CN106500754A - 传感器的检测方法和传感器的检测装置 - Google Patents

传感器的检测方法和传感器的检测装置 Download PDF

Info

Publication number
CN106500754A
CN106500754A CN201611255988.1A CN201611255988A CN106500754A CN 106500754 A CN106500754 A CN 106500754A CN 201611255988 A CN201611255988 A CN 201611255988A CN 106500754 A CN106500754 A CN 106500754A
Authority
CN
China
Prior art keywords
sensor
test
evaluation
value
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611255988.1A
Other languages
English (en)
Inventor
王刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Qianhai Hongjia Technology Co Ltd
Original Assignee
Shenzhen Qianhai Hongjia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Qianhai Hongjia Technology Co Ltd filed Critical Shenzhen Qianhai Hongjia Technology Co Ltd
Priority to CN201611255988.1A priority Critical patent/CN106500754A/zh
Publication of CN106500754A publication Critical patent/CN106500754A/zh
Priority to PCT/CN2017/086424 priority patent/WO2018120633A1/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本发明提供了一种传感器的检测方法和一种传感器的检测装置,其中,传感器的检测方法包括:根据预设的评测模型,对传感器采集到的实时数据进行评测,并得到评测值;检测评测值是否属于预设评测数值区间;在检测到评测值不属于预设评测数值区间时,生成传感器的工作异常提示信息。通过本发明技术方案,防止了由于根据异常的实时数据调节温室大棚内的环境参数造成环境异常,从而导致对温室大棚内的植物造成损害,以及进一步导致的经济损失,提升了用户的使用体验。

Description

传感器的检测方法和传感器的检测装置
技术领域
本发明涉及种植技术领域,具体而言,涉及一种传感器的检测方法和一种传感器的检测装置。
背景技术
在相关技术中,在大棚中或在种植箱中,为了检测传感器是否正常工作,通常设置两个相同类型的传感器,将一个作为正常使用的传感器,将另一个作为幅度传感器,通过与幅度传感器采集到的数据进行比较,检测传感器是否正常工作,具有以下缺陷:
(1)设置两个相同类型的传感器,造成了资源浪费;
(2)如果幅度传感器工作异常时,影响了检测的准确性。
发明内容
本发明正是基于上述技术问题至少之一,提出了一种新的传感器的检测方案,通过预设评测模型,以通过评测模型对传感器采集到的实时数据进行评测,并得到评测值,检测评测值是否属于预设评测数值区间,以在检测到评测值不属于预设评测数值区间时,生成传感器的工作异常提示信息,在检测到评测值不属于预设评测数值区间时,表明传感器采集到的实时数据异常,即传感器处于工作异常状态,通过生成工作异常提示信息,防止了由于根据异常的实时数据调节温室大棚内的环境参数造成环境异常,从而导致对温室大棚内的植物造成损害,以及进一步导致的经济损失,提升了用户的使用体验。
有鉴于此,本发明的第一方面提出了一种传感器的检测方法,包括:根据预设的评测模型,对传感器采集到的实时数据进行评测,并得到评测值;检测评测值是否属于预设评测数值区间;在检测到评测值不属于预设评测数值区间时,生成传感器的工作异常提示信息。
在该技术方案中,通过预设评测模型,以通过评测模型对传感器采集到的实时数据进行评测,并得到评测值,检测评测值是否属于预设评测数值区间,以在检测到评测值不属于预设评测数值区间时,生成传感器的工作异常提示信息,在检测到评测值不属于预设评测数值区间时,表明传感器采集到的实时数据异常,即传感器处于工作异常状态,通过生成工作异常提示信息,防止了由于根据异常的实时数据调节温室大棚内的环境参数造成环境异常,从而导致对温室大棚内的植物造成损害,以及进一步导致的经济损失,提升了用户的使用体验。
具体地,在温室大棚内设置有温度、湿度等传感器,以检测温室大棚内的环境参数,并将传感器连接至控制器,控制器根据传感器采集到的数据,控制对应的调节设备调节温室大棚内的温度、湿度等,通过检测传感器是否正常工作,在检测到传感器异常时,能够不采用传感器采集到的数据,防止了根据异常数据调节环境参数,以致由于错误的环境参数导致大棚内环境异常(比如温度过高等),造成对大棚内种植的植物的损害。
在上述技术方案中,优选地,在根据预设的评测模型,对传感器采集到的实时数据进行评测,并得到评测值前,还包括:在预设时间段内,根据预设的采集频率,通过传感器采集多个传感数据;根据多个传感数据与spark核密度算法,建立核密度估计模型,以作为预设的评测模型。
在该技术方案中,通过在预设时间段内,根据预设的采集频率,通过传感器采集多个传感数据,并进行缓存,以作为样本数据,根据多个传感数据与spark核密度算法,建立核密度估算模型,并作为预设的评测模型,一方面,采用核密度估算模型,能够对传感器的传感数据进行有效性估算,如果连续产生较低的估算值时,可拒绝使用该传感数据并报警,另一方面,采用spark核密度算法,能够分布式集群,并且允许用户使用简单的算子将计算并行到不同的机器,对于处理大数据具有优势,与单机处理相比,速度更快,效率更高。
核密度评估(kernel density estimation)是根据已知的样本估计未知的密度,观察某一事物的已知分布,如果某一数据在观察中出现了,则认为该数据的概率密度很大,和该数据相近的数据的概率密度也会比较大,而远离该数据的数据概率密度会比较小。
具体地,根据多个传感数据与spark核密度算法,建立核密度估计模型,包括:
RDD[Double]=sc.parallelize(Seq(20.1,22.3,24.2,23.0,22.0,18.4,20.7,18.3,20.0,18.3,20.0,18.3,20.0,26.1,25.5,24.1,22.8,23.3,17.8,16.7,20.8,17.1,16.8,));
Spark.rdd.RDD[Double]=ParallelCollectionRDD[1];
kd=new KernelDensity().setSample(data).setBandwidth(4.0)。
在上述任一项技术方案中,优选地,在根据预设的评测模型,对传感器采集到的实时数据进行评测,并得到评测值前,还包括:根据传感器采集到的多个传感数据与R语言中的density函数,确定多个传感数据的核密度估算值;根据核密度估算值与R语言中的lines函数,生成核密度估计曲线模型,以作为预设的评测模型。
在该技术方案中,通过根据传感器采集到的多个传感数据与R语言中的density函数,确定核密度估算值,并根据lines函数,生成核密度估计曲线模型,实现了采用R语言确定评测模型的功能
具体地,R是用于统计分析、绘图的语言和操作环境,使用函数density()得到样本的核密度估计值,并使用lines()根据核密度估计值得到密度估计的曲线,另外,density()的调用格式可以为:density(x,bw="nrd0",kernel=c("gaussian","epanechnikov","rectangular","triang ular","biweight","cosine","optcosine"),n=512,from,to)。
另外,还可以根据传感器采集到的多个传感数据,将多个传感数据覆盖的数值区间划分为多个等子区间;根据多个传感数据和多个等子区间,生成传感数据直方图,以根据传感数据直方图确定预设的评测模型。
在上述任一项技术方案中,优选地,根据预设的评测模型,对传感器采集到的实时数据进行评测,并得到评测值,具体包括以下步骤:根据核密度估计模型,确定实时数据的核密度值,以作为评测值。
在该技术方案中,通过根据核密度估计模型,确定实时数据的核密度值,以通过将核密度值作为评测值,通过核密度估计模型来检测传感器的工作状态,在实现了对传感器工作状态的评测的同时,不需要额外的硬件支持。
具体计算过程包括:
Densities=kd.estimate(Array(23.7));
Array[Double]=Array(0.06945289);
Densities=kd.estimate(Array(10.8));
Array[Double]=Array(0.00948)。
以温度传感器为例,如果采集到正常的值,比如23.7℃,则采集到正常值的核密度估计值在[0.070-0.057]的范围内,如果采集到异常的值,比如10.8℃,则产生异常值时核密度估计值会非常的小,表明产生该传感数据的概率非常低,比如感应到1000℃的时候概率为0,即不可能存在的情况,40℃的时候为10的-5次方也比较小,从而表明传感器工作异常。
在上述任一项技术方案中,优选地,在检测到评测值不属于预设评测数值区间时,生成传感器的工作异常提示信息,还包括:在检测到评测值不属于预设评测数值区间时,控制关闭传感器。
在该技术方案中,通过在检测到评测值不属于预设评测数值区间时,控制关闭传感器,以防止传感器将采集到的数据发送至控制器,控制器控制对应的环境调节设备调节大棚内的环境参数,避免了由于误调节造成对种植植物的损害,降低了经济损失。
在上述任一项技术方案中,优选地,传感器为温度传感器、湿度传感器、土壤水分传感器、照度传感器以及二氧化碳浓度传感器中的任意一种。
本发明的第二方面还提出了一种传感器的检测装置,包括:评测单元,用于根据预设的评测模型,对传感器采集到的实时数据进行评测,并得到评测值;检测单元,用于检测评测值是否属于预设评测数值区间;提示单元,用于在检测到评测值不属于预设评测数值区间时,生成传感器的工作异常提示信息。
在该技术方案中,通过预设评测模型,以通过评测模型对传感器采集到的实时数据进行评测,并得到评测值,检测评测值是否属于预设评测数值区间,以在检测到评测值不属于预设评测数值区间时,生成传感器的工作异常提示信息,在检测到评测值不属于预设评测数值区间时,表明传感器采集到的实时数据异常,即传感器处于工作异常状态,通过生成工作异常提示信息,防止了由于根据异常的实时数据调节温室大棚内的环境参数造成环境异常,从而导致对温室大棚内的植物造成损害,以及进一步导致的经济损失,提升了用户的使用体验。
具体地,在温室大棚内设置有温度、湿度等传感器,以检测温室大棚内的环境参数,并将传感器连接至控制器,控制器根据传感器采集到的数据,控制对应的调节设备调节温室大棚内的温度、湿度等,通过检测传感器是否正常工作,在检测到传感器异常时,能够不采用传感器采集到的数据,防止了根据异常数据调节环境参数,以致由于错误的环境参数导致大棚内环境异常(比如温度过高等),造成对大棚内种植的植物的损害。
在上述任一项技术方案中,优选地,还包括:还包括:还包括:采集单元,用于在预设时间段内,根据预设的采集频率,通过传感器采集多个传感数据;建立单元,用于根据多个传感数据与spark核密度算法,建立核密度估计模型,以作为预设的评测模型。
在该技术方案中,通过在预设时间段内,根据预设的采集频率,通过传感器采集多个传感数据,并进行缓存,以作为样本数据,根据多个传感数据与spark核密度算法,建立核密度估算模型,并作为预设的评测模型,一方面,采用核密度估算模型,能够对传感器的传感数据进行有效性估算,如果连续产生较低的估算值时,可拒绝使用该传感数据并报警,另一方面,采用spark核密度算法,能够分布式集群,并且允许用户使用简单的算子将计算并行到不同的机器,对于处理大数据具有优势,与单机处理相比,速度更快,效率更高。
核密度评估(kernel density estimation)是根据已知的样本估计未知的密度,观察某一事物的已知分布,如果某一数据在观察中出现了,则认为该数据的概率密度很大,和该数据相近的数据的概率密度也会比较大,而远离该数据的数据概率密度会比较小。
具体地,根据多个传感数据与spark核密度算法,建立核密度估计模型,包括:
RDD[Double]=sc.parallelize(Seq(20.1,22.3,24.2,23.0,22.0,18.4,20.7,18.3,20.0,18.3,20.0,18.3,20.0,26.1,25.5,24.1,22.8,23.3,17.8,16.7,20.8,17.1,16.8,));
Spark.rdd.RDD[Double]=ParallelCollectionRDD[1];
kd=new KernelDensity().setSample(data).setBandwidth(4.0)。
在上述任一项技术方案中,优选地,还包括:确定单元,用于根据传感器采集到的多个传感数据与R语言中的density函数,确定多个传感数据的核密度估算值;生成单元,用于根据核密度估算值与R语言中的lines函数,生成核密度估计曲线模型,以作为预设的评测模型。
在该技术方案中,通过根据传感器采集到的多个传感数据与R语言中的density函数,确定核密度估算值,并根据lines函数,生成核密度估计曲线模型,实现了采用R语言确定评测模型的功能
具体地,R是用于统计分析、绘图的语言和操作环境,使用函数density()得到样本的核密度估计值,并使用lines()根据核密度估计值得到密度估计的曲线,另外,density()的调用格式可以为:density(x,bw="nrd0",kernel=c("gaussian","epanechnikov","rectangular","triang ular","biweight","cosine","optcosine"),n=512,from,to)。
另外,还可以根据传感器采集到的多个传感数据,将多个传感数据覆盖的数值区间划分为多个等子区间;根据多个传感数据和多个等子区间,生成传感数据直方图,以根据传感数据直方图确定预设的评测模型。
在上述任一项技术方案中,优选地,评测单元还包括:确定子单元,用于根据核密度估计模型,确定实时数据的核密度值,以作为评测值。
在该技术方案中,通过根据核密度估计模型,确定实时数据的核密度值,以通过将核密度值作为评测值,通过核密度估计模型来检测传感器的工作状态,在实现了对传感器工作状态的评测的同时,不需要额外的硬件支持。
具体计算过程包括:
Densities=kd.estimate(Array(23.7));
Array[Double]=Array(0.06945289);
Densities=kd.estimate(Array(10.8));
Array[Double]=Array(0.00948)。
以温度传感器为例,如果采集到正常的值,比如23.7℃,则采集到正常值的核密度估计值在[0.070-0.057]的范围内,如果采集到异常的值,比如10.8℃,则产生异常值时核密度估计值会非常的小,表明产生该传感数据的概率非常低,比如感应到1000℃的时候概率为0,即不可能存在的情况,40℃的时候为10的-5次方也比较小,从而表明传感器工作异常。
在上述任一项技术方案中,优选地,还包括:控制单元,用于在检测到评测值不属于预设评测数值区间时,控制关闭传感器。
在该技术方案中,通过在检测到评测值不属于预设评测数值区间时,控制关闭传感器,以防止传感器将采集到的数据发送至控制器,控制器控制对应的环境调节设备调节大棚内的环境参数,避免了由于误调节造成对种植植物的损害,降低了经济损失。
在上述任一项技术方案中,优选地,传感器为温度传感器、湿度传感器、土壤水分传感器、照度传感器以及二氧化碳浓度传感器中的任意一种。
通过以上技术方案,通过预设评测模型,以通过评测模型对传感器采集到的实时数据进行评测,并得到评测值,检测评测值是否属于预设评测数值区间,以在检测到评测值不属于预设评测数值区间时,生成传感器的工作异常提示信息,在检测到评测值不属于预设评测数值区间时,表明传感器采集到的实时数据异常,即传感器处于工作异常状态,通过生成工作异常提示信息,防止了由于根据异常的实时数据调节温室大棚内的环境参数造成环境异常,从而导致对温室大棚内的植物造成损害,以及进一步导致的经济损失,提升了用户的使用体验。
附图说明
图1示出了根据本发明的实施例的传感器的检测方法的示意流程图;
图2示出了根据本发明的实施例的传感器的检测装置的示意框图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用第三方不同于在此描述的第三方方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
图1示出了根据本发明的实施例的传感器的检测方法的示意流程图。
如图1所示,根据本发明的一个实施例的传感器的检测方法,包括:步骤102,根据预设的评测模型,对传感器采集到的实时数据进行评测,并得到评测值;步骤104,检测评测值是否属于预设评测数值区间;步骤106,在检测到评测值不属于预设评测数值区间时,生成传感器的工作异常提示信息。
在该技术方案中,通过预设评测模型,以通过评测模型对传感器采集到的实时数据进行评测,并得到评测值,检测评测值是否属于预设评测数值区间,以在检测到评测值不属于预设评测数值区间时,生成传感器的工作异常提示信息,在检测到评测值不属于预设评测数值区间时,表明传感器采集到的实时数据异常,即传感器处于工作异常状态,通过生成工作异常提示信息,防止了由于根据异常的实时数据调节温室大棚内的环境参数造成环境异常,从而导致对温室大棚内的植物造成损害,以及进一步导致的经济损失,提升了用户的使用体验。
具体地,在温室大棚内设置有温度、湿度等传感器,以检测温室大棚内的环境参数,并将传感器连接至控制器,控制器根据传感器采集到的数据,控制对应的调节设备调节温室大棚内的温度、湿度等,通过检测传感器是否正常工作,在检测到传感器异常时,能够不采用传感器采集到的数据,防止了根据异常数据调节环境参数,以致由于错误的环境参数导致大棚内环境异常(比如温度过高等),造成对大棚内种植的植物的损害。
在上述技术方案中,优选地,在根据预设的评测模型,对传感器采集到的实时数据进行评测,并得到评测值前,还包括:在预设时间段内,根据预设的采集频率,通过传感器采集多个传感数据;根据多个传感数据与spark核密度算法,建立核密度估计模型,以作为预设的评测模型。
在该技术方案中,通过在预设时间段内,根据预设的采集频率,通过传感器采集多个传感数据,并进行缓存,以作为样本数据,根据多个传感数据与spark核密度算法,建立核密度估算模型,并作为预设的评测模型,一方面,采用核密度估算模型,能够对传感器的传感数据进行有效性估算,如果连续产生较低的估算值时,可拒绝使用该传感数据并报警,另一方面,采用spark核密度算法,能够分布式集群,并且允许用户使用简单的算子将计算并行到不同的机器,对于处理大数据具有优势,与单机处理相比,速度更快,效率更高。
核密度评估(kernel density estimation)是根据已知的样本估计未知的密度,观察某一事物的已知分布,如果某一数据在观察中出现了,则认为该数据的概率密度很大,和该数据相近的数据的概率密度也会比较大,而远离该数据的数据概率密度会比较小。
具体地,根据多个传感数据与spark核密度算法,建立核密度估计模型,包括:
RDD[Double]=sc.parallelize(Seq(20.1,22.3,24.2,23.0,22.0,18.4,20.7,18.3,20.0,18.3,20.0,18.3,20.0,26.1,25.5,24.1,22.8,23.3,17.8,16.7,20.8,17.1,16.8,));
Spark.rdd.RDD[Double]=ParallelCollectionRDD[1];
kd=new KernelDensity().setSample(data).setBandwidth(4.0)。
在上述任一项技术方案中,优选地,在根据预设的评测模型,对传感器采集到的实时数据进行评测,并得到评测值前,还包括:根据传感器采集到的多个传感数据与R语言中的density函数,确定多个传感数据的核密度估算值;根据核密度估算值与R语言中的lines函数,生成核密度估计曲线模型,以作为预设的评测模型。
在该技术方案中,通过根据传感器采集到的多个传感数据与R语言中的density函数,确定核密度估算值,并根据lines函数,生成核密度估计曲线模型,实现了采用R语言确定评测模型的功能
具体地,R是用于统计分析、绘图的语言和操作环境,使用函数density()得到样本的核密度估计值,并使用lines()根据核密度估计值得到密度估计的曲线,另外,density()的调用格式可以为:density(x,bw="nrd0",kernel=c("gaussian","epanechnikov","rectangular","triang ular","biweight","cosine","optcosine"),n=512,from,to)。
另外,还可以根据传感器采集到的多个传感数据,将多个传感数据覆盖的数值区间划分为多个等子区间;根据多个传感数据和多个等子区间,生成传感数据直方图,以根据传感数据直方图确定预设的评测模型。
在上述任一项技术方案中,优选地,根据预设的评测模型,对传感器采集到的实时数据进行评测,并得到评测值,具体包括以下步骤:根据核密度估计模型,确定实时数据的核密度值,以作为评测值。
在该技术方案中,通过根据核密度估计模型,确定实时数据的核密度值,以通过将核密度值作为评测值,通过核密度估计模型来检测传感器的工作状态,在实现了对传感器工作状态的评测的同时,不需要额外的硬件支持。
具体计算过程包括:
Densities=kd.estimate(Array(23.7));
Array[Double]=Array(0.06945289);
Densities=kd.estimate(Array(10.8));
Array[Double]=Array(0.00948)。
以温度传感器为例,如果采集到正常的值,比如23.7℃,则采集到正常值的核密度估计值在[0.070-0.057]的范围内,如果采集到异常的值,比如10.8℃,则产生异常值时核密度估计值会非常的小,表明产生该传感数据的概率非常低,比如感应到1000℃的时候概率为0,即不可能存在的情况,40℃的时候为10的-5次方也比较小,从而表明传感器工作异常。
在上述任一项技术方案中,优选地,在检测到评测值不属于预设评测数值区间时,生成传感器的工作异常提示信息,还包括:在检测到评测值不属于预设评测数值区间时,控制关闭传感器。
在该技术方案中,通过在检测到评测值不属于预设评测数值区间时,控制关闭传感器,以防止传感器将采集到的数据发送至控制器,控制器控制对应的环境调节设备调节大棚内的环境参数,避免了由于误调节造成对种植植物的损害,降低了经济损失。
在上述任一项技术方案中,优选地,传感器为温度传感器、湿度传感器、土壤水分传感器、照度传感器以及二氧化碳浓度传感器中的任意一种。
图2示出了根据本发明的实施例的传感器的检测装置的示意框图。
如图2所示,根据本发明的实施例的传感器的检测装置200,包括:评测单元202,用于根据预设的评测模型,对传感器采集到的实时数据进行评测,并得到评测值;检测单元204,用于检测评测值是否属于预设评测数值区间;提示单元206,用于在检测到评测值不属于预设评测数值区间时,生成传感器的工作异常提示信息。
在该技术方案中,通过预设评测模型,以通过评测模型对传感器采集到的实时数据进行评测,并得到评测值,检测评测值是否属于预设评测数值区间,以在检测到评测值不属于预设评测数值区间时,生成传感器的工作异常提示信息,在检测到评测值不属于预设评测数值区间时,表明传感器采集到的实时数据异常,即传感器处于工作异常状态,通过生成工作异常提示信息,防止了由于根据异常的实时数据调节温室大棚内的环境参数造成环境异常,从而导致对温室大棚内的植物造成损害,以及进一步导致的经济损失,提升了用户的使用体验。
具体地,在温室大棚内设置有温度、湿度等传感器,以检测温室大棚内的环境参数,并将传感器连接至控制器,控制器根据传感器采集到的数据,控制对应的调节设备调节温室大棚内的温度、湿度等,通过检测传感器是否正常工作,在检测到传感器异常时,能够不采用传感器采集到的数据,防止了根据异常数据调节环境参数,以致由于错误的环境参数导致大棚内环境异常(比如温度过高等),造成对大棚内种植的植物的损害。
在上述任一项技术方案中,优选地,还包括:还包括:还包括:采集单元208,用于在预设时间段内,根据预设的采集频率,通过传感器采集多个传感数据;建立单元210,用于根据多个传感数据与spark核密度算法,建立核密度估计模型,以作为预设的评测模型。
在该技术方案中,通过在预设时间段内,根据预设的采集频率,通过传感器采集多个传感数据,并进行缓存,以作为样本数据,根据多个传感数据与spark核密度算法,建立核密度估算模型,并作为预设的评测模型,一方面,采用核密度估算模型,能够对传感器的传感数据进行有效性估算,如果连续产生较低的估算值时,可拒绝使用该传感数据并报警,另一方面,采用spark核密度算法,能够分布式集群,并且允许用户使用简单的算子将计算并行到不同的机器,对于处理大数据具有优势,与单机处理相比,速度更快,效率更高。
核密度评估(kernel density estimation)是根据已知的样本估计未知的密度,观察某一事物的已知分布,如果某一数据在观察中出现了,则认为该数据的概率密度很大,和该数据相近的数据的概率密度也会比较大,而远离该数据的数据概率密度会比较小。
具体地,根据多个传感数据与spark核密度算法,建立核密度估计模型,包括:
RDD[Double]=sc.parallelize(Seq(20.1,22.3,24.2,23.0,22.0,18.4,20.7,18.3,20.0,18.3,20.0,18.3,20.0,26.1,25.5,24.1,22.8,23.3,17.8,16.7,20.8,17.1,16.8,));
Spark.rdd.RDD[Double]=ParallelCollectionRDD[1];
kd=new KernelDensity().setSample(data).setBandwidth(4.0)。
在上述任一项技术方案中,优选地,还包括:确定单元212,用于根据传感器采集到的多个传感数据与R语言中的density函数,确定多个传感数据的核密度估算值;生成单元214,用于根据核密度估算值与R语言中的lines函数,生成核密度估计曲线模型,以作为预设的评测模型。
在该技术方案中,通过根据传感器采集到的多个传感数据与R语言中的density函数,确定核密度估算值,并根据lines函数,生成核密度估计曲线模型,实现了采用R语言确定评测模型的功能
具体地,R是用于统计分析、绘图的语言和操作环境,使用函数density()得到样本的核密度估计值,并使用lines()根据核密度估计值得到密度估计的曲线,另外,density()的调用格式可以为:density(x,bw="nrd0",kernel=c("gaussian","epanechnikov","rectangular","triang ular","biweight","cosine","optcosine"),n=512,from,to)。
另外,还可以根据传感器采集到的多个传感数据,将多个传感数据覆盖的数值区间划分为多个等子区间;根据多个传感数据和多个等子区间,生成传感数据直方图,以根据传感数据直方图确定预设的评测模型。
在上述任一项技术方案中,优选地,评测单元202还包括:确定子单元2022,用于根据核密度估计模型,确定实时数据的核密度值,以作为评测值。
在该技术方案中,通过根据核密度估计模型,确定实时数据的核密度值,以通过将核密度值作为评测值,通过核密度估计模型来检测传感器的工作状态,在实现了对传感器工作状态的评测的同时,不需要额外的硬件支持。
具体计算过程包括:
Densities=kd.estimate(Array(23.7));
Array[Double]=Array(0.06945289);
Densities=kd.estimate(Array(10.8));
Array[Double]=Array(0.00948)。
以温度传感器为例,如果采集到正常的值,比如23.7℃,则采集到正常值的核密度估计值在[0.070-0.057]的范围内,如果采集到异常的值,比如10.8℃,则产生异常值时核密度估计值会非常的小,表明产生该传感数据的概率非常低,比如感应到1000℃的时候概率为0,即不可能存在的情况,40℃的时候为10的-5次方也比较小,从而表明传感器工作异常。
在上述任一项技术方案中,优选地,还包括:控制单元216,用于在检测到评测值不属于预设评测数值区间时,控制关闭传感器。
在该技术方案中,通过在检测到评测值不属于预设评测数值区间时,控制关闭传感器,以防止传感器将采集到的数据发送至控制器,控制器控制对应的环境调节设备调节大棚内的环境参数,避免了由于误调节造成对种植植物的损害,降低了经济损失。
在上述任一项技术方案中,优选地,传感器为温度传感器、湿度传感器、土壤水分传感器、照度传感器以及二氧化碳浓度传感器中的任意一种。
以上结合附图详细说明了本发明的技术方案,考虑到相关技术中如何检测传感器是否正常工作,本发明提出了一种新的传感器的检测方案,通过预设评测模型,以通过评测模型对传感器采集到的实时数据进行评测,并得到评测值,检测评测值是否属于预设评测数值区间,以在检测到评测值不属于预设评测数值区间时,生成传感器的工作异常提示信息,在检测到评测值不属于预设评测数值区间时,表明传感器采集到的实时数据异常,即传感器处于工作异常状态,通过生成工作异常提示信息,防止了由于根据异常的实时数据调节温室大棚内的环境参数造成环境异常,从而导致对温室大棚内的植物造成损害,以及进一步导致的经济损失,提升了用户的使用体验。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

1.一种传感器的检测方法,所述传感器应用于温室大棚,其特征在于,所述传感器的检测方法包括:
根据预设的评测模型,对所述传感器采集到的实时数据进行评测,并得到评测值;
检测所述评测值是否属于预设评测数值区间;
在检测到所述评测值不属于所述预设评测数值区间时,生成所述传感器的工作异常提示信息。
2.根据权利要求1所述的传感器的检测方法,其特征在于,所述在根据预设的评测模型,对传感器采集到的实时数据进行评测,并得到评测值前,还包括:
在预设时间段内,根据预设的采集频率,通过所述传感器采集多个传感数据;
根据所述多个传感数据与spark核密度算法,建立核密度估计模型,以作为所述预设的评测模型。
3.根据权利要求1所述的传感器的检测方法,其特征在于,所述在根据预设的评测模型,对传感器采集到的实时数据进行评测,并得到评测值前,还包括:
根据所述传感器采集到的多个传感数据与R语言中的density函数,确定所述多个传感数据的核密度估算值;
根据所述核密度估算值与R语言中的lines函数,生成核密度估计曲线模型,以作为所述预设的评测模型。
4.根据权利要求2所述的传感器的检测方法,其特征在于,所述根据预设的评测模型,对传感器采集到的实时数据进行评测,并得到评测值,具体包括以下步骤:
根据所述核密度估计模型,确定所述实时数据的核密度值,以作为所述评测值。
5.根据权利要求1所述的传感器的检测方法,其特征在于,所述在检测到所述评测值不属于所述预设评测数值区间时,生成所述传感器的工作异常提示信息,还包括:
在检测到所述评测值不属于所述预设评测数值区间时,控制关闭所述传感器。
6.根据权利要求1至5中任一项所述的传感器的检测方法,其特征在于,所述传感器为温度传感器、湿度传感器、土壤水分传感器、照度传感器以及二氧化碳浓度传感器中的任意一种。
7.一种传感器的检测装置,所述传感器应用于温室大棚,其特征在于,所述传感器的检测装置包括:
评测单元,用于根据预设的评测模型,对所述传感器采集到的实时数据进行评测,并得到评测值;
检测单元,用于检测所述评测值是否属于预设评测数值区间;
提示单元,用于在检测到所述评测值不属于所述预设评测数值区间时,生成所述传感器的工作异常提示信息。
8.根据权利要求7所述的传感器的检测装置,其特征在于,还包括:
采集单元,用于在预设时间段内,根据预设的采集频率,通过所述传感器采集多个传感数据;
建立单元,用于根据所述多个传感数据与spark核密度算法,建立核密度估计模型,以作为所述预设的评测模型。
9.根据权利要求7所述的传感器的检测装置,其特征在于,还包括:
确定单元,用于根据所述传感器采集到的多个传感数据与R语言中的density函数,确定所述多个传感数据的核密度估算值;
生成单元,用于根据所述核密度估算值与R语言中的lines函数,生成核密度估计曲线模型,以作为所述预设的评测模型。
10.根据权利要求8所述的传感器的检测装置,其特征在于,所述评测单元还包括:
确定子单元,用于根据所述核密度估计模型,确定所述实时数据的核密度值,以作为所述评测值。
11.根据权利要求7所述的传感器的检测装置,其特征在于,还包括:
控制单元,用于在检测到所述评测值不属于所述预设评测数值区间时,控制关闭所述传感器。
12.根据权利要求7至11中任一项所述的传感器的检测装置,其特征在于,所述传感器为温度传感器、湿度传感器、土壤水分传感器、照度传感器以及二氧化碳浓度传感器中的任意一种。
CN201611255988.1A 2016-12-30 2016-12-30 传感器的检测方法和传感器的检测装置 Pending CN106500754A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201611255988.1A CN106500754A (zh) 2016-12-30 2016-12-30 传感器的检测方法和传感器的检测装置
PCT/CN2017/086424 WO2018120633A1 (zh) 2016-12-30 2017-05-27 传感器的检测方法和传感器的检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611255988.1A CN106500754A (zh) 2016-12-30 2016-12-30 传感器的检测方法和传感器的检测装置

Publications (1)

Publication Number Publication Date
CN106500754A true CN106500754A (zh) 2017-03-15

Family

ID=58334721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611255988.1A Pending CN106500754A (zh) 2016-12-30 2016-12-30 传感器的检测方法和传感器的检测装置

Country Status (2)

Country Link
CN (1) CN106500754A (zh)
WO (1) WO2018120633A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107340014A (zh) * 2017-08-31 2017-11-10 广东美的制冷设备有限公司 多传感器的检测方法、装置及计算机可读存储介质
CN108180935A (zh) * 2018-01-31 2018-06-19 深圳春沐源控股有限公司 传感器的故障检测方法及装置
WO2018120633A1 (zh) * 2016-12-30 2018-07-05 深圳前海弘稼科技有限公司 传感器的检测方法和传感器的检测装置
CN108768701A (zh) * 2018-05-13 2018-11-06 广东理致技术有限公司 一种物联网传感器节点故障标记方法及装置
CN108914492A (zh) * 2018-09-30 2018-11-30 福建易洁科技有限公司 一种洗衣机水位频率自动校准方法
CN110383011A (zh) * 2018-02-01 2019-10-25 山东诺方电子科技有限公司 出租车顶灯内多核传感器系统
CN110646026A (zh) * 2018-06-26 2020-01-03 佛吉亚汽车座椅有限责任公司 用于电容传感器元件的模拟信号调节与诊断
CN111024141A (zh) * 2019-11-23 2020-04-17 宜宾学院 基于无线通信的环境污染检测设备的在线检测系统
CN111130056A (zh) * 2020-01-02 2020-05-08 天地(常州)自动化股份有限公司 一种监测方法及装置
CN112583768A (zh) * 2019-09-30 2021-03-30 北京国双科技有限公司 一种用户异常行为检测方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374044B (zh) * 2018-09-30 2023-11-10 国际商业机器(中国)投资有限公司 一种多参环境监测设备智能自动修复方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868692A (zh) * 2014-03-18 2014-06-18 电子科技大学 基于核密度估计和k-l散度的旋转机械故障诊断方法
CN103916896A (zh) * 2014-03-26 2014-07-09 浙江农林大学 基于多维Epanechnikov核密度估计的异常检测方法
CN104537233A (zh) * 2014-12-23 2015-04-22 国家电网公司 一种基于核密度估计的配电网伪量测生成方法
EP2174235B1 (en) * 2007-06-14 2016-03-09 Microsoft Technology Licensing, LLC Distributed kernel density estimation
CN105718754A (zh) * 2016-03-09 2016-06-29 中国石油大学(北京) 一种炼化过程参数动态报警阈值的生成方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104075751A (zh) * 2013-03-26 2014-10-01 北京百度网讯科技有限公司 互联网数据中心的温湿度预警方法及装置
CN105403245A (zh) * 2015-10-16 2016-03-16 沈阳农业大学 日光温室无线传感器多数据融合方法
CN106500754A (zh) * 2016-12-30 2017-03-15 深圳前海弘稼科技有限公司 传感器的检测方法和传感器的检测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2174235B1 (en) * 2007-06-14 2016-03-09 Microsoft Technology Licensing, LLC Distributed kernel density estimation
CN103868692A (zh) * 2014-03-18 2014-06-18 电子科技大学 基于核密度估计和k-l散度的旋转机械故障诊断方法
CN103916896A (zh) * 2014-03-26 2014-07-09 浙江农林大学 基于多维Epanechnikov核密度估计的异常检测方法
CN104537233A (zh) * 2014-12-23 2015-04-22 国家电网公司 一种基于核密度估计的配电网伪量测生成方法
CN105718754A (zh) * 2016-03-09 2016-06-29 中国石油大学(北京) 一种炼化过程参数动态报警阈值的生成方法及装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018120633A1 (zh) * 2016-12-30 2018-07-05 深圳前海弘稼科技有限公司 传感器的检测方法和传感器的检测装置
CN107340014A (zh) * 2017-08-31 2017-11-10 广东美的制冷设备有限公司 多传感器的检测方法、装置及计算机可读存储介质
CN108180935A (zh) * 2018-01-31 2018-06-19 深圳春沐源控股有限公司 传感器的故障检测方法及装置
CN108180935B (zh) * 2018-01-31 2020-07-03 深圳春沐源控股有限公司 传感器的故障检测方法及装置
CN110383011A (zh) * 2018-02-01 2019-10-25 山东诺方电子科技有限公司 出租车顶灯内多核传感器系统
CN108768701A (zh) * 2018-05-13 2018-11-06 广东理致技术有限公司 一种物联网传感器节点故障标记方法及装置
CN110646026A (zh) * 2018-06-26 2020-01-03 佛吉亚汽车座椅有限责任公司 用于电容传感器元件的模拟信号调节与诊断
CN108914492A (zh) * 2018-09-30 2018-11-30 福建易洁科技有限公司 一种洗衣机水位频率自动校准方法
CN112583768A (zh) * 2019-09-30 2021-03-30 北京国双科技有限公司 一种用户异常行为检测方法及装置
CN111024141A (zh) * 2019-11-23 2020-04-17 宜宾学院 基于无线通信的环境污染检测设备的在线检测系统
CN111130056A (zh) * 2020-01-02 2020-05-08 天地(常州)自动化股份有限公司 一种监测方法及装置
CN111130056B (zh) * 2020-01-02 2022-03-01 天地(常州)自动化股份有限公司 一种监测方法及装置

Also Published As

Publication number Publication date
WO2018120633A1 (zh) 2018-07-05

Similar Documents

Publication Publication Date Title
CN106500754A (zh) 传感器的检测方法和传感器的检测装置
CN109782274B (zh) 一种基于探地雷达信号时频统计特征的水损害识别方法
CN106323452B (zh) 一种设备异音的检测方法及检测装置
CN107014668A (zh) 一种基于压电和智能涂层传感器的疲劳裂纹综合监测方法
CN102473660B (zh) 等离子加工系统自动瑕疵检测和分类及其方法
CN109461095A (zh) 一种用于非侵入式负荷辨识的负荷事件检测的数据处理方法及设备
CN107132454A (zh) 基于随机矩阵谱半径法的电网异常快速检测方法
CN106022366B (zh) 一种基于近邻证据融合的旋转机械设备故障诊断方法
CN105241957B (zh) 一种结构剩余寿命自动化快速评估方法和系统
CN109508745A (zh) 基于贝叶斯网络模型的燃气轮机气路故障的检测方法
CN106596729B (zh) 2.25Cr-1Mo钢疲劳裂纹扩展监测及氢脆评价方法
CN103926313B (zh) 一种基于超声检测的复合材料孔隙率数值评估方法
CN107677364A (zh) 空调喘振测试方法及系统
CN108235355A (zh) 一种环境模拟方法及装置
WO2020056812A1 (zh) 用于评价室内环境质量的环境参数权重确定方法及系统
CN114965924A (zh) 污水污染物浓度检测系统
CN109443525A (zh) 一种设备异响检测系统及检测方法
CN108470570B (zh) 电机异音检测方法
CN113720914B (zh) 超声波探伤系统及超声波探伤方法
CN100478650C (zh) 改善发电设备故障检测的方法和装置
Bax et al. Real-time monitoring of odour concentration at a landfill fenceline: performance verification in the field
CN106323808A (zh) 一种基于微波水分仪的密度适时检测系统及检测方法
CN108663334A (zh) 基于多分类器融合寻找土壤养分光谱特征波长的方法
CN117421692A (zh) 垃圾投放站的垃圾违规投放识别方法、装置、设备
CN107247871A (zh) 项目检测时间核查预警方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 518052 Guangdong city of Shenzhen province Qianhai Shenzhen Hong Kong cooperation zone before Bay Road No. 1 building 201 room A (located in Shenzhen Qianhai business secretary Co. Ltd.)

Applicant after: Shenzhen Chun Mu source Holdings Limited

Address before: 518052 Guangdong city of Shenzhen province Qianhai Shenzhen Hong Kong cooperation zone before Bay Road No. 1 building 201 room A

Applicant before: Shenzhen Qianhai Hong Jia Technology Co., Ltd.

CB02 Change of applicant information
RJ01 Rejection of invention patent application after publication

Application publication date: 20170315

RJ01 Rejection of invention patent application after publication