WO2020056214A1 - Dispositif de stimulation à champ de pression - Google Patents

Dispositif de stimulation à champ de pression Download PDF

Info

Publication number
WO2020056214A1
WO2020056214A1 PCT/US2019/050930 US2019050930W WO2020056214A1 WO 2020056214 A1 WO2020056214 A1 WO 2020056214A1 US 2019050930 W US2019050930 W US 2019050930W WO 2020056214 A1 WO2020056214 A1 WO 2020056214A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
cup
stimulation device
cavity
cam
Prior art date
Application number
PCT/US2019/050930
Other languages
English (en)
Inventor
Lora Leeanne HADDOCK
Douglas S. LAYMAN
Mark Hazelton
Ada-Rhodes SHORT
Mazie HOUCHENS
Kim Porter Henneman
Blake Michael LARKIN
Avery SMITH
Lola VARS
Original Assignee
Uccellini LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US29/675,567 external-priority patent/USD884206S1/en
Priority claimed from US29/695,752 external-priority patent/USD898937S1/en
Application filed by Uccellini LLC filed Critical Uccellini LLC
Publication of WO2020056214A1 publication Critical patent/WO2020056214A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/41Devices for promoting penis erection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H15/00Massage by means of rollers, balls, e.g. inflatable, chains, or roller chains
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H15/00Massage by means of rollers, balls, e.g. inflatable, chains, or roller chains
    • A61H15/0078Massage by means of rollers, balls, e.g. inflatable, chains, or roller chains power-driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H19/00Massage for the genitals; Devices for improving sexual intercourse
    • A61H19/30Devices for external stimulation of the genitals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H19/00Massage for the genitals; Devices for improving sexual intercourse
    • A61H19/30Devices for external stimulation of the genitals
    • A61H19/34For clitoral stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H19/00Massage for the genitals; Devices for improving sexual intercourse
    • A61H19/40Devices insertable in the genitals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H19/00Massage for the genitals; Devices for improving sexual intercourse
    • A61H19/40Devices insertable in the genitals
    • A61H19/44Having substantially cylindrical shape, e.g. dildos
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H21/00Massage devices for cavities of the body, e.g. nose, ears and anus ; Vibration or percussion related aspects A61H23/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H23/00Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
    • A61H23/02Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H23/00Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
    • A61H23/02Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive
    • A61H23/0254Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive with rotary motor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H9/00Pneumatic or hydraulic massage
    • A61H9/005Pneumatic massage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H9/00Pneumatic or hydraulic massage
    • A61H9/005Pneumatic massage
    • A61H9/0057Suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H9/00Pneumatic or hydraulic massage
    • A61H9/005Pneumatic massage
    • A61H2009/0064Pneumatic massage suction by releasing a flexible cup after deformation, i.e. without further vacuum source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H15/00Massage by means of rollers, balls, e.g. inflatable, chains, or roller chains
    • A61H2015/0007Massage by means of rollers, balls, e.g. inflatable, chains, or roller chains with balls or rollers rotating about their own axis
    • A61H2015/0042Balls or spheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0111Constructive details watertight
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0119Support for the device
    • A61H2201/0153Support for the device hand-held
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • A61H2201/1215Rotary drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/14Special force transmission means, i.e. between the driving means and the interface with the user
    • A61H2201/1418Cam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/1635Hand or arm, e.g. handle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1657Movement of interface, i.e. force application means
    • A61H2201/1664Movement of interface, i.e. force application means linear
    • A61H2201/1669Movement of interface, i.e. force application means linear moving along the body in a reciprocating manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1683Surface of interface
    • A61H2201/169Physical characteristics of the surface, e.g. material, relief, texture or indicia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5023Interfaces to the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5023Interfaces to the user
    • A61H2201/5038Interfaces to the user freely programmable by the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5064Position sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5097Control means thereof wireless
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/08Trunk
    • A61H2205/087Genitals

Definitions

  • Embodiments of the invention relate to a stimulation device, and more particularly, to an air pressure field stimulation device.
  • Stimulation of skin has many beneficial effects, including raising blood flow in the area, and stimulating nerve endings.
  • a vulva includes organs including a clitoris, mons pubis, labia majora, and labia minora surrounding the vagina.
  • the g!ans clitoris is a portion of the clitoris that is on the vulva, external to the vagina.
  • the gians clitoris has thousands of nerve endings, and the vulva is sexually responsive. Stimulation of a person’s gians clitoris increases blood flow to the area and provides sexual pleasure. There exists a need for improvements in personal massagers that can provide increased stimulation.
  • Embodiments of the improved stimulation device include a cup and a driver.
  • the cup has a cavity surrounded by a rim.
  • a user positions the rim such that an opening to the cavity is over an area of a user’s body to be stimulated (for example, the clitoris).
  • a sealed, or substantially-sealed, chamber is formed by the cavity walls and the users body (for example, skin surrounding the clitoris).
  • a driver is configured to vary a volume of a cavity of a cup from a first volume to a second volume.
  • the cup returns from the second volume to the first volume, in between intermittent varying from the first volume to the second volume, due to a buckle region wall of the cup springing out.
  • the cup returning from the second volume to the first volume is achieved without a force external to the cup structure, such as electrical assistance or
  • the stimulation device is a sex toy.
  • the stimulation device is a medical device.
  • a stimulation device comprising: a cup formed of a flexible resilient material comprising a cavity; and a driver, the driver comprising: a plate disposed on an underside of the cup; a cam disposed adjacent to the plate; a motor mechanically coupled to the cam; wherein the cam is not
  • a stimulation device comprising: a cup formed of a flexible resilient material comprising a cavity; a driver, the driver comprising: a plate disposed on an underside of the cup; a cam disposed adjacent to the plate; and a motor mechanically coupled to the cam; a processor; and a memory containing instructions that when executed by the processor cause the driver to intermittently vary a volume of the cavity of the cup from a first volume to a second volume
  • FIG. 1A is a perspective view of an example cup in accordance with some embodiments of the present invention.
  • FIG. 1 B shows a front view of the cup of FIG. 1 A
  • FIG. 1 C is a side view of the cup of FIG. 1A.
  • FIG. 1 D shows a rear view of the cup of FIG. 1A.
  • FIG. 1 E is a bottom-up view of the cup of FIG. 1A.
  • FIG. 1 F shows an example cup and driver assembly.
  • FIG. 2A is a side view of an embodiment 200 of example cup and example driver assembly in accordance with some embodiments of the present invention where the buckle region wall 130 is in default position.
  • FIG. 2B is a front view of the cup and driver assembly in accordance with some embodiments of the present invention where the buckle region wall 130 is in default position
  • FIG. 2C is a bottom view of the cup and driver assembly in accordance with some embodiments of the present invention.
  • FIG. 2D is a perspective view of the cup and driver assembly in accordance with some embodiments of the present invention.
  • FIG. 3E is a top-down view of the cup as shown the uncompressed configuration of FIG. 3A.
  • FIG. 3F is a top-down view of the cup as shown the compressed configuration of FIG. 3B.
  • FIG. 4 shows a cross-section of an embodiment of the invention including a cup and a driver installed into a housing.
  • FIG. 5A shows a cross-section diagram of a cup and plate assembly in default position against skin of a user.
  • FIG. 5B shows a cross-section diagram of a cup and plate assembly of FIG. 5A in compressed position against skin of a user.
  • FIG. 6A shows a top-down view of an additional embodiment of cup and plate assembly.
  • FIG. 6B shows a side view of the additional embodiment of cup and plate assembly of FIG. 6A.
  • FIG. 6C shows a bottom-up view of the additional embodiment of cup and plate assembly of FIG. 6A.
  • FIG. 6D shows a cross-section view of the additional embodiment of cup and plate assembly of FIG. 6A.
  • FIG. 7 A shows a tipped side perspective view of a cup 702 in accordance with some embodiments of the invention.
  • FIG. 7B shows a top-down perspective view of the cup of FIG. 7 A.
  • FIG. 7C is a cross-section view of the cup of FIG. 7A.
  • FIG. 7D is a bottom-up view of the cup of FIG. 7 A.
  • FIG. 7E is a side view of the cup of FIG. 7 A.
  • FIG. 8A shows a top-down view of an additional embodiment of a cup.
  • FIG. 8B shows an example of a side cross-section view of a round cup.
  • FIG. 8C shows an example of a side cross-section view of a round cup.
  • FIG. 9A shows an example of a cam in accordance with some embodiments of the present invention.
  • F!G. 9B shows an example of another cam in accordance with some
  • FIG. 9C shows an example of yet another cam in accordance with some embodiments of the present invention.
  • FIG. 9D shows an example of another cam in accordance with some
  • FIG. 9E shows an example of another cam in accordance with some embodiments
  • FIG. 9F shows an example of another cam in accordance with some
  • FIG. 9G shows an example of a cam in accordance with some embodiments of the present invention.
  • FIG. 10A shows a time-pressure graph for an embodiment using a round or oval cam.
  • FIG. 10B shows a time pressure graph for an embodiment using a D-shaped cam.
  • FIG. 10C shows a time pressure graph for an embodiment using an oval-shaped cam.
  • FIG. 1 1A shows an embodiment of the present invention, in accordance with another cycle, where the volume of the cup is at V1.
  • FIG. 11 B shows the embodiment of FIG. 1 1A where the cam has rotated.
  • FIG. 1 1 C shows the embodiment of FIG. 11 B where the volume of the cup is V2.
  • FIG. 12 shows a pressure curve over time graph.
  • FIG. 13 is a block diagram of an embodiment of a stimulation device of the present invention.
  • FIG. 14A shows a front perspective view of a stimulation device in accordance with some embodiments of the present invention.
  • FIG. 14B shows a rear perspective view of the stimulation device of FIG. 14A.
  • FIG. 15 shows another embodiment of a pressure field stimulation device in accordance with some embodiments of the present invention.
  • FIG. 16A shows a top-down view of an example sheath.
  • FIG. 16B shows a bottom-up view of the sheath of FIG. 18A.
  • FIG. 17 shows a partial view of the internal components of a pressure field stimulator in accordance with embodiments of the invention.
  • Embodiments of the improved stimulation device include a cup and a driver.
  • the cup has a cavity surrounded by a rim.
  • a user positions the rim such that an opening to the cavity is over an area of a user’s body to be stimulated (for example, the clitoris).
  • a sealed, or substantially-sealed, chamber is formed by the cavity walls and the user’s body (skin surrounding the clitoris).
  • a driver is configured to vary a volume of a cavity of a cup from a first volume to a second volume. The cup returns from the second volume to the first volume, in between intermittent varying from the first volume to the second volume, due to a buckle region wall of the cup springing out.
  • the cup returning from the second volume to the first volume is achieved without a force external to the cup structure, such as electrical assistance or mechanical assistance from another article or device.
  • This cyclical varying of the volume between the first and second volumes creates a pressure field in the chamber.
  • the springing out of the buckle region also produces a“thud” or“thump” (used interchangeably herein) which is imparted to the user in some embodiments, the stimulation device is a sex toy. In some embodiments, the stimulation device is a medical device.
  • the word,“substantially” is defined as“for the most part” it means“to a great extent,” but having some room for some minor variation.
  • a legend“L” is used to indicate orientation of the various views of disclosed embodiments with respect to an X, Y, and Z axis.
  • FIG. 1A is a perspective view of an example cup 102 in accordance with some embodiments of the present invention.
  • Cup 102 includes a cavity 106.
  • cavity 106 is sized and configured to fit over a region of skin of a user’s body in some embodiments, the cavity is sized and configured to fit over the region of skin on a vulva surrounding a g!ans clitoris of a user (note that although described herein with respect to clitoral stimulation, it should be recognized that embodiments may be used for stimulation of any suitable body part).
  • Cavity 106 has a rim 108 defining an opening 1 10 of the cavity.
  • Cavity 106 is defined by an interior lateral wall 1 12 and a base 1 14 (bottom in the orientation shown).
  • the lateral wall 1 12 and base 1 14 may together be a single continuous substantially-rounded concave wall, or may include edges between flat surfaces.
  • the cavity 106 may be any suitable shape. In some embodiments, cavity 106 is oval in shape as shown here. In some embodiments, lateral wall 1 12 and base 1 14 are comprised of a single continuous material with the cup 102.
  • the cup ' s cavity 106 is adapted such that when rim 108 is placed on the skin of a user with the opening 1 10 over the area to be stimulated, a chamber filled with air is formed among the cavity walls 1 12, base 1 14, and the users skin.
  • the chamber is preferably substantially-sealed. Note that although herein, a“chamber” is referred to, in some embodiments, the chamber is comprised of several separate but connected compartments, such that air can flow between the compartments. Accordingly, the use of the word“chamber” in the singular is not meant to exclude split-chamber or multi- chamber configurations.
  • Pressure as used herein refers to air pressure.
  • the cup 102 additionally has a wing region formed thereon.
  • front wing 1 18c extends under the labia and under the mons pubis of a user to assist in holding the cup 102 to the skin of the user. This creates an improved seal of the chamber.
  • Side wings 1 18a and 1 18b make contact with the labia during use for an improved seal and stimulation of the labia.
  • Some embodiments may further include a basin 104 for improved seal.
  • FIG. 1 B shows a front view of the cup 102 of FIG. 1A. in this view, the wing regions 1 18a, 1 18b, and 1 18c are prominently shown.
  • a buckle region wall 130 and an anchor wall 171 of cup 102 are in view.
  • the buckle region wail 130 compresses and uncompresses (i.e. expands) during operation of the stimulation device, resulting in a variable volume of the cavity 106 (FIG. 1 ) of cup 102.
  • the anchor wail 171 serves as an anchor for the buckling of the buckle region wall 130.
  • the buckle region wall 130 forms a resilient protrusion 159 that extends from the underside (floor) 147 of the anchor wall 171 of the cup 102.
  • FIG. 1 C is a side view of the cup 102 of FIG. 1A.
  • the opposite side of the cup 102 looks symmetrical in embodiments.
  • the buckle region wall 130 forms a resilient protrusion 159, which is the buckle region, that extends from the underside 147 of the anchor wall 171 of cup 102.
  • FIG. 1 D shows a rear view of the cup 102 of FIG. 1A.
  • the buckle region wall 130 is in view with a first edge 139 and a second edge 137.
  • First edge 139 is an upper exterior edge and second edge is a lower exterior edge ("exterior” is only used to denote that these edges are on the exterior of the cup, rather than interiorly inside the cavity).
  • “Upper” and lower” are used in describing in the orientation shown, but not mean to be limiting.
  • Buckie region wall 130 protrudes from the underside surface 147 of the anchor wall 171 of cup 102, and forms the protrusion 159.
  • Anchor wall 171 has a wall thickness larger than the wall thickness of buckle region wall 130.
  • FIG. 1 E is a bottom-up view of the cup 102 of FIG. 1 A.
  • the buckle region is in view with the first edge 139 and the second edge 137 shown.
  • a reveal R between edges 137 and 139 is configured to assist the buckle wall region in buckling under a compression force (also referred to herein interchangeably with“push force”) from a driver.
  • the buckling of buckle region wall 130 typically occurs prior to any warping of anchor wall 171. In some embodiments, the anchor wall 171 does not buckle or warp.
  • the anchor wall 171 does not substantially buckle or warp.
  • the buckle wall region wail 130 is also configured such that it will spring back out to default (i.e. extended/relaxed) position when the compression force is removed.
  • the reveal is the difference in the X and Y dimensions, between the edge 137 and the edge 139, as indicated in FIG. 1 B, FIG. 1 C, and FIG. 1 E.
  • R is equal around the perimeters of edges 137 and 139. In other embodiments, R could have some irregularities.
  • the buckle region wall 130 is concave in shape on its exterior surface.
  • the buckle region wail 130 has a concave exterior surface.
  • the first edge 139 is of a larger perimeter than the second edge 137. This creates the reveal R.
  • the ovular shape outlined by the second edge 137 is oriented concentrically with respect to the ovular shape outlined by the first edge 139.
  • the buckle region 130 is formed with an ovular shape as shown in FIG. 1 E. in some embodiments, the buckle region is of a shape other than an oval. Any suitable shape is included within the scope of the invention.
  • the buckle wall region 130 is also configured such that it will spring back out to default (i.e. extended/reiaxed) position when the compression force is removed.
  • the buckle region wall 130 is made of a material that, when the second edge 137 is compressed towards the first edge 139 by a force of a mechanical member such as a cam of a driver, and then the force is subsequently removed from the second edge 137, the buckle region 137 quickly/abruptly returns to its default position
  • the buckle region behaves similar to a spring having a spring constant that causes the buckle region wall to abruptly return to its default position once the driver force is removed.
  • the cup 102 (and, therefore, cavity lateral wall 1 12 and base 1 14) is preferably comprised of a non-permeab!e flexible resilient material.
  • the flexible resilient material has a Shore durometer value ranging from A5 to D60.
  • the flexible resilient material has a Shore durometer value ranging from A10 to D40.
  • the cup is comprised of silicone in some embodiments, the cup is comprised of rubber, TPE, plastic, or other suitable material.
  • FIG. 1 F shows cup 102 with an example driver assembly.
  • the underside 157 is rigid enough to function as the plate of a driver. Additional driver components including a motor 144 and cam 150 are also shown. Accordingly, the components of the driver 173 are the same as 239 in FIGs. 2A-2D, except a plate can be integral (or monolithic) with the underside of the buckle region wall 130.
  • the underside 157 is rigid, and may be a silicone of a Shore durometer value ranging from A20 to D8Q, while the buckle region wall 130 of the cup is resilient, being of a Shore durometer value ranging from A5 to D30.
  • the underside 157 is moved by the driver in direction indicated by arrow A, and the underside 157 returns in direction B.
  • a separate plate such as 140 of FIGs. 2A-2D or 740 of FIG. 7A-7E, is connected to underside 157 on underside of buckle region wall 130, so the underside 157 does not have to be rigid.
  • FIG. 2A is a side view of an embodiment 200 of example cup and driver assembly in accordance with some embodiments of the present invention where the buckle region wall 130 is in default position.
  • FIG. 2B is a front view of the cup and driver assembly in accordance with some embodiments of the present invention where the buckle region wall 130 is in default position.
  • FIG. 2C is a bottom view of the cup and driver assembly in accordance with some embodiments of the present invention.
  • FIG. 2D is a perspective view of the cup and driver assembly in accordance with some embodiments of the present invention.
  • a driver assembly 239 comprising a plate 140, a cam 150, and a motor 144.
  • a cam 150 disposed adjacent to the plate 140.
  • the cam 150 and the plate 140 intermittently make contact with one another, they are not permanently connected to one another.
  • the plate 140 is disposed on an underside surface (157 of FIG. 1 E) of the buckle region wall 130 of the cup. Plate 140 may be adhered, welded, integral with, pinned, or otherwise connected with the underside of the cup.
  • the driver also includes any additional mechanical coupling such as gears, pullies, shafts, and/or other devices to impart motion to components of the pressure field stimulation device
  • the plate 140 is rigid, or substantiaily-rigid. It can have some flexibility, but must have a hardness such that the cam 150 can vary the position of the plate 140.
  • the hardness/flexibiiity of the cup as compared with that of the plate is such that when the cup puts a force on the plate, the plate does not flex in some embodiments, the plate 140 is comprised of plastic, metal, silicone, and/or other suitable material in embodiments, the cam 150 is rigid or substantially rigid such that it can apply a push force on the plate 140.
  • the push force is a force that can result in compression of a portion of the cup, such as the buckle region wall 130 of the cup 102.
  • the cam 150 is made of plastic, metal, or other suitable material.
  • motor 144 is configured such that a motor shaft 148 is disposed within a motor shaft guide (comprised of a flange on each side of the motor shaft 146) 148.
  • the shaft guide 148 keeps the alignment of the plate 140 above the cam 150, ensuring that the force of the cam 150 is toward the plate 140, minimizing force to the sides.
  • a cam 150 is mechanically coupled to the motor 144 via shaft 146.
  • the plate has a connected, integral, or monolithic cam strike 142.
  • the cam strike may be a protrusion from the plate, to which contact is made by the cam 150.
  • a cam strike portion is not present, and the cam 150 contacts a substantiaily-flat portion of the underside of the plate 140.
  • cam 150 makes intermittent contact with the cam strike 142 (or plate 140), which pushes plate 140 in direction C (on FIG. 2A) to cause compression of the buckle region wail 130 of cup 102, bringing cavity 106 from a first volume (V1 ) to a second volume (V2).
  • V1 first volume
  • V2 second volume
  • the cam 150 rotates at a speed such that the contact edge of the cam 150 is moved away from the plate 140faster than the buckle region wall 130 can spring back to its default position.
  • the buckle region 130 of cup 102 expands in direction D, or“springs” out, to the first volume (V1 ).
  • the expansion is due to the configuration of the buckle region wall 130 (without electrically-assisted pull or push).
  • the driver does not puli or push if to spring back.
  • the volume of the cavity is varied as the buckle region wall 130 changes positions cyclically (i.e. repeatedly), creating a pressure field in the chamber.
  • Various settings are associated with corresponding speeds of the driver (e.g. , rotations per minute of the cam). Accordingly, a user may choose that the pressure field stimulation device generate greater or lower pressure for their comfort level. The higher the speed, generally, the more intense the stimulation, and vis versa.
  • the general amount of pressure generated by the pressure field stimulation device is calibrated (factory-settings). Preferably, at its lowest setting, the pressure generated is of an amount great enough that most people would be able to feel on their body when the cup is applied, and at its highest setting, low enough such that it would not usually hurt a body part when applied.
  • a user may modify the strength of the pressure field via user input to a user interface.
  • FIGs. 3A - 3D show an example motion sequence cycle for some embodiments of the present invention similar to the embodiment of FIGs. 2A-2D.
  • the high point 152 of cam 150 is oriented away from the plate 140.
  • The“high point” is the location of the cam farthest away from the point at which the cam is rotated by the motor shaft Buckie region wall 130 is shown in a default position.
  • the cavity of the cup 102 has a first volume (V1 ).
  • the cam 150 may instead rotate in the opposite direction, the theory of operation is similar.
  • the cam 150 is rotated 180 degrees such that the high point 152 of cam 150 has pushed the rigid plate 140 such that it has caused the buckle region wall 130 of the cup 102 to buckle, or compress in the cavity (e.g., 106 of FIG. 1A), to a second volume (V2), which is a minimum volume Vmin.
  • the high point 152 has returned to the same position as it was in FIG. 3A.
  • the cavity 106 of the cup 102 returns from the second volume (V2) to the first volume (V1 ), in between intermittent repetitions of the varying, as a result of the configuration of the cup 102 including buckle region wall 130.
  • the buckle region wall 130 springs out from a compressed position to a default (expanded) position when force is removed therefrom in some embodiments, returning of the cavity from the second volume to the first volume is achieved without a force external to the cup structure, such as electrical assistance or mechanical assistance from another article or device (e.g., the driver).
  • the buckle region wall 130 of cup 102 expands or“springs out,” the buckle region wall 130 causes a thud force, or a“thumping effect” throughout the cup, including the anchor wails 171.
  • thud force is imparted to the labia of the user when the cup 102 is in contact with the labia, creating a pleasurable effect for the user.
  • thud force is imparted to the skin/labia of the user when the cup 102 is in contact with the skin/!abia, creating a pleasurable effect for the user.
  • the thud force is a transfer of mechanical energy from the springing out of the buckle, which is imparted to the user through the cup. If may feel like a jolt to a user during use.
  • Wings 1 18a -1 18c if present, may assist with imparting the force to the skin/labia.
  • the cam rotation is continuous in other embodiments, the cam may stop at the position indicated by FIG. 3D for a predetermined amount of time before starting another rotation cycle.
  • the cam 150 may remain in the position indicated at FIG. 3D for a duration ranging from 200 milliseconds to 800 milliseconds, before starting another rotation cycle as indicated at 168 of FIG. 3A.
  • a rim (e.g., 108 of FIG. 1 ) of the cavity is placed in contact with the skin surrounding the clitoral region (or other region of the body to be stimulated) to form a sealed, or substantially-sealed, chamber.
  • the opening of the cavity is disposed over the clitoral region (or other region of the body to be stimulated) in the example of FIG. 3A, the cam is initially at its lowest position (turned to a point where that it provides minimum actuation so as to provide minimal or no compression of the cup), such that the initial volume of the cavity, V1 , is V ax
  • the initial pressure in the chamber is P1 .
  • the cam When the stimulation device is powered on, the cam is rotated by the motor, causing the cam to make contact with the cam strike (or plate). This pushes the plate 140 to compress the cavity to a lower volume, indicated as V2, which in the example is V in. This increases the pressure inside the chamber to a maximum pressure indicated as P2. As the cam continues to rotate, and loses contact with the cam strike (or plate), the cavity returns to the non- compressed/maximum volume initial default position indicated as V1 , releasing pressure in the chamber back to the minimum pressure value of P1
  • the pressure starts at P1 (a reference pressure), which is a gauge pressure reading of zero, which is the difference between the absolute pressure and the atmospheric pressure. This is measured at the geographic location currently where the stimulation device is being used in other words, the gauge reading of zero is the ambient air pressure, at the geographic location that the user is using the stimulation device, that exists at the time the user uses the device.
  • P1 a reference pressure
  • the gauge reading of zero is the ambient air pressure, at the geographic location that the user is using the stimulation device, that exists at the time the user uses the device.
  • P2 the maximum pressure
  • the buckle region wail 130 expands the cavity from V2 to V1 , the pressure returns back to the starting pressure (P1 ). Since, in the example, the varied volume of the cavity is never greater than the initial volume (V1 ) at start time, no pressure below the reference pressure (start pressure) is generated in the chamber.
  • the start time is when both the cup is in place on the users body, forming a chamber, and the device is powered on. Accordingly, in this embodiment, only pressure at or above the reference pressure is generated. Such an embodiment is referred to as a“positive pressure” embodiment.
  • the pressure field consists of pressure at or above a reference pressure.
  • This varying pressure field stimulates a users skin and/or clitoris by simulating a light touch similar to the way a person would stimulate themselves or another person by lightly touching them.
  • FIGs. 3E - 3F are top-down views that illustrate lateral expansion and contraction during the operation cycle illustrated in FIGs 3A - 3D.
  • FIG. 3E corresponds to a top-down view of the cup 102 as shown the uncompressed configuration of FIG.
  • the cup 102 in the uncompressed configuration, has an outer width 271 , and a cavity width 273, corresponding to a width of cavity 106.
  • FIG. 3F corresponds to a top- down view of the cup 102 as shown the compressed configuration of FIG. 3B.
  • the cup 102 In the compressed configuration, the cup 102 has an outer width 275, and a cavity width 277, corresponding to a width of cavity 106.
  • the compressed configuration widths are greater than the corresponding uncompressed configuration widths.
  • width 275 is greater than width 271.
  • width 277 is greater than width 273.
  • width 271 is 42 millimeters and width 273 is 10 millimeters.
  • width 275 is 43 millimeters and width 277 is 1 1.5 millimeters.
  • the widths of the compressed configuration are between 3 to 15 percent greater than corresponding widths of the uncompressed configurations.
  • a width of the cavity of the cup increases from a first width to a second width, during a transition from the second volume back to the initial volume, as depicted in the cycle of FIGs. 3A - 3D. This expansion and contractions serves to mimic behavior of a human mouth engaged in ora! sex with a vagina, serving to enhance the pleasure of the user during use of the device.
  • FIG. 4 shows a cross-section of an embodiment 400 of the invention including a cup and a driver installed into a housing.
  • the cup 102 is, disposed on a housing 170.
  • housing 170 is made from plastic, metal, or other suitable (preferably non-porous) rigid material.
  • cup 102 is molded into a sheath including a layer of silicone, TPE, or other suitable material, disposed on the housing 170.
  • the cup is adhered to otherwise attached directly to the housing 170 without molding into a sheath.
  • the components of the driver are disposed within the housing 170.
  • the driver includes a motor 144, plate 140, and cam 150. During operation, the motor 144, mechanically coupled to cam 150, rotates the cam 150.
  • the cam 150 When the cam 150 is in contact with plate 140, the cam 150 pushes plate 140 to compress the buckle region wail 130 of cup 102 in the direction indicated by arrow E, reducing the volume of the cavity 106 from V1 to V2. This increases the pressure in a chamber formed by the cavity 106 and skin of a user when the device is in use.
  • the buckle region wail 130 of cup 102 expands back to V1 in the direction indicated by arrow F.
  • the cavity 106 comprises a first width W1 and a second width W2 where W1 is not equal to W2.
  • W1 closer to the opening 1 10
  • W2 closer to the base 1 14.
  • W2 may be smaller than W1.
  • the cross section of cavity 108 may be asymmetrical.
  • edge 188 of the lateral cavity wall has a dissimilar contour as compared to edge 188 of the lateral cavity wall.
  • the cavity 108 comprises an asymmetrical cross-section in operation, as the base 1 14 of the cavity 106 is pushed by the plate 140, air is compressed from the wider, lower portion 182 into the more narrow, upper portion 184, resulting in an increase in air compression/pressure in the chamber (formed by the cavity and user’s skin), providing a pleasurable sensation for the user.
  • FIG. 5A shows a cross-section diagram (cut along line H of FIG. 4 viewed from direction indicated by arrow H of FIG. 4) of a cup and plate assembly 500 in default position against skin of a user.
  • Buckie region wall 130 is shown in default position.
  • Anchor wail 171 is in view.
  • the material of the buckle region wail is“relaxed”.
  • the user places the opening 1 10 of the cup 102 onto their skin 199.
  • the skin 199 seals or substantially seals a cavity 106 to form a chamber 160.
  • FIG. 5B shows a cross-section diagram of a cup and plate assembly 500 of FIG. 5A in compressed position against skin 199 of a user.
  • buckle region wall 130 is compressed due to pushing force placed on it by the cam (e.g., FIGs. 3A-3D) through plate 140.
  • the volume of the cavity 106 in FIG. 5B is different from the volume of the cavity 106 in FIG. 5A.
  • anchor wail 171 may buckle, or bend, in addition to the buckle region wall 130, in some embodiments. In such though, the buckle region wall 130 will buckle first.
  • the buckle region 130 expands out to the default position (FIG. 5A) once the pushing force of the cam 150 is removed in some embodiments, this expansion occurs without electrical assistance or mechanical assistance from a device external to the cup structure (meaning the material and the configuration of the cup).
  • the cavity expands in volume during the time of non-contact of the cam 150 to the rigid plate 140. Accordingly, during the operational cycle, the volume of the cavity is cyclically varied to create a pressure field in the chamber during use.
  • dimension X1 (height of the cup) ranges from 16 millimeters to 20 millimeters.
  • dimension X2 anchor wall 171 ranges from 6 millimeters to 10 miliimeters.
  • the buckle depth X3 ranges from 4 miliimeters to 20 miliimeters.
  • the buckle width X4 ranges from 20 millimeters to 30 miliimeters.
  • the minimum thickness 530 of the buckle region wall 192 ranges from 1 millimeter to 4 millimeters in some embodiments the ratio of the buckle region minimum thickness 530 to the buckle depth ranges from 0.05 to 1.00.
  • the buckle region wail material has a Shore durometer value ranging from A5 to D30 in some embodiments, the Shore durometer is D30 Although these values are optimal, any suitable values for the variables described herein are included within the scope of the invention that can achieve the result described herein.
  • the speed of the rotation of the cam is 10 to 5000 rpm. In some embodiments, the speed ranges from 300 rpm to 600 rpm. in some
  • the speed of the cam rotation is a setting that is user-adjustable, allowing the user to customize the operation of the stimulation device for their preference.
  • the user can choose a higher speed for an increased frequency of pressure changes (and vis versa), and also control the frequency of the resulting cyclical thud forces.
  • the cup may be configured differently, and therefore, return to V1 only due to the resilient nature of the cup material in such cases, the return may be at a slower acceleration than when a cup with a configuration as shown herein is used.
  • the slower acceleration will result in loss of the thud effect, and instead be a more“smooth” return.
  • FIG. 6A shows a top-down view of cup 602.
  • Cup 602 is substantially similar to cup 102 except that it has a discontinuous base, i.e. an opening 605 in the base 614 of the material of the cup 602 (sealed via attached plate 140).
  • plate 140 can be seen through the opening 605.
  • cup 602 may also include basin 604, and the cavity is disposed within basin 604.
  • cup 602 may include wings portion denoted generally here as 618.
  • a rim 608 of the cavity 606 is a raised lip.
  • FIG. 6B shows a side view of cup 602 with plate 140 installed thereon.
  • Buckie region wall 630 is in view. The side opposite the side shown looks symmetrical.
  • FIG. 6C is a bottom-up view of cup 602 with plate 140 installed thereon.
  • FIG. 6D is a cross-section view (cut along line M shown in FIG. 6A viewed from direction denoted by arrow P) of cup 602 with plate 140 installed thereon.
  • Cavity 606 and base opening 605 are in view. Further driver components may be implemented as described herein.
  • Cup 602 has a buckle region wall 630, which compresses and uncompresses (i.e. expands) during usage resulting in a variable volume of the cavity 606 of cup 602 during operation of a stimulation device.
  • FIGs. 7A-7E show view of an additional embodiment of a cup in accordance with some embodiments of the invention
  • FIG. 7 A shows a tipped side perspective view of cup 702.
  • FIG. 7B shows a top-down perspective view of cup 702.
  • FIG. 7G is a cross-section view (cut along line N in FIG. 7B viewed from direction denoted by arrow K) of cup 702.
  • FIG. 7D is a bottom-up view of cup 702.
  • FIG. 7E is a side view of cup 702 (cup 702 from the opposite side is symmetrical).
  • Cup 702 is substantially similar to cup 602, except the cavity 706 has a flange 719 splitting the cavity into two
  • compartments i.e. sections
  • the two sections are separated by a flange 719
  • Flange 719 is a protrusion that extends around the circumference of the interior lateral wall 712 of the cavity 706.
  • it is integral with and formed of a continuous material with the lateral wall in some embodiments, the flange and the lateral wall consist of a single material.
  • Cavity 706 has a rim 708 defining an opening 710 of the cavity. Cavity 706 is defined by an interior lateral wall 712 and a base 714 (bottom in the orientation shown).
  • the cup 702 has a discontinuous base, i.e.
  • Cup 702 has a buckle region wall 730, which compresses and uncompresses (i.e. expands) during usage resulting in a variable volume of the cavity 706 of cup 702 during operation of a stimulation device.
  • FIG. 8A shows a top-down view of an additional embodiment of a round cup 802.
  • the cup is round in terms of outer perimeter 801 , and has an opening 810 to a cavity 806, as shown in FIG. 8A.
  • the opening 810 to a cavity 806, as shown in FIG. 8A As shown, in some
  • the cavity 806 is formed in the center of the cup 802. In some other embodiments, the cavity is disposed off-center. In some embodiments, there is also included basin 804.
  • FIG 8B shows an example of a side cross-section view of the round cup 802’, substantially similar to cup 802, where the cut is along line 850 of FIG. 8A. in this example, the lateral wall of cavity 806’ is round and cavity 806’ has an opening 610’.
  • the cavity is formed as a single section.
  • FIG. 8C shows an example of a side cross-section view of the round cup 800” substantially similar to cup 802, where the cut is along line 850 of FIG. 8A. in this example, the lateral wail of cavity 806”is an inverted funnel shape, creating two compartments, 823” and 825”. Cavity 806” has an opening 810”.
  • the cup may be any suitable shape.
  • FIGs. 9A ⁇ 9G show examples of cams for embodiments of the present invention.
  • the cam is substantially round or ovular.
  • the cam 410 is an eccentrically mounted round cam, similar to as shown in FIGs 3A - 3D.
  • the center of rotation for the cam 410 is indicated as 402.
  • the center of rotation is the location on the cam where the cam is mounted to the shaft of the motor.
  • the lateral wall 409 of the cam 410 is circular.
  • FIG 9B shows a cam 420 that is a !obed
  • FIG. 9C shows a cam 430 that is a lobed
  • Cam 430 has lobe 434 and center of rotation 432. Cam 430 also has an indentation 436. Accordingly, its lateral wall 429 is irregular in shape.
  • the cam is a polygon as shown in FIGs. 9D and 9E.
  • FIG. 9D shows a cam 440 that is a triangle cam.
  • Cam 440 has three straight lateral sides 449a, 449b, 449c that, in operation, intermittently contact the cam strike.
  • the center of rotation for the cam is indicated as 442.
  • FIG. 9E shows a cam 450 that is a square cam.
  • Cam 450 has four straight lateral sides 459a, 459b, 459c, and 459d that, in operation, intermittently contact the cam strike.
  • the center of rotation for the cam is indicated as 452.
  • FIGs. 9F - 9G show additional cams in accordance with embodiments of the present invention.
  • cam 460 is a“D-shaped” cam having fiat side lateral wall 469a, and rounded side 469b. The center of rotation for the cam is indicated as 462.
  • cam 470 is an oval-shaped cam, having an ovular lateral side 479. The center of rotation for the cam 470 is indicated as 472.
  • FIGs 9A - 9G are exemplary, and other suitable cam shapes are included within the scope of embodiments of the present invention.
  • a plate e.g., 140 of FIGs. 3A-3D
  • the cam strike e.g., 142 of FIGs. 3A-3D
  • the cam strike e.g., 142 of FIGs. 3A-3D
  • FIG. 10A - 10C show time-pressure graphs for various cams in example positive pressure embodiments of the present invention.
  • FIG. 10A is a time-pressure graph 1010 showing the time-pressure relationship of the cam 410 of FIG. 9A where buckle wall region 130 is in default position at time TO.
  • Graph 1010 comprises vertical axis 101 1 representing pressure, and horizontal axis 1012 representing time. Zero on the vertical axis indicates gauge pressure at atmosphere. Zero on the horizontal axis represents TO. This is the ambient air pressure, at the geographic location that the user is using the stimulation device, that exists at the time the user uses the device.
  • a time-pressure curve 1015 is generated, indicating varying amounts of pressure that occur within the chamber during operation.
  • FIG. 10B is a time-pressure graph 1020 showing the time-pressure relationship of the cam 460 of FIG. 9F where buckle wail region 130 is in default position at TO.
  • Graph 1010 comprises vertical axis 1021 representing pressure, and horizontal axis 1022 representing time. Zero on the vertical axis indicates gauge pressure at atmosphere. Zero on the horizontal axis represents time TO.
  • a first time-pressure curve 1025 is generated, indicating varying amounts of pressure that occur within the chamber during operation with counter-clockwise rotation of the cam 460.
  • a second time-pressure curve 1027 is instead generated, indicating varying amounts of pressure that occurs within the chamber during operation with clockwise rotation of the cam 460.
  • FIG. 10C is a time-pressure graph 1030 showing the time-pressure relationship of the cam 470 of FIG. 9G where buckle region 130 is in default position at time TO.
  • Graph 1030 comprises vertical axis 1031 representing pressure, and horizontal axis 1032 representing time. Zero on the vertical axis indicates gauge pressure at atmosphere. Zero on the horizontal axis represents TO.
  • a time-pressure curve 1035 is generated, indicating varying amounts of pressure that occur within the chamber during operation.
  • FIGs 1 1 A - 1 1 C show another cycle for embodiments of the present invention.
  • Cup 1 101 is substantially similar to cup 102 or cup 702, made of a resilient material and having a rim and a cavity.
  • Buckle region wall 1126 is substantially similar to buckle region wall 130.
  • the components of the driver are substantially similar to driver assembly 239.
  • the cam 1 104 and the plate 1 140 Intermittently make contact with one another, they are not permanently connected to one another in these embodiments, the starting position at time to of the cup 1 101 is as shown in FIG. 1 1A, where cam 1 104 is in its highest position with buckle region wail 1 126 in compressed position.
  • V1 of the cavity of the cup 1 101 is Vmin (or minimum volume) having a pressure equal to gauge pressure.
  • Vmin or minimum volume
  • the rim of the cavity of cup 1 101 is pressed against the clitorai region (or other region to be stimulated) of a user, creating a sealed or substantially sealed chamber.
  • the cup 1 101 is in a position as shown in FIG. 1 1 B.
  • the cam 1 104 has rotated in the direction indicated by arrow N, such that the cam 1 104 has rotated approximately 100 to 120 degrees from the starting position depicted in FIG. 1 1A.
  • the buckle region wall 1 126 of cup 1101 expands or“springs out,” the buckle region wall 1 126 causes a thud force, or a“thudding effect,” that is imparted to the labia of the user via the cup 1 101 , creating a pleasurable effect for the user.
  • Wings 1 18a -1 18c e.g., FIG. 1A, if present, may assist with imparting the force to the labia.
  • FIG. 12 shows a pressure curve over time graph 1200 for the embodiment shown in FIGs 1 1A - 1 1 C where buckle region wail 1 126 is in compressed position at TO.
  • Graph 1200 comprises vertical axis 1205 representing pressure, and horizontal axis 1204 representing time. Zero on the vertical axis indicates gauge pressure at atmosphere. Pressure curve 1202 does not extend above the gauge pressure 1204. From starting point 1201 , the pressure gets more negative until point 1207, and then returns to the original pressure, and the cycle repeats. Note that the sine wave is disrupted, at area such as 1208, when the buckle region (1 126) springs out.
  • FIG. 13 is a block diagram 1300 of an embodiment of a stimulation device of the present invention.
  • the stimulation device includes a processor 1302 and memory 1304.
  • Memory 1304 may be a computer-readable medium such as flash, battery- backed static RAM, or other suitable computer-readable medium. In some
  • the memory may be non-transitory.
  • the memory 1304 contains instructions, that when executed by the processor 1302, perform steps in accordance with embodiments of the present invention.
  • the memory contains instructions, that when executed by the processor, cause a driver to inter ittently vary a volume of the cavity of the cup from a first volume to a second volume.
  • the memory contains instructions, that when executed by the processor, cause a driver to intermittently vary a volume of the cavity of the cup from a first volume to a second volume without varying the volume from the second volume to the first volume.
  • the stimulation device may include an onboard input/output interface 1312.
  • This may include one or more input, output, and/or bidirectional pins for control of the stimulation device.
  • User interface 1310 may include one or more buttons, switches, knobs, or other suitable controls disposed on the stimulation device. The buttons may be configured to create a signal on one or more input pins of the I/O interface 1312.
  • the processor may utilize interrupt service routines or monitoring loops to detect button presses and change the operation of the cup motor 1306 accordingly.
  • a position encoder 1308 may be internal to the cup motor 1306, or external to the cup motor 1306, in some embodiments. In an alternative embodiment current peaks and valleys may be used to control the position of the motor.
  • User interface may include a power on/off and one or more buttons, or a slider to vary the speed of the cam. Accordingly, a user may modify the strength of the pressure field via user input. Various settings are associated with corresponding speeds of the driver (e.g., rotations per minute of the cam). Accordingly, a user may choose that the stimulation device generate greater or lower pressure for their comfort level. The higher the speed, generally, the more intense the stimulation. The
  • stimulation device may include non-volatile memory 1314 for storing user settings.
  • the stimulation device may include a wireless communication interface 1318.
  • the wireless communication interface 1318 may include a Bluetooth®, WiFi, or other suitable interface.
  • the wireless communication interface allows pairing with an electronic device 1301 such as a dedicated remote controller, smartphone, tablet computer, or other electronic device in some embodiments, the electronic device enables a rich user interface display, allowing for more complex programming options.
  • Wireless communication interface 1318 may be in communication with a transceiver in the electronic device 1301.
  • the stimulation device may be controlled by the user via an application on the smartphone or computer. Some embodiments may not have all of the aforementioned components.
  • the stimulation device further includes a power source 1316.
  • the power source 1316 can include a battery.
  • the battery can be a replaceable, or internally sealed rechargeable battery.
  • battery may be USB- chargeable, inductively chargeable, or other suitable charging mechanism now known or hereafter developed if should be recognized that any power source, now known or hereafter developed, may be used. More than one battery may be included in some embodiments.
  • the stimulation device may be powered by alternating current power, such as 120V or 240V standard household power, with a power adapter comprising voltage regulators to convert the power to an appropriate DC level (e.g. 12V DC).
  • the stimulation device in addition to the pressure field stimulator, there is a second stimulator.
  • the second stimulator may be mounted within a shaft.
  • the second stimulator may have a motor 1307.
  • Motor 1307 may be a geared motor mechanism that may have, e.g., an asymmetrical load affixed to a rotating shaft, a linear resonant actuator, or a pancake vibration motor, etc., for causing stimulation by, for example, a vibration pattern.
  • the second stimulator can be a vibrator, a pu!sator, gyrator, oscillator, or other suitable mechanism.
  • the stimulation action may of the second stimulator may be vibration, pulsation, gyration, oscillation, massage (such as“come hither” type motion), or another.
  • a position encoder 1323 (or other suitable control) may be internal to the motor 1307, or external to the motor 1307. It will be recognized that any suitable stimulation mechanism now known or hereafter developed may be substituted for, or used in addition to, the examples disclosed herein without departing from the scope and purpose of the present invention.
  • FIG. 14A shows a front perspective view of a stimulation device 1400 in accordance with some embodiments of the present invention.
  • FIG. 14B shows a back perspective view of a stimulation device 1400 in accordance with some embodiments of the present invention.
  • the device 1400 has a shaft 1419 and pressure field stimulator 1401.
  • the pressure field clitora! stimulator 1401 has a cup 1402 and driver components (installed within housing 1420).
  • the shaft 1419 may be covered in a sheath 1403 such as silicone, TPE, or other suitable material it is preferable that the material be non-permeable.
  • Shaft 1419 is adapted for insertion into a vagina or anus of a user in some embodiments, shaft 1419 is an elongate shape.
  • housing 1420 and shaft 1419 is made from plastic, metal, or other suitable (preferably non-porous) material.
  • Sheath 1403 may extend over housing 1420.
  • the shaft 1419 may include a second stimulator, including one or more of a vibrator, oscillator, gyrator, pu!sator, and/or massaging stimulator, represented generally as 1421.
  • User interface 1410 includes buttons and other controls for the driver, and shaft (second) stimulator if present.
  • the device may be used hands-free such that after insertion of the shaft and positioning of the pressure field stimulator, the user can take their hands off the device during usage.
  • some components of the second stimulator are disposed within the housing 1420 of the pressure field stimulator.
  • a power button 1415 is in view in FIG. 14A.
  • User interface 1410 and charging port 1429 are in view in FIG. 14B.
  • FIG. 15 shows another embodiment of a pressure field stimulation device 1500 in accordance with some embodiments of the present invention.
  • Pressure field stimulation device 1500 includes housing 1520 with cup 1502 installed thereon.
  • Driver components are Installed therein.
  • a handle 1522 is affixed to, or integral with, housing 1520 to enable a user to hold (in a hand) and/or manually position the stimulation device during use.
  • the handle 1522 may be curved such that the user can conveniently hold the stimulation device during use. In such
  • the device is hand-held during usage.
  • the housing 1520 and handle 1522 is made of plastic, metal, or other suitable (preferable non-porous) material.
  • a sheath 1503 of silicone, TPE, or other suitable material may be disposed on the exterior of the housing 1520 and handle 1522.
  • User interface 1510 includes at least one button or other control for the stimulation device. Charging port 1529 is in view.
  • FIGs 18A shows a top-down view of an example sheath 1602. in
  • the sheath 1601 is disposed over at least a portion of the housing (base) of the pressure field stimulator, as well as handle or shaft if present.
  • the sheath1602 is flexible, resilient, and elastic, and stretches over and attaches to the housing of the pressure field stimulator of embodiments with a tight fit.
  • the example shown includes shaft portion 1609 that stretches over a shaft or handle.
  • the sheath 1602 is made of silicone, rubber, TPE, plastic or other flexible and elastic material.
  • the cup 1606 includes cavity 1607.
  • the cup 1606, in some embodiments, is molded into, or integral with, the sheath such that the sheath and cup are a single piece and not two pieces.
  • the sheath and cup consist of a single piece of material.
  • the cup and sheath may be injection molded via a single mold such that the resulting cup-sheath is a single piece and not made of two pieces. Note that injection molding is an example process, and any suitable method of making is included within the scope of the invention.
  • FIG. 16B shows a bottom-up view of sheath 1602, illustrating the interior of the sheath.
  • an interior shaft opening 1608 is configured and disposed to receive a shaft or handle.
  • An attachment point 1604 is formed around the base portion 161 1.
  • attachment point 1604 comprises a raised lip (protrusion) of material.
  • FIG. 17 shows a partial cut-away view of the internal components of a base including a pressure field stimulator 1700 in accordance with some embodiments of the invention.
  • a shaft or handle is attached, a portion thereof is shown at 1719.
  • the sheath 1602 is attached to the pressure field stimulator 1700 in any suitable way. In some embodiments, it may be via reciprocal grooves and protrusions on the housing and sheath noted as attachment point 1604 on the sheath 1602 and attachment point 1704 on the housing.
  • the sheath 1601 may be adhered, instead or in addition, to the reciprocal grooves and protrusions. A portion of the housing 1702 and groove 1704 where the sheath 1602 attaches is in view.
  • the pressure field stimulator 1700 includes a housing 1702 that houses internal
  • the housing 1702 may further include at least one support flange 1706, which provides mechanical support for the base portion 161 1 and/or cup 1606 of the sheath 1602.
  • the width of the groove 1704 and the width of protrusion 1604 are sized such that a tight friction fit forms between them when the attachment point 1604 is applied to groove 1704.
  • the sheath 1602 may be removable by the user to facilitate cleaning.
  • the sheath 1602 may be permanently affixed to the housing 1702 via adhesive, sealant, or other suitable technique.
  • Some embodiments are waterproof such that they may be washed with fluids, like soap and water. Accordingly, the attachment points of the sheath and any other external portions are sealed where necessary. This allows a user to clean the device thoroughly between insertions.
  • the pressure field stimulation device is unitary in structure, meaning the components thereof together form a single product, rather than multiple products which may be used together by a user.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Reproductive Health (AREA)
  • Engineering & Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Nursing (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Otolaryngology (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Massaging Devices (AREA)
  • Corsets Or Brassieres (AREA)
  • Finger-Pressure Massage (AREA)

Abstract

Des modes de réalisation de ce dispositif de stimulation amélioré comprennent une coupelle et un dispositif d'entraînement. La coupelle comporte une cavité entourée par un rebord. Le dispositif d'entraînement comprend une plaque disposée sur une face inférieure de la coupelle, une came disposée de façon adjacente à la plaque et un moteur couplé mécaniquement à la came. Le dispositif d'entraînement est conçu pour faire varier par intermittence le volume de la cavité de la coupelle entre un premier volume et un second volume sans faire passer la coupelle du second volume au premier volume. Dans certains modes de réalisation, la coupelle repasse du second volume au premier volume, entre les variations intermittentes entre le premier volume et le second volume, du fait de la nature élastique du matériau formant la coupelle et/ou de la structure de la coupelle. Cette variation du volume entre les premier et second volumes crée un champ de pression dans une chambre formée par la cavité et la peau d'un utilisateur.
PCT/US2019/050930 2018-09-15 2019-09-13 Dispositif de stimulation à champ de pression WO2020056214A1 (fr)

Applications Claiming Priority (34)

Application Number Priority Date Filing Date Title
US201862731838P 2018-09-15 2018-09-15
US201862731835P 2018-09-15 2018-09-15
US201862731839P 2018-09-15 2018-09-15
US201862731836P 2018-09-15 2018-09-15
US201862731840P 2018-09-15 2018-09-15
US62/731,840 2018-09-15
US62/731,836 2018-09-15
US62/731,835 2018-09-15
US62/731,839 2018-09-15
US62/731,838 2018-09-15
US201962787930P 2019-01-03 2019-01-03
US29/675,567 2019-01-03
US62/787,930 2019-01-03
US29/675,567 USD884206S1 (en) 2019-01-03 2019-01-03 Electromechanical massager
US29/695,752 2019-06-21
US29/695,752 USD898937S1 (en) 2019-01-03 2019-06-21 Electromechanical massager
US201962868218P 2019-06-28 2019-06-28
US201962868232P 2019-06-28 2019-06-28
US201962868279P 2019-06-28 2019-06-28
US201962868312P 2019-06-28 2019-06-28
US201962868247P 2019-06-28 2019-06-28
US201962868203P 2019-06-28 2019-06-28
US201962868266P 2019-06-28 2019-06-28
US201962868331P 2019-06-28 2019-06-28
US62/868,312 2019-06-28
US62/868,266 2019-06-28
US62/868,218 2019-06-28
US62/868,279 2019-06-28
US62/868,232 2019-06-28
US62/868,247 2019-06-28
US62/868,331 2019-06-28
US62/868,203 2019-06-28
US201962869008P 2019-06-30 2019-06-30
US62/869,008 2019-06-30

Publications (1)

Publication Number Publication Date
WO2020056214A1 true WO2020056214A1 (fr) 2020-03-19

Family

ID=69777882

Family Applications (9)

Application Number Title Priority Date Filing Date
PCT/US2019/050930 WO2020056214A1 (fr) 2018-09-15 2019-09-13 Dispositif de stimulation à champ de pression
PCT/US2019/050938 WO2020056220A1 (fr) 2018-09-15 2019-09-13 Dispositif de massage avec fonction de dilatation
PCT/US2019/050926 WO2020056211A1 (fr) 2018-09-15 2019-09-13 Dispositif de stimulation de champ de pression
PCT/US2019/050923 WO2020056208A1 (fr) 2018-09-15 2019-09-13 Dispositif de stimulation par champ de pression comportant un bras adaptable
PCT/US2019/050920 WO2020056206A1 (fr) 2018-09-15 2019-09-13 Dispositif de stimulation de champ de pression
PCT/US2019/050929 WO2020056213A1 (fr) 2018-09-15 2019-09-13 Appareil de massage individuel ayant un bras de forme adaptable
PCT/US2019/050936 WO2020056218A1 (fr) 2018-09-15 2019-09-13 Stimulateur de champ de pression avec gaine à coupelle intégrée
PCT/US2019/050925 WO2020056210A1 (fr) 2018-09-15 2019-09-13 Masseur personnel
PCT/US2019/050932 WO2020056215A1 (fr) 2018-09-15 2019-09-13 Dispositif de stimulation pourvu d'un stimulateur de champ de pression et d'un dispositif de massage à rouleau

Family Applications After (8)

Application Number Title Priority Date Filing Date
PCT/US2019/050938 WO2020056220A1 (fr) 2018-09-15 2019-09-13 Dispositif de massage avec fonction de dilatation
PCT/US2019/050926 WO2020056211A1 (fr) 2018-09-15 2019-09-13 Dispositif de stimulation de champ de pression
PCT/US2019/050923 WO2020056208A1 (fr) 2018-09-15 2019-09-13 Dispositif de stimulation par champ de pression comportant un bras adaptable
PCT/US2019/050920 WO2020056206A1 (fr) 2018-09-15 2019-09-13 Dispositif de stimulation de champ de pression
PCT/US2019/050929 WO2020056213A1 (fr) 2018-09-15 2019-09-13 Appareil de massage individuel ayant un bras de forme adaptable
PCT/US2019/050936 WO2020056218A1 (fr) 2018-09-15 2019-09-13 Stimulateur de champ de pression avec gaine à coupelle intégrée
PCT/US2019/050925 WO2020056210A1 (fr) 2018-09-15 2019-09-13 Masseur personnel
PCT/US2019/050932 WO2020056215A1 (fr) 2018-09-15 2019-09-13 Dispositif de stimulation pourvu d'un stimulateur de champ de pression et d'un dispositif de massage à rouleau

Country Status (1)

Country Link
WO (9) WO2020056214A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021138180A1 (fr) * 2020-01-05 2021-07-08 Uccellini LLC Dispositif de stimulation de champ de pression

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900011409A1 (it) 2019-07-10 2021-01-10 Relax S R L Vasca da bagno
ES2951022A1 (es) * 2023-05-25 2023-10-17 Cnex Aie S L Dispositivo estimulador genital y corporal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099463A (en) * 1998-08-03 2000-08-08 Hockhalter; Robert Female stimulator comprising close-fitting clitoral suction chamber
US20030176817A1 (en) * 2002-03-12 2003-09-18 Shun-Yi Chang Electrical multi-functional fitness and body slimming massage device
WO2011094799A1 (fr) * 2010-02-08 2011-08-11 Derek Dickson Appareil ornemental interactif de stimulation de mamelon
US20170281457A1 (en) * 2016-04-04 2017-10-05 EIS GmbH Compression Wave Massage Device
US20180153764A1 (en) * 2015-03-13 2018-06-07 Novoluto Gmbh Stimulation Device Having an Appendage

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0222559D0 (en) * 2002-09-28 2002-11-06 Cst Medical Ltd Device
WO2004036369A2 (fr) * 2002-10-17 2004-04-29 Product Generation, Llc Dispositif electronique a course variable et systeme de commande a distance et de jeu interactif
US7081087B2 (en) * 2003-02-05 2006-07-25 Carmella Jannuzzi Sexual aid device
US6949067B1 (en) * 2004-05-11 2005-09-27 Dann Jeffrey A Device and method for enhancing female sexual stimulation
US20050273024A1 (en) * 2004-06-04 2005-12-08 Nanma Manufacturing Co., Ltd. Bendable vibrator device
CA2491249A1 (fr) * 2004-12-17 2006-06-17 Bruce Murison Dispositif de stimulation sexuelle electromecanique
US7803126B2 (en) * 2005-12-19 2010-09-28 Nanma Manufacturing Co. Ltd. Massage apparatus with flexible massage actuator
WO2008028076A2 (fr) * 2006-08-30 2008-03-06 Ohmea Medical Technologies, Inc. Dispositifs thérapeutiques pour le traitement de divers états chez la femme
US8545392B2 (en) * 2009-04-20 2013-10-01 Christine Florence Standfest Sexual stimulation device
CN103096973B (zh) * 2010-06-17 2016-08-24 英康绰医药有限公司 尿失禁设备和方法以及刺激设备和方法
US9011316B2 (en) * 2011-11-04 2015-04-21 Ohmea Medical Technologies, Inc. Systems and methods for therapeutic treatments of various conditions of a female person
US20130178769A1 (en) * 2011-12-09 2013-07-11 Shelley Jane Schmidt Sexual stimulation device with interchangeable sheaths
US20160000643A1 (en) * 2012-11-30 2016-01-07 Exploramed Nc6, Inc. Devices and methods for promoting female sexual wellness
US9339434B1 (en) * 2013-11-08 2016-05-17 Paul Mayfield Magnetically coupled slider sex toy
WO2016187375A1 (fr) * 2015-05-19 2016-11-24 Sparq Laboratories, Llc Accessoire sexuel mâle et femelle avec des capacités d'utilisation sans fil
DK3153148T3 (da) * 2015-10-09 2020-02-10 Stanislav Kotlov Apparat til seksuel stimulation
US10004659B1 (en) * 2015-11-22 2018-06-26 Sean Campbell Sexual aid
DE102016105019B3 (de) * 2016-03-17 2017-07-06 Fun Factory Gmbh Massagevorrichtung zur Druckwellen-Massage
WO2017205860A1 (fr) * 2016-05-27 2017-11-30 Greco Darren J Dispositif de massage et de dilatation
DE102016011632A1 (de) * 2016-09-28 2018-03-29 Anselm Zwanzig Stimulationsvorrichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099463A (en) * 1998-08-03 2000-08-08 Hockhalter; Robert Female stimulator comprising close-fitting clitoral suction chamber
US20030176817A1 (en) * 2002-03-12 2003-09-18 Shun-Yi Chang Electrical multi-functional fitness and body slimming massage device
WO2011094799A1 (fr) * 2010-02-08 2011-08-11 Derek Dickson Appareil ornemental interactif de stimulation de mamelon
US20180153764A1 (en) * 2015-03-13 2018-06-07 Novoluto Gmbh Stimulation Device Having an Appendage
US20170281457A1 (en) * 2016-04-04 2017-10-05 EIS GmbH Compression Wave Massage Device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021138180A1 (fr) * 2020-01-05 2021-07-08 Uccellini LLC Dispositif de stimulation de champ de pression

Also Published As

Publication number Publication date
WO2020056208A1 (fr) 2020-03-19
WO2020056206A1 (fr) 2020-03-19
WO2020056220A1 (fr) 2020-03-19
WO2020056213A1 (fr) 2020-03-19
WO2020056211A1 (fr) 2020-03-19
WO2020056218A1 (fr) 2020-03-19
WO2020056210A1 (fr) 2020-03-19
WO2020056215A1 (fr) 2020-03-19

Similar Documents

Publication Publication Date Title
US11007113B2 (en) Pressure field stimulator having a cup integrated with a sheath
US11318064B2 (en) Pressure field stimulation device
US10980703B2 (en) Pressure field stimulation device
US10959907B2 (en) Stimulation device having a pressure field stimulator and a roller massager
US11065176B2 (en) Pressure field stimulation device
WO2020056214A1 (fr) Dispositif de stimulation à champ de pression
US11185463B2 (en) Pressure field stimulation device having an expandable cup top
US11007110B1 (en) Air pressure massager
US10993873B1 (en) Pressure field stimulation device
AU2005316168C1 (en) Electro-mechanical sexual stimulation device
US20140309565A1 (en) Sexual appliances providing improved stimulation of grafenberg area
US20210228437A1 (en) Pressure field stimulator having a cup integrated with a sheath
US20120220907A1 (en) Stimulator
US20210169731A1 (en) Stimulation device having a pressure field stimulator and a roller massager
US11229574B2 (en) Massager device with expansion function
US11517495B2 (en) Pressure field stimulation device having adaptable arm
US11129767B1 (en) Massager
EP3849491A1 (fr) Dispositif de stimulation de champ de pression
US20080306415A1 (en) Therapeutic device
EP3648727A1 (fr) Dispositif de stimulation pourvu d'un stimulateur de champ de pression et d'un dispositif de massage à rouleau
US20220257457A1 (en) Sexual stimulation device
KR200214474Y1 (ko) 지압구
US20230111787A1 (en) Personal Massage Device Having at Least One Sealed Chamber
US20200107986A1 (en) Device for sexual stimulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860083

Country of ref document: EP

Kind code of ref document: A1