申请属于显示技术领域,尤其涉及一种阻抗差异补偿电路、显示面板以及移动终端。
背景技术
在传统技术的显示驱动电路中,每一路图像信号在信号传输链路与显示走线之间传输路径长度就会存在差异,每一条信号传输链路与相应的显示走线之间的等效参数就会不相同,显示面板中不同显示走线所接收到的图像信号就会出现不一致的现象,此时显示面板会显示不均匀的图像;因此传统技术中由于信号传输路径中等效参数存在差异,会降低显示面板中图像的清晰度,用户体验不佳。
申请内容
本申请的一个目的在于提供一种阻抗差异补偿电路、显示面板以及移动终端,包括但不限于解决:显示面板驱动电路中各信号传输路径的等效参数不相同,导致各信号的传输效率和传输时间不一致的的技术问题。
为解决上述技术问题,本申请实施例采用的技术方案是:一种阻抗差异补偿电路,应用于显示面板驱动电路,所述显示面板驱动电路包括:
驱动集成电路,所述驱动集成电路包括多条分别设置为接入驱动信号,并且间隔排列的信号传输通道;
第一信号处理电路,与各条所述信号传输通道分别电性连接,设置为分别传输各路所述驱动信号;
第二信号处理电路,与所述第一信号处理电路电性连接,设置为对各路所述驱动信号进行集成转换;以及
信号传输电路,与所述第二信号处理电路电性连接,所述信号传输电路包括多条设置为输出所述驱动信号,并且阵列排布的显示走线,其中每一条所述信号传输通道与每一条所述显示走线一一对应设置;
所述阻抗差异补偿电路包括电阻模块,所述电阻模块串联或者并联在所述第一信号处理电路的输入端,设置为使每一条所述信号传输通道与每一条所述显示走线之间的等效电阻相等;
其中,所述电阻模块包括至少一个电阻。
本申请的另一目的在于提供一种显示面板,包括:
驱动集成电路,包括多条分别设置为接入驱动信号,并且间隔排列的信号传输通道;
第一信号处理电路,与各条所述信号传输通道电性连接,设置为分别传输所述各路驱动信号;
第二信号处理电路,与所述第一信号处理电路电性连接,设置为对各路所述驱动信号进行集成转换;
信号传输电路,与所述第二信号处理电路电性连接,所述信号传输电路包括多条设置为输出所述驱动信号,并且阵列排布的显示走线,其中每一条所述信号传输通道与每一条所述显示走线一一对应设置;
视频显示电路,与所述信号传输电路连接,设置为根据多路所述驱动信号进行视频显示;以及
电阻模块,串联或并联在所述第一信号处理电路的输入端,设置为使每一条所述信号传输通道与每一条所述显示走线之间的等效电阻相等;其中,所述电阻模块包括至少一个电阻。
本申请的再一目的在于提供一种移动终端,包括:
信号采集器,设置为根据图像信息生成多路驱动信号;
显示面板,与所述信号采集器连接,设置为根据多路所述驱动信号进行视频显示;
其中所述显示面板包括:
驱动集成电路,包括多条分别设置为接入驱动信号,并且间隔排列的信号传输通道;
第一信号处理电路,与各条所述信号传输通道电性连接,设置为分别传输所述各路驱动信号;
第二信号处理电路,与所述第一信号处理电路电性连接,设置为对各路所述驱动信号进行集成转换;
信号传输电路,与所述第二信号处理电路电性连接,所述信号传输电路包括多条设置为输出所述驱动信号,并且阵列排布的显示走线,其中每一条所述信号传输通道与每一条所述显示走线一一对应设置;
视频显示电路,与所述信号传输电路连接,设置为根据多路所述驱动信号进行视频显示;以及
电阻模块,串联或并联在所述第一信号处理电路的输入端,设置为使每一条所述信号传输通道与每一条所述显示走线之间的等效电阻相等;其中,所述电阻模块包括至少一个电阻。
本申请实施例提供的阻抗差异补偿电路通过电阻模块对每一条信号传输路径中的阻抗差异进行补偿,能够使每一条信号传输路径中的等效电阻都相等,所有的显示走线能够同时接收到完全一致的多路驱动信号,显示面板根据这些完全一致的多路驱动信号显示均匀的图像;本申请无需改变显示面板驱动电路中各个电路模块的具体电路结构,通过电阻模块即可使每一条信号传输路径中的等效电阻都保持一致,解决了示例性技术中显示面板驱动电路中信号传输路径的等效参数存在差异,用户体验不佳的问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的一种显示面板驱动电路的模块结构图;
图2是本申请实施例提供的一种阻抗差异补偿电路的应用框架图;
图3是本申请实施例提供的另一种阻抗差异补偿电路的应用框架图;
图4是本申请实施例提供的一种电阻模块的电路结构图;
图5是本申请实施例提供的另一种电阻模块的电路结构图;
图6是本申请实施例提供的另一种电阻模块的电路结构图;
图7是本申请实施例提供的另一种电阻模块的电路结构图;
图8是本申请实施例提供的一种显示面板的模块结构图;
图9是本申请实施例提供的一种移动终端的模块结构图;
图10是本申请实施例提供的一种显示面板驱动电路的阻抗差异补偿系统的模块结构图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本专 利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
需要说明的是,根据显示面板中图像数据的传输原理和特性,当显示面板驱动电路接入多路驱动信号时,其中该驱动信号包括大量的图像数据,通过该显示面板驱动电路对驱动信号进行传输和转化,进而通过多路驱动信号来驱动显示面板显示高清的图像,以满足用户的观赏需求;图1示出了本申请实施例提供的显示面板驱动电路的模块结构,如图1所示,该显示面板驱动电路包括:驱动集成电路101、第一信号处理电路102、第二信号处理电路103以及信号传输电路104;其中,驱动集成电路101中包括多条信号传输通道,通过该信号传输通道能够分别接入驱动信号,并且多条信号传输通道为间隔排列,可选的的,多条信号传输通道在驱动集成电路中呈等距分布排列,进而每一个信号传输通道能够稳定地传输驱动信号,提高了本实施例驱动集成电路101中电子元器件的集成度,简化了驱动集成电路101中的空间布局;示例性的,如图1所示,驱动集成电路101包括8条信号传输通道H1、H2…H7、H8,其中通过每一条信号传输通道能够接入一路驱动信号,进而该驱动集成电路101能够同时接入8路驱动信号,通过这些显示面板驱动电路能够驱动显示面板实时显示图像;因此在本申请实施例中,通过该驱动集成电路101即可实时接入多路驱动信号,以实现显示面板与外界电子设备的数据交互,并且驱动集成电路101中的每一条信号传输通道都能够保持独立的信号传输状态,互不影响,进而极大地提高本申请实施例中信号传输的安全和速率,驱动集成电路101能够快速地接入大量的图像数据,以增强显示面板驱动电路中信号传输的效率及其适用范围。
第一信号处理电路102与各条信号传输通道电性连接,驱动集成电路101将多路驱动信号传输至第一信号处理电路102,第一信号处理电路102具有信号传输的功能,第一信号处理电路102用于分别传输各路驱动信号;由于第一信号处理电路102上集成了信号传输芯片和软性基板电路,因此第一信号处理电路102具有信号传输误码率低、传输速率快以及兼容性极强的特点,第一信号处理电路102作为不同电路模块之间的信号传输纽带,第一信号处理电路102能够完全保持信号中数据的完整性;因此通过第一信号处理电路102能够将多路驱动信号传输至第二信号处理电路103,驱动信号能够在显示面板驱动电路中进行快速、完整地传输,本申请实施例中的第一信号处理电路102降低了驱动信号在传输过程中的误差,使显示面板驱动电路的兼容性增强,节省了上述显示面板驱动电路的制造成本。
第二信号处理电路103与第一信号处理电路102连接,第一信号处理电路102将多路驱动信号传输至第二信号处理电路103,第二信号处理电路103对各路驱动信号进行集成 转换,以增强驱动信号的图像驱动能力,从而通过多路驱动信号能够驱动显示面板显示更加高清的图像;其中第二信号处理电路103为扇区集中处理电路,能够对信号实现集中转换并处理的功能,进而使不同路数的信号之间能够进行信息交互,以提高多路信号所实现电路功能的复杂程度,从而第二信号处理电路103输出的多路驱动信号能够驱动电子电路实现更为复杂的动作;在本申请实施例中,由于第一信号处理电路102所输出的多路驱动信号都是相互独立的,每一路驱动信号在显示面板中都能够实现特定的功能,通过第二信号处理电路103能够将多路驱动信号进行集成转换,进而使多路驱动信号能够相互配合实现整体的电路功能,显示面板根据多路驱动信号显示动态、清晰的图像,使得本申请实施例中的显示面板能够处理并接收不同类型的图像数据,用户具有更佳的观赏体验感,显示面板中的图像能够满足用户不同的观赏实际需求。
需要说明的是,上述第一信号处理电路102的具体电路结构和第二信号处理电路103的具体电路结构都是示例性技术中的电路结构,比如,第一信号处理信号102为传统显示面板领域中的COF电路(Chip On Flex,覆晶薄膜),第一信号处理电路102包括整流器和逻辑门等电子器件,通过整流器和逻辑门即可实现不同幅值信号之间的转换以及信号传输控制,进而当第一信号处理电路102接入不同类型的驱动信号时,通过第一信号处理电路102中电子器件的转换和传输功能,第一信号处理电路102可以使驱动信号在不同的电路模块之间进行相互传递;又比如,第二信号处理电路103为传统显示面板领域中的fanout(扇出区)电路,第二信号处理电路103包括多个MOS管和多个二极管等电子器件,其中多个MOS管在印刷电路板上呈阵列分布,当第二信号处理电路103中的MOS管阵列接入多路驱动信号时,通过控制MOS管的导通或者关断,进而多个MOS管和多个二极管能够对各路驱动信号进行集成处理,使第二信号处理电路103输出的多路驱动信号能够作为一个功能整体,以驱动显示面板显示更加清晰、复杂的图像。
信号传输电路104与第二信号处理电路103电性连接,第二信号处理电路103将多路驱动信号传输至信号传输电路104,通过信号传输电路104能够快速地传输多路驱动信号,进而使显示面板能够实时地接收图像数据;其中信号传输电路104包括:多条阵列排布的显示走线,可选的,多条显示走线在信号传输电路104中呈等距分布排列,通过这种显示走线排布方式能够是显示面板能够均匀地接收到图像数据,以使显示面板所呈现的画面更加稳定和协调,因此通过该显示走线能够输出驱动信号,进而传递图像数据,显示面板给用户带来良好的视觉体验;如附图1中的信号传输电路104所示,该信号传输电路104包括8条显示走线L1、L2…L7、L8,其中每一条显示走线用于传输一路驱动信号,8条显示走线能够同时传输8路驱动信号,进而通过显示走线中的驱动信号能够实时地驱动显示面板进行图像的动态显示,以保障显示面板能够处于稳定的工作状态。
其中在本申请实施例中,每一条信号传输通道与每一条显示走线一一对应设置,因此在信号传输通道接入驱动信号时,每一路驱动信号的传输路径为:信号传输通道、第一信号处理电路102、第二信号处理电路103以及显示走线,显示面板通过显示走线接收驱动信号,通过该驱动信号能够实时驱动显示面板处于正常的工作状态,显示面板能够实时显示高清图像,以满足人们的观赏需求;然而根据图1中所示出的显示面板驱动电路的模块结构,多条信号传输通道都是呈间隔排列,并且多条显示走线也是呈阵列排布;因此在驱动信号的传输路径中,每一条信号传输通道与相对应的显示走线具有独特的相对位置;那么在多条信号传输路径中,信号传输通道与显示走线之间的距离也是不相同,由于信号传输通道与显示走线之间存在:第一信号处理电路102和第二信号处理电路103,当每一路驱动信号的信号传输路径不相同时,信号传输通道与显示走线之间的等效电阻就会不相同,进而导致每一路信号传输路径中的驱动信号的速率、损耗以及传输时间也会不相同;以图1中的显示面板驱动电路为例,由于该显示面板驱动电路能够同时传输8路驱动信号,则显示面板驱动电路中存在8条信号传输路径m1、m2…m7、m8,在第一条信号传输路径中,第一信号传输通道H1与第一显示走线L1之间的距离最长,其等效电阻最大,当第一信号传输通道H1的输出端输出第一路驱动信号时,第一路驱动信号在信号传输过程中的损耗和时间最大,进而第一显示走线L1最晚接收到第一路驱动信号;反之在8条信号传输路径中,第四信号传输通道H4与第四显示走线L4之间的距离最短,第四信号传输通道H4和第四显示走线L4之间的等效电阻最小,那么第四路驱动信号在传输过程中损耗和时间最小,第四显示走线L4能够最快地接收到第四路驱动信号;依次类推,由于在多路驱动信号进行传输过程中,每条信号传输通道与相对应的显示走线之间的等效电阻都存在差异,那么多条显示走线无法同时接收到多路驱动信号,该显示面板就会接收不一致的多路驱动信号,进而显示面板在多路驱动信号的驱动下会显示不均匀的图像,显示面板中图像质量和清晰度也会出现大幅下降,用户的视觉体验感不佳。
结合上文所述,在驱动集成电路101和信号传输电路104中,由于每一条信号传输通和相对应的显示走线之间的相对位置不一样,进而在每一条信号传输路径中,信号传输通道与显示走线之间的等效电阻不相同,每一路驱动信号在信号传输路径中的传输时间就不相同,显示面板就接收到不一致的多路驱动信号,进而显示面板中的图像就会出现不一致、不协调的问题,极大地降低了用户的真实观赏体验感;并且若显示面板驱动电路的结构更为复杂,通过显示面板驱动电路所传输驱动信号的路数更多时,则信号传输路径中等效电阻的差异就会越大,显示面板所实现的图像就会出现严重不对称的问题;因此上述显示面板驱动电路无法普遍地适用于不同类型的显示面板中,尤其是大型、宽屏的显示面板中,导致本申请实施例中的显示面板驱动电路的实用性较低。
针对图1中显示面板驱动电路的信号传输差异问题,本申请提供了一种阻抗差异补偿电路20,其中该阻抗差异补偿电路20应用于上述显示面板驱动电路中,通过阻抗差异补偿电路20可使每一路驱动信号在传输过程中保持一致,每一条信号传输通道和相对应的显示走线之间的等效电阻完全相同,进而使所有的显示走线都能够接收到一致的驱动信号,显示面板根据多路驱动信号显示均匀的图像;具体的,图2示出了本申请实施例提供的阻抗差异补偿电路20的应用框架,如图2所示,阻抗差异补偿电路20包括电阻模块201,其中电阻模块201串联或者并联在第一信号处理电路102的输入端,通过电阻模块201能够改变信号传输通道与相对应显示走线之间的等效电阻,以使得每一条信号传输通道和每一条显示走线之间的等效电阻相等,则每一路驱动信号在传输过程中的损耗和时间都相同,多条显示走线能够同时接收到多路驱动信号,在该驱动信号的驱动下,显示面板能够显示清晰、一致的图像,以提高用户的视觉效果。
在图2所示出阻抗差异补偿电路20中,电阻模块201包括至少一个电阻,进而通过该电阻即可调整每一条信号传输通道输出端的等效电阻,进而使每一路信号传输路径中驱动信号的损耗和传输速率都保持相同;示例性的,结合图2所示,该显示面板驱动电路能够同时接入8路驱动信号,其中第一条信号传输路径m1中,第一条信号传输通道H1和第一条显示走线L1之间的等效电阻最大,则通过电阻模块201减少第一条信号传输路径m1中的等效电阻;第四条信号传输路径m4最短,则第四条信号传输通道H4和第四条显示走线L4之间的电阻最小,则通过电阻模块201增大第四信号传输路径m4中的等效电阻,按照此种方式,分别通过电阻模块201使显示面板驱动电路中8条信号传输路径的等效电阻保持一致,进而所有的显示走线都能够接收完全一致的驱动信号,以使该显示面板能够显示均匀、完整的图像,满足用户的观赏需求。
因此在图2所示的应用框架中,通过电阻模块201即可使每一条信号传输通道与相应显示走线之间的等效电阻相等,显示面板驱动电路能够同时接收多路驱动信号以及同时输出多路驱动信号,驱动信号在不同的信号传输路径中保持一致,进而通过一致的驱动信号能够驱动显示面板显示完全均匀的图像,提高显示面板驱动电路的实用性能;因此本申请实施例通过在驱动集成电路101的输入端接入阻抗差异补偿电路20,通过阻抗差异补偿电路20能够对每一条信号传输路径中的等效电阻差异进行补偿,使每一条信号传输通道与相应显示走线之间的等效电阻保持一致,多条显示走线能够接收到完全一致的驱动信号,结构简单,该阻抗差异补偿电路20可应用在不同类型的显示面板中,显示面板能够显示均匀、协调的图像,以增强用户的观赏真实体验感;从而有效地解决了示例性技术中显示面板驱动电路中由于多条信号传输路径中等效参数的差异,进而导致显示面板所接收到的驱动信号不一致,显示面板中的图像不均匀,用户的视觉体验感不佳的问题。
作为一种可选的实施方式,如图2所示,阻抗差异补偿电路20设置在驱动集成电路101和第一信号处理电路102之间的线路上,信号传输路径上的电阻模块201设于驱动集成电路101的外部,从而通过该电阻模块201能够使每一条传输路径上的等效电阻相等,进而使多条显示走线都能够接收到完全一致的驱动信号,有效地减少了显示面板中图像的不协调性和不均匀性。
作为一种可选的实施方式,图3示出了本申请实施例提供的阻抗差异补偿电路20的应用框架,相比于图2中阻抗差异补偿电路20的应用框架,在图3中,阻抗差异补偿电路20设置在驱动集成电路20内,通过电阻模块201能够使驱动信号在传输过程中,每一条信号传输通道与相对应的显示走线之间的等效电阻完全相等,从而显示面板能够显示更加清晰、真实的图像,并且将电阻模块201设置在驱动集成电路20的内部,有利于简化显示面板内部的电路结构,显示面板驱动电路的结构更加集成化和微型化,本申请实施例中的阻抗差异补偿电路20具有更低的应用成本,易于实现,有效地提高了所述差异补偿电路的实用性及显示面板的使用体验。
作为一种可选的实施方式,图4示出了本申请实施例提供的电阻模块201的电路结构,如图4所示,其中,电阻模块201包括两个并联的电阻,两个并联的电阻分别为:第一电阻R1和第二电阻R2;其中,第一电阻R1的第一端和第二电阻R2的第一端共接于信号传输通道,用于接入所述驱动信号,第一电阻R1的第二端和第二电阻R2的第二端共接于第一信号处理电路102,用于将驱动信号传输至第一信号处理电路102;并且第一电阻R1的阻值和第二电阻R2的阻值满足以下条件:
Figure PCTCN2018115224-appb-000001
在上式(1)中,R 1为第一电阻R1的阻值,R 2为第二电阻R2的阻值,R 0为预设等效参数;需要说明的是,R 0的提前设定的参数,通过每一条信号传输路径中第一信号处理电路102和第二信号处理电路103的等效电阻来设定R 0的大小,比如将R 0设定为100欧姆;因此在本申请实施例中,电阻模块201能够根据第一电阻R1和第二电阻R2的并联电阻值使每一条信号传输通道和相对应显示走线之间的等效电阻保持相同,多路驱动信号在信号传输过程中具有相同的速率和时间,显示走线能够接收到完全一致的驱动信号,操作简便。
作为一种可选的实施方式,图5示出了本申请实施例提供的电阻模块201的另一种电路结构,如图5所示,其中,电阻模块201包括三个并联的电阻,所述三个并联的电阻分别为:第三电阻R3、第四电阻R4以及第五电阻R5;其中,第三电阻R3的第一端、第四电阻R4的第一端以及第五电阻R5的第一端共接于信号传输通道,第三电阻R3的第二端、 第四电阻E4的第二端以及第五电阻R5的第二端共接于第一信号处理电路102,并且第三电阻R3的阻值、第四电阻R4的阻值以及第五电阻R5的阻值满足以下条件:
Figure PCTCN2018115224-appb-000002
在上式(2)中,R 3为第三电阻R3的阻值,R 4为第四电阻R4的阻值,R 5为第五电阻R5的阻值,R 0为预设等效参数;其中R 0的大小是根据每一条信号传输路径中第一信号处理电路102和第二信号处理电路103之间的等效电阻来设定,因此在本申请实施例中,电阻模块201根据第三电阻R3、第四电阻R4以及第五电阻R5这三者并联的电阻值使每一条信号传输通道与相对应显示走线之间的等效电阻相等,以实现对每一条信号传输路径中的阻抗差异进行动态补偿,提高显示面板中图像的一致性。
结合上述图4和图5中所示出的电阻模块201的具体电路结构,电阻模块201中包括多个并联的电阻,通过调节电阻模块201的并联电阻值即可相应地改变每一条信号传输路径中的等效电阻,进而使每一条信号传输通道与相应的显示走线之间的等效电阻完全相同;该电阻模块201的电路结构简单,易于实现,极大地降低了阻抗差异补偿电路20的制造成本和工业应用成本,可对每一条信号传输路径中的阻抗差异进行有效的补偿,提高显示面板驱动电路所输出驱动信号的一致性。
可以理解的是,由于图4和图5仅仅为电阻模块201的实施例而已,并非构成对于本申请实施例中电阻模块201的技术限定,在实际应用过程中,技术人员可采用4个并联的电阻、5个并联的电阻等来实现电阻模块201所实现的电路功能;因此本申请实施例中的电阻模块201具有极为灵活的电路结构,进一步提高了阻抗差异补偿电路20的兼容性,该阻抗差异补偿电路20能够适用于多种类型的显示面板中,以对显示面板驱动电路中信号传输路径的阻抗差异进行补偿,以有效地确保显示面板能够向用户提高均匀、高质量的图像或者视频,实用性极强。
作为一种可选的实施方式,图6示出了本申请实施例提供的电阻模块201的另一种电路结构,如图6所示,其中,电阻模块201包括两个串联的电阻,两个串联的电阻分别为:第六电阻R6和第七电阻R7;其中,第六电阻R6的第一端接信号传输通道,第六电阻R6的第二端接第七电阻R7的第一端,第七电阻R7的第二端接第一信号处理电路102,并且第六电阻R6的阻值和第七电阻R7的阻值满足以下条件:
R 6+R 7=R 0      (3)
在上式(3)中,R 6为第六电阻R6的阻值,R 7为第七电阻R7的阻值,R 0为预设等效参 数,其中,R 0为每一路信号传输路径中提前设定的等效参数;在本申请实施例中,电阻模块201通过两个串联的电阻(包括第六电阻R6和第七电阻R7)即可调节每一条信号传输通道与相应的显示走线之间的等效电阻,电路结构简单,易于实现,进而使显示面板驱动电路中每一路驱动信号在传输过程中都具有相同的传输时间和损耗,显示面板能够接收完全一致的多路驱动信号,以使显示面板能够动态显示完全一致、协调的图像或者视频。
作为一种可选的实施方式,图7示出了本申请实施例提供的电阻模块201的另一种电路结构,如图7所示,其中,电阻模块201包括三个串联的电阻,三个串联的电阻分别为:第八电阻R8、第九电阻R9以及第十电阻R10;其中,第八电阻R8的第一端接信号传输通道,第九电阻R9的第一端接第八电阻R8的第二端,第九电阻R9的第二端接第十电阻R10的第一端,第十电阻R10的第二端接第一信号处理电路102,并且第八电阻R8的阻值、第九电阻R9的阻值以及第十电阻R10的阻值满足以下条件:
R 8+R 9+R 10=R 0    (4)
在上式(4)中,R 8为第八电阻R8的阻值,R 9为第九电阻R9的阻值,R 10为第十电阻R10的阻值,R 0为预设等效参数,其中R 0为技术人员提前设定的等效参数;因此,本申请实施例中的电阻模块201通过三个串联的电阻(包括:第八电阻R8、第九电阻R9以及第十电阻R10)即可使显示面板中多条信号传输路径中的等效电阻完全相等,信号传输电路104中的每一条显示走线都能够接收到完全一致的驱动信号,以避免驱动信号在传输过程中的阻抗差异而导致的图像不均匀、不协调的问题,极大地提高了显示面板驱动电路的实用性。
需要说明的是,由于图6和图7中所示出的电阻模块201的具体电路结构仅仅是本申请的实施例而已,并非构成对本申请中阻抗差异补偿电路20的技术限定;在实际应用过程中,电阻模块201也可串联4个、5个电阻的方式来调节每一条信号传输通道与相应显示走线之间的等效电阻,进而使每一路信号传输路径中的等效电阻保持相同,用户可通过显示面板观赏到均匀、协调的图像;同时,电阻模块201具有极为灵活的电路结构,用户可根据驱动信号的规模和具体功能来调节电阻模块201的具体电路结构,兼容性极强,能够应用在不同类型的显示面板中,给用户带来良好的视觉体验感,提高了显示面板的实用价值。
作为一种可选的实施方式,其中,在上述驱动集成电路101中,信号传输通道包括一缓冲器,当信号传统通道接入驱动信号时,通过该缓冲器能够暂时存储驱动信号,以避免驱动信号在信号传输通道中进行传输时出现图像数据丢失的现象;由于在显示面板播放图像的过程中,显示面板驱动电路需要通过信号传输通道实时接入大容量的图像数据,因此通过缓冲器能够对驱动信号进行实时缓存与保留,进而通过信号传输通道能够快速地接入 大量的驱动信号,提高本申请实施例中显示面板驱动电路的信号传输能力,使显示面板能够根据驱动信号动态显示图像或者视频,以满足用户的实际需求。
作为一种可选的的实施方式,在上述驱动集成电路101和信号传输电路104中,信号传输通道的条数和显示走线的条数相等;比如,驱动集成电路101包括8条信号传输通道,则信号传输电路104也包括8条显示走线;结合上文所示,由于每一条信号传输通道和每一条显示走线具有一一对应的关系,那么在本申请实施例中,每一路驱动信号的传输路径包括一条信号传输通道和一条显示走线,显示面板驱动电路中就不会存在多余的信号传输通道或者多余的显示走线,避免了驱动集成电路101和信号传输电路104中信号传输不匹配的问题,极大地提高了本申请实施例中显示面板驱动电路的信号传输效率,避免显示面板驱动电路中电子器件出现浪费的问题。
图8示出了本申请实施例提供的显示面板50的模块结构,如图8所示,显示面板50包括:驱动集成电路101、电阻模块201、第一信号处理电路102、第二信号处理电路103、信号传输电路104以及视频显示电路501;其中,驱动集成电路101包括多条分别用于接入驱动信号,并且间隔排列的信号传输通道;电阻模块201串联或并联在第一信号处理电路102的输入端,通过电阻模块201能够调整驱动信号的在传输路径中的等效电阻,并且电阻模块201包括至少一个电阻;每一条信号传输通道通过电阻模块201接第一信号处理电路102,通过第一信号处理电路102能够分别传输各路驱动信号;第二信号处理电路103与第一信号处理电路102电性连接,通过第二信号处理电路103能够对各路驱动信号进行集成转换;信号传输电路104与第二信号处理电路103电性连接,信号传输电路104包括多条用于输出驱动信号,并且阵列排布的显示走线;其中每一条信号输出通道与每一条显示走线一一对应设置;视频显示电路501与信号传输电路104连接,当信号传输电路104将多路驱动信号传输至视频显示电路501时,视频显示电路501根据多路驱动信号进行视频显示,由于视频显示电路501能够接收并识别所述驱动信号,视频显示电路501能够解码驱动信号并得到相应的图像数据,进而显示相应的动态图像,以满足用户的视觉需求;作为一种可选的实施方式,视频显示电路501为示例性技术中的视频信号显示电路,其中传统的视频信号显示电路包括发光二极管、MOS管以及电阻等电子元器件,当视频信号显示电路接收所述驱动信号时,该驱动信号能够驱动发光二极管发出相应的光源,并且通过驱动信号能够调节发光二极管中光源的色彩和亮度等,进而用户通过该视频信号显示电路能够观赏到动态图像,给用户带来良好的视觉体验。
作为一种可选的实施方式,电阻模块201设置在驱动集成电路101内,或者电阻模块201设置在驱动集成电路101和第一信号处理电路102之间的线路上。
作为一种可选的实施方式,其中,所述电阻模块201包括两个并联的电阻,两个并联 的电阻分别为:第十一电阻和第十二电阻。
其中,第十一电阻的第一端和第十二电阻的第一端共接于信号传输通道,第十一电阻的第二端和第十二电阻的第二端共接于第一信号处理电路102,并且第十一电阻的阻值和第十二电阻的阻值满足以下条件:
Figure PCTCN2018115224-appb-000003
在上式(5)中,所述R 11为第十一电阻的阻值,所述R 12为第十二电阻的阻值,所述R 0为预设等效参数。
作为一种可选的实施方式,其中,电阻模块201包括三个并联的电阻,所述三个并联的电阻分别为:第十三电阻、第十四电阻以及第十五电阻。
其中,第十三电阻的第一端、第十四电阻的第一端以及第十五电阻的第一端共接于信号传输通道,第十三电阻的第二端、第十四电阻的第二端以及第十五电阻的第二端共接于第一信号处理电路102,并且第十三电阻的阻值、第十四电阻的阻值以及第十五电阻的阻值满足以下条件:
Figure PCTCN2018115224-appb-000004
在上式(6)中,所述R 13为第十三电阻的阻值,所述R 14为第十四电阻的阻值,所述R 15为第十五电阻的阻值,所述R 0为预设等效参数。
作为一种可选的实施方式,其中,电阻模块201包括两个串联的电阻,所述两个串联的电阻分别为:第十六电阻和第十七电阻。
其中,第十六电阻的第一端接信号传输通道,第十六电阻的第二端接第十七电阻的第一端,第十七电阻的第二端接第一信号处理电路102,并且第十六电阻的阻值和第十七电阻的阻值满足以下条件:
R 16+R 17=R 0     (7)
在上式(7)中,所述R 16为第十六电阻的阻值,所述R 17为第十七电阻的阻值,所述R 0为预设等效参数。
作为一种可选的实施方式,其中,电阻模块201包括三个串联的电阻,所述三个串联的电阻分别为:第十八电阻、第十九电阻以及第二十电阻。
第十八电阻的第一端接信号传输通道,第十八电阻的第二端接第十九电阻的第一端,第十九电阻的第二端接第二十电阻的第一端,第二十电阻的第二端接第一信号处理电路 102,并且第十八电阻的阻值、第十九电阻的阻值以及第二十电阻的阻值满足以下条件:
R 18+R 19+R 20=R 0    (8)
在上式(8)中,所述R 18为所述第十八电阻的阻值,所述R 19为所述第十九电阻的阻值,所述R 20为所述第二十电阻的阻值,所述R 0为预设等效参数。
作为一种可选的实施方式,其中,所述信号传输通道包括:
缓冲器,设置为对所述驱动信号进行缓冲。
作为一种可选的实施方式,所述信号传输通道的条数和所述显示走线的条数相等。
作为一种可选的实施方式,多条所述信号传输通道在驱动集成电路101中呈等间距分布排列;多条显示走线在信号传输电路104呈等间距分布排列。
需要说明的是,由于图8中的显示面板50与上述阻抗差异补偿电路20相对应,因此,关于本实施例中显示面板50的具体实施例方式可参照图1至图7的实施例,此处将不再赘述。
在本申请实施例中,由于电阻模块201设置在第一信号处理电路102的输入端,通过电阻模块201能够调整每一条信号传输路径中的等效电阻,进而使每一条信号传输通道与每一条显示走线之间的等效电阻相等;每一路驱动信号在传输过程中具有相同的传输速率和功耗损耗,视频显示电路501接收到一致的多路驱动信号,进而通过该驱动信号能够驱动视频显示电路501实时显示均匀、真实的图像,用户通过显示面板50能够观赏到画面真实、高清晰度的图像,极大地提高了用户的视觉体验效果;从而本申请实施例只需要通过电阻模块201能够使驱动信号的信号传输路径具有相同的等效参数,无需改变显示面板50中内部电路结构及其走线结构,视频显示电路501能够实时接收到完全一致的多路驱动信号,显示面板50能够显示更加真实和协调的图像或者视频;有效地解决了示例性技术中驱动信号在传输过程中不一致,不同的信号传输路径存在阻抗差异,进而导致显示面板中所显示的图像不均匀,显示面板中的图像或者视频的质量不佳,降低了用户的观赏体验感的问题。
作为一种可选的实施方式,显示面板50为TFT-LCD(Thin Film Transistor Liquid Crystal Display,薄膜晶体管液晶显示器)、LCD(Liquid Crystal Display,液晶显示器)、OLED(Organic Electroluminesence Display,有机电激光显示器)、QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管);进而通过上述电阻模块201能够使各种类型的显示面板显示更加清晰和均匀的图像,显示面板50的实用性更强,能够应用于各个工业领域中,以满足用户的实际需求。
图9示出了本申请实施例提供的移动终端60的模块结构,如图9所示,移动终端60 包括信号采集器601和显示面板50,其中显示面板50为上述图8中所示出的显示面板50;因此图9中显示面板50的具体实施方式可参照图8的实施例,此处将不再赘述;信号采集器601能够采集外界的图像信息,并根据图像信息生成多路驱动信号;信号采集器601具有数据转换以及信号编码的作用,因此通过信号采集器601对外界的图像信息进行编码转换后得到多路驱动信号,该驱动信号包括大量的图像数据,并且驱动信号能够在显示面板驱动电路中进行快速的传递;进而移动终端60通过信号采集器601能够对信号进行快速的采集和转换,增强了信号的传输效率。
需要说明的是,所述信号采集器601为示例性技术中信号采集电路或者信号采集芯片;其中信号采集芯片的型号为ITUBT601656或者AD7656;信号采集电路包括运算放大器、电阻、电容等电子元器件,通过信号采集电路的信号输入端接入图像信息,通过运算放大器、电阻等电子元器件实现电能转换,进而通过信号采集电路的信号输出端能够实时输出多路驱动信号;从而本申请实施例中的信号采集器601实时地接收图像信息,并完成信号转换,移动终端60通过该信号采集器601能够与外界设备进行信息交互操作。
显示面板50与信号采集器601连接,信号采集器601将多路驱动信号传输至显示面板50,显示面板50根据多路驱动信号进行视频显示,显示面板50能够对多路驱动信号进行传输并解码操作,以得到图像数据,进而用户在显示面板50中实时观赏到动态、清晰的图像;其中图9中显示面板50的工作原理及其内部结构可参照图8的实施例,此处将不再赘述。
在图9所示出的移动终端60的模块结构中,通过信号采集器601实现移动终端60与外界设备的信息交互,进而获取外界的图像信息;当信号采集器601将多路驱动信号传输至显示面板50中时,当驱动信号在显示面板50中进行传输时,每一条信号传输路径中的等效阻抗都相同,那么不同的驱动信号具有相同的传输速率和传输时间,显示面板50中能够接收到完全一致的多路驱动信号,进而显示面板50根据多路驱动信号综合获取图像数据,显示面板50能够动态显示更加清晰的图像或者视频;从而本实施例中的移动终端60能够显示均匀、一致的图像,移动终端60能够适用于不同的工业领域中,以向用户提供高清的图像或者视频,具有较高的实用价值;有效地解决了示例性技术中移动终端中的视频不均匀、不协调,进而导致该移动终端无法普遍适用的问题。
作为一种可选的实施方式,上述移动终端60为手机或者平板电脑;因此将上述显示面板50应用在手机或者平板电脑中,以满足用户的不同的实际需求,提高了用户的使用体验感。
图10示出了本申请实施例提供的显示面板驱动电路的阻抗差异补偿系统70的模块结构,如图10所示,显示面板驱动电路的阻抗差异补偿系统70包括上述阻抗差异补偿电路 701;其中阻抗差异补偿电路701应用于显示面板驱动电路中,阻抗差异补偿电路701的具体实施方式可参照上述图1至图7的实施例,此处将不再赘述;如上所述,由于通过阻抗差异补偿电路701能够对驱动信号在信号传输路径中的阻抗差异进行补偿,进而使多路驱动信号能够在显示面板驱动电路中保持一致的传输速率和传输时间,显示面板能够同时接收到多路驱动信号,以获取大量的图像数据,显示面板能够实时显示均匀、动态的图像,以避免驱动信号在信号传输过程中不一致所引起的图像不均匀的问题,增强用户的真实视觉体验效果;从而本申请实施例中的阻抗差异补偿系统70有效地解决了示例性技术中驱动信号在传输过程中,不同的信号传输路径中阻抗存在差异,导致显示面板无法显示协调一致的图像,难以普遍适用于不同工业领域中的问题。
综上所述,本申请实施例中的阻抗差异补偿电路可极大地提高显示面板中图像的质量和清晰度,给用户带来良好的视觉真实体验感,可广泛地应用各个工业领域中,具有极高的工业应用价值。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (20)

  1. 一种阻抗差异补偿电路,应用于显示面板驱动电路,所述显示面板驱动电路包括:
    驱动集成电路,所述驱动集成电路包括多条分别设置为接入驱动信号,并且间隔排列的信号传输通道;
    第一信号处理电路,与各条所述信号传输通道分别电性连接,设置为分别传输各路所述驱动信号;
    第二信号处理电路,与所述第一信号处理电路电性连接,设置为对各路所述驱动信号进行集成转换;以及
    信号传输电路,与所述第二信号处理电路电性连接,所述信号传输电路包括多条设置为输出所述驱动信号,并且阵列排布的显示走线,其中每一条所述信号传输通道与每一条所述显示走线一一对应设置;
    所述阻抗差异补偿电路包括电阻模块,所述电阻模块串联或者并联在所述第一信号处理电路的输入端,设置为使每一条所述信号传输通道与每一条所述显示走线之间的等效电阻相等;
    其中,所述电阻模块包括至少一个电阻。
  2. 根据权利要求1所述的阻抗差异补偿电路,所述阻抗差异补偿电路设置在所述驱动集成电路内,或者所述阻抗差异补偿电路设置在所述驱动集成电路和所述第一信号处理电路之间的线路上。
  3. 根据权利要求1所述的阻抗差异补偿电路,其中,所述电阻模块包括两个并联的电阻,所述两个并联的电阻分别为:第一电阻和第二电阻;
    其中,所述第一电阻的第一端和所述第二电阻的第一端共接于所述信号传输通道,所述第一电阻的第二端和所述第二电阻的第二端共接于所述第一信号处理电路,并且所述第一电阻的阻值和所述第二电阻的阻值满足以下条件:
    Figure PCTCN2018115224-appb-100001
    在上式中,所述R 1为所述第一电阻的阻值,所述R 2为所述第二电阻的阻值,所述R 0为预设等效参数。
  4. 根据权利要求1所述的阻抗差异补偿电路,其中,所述电阻模块包括三个并联的电阻,所述三个并联的电阻分别为:第三电阻、第四电阻以及第五电阻;
    其中,所述第三电阻的第一端、所述第四电阻的第一端以及所述第五电阻的第一端共 接于所述信号传输通道,所述第三电阻的第二端、所述第四电阻的第二端以及所述第五电阻的第二端共接于所述第一信号处理电路,并且所述第三电阻的阻值、所述第四电阻的阻值以及所述第五电阻的阻值满足以下条件:
    Figure PCTCN2018115224-appb-100002
    在上式中,所述R 3为所述第三电阻的阻值,所述R 4为所述第四电阻的阻值,所述R 5为所述第五电阻的阻值,所述R 0为预设等效参数。
  5. 根据权利要求1所述的阻抗差异补偿电路,其中,所述电阻模块包括两个串联的电阻,所述两个串联的电阻分别为:第六电阻和第七电阻;
    其中,所述第六电阻的第一端接所述信号传输通道,所述第六电阻的第二端接所述第七电阻的第一端,所述第七电阻的第二端接所述第一信号处理电路,并且所述第六电阻的阻值和所述第七电阻的阻值满足以下条件:
    R 6+R 7=R 0
    在上式中,所述R 6为所述第六电阻的阻值,所述R 7为所述第七电阻的阻值,所述R 0为预设等效参数。
  6. 根据权利要求1所述的阻抗差异补偿电路,其中,所述电阻模块包括三个串联的电阻,所述三个串联的电阻分别为:第八电阻、第九电阻以及第十电阻;
    所述第八电阻的第一端接所述信号传输通道,所述第八电阻的第二端接所述第九电阻的第一端,所述第九电阻的第二端接所述第十电阻的第一端,所述第十电阻的第二端接所述第一信号处理电路,并且所述第八电阻的阻值、所述第九电阻的阻值以及第十电阻的阻值满足以下条件:
    R 8+R 9+R 10=R 0
    在上述中,所述R 8为所述第八电阻的阻值,所述R 9为所述第九电阻的阻值,所述R 10为所述第十电阻的阻值,所述R 0为预设等效参数。
  7. 根据权利要求1所述的阻抗差异补偿电路,其中,所述信号传输通道包括:
    缓冲器,设置为对所述驱动信号进行缓冲。
  8. 根据权利要求1所述的阻抗差异补偿电路,所述信号传输通道的条数和所述显示走线的条数相等。
  9. 根据权利要求1所述的阻抗差异补偿电路,多条所述信号传输通道在所述驱动集成电路中呈等距分布排列;
    多条所述显示走线在所述信号传输电路呈等距分布排列。
  10. 一种显示面板,包括:
    驱动集成电路,包括多条分别设置为接入驱动信号,并且间隔排列的信号传输通道;
    第一信号处理电路,与各条所述信号传输通道电性连接,设置为分别传输所述各路驱动信号;
    第二信号处理电路,与所述第一信号处理电路电性连接,设置为对各路所述驱动信号进行集成转换;
    信号传输电路,与所述第二信号处理电路电性连接,所述信号传输电路包括多条设置为输出所述驱动信号,并且阵列排布的显示走线,其中每一条所述信号传输通道与每一条所述显示走线一一对应设置;
    视频显示电路,与所述信号传输电路连接,设置为根据多路所述驱动信号进行视频显示;以及
    电阻模块,串联或并联在所述第一信号处理电路的输入端,设置为使每一条所述信号传输通道与每一条所述显示走线之间的等效电阻相等;其中,所述电阻模块包括至少一个电阻。
  11. 根据权利要求10所述的显示面板,所述电阻模块设置在所述驱动集成电路内,或者所述电阻模块设置在所述驱动集成电路和所述第一信号处理电路之间的线路上。
  12. 根据权利要求10所述的显示面板,其中,所述电阻模块包括两个并联的电阻,所述两个并联的电阻分别为:第十一电阻和第十二电阻;
    其中,所述第十一电阻的第一端和所述第十二电阻的第一端共接于所述信号传输通道,所述第十一电阻的第二端和所述第十二电阻的第二端共接于所述第一信号处理电路,并且所述第十一电阻的阻值和所述第十二电阻的阻值满足以下条件:
    Figure PCTCN2018115224-appb-100003
    在上式中,所述R 11为所述第十一电阻的阻值,所述R 12为所述第十二电阻的阻值,所述R 0为预设等效参数。
  13. 根据权利要求10所述的显示面板,其中,所述电阻模块包括三个并联的电阻,所述三个并联的电阻分别为:第十三电阻、第十四电阻以及第十五电阻;
    其中,所述第十三电阻的第一端、所述第十四电阻的第一端以及所述第十五电阻的第一端共接于所述信号传输通道,所述第十三电阻的第二端、所述第十四电阻的第二端以及所述第十五电阻的第二端共接于所述第一信号处理电路,并且所述第十三电阻的阻值、所述第十四电阻的阻值以及所述第十五电阻的阻值满足以下条件:
    Figure PCTCN2018115224-appb-100004
    在上式中,所述R 13为所述第十三电阻的阻值,所述R 14为所述第十四电阻的阻值,所述R 15为所述第十五电阻的阻值,所述R 0为预设等效参数。
  14. 根据权利要求10所述的显示面板,其中,所述电阻模块包括两个串联的电阻,所述两个串联的电阻分别为:第十六电阻和第十七电阻;
    其中,所述第十六电阻的第一端接所述信号传输通道,所述第十六电阻的第二端接所述第十七电阻的第一端,所述第十七电阻的第二端接所述第一信号处理电路,并且所述第十六电阻的阻值和所述第十七电阻的阻值满足以下条件:
    R 16+R 17=R 0
    在上式中,所述R 16为所述第十六电阻的阻值,所述R 17为所述第十七电阻的阻值,所述R 0为预设等效参数。
  15. 根据权利要求10所述的显示面板,其中,所述电阻模块包括三个串联的电阻,所述三个串联的电阻分别为:第十八电阻、第十九电阻以及第二十电阻;
    所述第十八电阻的第一端接所述信号传输通道,所述第十八电阻的第二端接所述第十九电阻的第一端,所述第十九电阻的第二端接所述第二十电阻的第一端,所述第二十电阻的第二端接所述第一信号处理电路,并且所述第十八电阻的阻值、所述第十九电阻的阻值以及所述第二十电阻的阻值满足以下条件:
    R 18+R 19+R 20=R 0
    在上述中,所述R 18为所述第十八电阻的阻值,所述R 19为所述第十九电阻的阻值,所述R 20为所述第二十电阻的阻值,所述R 0为预设等效参数。
  16. 根据权利要求10所述的显示面板,其中,所述信号传输通道包括:
    缓冲器,设置为对所述驱动信号进行缓冲。
  17. 根据权利要求10所述的显示面板,所述信号传输通道的条数和所述显示走线的条数相等。
  18. 根据权利要求10所述的显示面板,多条所述信号传输通道在所述驱动集成电路中呈等间距分布排列;
    多条所述显示走线在所述信号传输电路呈等间距分布排列。
  19. 一种移动终端,包括:
    信号采集器,设置为根据图像信息生成多路驱动信号;
    显示面板,与所述信号采集器连接,设置为根据多路所述驱动信号进行视频显示;
    其中所述显示面板包括:
    驱动集成电路,包括多条分别设置为接入驱动信号,并且间隔排列的信号传输通道;
    第一信号处理电路,与各条所述信号传输通道电性连接,设置为分别传输所述各路驱动信号;
    第二信号处理电路,与所述第一信号处理电路电性连接,设置为对各路所述驱动信号进行集成转换;
    信号传输电路,与所述第二信号处理电路电性连接,所述信号传输电路包括多条设置为输出所述驱动信号,并且阵列排布的显示走线,其中每一条所述信号传输通道与每一条所述显示走线一一对应设置;
    视频显示电路,与所述信号传输电路连接,设置为根据多路所述驱动信号进行视频显示;以及
    电阻模块,串联或并联在所述第一信号处理电路的输入端,设置为使每一条所述信号传输通道与每一条所述显示走线之间的等效电阻相等;其中,所述电阻模块包括至少一个电阻。
  20. 根据权利要求19所述的移动终端,所述移动终端为手机或者平板电脑。
PCT/CN2018/115224 2018-09-21 2018-11-13 阻抗差异补偿电路、显示面板及移动终端 WO2020056892A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/312,332 US20200098320A1 (en) 2018-09-21 2018-11-13 Impedance difference compensation circuit, display panel and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821576369.7 2018-09-21
CN201821576369.7U CN208737865U (zh) 2018-09-21 2018-09-21 阻抗差异补偿电路、显示面板及移动终端

Publications (1)

Publication Number Publication Date
WO2020056892A1 true WO2020056892A1 (zh) 2020-03-26

Family

ID=66035423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115224 WO2020056892A1 (zh) 2018-09-21 2018-11-13 阻抗差异补偿电路、显示面板及移动终端

Country Status (2)

Country Link
CN (1) CN208737865U (zh)
WO (1) WO2020056892A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151683B (zh) * 2019-06-28 2022-06-03 京东方科技集团股份有限公司 Oled发光装置及制备方法、照明灯
CN110992868B (zh) * 2019-12-20 2022-08-16 京东方科技集团股份有限公司 显示基板的驱动方法、装置和显示装置
CN113325639B (zh) * 2021-05-27 2022-07-12 Tcl华星光电技术有限公司 Goa电路及显示装置
KR102586850B1 (ko) 2021-08-19 2023-10-11 선전 차이나 스타 옵토일렉트로닉스 세미컨덕터 디스플레이 테크놀로지 컴퍼니 리미티드 표시 장치
CN113690255B (zh) * 2021-08-19 2023-12-15 深圳市华星光电半导体显示技术有限公司 显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000293143A (ja) * 1999-04-12 2000-10-20 Matsushita Electric Ind Co Ltd 液晶駆動用ドライバおよびこれを用いた液晶表示装置
CN101458902A (zh) * 2007-12-12 2009-06-17 群康科技(深圳)有限公司 液晶显示装置及其驱动芯片
CN103886844A (zh) * 2013-12-31 2014-06-25 深圳市华星光电技术有限公司 显示面板组件及其调节方法、显示装置
CN104835473A (zh) * 2015-06-01 2015-08-12 京东方科技集团股份有限公司 一种显示面板和显示装置
CN106847163A (zh) * 2017-04-19 2017-06-13 惠科股份有限公司 一种显示面板控制电路、显示装置及其控制方法
CN107689208A (zh) * 2016-08-04 2018-02-13 上海和辉光电有限公司 一种改善oled驱动线信号延迟的结构及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000293143A (ja) * 1999-04-12 2000-10-20 Matsushita Electric Ind Co Ltd 液晶駆動用ドライバおよびこれを用いた液晶表示装置
CN101458902A (zh) * 2007-12-12 2009-06-17 群康科技(深圳)有限公司 液晶显示装置及其驱动芯片
CN103886844A (zh) * 2013-12-31 2014-06-25 深圳市华星光电技术有限公司 显示面板组件及其调节方法、显示装置
CN104835473A (zh) * 2015-06-01 2015-08-12 京东方科技集团股份有限公司 一种显示面板和显示装置
CN107689208A (zh) * 2016-08-04 2018-02-13 上海和辉光电有限公司 一种改善oled驱动线信号延迟的结构及其制备方法
CN106847163A (zh) * 2017-04-19 2017-06-13 惠科股份有限公司 一种显示面板控制电路、显示装置及其控制方法

Also Published As

Publication number Publication date
CN208737865U (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
WO2020056892A1 (zh) 阻抗差异补偿电路、显示面板及移动终端
JP5302292B2 (ja) 液晶表示装置
WO2016095316A1 (zh) 一种液晶显示面板及其制造方法
CN103903586B (zh) 显示装置及其制造方法
WO2015100815A1 (zh) 补偿栅极驱动电路信号线阻值的方法及应用该方法的液晶显示面板
US20150187288A1 (en) White Tracking Adjustment Method, Manufacturing Method of Liquid Crystal Display and Liquid Crystal Display
WO2020215490A1 (zh) 显示装置及其驱动方法
US20200013355A1 (en) Array substrate, display panel and driving method thereof, and display device
JP2003208137A (ja) 液晶表示装置の駆動方法
WO2023103062A1 (zh) 液晶显示面板及显示装置
KR102618734B1 (ko) 표시 장치 및 이의 구동 방법
CN212873936U (zh) 一种显示模组和显示装置
WO2019019434A1 (zh) 多路复用器控制电路
US7852306B2 (en) Liquid crystal display device and method for driving the same
US10643559B2 (en) Display panel driving apparatus and driving method thereof
US20190027102A1 (en) Demux control circuit
US20200098320A1 (en) Impedance difference compensation circuit, display panel and mobile terminal
US11210974B2 (en) Driving circuit of display apparatus
WO2013082792A1 (zh) 控制电路、lcd模块及lcd显示器
WO2020113646A1 (zh) 显示面板的驱动方法和驱动电路
WO2021109194A1 (zh) 一种显示驱动电路和液晶显示面板
US11488559B2 (en) Display assembly including a first display panel and a second display panel stacked over the first display panel for improving a contrast ratio, and display device
WO2020119641A1 (zh) 阵列基板、显示面板及显示装置
WO2022222912A1 (zh) 显示面板及电子设备
WO2020093512A1 (zh) 像素驱动电路、阵列基板以及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.07.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18934284

Country of ref document: EP

Kind code of ref document: A1