WO2020054815A1 - Exhaust purification device and exhaust purification method - Google Patents

Exhaust purification device and exhaust purification method Download PDF

Info

Publication number
WO2020054815A1
WO2020054815A1 PCT/JP2019/035959 JP2019035959W WO2020054815A1 WO 2020054815 A1 WO2020054815 A1 WO 2020054815A1 JP 2019035959 W JP2019035959 W JP 2019035959W WO 2020054815 A1 WO2020054815 A1 WO 2020054815A1
Authority
WO
WIPO (PCT)
Prior art keywords
regeneration process
exhaust gas
internal combustion
combustion engine
collection filter
Prior art date
Application number
PCT/JP2019/035959
Other languages
French (fr)
Japanese (ja)
Inventor
直人 村澤
彰朗 西方
隆之 椋梨
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2020054815A1 publication Critical patent/WO2020054815A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust

Definitions

  • the present disclosure relates to an exhaust gas purification device and an exhaust gas purification method.
  • an exhaust gas purification device for purifying exhaust gas discharged from an internal combustion engine
  • an exhaust gas purification device provided with a particulate collection filter is known (for example, see Patent Document 1).
  • the particulate collection filter collects particulate matter (Particulate @Matter: PM) in the exhaust gas.
  • the collected PM accumulates on the fine particle collection filter.
  • the exhaust gas purification device performs a regeneration process for removing PM accumulated on the particulate filter.
  • This regeneration process is performed, for example, by injecting fuel into a cylinder or an exhaust pipe of an internal combustion engine, and oxidizing the fuel with an oxidation catalyst provided in a stage preceding the particulate collection filter. As the fuel is oxidized, the temperature of the exhaust gas rises, and the PM deposited on the particulate matter filter burns.
  • Patent Literature 1 discloses that a deposition amount of PM deposited on a particulate matter collection filter is estimated based on an engine state, and a regeneration process is started when the deposition amount of PM exceeds a regeneration start threshold. Have been.
  • Patent Document 1 starts the regeneration process when the amount of PM deposited on the particulate collection filter exceeds the regeneration start threshold, and the amount of PM deposited on the particulate collection filter falls below the regeneration end threshold. If so, the reproduction process has been completed. However, this method may not be able to sufficiently remove PM.
  • An object of the present disclosure is to provide an exhaust gas purification device and an exhaust gas purification method capable of sufficiently removing PM accumulated on a particulate matter collection filter.
  • An exhaust emission control device includes a particulate collection filter that collects particulate matter in exhaust gas discharged from an internal combustion engine, and the particulate collection filter based on a value related to an operation time of the internal combustion engine.
  • a control unit that determines the start of a regeneration process for removing the particulate matter deposited on the filter, and that determines the end of the regeneration process based on the time during which the regeneration process is being performed. It is.
  • an exhaust gas purification method is an exhaust gas purification method in an apparatus including a particulate collection filter that captures particulate matter in exhaust gas discharged from an internal combustion engine, wherein the operation of the internal combustion engine is performed.
  • the start of the regeneration process for removing the particulate matter deposited on the particulate filter is determined based on a time-related value, and the termination of the regeneration process is determined based on the time during which the regeneration process is performed.
  • Judgment is an exhaust purification method.
  • FIG. 1 is a schematic diagram illustrating an example of the exhaust gas purification device according to the embodiment.
  • FIG. 2 is a flowchart illustrating an example of the operation of the control unit.
  • FIG. 3 is a time chart showing a change in the amount of deposited PM in the particulate matter collection filter.
  • FIG. 1 is a diagram schematically showing the exhaust gas purification device 100.
  • the exhaust gas purification device 100 is arranged at a stage subsequent to the internal combustion engine 1.
  • the internal combustion engine 1 and the exhaust gas purification device 100 are mounted on, for example, a vehicle.
  • the internal combustion engine 1 is, for example, a diesel engine.
  • An exhaust pipe 4 through which exhaust gas discharged from the internal combustion engine 1 flows is connected to the internal combustion engine 1.
  • the exhaust gas discharged from the internal combustion engine 1 flows from left to right in FIG.
  • the exhaust gas purifying apparatus 100 has a DOC (Diesel Oxidation Catalyst) 5, a DPF (Diesel Particulate Filter) 6, a differential pressure sensor 7, a temperature sensor 8, and an ECU (Electric Control Unit) 10.
  • the DOC 5 and the DPF 6 are provided in the exhaust pipe 4.
  • the DPF 6 is arranged after the DOC 5.
  • the DPF 6 is an example of a “particle trapping filter”.
  • the differential pressure sensor 7 is an example of a “differential pressure detecting unit”.
  • the ECU 10 is an example of a “control unit”.
  • PM is an example of a “particulate matter”.
  • DOC5 oxidizes hydrocarbons (HC) and carbon monoxide (CO) contained in the exhaust gas.
  • the DPF 6 captures PM contained in the exhaust gas.
  • the collected PM is deposited on the DPF 6.
  • the PM deposited on the DPF 6 is removed by a regeneration process. This regeneration process is performed, for example, by injecting fuel into the cylinder or the exhaust pipe 4 of the internal combustion engine 1 and oxidizing it with the DOC 5 provided before the DPF 6. As the fuel is oxidized, the temperature of the exhaust gas rises, and the PM deposited on the DPF 6 burns.
  • the DPF 6 is formed of, for example, a porous ceramic having a fine pore diameter.
  • the differential pressure sensor 7 detects a differential pressure between the pressure on the upstream side of the DPF 6 and the pressure on the downstream side of the DPF 6.
  • the differential pressure sensor 7 outputs a signal indicating the detected differential pressure (hereinafter, referred to as “detected differential pressure”) to the ECU 10.
  • the temperature sensor 8 detects the temperature of the exhaust gas in the DPF 6. Temperature sensor 8 outputs a signal indicating the detected temperature (hereinafter, referred to as “detected temperature”) to ECU 10.
  • the ECU 10 controls the regeneration process of the DPF 6.
  • the ECU 10 includes, for example, CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and the like as hardware. Each function of the ECU 10 described below is realized by the CPU executing a computer program read from the ROM on the RAM.
  • the ECU 10 provides a signal indicating the detected differential pressure detected by the differential pressure sensor 7, a signal indicating the detected temperature detected by the temperature sensor 8, and a vehicle detected by the odometer 9 (see FIG. 1). Is input as needed.
  • the travel distance is an example of “a value related to the operation time of the internal combustion engine”.
  • Various information such as the temperature of the DPF 6 is input to the ECU 10 as needed. Further, the ECU 10 calculates the fuel injection amount of the engine 1, the EGR rate, and the like as needed.
  • FIG. 2 is a flowchart illustrating an example of the operation of the ECU 10.
  • the flowchart shown in FIG. 2 is repeatedly executed at a predetermined cycle while the internal combustion engine 1 is operating.
  • step S1 the ECU 10 determines whether or not to start the regeneration process based on the PM accumulation amount. In step S1, for example, when the PM accumulation amount exceeds a predetermined first threshold value, it is determined that the regeneration process is started.
  • the PM accumulation amount can be estimated by a known method based on the fuel injection amount of the engine 1, the EGR rate, the temperature of the DPF 6, and the like.
  • step S1 If it is determined in step S1 that the reproduction process is to be started, the process proceeds to step S11. The processing after step S11 will be described later.
  • step S1 determines whether the reproduction process is not to be started. If it is determined in step S1 that the reproduction process is not to be started, the process proceeds to step S2.
  • step S2 the ECU 10 determines whether or not to start the regeneration process based on the traveling distance. In step S2, for example, it is determined that the reproduction process is to be started when the travel distance from when the reproduction process was performed based on the previous travel distance has reached a predetermined second threshold value.
  • step S2 If it is determined in step S2 to start the reproduction process, the process proceeds to step S21.
  • the processing after step S21 will be described later.
  • step S2 if it is determined in step S2 that the reproduction process is not to be started, the process ends.
  • step S11 the ECU 10 executes a regeneration process. Specifically, fuel is injected into the cylinder of the internal combustion engine 1 or the exhaust pipe 4. Thereby, the fuel is oxidized by the oxidation catalyst, the temperature of the exhaust gas rises, and the PM deposited on the DPF 6 burns.
  • step S12 the ECU 10 determines whether or not to end the regeneration process based on the PM accumulation amount.
  • step S12 for example, when the PM accumulation amount falls below a predetermined third threshold, it is determined that the regeneration process is to be ended. It is preferable that the PM accumulation amount is estimated by a known method based on other parameters.
  • step S12 If it is determined in step S12 that the reproduction process is not to be ended, the process returns to step S11.
  • step S12 determines whether the reproduction process is to be ended. If it is determined in step S12 that the reproduction process is to be ended, the process proceeds to step S2 described above.
  • step S21 the ECU 10 executes a regeneration process. Specifically, fuel is injected into the cylinder of the internal combustion engine 1 or the exhaust pipe 4. Thereby, the fuel is oxidized by the oxidation catalyst, the temperature of the exhaust gas rises, and the PM deposited on the DPF 6 burns.
  • step S22 following step S21 the ECU 10 determines whether the PM accumulation amount has fallen below a predetermined fourth threshold value (an example of “predetermined accumulation amount”).
  • a predetermined fourth threshold value an example of “predetermined accumulation amount”.
  • the above-described third threshold may be used.
  • step S22 NO If the PM accumulation amount is not less than the fourth threshold value in step S22 (step S22: NO), the process returns to step S21.
  • step S22 when the amount of accumulated PM falls below the fourth threshold value (step S22: YES), the process proceeds to step S23.
  • step S23 the ECU 10 determines in the present regeneration process that the time during which the temperature of the exhaust gas in the DPF 6 is equal to or higher than the predetermined temperature (hereinafter, referred to as “elapsed time”) is a predetermined fifth threshold value (“ It is determined whether or not the “predetermined time” has been reached.
  • elapsed time the time during which the temperature of the exhaust gas in the DPF 6 is equal to or higher than the predetermined temperature (hereinafter, referred to as “elapsed time”) is a predetermined fifth threshold value (“ It is determined whether or not the “predetermined time” has been reached.
  • a fifth threshold value a value sufficient to completely burn the PM deposited on the DPF 6 is set.
  • the fifth threshold can be approximately a few minutes.
  • step S23 NO
  • the process returns to step S21.
  • step S23 YES
  • the exhaust gas purification device 100 determines the end of the regeneration process based on the PM accumulation amount.
  • the end of the regeneration process is determined based on the PM accumulation amount and the elapsed time.
  • the end of the regeneration process is determined based on the time during which the exhaust gas temperature exceeds a predetermined temperature and is at a temperature sufficient for PM combustion, so that the PM deposited on the DPF 6 is sufficiently removed. ing.
  • FIG. 3 is a time chart showing a change in the amount of accumulated PM in the DPF 6.
  • the horizontal axis indicates the traveling distance
  • the vertical axis indicates the PM accumulation amount.
  • the dashed line in FIG. 3 indicates the actual value of the PM accumulation amount in the comparative example.
  • the end of the regeneration process is determined based on the PM accumulation amount regardless of the regeneration start condition.
  • the estimated value of the PM accumulation amount is indicated by a dashed line.
  • the reproduction process is started based on the traveling distance.
  • the amount of accumulated PM decreases.
  • the PM accumulation amount is estimated based on information such as the fuel injection amount of the engine 1, the EGR rate, and the temperature of the DPF 6 over a long time. Because it is very large.
  • the solid line in FIG. 3 shows the actual value of the PM deposition amount in the present embodiment.
  • the end of the regeneration process is determined based on the PM accumulation amount and the elapsed time.
  • the travel distance d0 to the travel distance d2 is the same as in the above-described comparative example.
  • the PM accumulation amount falls below the fourth threshold, but the elapsed time has not reached the fifth threshold. Therefore, the reproduction process is continuously performed after the traveling distance d2. As a result, the PM accumulation amount continues to decrease.
  • the PM accumulation amount falls below the predetermined accumulation amount, and the elapsed time is the predetermined time.
  • the reproduction process is terminated.
  • the reproduction process is started based on the traveling distance
  • the present invention is not limited to this.
  • the regeneration process may be started based on the operation time of the internal combustion engine 1.
  • the reproduction process may be started based on the running time.
  • the end of the reproduction process may be determined based on the elapsed time from the start of the reproduction process.
  • the temperature sensor 8 can be omitted.
  • the transition of the combustion of PM due to the execution of the regeneration process is affected by the operating state of the internal combustion engine 1 and the like. Therefore, the value used to determine the end of the regeneration process may be variably set based on the operating state of the internal combustion engine 1 or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

The purpose of the present invention is to sufficiently remove PM deposited in a particulate capturing filter. An exhaust purification device (100) is provided with a particulate capturing filter (6) which captures particulate matter in exhaust gas discharged from an internal combustion engine (1), and a control unit (10) which, on the basis of a value related to the operation time of the internal combustion engine (1), determines the start of a regeneration process for removing particulate matter deposited in the particulate capturing filter (6), and which, on the basis of the time for which the regeneration process has been performed, determines the end of the regeneration process.

Description

排気浄化装置および排気浄化方法Exhaust gas purification device and exhaust gas purification method
 本開示は、排気浄化装置および排気浄化方法に関する。 The present disclosure relates to an exhaust gas purification device and an exhaust gas purification method.
 従来、内燃機関から排出される排ガスを浄化する排気浄化装置として、微粒子捕集フィルタを備えたものが知られている(例えば、特許文献1を参照)。微粒子捕集フィルタは、排ガス中の粒子状物質(Particulate Matter:PM)を捕集する。捕集されたPMは、微粒子捕集フィルタに堆積する。 Conventionally, as an exhaust gas purification device for purifying exhaust gas discharged from an internal combustion engine, an exhaust gas purification device provided with a particulate collection filter is known (for example, see Patent Document 1). The particulate collection filter collects particulate matter (Particulate @Matter: PM) in the exhaust gas. The collected PM accumulates on the fine particle collection filter.
 排気浄化装置は、微粒子捕集フィルタに堆積したPMを除去する再生処理を行う。この再生処理は、例えば、燃料を内燃機関の気筒内または排気管内に噴射し、微粒子捕集フィルタの前段に設けられた酸化触媒で酸化することで行われる。燃料が酸化されることで排ガスの温度が上昇し、微粒子捕集フィルタに堆積したPMが燃焼する。 (4) The exhaust gas purification device performs a regeneration process for removing PM accumulated on the particulate filter. This regeneration process is performed, for example, by injecting fuel into a cylinder or an exhaust pipe of an internal combustion engine, and oxidizing the fuel with an oxidation catalyst provided in a stage preceding the particulate collection filter. As the fuel is oxidized, the temperature of the exhaust gas rises, and the PM deposited on the particulate matter filter burns.
 特許文献1には、エンジンの状態に基づいて、微粒子捕集フィルタに堆積したPMの堆積量を推定し、PMの堆積量が再生開始閾値を超えた場合に、再生処理を開始することが開示されている。 Patent Literature 1 discloses that a deposition amount of PM deposited on a particulate matter collection filter is estimated based on an engine state, and a regeneration process is started when the deposition amount of PM exceeds a regeneration start threshold. Have been.
日本国特開2004-286026号公報Japanese Patent Application Laid-Open No. 2004-286026
 特許文献1に記載のものは、微粒子捕集フィルタに堆積したPMの堆積量が再生開始閾値を超えた場合に再生処理を開始し、微粒子捕集フィルタにおけるPMの堆積量が再生終了閾値を下回った場合に再生処理を終了している。しかしながら、この方法では、PMを十分に除去できない場合があった。 The device described in Patent Document 1 starts the regeneration process when the amount of PM deposited on the particulate collection filter exceeds the regeneration start threshold, and the amount of PM deposited on the particulate collection filter falls below the regeneration end threshold. If so, the reproduction process has been completed. However, this method may not be able to sufficiently remove PM.
 本開示の目的は、微粒子捕集フィルタに堆積したPMを十分に除去できる排気浄化装置および排気浄化方法を提供することである。 目的 An object of the present disclosure is to provide an exhaust gas purification device and an exhaust gas purification method capable of sufficiently removing PM accumulated on a particulate matter collection filter.
 本開示の一態様に係る排気浄化装置は、内燃機関から排出される排ガス中の微粒子物質を捕集する微粒子捕集フィルタと、前記内燃機関の運転時間に関連する値に基づいて前記微粒子捕集フィルタに堆積した前記微粒子物質を除去する再生処理の開始を判断し、かつ、前記再生処理を実行している時間に基づいて前記再生処理の終了を判断する制御部と、を備える、排気浄化装置である。 An exhaust emission control device according to an aspect of the present disclosure includes a particulate collection filter that collects particulate matter in exhaust gas discharged from an internal combustion engine, and the particulate collection filter based on a value related to an operation time of the internal combustion engine. A control unit that determines the start of a regeneration process for removing the particulate matter deposited on the filter, and that determines the end of the regeneration process based on the time during which the regeneration process is being performed. It is.
 また、本開示の一態様に係る排気浄化方法は、内燃機関から排出される排ガス中の微粒子物質を捕集する微粒子捕集フィルタを備えた装置における排気浄化方法であって、前記内燃機関の運転時間に関連する値に基づいて前記微粒子捕集フィルタに堆積した前記微粒子物質を除去する再生処理の開始を判断し、かつ、前記再生処理を実行している時間に基づいて前記再生処理の終了を判断する、排気浄化方法である。 Further, an exhaust gas purification method according to an aspect of the present disclosure is an exhaust gas purification method in an apparatus including a particulate collection filter that captures particulate matter in exhaust gas discharged from an internal combustion engine, wherein the operation of the internal combustion engine is performed. The start of the regeneration process for removing the particulate matter deposited on the particulate filter is determined based on a time-related value, and the termination of the regeneration process is determined based on the time during which the regeneration process is performed. Judgment is an exhaust purification method.
 本開示に係る排気浄化装置および排気浄化方法によれば、微粒子捕集フィルタに堆積したPMを十分に除去することができる。 According to the exhaust gas purification apparatus and the exhaust gas purification method according to the present disclosure, it is possible to sufficiently remove PM accumulated on the particulate matter collection filter.
図1は、実施形態に係る排気浄化装置の一例を示す模式図である。FIG. 1 is a schematic diagram illustrating an example of the exhaust gas purification device according to the embodiment. 図2は、制御部の動作の一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of the operation of the control unit. 図3は、微粒子捕集フィルタにおけるPMの堆積量の推移を示すタイムチャートである。FIG. 3 is a time chart showing a change in the amount of deposited PM in the particulate matter collection filter.
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、以下に説明する実施形態は一例であり、本開示はこの実施形態により限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The embodiment described below is an example, and the present disclosure is not limited to the embodiment.
 まず、図1を参照して、排気浄化装置100の構成について説明する。図1は、排気浄化装置100を模式的に示す図である。排気浄化装置100は、内燃機関1の後段に配置される。内燃機関1および排気浄化装置100は、例えば車両に搭載される。 First, the configuration of the exhaust gas purification device 100 will be described with reference to FIG. FIG. 1 is a diagram schematically showing the exhaust gas purification device 100. The exhaust gas purification device 100 is arranged at a stage subsequent to the internal combustion engine 1. The internal combustion engine 1 and the exhaust gas purification device 100 are mounted on, for example, a vehicle.
 内燃機関1は、例えばディーゼルエンジンである。内燃機関1には、内燃機関1から排出された排ガスが流れる排気管4が接続されている。内燃機関1から排出された排ガスは、図1の左側から右側へ流れる。 The internal combustion engine 1 is, for example, a diesel engine. An exhaust pipe 4 through which exhaust gas discharged from the internal combustion engine 1 flows is connected to the internal combustion engine 1. The exhaust gas discharged from the internal combustion engine 1 flows from left to right in FIG.
 排気浄化装置100は、DOC(Diesel Oxidation Catalyst)5、DPF(Diesel Particulate Filter)6、差圧センサ7、温度センサ8、およびECU(Electric Control Unit)10を有する。DOC5およびDPF6は、排気管4に設けられている。DPF6は、DOC5の後段に配置される。 The exhaust gas purifying apparatus 100 has a DOC (Diesel Oxidation Catalyst) 5, a DPF (Diesel Particulate Filter) 6, a differential pressure sensor 7, a temperature sensor 8, and an ECU (Electric Control Unit) 10. The DOC 5 and the DPF 6 are provided in the exhaust pipe 4. The DPF 6 is arranged after the DOC 5.
 なお、DPF6は、「微粒子捕集フィルタ」の一例である。また、差圧センサ7は、「差圧検出部」の一例である。また、ECU10は、「制御部」の一例である。また、PMは、「微粒子物質」の一例である。 The DPF 6 is an example of a “particle trapping filter”. The differential pressure sensor 7 is an example of a “differential pressure detecting unit”. The ECU 10 is an example of a “control unit”. PM is an example of a “particulate matter”.
 DOC5は、排ガスに含まれる炭化水素(HC)および一酸化炭素(CO)を酸化させる。 DOC5 oxidizes hydrocarbons (HC) and carbon monoxide (CO) contained in the exhaust gas.
 DPF6は、排ガスに含まれるPMを捕集する。捕集されたPMは、DPF6に堆積する。DPF6に堆積したPMは、再生処理により除去される。この再生処理は、例えば、燃料を内燃機関1の気筒内または排気管4内に噴射し、DPF6の前段に設けられたDOC5で酸化することで行われる。燃料が酸化されることで排ガスの温度が上昇し、DPF6に堆積したPMが燃焼する。DPF6は、例えば、微孔径を有する多孔質セラミック等により形成される。 (4) The DPF 6 captures PM contained in the exhaust gas. The collected PM is deposited on the DPF 6. The PM deposited on the DPF 6 is removed by a regeneration process. This regeneration process is performed, for example, by injecting fuel into the cylinder or the exhaust pipe 4 of the internal combustion engine 1 and oxidizing it with the DOC 5 provided before the DPF 6. As the fuel is oxidized, the temperature of the exhaust gas rises, and the PM deposited on the DPF 6 burns. The DPF 6 is formed of, for example, a porous ceramic having a fine pore diameter.
 差圧センサ7は、DPF6の上流側の圧力とDPF6の下流側の圧力との差圧を検出する。差圧センサ7は、検出した差圧(以下、「検出差圧」という)を示す信号をECU10へ出力する。 The differential pressure sensor 7 detects a differential pressure between the pressure on the upstream side of the DPF 6 and the pressure on the downstream side of the DPF 6. The differential pressure sensor 7 outputs a signal indicating the detected differential pressure (hereinafter, referred to as “detected differential pressure”) to the ECU 10.
 温度センサ8は、DPF6における排ガスの温度を検出する。温度センサ8は、検出した温度(以下、「検出温度」という)を示す信号をECU10へ出力する。 The temperature sensor 8 detects the temperature of the exhaust gas in the DPF 6. Temperature sensor 8 outputs a signal indicating the detected temperature (hereinafter, referred to as “detected temperature”) to ECU 10.
 ECU10は、DPF6の再生処理を制御する。ECU10は、ハードウェアとして、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を有する。以下において説明するECU10の各機能は、CPUがROMから読み出したコンピュータプログラムをRAM上で実行することにより実現される。 (4) The ECU 10 controls the regeneration process of the DPF 6. The ECU 10 includes, for example, CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and the like as hardware. Each function of the ECU 10 described below is realized by the CPU executing a computer program read from the ROM on the RAM.
 ECU10には、上述の差圧センサ7で検出された検出差圧を示す信号、温度センサ8で検出された検出温度を示す信号、および、走行距離計9(図1参照)で検出された車両の走行距離を示す信号が随時入力される。なお、走行距離は、「内燃機関の運転時間に関連する値」の一例である。また、ECU10には、DPF6の温度等の各種情報が随時入力される。また、ECU10は、エンジン1の燃料噴射量、EGR率等を随時算出する。 The ECU 10 provides a signal indicating the detected differential pressure detected by the differential pressure sensor 7, a signal indicating the detected temperature detected by the temperature sensor 8, and a vehicle detected by the odometer 9 (see FIG. 1). Is input as needed. The travel distance is an example of “a value related to the operation time of the internal combustion engine”. Various information such as the temperature of the DPF 6 is input to the ECU 10 as needed. Further, the ECU 10 calculates the fuel injection amount of the engine 1, the EGR rate, and the like as needed.
 次に、図2を参照して、ECU10の動作について説明する。図2は、ECU10の動作の一例を示すフローチャートである。図2に示すフローチャートは、内燃機関1の動作中に、所定の周期で繰り返し実行される。 Next, the operation of the ECU 10 will be described with reference to FIG. FIG. 2 is a flowchart illustrating an example of the operation of the ECU 10. The flowchart shown in FIG. 2 is repeatedly executed at a predetermined cycle while the internal combustion engine 1 is operating.
 ステップS1で、ECU10は、PM堆積量に基づいて、再生処理を開始するか否かを判定する。ステップS1では、例えば、PM堆積量が、予め定められた所定の第1閾値を超えた場合に、再生処理を開始すると判断される。なお、PM堆積量は、エンジン1の燃料噴射量、EGR率、DPF6の温度等に基づいて公知の方法で推定することができる。 In step S1, the ECU 10 determines whether or not to start the regeneration process based on the PM accumulation amount. In step S1, for example, when the PM accumulation amount exceeds a predetermined first threshold value, it is determined that the regeneration process is started. Note that the PM accumulation amount can be estimated by a known method based on the fuel injection amount of the engine 1, the EGR rate, the temperature of the DPF 6, and the like.
 ステップS1において、再生処理を開始すると判断された場合、処理はステップS11に進む。ステップS11以降の処理については後述する。 If it is determined in step S1 that the reproduction process is to be started, the process proceeds to step S11. The processing after step S11 will be described later.
 一方、ステップS1において、再生処理を開始しないと判断された場合、処理はステップS2に進む。 On the other hand, if it is determined in step S1 that the reproduction process is not to be started, the process proceeds to step S2.
 ステップS2で、ECU10は、走行距離に基づいて、再生処理を開始するか否かを判定する。ステップS2では、例えば、前回走行距離に基づいて再生処理が行われたときからの走行距離が、予め定められた所定の第2閾値に達した場合に、再生処理を開始すると判断される。 In step S2, the ECU 10 determines whether or not to start the regeneration process based on the traveling distance. In step S2, for example, it is determined that the reproduction process is to be started when the travel distance from when the reproduction process was performed based on the previous travel distance has reached a predetermined second threshold value.
 ステップS2において、再生処理を開始すると判断された場合、処理はステップS21に進む。ステップS21以降の処理については後述する。 If it is determined in step S2 to start the reproduction process, the process proceeds to step S21. The processing after step S21 will be described later.
 一方、ステップS2において、再生処理を開始しないと判断された場合、処理は終了する。 On the other hand, if it is determined in step S2 that the reproduction process is not to be started, the process ends.
 次に、ステップS11以降の処理について説明する。ステップS11で、ECU10は、再生処理を実行する。具体的には、燃料を内燃機関1の気筒内または排気管4内に噴射する。これにより、燃料が酸化触媒で酸化され、排ガスの温度が上昇し、DPF6に堆積したPMが燃焼する。 Next, the processing after step S11 will be described. In step S11, the ECU 10 executes a regeneration process. Specifically, fuel is injected into the cylinder of the internal combustion engine 1 or the exhaust pipe 4. Thereby, the fuel is oxidized by the oxidation catalyst, the temperature of the exhaust gas rises, and the PM deposited on the DPF 6 burns.
 ステップS11に続くステップS12で、ECU10は、PM堆積量に基づいて、再生処理を終了するか否かを判定する。ステップS12では、例えば、PM堆積量が予め定められた所定の第3閾値を下回った場合に、再生処理を終了すると判断される。なお、PM堆積量は、その他のパラメータに基づいて公知の方法で推定するのが好適である。 で In step S12 following step S11, the ECU 10 determines whether or not to end the regeneration process based on the PM accumulation amount. In step S12, for example, when the PM accumulation amount falls below a predetermined third threshold, it is determined that the regeneration process is to be ended. It is preferable that the PM accumulation amount is estimated by a known method based on other parameters.
 ステップS12において、再生処理を終了しないと判断された場合、処理はステップS11に戻る。 If it is determined in step S12 that the reproduction process is not to be ended, the process returns to step S11.
 一方、ステップS12において、再生処理を終了すると判断された場合、処理は上述のステップS2に進む。 On the other hand, if it is determined in step S12 that the reproduction process is to be ended, the process proceeds to step S2 described above.
 次に、ステップS21以降の処理について説明する。ステップS21で、ECU10は、再生処理を実行する。具体的には、燃料を内燃機関1の気筒内または排気管4内に噴射する。これにより、燃料が酸化触媒で酸化され、排ガスの温度が上昇し、DPF6に堆積したPMが燃焼する。 Next, the processing after step S21 will be described. In step S21, the ECU 10 executes a regeneration process. Specifically, fuel is injected into the cylinder of the internal combustion engine 1 or the exhaust pipe 4. Thereby, the fuel is oxidized by the oxidation catalyst, the temperature of the exhaust gas rises, and the PM deposited on the DPF 6 burns.
 ステップS21に続くステップS22で、ECU10は、PM堆積量が予め定められた所定の第4閾値(「所定堆積量」の一例)を下回ったか否かを判定する。このような第4閾値としては、上述の第3閾値を用いてもよい。 In step S22 following step S21, the ECU 10 determines whether the PM accumulation amount has fallen below a predetermined fourth threshold value (an example of “predetermined accumulation amount”). As the fourth threshold, the above-described third threshold may be used.
 ステップS22において、PM堆積量が第4閾値を下回っていない場合(ステップS22:NO)、処理はステップS21に戻る。 場合 If the PM accumulation amount is not less than the fourth threshold value in step S22 (step S22: NO), the process returns to step S21.
 一方、ステップS22において、PM堆積量が第4閾値を下回った場合(ステップS22:YES)、処理はステップS23に進む。 On the other hand, in step S22, when the amount of accumulated PM falls below the fourth threshold value (step S22: YES), the process proceeds to step S23.
 ステップS23で、ECU10は、今回の再生処理において、DPF6内の排ガスの温度が予め定められた所定の温度以上である時間(以下、「経過時間」という)が予め定められた第5閾値(「所定時間」の一例)に達したか否かを判定する。このような第5閾値としては、DPF6に堆積したPMが完全に燃焼し尽くすのに十分な値が設定される。第5閾値は、概ね数分とすることができる。 In step S23, the ECU 10 determines in the present regeneration process that the time during which the temperature of the exhaust gas in the DPF 6 is equal to or higher than the predetermined temperature (hereinafter, referred to as “elapsed time”) is a predetermined fifth threshold value (“ It is determined whether or not the “predetermined time” has been reached. As such a fifth threshold value, a value sufficient to completely burn the PM deposited on the DPF 6 is set. The fifth threshold can be approximately a few minutes.
 ステップS23において、経過時間が第5閾値に達していない場合(ステップS23:NO)、処理はステップS21に戻る。 If the elapsed time has not reached the fifth threshold value in step S23 (step S23: NO), the process returns to step S21.
 一方、ステップS23において、経過時間が第5閾値に達した場合(ステップS23:YES)、処理は終了する。 On the other hand, if the elapsed time has reached the fifth threshold value in step S23 (step S23: YES), the process ends.
 このようにして、排気浄化装置100では、PM堆積量に基づいて再生処理が開始された場合、PM堆積量に基づいて再生処理の終了を判断する。また、走行距離に基づいて再生処理が開始された場合、PM堆積量および経過時間に基づいて、再生処理の終了を判断する。 Thus, when the regeneration process is started based on the PM accumulation amount, the exhaust gas purification device 100 determines the end of the regeneration process based on the PM accumulation amount. When the regeneration process is started based on the traveling distance, the end of the regeneration process is determined based on the PM accumulation amount and the elapsed time.
 ここで、再生処理の終了を判断するパラメータとして、DPF6内の排ガスの温度が予め定められた所定の温度以上である時間を用いる理由について、簡単に説明する。 Here, the reason why the time during which the temperature of the exhaust gas in the DPF 6 is equal to or higher than a predetermined temperature is used as a parameter for determining the end of the regeneration process will be briefly described.
 DPF6におけるPMを燃焼させるには、排ガス温度をPMの燃焼に十分な温度とする必要がある。そのため、排気ガス温度が予め定められた所定温度を上回ってPM燃焼に十分な温度にある時間に基づいて、再生処理の終了を判断することで、DPF6に堆積したPMを十分に除去するようにしている。 (4) In order to burn PM in the DPF 6, it is necessary to set the exhaust gas temperature to a temperature sufficient for burning PM. Therefore, the end of the regeneration process is determined based on the time during which the exhaust gas temperature exceeds a predetermined temperature and is at a temperature sufficient for PM combustion, so that the PM deposited on the DPF 6 is sufficiently removed. ing.
 次に、図3を参照して、本実施形態の作用効果について説明する。図3は、DPF6におけるPM堆積量の推移を示すタイムチャートである。図3において、横軸は走行距離を示しており、縦軸はPM堆積量を示している。 Next, the operation and effect of this embodiment will be described with reference to FIG. FIG. 3 is a time chart showing a change in the amount of accumulated PM in the DPF 6. In FIG. 3, the horizontal axis indicates the traveling distance, and the vertical axis indicates the PM accumulation amount.
 まず、比較例について説明する。図3の破線は、比較例におけるPM堆積量の実際値を示している。比較例は、再生開始条件に関わらず、PM堆積量に基づいて再生処理の終了を判断するものである。なお、図3には、PM堆積量の推定値が一点鎖線で示されている。 First, a comparative example will be described. The dashed line in FIG. 3 indicates the actual value of the PM accumulation amount in the comparative example. In the comparative example, the end of the regeneration process is determined based on the PM accumulation amount regardless of the regeneration start condition. In FIG. 3, the estimated value of the PM accumulation amount is indicated by a dashed line.
 走行距離d0においてゼロであったPM堆積量は、時間の経過とともに増加する。なお、実際にはPM堆積量は内燃機関1の運転状態等に応じて増減を繰り返すが、ここでは、説明を容易にするために、PM堆積量は、走行距離の増加とともに単調増加するものとして説明する。 PMThe PM accumulation amount that was zero at the traveling distance d0 increases with the passage of time. Although the PM accumulation amount actually increases and decreases in accordance with the operating state of the internal combustion engine 1 and the like, here, for ease of explanation, it is assumed that the PM accumulation amount monotonically increases as the traveling distance increases. explain.
 走行距離d1において、走行距離に基づいて再生処理が開始される。再生処理が開始されると、PM堆積量は減少していく。 再生 At the traveling distance d1, the reproduction process is started based on the traveling distance. When the regeneration process is started, the amount of accumulated PM decreases.
 比較例では、走行距離d2において、PM堆積量が再生終了閾値を下回ると、再生処理が終了される。そのため、図3の破線に示すように、PM堆積量の推定値が実際値よりも小さい場合、実際にはDPF6にPMが堆積しているにも関わらず、再生処理が終了されることになる。 In the comparative example, when the PM accumulation amount falls below the regeneration end threshold at the traveling distance d2, the regeneration process ends. Therefore, as shown by the dashed line in FIG. 3, when the estimated value of the PM accumulation amount is smaller than the actual value, the regeneration process ends even though PM is actually accumulated in the DPF 6. .
 これは、走行距離に基づいて再生処理を開始する場合、長時間に亘ってエンジン1の燃料噴射量、EGR率、DPF6の温度等の情報に基づいてPM堆積量を推定するため、推定誤差が非常に大きくなっているからである。 This is because, when the regeneration process is started based on the traveling distance, the PM accumulation amount is estimated based on information such as the fuel injection amount of the engine 1, the EGR rate, and the temperature of the DPF 6 over a long time. Because it is very large.
 次に、本実施形態について説明する。図3の実線は、本実施形態におけるPM堆積量の実際値を示している。本実施形態は、走行距離に基づいて再生処理が開始された場合、PM堆積量および経過時間に基づいて再生処理の終了を判断するものである。 Next, the present embodiment will be described. The solid line in FIG. 3 shows the actual value of the PM deposition amount in the present embodiment. In the present embodiment, when the regeneration process is started based on the traveling distance, the end of the regeneration process is determined based on the PM accumulation amount and the elapsed time.
 走行距離d0から走行距離d2までは、上述の比較例と同様である。 は The travel distance d0 to the travel distance d2 is the same as in the above-described comparative example.
 走行距離d2において、PM堆積量が第4閾値を下回るが、経過時間は、第5閾値に達していない。そのため、走行距離d2以降も、引き続き再生処理が行われる。これにより、PM堆積量は引き続き減少していく。 に お い て At the traveling distance d2, the PM accumulation amount falls below the fourth threshold, but the elapsed time has not reached the fifth threshold. Therefore, the reproduction process is continuously performed after the traveling distance d2. As a result, the PM accumulation amount continues to decrease.
 その後、走行距離d3においてPM堆積量がゼロとなり、さらにその後、走行距離d4において、経過時間が第5閾値に達し、再生処理が終了される。そのため、図3の実線に示すように、検出差圧に基づくPM堆積量の推定値が実際値よりも小さい場合であっても、DPF6に堆積したPMがゼロになるまで再生処理が続行される。 (5) Thereafter, the amount of accumulated PM becomes zero at the traveling distance d3, and thereafter, at the traveling distance d4, the elapsed time reaches the fifth threshold value, and the regeneration process ends. Therefore, as shown by the solid line in FIG. 3, even when the estimated value of the PM accumulation amount based on the detected differential pressure is smaller than the actual value, the regeneration process is continued until the PM accumulated on the DPF 6 becomes zero. .
 以上説明したように、本実施形態によれば、走行距離に基づいて再生処理が開始された場合、PM堆積量が予め定められた所定堆積量を下回り、かつ、経過時間が予め定められた所定時間に達した場合に、再生処理を終了させる。 As described above, according to the present embodiment, when the regeneration process is started based on the traveling distance, the PM accumulation amount falls below the predetermined accumulation amount, and the elapsed time is the predetermined time. When the time has reached, the reproduction process is terminated.
 そのため、DPF6に堆積したPMを十分に除去することができる。 Therefore, PM deposited on the DPF 6 can be sufficiently removed.
 以上、本開示の実施形態について説明したが、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and can be appropriately modified and implemented without departing from the spirit of the present disclosure.
 例えば、上述の実施形態では、走行距離に基づいて再生処理を開始するものを例に説明を行ったが、これに限定されない。例えば、内燃機関1の運転時間に基づいて再生処理を開始するようにしてもよい。また、例えば、走行時間に基づいて再生処理を開始するようにしてもよい。 For example, in the above-described embodiment, an example in which the reproduction process is started based on the traveling distance has been described, but the present invention is not limited to this. For example, the regeneration process may be started based on the operation time of the internal combustion engine 1. Further, for example, the reproduction process may be started based on the running time.
 また、上述の実施形態では、DPF6内の排ガスの温度が予め定められた所定の温度以上である時間に基づいて再生処理の終了を判断するものを例に説明を行ったが、これに限定されない。 Further, in the above-described embodiment, an example has been described in which the end of the regeneration process is determined based on the time during which the temperature of the exhaust gas in the DPF 6 is equal to or higher than a predetermined temperature, but is not limited thereto. .
 例えば、内燃機関の筒内に供給される燃料、または排気管に直接供給される燃料による燃焼エネルギー等から、再生処理の実行によりPMを燃焼させることができる所定の条件を満たしていると判断できる場合には、再生処理の開始からの経過時間に基づいて再生処理の終了を判断するようにしてもよい。 For example, it can be determined from the combustion energy of the fuel supplied into the cylinder of the internal combustion engine or the fuel directly supplied to the exhaust pipe that the predetermined condition that the PM can be burned by executing the regeneration process is satisfied. In this case, the end of the reproduction process may be determined based on the elapsed time from the start of the reproduction process.
 このようにすれば、制御をより単純化できる。また、温度センサ8を省略することもできる。なお、再生処理の実行によるPMの燃焼の推移は、内燃機関1の運転状態等の影響を受ける。そのため、再生処理の終了の判断に用いられる値を、内燃機関1の運転状態等に基づいて可変設定するようにしてもよい。 制 御 This can further simplify the control. Further, the temperature sensor 8 can be omitted. The transition of the combustion of PM due to the execution of the regeneration process is affected by the operating state of the internal combustion engine 1 and the like. Therefore, the value used to determine the end of the regeneration process may be variably set based on the operating state of the internal combustion engine 1 or the like.
 本出願は、2018年9月14日付で出願された日本国特許出願(特願2018-172201)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on Sep. 14, 2018 (Japanese Patent Application No. 2018-172201), the contents of which are incorporated herein by reference.
 本開示の排気浄化装置および排気浄化方法によれば、微粒子捕集フィルタに堆積したPMを十分に除去することができ、産業上の利用可能性は多大である。 According to the exhaust gas purification device and the exhaust gas purification method of the present disclosure, PM accumulated on the particulate matter collection filter can be sufficiently removed, and industrial applicability is enormous.
 1 内燃機関
 4 排気管
 5 DOC
 6 DPF
 7 差圧センサ
 8 温度センサ
 9 走行距離計
 10 ECU
 100 排気浄化装置
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 4 Exhaust pipe 5 DOC
6 DPF
7 Differential pressure sensor 8 Temperature sensor 9 Odometer 10 ECU
100 Exhaust gas purification device

Claims (6)

  1.  内燃機関から排出される排ガス中の微粒子物質を捕集する微粒子捕集フィルタと、
     前記内燃機関の運転時間に関連する値に基づいて前記微粒子捕集フィルタに堆積した前記微粒子物質を除去する再生処理の開始を判断し、かつ、前記再生処理を実行している時間に基づいて前記再生処理の終了を判断する制御部と、を備える、
     排気浄化装置。
    A particulate collection filter that captures particulate matter in exhaust gas discharged from the internal combustion engine,
    Determine the start of the regeneration process to remove the particulate matter deposited on the particulate collection filter based on a value related to the operation time of the internal combustion engine, and based on the time during which the regeneration process is being performed A control unit that determines the end of the reproduction process.
    Exhaust gas purification device.
  2.  前記制御部は、前記微粒子捕集フィルタに堆積した前記微粒子物質の堆積量が予め定められた所定堆積量を下回り、かつ、前記再生処理の実行中に前記微粒子捕集フィルタ内の前記排ガスの温度が予め定められた所定の温度以上である時間が予め定められた所定時間に達した場合に、前記再生処理を終了させる、
     請求項1に記載の排気浄化装置。
    The control unit may be configured such that a deposition amount of the particulate matter deposited on the particulate collection filter is lower than a predetermined deposition amount, and a temperature of the exhaust gas in the particulate collection filter during execution of the regeneration process. When the time that is equal to or higher than the predetermined temperature reaches a predetermined time, the reproduction process is terminated,
    The exhaust purification device according to claim 1.
  3.  前記制御部は、さらに、前記堆積量に基づいて前記再生処理の開始を判断し、前記堆積量に基づいて前記再生処理の開始を判断した場合には、前記堆積量に基づいて前記再生処理の終了を判断する、
     請求項2に記載の排気浄化装置。
    The control unit further determines the start of the regeneration process based on the accumulation amount, and determines the start of the regeneration process based on the accumulation amount. Judge the end,
    The exhaust purification device according to claim 2.
  4.  前記制御部は、前記内燃機関の燃料噴射量、EGR率、および前記微粒子捕集フィルタの温度に基づいて前記堆積量を推定する、
     請求項2または3に記載の排気浄化装置。
    The control unit estimates the deposition amount based on a fuel injection amount of the internal combustion engine, an EGR rate, and a temperature of the particulate collection filter.
    The exhaust purification device according to claim 2.
  5.  前記内燃機関は車両に搭載されるものであり、
     前記内燃機関の運転時間に関連する値は前記車両の走行距離である、
     請求項1~4のいずれか一項に記載の排気浄化装置。
    The internal combustion engine is mounted on a vehicle,
    The value related to the operation time of the internal combustion engine is the mileage of the vehicle,
    An exhaust purification device according to any one of claims 1 to 4.
  6.  内燃機関から排出される排ガス中の微粒子物質を捕集する微粒子捕集フィルタを備えた装置における排気浄化方法であって、
     前記内燃機関の運転時間に関連する値に基づいて前記微粒子捕集フィルタに堆積した前記微粒子物質を除去する再生処理の開始を判断し、かつ、前記再生処理を実行している時間に基づいて前記再生処理の終了を判断する、
     排気浄化方法。
    An exhaust purification method for an apparatus including a particulate collection filter that captures particulate matter in exhaust gas discharged from an internal combustion engine,
    Determine the start of the regeneration process to remove the particulate matter deposited on the particulate collection filter based on a value related to the operation time of the internal combustion engine, and based on the time during which the regeneration process is being performed Determine the end of the playback process,
    Exhaust gas purification method.
PCT/JP2019/035959 2018-09-14 2019-09-12 Exhaust purification device and exhaust purification method WO2020054815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018172201A JP2020045767A (en) 2018-09-14 2018-09-14 Exhaust emission control device and exhaust emission control method
JP2018-172201 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020054815A1 true WO2020054815A1 (en) 2020-03-19

Family

ID=69778588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035959 WO2020054815A1 (en) 2018-09-14 2019-09-12 Exhaust purification device and exhaust purification method

Country Status (2)

Country Link
JP (1) JP2020045767A (en)
WO (1) WO2020054815A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035131A (en) * 2001-07-25 2003-02-07 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2005282549A (en) * 2004-03-31 2005-10-13 Isuzu Motors Ltd Control method of exhaust emission control system and exhaust emission control system
JP2005291036A (en) * 2004-03-31 2005-10-20 Denso Corp Regeneration processing device for particulate filter
JP2007278206A (en) * 2006-04-07 2007-10-25 Fuji Heavy Ind Ltd Exhaust emission control device for diesel engine
JP2017008801A (en) * 2015-06-22 2017-01-12 株式会社クボタ Exhaust treatment device of engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035131A (en) * 2001-07-25 2003-02-07 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2005282549A (en) * 2004-03-31 2005-10-13 Isuzu Motors Ltd Control method of exhaust emission control system and exhaust emission control system
JP2005291036A (en) * 2004-03-31 2005-10-20 Denso Corp Regeneration processing device for particulate filter
JP2007278206A (en) * 2006-04-07 2007-10-25 Fuji Heavy Ind Ltd Exhaust emission control device for diesel engine
JP2017008801A (en) * 2015-06-22 2017-01-12 株式会社クボタ Exhaust treatment device of engine

Also Published As

Publication number Publication date
JP2020045767A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
US20080314371A1 (en) System and method for diesel particulate filter regeneration
KR20120128380A (en) Exhaust gas post treatment system
JP6365560B2 (en) Exhaust gas purification device for internal combustion engine
KR20120011563A (en) Exhaust gas post processing system and control method thereof
JP6973195B2 (en) Exhaust purification device, vehicle and exhaust purification control device
JP2020012400A (en) Exhaust treatment device
JP2010249076A (en) Exhaust emission control device of internal combustion engine
WO2020054815A1 (en) Exhaust purification device and exhaust purification method
JP2008121631A (en) Exhaust emission control device of internal combustion engine
CN112673155B (en) Exhaust gas purification device and exhaust gas purification method
JP5569690B2 (en) Exhaust gas purification device for internal combustion engine
KR100957275B1 (en) Multiple regeneration method for catalyzed particulate filter of exhaust system in vehicle
WO2017130408A1 (en) Exhaust purification device
KR20120001431A (en) Exhaust gas post processing system and control method thereof
JP2010174794A (en) Exhaust emission control device
JP6642199B2 (en) Exhaust gas purification device
JP2003020933A (en) Exhaust emission control device for internal combustion engine
JP6658210B2 (en) Exhaust gas purification device
JP4292861B2 (en) Exhaust gas purification method and system
JP2007032553A (en) Exhaust emission control device for internal combustion engine
JP6132803B2 (en) Exhaust gas purification device for internal combustion engine
JP2011099378A (en) Dpf regeneration control device
JP2005207240A (en) Abnormality determining device for particulate filter
JP5401993B2 (en) Engine exhaust purification system
JP2004308509A (en) Exhaust emission control system for diesel engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859402

Country of ref document: EP

Kind code of ref document: A1