WO2020055054A1 - Instantaneous water heating device - Google Patents

Instantaneous water heating device Download PDF

Info

Publication number
WO2020055054A1
WO2020055054A1 PCT/KR2019/011607 KR2019011607W WO2020055054A1 WO 2020055054 A1 WO2020055054 A1 WO 2020055054A1 KR 2019011607 W KR2019011607 W KR 2019011607W WO 2020055054 A1 WO2020055054 A1 WO 2020055054A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
instantaneous hot
water device
heater unit
housing
Prior art date
Application number
PCT/KR2019/011607
Other languages
French (fr)
Korean (ko)
Inventor
이재영
임현철
양재석
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Publication of WO2020055054A1 publication Critical patent/WO2020055054A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • F24H1/102Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance
    • F24H1/105Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance formed by the tube through which the fluid flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1818Arrangement or mounting of electric heating means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • H05B3/08Heater elements structurally combined with coupling elements or holders having electric connections specially adapted for high temperatures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H2250/00Electrical heat generating means
    • F24H2250/02Resistances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids

Definitions

  • the present invention relates to an instantaneous hot water device.
  • the instantaneous hot water device is installed in a product with a relatively small amount of hot water, such as an electronic bidet, a cold and hot water purifier, and a cold and hot water purifier.
  • a relatively small amount of hot water such as an electronic bidet, a cold and hot water purifier, and a cold and hot water purifier.
  • Such an instantaneous hot water device can produce hot water in a short time by heating the fluid passing through the pipeline.
  • the currently used instantaneous hot water device is installed on the outside of a water pipe made of an insulating material such as ceramic to heat the fluid passing through the pipe to produce hot water, or through the heating element disposed inside the metal pipe, which is present on the outside of the metal pipe.
  • the fluid is heated to produce hot water.
  • the heat transfer efficiency of the ceramic-based material is lower than that of metal, because the thermal conductivity is small. Accordingly, the instantaneous water heater using a ceramic-based material requires a relatively long time to produce hot water at a target temperature than the instantaneous hot water heater using a metal material in order to increase the fluid temperature to a target temperature.
  • the instantaneous hot water device using a metal tube in which a heating element is disposed inside is a method of heating the fluid passing outside the metal tube, so it is not possible to secure enough time for the fluid to be heated or because the contact area between the metal tube and the fluid is small. There is a problem that the temperature cannot be raised to the target temperature.
  • the present invention has been devised in view of the above points, and an object thereof is to provide an instantaneous water heater capable of heating a fluid to a target temperature in a short time by increasing a heat exchange efficiency by increasing a contact area with the fluid.
  • a hollow housing connected to the flow path; At least one heater unit disposed along the longitudinal direction in the interior of the housing to heat the fluid passing through the interior of the housing; And a control unit for controlling the operation of the heater unit, and the heater unit provides an instantaneous hot water device in which a plate-shaped heating element is wound in a spiral wound several times so that the fluid can pass therethrough.
  • the housing may include an opening for allowing electrical connection between the heater terminal terminal and the control unit.
  • the opening may be sealed through a plate-shaped cover plate, and the cover plate may include a through hole formed in a region corresponding to the heater portion so that the pair of terminal terminals can pass through it. have.
  • the heater portion the heating element is bent to be formed so that the peaks and valleys are repeated along the longitudinal direction; And a plate-shaped support disposed on one surface of the heating element to maintain the shape of the heating element.
  • the heating element may include a plate-shaped exterior material having a predetermined area; A heat generating source disposed inside the exterior material and generating heat when power is applied; An insulating layer disposed between the heating source and the exterior material; And a pair of terminal terminals provided at both ends of the heat generating source and protruding outwardly of the exterior material.
  • the heat source may be either an amorphous ribbon sheet or percaloy.
  • the heating elements can be mutually coupled without using an adhesive.
  • the terminal terminal may be a plate-shaped metal tube surrounding the end of the heat source
  • the insulating layer may be a plate-shaped insulating tube simultaneously surrounding the heat source and a portion of the metal tube
  • the exterior material is the insulating tube It may be a plate-shaped thermally conductive outer tube surrounding the.
  • the metal tube and the outer tube may be formed in a plate shape through pressure.
  • control unit may include a circuit board disposed on one side of the housing, and the heater unit may be electrically connected to a pair of terminal terminals.
  • the above-described instantaneous hot water device may include at least one temperature sensor for controlling the heating temperature of the heater unit.
  • the heat transfer efficiency is increased to rapidly heat the fluid to a target temperature, so that hot water can be stably supplied even when a direct water system is applied.
  • FIG. 1 is a view showing an instantaneous hot water device according to an embodiment of the present invention
  • Figure 2 is an exploded view of Figure 1
  • FIG. 3 is a cross-sectional view taken along line A-A in FIG. 1,
  • Figure 4 is a view as viewed from the top of the heater portion coupled to the cover plate in the instantaneous hot water device according to an embodiment of the present invention
  • FIG. 5 is a view showing a heater unit that can be applied to the instantaneous hot water device according to an embodiment of the present invention
  • FIG. 6 is a view showing a state in which the support is separated from FIG. 5,
  • FIG. 7 is a view showing a manufacturing procedure of a heating element that can be applied to an instantaneous hot water device according to an embodiment of the present invention
  • FIG. 8 is a cross-sectional view of a portion of the heating element in FIG. 7 (e) cut in the B-B direction,
  • FIG. 10 is a view showing a state in which a temperature sensor is mounted to a heater unit that can be applied to an instantaneous hot water device according to an embodiment of the present invention.
  • the instantaneous hot water device 100 may be connected on a flow path through which a fluid passes, as illustrated in FIG. 1. Through this, the instantaneous hot water device 100 may produce hot water by heating and heating the fluid passing through the flow path.
  • the instantaneous hot water device 100 since the instantaneous hot water device 100 according to an embodiment of the present invention produces hot water in a direct heating method that directly heats the fluid passing through the flow path, a separate storage tank for storing the raw water is omitted. You can.
  • the instantaneous hot water device 100 includes a housing 110, a heater unit 120, and a control unit 130 as shown in FIGS. 2 and 3.
  • the housing 110 may have both ends connected to the flow path so that the fluid to be heated can pass.
  • the heater unit 120 may be disposed inside the housing 110. Through this, the fluid may be heated through the heater unit 120 in the process of passing through the housing 110.
  • the housing 110 may be a hollow tube member having a predetermined length and having both ends open.
  • at least one heater unit 120 may be disposed along the longitudinal direction inside the housing 110.
  • the fluid flowing along the flow path may be heated through the heater unit 120 in the process of passing through the interior of the housing 110 after flowing into the interior of the housing 110.
  • one end of the housing 110 may be connected to the flow path via a flange, or one end may be directly connected to an end of the flow path.
  • the housing 110 may include an opening 112 that is cut in the longitudinal direction from one end.
  • the opening 112 may provide a space in which a part of the heater unit 120 disposed inside the housing 110 can be exposed to the outside.
  • the heater unit 120 may be exposed with a terminal terminal 122d for electrical connection to the outside through the opening 112.
  • the opening 112 is formed from the end of the housing 110 so that the heater unit 120 can be easily inserted into the housing 110. That is, when the heater unit 120 is disposed to be located inside the housing 110, even if the terminal terminal 122d of the heater unit 120 protrudes outward from the inside of the housing 110, the terminal The terminal 122d may be moved along the longitudinal direction of the housing 110 along the opening 112. Through this, even if the terminal terminal 122d of the heater unit 120 protrudes from the inside of the housing 110 to the outside, the operation for arranging the heater unit 120 inside the housing 110 is easily performed. Can be.
  • the opening 112 may be sealed through a plate-shaped cover plate 114.
  • the instantaneous hot water device 100 may be prevented from leaking to the outside through the opening 112 in the process of the fluid passing through the interior of the housing 110.
  • a part of the heater part 120 may be fixed to the cover plate 114.
  • a portion of the heater part 120 protruding from the inside of the housing 110 to the outside may be fixed to the cover plate 114. Accordingly, when the cover plate 114 is inserted into the housing 110 while a part of the heater part 120 is fixed to the cover plate 114, the opening 112 is the cover plate 114 ) May be sealed, and a part of the heater unit 120 may be disposed in an exposed state through the opening 112.
  • the cover plate 114 may have a relatively large area than the opening 112, and the rim side may be fixed to the housing 110 through welding or the like.
  • the cover plate 114 may be disposed inside the housing 110, the rim side may be fixed to the inner surface of the housing 110. Accordingly, the cover plate 114 may seal the opening 112, and some of the heater parts 120 may be exposed to the outside through the cover plate 114.
  • the cover plate 114 may include at least one through hole 115 formed through.
  • the through hole 115 may be formed in a region corresponding to the heater unit 120, and may be provided in a number corresponding to the heater unit 120. Accordingly, when the cover plate 114 is fixed to one surface of the housing 110, the opening 112 of the housing 110 may be sealed through the cover plate 114, the heater unit ( The portion protruding out of the housing 110 among the 120 may be exposed to the outside through the through hole 115 in a state fixed to the cover plate 114.
  • the cover plate 114 can be prevented from leaking the fluid passing through the interior of the housing 110 to the outside through the opening 112, the through hole (of the heater unit 120)
  • the portion protruding out of the housing 110 through 115 may be easily electrically connected to the control unit 130.
  • the through hole 115 may include a protrusion 116 protruding outward along the rim.
  • the protruding portion 116 of the heater portion 120 protruding out of the housing 110 is fixed to the cover plate 114, the protruding portion 116 of the housing 110 of the heater portion 120 It may be in close contact with the portion protruding to the outside. Accordingly, the protruding portion 116 may fix the heater portion 120 by having one surface of the heater portion 120 in close contact with an edge of the portion protruding out of the housing 110. Through this, the protrusion 116 can improve the bonding force between the heater unit 120 and the cover plate 114.
  • a separate sealing member 117 may be disposed in the through hole 115. 4, the sealing member 117 is disposed in the through hole 115 to surround a pair of terminal terminals 122d of the heater unit 120 as shown in FIG. 4, thereby increasing the sealing force. Through this, the possibility of leaking through the through hole 115 in the process of passing the fluid through the interior of the housing 110 can be prevented.
  • the sealing member 117 may be provided as a separate member to be coupled to the through hole 115, or a liquid or gel-like material may be filled in the through hole 115.
  • the sealing member 117 may be silicone caulking or a molding.
  • the sealing member 117 is not limited thereto, and various known materials can be used without limitation as long as it prevents the generation of a gap and prevents leakage of the fluid.
  • the heater unit 120 may heat the fluid by providing heat to the fluid side passing through the interior of the housing 110.
  • the heater unit 120 may be disposed inside the housing 110 as shown in FIG. 3, and may be disposed one or more along the longitudinal direction of the housing 110. Accordingly, the fluid may be heated by heat provided from the heater unit 120 in the process of passing through the interior of the housing 110.
  • the heater unit 120 may be disposed inside the housing 110 to allow the fluid to pass through the heater unit 120.
  • the heater unit 120 may include a plate-shaped heating element 122 having a predetermined length, as shown in FIGS. 5 and 6, and the heating element 122 has an acid portion and a valley portion along the longitudinal direction. It can be bent repeatedly.
  • the heating element 122 may be formed in a spiral wound type wound a plurality of times, and the peaks and valleys may be formed in a direction parallel to the width direction of the heating element 122.
  • a passage through which the fluid can pass may be formed between the hills and hills or the hills and valleys facing each other, and the passage may be formed in a direction parallel to the width direction of the heating element 122,
  • the length of the passage may have a size approximately equal to the width of the heating element 122.
  • the heater unit 120 may be disposed inside the housing 110 such that the passage is disposed parallel to the flow direction of the fluid passing through the interior of the housing 110.
  • the fluid may be heated by heat provided from the heating element 122 in the process of passing through the heater unit 120.
  • the fluid can smoothly pass through the heater unit 120 through the passage, thereby minimizing a decrease in flow velocity in the process of being heated by heat provided from the heating element 122.
  • the heater unit 120 may maximize the contact area in contact with the fluid by forming a plurality of passages formed along the width direction of the heating element 122 along the longitudinal direction of the heating element, and the fluid may include the heater unit ( In the process of passing through 120), it may be directly heated through the heating element 122. Through this, even if the fluid passes through the heater portion 120 along the passage in a short time, sufficient heat can be provided from the heating element 122 to sufficiently increase the temperature to a target temperature.
  • the heater unit 120 may include a plate-shaped support 124 disposed on one surface of the heating element 122 so as to maintain the shape of the heating element 122 wound in a spiral wound.
  • the acid parts of the heating elements 122 adjacent to each other may be contacted, or the bone parts of the heating elements 122 adjacent to each other may be contacted.
  • the support 124 may also be wound in a spiral wound together with the heating element 122, and wound in a spiral wound on one or both sides of the support 124.
  • a portion of the generated heating elements 122 may be respectively disposed.
  • the heating element 122 is wound in a spiral shape, a part of the heating element 122 disposed on both sides of the support 124 faces each other through the support 124, such as an acid portion, an acid portion, or a bone portion and a bone portion.
  • the overlap can be prevented.
  • the heater portion 120 is a fluid passing through the interior of the housing 110, the passage formed between the hilltop and the hilltop or the hilltop and valleys facing each other can be maintained, the heater 120 It can pass smoothly.
  • the support 124 may be made of a metal material having thermal conductivity. Through this, the support 124 may simultaneously serve to maintain the shape of the heating element 122 and widen the heat transfer area for heating the fluid. That is, the support 124 may function as an auxiliary heat source for heating the fluid by heating the fluid using heat transferred from the heating element 122.
  • the support 124 may be a metal material having corrosion resistance to prevent corrosion through contact with the fluid.
  • the support 124 may be anodized aluminum or stainless steel, but is not limited thereto, and may be used without limitation as long as it is a material having heat conductivity and corrosion resistance or a material having heat conductivity and corrosion resistance. .
  • the heating element 122 may be used without limitation in its structure or material in the form of a plate so as to generate heat for heating the fluid when power is applied and to increase the heat transfer area.
  • the heating element 122 may include an exterior material 122a, a heating source 122b, an insulating layer 122c, and a pair of terminal terminals 122d, as illustrated in FIGS. 7 to 9, wherein The insulating layer 122c may be interposed between the exterior material 122a and the heat generating source 122b.
  • the heating element 122 while widening the heat transfer area in contact with the fluid, while forming a passage through which the fluid can pass, the acid and valley portions are repeated along the longitudinal direction. Can be formed.
  • the heating element 122 can increase the heat exchange efficiency generated between the heating element 122 and the fluid by increasing the contact area in contact with the fluid.
  • the heating element 122 may be repeatedly formed with the peaks and valleys along the longitudinal direction, the peaks and valleys may be formed along the width direction of the heating element (122).
  • the hills and valleys may be formed only on the side of the exterior material 122a, or may be formed on the side of the heat generating source 122b together with the exterior material 122a.
  • the peaks and valleys formed in the exterior material 122a may be formed to coincide with the peaks and valleys formed in the heat generation source 122b. .
  • the exterior material 122a and the heat generating source 122b can always perform the same behavior through the hills and valleys formed to coincide with each other, thereby preventing damage to the heat generating source 122b that may occur during different behaviors. You can.
  • the heating element 122 may prevent the insulation from breaking by minimizing the contraction expansion rate along the longitudinal direction through the hills and valleys formed along the longitudinal direction.
  • the peaks and valleys formed in the heating source 122b and the peaks and valleys formed in the exterior material 122a are formed to coincide with each other, so that the material of the exterior material 122a and the heating source 122b constituting the heating element 122 or Even if the shrinkage expansion rate is different, this can be compensated.
  • the exterior material 122a may be formed in a plate shape having a predetermined area, and the heat generating source 122b may be disposed inside the exterior material 122a. Through this, when the power is applied to the heating element 122, the heat generating source 122b may generate heat to generate heat.
  • the exterior material 122a may serve to protect the heat generating source 122b accommodated therein and to disperse heat generated from the heat generating source 122b.
  • the exterior material 122a may be made of a metal material, and may be formed in a hollow shape with both ends open.
  • the exterior material 122a may be an empty plate-shaped heat-conductive exterior tube, and the heat-conductive exterior tube may be a hollow metal tube made of copper or aluminum having excellent heat conductivity.
  • the heat-conducting outer tube may be formed in a plate shape by being pressed while the heat generating source 122b is inserted therein.
  • the exterior material (122a) by first pressing the circular exterior material (122a) to change to an elliptical shape, and by pressing the exterior material (122a) in the state of inserting a heating source (122b) inside the exterior material (122a) It may be formed in a plate shape.
  • the method of forming the exterior material 122a in a plate shape is not limited thereto, and the exterior material 122a is plate-shaped through a single pressing process while the heat generating source 122b is inserted inside the exterior material 122a. It may be formed as.
  • the heat generating source 122b may be disposed inside the exterior material 122a and may generate heat when power is applied. At this time, the heat generating source 122b may be in the form of a plate having a predetermined width and length.
  • the heat generating source 122b may be a plate-shaped metal sheet having a predetermined area, and aluminum or copper, an amorphous ribbon sheet, or percaloy may be used as the metal sheet.
  • the heat generating source 122b may be a plate-shaped conductive member including at least one of cantal and pekalloy alloys to prevent crystallization due to repeated thermal fatigue exposure.
  • the heat generating source (122b) may be formed in a substantially 'c' shape, as shown in Figure 7 (a) to (d), the heat generating source (122b) is a pair of two free end side
  • the terminal terminal 122d may be formed. Accordingly, in the heating element 122, the pair of terminal terminals 122d may be disposed at the same end side, and the heating source 122b may be evenly disposed over the entire area of the exterior material 122a.
  • the shape of the heat generating source 122b is not limited thereto, and may have various shapes as long as the two free ends can be formed to face the same direction.
  • the heat generating source 122b may have a shape in which the middle of the length is bent a plurality of times, such as approximately 'W' shape.
  • the insulating layer 122c is provided with an inner surface of the exterior material 122a and a heating source 122b to electrically insulate the exterior material 122a and the heat generation source 122b when power is applied. Can be placed between.
  • the exterior material 122a is made of a conductive metal material, electrical shorts that may occur between the heat generating source 122b and the exterior material 122a disposed inside the exterior material 122a can be prevented.
  • the insulating layer 122c may have insulating properties for electrical insulation, and may further have heat resistance to prevent damage due to heat generated from the heat generating source 122b.
  • the insulating layer 122c may be a coating layer coated with a coating solution having insulation and heat resistance, or a film member made of a resin material having insulation and heat resistance may be attached through an adhesive layer.
  • the insulating layer 122c may be a hollow insulating tube made of a resin material having insulating and heat resistance.
  • the insulating layer 122c may be formed in a hollow shape with both ends open, as in the case of the exterior material 122a, as shown in FIG. 7 (c), and the heating source 122b is inserted therein.
  • the heat generating source 122b may be completely covered.
  • the insulating layer 122c may be inserted into the inside of the heat-conducting sheath tube constituting the sheath material 122a while the heat-generating source 122b is inserted therein, and the heat-conducting sheath tube is pressurized. When it is changed to a plate shape, it may be disposed between the heat generating source 122b and the exterior material 122a.
  • the insulating tube may be a polymer resin having heat resistance and insulation properties such as polyimide (PI), but is not limited thereto, and any material known in the art may be used as long as it is a material having heat resistance and insulation properties.
  • PI polyimide
  • the terminal terminal 122d may be connected to an external power source so that power can be supplied to the heating source 122b from the outside. To this end, the terminal terminal 122d may be provided as a pair on the free end side of the heating source 122b as described above.
  • the terminal terminal 122d may be made of a conductive material, and may be configured as a pair to perform the roles of the (+) terminal and the (-) terminal.
  • the terminal terminal (122d) may be a hollow metal tube made of a metal material as shown in (b) to (d) of Figure 7, while surrounding a certain length of the end side of the heating source (122b) At least a portion of the length may be provided to protrude to the outside of the exterior material (122a).
  • the heating element 122 may be disposed in the interior of the exterior material 122a, the heating source 122b in a state where the terminal terminal 122d is coupled to the end side of the heating source 122b, and the exterior material ( Like 122a), the terminal terminal 122d may be formed in a plate shape through pressing.
  • the above-described insulating layer 122c is interposed between the inner surface of the facing material 122a facing each other and one surface of the terminal terminal 122d, so that the terminal terminals 122d are electrically connected to each other even if they partially overlap with the facing material 122a. Insulation can be maintained.
  • the terminal terminal (122d) may be formed with a valley and a valley for a portion of the entire length. That is, the terminal terminal (122d) is inserted into the interior of the exterior material (122a) of the entire length as shown in FIG. 8, the area and the valley may be formed more than once in the region overlapping have.
  • the terminal terminal 122d is prevented from being separated from the exterior material 122a through the hills and valleys formed in an area overlapping the exterior material 122a, thereby mutually connecting the terminal terminal 122d to the exterior material 122a.
  • a separate adhesive member for fixing may be omitted.
  • the control unit 130 may control the overall operation of the instantaneous hot water device 100.
  • the control unit 130 may control driving of the instantaneous hot water device 100 by supplying or blocking power to the heater unit 120 side.
  • control unit 130 may include at least one circuit board 132 and may include at least one chipset 134 mounted on one surface of the circuit board 132.
  • the circuit board 132 may be electrically connected to each other with at least one heater unit 120 embedded in the housing 110.
  • a pair of terminal terminals 122d protruding from the inside of the housing 110 to the outside through the through hole 115 of the cover plate 114 is the circuit board 132.
  • the control unit 130 and the heater unit 120 may be electrically connected to each other.
  • the circuit board 132 may be disposed outside the housing 110 as shown in FIG. 3, and the circuit board 132 of the housing 110 may be protected from an external environment. It may be embedded in a separate cover member 140 coupled to one side.
  • the heater unit 120 may be heated using power supplied through the control of the control unit 130.
  • control unit 130 may be supplied with driving power by being electrically connected to an external power source via a cable, or may be supplied with driving power from a battery built in itself.
  • the instantaneous hot water device 100 may further include at least one temperature sensor 150.
  • the temperature sensor 150 may be disposed on the central side of the heater unit 120 as shown in FIG. 10, and may be electrically connected to the circuit board 132.
  • the temperature sensor 150 may be provided in at least one or more types, and the heating temperature of the heating element 122 may be measured. Accordingly, the control unit 130 may control the driving of the heater unit 120 based on the heating temperature measured through the temperature sensor 150.
  • the temperature sensor 150 may be provided with three types of sensors, and the three types of sensors include a temperature control sensor for controlling the heating element 122 to a first temperature range, When the heating temperature of the heating element 122 is raised to the second temperature, the sensor for overheat protectors that temporarily cuts off the power and the physical power supply when the heating temperature of the heating element 122 is raised to the third temperature It may include a blocking sensor for blocking.
  • the second temperature range may be relatively higher than the first temperature range and may be relatively lower than the third temperature range.
  • control unit 130 may control driving of the heater unit 120 through the three types of sensors. Specifically, the control unit 130 may uniformly heat the heating element 122 to a first temperature range by supplying or blocking power to the heater unit 120 based on the temperature measured by the temperature control sensor. have. In addition, when the heating element 122 generates heat in the second temperature range, the control unit 130 temporarily cuts off the power supplied to the heater unit 120 so that the heater unit 120 may be damaged by overvoltage. You can avoid danger. In addition, when the heating element 122 generates heat in the third temperature range, the control unit 130 may completely block the supply of power to the heater unit 120 through the blocking sensor.

Abstract

An instantaneous water heating device is provided. An instantaneous water heating device according to an exemplary embodiment of the present invention comprises: a hollow housing connected to a flow path; at least one heater unit arranged in a lengthwise direction inside the housing so as to heat fluid passing through the housing; and a control unit for controlling the operation of the heater unit, wherein the heater unit is formed as a spiral wound type in which a planar heating element is wound many times such that the fluid can pass therethrough.

Description

순간온수장치Instantaneous water heater
본 발명은 순간온수장치에 관한 것이다.The present invention relates to an instantaneous hot water device.
순간온수장치는 전자식 비데, 냉온수기 및 냉온정수기와 같이 온수사용량이 비교적 적은 제품에 설치된다. 이러한 순간온수장치는 관로를 통과하는 유체를 가열함으로써 단시간에 온수를 생산할 수 있다.The instantaneous hot water device is installed in a product with a relatively small amount of hot water, such as an electronic bidet, a cold and hot water purifier, and a cold and hot water purifier. Such an instantaneous hot water device can produce hot water in a short time by heating the fluid passing through the pipeline.
현재 사용되는 순간온수장치는 세라믹과 같은 절연재질로 만들어진 송수관의 외부에 발열체를 설치하여 관로를 통과하는 유체를 가열하여 온수를 생산하거나, 금속관의 내부에 배치된 발열체를 통해 금속관의 외부에 존재하는 유체를 가열하여 온수를 생산한다.The currently used instantaneous hot water device is installed on the outside of a water pipe made of an insulating material such as ceramic to heat the fluid passing through the pipe to produce hot water, or through the heating element disposed inside the metal pipe, which is present on the outside of the metal pipe. The fluid is heated to produce hot water.
그러나 세라믹 계열의 재질은 금속에 비하여 열전도도가 작기 때문에 열전달 효율이 떨어진다. 이에 따라, 세라믹 계열의 재질을 이용한 순간온수장치는 유체의 온도를 목표하는 온도까지 높이기 위해서는 금속재질을 이용한 순간온수장치보다 목표하는 온도의 온수를 생산하는데 상대적으로 많은 시간이 소요된다.However, the heat transfer efficiency of the ceramic-based material is lower than that of metal, because the thermal conductivity is small. Accordingly, the instantaneous water heater using a ceramic-based material requires a relatively long time to produce hot water at a target temperature than the instantaneous hot water heater using a metal material in order to increase the fluid temperature to a target temperature.
또한, 내부에 발열체가 배치된 금속관을 이용한 순간온수장치는 금속관의 외부를 지나가는 유체를 가열하는 방식이므로 유체가 가열될 수 있는 시간을 충분히 확보하지 못하거나 금속관과 유체의 접촉 면적이 좁기 때문에 유체를 목표 온도까지 승온시키지 못하는 문제가 있다.In addition, the instantaneous hot water device using a metal tube in which a heating element is disposed inside is a method of heating the fluid passing outside the metal tube, so it is not possible to secure enough time for the fluid to be heated or because the contact area between the metal tube and the fluid is small. There is a problem that the temperature cannot be raised to the target temperature.
이를 해결하기 위하여, 순간온수장치에 사용되는 금속관의 길이를 길게 하거나, 유체가 진행하는 경로를 복잡하게 구성하는 방식이 제안되었다. 그러나 금속관의 변경은 순간온수장치의 대형화를 초래하고 그에 따른 소음 및 전력소모를 증가시키는 문제가 있다.In order to solve this, a method of lengthening the length of the metal tube used in the instantaneous hot water device or complicating the path of the fluid has been proposed. However, the change of the metal tube causes the enlargement of the instantaneous water heater, and there is a problem of increasing noise and power consumption.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 유체와의 접촉면적을 넓혀 열교환 효율을 높여줌으로써 유체를 단시간에 목표 온도까지 승온시킬 수 있는 순간온수장치를 제공하는데 그 목적이 있다.The present invention has been devised in view of the above points, and an object thereof is to provide an instantaneous water heater capable of heating a fluid to a target temperature in a short time by increasing a heat exchange efficiency by increasing a contact area with the fluid.
상술한 과제를 해결하기 위하여 본 발명은, 유로 상에 연결되는 중공형의 하우징; 상기 하우징의 내부를 통과하는 유체를 가열할 수 있도록 상기 하우징의 내부에 길이방향을 따라 배치되는 적어도 하나의 히터부; 및 상기 히터부의 작동을 제어하는 제어부;를 포함하고, 상기 히터부는 상기 유체가 통과할 수 있도록 판상의 발열체가 복수 회 권선된 나권형으로 형성되는 순간온수장치를 제공한다.In order to solve the above problems, the present invention, a hollow housing connected to the flow path; At least one heater unit disposed along the longitudinal direction in the interior of the housing to heat the fluid passing through the interior of the housing; And a control unit for controlling the operation of the heater unit, and the heater unit provides an instantaneous hot water device in which a plate-shaped heating element is wound in a spiral wound several times so that the fluid can pass therethrough.
또한, 상기 하우징은 상기 히터부의 터미널단자와 상기 제어부의 전기적인 연결을 허용하기 위한 개구부를 포함할 수 있다. 이와 같은 경우, 상기 개구부는 판상의 커버판을 통해 밀폐될 수 있고, 상기 커버판은 상기 한 쌍의 터미널단자가 통과할 수 있도록 상기 히터부와 대응되는 영역에 관통형성되는 통과공을 포함할 수 있다.In addition, the housing may include an opening for allowing electrical connection between the heater terminal terminal and the control unit. In this case, the opening may be sealed through a plate-shaped cover plate, and the cover plate may include a through hole formed in a region corresponding to the heater portion so that the pair of terminal terminals can pass through it. have.
또한, 상기 히터부는, 길이방향을 따라 산부와 골부가 반복되도록 절곡형성되는 발열체; 및 상기 발열체의 형상을 유지할 수 있도록 상기 발열체의 일면에 배치되는 판상의 지지체;를 포함할 수 있다.In addition, the heater portion, the heating element is bent to be formed so that the peaks and valleys are repeated along the longitudinal direction; And a plate-shaped support disposed on one surface of the heating element to maintain the shape of the heating element.
일례로써, 상기 발열체는, 일정면적을 갖는 판상의 외장재; 상기 외장재의 내부에 배치되고 전원 인가시 열을 발생시키는 발열원; 상기 발열원 및 외장재 사이에 배치되는 절연층; 및 상기 발열원의 양단부에 각각 구비되고, 상기 외장재의 외측으로 돌출되는 한 쌍의 터미널단자;를 포함할 수 있다.As an example, the heating element may include a plate-shaped exterior material having a predetermined area; A heat generating source disposed inside the exterior material and generating heat when power is applied; An insulating layer disposed between the heating source and the exterior material; And a pair of terminal terminals provided at both ends of the heat generating source and protruding outwardly of the exterior material.
이때, 상기 발열원은 비정질 리본시트 또는 퍼칼로이 중 어느 하나일 수 있다.In this case, the heat source may be either an amorphous ribbon sheet or percaloy.
또한, 상기 발열체는 접착제를 사용하지 않고 상호 결합될 수 있다. 일례로, 상기 터미널단자는 상기 발열원의 단부를 감싸는 판상의 금속튜브일 수 있고, 상기 절연층은 상기 발열원과 상기 금속튜브의 일부를 동시에 감싸는 판상의 절연튜브일 수 있으며, 상기 외장재는 상기 절연튜브를 감싸는 판상의 열전도성 외장튜브일 수 있다.In addition, the heating elements can be mutually coupled without using an adhesive. For example, the terminal terminal may be a plate-shaped metal tube surrounding the end of the heat source, and the insulating layer may be a plate-shaped insulating tube simultaneously surrounding the heat source and a portion of the metal tube, and the exterior material is the insulating tube It may be a plate-shaped thermally conductive outer tube surrounding the.
이때, 상기 금속튜브 및 외장튜브는 가압을 통해 판상으로 형성될 수 있다.At this time, the metal tube and the outer tube may be formed in a plate shape through pressure.
또한, 상기 제어부는 상기 하우징의 일측에 배치되는 회로기판을 포함할 수 있고, 상기 히터부는 한 쌍의 터미널단자가 상기 회로기판과 전기적으로 연결될 수 있다.In addition, the control unit may include a circuit board disposed on one side of the housing, and the heater unit may be electrically connected to a pair of terminal terminals.
또한, 상술한 순간온수장치는, 상기 히터부의 발열온도를 제어하기 위한 적어도 하나의 온도센서를 포함할 수 있다.In addition, the above-described instantaneous hot water device may include at least one temperature sensor for controlling the heating temperature of the heater unit.
본 발명에 의하면, 열전달 효율을 높여 유체를 목표 온도까지 빠르게 승온시킬 수 있음으로써 직수 방식을 적용하더라도 안정적으로 온수를 공급할 수 있다.According to the present invention, the heat transfer efficiency is increased to rapidly heat the fluid to a target temperature, so that hot water can be stably supplied even when a direct water system is applied.
도 1은 본 발명의 일 실시예에 따른 순간온수장치를 나타낸 도면,1 is a view showing an instantaneous hot water device according to an embodiment of the present invention,
도 2는 도 1의 분리도,Figure 2 is an exploded view of Figure 1,
도 3은 도 1의 A-A 방향단면도,3 is a cross-sectional view taken along line A-A in FIG. 1,
도 4는 본 발명의 일 실시예에 따른 순간온수장치에서 커버판에 히터부가 결합된 상태를 상부에서 바라본 도면,Figure 4 is a view as viewed from the top of the heater portion coupled to the cover plate in the instantaneous hot water device according to an embodiment of the present invention,
도 5는 본 발명의 일 실시예에 따른 순간온수장치에 적용될 수 있는 히터부를 나타낸 도면,5 is a view showing a heater unit that can be applied to the instantaneous hot water device according to an embodiment of the present invention,
도 6은 도 5에서 지지체가 분리된 상태를 나타낸 도면,6 is a view showing a state in which the support is separated from FIG. 5,
도 7은 본 발명의 일 실시예에 따른 순간온수장치에 적용될 수 있는 발열체의 제조순서를 나타낸 도면,7 is a view showing a manufacturing procedure of a heating element that can be applied to an instantaneous hot water device according to an embodiment of the present invention,
도 8은 도 7의 (e)에서 발열체 일부를 B-B 방향으로 절개한 단면도,8 is a cross-sectional view of a portion of the heating element in FIG. 7 (e) cut in the B-B direction,
도 9는 도 8의 C-C 방향 단면도, 그리고,9 is a cross-sectional view taken along the line C-C in FIG. 8, and
도 10은 본 발명의 일 실시예에 따른 순간온수장치에 적용될 수 있는 히터부에 온도센서가 장착된 상태를 나타낸 도면이다.10 is a view showing a state in which a temperature sensor is mounted to a heater unit that can be applied to an instantaneous hot water device according to an embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가하였다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art to which the present invention pertains may easily practice. The present invention can be implemented in many different forms and is not limited to the embodiments described herein. In the drawings, parts not related to the description are omitted in order to clearly describe the present invention, and the same reference numerals are added to the same or similar elements throughout the specification.
본 발명의 일 실시예에 따른 순간온수장치(100)는 도 1에 도시된 바와 같이 유체가 통과하는 유로 상에 연결될 수 있다. 이를 통해, 상기 순간온수장치(100)는 상기 유로를 통과하는 유체를 가열하여 승온시킴으로써 온수를 생산할 수 있다.The instantaneous hot water device 100 according to an embodiment of the present invention may be connected on a flow path through which a fluid passes, as illustrated in FIG. 1. Through this, the instantaneous hot water device 100 may produce hot water by heating and heating the fluid passing through the flow path.
즉, 본 발명의 일 실시예에 따른 순간온수장치(100)는 상기 유로를 통과하는 유체를 직접 가열하는 직수 가열 방식으로 온수를 생산하기 때문에 생산된 원수를 저장하기 위한 별도의 저장탱크를 생략할 수 있다.That is, since the instantaneous hot water device 100 according to an embodiment of the present invention produces hot water in a direct heating method that directly heats the fluid passing through the flow path, a separate storage tank for storing the raw water is omitted. You can.
이를 위해, 본 발명의 일 실시예에 따른 순간온수장치(100)는 도 2 및 도 3에 도시된 바와 같이 하우징(110), 히터부(120) 및 제어부(130)를 포함한다.To this end, the instantaneous hot water device 100 according to an embodiment of the present invention includes a housing 110, a heater unit 120, and a control unit 130 as shown in FIGS. 2 and 3.
상기 하우징(110)은 가열대상인 유체가 통과할 수 있도록 양단부측이 상기 유로와 연결될 수 있다. 또한, 상기 하우징(110)의 내부에는 상기 히터부(120)가 배치될 수 있다. 이를 통해, 상기 유체는 상기 하우징(110)을 통과하는 과정에서 상기 히터부(120)를 통해 승온될 수 있다.The housing 110 may have both ends connected to the flow path so that the fluid to be heated can pass. In addition, the heater unit 120 may be disposed inside the housing 110. Through this, the fluid may be heated through the heater unit 120 in the process of passing through the housing 110.
일례로, 상기 하우징(110)은 소정의 길이를 갖추고 양단부가 개방된 중공형의 관부재일 수 있다. 또한, 적어도 하나의 히터부(120)는 상기 하우징(110)의 내부에 길이방향을 따라 배치될 수 있다.For example, the housing 110 may be a hollow tube member having a predetermined length and having both ends open. In addition, at least one heater unit 120 may be disposed along the longitudinal direction inside the housing 110.
이에 따라, 상기 유로를 따라 흐르는 유체는 상기 하우징(110)의 내부로 유입된 후 상기 하우징(110)의 내부를 통과하는 과정에서 상기 히터부(120)를 통해 승온될 수 있다.Accordingly, the fluid flowing along the flow path may be heated through the heater unit 120 in the process of passing through the interior of the housing 110 after flowing into the interior of the housing 110.
여기서, 상기 하우징(110)은 일단부가 플랜지를 매개로 상기 유로와 연결될 수도 있고 일단부가 상기 유로의 단부와 직접 연결될 수도 있다.Here, one end of the housing 110 may be connected to the flow path via a flange, or one end may be directly connected to an end of the flow path.
이때, 상기 하우징(110)은 일단부로부터 길이방향을 따라 절개형성되는 개구부(112)를 포함할 수 있다.At this time, the housing 110 may include an opening 112 that is cut in the longitudinal direction from one end.
이와 같은 개구부(112)는 상기 하우징(110)의 내부에 배치되는 히터부(120)의 일부가 외부로 노출될 수 있는 공간을 제공할 수 있다. 일례로, 상기 히터부(120)는 상기 개구부(112)를 통해 외부와의 전기적인 연결을 위한 터미널단자(122d)가 노출될 수 있다. The opening 112 may provide a space in which a part of the heater unit 120 disposed inside the housing 110 can be exposed to the outside. For example, the heater unit 120 may be exposed with a terminal terminal 122d for electrical connection to the outside through the opening 112.
더불어, 상기 개구부(112)는 상기 하우징(110)의 단부로부터 형성됨으로써 상기 히터부(120)를 상기 하우징(110)의 내부로 용이하게 삽입할 수 있다. 즉, 상기 히터부(120)를 상기 하우징(110)의 내부에 위치하도록 배치하는 경우, 상기 히터부(120)의 터미널단자(122d)가 상기 하우징(110)의 내부에서 외측으로 돌출되더라도 상기 터미널단자(122d)가 상기 개구부(112)를 따라 하우징(110)의 길이방향을 따라 이동될 수 있다. 이를 통해, 상기 히터부(120)의 터미널단자(122d)가 상기 하우징(110)의 내부에서 외측으로 돌출되더라도 상기 히터부(120)를 하우징(110)의 내부에 배치하기 위한 작업이 용이하게 수행될 수 있다.In addition, the opening 112 is formed from the end of the housing 110 so that the heater unit 120 can be easily inserted into the housing 110. That is, when the heater unit 120 is disposed to be located inside the housing 110, even if the terminal terminal 122d of the heater unit 120 protrudes outward from the inside of the housing 110, the terminal The terminal 122d may be moved along the longitudinal direction of the housing 110 along the opening 112. Through this, even if the terminal terminal 122d of the heater unit 120 protrudes from the inside of the housing 110 to the outside, the operation for arranging the heater unit 120 inside the housing 110 is easily performed. Can be.
한편, 본 발명의 일 실시예에 따른 순간온수장치(100)는 상기 개구부(112)가 판상의 커버판(114)을 통해 밀폐될 수 있다. 이를 통해, 상기 순간온수장치(100)는 상기 유체가 하우징(110)의 내부를 통과하는 과정에서 상기 개구부(112)를 통해 외부로 누출되는 것이 방지될 수 있다.Meanwhile, in the instantaneous hot water device 100 according to an embodiment of the present invention, the opening 112 may be sealed through a plate-shaped cover plate 114. Through this, the instantaneous hot water device 100 may be prevented from leaking to the outside through the opening 112 in the process of the fluid passing through the interior of the housing 110.
이때, 상기 커버판(114)은 상기 히터부(120)의 일부가 고정될 수 있다. 일례로, 상기 히터부(120) 중 상기 하우징(110)의 내부로부터 외부로 돌출되는 부분이 상기 커버판(114)에 고정될 수 있다. 이에 따라, 상기 히터부(120)의 일부가 상기 커버판(114)에 고정된 상태에서 상기 커버판(114)을 하우징(110)의 내부로 삽입하면 상기 개구부(112)는 상기 커버판(114)을 통해 밀폐될 수 있으며, 상기 히터부(120)의 일부는 상기 개구부(112)를 통해 외부로 노출된 상태로 배치될 수 있다.At this time, a part of the heater part 120 may be fixed to the cover plate 114. For example, a portion of the heater part 120 protruding from the inside of the housing 110 to the outside may be fixed to the cover plate 114. Accordingly, when the cover plate 114 is inserted into the housing 110 while a part of the heater part 120 is fixed to the cover plate 114, the opening 112 is the cover plate 114 ) May be sealed, and a part of the heater unit 120 may be disposed in an exposed state through the opening 112.
여기서, 상기 커버판(114)은 상기 개구부(112)보다 상대적으로 넓은 면적을 가질 수 있으며, 테두리 측이 용접 등을 통해 상기 하우징(110)에 고정될 수 있다. 일례로, 상기 커버판(114)은 상기 하우징(110)의 내부에 배치될 수 있으며, 테두리 측이 하우징(110)의 내면에 고정될 수 있다. 이에 따라, 상기 커버판(114)은 상기 개구부(112)를 밀폐할 수 있으며, 상기 히터부(120) 중 일부는 상기 커버판(114)을 통해 외부로 노출될 수 있다.Here, the cover plate 114 may have a relatively large area than the opening 112, and the rim side may be fixed to the housing 110 through welding or the like. In one example, the cover plate 114 may be disposed inside the housing 110, the rim side may be fixed to the inner surface of the housing 110. Accordingly, the cover plate 114 may seal the opening 112, and some of the heater parts 120 may be exposed to the outside through the cover plate 114.
이때, 상기 커버판(114)은 관통형성되는 적어도 하나의 통과공(115)을 포함할 수 있다. 이와 같은 통과공(115)은 상기 히터부(120)와 대응되는 영역에 형성될 수 있으며, 상기 히터부(120)와 대응되는 개수로 구비될 수 있다. 이에 따라, 상기 커버판(114)이 상기 하우징(110)의 일면에 고정되는 경우, 상기 하우징(110)의 개구부(112)는 상기 커버판(114)을 통해 밀폐될 수 있으며, 상기 히터부(120) 중 상기 하우징(110)의 외부로 돌출되는 부분은 상기 커버판(114)에 고정된 상태에서 상기 통과공(115)을 통해 외부로 노출될 수 있다. 이를 통해, 상기 커버판(114)은 상기 하우징(110)의 내부를 통과하는 유체가 상기 개구부(112)를 통해 외부로 누출되는 것이 방지될 수 있으며, 상기 히터부(120) 중 상기 통과공(115)을 통해 상기 하우징(110)의 외부로 돌출된 부분은 상기 제어부(130)와 전기적으로 용이하게 연결될 수 있다.At this time, the cover plate 114 may include at least one through hole 115 formed through. The through hole 115 may be formed in a region corresponding to the heater unit 120, and may be provided in a number corresponding to the heater unit 120. Accordingly, when the cover plate 114 is fixed to one surface of the housing 110, the opening 112 of the housing 110 may be sealed through the cover plate 114, the heater unit ( The portion protruding out of the housing 110 among the 120 may be exposed to the outside through the through hole 115 in a state fixed to the cover plate 114. Through this, the cover plate 114 can be prevented from leaking the fluid passing through the interior of the housing 110 to the outside through the opening 112, the through hole (of the heater unit 120) The portion protruding out of the housing 110 through 115 may be easily electrically connected to the control unit 130.
이때, 상기 통과공(115)은 테두리를 따라 외측으로 돌출되는 돌출부(116)를 포함할 수 있다. 이와 같은 돌출부(116)는 상기 히터부(120) 중 상기 하우징(110)의 외부로 돌출되는 부분이 상기 커버판(114)에 고정되는 경우, 상기 히터부(120) 중 상기 하우징(110)의 외부로 돌출되는 부분과 밀착될 수 있다. 이에 따라, 상기 돌출부(116)는 일면이 상기 히터부(120) 중 상기 하우징(110)의 외부로 돌출된 부분의 테두리와 밀착됨으로써 상기 히터부(120)를 고정할 수 있다. 이를 통해, 상기 돌출부(116)는 상기 히터부(120)와 커버판(114)의 결합력을 향상시킬 수 있다.At this time, the through hole 115 may include a protrusion 116 protruding outward along the rim. When the protruding portion 116 of the heater portion 120 protruding out of the housing 110 is fixed to the cover plate 114, the protruding portion 116 of the housing 110 of the heater portion 120 It may be in close contact with the portion protruding to the outside. Accordingly, the protruding portion 116 may fix the heater portion 120 by having one surface of the heater portion 120 in close contact with an edge of the portion protruding out of the housing 110. Through this, the protrusion 116 can improve the bonding force between the heater unit 120 and the cover plate 114.
한편, 상기 통과공(115)은 내부에 별도의 밀봉부재(117)가 배치될 수 있다. 이와 같은 밀봉부재(117)는 도 4에 도시된 바와 같이 상기 히터부(120) 중 한 쌍의 터미널단자(122d)를 둘러싸도록 상기 통과공(115)에 배치됨으로써 밀봉력을 높일 수 있다. 이를 통해, 유체가 상기 하우징(110)의 내부를 통과하는 과정에서 상기 통과공(115)을 통해 누설될 가능성을 미연에 차단할 수 있다.Meanwhile, a separate sealing member 117 may be disposed in the through hole 115. 4, the sealing member 117 is disposed in the through hole 115 to surround a pair of terminal terminals 122d of the heater unit 120 as shown in FIG. 4, thereby increasing the sealing force. Through this, the possibility of leaking through the through hole 115 in the process of passing the fluid through the interior of the housing 110 can be prevented.
여기서, 상기 밀봉부재(117)는 별도의 부재로 구비되어 상기 통과공(115)에 결합될 수도 있고, 액상 또는 겔상의 물질이 상기 통과공(115)에 충진된 것일 수도 있다. 일례로, 상기 밀봉부재(117)는 실리콘 코킹일 수도 있고 몰딩물일 수도 있다. 그러나 상기 밀봉부재(117)를 이에 한정하는 것은 아니며, 틈새의 발생을 방지하면서도 유체의 누설을 방지할 수 있는 것이라면 공지의 다양한 재료가 제한없이 사용될 수 있다.Here, the sealing member 117 may be provided as a separate member to be coupled to the through hole 115, or a liquid or gel-like material may be filled in the through hole 115. In one example, the sealing member 117 may be silicone caulking or a molding. However, the sealing member 117 is not limited thereto, and various known materials can be used without limitation as long as it prevents the generation of a gap and prevents leakage of the fluid.
상기 히터부(120)는 상기 하우징(110)의 내부를 통과하는 유체 측으로 열을 제공함으로써 상기 유체를 가열할 수 있다. 이를 위해, 상기 히터부(120)는 도 3에 도시된 바와 같이 상기 하우징(110)의 내부에 배치될 수 있으며, 상기 하우징(110)의 길이방향을 따라 하나 이상 배치될 수 있다. 이에 따라, 상기 유체는 상기 하우징(110)의 내부를 통과하는 과정에서 상기 히터부(120)에서 제공되는 열에 의해 가열될 수 있다.The heater unit 120 may heat the fluid by providing heat to the fluid side passing through the interior of the housing 110. To this end, the heater unit 120 may be disposed inside the housing 110 as shown in FIG. 3, and may be disposed one or more along the longitudinal direction of the housing 110. Accordingly, the fluid may be heated by heat provided from the heater unit 120 in the process of passing through the interior of the housing 110.
이때, 상기 히터부(120)는 상기 유체가 히터부(120)를 통과할 수 있도록 상기 하우징(110)의 내부에 배치될 수 있다. At this time, the heater unit 120 may be disposed inside the housing 110 to allow the fluid to pass through the heater unit 120.
즉, 상기 히터부(120)는 도 5 및 도 6에 도시된 바와 같이 소정의 길이를 갖는 판상의 발열체(122)를 포함할 수 있으며, 상기 발열체(122)는 길이방향을 따라 산부와 골부가 반복적으로 절곡형성될 수 있다. 또한, 상기 발열체(122)는 복수 회 권선된 나권형으로 형성될 수 있으며, 상기 산부 및 골부는 상기 발열체(122)의 폭방향과 평행한 방향으로 형성될 수 있다.That is, the heater unit 120 may include a plate-shaped heating element 122 having a predetermined length, as shown in FIGS. 5 and 6, and the heating element 122 has an acid portion and a valley portion along the longitudinal direction. It can be bent repeatedly. In addition, the heating element 122 may be formed in a spiral wound type wound a plurality of times, and the peaks and valleys may be formed in a direction parallel to the width direction of the heating element 122.
이에 따라, 서로 마주하는 산부와 산부 또는 산부와 골부 사이에는 상기 유체가 통과할 수 있는 통로가 형성될 수 있고, 상기 통로는 상기 발열체(122)의 폭방향과 평행한 방향으로 형성될 수 있으며, 상기 통로의 길이는 상기 발열체(122)의 폭과 대략 동일한 크기를 가질 수 있다.Accordingly, a passage through which the fluid can pass may be formed between the hills and hills or the hills and valleys facing each other, and the passage may be formed in a direction parallel to the width direction of the heating element 122, The length of the passage may have a size approximately equal to the width of the heating element 122.
이와 같은 경우 상기 히터부(120)는 상기 통로가 상기 하우징(110)의 내부를 통과하는 유체의 흐름방향과 평행하게 배치되도록 상기 하우징(110)의 내부에 배치될 수 있다.In this case, the heater unit 120 may be disposed inside the housing 110 such that the passage is disposed parallel to the flow direction of the fluid passing through the interior of the housing 110.
이로 인해, 상기 유체는 상기 히터부(120)를 통과하는 과정에서 상기 발열체(122)로부터 제공되는 열에 의해 가열될 수 있다. 더불어, 상기 유체는 상기 통로를 통하여 상기 히터부(120)를 원활하게 통과할 수 있음으로써 상기 발열체(122)로부터 제공되는 열에 의해 가열되는 과정에서 유속이 저하되는 것을 최소화할 수 있다. Due to this, the fluid may be heated by heat provided from the heating element 122 in the process of passing through the heater unit 120. In addition, the fluid can smoothly pass through the heater unit 120 through the passage, thereby minimizing a decrease in flow velocity in the process of being heated by heat provided from the heating element 122.
또한, 상기 히터부(120)는 상기 발열체(122)의 폭방향을 따라 형성된 통로가 발열체의 길이방향을 따라 복수 개로 형성됨으로써 유체와 접촉되는 접촉면적을 최대화할 수 있으며, 유체가 상기 히터부(120)를 통과하는 과정에서 상기 발열체(122)를 통해 직접 가열될 수 있다. 이를 통해, 유체가 상기 통로를 따라 히터부(120)를 단시간에 통과하더라도 상기 발열체(122)로부터 충분한 열을 제공받을 수 있음으로써 목표 온도까지 충분히 승온될 수 있다.In addition, the heater unit 120 may maximize the contact area in contact with the fluid by forming a plurality of passages formed along the width direction of the heating element 122 along the longitudinal direction of the heating element, and the fluid may include the heater unit ( In the process of passing through 120), it may be directly heated through the heating element 122. Through this, even if the fluid passes through the heater portion 120 along the passage in a short time, sufficient heat can be provided from the heating element 122 to sufficiently increase the temperature to a target temperature.
한편, 상기 히터부(120)는 나권형으로 권선된 발열체(122)의 형상을 유지할 수 있도록 상기 발열체(122)의 일면에 배치되는 판상의 지지체(124)를 포함할 수 있다. 여기서, 상기 지지체(124)의 일면에는 서로 이웃하는 발열체(122)의 산부들이 접촉되거나 서로 이웃하는 발열체(122)의 골부들이 접촉될 수 있다.On the other hand, the heater unit 120 may include a plate-shaped support 124 disposed on one surface of the heating element 122 so as to maintain the shape of the heating element 122 wound in a spiral wound. Here, on one surface of the support 124, the acid parts of the heating elements 122 adjacent to each other may be contacted, or the bone parts of the heating elements 122 adjacent to each other may be contacted.
이에 따라, 상기 발열체(122)가 나권형으로 권선되는 경우 상기 지지체(124) 역시 발열체(122)와 함께 나권형으로 권선될 수 있으며, 상기 지지체(124)의 일면 또는 양면 측에 나권형으로 권선된 발열체(122)의 일부가 각각 배치될 수 있다.Accordingly, when the heating element 122 is wound in a spiral wound, the support 124 may also be wound in a spiral wound together with the heating element 122, and wound in a spiral wound on one or both sides of the support 124. A portion of the generated heating elements 122 may be respectively disposed.
이로 인해, 상기 발열체(122)가 나권형으로 권선되더라도 상기 지지체(124)의 양측에 배치된 발열체(122)의 일부는 상기 지지체(124)를 통해 서로 마주하는 산부와 산부 또는 골부와 골부가 서로 겹쳐지는 것이 방지될 수 있다. 이를 통해, 상기 히터부(120)는 서로 마주하는 산부와 산부 또는 산부와 골부 사이에 형성된 통로가 항상 유지될 수 있음으로써 상기 하우징(110)의 내부를 통과하는 유체가 상기 히터부(120)를 원활하게 통과할 수 있다.Due to this, even if the heating element 122 is wound in a spiral shape, a part of the heating element 122 disposed on both sides of the support 124 faces each other through the support 124, such as an acid portion, an acid portion, or a bone portion and a bone portion. The overlap can be prevented. Through this, the heater portion 120 is a fluid passing through the interior of the housing 110, the passage formed between the hilltop and the hilltop or the hilltop and valleys facing each other can be maintained, the heater 120 It can pass smoothly.
더불어, 상기 지지체(124)는 열전도성을 갖는 금속재질로 이루어질 수 있다. 이를 통해, 상기 지지체(124)는 상기 발열체(122)의 형상을 유지하는 역할과 함께 상기 유체를 가열하는 전열면적을 넓히는 역할을 동시에 수행할 수 있다. 즉, 상기 지지체(124)는 상기 발열체(122)로부터 전달된 열을 이용하여 상기 유체를 가열할 수 있음으로써 상기 유체를 가열하기 위한 보조발열원의 역할을 수행할 수 있다. 더하여, 상기 지지체(124)는 상기 유체와의 접촉을 통한 부식을 방지할 수 있도록 내식성을 갖는 금속재질일 수 있다. 비제한적인 예로써, 상기 지지체(124)는 아노다이징 처리된 알류미늄이거나 스테인리스 스틸일 수 있으나 이에 한정하는 것은 아니며 열전도성 및 내식성을 가지는 재질이거나 열전도성을 갖는 재질에 내식처리된 것이라면 제한없이 사용될 수 있다.In addition, the support 124 may be made of a metal material having thermal conductivity. Through this, the support 124 may simultaneously serve to maintain the shape of the heating element 122 and widen the heat transfer area for heating the fluid. That is, the support 124 may function as an auxiliary heat source for heating the fluid by heating the fluid using heat transferred from the heating element 122. In addition, the support 124 may be a metal material having corrosion resistance to prevent corrosion through contact with the fluid. As a non-limiting example, the support 124 may be anodized aluminum or stainless steel, but is not limited thereto, and may be used without limitation as long as it is a material having heat conductivity and corrosion resistance or a material having heat conductivity and corrosion resistance. .
한편, 상기 발열체(122)는 전원인가시 유체를 가열하기 위한 열을 발생시키고 전열면적을 넓힐 수 있도록 판상의 형태라면 그 구조나 재질에 있어 제한없이 사용될 수 있다.On the other hand, the heating element 122 may be used without limitation in its structure or material in the form of a plate so as to generate heat for heating the fluid when power is applied and to increase the heat transfer area.
일례로, 상기 발열체(122)는 도 7 내지 도 9에 도시된 바와 같이 외장재(122a), 발열원(122b), 절연층(122c) 및 한 쌍의 터미널단자(122d)를 포함할 수 있으며, 상기 절연층(122c)은 상기 외장재(122a) 및 발열원(122b) 사이에 개재될 수 있다.For example, the heating element 122 may include an exterior material 122a, a heating source 122b, an insulating layer 122c, and a pair of terminal terminals 122d, as illustrated in FIGS. 7 to 9, wherein The insulating layer 122c may be interposed between the exterior material 122a and the heat generating source 122b.
이때, 본 발명의 일 실시예에 따른 발열체(122)는 상술한 바와 같이 유체와 접촉되는 전열면적을 넓히면서도 유체가 통과할 수 있는 통로를 형성할 수 있도록 길이방향을 따라 산부와 골부가 반복적으로 형성될 수 있다.At this time, the heating element 122 according to an embodiment of the present invention, as described above, while widening the heat transfer area in contact with the fluid, while forming a passage through which the fluid can pass, the acid and valley portions are repeated along the longitudinal direction. Can be formed.
이에 따라, 본 발명의 일 실시예에 따른 발열체(122)는 유체와 접촉되는 접촉면적을 넓혀줌으로써 발열체(122)와 유체 사이에서 발생하는 열교환 효율을 높일 수 있다.Accordingly, the heating element 122 according to an embodiment of the present invention can increase the heat exchange efficiency generated between the heating element 122 and the fluid by increasing the contact area in contact with the fluid.
이를 위해, 상기 발열체(122)는 길이방향을 따라 산부와 골부가 반복적으로 형성될 수 있으며, 상기 산부 및 골부는 상기 발열체(122)의 폭방향을 따라 형성될 수 있다.To this end, the heating element 122 may be repeatedly formed with the peaks and valleys along the longitudinal direction, the peaks and valleys may be formed along the width direction of the heating element (122).
이때, 상기 산부 및 골부는 상기 외장재(122a) 측에만 형성될 수도 있고, 상기 외장재(122a)와 더불어 발열원(122b) 측에도 형성될 수 있다. 또한, 상기 산부 및 골부가 외장재(122a)와 더불어 발열원(122b)에도 형성되는 경우 상기 외장재(122a)에 형성된 산부 및 골부는 상기 발열원(122b)에 형성된 산부 및 골부와 서로 일치하도록 형성될 수 있다.In this case, the hills and valleys may be formed only on the side of the exterior material 122a, or may be formed on the side of the heat generating source 122b together with the exterior material 122a. In addition, when the peaks and valleys are also formed in the heat generating source 122b together with the exterior material 122a, the peaks and valleys formed in the exterior material 122a may be formed to coincide with the peaks and valleys formed in the heat generation source 122b. .
이를 통해, 상기 외장재(122a) 및 발열원(122b)은 서로 일치하도록 형성된 산부 및 골부를 통해 항상 동일한 거동을 수행할 수 있음으로써 서로 다른 거동 시 발생할 수 있는 발열원(122b)의 파손을 미연에 방지할 수 있다.Through this, the exterior material 122a and the heat generating source 122b can always perform the same behavior through the hills and valleys formed to coincide with each other, thereby preventing damage to the heat generating source 122b that may occur during different behaviors. You can.
즉, 상기 발열체(122)는 길이방향을 따라 형성된 산부 및 골부를 통하여 길이방향에 따른 수축 팽창률을 최소화함으로써 절연이 깨지는 것을 방지할 수 있다.That is, the heating element 122 may prevent the insulation from breaking by minimizing the contraction expansion rate along the longitudinal direction through the hills and valleys formed along the longitudinal direction.
다시 말하면, 상기 발열원(122b)에 형성된 산부 및 골부와 외장재(122a)에 형성된 산부 및 골부가 서로 일치하도록 형성됨으로써, 상기 발열체(122)를 구성하는 외장재(122a) 및 발열원(122b)의 재질이나 수축팽창률이 상이하더라도 이를 보완할 수 있다.In other words, the peaks and valleys formed in the heating source 122b and the peaks and valleys formed in the exterior material 122a are formed to coincide with each other, so that the material of the exterior material 122a and the heating source 122b constituting the heating element 122 or Even if the shrinkage expansion rate is different, this can be compensated.
이로 인해, 상기 발열원(122b) 및 외장재(122a) 사이에 개재된 절연층(122c)이 깨지거나 발열원(122b)으로부터 분리되는 것을 방지할 수 있다.Due to this, it is possible to prevent the insulating layer 122c interposed between the heat generating source 122b and the exterior material 122a from being broken or separated from the heat generating source 122b.
상기 외장재(122a)는 일정면적을 갖는 판상으로 형성될 수 있으며, 상기 발열원(122b)은 외장재(122a)의 내부에 배치될 수 있다. 이를 통해, 상기 발열체(122)는 전원인가 시 상기 발열원(122b)이 발열함으로써 열을 발생시킬 수 있다.The exterior material 122a may be formed in a plate shape having a predetermined area, and the heat generating source 122b may be disposed inside the exterior material 122a. Through this, when the power is applied to the heating element 122, the heat generating source 122b may generate heat to generate heat.
즉, 상기 외장재(122a)는 내부에 수용되는 발열원(122b)을 보호하는 역할과 함께 발열원(122b)에서 발생된 열을 분산시키는 역할을 수행할 수 있다.That is, the exterior material 122a may serve to protect the heat generating source 122b accommodated therein and to disperse heat generated from the heat generating source 122b.
이를 위해, 상기 외장재(122a)는 금속재질로 이루어질 수 있으며, 양단부가 개방된 중공형으로 형성될 수 있다.To this end, the exterior material 122a may be made of a metal material, and may be formed in a hollow shape with both ends open.
일례로, 상기 외장재(122a)는 내부가 빈 판상의 열전도성 외장튜브일 수 있으며, 상기 열전도성 외장튜브는 열전도도가 우수한 구리 또는 알루미늄 재질로 이루어진 중공형의 금속튜브일 수 있다.For example, the exterior material 122a may be an empty plate-shaped heat-conductive exterior tube, and the heat-conductive exterior tube may be a hollow metal tube made of copper or aluminum having excellent heat conductivity.
이와 같은 열전도성 외장튜브는 상기 발열원(122b)이 내부에 삽입된 상태에서 가압됨으로써 판상으로 형성될 수 있다.The heat-conducting outer tube may be formed in a plate shape by being pressed while the heat generating source 122b is inserted therein.
여기서, 상기 외장재(122a)는 원형의 외장재(122a)를 1차 가압하여 타원형상으로 변경하고, 외장재(122a)의 내부에 발열원(122b)을 삽입한 상태에서 외장재(122a)를 2차 가압함으로써 판상으로 형성될 수 있다.Here, the exterior material (122a) by first pressing the circular exterior material (122a) to change to an elliptical shape, and by pressing the exterior material (122a) in the state of inserting a heating source (122b) inside the exterior material (122a) It may be formed in a plate shape.
그러나 상기 외장재(122a)를 판상으로 형성하는 방식을 이에 한정하는 것은 아니며, 상기 발열원(122b)이 상기 외장재(122a)의 내부에 삽입된 상태에서 한 번의 가압공정을 통해 상기 외장재(122a)가 판상으로 형성될 수도 있음을 밝혀둔다.However, the method of forming the exterior material 122a in a plate shape is not limited thereto, and the exterior material 122a is plate-shaped through a single pressing process while the heat generating source 122b is inserted inside the exterior material 122a. It may be formed as.
상기 발열원(122b)은 외장재(122a)의 내부에 배치될 수 있으며 전원인가시 열을 발생시킬 수 있다. 이때, 상기 발열원(122b)은 소정의 폭과 길이를 갖는 판상의 형태일 수 있다.The heat generating source 122b may be disposed inside the exterior material 122a and may generate heat when power is applied. At this time, the heat generating source 122b may be in the form of a plate having a predetermined width and length.
일례로, 상기 발열원(122b)은 소정의 면적을 갖는 판상의 금속시트일 수 있으며, 금속시트로는 알루미늄이나 구리, 비정질 리본시트, 퍼칼로이 등이 사용될 수 있다.For example, the heat generating source 122b may be a plate-shaped metal sheet having a predetermined area, and aluminum or copper, an amorphous ribbon sheet, or percaloy may be used as the metal sheet.
바람직하게는, 상기 발열원(122b)은 반복적인 열피로 노출에 따른 결정화를 방지할 수 있도록 칸탈 및 페칼로이 합금 중 적어도 1종 이상을 포함하는 판상의 도전성 부재일 수 있다.Preferably, the heat generating source 122b may be a plate-shaped conductive member including at least one of cantal and pekalloy alloys to prevent crystallization due to repeated thermal fatigue exposure.
이때, 상기 발열원(122b)은 도 7의 (a) 내지 (d)에 도시된 바와 같이 대략 'ㄷ'자 형상으로 형성될 수 있으며, 상기 발열원(122b)은 두 개의 자유단부 측에 한 쌍의 터미널단자(122d)가 형성될 수 있다. 이에 따라, 상기 발열체(122)는 상기 한 쌍의 터미널단자(122d)가 동일한 단부측에 배치될 수 있으며, 상기 발열원(122b)이 상기 외장재(122a)의 전체 면적에 골고루 배치될 수 있다.At this time, the heat generating source (122b) may be formed in a substantially 'c' shape, as shown in Figure 7 (a) to (d), the heat generating source (122b) is a pair of two free end side The terminal terminal 122d may be formed. Accordingly, in the heating element 122, the pair of terminal terminals 122d may be disposed at the same end side, and the heating source 122b may be evenly disposed over the entire area of the exterior material 122a.
그러나 상기 발열원(122b)의 형상을 이에 한정하는 것은 아니며, 두 개의 자유단부가 동일한 방향을 향하도록 형성될 수 있는 형상이라면 다양한 형상을 가질 수 있다. 일례로, 상기 발열원(122b)은 대략 'W' 형상과 같이 길이 중간이 복수 회 절곡된 형태일 수도 있다.However, the shape of the heat generating source 122b is not limited thereto, and may have various shapes as long as the two free ends can be formed to face the same direction. For example, the heat generating source 122b may have a shape in which the middle of the length is bent a plurality of times, such as approximately 'W' shape.
상기 절연층(122c)은 도 8 및 도 9에 도시된 바와 같이 전원인가시 상기 외장재(122a) 및 발열원(122b)을 전기적으로 절연할 수 있도록 상기 외장재(122a)의 내면 및 발열원(122b)의 사이에 배치될 수 있다.8 and 9, the insulating layer 122c is provided with an inner surface of the exterior material 122a and a heating source 122b to electrically insulate the exterior material 122a and the heat generation source 122b when power is applied. Can be placed between.
이에 따라, 상기 외장재(122a)가 도전성을 갖는 금속재질로 이루어진다 하더라도 외장재(122a)의 내부에 배치되는 발열원(122b)과 외장재(122a)간에 발생할 수 있는 전기적인 쇼트를 방지할 수 있다.Accordingly, even if the exterior material 122a is made of a conductive metal material, electrical shorts that may occur between the heat generating source 122b and the exterior material 122a disposed inside the exterior material 122a can be prevented.
이와 같은 상기 절연층(122c)은 전기적인 절연을 위한 절연성을 가질 수 있으며, 상기 발열원(122b)에서 발생된 열에 의한 손상을 방지할 수 있도록 내열성을 더 가질 수 있다.The insulating layer 122c may have insulating properties for electrical insulation, and may further have heat resistance to prevent damage due to heat generated from the heat generating source 122b.
일례로, 상기 절연층(122c)은 절연성 및 내열성을 갖는 코팅액이 도포된 코팅층일 수도 있고, 절연성 및 내열성을 갖는 수지재질로 이루어진 필름부재가 접착층을 매개로 부착된 형태일 수도 있다.For example, the insulating layer 122c may be a coating layer coated with a coating solution having insulation and heat resistance, or a film member made of a resin material having insulation and heat resistance may be attached through an adhesive layer.
바람직하게는, 상기 절연층(122c)은 절연성 및 내열성을 갖는 수지재질로 이루어진 중공형의 절연튜브일 수 있다.Preferably, the insulating layer 122c may be a hollow insulating tube made of a resin material having insulating and heat resistance.
즉, 상기 절연층(122c)은 도 7의 (c)에 도시된 바와 같이 상기 외장재(122a)와 마찬가지로 양단부가 개방된 중공형으로 형성될 수 있으며, 상기 발열원(122b)이 내부에 삽입됨으로써 상기 발열원(122b)을 완전히 덮을 수 있다. That is, the insulating layer 122c may be formed in a hollow shape with both ends open, as in the case of the exterior material 122a, as shown in FIG. 7 (c), and the heating source 122b is inserted therein. The heat generating source 122b may be completely covered.
이에 따라, 상기 절연층(122c)은 내부에 발열원(122b)이 삽입된 상태에서 상기 외장재(122a)를 구성하는 열전도성 외장튜브의 내부에 삽입될 수 있으며, 상기 열전도성 외장튜브가 가압을 통해 판상의 형태로 변경되는 경우 상기 발열원(122b) 및 외장재(122a) 사이에 배치될 수 있다.Accordingly, the insulating layer 122c may be inserted into the inside of the heat-conducting sheath tube constituting the sheath material 122a while the heat-generating source 122b is inserted therein, and the heat-conducting sheath tube is pressurized. When it is changed to a plate shape, it may be disposed between the heat generating source 122b and the exterior material 122a.
본 발명에서, 상기 절연튜브는 폴리이미드(PI)와 같이 내열성 및 절연성을 갖는 고분자수지일 수 있으나 이에 한정하는 것은 아니며, 내열성 및 절연성을 갖는 재질이라면 공지의 모든 재질이 사용될 수 있다.In the present invention, the insulating tube may be a polymer resin having heat resistance and insulation properties such as polyimide (PI), but is not limited thereto, and any material known in the art may be used as long as it is a material having heat resistance and insulation properties.
상기 터미널단자(122d)는 외부로부터 상기 발열원(122b)에 전원이 공급될 수 있도록 외부전원과 연결될 수 있다. 이를 위해, 상기 터미널단자(122d)는 상술한 바와 같이 상기 발열원(122b)의 자유단부 측에 한 쌍으로 구비될 수 있다.The terminal terminal 122d may be connected to an external power source so that power can be supplied to the heating source 122b from the outside. To this end, the terminal terminal 122d may be provided as a pair on the free end side of the heating source 122b as described above.
즉, 상기 터미널단자(122d)는 도전성재질로 이루어질 수 있으며, (+)단자와 (-)단자의 역할을 수행할 수 있도록 한 쌍으로 구성될 수 있다.That is, the terminal terminal 122d may be made of a conductive material, and may be configured as a pair to perform the roles of the (+) terminal and the (-) terminal.
이때, 상기 터미널단자(122d)는 도 7의 (b) 내지 (d)에 도시된 바와 같이 금속재질로 이루어진 중공형의 금속튜브일 수 있으며, 상기 발열원(122b)의 단부 측을 일정길이 감싸면서 적어도 일부의 길이가 외장재(122a)의 외측으로 돌출되도록 구비될 수 있다.At this time, the terminal terminal (122d) may be a hollow metal tube made of a metal material as shown in (b) to (d) of Figure 7, while surrounding a certain length of the end side of the heating source (122b) At least a portion of the length may be provided to protrude to the outside of the exterior material (122a).
이에 따라, 상기 발열체(122)는 상기 발열원(122b)의 단부측에 상기 터미널단자(122d)가 결합된 상태에서 상기 발열원(122b)이 외장재(122a)의 내부에 배치될 수 있으며, 상기 외장재(122a)와 마찬가지로 상기 터미널단자(122d)는 가압을 통해 판상으로 형성될 수 있다.Accordingly, the heating element 122 may be disposed in the interior of the exterior material 122a, the heating source 122b in a state where the terminal terminal 122d is coupled to the end side of the heating source 122b, and the exterior material ( Like 122a), the terminal terminal 122d may be formed in a plate shape through pressing.
여기서, 서로 대면하는 외장재(122a)의 내면 및 터미널단자(122d)의 일면 사이에는 상술한 절연층(122c)이 개재됨으로써 상기 터미널단자(122d)가 상기 외장재(122a)와 일부 중첩되더라도 서로 전기적인 절연을 유지할 수 있다.Here, the above-described insulating layer 122c is interposed between the inner surface of the facing material 122a facing each other and one surface of the terminal terminal 122d, so that the terminal terminals 122d are electrically connected to each other even if they partially overlap with the facing material 122a. Insulation can be maintained.
한편, 상기 터미널단자(122d)는 전체길이 중 일부의 길이에 대하여 산부 및 골부가 형성될 수 있다. 즉, 상기 터미널단자(122d)는 도 8에 도시된 바와 같이 전체길이 중 상기 외장재(122a)의 내부에 삽입되어 상기 외장재(122a)와 중첩되는 영역에 상기 산부 및 골부가 1회 이상 형성될 수 있다.On the other hand, the terminal terminal (122d) may be formed with a valley and a valley for a portion of the entire length. That is, the terminal terminal (122d) is inserted into the interior of the exterior material (122a) of the entire length as shown in FIG. 8, the area and the valley may be formed more than once in the region overlapping have.
이에 따라, 상기 터미널단자(122d)는 상기 외장재(122a)와 중첩되는 영역에 형성된 산부 및 골부를 통해 상기 외장재(122a)로부터 분리되는 것이 방지됨으로써 상기 터미널단자(122d)와 외장재(122a)를 상호 고정하기 위한 별도의 접착부재가 생략될 수 있다.Accordingly, the terminal terminal 122d is prevented from being separated from the exterior material 122a through the hills and valleys formed in an area overlapping the exterior material 122a, thereby mutually connecting the terminal terminal 122d to the exterior material 122a. A separate adhesive member for fixing may be omitted.
상기 제어부(130)는 상기 순간온수장치(100)의 전반적인 동작을 제어할 수 있다. 일례로, 상기 제어부(130)는 상기 히터부(120) 측으로 전원을 공급하거나 차단함으로써 상기 순간온수장치(100)의 구동을 제어할 수 있다.The control unit 130 may control the overall operation of the instantaneous hot water device 100. For example, the control unit 130 may control driving of the instantaneous hot water device 100 by supplying or blocking power to the heater unit 120 side.
이를 위해, 상기 제어부(130)는 적어도 하나의 회로기판(132)을 포함할 수 있으며, 상기 회로기판(132)의 일면에 실장되는 적어도 하나의 칩셋(134)을 포함할 수 있다. 또한, 상기 회로기판(132)은 상기 하우징(110)에 내장되는 적어도 하나의 히터부(120)와 서로 전기적으로 연결될 수 있다.To this end, the control unit 130 may include at least one circuit board 132 and may include at least one chipset 134 mounted on one surface of the circuit board 132. In addition, the circuit board 132 may be electrically connected to each other with at least one heater unit 120 embedded in the housing 110.
즉, 도 3에 도시된 바와 같이 상기 커버판(114)의 통과공(115)을 통해 상기 하우징(110)의 내부에서 외부로 돌출된 한 쌍의 터미널단자(122d)가 상기 회로기판(132)과 연결됨으로써 상기 제어부(130) 및 히터부(120)가 서로 전기적으로 연결될 수 있다.That is, as shown in FIG. 3, a pair of terminal terminals 122d protruding from the inside of the housing 110 to the outside through the through hole 115 of the cover plate 114 is the circuit board 132. By being connected to the control unit 130 and the heater unit 120 may be electrically connected to each other.
이를 위해, 상기 회로기판(132)은 도 3에 도시된 바와 같이 상기 하우징(110)의 외측에 배치될 수 있으며, 상기 회로기판(132)은 외부환경으로부터 보호될 수 있도록 상기 하우징(110)의 일측에 결합되는 별도의 덮개부재(140)에 내장될 수 있다.To this end, the circuit board 132 may be disposed outside the housing 110 as shown in FIG. 3, and the circuit board 132 of the housing 110 may be protected from an external environment. It may be embedded in a separate cover member 140 coupled to one side.
이에 따라, 상기 히터부(120)는 상기 제어부(130)의 제어를 통해 공급되는 전원을 이용하여 발열될 수 있다.Accordingly, the heater unit 120 may be heated using power supplied through the control of the control unit 130.
여기서, 상기 제어부(130)는 케이블을 매개로 외부전원과 전기적으로 연결됨으로써 구동전원을 공급받을 수도 있고, 자체에 내장되는 배터리로부터 구동전원을 공급받을 수도 있다.Here, the control unit 130 may be supplied with driving power by being electrically connected to an external power source via a cable, or may be supplied with driving power from a battery built in itself.
한편, 본 발명의 일 실시예에 따른 순간온수장치(100)는 적어도 하나의 온도센서(150)를 더 포함할 수 있다.Meanwhile, the instantaneous hot water device 100 according to an embodiment of the present invention may further include at least one temperature sensor 150.
즉, 상기 온도센서(150)는 도 10에 도시된 바와 같이 상기 히터부(120)의 중앙부 측에 배치될 수 있으며, 상기 회로기판(132)과 전기적으로 연결될 수 있다.That is, the temperature sensor 150 may be disposed on the central side of the heater unit 120 as shown in FIG. 10, and may be electrically connected to the circuit board 132.
이와 같은 온도센서(150)는 적어도 1종 이상으로 구비될 수 있으며, 상기 발열체(122)의 발열온도를 측정할 수 있다. 이에 따라, 상기 제어부(130)는 상기 온도센서(150)를 통해 측정된 발열온도를 기반으로 상기 히터부(120)의 구동을 제어할 수 있다.The temperature sensor 150 may be provided in at least one or more types, and the heating temperature of the heating element 122 may be measured. Accordingly, the control unit 130 may control the driving of the heater unit 120 based on the heating temperature measured through the temperature sensor 150.
비제한적인 일례로써, 상기 온도센서(150)는 3가지 종류의 센서로 구비될 수 있으며, 상기 3가지 종류의 센서는 상기 발열체(122)를 제1온도범위로 제어하기 위한 온도제어용 센서와, 상기 발열체(122)의 발열온도가 제2온도로 승온되는 경우 일시적으로 전원을 차단하는 오버히트 프로텍터용 센서 및 상기 발열체(122)의 발열온도가 제3온도로 승온되는 경우 물리적인 전원의 공급을 차단하는 차단용 센서를 포함할 수 있다.As a non-limiting example, the temperature sensor 150 may be provided with three types of sensors, and the three types of sensors include a temperature control sensor for controlling the heating element 122 to a first temperature range, When the heating temperature of the heating element 122 is raised to the second temperature, the sensor for overheat protectors that temporarily cuts off the power and the physical power supply when the heating temperature of the heating element 122 is raised to the third temperature It may include a blocking sensor for blocking.
여기서, 상기 제2온도범위는 상기 제1온도범위보다 상대적으로 고온이고 상기 제3온도범위보다 상대적으로 저온일 수 있다.Here, the second temperature range may be relatively higher than the first temperature range and may be relatively lower than the third temperature range.
이에 따라, 상기 제어부(130)는 상기 3가지 종류의 센서를 통해 상기 히터부(120)의 구동을 제어할 수 있다. 구체적으로, 상기 제어부(130)는 상기 온도제어용 센서를 통해 측정된 온도를 기반으로 상기 히터부(120)에 전원을 공급하거나 차단함으로써 상기 발열체(122)를 제1온도범위로 균일하게 발열시킬 수 있다. 또한, 상기 제어부(130)는 상기 발열체(122)가 제2온도범위로 발열하는 경우 상기 히터부(120)로 공급되는 전원을 일시적으로 차단함으로써 상기 히터부(120)가 과전압에 의해 파손될 수 있는 위험을 방지할 수 있다. 더불어, 상기 제어부(130)는 상기 발열체(122)가 제3온도범위로 발열하는 경우 상기 차단용 센서를 통해 상기 히터부(120) 측으로 전원이 공급되는 것을 완전히 차단할 수 있다.Accordingly, the control unit 130 may control driving of the heater unit 120 through the three types of sensors. Specifically, the control unit 130 may uniformly heat the heating element 122 to a first temperature range by supplying or blocking power to the heater unit 120 based on the temperature measured by the temperature control sensor. have. In addition, when the heating element 122 generates heat in the second temperature range, the control unit 130 temporarily cuts off the power supplied to the heater unit 120 so that the heater unit 120 may be damaged by overvoltage. You can avoid danger. In addition, when the heating element 122 generates heat in the third temperature range, the control unit 130 may completely block the supply of power to the heater unit 120 through the blocking sensor.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments presented herein, and those skilled in the art to understand the spirit of the present invention may add elements within the scope of the same spirit. However, other embodiments may be easily proposed by changing, deleting, adding, or the like, but this will also be considered to be within the scope of the present invention.

Claims (14)

  1. 유로 상에 연결되는 중공형의 하우징;A hollow housing connected on the flow path;
    상기 하우징의 내부를 통과하는 유체를 가열할 수 있도록 상기 하우징의 내부에 길이방향을 따라 배치되는 적어도 하나의 히터부; 및At least one heater unit disposed along the longitudinal direction in the interior of the housing to heat the fluid passing through the interior of the housing; And
    상기 히터부의 작동을 제어하는 제어부;를 포함하고,Includes; a control unit for controlling the operation of the heater unit,
    상기 히터부는 상기 유체가 통과할 수 있도록 판상의 발열체가 복수 회 권선된 나권형으로 형성되는 순간온수장치.The heater unit is an instantaneous hot water device in which a plate-shaped heating element is formed in a spiral wound wound a plurality of times to allow the fluid to pass therethrough.
  2. 제 1항에 있어서,According to claim 1,
    상기 하우징은 일단부로부터 길이방향을 따라 절개형성되는 개구부를 포함하고, 상기 히터부는 한 쌍의 터미널단자가 상기 개구부를 통해 외부로 노출되어 상기 제어부와 전기적으로 연결되는 순간온수장치.The housing includes an opening that is cut in the longitudinal direction from one end, and the heater unit is an instantaneous hot water device in which a pair of terminal terminals are exposed to the outside through the opening and electrically connected to the control unit.
  3. 제 2항에 있어서,According to claim 2,
    상기 순간온수장치는, 상기 개구부를 밀폐하는 판상의 커버판을 포함하고,The instantaneous hot water device includes a plate-shaped cover plate that seals the opening,
    상기 커버판은 상기 한 쌍의 터미널단자가 통과할 수 있도록 상기 히터부와 대응되는 영역에 관통형성되는 통과공을 포함하는 순간온수장치.The cover plate is an instantaneous hot water device including a through hole formed in a region corresponding to the heater portion so that the pair of terminal terminals can pass through.
  4. 제 3항에 있어서,According to claim 3,
    상기 커버판은 상기 통과공의 테두리를 따라 외측으로 돌출되는 돌출부를 더 포함하는 순간온수장치.The cover plate is an instantaneous hot water device further comprising a protrusion projecting outward along the rim of the through hole.
  5. 제 3항에 있어서,According to claim 3,
    상기 통과공은 내부에 밀봉부재가 배치되는 순간온수장치.The passage hole is an instantaneous hot water device in which a sealing member is disposed inside.
  6. 제 1항에 있어서,According to claim 1,
    상기 히터부는, 길이방향을 따라 산부와 골부가 반복되도록 절곡형성되는 발열체; 및The heater unit, the heating element is bent to be repeated so that the peaks and valleys along the longitudinal direction; And
    상기 발열체의 형상을 유지할 수 있도록 상기 발열체의 일면에 배치되는 판상의 지지체;를 포함하는 순간온수장치.Instantaneous hot water device comprising a; plate-shaped support disposed on one surface of the heating element to maintain the shape of the heating element.
  7. 제 6항에 있어서,The method of claim 6,
    상기 발열체는,The heating element,
    일정면적을 갖는 판상의 외장재;A plate-shaped exterior material having a certain area;
    상기 외장재의 내부에 배치되고 전원 인가시 열을 발생시키는 발열원;A heat generating source disposed inside the exterior material and generating heat when power is applied;
    상기 발열원 및 외장재 사이에 배치되는 절연층; 및An insulating layer disposed between the heating source and the exterior material; And
    상기 발열원의 양단부에 각각 구비되고, 상기 외장재의 외측으로 돌출되는 한 쌍의 터미널단자;를 포함하는 순간온수장치.And a pair of terminal terminals provided at both ends of the heating source and projecting outwardly of the exterior material.
  8. 제 7항에 있어서,The method of claim 7,
    상기 발열원은 비정질 리본시트 또는 퍼칼로이 중 어느 하나인 순간온수장치.The heat source is an instantaneous hot water device of any one of an amorphous ribbon sheet or percaloy.
  9. 제 7항에 있어서,The method of claim 7,
    상기 발열원은 'ㄷ'자 형상으로 구비되는 순간온수장치.The heating source is an instantaneous hot water device that is provided in a 'U' shape.
  10. 제 7항에 있어서,The method of claim 7,
    상기 터미널단자는 상기 발열원의 단부를 감싸는 판상의 금속튜브이고,The terminal terminal is a plate-shaped metal tube surrounding the end of the heat source,
    상기 절연층은 상기 발열원과 상기 금속튜브의 일부를 동시에 감싸는 판상의 절연튜브이며,The insulating layer is a plate-shaped insulating tube that simultaneously surrounds the heating source and a part of the metal tube,
    상기 외장재는 상기 절연튜브를 감싸는 판상의 열전도성 외장튜브인 순간온수장치.The exterior material is an instantaneous hot water device that is a plate-shaped thermally conductive exterior tube surrounding the insulating tube.
  11. 제 10항에 있어서,The method of claim 10,
    상기 금속튜브 및 외장튜브는 가압을 통해 판상으로 형성되는 순간온수장치.The metal tube and the external tube are instantaneous hot water devices formed in a plate shape through pressure.
  12. 제 7항에 있어서,The method of claim 7,
    상기 한 쌍의 터미널단자는 상기 외장재의 내부에 배치되는 부분이 적어도 1회 이상 절곡되는 순간온수장치.The pair of terminal terminals are instantaneous hot water devices in which a portion disposed inside the exterior material is bent at least once.
  13. 제 1항에 있어서,According to claim 1,
    상기 제어부는 상기 하우징의 일측에 배치되는 회로기판을 포함하고, 상기 히터부는 한 쌍의 터미널단자가 상기 회로기판과 전기적으로 연결되는 순간온수장치.The control unit includes a circuit board disposed on one side of the housing, and the heater unit is an instantaneous hot water device in which a pair of terminal terminals are electrically connected to the circuit board.
  14. 제 1항에 있어서,According to claim 1,
    상기 순간온수장치는, 상기 히터부에 배치되는 적어도 하나의 온도센서를 더 포함하는 순간온수장치.The instantaneous hot water device further comprises at least one temperature sensor disposed in the heater unit.
PCT/KR2019/011607 2018-09-10 2019-09-09 Instantaneous water heating device WO2020055054A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0107774 2018-09-10
KR1020180107774A KR102565047B1 (en) 2018-09-10 2018-09-10 Instantaneous Water Heater

Publications (1)

Publication Number Publication Date
WO2020055054A1 true WO2020055054A1 (en) 2020-03-19

Family

ID=69776642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011607 WO2020055054A1 (en) 2018-09-10 2019-09-09 Instantaneous water heating device

Country Status (2)

Country Link
KR (1) KR102565047B1 (en)
WO (1) WO2020055054A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220145759A (en) 2021-04-22 2022-10-31 (주) 래트론 Flexible Heater and the Manufacturing Method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162941A (en) * 2002-11-11 2004-06-10 Sanseisha:Kk Heater and its manufacturing method
KR20080001625A (en) * 2006-06-28 2008-01-03 카템 게엠베하 운트 캄파니 카게 Electric heating device
KR100871896B1 (en) * 2007-09-10 2008-12-05 박연홍 Direct current type heater which have a electromagnetic waves reduce function
KR20130107764A (en) * 2012-03-23 2013-10-02 홍성훈 Electric instant hot water heating duct
KR20150089190A (en) * 2014-01-27 2015-08-05 이장우 Instant Water Heater Having Exothermic Unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100963052B1 (en) 2008-03-04 2010-06-09 이진교 Electric water heater element using coated helical heating wires
KR20100005399U (en) * 2008-11-18 2010-05-27 이병현 An electronic air-heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162941A (en) * 2002-11-11 2004-06-10 Sanseisha:Kk Heater and its manufacturing method
KR20080001625A (en) * 2006-06-28 2008-01-03 카템 게엠베하 운트 캄파니 카게 Electric heating device
KR100871896B1 (en) * 2007-09-10 2008-12-05 박연홍 Direct current type heater which have a electromagnetic waves reduce function
KR20130107764A (en) * 2012-03-23 2013-10-02 홍성훈 Electric instant hot water heating duct
KR20150089190A (en) * 2014-01-27 2015-08-05 이장우 Instant Water Heater Having Exothermic Unit

Also Published As

Publication number Publication date
KR20200029222A (en) 2020-03-18
KR102565047B1 (en) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2019117464A1 (en) Battery pack
WO2021246621A1 (en) Heater module, method of manufacturing the heater module, and aerosol-generating device with the heater module
WO2014069819A1 (en) Battery cell assembly and method for manufacturing cooling fin for battery cell assembly
WO2017018778A1 (en) Jacket heater
WO2017131432A1 (en) Battery module and energy storing device having same
US20200266327A1 (en) Thermoelectric module with integrated printed circuit board
WO2020055054A1 (en) Instantaneous water heating device
WO2016017958A1 (en) Hollow type secondary battery and connector for hollow type secondary battery
WO2015163526A1 (en) Electric heating device
WO2021040293A1 (en) Battery module comprising cell frame
JP4858788B2 (en) Heating device including thermoelectric device
DK1005083T3 (en) Electronic power component which includes a cooling device
WO2019221394A1 (en) Battery pack
WO2017200171A1 (en) Cooler for display, and display device having same
WO2019117436A1 (en) Battery pack
WO2021015589A1 (en) Heater for secondary battery sealing process
WO2020222487A1 (en) Cold water production apparatus and method
WO2020153684A2 (en) Heating element having fuse function and heater unit comprising same
US2969412A (en) Furnaces
WO2019045518A1 (en) Ptc heater
WO2021194002A1 (en) Heating cable for heating and heat-transfer pipe for heating using same
WO2021010550A1 (en) Battery-cooling water heating device improved in thermal fuse coupling structure
WO2022225240A1 (en) Flexible heater and heating system using same
WO2012134242A2 (en) Heating device and liquid heating device comprising same
KR200214981Y1 (en) The thermistor heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860048

Country of ref document: EP

Kind code of ref document: A1