WO2020056590A1 - 一种超快激光组合脉冲序列的阵列微纳结构加工方法 - Google Patents

一种超快激光组合脉冲序列的阵列微纳结构加工方法 Download PDF

Info

Publication number
WO2020056590A1
WO2020056590A1 PCT/CN2018/106255 CN2018106255W WO2020056590A1 WO 2020056590 A1 WO2020056590 A1 WO 2020056590A1 CN 2018106255 W CN2018106255 W CN 2018106255W WO 2020056590 A1 WO2020056590 A1 WO 2020056590A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
processing
workpiece
pulse
nano structure
Prior art date
Application number
PCT/CN2018/106255
Other languages
English (en)
French (fr)
Inventor
王成勇
王宏建
林华泰
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Priority to PCT/CN2018/106255 priority Critical patent/WO2020056590A1/zh
Publication of WO2020056590A1 publication Critical patent/WO2020056590A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring

Definitions

  • the invention belongs to the field of laser processing technology, and particularly relates to an array micro / nano structure processing method for an ultra-fast laser combined pulse sequence.
  • the micro-nano structure on the surface of the material allows the material to exhibit its inherent properties while possessing characteristics not available on conventional surfaces, such as hydrophobicity, friction reduction, and antibacterial properties. It has been widely used in the manufacture of functional parts.
  • the micro-nano structure has a great influence on the surface properties of the material, and can be prepared by chemical etching, vapor deposition, laser processing and other methods. Ceramics are important research fields for micro / nano structure processing due to their good mechanical and physical and chemical properties. As a typical hard and brittle material, laser processing methods with non-contact, no tool wear, high efficiency, and easy online control of process parameters have obvious advantages. For array micro-nano structure processing with high repeatability, it is difficult to compare with other methods.
  • patent CN201310141035.2 Disclosed is a method for processing silicon microstructure based on femtosecond laser processing and wet etching.
  • a femtosecond laser is used to process single crystal silicon in an oxygen-containing gas to induce a change in refractive index, and then hydrofluoric acid is used for wet etching.
  • the refractive index change region is removed to form a microstructure.
  • this method is simpler than using a mask method, it needs to go through two steps of laser processing and wet etching, which reduces the processing efficiency, and the area where the refractive index of the material changes is difficult to control. Poor structural accuracy.
  • patent CN201210491845.6 Disclosed are a method and a device for forming a microstructure of a plastic part based on laser heating.
  • the process parameters are precisely controlled through the thermal effect of laser to quickly melt the surface of a material substrate, and then the microstructure forming process is obtained through an extrusion molding device.
  • the materials involved in this method are very limited and cannot be applied to the microstructure processing of hard and brittle materials widely used in the industrial field.
  • patent CN201710470109.5 Disclosed is a nanosecond laser secondary scanning preparation method for superhydrophobic microstructures on the surface of an aluminum alloy. The nanosecond laser is used to scan multiple times to change the process parameters of the nanosecond laser to prepare superhydrophobic microstructures.
  • the ultra-fast laser Because of its extremely high peak power and extremely short pulse width, the ultra-fast laser has better processing results due to its "cold working" characteristics. Therefore, it is very necessary to apply the advantages of ultrafast laser processing to the field of hard and brittle materials, and propose a new method for surface array micro / nano structure processing.
  • the main technical problems in the current technology are: 1 2. There are many processes in the processing of micro / nano structures, and each process cannot be continuous, which affects the processing efficiency. 2 2. The existing processing methods have limited application in the field of micro-nano structure processing of hard and brittle materials.
  • An array micro / nano structure processing method for an ultrafast laser combined pulse sequence is characterized in that it includes the following steps:
  • the industrial control computer starts the laser generator to emit the laser beam to the surface of the workpiece through the laser controller. After the laser focusing is completed, the laser generator is turned off, and the ultra-precision platform is adjusted to determine the processing area of the workpiece;
  • the laser controller When the workpiece is being processed, the laser controller is turned on by the industrial control computer.
  • the laser controller can choose the femtosecond laser or picosecond laser in the laser generator to emit the laser beam.
  • the optical path switching module is repeatedly switched during the processing to achieve ultra-fast laser pulse Free combination, then incident on the surface of the workpiece through the focusing module, processing according to the required micro-nano structure, and spraying auxiliary gas at the same time; among them, the laser processing process parameters can be adjusted online by the industrial control computer;
  • the workpiece is removed, and the organic solvent is used for ultrasonic cleaning and drying to obtain a finished product.
  • the laser processing system includes a laser controller, a laser generator, an optical path switching module, a focusing module, and an ultra-precision platform.
  • the laser generator includes a femtosecond laser, a picosecond laser, the optical path switching module and the focusing module can ensure that the focusing plane of the femtosecond laser and the picosecond laser are the same, and the ultra-precision platform can realize three-dimensional movement of the workpiece. .
  • the industrial control computer is connected to a laser processing system
  • the laser controller is connected to a femtosecond laser and a picosecond laser in a laser generator
  • the laser generator is connected to an optical path switching module
  • the optical path is switched
  • the module is connected to a focusing module, which is arranged above a workpiece fixed on an ultra-precision platform.
  • the laser controller, laser generator, optical path switching module, focusing module, ultra-precision platform, femtosecond laser, and picosecond laser can all be implemented by any existing technology in the field.
  • the free combination of ultrafast laser pulses includes femtosecond pulses or picosecond pulse combinations of different energies, femtosecond pulses or picosecond pulse combinations of different pulse intervals, femtosecond pulses or picosecond pulse combinations of different pulse numbers Any of them.
  • the laser processing process parameter is pulse energy 50 ⁇ 300 ⁇ J Pulse interval 10ps ⁇ 200ns Number of pulses 10 ⁇ 1000 Scan speed 100 ⁇ 2000mm / s Focus position -2 ⁇ 2mm .
  • auxiliary gas includes any one of air, argon, oxygen, and nitrogen.
  • the organic solvent is any one of alcohol and acetone.
  • the working principle of the invention is: through the free combination of femtosecond pulses and picosecond pulse sequences, and the online control of laser processing process parameters, the time for lasers with different energies to act on the material processing area can be adjusted to form a micro / nano structure.
  • the laser controller flexibly selects a femtosecond laser or a picosecond laser, and quickly adjusts the pulse combination of different pulse widths through the optical path switching module, which fully improves the processing efficiency.
  • the invention integrates the free combination of multiple process parameters such as pulse width, energy, scanning speed, focus position, etc. of the ultra-fast laser, and provides new ideas for micro-nano processing of materials.
  • the inventor of the present application obtained the technical solution of the present invention through a lot of creative labor, so that it can achieve the following technical effects: 1.
  • the laser controller and the optical path switching module can flexibly combine ultra-fast laser pulse sequences and adjust laser processing online Process parameters; 2.
  • the optical path switching module and focusing module can ensure that the focusing plane of the femtosecond laser and the picosecond laser are the same, which can save the operation of selecting different lasers to repeat the focusing, and improve the processing efficiency.
  • Femtosecond laser or picosecond laser can be selected according to processing requirements, and ultra-fast laser pulse sequences can be flexibly combined through optical path switching to effectively improve the micro / nano structure. Processing efficiency and quality.
  • Figure 1 It is a schematic structural diagram of a processing device according to the present invention.
  • Figure 2 It is a schematic diagram of a combination method of ultrafast laser pulses of the present invention.
  • Figure 3 It is a schematic diagram of an ultrafast laser combined pulse sequence processing line array according to the present invention.
  • Figure 4 It is a schematic diagram of a processing point array of the ultra-fast laser combination pulse sequence of the present invention.
  • 1- Industrial control computer 2- Laser controller 3- Laser generator 31- Femtosecond laser 32- Picosecond laser 4- Optical path switching module; 5- Focusing module 6- Workpiece 7- Ultra-precision platform.
  • An array micro / nano structure processing method of ultra-fast laser combination pulse sequence includes the following steps: silicon nitride workpiece to be processed 6 The surface is ground and polished, after ultrasonic cleaning and drying with alcohol, it is fixed on the ultra-precision platform 7 on.
  • Industrial control computer 1 Laser controller 2 Start femtosecond laser 31 Laser beam emitted to silicon nitride workpiece 6 Surface laser focusing completed, femtosecond laser off 31 And adjust the ultra-precision platform 7 Identifying silicon nitride workpieces 6 Processing area.
  • Silicon nitride workpiece 6 Industrial control computer during processing 1 Turn on the laser controller 2 Choosing a laser generator 3 Femtosecond laser 31 Transmit femtosecond pulse sequence, in turn via optical path switching module 4 Focus module 5 Incidence on silicon nitride workpiece 6 Surface, and set the pulse interval of femtosecond pulse sequence online T f1 for 50ps Pulse energy E f1 for 100 ⁇ J Laser scanning speed V 1 for 200mm / s , Focus position is 0mm .
  • the industrial control computer 1 Laser controller 2 Choosing a laser generator 3 Picosecond laser 32 Transmit the picosecond pulse sequence and pass the optical path switching module in order 4 Focus module 5 Incident on the surface of silicon nitride workpiece 6 , And set the pulse interval of picosecond pulse sequence and femtosecond pulse sequence online T 1 for 100ns Pulse interval of picosecond pulse sequence T p1 for 100ps Pulse energy E p1 for 200 ⁇ J Laser scanning speed V 2 for 500mm / s , Focus position is 1mm .
  • the picosecond pulse sequence After the picosecond pulse sequence is processed according to the predetermined line array trajectory of the silicon nitride workpiece surface, it can be switched to the femtosecond laser again. 31 Use femtosecond pulse sequence processing, cycle in turn, to the silicon nitride workpiece 6 Surface processing line array micro / nano structure. Silicon nitride workpieces throughout the process 6 The auxiliary gas sprayed from the processing area is nitrogen.
  • Pulse interval of the femtosecond pulse sequence T f1 Pulse energy E f1 And laser scanning speed V 1 Pulse interval of picosecond pulse sequence T p1 Pulse energy E p1 And laser scanning speed V 2 , And the pulse interval between the picosecond pulse sequence and the femtosecond pulse sequence T 1 , Can be adjusted online within the scope of each module of the laser processing system.
  • An array micro / nano structure processing method of ultra-fast laser combination pulse sequence includes the following steps: silicon nitride workpiece to be processed 6 The surface is ground and polished, after ultrasonic cleaning and drying with alcohol, it is fixed on the ultra-precision platform 7 on.
  • Industrial control computer 1 Laser controller 2 Start femtosecond laser 31 Laser beam emitted to silicon nitride workpiece 6 Surface laser focusing completed, femtosecond laser off 31 And adjust the ultra-precision platform 7 Identifying silicon nitride workpieces 6 Processing area.
  • Silicon nitride workpiece 6 Industrial control computer during processing 1 Turn on the laser controller 2 Choosing a laser generator 3 Femtosecond laser 31 Transmit femtosecond pulse sequence, in turn via optical path switching module 4 Focus module 5 Incidence on silicon nitride workpiece 6 Surface, and set the pulse interval of femtosecond pulse sequence online T f1 for 50ps Pulse energy E f1 for 100 ⁇ J Laser scanning speed V 1 for 200mm / s , Focus position is 0mm .
  • the industrial control computer 1 Laser controller 2 Choosing a laser generator 3 Picosecond laser 32 Transmit the picosecond pulse sequence and pass the optical path switching module in order 4 Focus module 5 Incident on the surface of silicon nitride workpiece 6 , And set the pulse interval of picosecond pulse sequence and femtosecond pulse sequence online T 1 for 100ns Pulse interval of picosecond pulse sequence T p1 for 100ps Pulse energy E p1 for 200 ⁇ J Laser scanning speed V 2 for 500mm / s , Focus position is 1mm .
  • the picosecond pulse sequence After the picosecond pulse sequence is processed according to the predetermined line array trajectory of the silicon nitride workpiece surface, it can be switched to the femtosecond laser again. 31 Use femtosecond pulse sequence processing, cycle in turn, to the silicon nitride workpiece 6 Surface processing line array micro / nano structure. Silicon nitride workpieces throughout the process 6 The auxiliary gas sprayed from the processing area is nitrogen.
  • Pulse interval of the femtosecond pulse sequence T f1 Pulse energy E f1 And laser scanning speed V 1 Pulse interval of picosecond pulse sequence T p1 Pulse energy E p1 And laser scanning speed V 2 , And the pulse interval between the picosecond pulse sequence and the femtosecond pulse sequence T 1 , Can be adjusted online within the scope of each module of the laser processing system.
  • An array micro / nano structure processing method for a combination of ultrafast laser pulse sequences includes the following steps: alumina workpieces to be processed 6 The surface is ground and polished. After ultrasonic cleaning and drying with acetone, it is fixed on the ultra-precision platform 7 on.
  • Industrial control computer 1 Laser controller 2 Turn on the picosecond laser 32 Laser beam emitted to alumina workpiece 6 Surface laser focusing completed, picosecond laser off 32 And adjust the ultra-precision platform 7 Identifying alumina workpieces 6 Processing area.
  • Alumina workpiece 6 Industrial control computer during processing 1 Turn on the laser controller 2 Choosing a laser generator 3 Picosecond laser 32 Transmit the picosecond pulse sequence and pass the optical path switching module in order 4 Focus module 5 Incidence on alumina workpiece 6 Surface, and set the pulse interval of picosecond pulse sequence online T p1 for 100ns Pulse energy E p1 for 250 ⁇ J Number of pulses N p1 for 500 , Focus position is -1mm .
  • Picosecond pulse sequence on alumina workpiece 6 The surface is processed according to a predetermined number of dots and the set number of pulses N p1 Industrial control computer 1 Laser controller 2 Choosing a laser generator 3 Femtosecond laser 31 Transmit femtosecond pulse sequence, in turn via optical path switching module 4 Focus module 5 Incidence on alumina workpiece 6 Surface, and set the interval time between femtosecond pulse sequence and picosecond pulse sequence online T 1 for 200ps Pulse interval of femtosecond pulse sequence T f1 for 150ns Pulse energy E f1 for 300 ⁇ J Number of pulses N f1 for 1000 , Focus position is 1mm .
  • Femtosecond pulse sequence on alumina workpiece 6 The surface is processed according to a predetermined number of dots and the set number of pulses N f1 After that, you can switch to picosecond laser again 32 Use picosecond pulse sequence machining, cycle in turn, to alumina workpiece 6 Surface processing point array micro / nano structure. Alumina workpieces throughout the process 6 The auxiliary gas sprayed from the processing area is oxygen.
  • This embodiment provides an embodiment 1
  • Focus position is 1mm
  • Focus position is 0mm .
  • This embodiment provides an embodiment 2 Array micro / nano structure processing method of same ultrafast laser combination pulse sequence, pulse interval of said picosecond pulse sequence T p1 for 700ps Pulse energy E p1 for 70 ⁇ J Number of pulses N p1 for 300 , Focus position is -1mm The interval between the femtosecond pulse sequence and the picosecond pulse sequence T 1 for 500ps Pulse interval of femtosecond pulse sequence T f1 for 500ns Pulse energy E f1 for 280 ⁇ J Number of pulses N f1 for 1000 , Focus position is 1mm .
  • This embodiment provides an embodiment 2 Array micro / nano structure processing method of same ultrafast laser combination pulse sequence, pulse interval of said picosecond pulse sequence T p1 for 150ns Pulse energy E p1 for 120 ⁇ J Number of pulses N p1 for 700 , Focus position is 2mm The interval between the femtosecond pulse sequence and the picosecond pulse sequence T 1 for 100ns Pulse interval of femtosecond pulse sequence T f1 for 500ns Pulse energy E f1 for 300 ⁇ J Number of pulses N f1 for 600 , Focus position is 1mm .
  • Femtosecond laser or picosecond laser can be selected according to processing requirements, and ultra-fast laser pulse sequences can be flexibly combined through optical path switching to effectively improve the micro / nano structure. Processing efficiency and quality , Suitable for promoting industrialized processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明提供一种超快激光组合脉冲序列的阵列微纳结构加工方法,包括以下步骤:将工件表面研磨抛光并清洗、干燥后,固定于超精密平台上;由工业控制计算机通过激光控制器启动激光发生器发射激光束至工件表面完成激光对焦后,调整超精密平台确定工件加工区域;加工时,通过激光控制器选择飞秒激光器或皮秒激光器发射激光束,经光路切换模块实现超快激光脉冲自由组合,根据所需的微纳结构进行加工;加工完成后,将工件取下,经清洗、干燥后即得到成品。本发明提供了材料微纳加工中激光加工工艺新的组合方式,可根据加工需求选择飞秒激光或皮秒激光,并通过光路切换的方式对超快激光脉冲序列进行灵活组合,有效提高微纳结构的加工效率与质量。

Description

一种超快激光组合脉冲序列的阵列微纳结构加工方法 技术领域
本发明属于激光加工技术领域,具体涉及一种超快激光组合脉冲序列的阵列微纳结构加工方法。
背景技术
材料表面的微纳结构可使材料在发挥固有性能的同时,具有常规表面不具备的特性,如疏水性、减摩性、抗菌性等,已广泛应用于功能零部件的制造。微纳结构对材料表面性能的影响很大,可通过化学刻蚀、气相沉积、激光加工等方法制备。陶瓷因其良好的力学及物化性能,是微纳结构加工的重要研究领域。作为典型的硬脆材料,具有非接触、无工具磨损、高效率且易在线控制工艺参数的激光加工方法优势明显,对于具有高重复性的阵列微纳结构加工,更是其它方法难以比拟的。专利 CN201310141035.2 公开了一种基于飞秒激光处理和湿法刻蚀的硅微结构加工方法,通过飞秒激光在含氧气体中加工单晶硅诱导材料发生折射率变化,再用氢氟酸湿法刻蚀去除折射率变化区域以形成微结构。该方法虽然比采用掩模的方式简单,但需要经过激光加工及湿法刻蚀两个步骤,降低了加工效率,且材料折射率变化的区域较难控制,由此湿法刻蚀形成的微结构精确度较差。专利 CN201210491845.6 公开了一种基于激光加热的塑料件微结构成形方法和装置,通过激光的热效应作用精确控制工艺参数以使材料基体表面快速熔化,再经挤压成型装置获得微结构的成型加工。该方法涉及的材料十分有限,无法应用于工业领域中广泛使用的硬脆材料微结构加工。专利 CN201710470109.5 公开了铝合金表面超疏水微结构的纳秒激光二次扫描制备方法,通过改变纳秒激光的工艺参数进行多次扫描以制备超疏水微结构,但纳秒激光的热效应极易引起材料烧蚀,进而严重影响微结构的制备效果。超快激光因具有极高的峰值功率及极短的脉宽,其“冷加工”特性具有更好的加工效果。因此,十分有必要将超快激光的加工优势应用于硬脆材料领域,并提出表面阵列微纳结构加工的新方法。
技术问题
目前现有技术中主要存在的技术问题为: 1 、微纳结构加工时工序多,每项工艺之间无法连续,影响加工效率。 2 、现有的加工方法在硬脆材料微纳结构加工领域应用受限。
技术解决方案
一种超快激光组合脉冲序列的阵列微纳结构加工方法,其特征在于,包括以下步骤:
将所需加工的工件表面进行研磨抛光处理,经有机溶剂超声清洗并干燥后,固定于超精密平台上;
由工业控制计算机通过激光控制器启动激光发生器发射激光束至工件表面完成激光对焦后,关闭激光发生器,并调整超精密平台确定工件的加工区域;
工件加工时,由工业控制计算机开启激光控制器,激光控制器可选择激光发生器中的飞秒激光器或皮秒激光器发射激光束,经光路切换模块在加工过程反复切换以实现超快激光脉冲的自由组合,再经聚焦模块入射至工件表面,根据所需求的微纳结构进行加工,同时喷射辅助气体;其中,激光加工工艺参数可通过工业控制计算机在线调整;
加工完成后,将工件取下,经有机溶剂超声清洗并干燥后即得到成品。
进一步的,所述激光加工系统包括激光控制器、激光发生器、光路切换模块、聚焦模块及超精密平台。
进一步的,所述激光发生器包括飞秒激光器、皮秒激光器,所述光路切换模块及聚焦模块可确保飞秒激光器与皮秒激光器的聚焦平面相同,所述超精密平台可以实现工件的三维运动。
特别的,所述工业控制计算机与激光加工系统连接,所述激光控制器分别与激光发生器中的飞秒激光器、皮秒激光器连接,所述激光发生器与光路切换模块连接,所述光路切换模块与聚焦模块连接,所述聚焦模块设于固定于超精密平台上工件的上方。
特别的,所述激光控制器、激光发生器、光路切换模块、聚焦模块、超精密平台、飞秒激光器、皮秒激光器均可通过本领域任一现有技术实现。
进一步的,所述超快激光脉冲的自由组合包括不同能量的飞秒脉冲或皮秒脉冲组合、不同脉冲间隔的飞秒脉冲或皮秒脉冲组合、不同脉冲数目的飞秒脉冲或皮秒脉冲组合中的任一种。
进一步的,所述激光加工工艺参数为脉冲能量 50~300 μ J 、脉冲间隔 10ps~200ns 、脉冲数目 10~1000 、扫描速度 100~2000mm/s 、聚焦位置 -2~2mm
进一步的,所述辅助气体包括空气、氩气、氧气、氮气中的任一种。
进一步的,所述有机溶剂为酒精、丙酮中的任一种。
本发明的工作原理为:通过飞秒脉冲与皮秒脉冲序列的自由组合,以及激光加工工艺参数的在线控制,可调整不同能量的激光作用在材料加工区域的时间,进而形成微纳结构。通过激光控制器灵活选择飞秒激光器或皮秒激光器,并经光路切换模块快速调整不同脉宽的脉冲组合,充分提高了加工效率。本发明集成超快激光的脉宽、能量、扫描速度、聚焦位置等多个工艺参数的自由组合,为材料微纳加工提供了新思路。
本申请发明人通过大量的创造性劳动,获得本发明的技术方案,使其能够达到以下技术效果:1、激光控制器及光路切换模块可对超快激光脉冲序列进行灵活组合,并在线调整激光加工工艺参数;2、光路切换模块及聚焦模块可确保飞秒激光器与皮秒激光器的聚焦平面相同,可省去选择不同激光器重复对焦的操作,提高了加工效率。
有益效果
提供了材料微纳加工中激光加工工艺新的组合方式,可根据加工需求选择飞秒激光或皮秒激光,并通过光路切换的方式对超快激光脉冲序列进行灵活组合,有效提高微纳结构的加工效率与质量。
附图说明
1 为本发明涉及的加工装置结构示意图;
2 为本发明的超快激光脉冲组合方式示意图;
3 为本发明的超快激光组合脉冲序列加工线阵列示意图;
4 为本发明的超快激光组合脉冲序列加工点阵列示意图;
其中, 1- 工业控制计算机; 2- 激光控制器; 3- 激光发生器; 31- 飞秒激光器; 32- 皮秒激光器; 4- 光路切换模块; 5- 聚焦模块; 6- 工件; 7- 超精密平台。
本发明的最佳实施方式
一种超快激光组合脉冲序列的阵列微纳结构加工方法,包括以下步骤:将所需加工的氮化硅工件 6 表面进行研磨抛光处理,经酒精超声清洗并干燥后,固定于超精密平台 7 上。由工业控制计算机 1 通过激光控制器 2 启动飞秒激光器 31 发射激光束至氮化硅工件 6 表面完成激光对焦,关闭飞秒激光器 31 ,并调整超精密平台 7 确定氮化硅工件 6 的加工区域。氮化硅工件 6 加工时,由工业控制计算机 1 开启激光控制器 2 选择激光发生器 3 中的飞秒激光器 31 发射飞秒脉冲序列,依次经光路切换模块 4 、聚焦模块 5 入射至氮化硅工件 6 表面,并在线设定飞秒脉冲序列的脉冲间隔 T f1 50ps 、脉冲能量 E f1 100 μ J 、激光扫描速度 V 1 200mm/s 、聚焦位置为 0mm 。飞秒脉冲序列按氮化硅工件 6 表面的预定线阵列轨迹加工完后,经工业控制计算机 1 通过激光控制器 2 选择激光发生器 3 中的皮秒激光器 32 发射皮秒脉冲序列,依次经光路切换模块 4 、聚焦模块 5 入射至氮化硅工件表面 6 ,并在线设定皮秒脉冲序列与飞秒脉冲序列的脉冲间隔 T 1 100ns 、皮秒脉冲序列的脉冲间隔 T p1 100ps 、脉冲能量 E p1 200 μ J 、激光扫描速度 V 2 500mm/s 、聚焦位置为 1mm 。皮秒脉冲序列按氮化硅工件表面的预定线阵列轨迹加工完后,可再次切换至飞秒激光器 31 使用飞秒脉冲序列加工,依次循环,以在氮化硅工件 6 表面加工线阵列微纳结构。整个加工过程中在氮化硅工件 6 加工区域喷射的辅助气体为氮气。所述飞秒脉冲序列的脉冲间隔 T f1 、脉冲能量 E f1 及激光扫描速度 V 1 ,皮秒脉冲序列的脉冲间隔 T p1 、脉冲能量 E p1 及激光扫描速度 V 2 ,以及皮秒脉冲序列与飞秒脉冲序列的脉冲间隔 T 1 ,均可在激光加工系统各模块的范围内在线调整。加工完成后,将具有线阵列微纳结构的氮化硅工件 6 取下,经酒精超声清洗并干燥后即得到成品。
本发明的实施方式
实施例 1
一种超快激光组合脉冲序列的阵列微纳结构加工方法,包括以下步骤:将所需加工的氮化硅工件 6 表面进行研磨抛光处理,经酒精超声清洗并干燥后,固定于超精密平台 7 上。由工业控制计算机 1 通过激光控制器 2 启动飞秒激光器 31 发射激光束至氮化硅工件 6 表面完成激光对焦,关闭飞秒激光器 31 ,并调整超精密平台 7 确定氮化硅工件 6 的加工区域。氮化硅工件 6 加工时,由工业控制计算机 1 开启激光控制器 2 选择激光发生器 3 中的飞秒激光器 31 发射飞秒脉冲序列,依次经光路切换模块 4 、聚焦模块 5 入射至氮化硅工件 6 表面,并在线设定飞秒脉冲序列的脉冲间隔 T f1 50ps 、脉冲能量 E f1 100 μ J 、激光扫描速度 V 1 200mm/s 、聚焦位置为 0mm 。飞秒脉冲序列按氮化硅工件 6 表面的预定线阵列轨迹加工完后,经工业控制计算机 1 通过激光控制器 2 选择激光发生器 3 中的皮秒激光器 32 发射皮秒脉冲序列,依次经光路切换模块 4 、聚焦模块 5 入射至氮化硅工件表面 6 ,并在线设定皮秒脉冲序列与飞秒脉冲序列的脉冲间隔 T 1 100ns 、皮秒脉冲序列的脉冲间隔 T p1 100ps 、脉冲能量 E p1 200 μ J 、激光扫描速度 V 2 500mm/s 、聚焦位置为 1mm 。皮秒脉冲序列按氮化硅工件表面的预定线阵列轨迹加工完后,可再次切换至飞秒激光器 31 使用飞秒脉冲序列加工,依次循环,以在氮化硅工件 6 表面加工线阵列微纳结构。整个加工过程中在氮化硅工件 6 加工区域喷射的辅助气体为氮气。所述飞秒脉冲序列的脉冲间隔 T f1 、脉冲能量 E f1 及激光扫描速度 V 1 ,皮秒脉冲序列的脉冲间隔 T p1 、脉冲能量 E p1 及激光扫描速度 V 2 ,以及皮秒脉冲序列与飞秒脉冲序列的脉冲间隔 T 1 ,均可在激光加工系统各模块的范围内在线调整。加工完成后,将具有线阵列微纳结构的氮化硅工件 6 取下,经酒精超声清洗并干燥后即得到成品。
实施例 2
一种超快激光组合脉冲序列的阵列微纳结构加工方法,包括以下步骤:将所需加工的氧化铝工件 6 表面进行研磨抛光处理,经丙酮超声清洗并干燥后,固定于超精密平台 7 上。由工业控制计算机 1 通过激光控制器 2 启动皮秒激光器 32 发射激光束至氧化铝工件 6 表面完成激光对焦,关闭皮秒激光器 32 ,并调整超精密平台 7 确定氧化铝工件 6 的加工区域。氧化铝工件 6 加工时,由工业控制计算机 1 开启激光控制器 2 选择激光发生器 3 中的皮秒激光器 32 发射皮秒脉冲序列,依次经光路切换模块 4 、聚焦模块 5 入射至氧化铝工件 6 表面,并在线设定皮秒脉冲序列的脉冲间隔 T p1 100ns 、脉冲能量 E p1 250 μ J 、脉冲数目 N p1 500 、聚焦位置为 -1mm 。皮秒脉冲序列在氧化铝工件 6 表面根据预定的点阵列加工完设定的脉冲数目 N p1 后,经工业控制计算机 1 通过激光控制器 2 选择激光发生器 3 中的飞秒激光器 31 发射飞秒脉冲序列,依次经光路切换模块 4 、聚焦模块 5 入射至氧化铝工件 6 表面,并在线设定飞秒脉冲序列与皮秒脉冲序列的间隔时间 T 1 200ps 、飞秒脉冲序列的脉冲时间间隔 T f1 150ns 、脉冲能量 E f1 300 μ J 、脉冲数目 N f1 1000 、聚焦位置为 1mm 。飞秒脉冲序列在氧化铝工件 6 表面根据预定的点阵列加工完设定的脉冲数目 N f1 后,可再次切换至皮秒激光器 32 使用皮秒脉冲序列加工,依次循环,以在氧化铝工件 6 表面加工点阵列微纳结构。整个加工过程中在氧化铝工件 6 加工区域喷射的辅助气体为氧气。所述皮秒脉冲序列的脉冲间隔 T p1 、脉冲能量 E p1 及脉冲数目 N p1 ,飞秒脉冲序列的脉冲间隔 T f1 、脉冲能量 E f1 及脉冲数目 N f1 ,以及皮秒脉冲序列与飞秒脉冲序列的脉冲间隔 T 1 ,均可在激光加工系统各模块的范围内在线调整。加工完成后,将具有点阵列微纳结构的氧化铝工件 6 取下,经丙酮超声清洗并干燥后即得到成品。
实施例 3
本实施例提供一种与实施例 1 相同的超快激光组合脉冲序列的阵列微纳结构加工方法,所不同的是,所述飞秒脉冲序列的脉冲间隔 T f1 40ns 、脉冲能量 E f1 150 μ J 、激光扫描速度 V 1 400mm/s 、聚焦位置为 1mm ,所述皮秒脉冲序列与飞秒脉冲序列的脉冲间隔 T 1 150ns 、皮秒脉冲序列的脉冲间隔 T p1 10ns 、脉冲能量 E p1 100 μ J 、激光扫描速度 V 2 1000mm/s 、聚焦位置为 0mm
实施例 4
本实施例提供一种与实施例 2 相同的超快激光组合脉冲序列的阵列微纳结构加工方法,所述皮秒脉冲序列的脉冲间隔 T p1 700ps 、脉冲能量 E p1 70 μ J 、脉冲数目 N p1 300 、聚焦位置为 -1mm ,所述飞秒脉冲序列与皮秒脉冲序列的间隔时间 T 1 500ps 、飞秒脉冲序列的脉冲时间间隔 T f1 500ns 、脉冲能量 E f1 280 μ J 、脉冲数目 N f1 1000 、聚焦位置为 1mm
实施例 5
本实施例提供一种与实施例 2 相同的超快激光组合脉冲序列的阵列微纳结构加工方法,所述皮秒脉冲序列的脉冲间隔 T p1 150ns 、脉冲能量 E p1 120 μ J 、脉冲数目 N p1 700 、聚焦位置为 2mm ,所述飞秒脉冲序列与皮秒脉冲序列的间隔时间 T 1 100ns 、飞秒脉冲序列的脉冲时间间隔 T f1 500ns 、脉冲能量 E f1 300 μ J 、脉冲数目 N f1 600 、聚焦位置为 1mm
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。对于本发明中所有未详尽描述的技术细节,均可通过本领域任一现有技术实现。
工业实用性
提供了材料微纳加工中激光加工工艺新的组合方式,可根据加工需求选择飞秒激光或皮秒激光,并通过光路切换的方式对超快激光脉冲序列进行灵活组合,有效提高微纳结构的加工效率与质量 , 适合推广产业化加工。

Claims (7)

  1. 一种超快激光组合脉冲序列的阵列微纳结构加工方法,其特征在于,包括以下步骤:S1.将所需加工的工件表面进行研磨抛光处理,经有机溶剂超声清洗并干燥后,固定于超精密平台上;S2.由工业控制计算机通过激光控制器启动激光发生器发射激光束至工件表面完成激光对焦后,关闭激光发生器,并调整超精密平台确定工件的加工区域;S3.工件加工时,由工业控制计算机开启激光控制器,激光控制器可选择激光发生器中的飞秒激光器或皮秒激光器发射激光束,经光路切换模块在加工过程反复切换以实现超快激光脉冲的自由组合,再经聚焦模块入射至工件表面,根据所需求的微纳结构进行加工,同时喷射辅助气体;其中,激光加工工艺参数可通过工业控制计算机在线调整;S4.加工完成后,将工件取下,经有机溶剂超声清洗并干燥后即得到成品。
  2. 根据权利要求1所述的一种超快激光组合脉冲序列的阵列微纳结构加工方法,其特征在于,所述激光加工系统包括激光控制器、激光发生器、光路切换模块、聚焦模块及超精密平台。
  3. 根据权利要求1所述的一种超快激光组合脉冲序列的阵列微纳结构加工方法,其特征在于,所述激光发生器包括飞秒激光器、皮秒激光器,所述光路切换模块及聚焦模块可确保飞秒激光器与皮秒激光器的聚焦平面相同,所述超精密平台可以实现工件的三维运动。
  4. 根据权利要求1所述的一种超快激光组合脉冲序列的阵列微纳结构加工方法,其特征在于,所述超快激光脉冲的自由组合包括不同能量的飞秒脉冲或皮秒脉冲组合、不同脉冲间隔的飞秒脉冲或皮秒脉冲组合、不同脉冲数目的飞秒脉冲或皮秒脉冲组合中的任一种
  5. 根据权利要求1所述的一种超快激光组合脉冲序列的阵列微纳结构加工方法,其特征在于,所述激光加工工艺参数为脉冲能量50~300μJ、脉冲间隔10ps~200ns、脉冲数目10~1000、扫描速度100~2000mm/s、聚焦位置-2~2mm。
  6. 根据权利要求1所述的一种超快激光组合脉冲序列的阵列微纳结构加工方法,其特征在于,所述辅助气体包括空气、氩气、氧气、氮气中的任一种。
  7. 根据权利要求1所述的一种超快激光组合脉冲序列的阵列微纳结构加工方法,其特征在于,所述有机溶剂为酒精、丙酮中的任一种。
PCT/CN2018/106255 2018-09-18 2018-09-18 一种超快激光组合脉冲序列的阵列微纳结构加工方法 WO2020056590A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/106255 WO2020056590A1 (zh) 2018-09-18 2018-09-18 一种超快激光组合脉冲序列的阵列微纳结构加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/106255 WO2020056590A1 (zh) 2018-09-18 2018-09-18 一种超快激光组合脉冲序列的阵列微纳结构加工方法

Publications (1)

Publication Number Publication Date
WO2020056590A1 true WO2020056590A1 (zh) 2020-03-26

Family

ID=69888069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106255 WO2020056590A1 (zh) 2018-09-18 2018-09-18 一种超快激光组合脉冲序列的阵列微纳结构加工方法

Country Status (1)

Country Link
WO (1) WO2020056590A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113020820A (zh) * 2021-03-24 2021-06-25 中南大学 一种分段式回转扫描微孔阵列加工装置及其加工方法
CN115070200A (zh) * 2022-04-26 2022-09-20 中国科学院西安光学精密机械研究所 一种用于异质材料的激光打孔光路系统及打孔方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106300000A (zh) * 2016-10-28 2017-01-04 中国科学院长春光学精密机械与物理研究所 一种快速调谐脉冲co2激光器
CN106964903A (zh) * 2017-03-31 2017-07-21 苏州川普光电有限公司 一种高精度导光板的加工设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106300000A (zh) * 2016-10-28 2017-01-04 中国科学院长春光学精密机械与物理研究所 一种快速调谐脉冲co2激光器
CN106964903A (zh) * 2017-03-31 2017-07-21 苏州川普光电有限公司 一种高精度导光板的加工设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113020820A (zh) * 2021-03-24 2021-06-25 中南大学 一种分段式回转扫描微孔阵列加工装置及其加工方法
CN115070200A (zh) * 2022-04-26 2022-09-20 中国科学院西安光学精密机械研究所 一种用于异质材料的激光打孔光路系统及打孔方法

Similar Documents

Publication Publication Date Title
KR101998761B1 (ko) 투명 재료 내에 레이저 필라멘테이션을 형성하기 위한 방법 및 장치
CN109079314A (zh) 一种超快激光组合脉冲序列的阵列微纳结构加工方法
JP6231469B2 (ja) バースト超高速レーザーパルスのフィラメンテーションによりシリコンをレーザー加工する方法および装置
JP2015533654A (ja) ワークピースを加工するための方法及び装置
CN109551123B (zh) 皮秒激光诱导石英玻璃内部裂纹实现微流控器件制备的方法
CN108890138B (zh) 一种用于陶瓷基复合材料的超快激光抛光加工方法
CN111822886B (zh) 一种微流控芯片微通道的多焦点超快激光制备装置及方法
JP6309341B2 (ja) 半導体基板に照射により溝付け加工を行う方法
CN109821823B (zh) 一种co2激光/纳秒脉冲激光复合清洗方法
JP2016525018A (ja) 平坦なワークピースを複数の部分に分割する方法及び装置
Liao et al. High quality full ablation cutting and stealth dicing of silica glass using picosecond laser Bessel beam with burst mode
KR20080003900A (ko) 레이저 빔에 의하여 감열성 유전 물체를 미세하게연마/구성하는 방법
KR20140129055A (ko) 강화 유리를 분리하는 방법과 장치 및 이에 의해 제조된 물품
EP2974822B1 (en) Method of dicing thin semiconductor substrates
WO2020056590A1 (zh) 一种超快激光组合脉冲序列的阵列微纳结构加工方法
JP2015076115A (ja) 磁気記録媒体用円盤状ガラス基板、及び磁気記録媒体用円盤状ガラス基板の製造方法
CN107437532A (zh) 一种led晶圆的紫外激光表面切割方法
Liu et al. Modulation of crack formation inside single-crystal sapphire using ultrafast laser Bessel beams
CN107338449A (zh) 一种钛合金表面氧化皮激光清洗方法
Chen et al. Fabrication of microstructures on glass by imprinting in conventional furnace for lab-on-chip application
CN113510393B (zh) 陶瓷工件激光钻孔的方法
RU2661165C1 (ru) Способ и устройство формирования микроканалов на подложках из оптического стекла, оптических кристаллов и полупроводниковых материалов фемтосекундными импульсами лазерного излучения
KR101621936B1 (ko) 기판 절단 장치 및 방법
CN118455713A (zh) 一种基于红外飞秒和紫外飞秒的双脉冲激光加工方法
CN115338542B (zh) 一种具有疏水性功能表面的单晶硅及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933818

Country of ref document: EP

Kind code of ref document: A1