WO2020056812A1 - Procédé et système de détermination de poids de paramètres environnementaux pour évaluer une qualité environnementale intérieure - Google Patents

Procédé et système de détermination de poids de paramètres environnementaux pour évaluer une qualité environnementale intérieure Download PDF

Info

Publication number
WO2020056812A1
WO2020056812A1 PCT/CN2018/109858 CN2018109858W WO2020056812A1 WO 2020056812 A1 WO2020056812 A1 WO 2020056812A1 CN 2018109858 W CN2018109858 W CN 2018109858W WO 2020056812 A1 WO2020056812 A1 WO 2020056812A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
data
environmental
environmental parameter
model
Prior art date
Application number
PCT/CN2018/109858
Other languages
English (en)
Chinese (zh)
Inventor
卞春
孙宝石
曹石
Original Assignee
苏州数言信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州数言信息技术有限公司 filed Critical 苏州数言信息技术有限公司
Publication of WO2020056812A1 publication Critical patent/WO2020056812A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Definitions

  • the invention belongs to the technical field of indoor environmental quality monitoring, and particularly relates to a method for determining environmental parameter weights for evaluating indoor environmental quality, and a weight determination system.
  • the invention provides a method for determining environmental parameter weights for evaluating indoor environmental quality, which fills a gap in the current industry, automatically generates environmental parameter weights for evaluating indoor environmental quality, and meets requirements for operation stability and accuracy.
  • the present invention provides an environmental parameter weight determination method for evaluating indoor environmental quality, including:
  • the environmental parameters include, but are not limited to, temperature, humidity, illuminance, color temperature, PM2.5, PM10, formaldehyde, TVOC, carbon dioxide, and noise;
  • the method further includes obtaining the weight model through model training.
  • the training process is:
  • the weighted model is obtained by training the characterized data samples based on a related algorithm.
  • the training process that further includes the weight model further includes:
  • the optimal weight model is used to perform weight analysis on the characteristics of the environmental parameters to obtain the weight of the environmental parameters.
  • the matching degree of the optimal weight model is not less than 95%.
  • further related algorithms for training to obtain weight models include, but are not limited to, machine learning algorithms, convolutional neural network algorithms, recurrent neural network algorithms, decision trees, and Bayesian decision theory-based Classification algorithms and deep learning algorithms.
  • the data sample in the current test data group is merged into the training data group, and the new data sample enters the test data group.
  • the present invention also provides an environmental parameter weight determination system for evaluating indoor environmental quality, including:
  • a data acquisition module for collecting indoor environmental parameter data includes, but are not limited to, temperature, humidity, illumination, color temperature, PM2.5, PM10, formaldehyde, TVOC, carbon dioxide, and noise;
  • Feature extraction module which is used to extract the environmental parameter data in combination with the use scenario of the indoor environment to obtain the environmental parameter characteristics
  • the weight analysis module uses a weight model to perform weight analysis on the characteristics of the environmental parameters to obtain the weight of the environmental parameters.
  • a weight model training module that trains environmental parameter data samples to obtain the weight model, including:
  • a data sample collection unit configured to collect data samples of indoor environmental parameters, including, but not limited to, temperature, humidity, illumination, color temperature, PM2.5, PM10, formaldehyde, TVOC, carbon dioxide, and noise;
  • a feature extraction unit configured to perform feature extraction on a sample of environmental parameter data to obtain a characterized data sample
  • a model training unit is used to train a characterized data sample using a related algorithm to obtain a weight model.
  • the weight model training module further includes a data grouping unit, which randomly groups the characteristic data samples into a training data group and a test data group; the model training unit The data samples in the training data set are trained to obtain a weight model; the data samples in the test data are used to test and verify the matching degree of the weight model.
  • the model training unit further uses several related algorithms to separately train the data samples in the training test group to obtain several weight models;
  • the model training unit uses the data samples in the test data set to test and verify the performance of the several weight models, and selects the one with the highest matching degree among the several weight models as the optimal weight model;
  • the weight analysis module uses the optimal weight model to perform weight analysis on the characteristics of the environmental parameters to obtain the weight of the environmental parameters.
  • the method for determining the weight of environmental parameters for evaluating the quality of an indoor environment of the present invention obtains indoor environment parameter data and performs feature extraction, and characterizes the extracted environmental parameters, and uses a weight model to perform weight analysis on the characteristic environmental parameter data to obtain an environment.
  • the weight of the parameter Both operational stability and accuracy meet requirements, filling gaps in the current industry.
  • FIG. 1 is a structural block diagram of a weight determination system in a preferred embodiment of the present invention.
  • FIG. 3 is a flowchart of training a weight model.
  • this embodiment discloses an environment parameter weight determination system for evaluating indoor environmental quality, particularly an environment parameter weight determination system for evaluating indoor environmental quality, a data acquisition module, and feature extraction.
  • Module weight analysis module and weight training module.
  • the weight training module trains the environmental parameter data samples used as samples to obtain the weight module.
  • the weight model obtained through training is used to perform weight analysis on the actual environmental parameter data, and directly output the weight corresponding to the environmental parameter.
  • the weight model training module includes a data sample collection unit, a feature extraction unit, a data grouping unit, and a model training unit.
  • a data sample acquisition unit is used to collect indoor environmental data samples.
  • Environmental parameters include, but are not limited to, temperature, humidity, illuminance, color temperature, PM2.5, PM10, formaldehyde, TVOC, carbon dioxide, and noise.
  • Collect various environmental parameter data in the current state through various sensors distributed in the environment, for example, the temperature sensor collects the current temperature of 28 ° C, the humidity sensor collects 47% of humidity, etc. Data samples of various environmental parameters in the current state.
  • a feature extraction unit is used for feature extraction of environmental parameter data samples in combination with an indoor environment usage scenario to obtain a characterized data sample.
  • abnormal data samples and non-working time data samples are excluded.
  • the collected data is abnormal (far greater than or far less than the normal value), or "-" is output when the power is off, and this abnormal data sample is eliminated by the feature extraction unit.
  • the time of an indoor environment is normally from 9:00 to 17:00, and data samples other than this working time are eliminated by a feature extraction unit.
  • a data grouping unit that randomly divides the characterized data samples into a training data group and a test data group. Specifically, 80% of all the data samples after the characterization are classified as a training data group, and 20% are classified as a test data group.
  • a model training unit is configured to use a related algorithm to train data samples in the training array to obtain a weight model.
  • related algorithms include, but are not limited to, machine learning algorithms, convolutional neural network algorithms, recurrent neural network algorithms, decision trees, classification algorithms based on Bayesian decision theory, and deep learning algorithms.
  • the model training unit uses the above several related algorithms to separately train data samples to obtain several weight models.
  • the data samples in the test data set are used to test and verify the performance of several weight models.
  • the one with the highest matching degree is selected as the optimal weight model.
  • the data samples in the test data set are imported into each weight model to see whether the weights output by each weight model match the actual situation, and the weight model with the highest matching degree is selected as the optimal weight model.
  • the matching degree of the optimal weight model is not less than 95%. After testing and verification, if the matching degree of all weight models is less than 95%, the weighting model with the highest matching degree is iteratively optimized until the matching degree is not less than 95%.
  • the optimal weight model After obtaining the optimal weight model through training and screening, use the optimal weight model to perform weight analysis on the environmental parameters in the current state, and obtain the weight of each environmental parameter in the current state, which includes the data acquisition module, feature extraction module, and weight analysis. Module.
  • a data acquisition module is used to collect indoor environmental data; environmental parameters include, but are not limited to, temperature, humidity, illumination, color temperature, PM2.5, PM10, formaldehyde, TVOC, carbon dioxide, and noise. Collect various environmental parameter data in the current state through various sensors distributed in the environment, for example, the temperature sensor collects the current temperature of 28 ° C, the humidity sensor collects 47% of humidity, etc. Data of various environmental parameters in the current state.
  • a feature extraction module is used to extract environmental parameter data in combination with an indoor environment usage scenario to obtain environmental parameter characteristics. Specifically, in combination with an indoor environment usage scenario, the normal environmental parameter data and the non-working time environmental parameter data are excluded. For example, when the sensor is in a fault or power failure state, the collected data is abnormal (much larger than or far less than the normal value), or "-" is output when the sensor is powered off, and this abnormal environmental parameter data is eliminated by the feature extraction module. In another case, for example, the indoor environment time is 9: 00-17: 00 under normal circumstances, and the environmental parameter data other than this working time is eliminated by the feature extraction module.
  • a weight analysis module which uses the optimal weight model obtained through training and screening to perform weight analysis on the characteristics of the environmental parameters to obtain the weight of the environmental parameters. Specifically, the characteristic environmental parameter data is imported into the optimal weight model, and the optimal weight model performs weight analysis on the environmental parameter data to directly output the weight of each environmental parameter.
  • this embodiment discloses a method for determining an environmental parameter weight for evaluating indoor environmental quality, including:
  • environmental parameter data include, but are not limited to, temperature, humidity, illuminance, color temperature, PM2.5, PM10, formaldehyde, TVOC, carbon dioxide, and noise.
  • environmental parameter data include, but are not limited to, temperature, humidity, illuminance, color temperature, PM2.5, PM10, formaldehyde, TVOC, carbon dioxide, and noise.
  • Collect various environmental parameter data in the current state through various sensors distributed in the environment, for example, the temperature sensor collects the current temperature of 28 ° C, the humidity sensor collects 47% of humidity, etc. Data of various environmental parameters in the current state.
  • the normal environmental parameter data and the non-working time environmental parameter data are excluded.
  • the collected data is abnormal (much larger than or far less than the normal value), or "-" is output when the sensor is powered off, and this abnormal environmental parameter data is eliminated by the feature extraction module.
  • the indoor environment time is 9: 00-17: 00 under normal circumstances, and the environmental parameter data other than this working time is eliminated by the feature extraction module.
  • the foregoing weight model is obtained through training.
  • the training process is as follows:
  • Environmental parameters include, but are not limited to, temperature, humidity, illumination, color temperature, PM2.5, PM10, formaldehyde, TVOC, carbon dioxide and noise.
  • Collect various environmental parameter data in the current state through various sensors distributed in the environment, for example, the temperature sensor collects the current temperature of 28 ° C, the humidity sensor collects 47% of humidity, etc. Data samples of various environmental parameters in the current state.
  • the feature parameters of the environmental parameter data samples are extracted in combination with the use scenarios of the indoor environment to obtain the characterized data samples. Specifically, in combination with the use scenario of the indoor environment, except for normal data samples and non-working time data samples. For example, when the sensor is in a fault or power failure state, the collected data is abnormal (far greater than or far less than the normal value), or "-" is output when the power is off, and this abnormal data sample is eliminated by the feature extraction unit. In another case, for example, the time of an indoor environment is normally from 9:00 to 17:00, and data samples other than this working time are eliminated by a feature extraction unit.
  • the characteristic data samples are randomly divided into training data groups and test data groups. Specifically, 80% of all characteristic data samples are classified as training data groups and 20% are classified as test data groups.
  • the characteristic data samples are trained based on the correlation algorithm to obtain a weight model.
  • related algorithms include, but are not limited to, machine learning algorithms, convolutional neural network algorithms, recurrent neural network algorithms, decision trees, classification algorithms based on Bayesian decision theory, and deep learning algorithms.
  • the model training unit uses the above several related algorithms to separately train data samples to obtain several weight models.
  • the data samples in the test data set are used to test and verify the performance of several weight models. Among the several weight models, the one with the highest matching degree is selected as the optimal weight model. For example, the data samples in the test data set are imported into each weight model to see whether the weights output by each weight model match the actual situation, and the weight model with the highest matching degree is selected as the optimal weight model.
  • the matching degree of the optimal weight model is not less than 95%. After testing and verification, if the matching degree of all weight models is less than 95%, the weighting model with the highest matching degree is iteratively optimized until the matching degree is not less than 95%.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

La présente invention concerne un procédé de détermination de poids de paramètres environnementaux pour évaluer une qualité environnementale intérieure, comprenant les étapes consistant à : obtenir des données de paramètres environnementaux, les paramètres environnementaux comprenant, mais sans y être limités, la température, l'humidité, l'éclairage, la température de couleur, le PM2.5, le PM10, le méthyl aldéhyde, le TVOC, le dioxyde de carbone et le bruit ; réaliser une extraction de caractéristique sur les données de paramètres environnementaux par combinaison d'un scénario d'utilisation d'un environnement intérieur pour obtenir des caractéristiques de paramètres environnementaux ; et réaliser une analyse de poids sur les caractéristiques de paramètres environnementaux à l'aide d'un modèle de poids obtenu par apprentissage pour obtenir le poids des paramètres environnementaux. La stabilité et la précision de fonctionnement du procédé atteignent des exigences plus élevées.
PCT/CN2018/109858 2018-09-21 2018-10-11 Procédé et système de détermination de poids de paramètres environnementaux pour évaluer une qualité environnementale intérieure WO2020056812A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811107677.X 2018-09-21
CN201811107677.XA CN109297534B (zh) 2018-09-21 2018-09-21 用于评价室内环境质量的环境参数权重确定方法及系统

Publications (1)

Publication Number Publication Date
WO2020056812A1 true WO2020056812A1 (fr) 2020-03-26

Family

ID=65163710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109858 WO2020056812A1 (fr) 2018-09-21 2018-10-11 Procédé et système de détermination de poids de paramètres environnementaux pour évaluer une qualité environnementale intérieure

Country Status (2)

Country Link
CN (1) CN109297534B (fr)
WO (1) WO2020056812A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110009245A (zh) * 2019-04-12 2019-07-12 阳江职业技术学院 基于神经网络的室内空气质量预测方法、装置及电子设备
CN110675006A (zh) * 2019-11-07 2020-01-10 桂林理工大学 一种室内空气质量实时监测与甲醛衰减预测系统
CN112561244B (zh) * 2020-11-26 2021-08-03 清华大学 一种结合室内人员信息的建筑环境评价方法及系统
CN112903028A (zh) * 2021-03-03 2021-06-04 中国建筑股份有限公司 一种室内环境人员满意度评价方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107477772A (zh) * 2017-07-21 2017-12-15 天津大学 基于室内监测数据的住宅新风系统控制方法
CN108053054A (zh) * 2017-11-22 2018-05-18 中国农业大学 一种河流水质预测方法
CN108319134A (zh) * 2018-01-15 2018-07-24 沈阳大学 一种基于极限学习机网络的温室环境智能控制方法
CN108363294A (zh) * 2017-01-26 2018-08-03 安徽东方果园生物科技有限公司 一种农产品运输封闭和半封闭厢体的环境监测预警方法和环境监测预警系统
CN108492044A (zh) * 2018-04-01 2018-09-04 安徽大学江淮学院 基于人工神经网络模型的室内舒适度综合评价系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105698861A (zh) * 2016-03-04 2016-06-22 广东轻工职业技术学院 一种室内环境舒适度评价方法
CN105929804A (zh) * 2016-06-07 2016-09-07 江苏长宁电力科技有限公司 建筑环境自适应节能管理系统
CN105974869B (zh) * 2016-06-28 2019-05-21 江苏长宁电力科技有限公司 一种应用于建筑环境自适应节能管理系统的节能监控中心
CN109060023B (zh) * 2018-08-08 2021-02-05 广东盈峰科技有限公司 一种微型环境监测的数据质控方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108363294A (zh) * 2017-01-26 2018-08-03 安徽东方果园生物科技有限公司 一种农产品运输封闭和半封闭厢体的环境监测预警方法和环境监测预警系统
CN107477772A (zh) * 2017-07-21 2017-12-15 天津大学 基于室内监测数据的住宅新风系统控制方法
CN108053054A (zh) * 2017-11-22 2018-05-18 中国农业大学 一种河流水质预测方法
CN108319134A (zh) * 2018-01-15 2018-07-24 沈阳大学 一种基于极限学习机网络的温室环境智能控制方法
CN108492044A (zh) * 2018-04-01 2018-09-04 安徽大学江淮学院 基于人工神经网络模型的室内舒适度综合评价系统及方法

Also Published As

Publication number Publication date
CN109297534B (zh) 2020-12-29
CN109297534A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
WO2020056812A1 (fr) Procédé et système de détermination de poids de paramètres environnementaux pour évaluer une qualité environnementale intérieure
KR101771053B1 (ko) 실시간 통합 실내 공기질 알림지수 결정 방법 및 장치
CN106557546B (zh) 一种对特高压在线监测数据进行挖掘并评价的方法及系统
KR20170122043A (ko) 실시간 실내 공기질 이상치 제거 방법 및 장치
CN105241680A (zh) 一种基于概率密度函数的旋转机械健康状态评估方法
CN108090515B (zh) 一种基于数据融合的环境等级评估方法
CN106500754A (zh) 传感器的检测方法和传感器的检测装置
CN109543743B (zh) 一种基于重建预测残差的制冷机组多传感器故障诊断方法
WO2018184304A1 (fr) Procédé et dispositif pour détecter l'état de santé d'un élément de réseau
CN109061387A (zh) 一种基于圆环定理的电网异常状态判别方法
KR101953558B1 (ko) 스마트 기기 결함 관리 장치 및 방법
CN111964909A (zh) 滚动轴承运行状态检测方法、故障诊断方法及系统
CN111130890A (zh) 一种网络流量动态预测系统
CN108470570B (zh) 电机异音检测方法
CN101237357B (zh) 工业无线传感器网络故障在线检测方法
CN116308958A (zh) 基于移动终端的碳排放在线检测预警系统及方法
CN114255784A (zh) 一种基于声纹识别的变电站设备故障诊断方法及相关装置
CN115204227A (zh) 基于深度学习的设备故障诊断中不确定性量化校准方法
WO2020056811A1 (fr) Procédé de calcul d'indice global pour caractériser la qualité globale d'un environnement d'intérieur
CN110668280A (zh) 一种电梯称重传感器的检测方法及相关设备
KR101828456B1 (ko) 부분 고장 데이터를 이용한 소프트웨어 신뢰도 평가모델 선택 시스템 및 방법
CN114236272B (zh) 一种电子产品的智能检测系统
CN104794148B (zh) 煤种化验数据合规性自动监控系统及方法
CN114186586A (zh) 基于二维卷积神经网络的损伤识别方法及设备
CN110824293A (zh) 一种基于狼群算法的多特征融合参数的电网故障诊断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934156

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18934156

Country of ref document: EP

Kind code of ref document: A1