WO2020054707A1 - Rubber composition and tire - Google Patents

Rubber composition and tire Download PDF

Info

Publication number
WO2020054707A1
WO2020054707A1 PCT/JP2019/035520 JP2019035520W WO2020054707A1 WO 2020054707 A1 WO2020054707 A1 WO 2020054707A1 JP 2019035520 W JP2019035520 W JP 2019035520W WO 2020054707 A1 WO2020054707 A1 WO 2020054707A1
Authority
WO
WIPO (PCT)
Prior art keywords
polybutadiene
rubber
mass
cis
polymerization
Prior art date
Application number
PCT/JP2019/035520
Other languages
French (fr)
Japanese (ja)
Inventor
遼大 曽根
和宏 秋川
春田 淳
雅大 田中
孝 一ノ瀬
勇人 茶野木
Original Assignee
株式会社ブリヂストン
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン, 宇部興産株式会社 filed Critical 株式会社ブリヂストン
Priority to JP2020546027A priority Critical patent/JP7031003B2/en
Publication of WO2020054707A1 publication Critical patent/WO2020054707A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to a rubber composition and a tire using the same. More specifically, the present invention relates to a rubber composition using a vinyl cis-polybutadiene rubber and a tire using the same.
  • vinyl cis-polybutadiene rubber has been produced by converting 1,3-butadiene into cis-1,1-butadiene using a predetermined catalyst in an inert organic solvent mainly containing a hydrocarbon such as benzene, toluene and xylene. It is carried out by a method of polymerizing 4 followed by syndiotactic-1,2 polymerization (hereinafter sometimes simply referred to as “1,2 polymerization”).
  • Patent Literature 1 describes a vinyl-cis-polybutadiene rubber in which SPB is finely divided into fine particles of SPB using a solvent as a C4 fraction to improve tensile properties and crack resistance.
  • Patent Literature 2 discloses a vinyl cis-metal having improved fatigue resistance by setting the ratio of the number of moles of a halogen atom in a halogen-containing organoaluminum compound to the number of moles of an organoaluminum compound (AlR3) to an optimum value.
  • AlR3 organoaluminum compound
  • Patent Literature 3 describes a vinyl cis-polybutadiene rubber in which the amount of a catalyst used is adjusted to impart excellent productivity and suitable rigidity.
  • Patent Documents 4 and 5 disclose a vinyl cis-polybutadiene rubber having a boiling n-hexane insoluble matter (HI), a long chain branching index and a degree of branching within a specific range, and imparting excellent cold flow and rigidity. Has been described.
  • HI boiling n-hexane insoluble matter
  • the vinyl cis-polybutadiene rubbers described in Patent Literatures 1 to 5 which are various improved vinyl cis-polybutadiene rubbers, also have other properties such as steering stability and low loss when formed into a rubber composition. There is still room for improvement with regard to the physical properties of.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a rubber composition excellent in balance between steering stability and low loss property, and a tire using the same.
  • the present inventors have conducted intensive studies in order to achieve the above object, and have found that 1,2-polybutadiene having a specific melting point is contained in a specific concentration in vinyl-cis-polybutadiene rubber compounded in a rubber composition.
  • the present inventors have found that a rubber composition having excellent steering stability can be produced by containing the rubber composition, and have led to the present invention.
  • the present invention provides 1 to 50 parts by mass of a vinyl cis-polybutadiene rubber (A) containing 35 to 99% by mass of 1,2-polybutadiene having a melting point of 150 to 195 ° C., and a diene system other than (A).
  • Rubber composition comprising 100 parts by mass of rubber component (A) + (B) containing 50 to 99 parts by mass of rubber (B) and 1 to 150 parts by mass of rubber reinforcing agent (C), and rubber composition A tire using the same.
  • the vinyl cis-polybutadiene rubber (A) used in the rubber composition of the present invention contains 35 to 99% by mass of 1,2-polybutadiene having a melting point of 150 to 195 ° C in 1,4-polybutadiene.
  • 1,2-polybutadiene In the vinyl cis-polybutadiene rubber (A) used in the present invention, 1,2-polybutadiene has a melting point of 150 to 195 ° C, preferably 160 to 190 ° C, more preferably 170 to 185 ° C. preferable. If the melting point of 1,2-polybutadiene (B) is lower than 150 ° C., the die swell is deteriorated, and if it is higher than 195 ° C., the fuel efficiency is deteriorated, which is not preferable.
  • the peak temperature of the endothermic peak derived from 1,2-polybutadiene measured by a differential scanning calorimeter be the melting point of 1,2-polybutadiene.
  • peak separation is performed, and the peak top of the peak having the largest area is determined as the melting point of 1,2-polybutadiene.
  • the content of 1,2-polybutadiene is 35 to 99% by mass, preferably 35 to 90% by mass, more preferably 40 to 80% by mass, based on the vinyl-cis-polybutadiene rubber. If the content is more than 99% by mass, for example, the dispersibility of 1,2-polybutadiene after compounding is insufficient and the effect of the vinyl-cis-polybutadiene rubber is small, which is not preferable. When the amount is less than 35% by mass, the effect of improving the elastic modulus of 1,2-polybutadiene is not sufficiently exhibited, which is not preferable.
  • the concentration of the crystal part of 1,2-polybutadiene is defined as the concentration of 1,2-polybutadiene.
  • the concentration of the 1,2-polybutadiene crystal part is calculated from the heat of fusion of the 1,2-polybutadiene crystal part measured by a differential scanning calorimeter. Specifically, first, the vinyl-cis-polybutadiene rubber is heated at a heating rate of 10 ° C./min, and the heat of fusion is calculated from an endothermic peak derived from the melting of 1,2-polybutadiene. Next, the concentration (% by mass) of the crystal part of 1,2-polybutadiene contained in the vinyl-cis-polybutadiene rubber can be calculated from the known heat of fusion of 1,2-polybutadiene per unit mass.
  • the vinyl-cis-polybutadiene rubber may contain an amorphous portion of 1,2-polybutadiene, and the content of the amorphous portion of 1,2-polybutadiene is 0 to 30 with respect to the vinyl-cis-polybutadiene rubber. % By mass, more preferably 0 to 25% by mass, and particularly preferably 0 to 10% by mass. It is possible to obtain a vinyl-cis-polybutadiene rubber capable of providing a rubber composition having a lower loss property and a more excellent handling stability.
  • the content of 1,2-polybutadiene in the vinyl-cis-polybutadiene rubber (A) is determined by synthesizing 1,3-butadiene in the third step of the method for producing the vinyl-cis-polybutadiene rubber (A) described below. -1, adjusted in polymerization.
  • the peak top molecular weight (Mp) of 1,2-polybutadiene is preferably from 1,000 to 300,000, more preferably from 5,000 to 150,000.
  • the peak top molecular weight (Mp) is a molecular weight of a peak top in an elution curve obtained by gel permeation chromatography (GPC) measurement, and can be calculated from a calibration curve obtained using polystyrene as a standard substance. .
  • 1,4-polybutadiene is converted to 1,3-butadiene in the second step of the method for producing the vinyl cis-polybutadiene rubber (A) described below. It is obtained by 1,4 polymerization.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of polybutadiene is preferably from 20 to 60, and more preferably from 25 to 45. If the Mooney viscosity (ML 1 + 4 , 100 ° C.) is smaller than 20, the low loss property is reduced, and if it is larger than 60, the workability is reduced.
  • the cis-1,4 structure content of polybutadiene is preferably at least 90%, particularly preferably at least 95%.
  • the weight average molecular weight (Mw) of 1,4-polybutadiene is preferably from 200,000 to 800,000, more preferably from 400,000 to 650,000. If the weight average molecular weight (Mw) is smaller than 200,000, the low loss property is reduced, and if it is larger than 800,000, the processability is reduced. Further, the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) is preferably 2.00 to 5.00, more preferably 2.20 to 3.50.
  • 1,4-polybutadiene obtained by cis-1,4 polymerization contains substantially no gel component.
  • the method for producing a vinyl-cis-polybutadiene rubber according to the present invention comprises a first step of preparing a mixture of 1,3-butadiene and an inert organic solvent containing a hydrocarbon as a main component, and a first step.
  • a catalyst composed of an organoaluminum compound, a nickel compound and a fluorine compound to convert 1,3-butadiene into cis-1,1.
  • Examples of the inert organic solvent containing a hydrocarbon as a main component used in the method for producing the vinyl-cis-polybutadiene rubber (A) according to the present invention include aromatic hydrocarbons such as toluene, benzene and xylene, n-hexane and butane.
  • Hydrocarbons such as heptane and pentane, alicyclic hydrocarbons such as cyclohexane and cyclopentane, the above-mentioned olefin compounds and olefinic hydrocarbons such as cis-2-butene and trans-2-butene, mineral spirits and solvents
  • hydrocarbon solvents such as naphtha and kerosene, and halogenated hydrocarbon solvents such as methylene chloride.
  • the 1,3-butadiene monomer itself may be used as the polymerization solvent.
  • toluene, cyclohexane, a mixture of cis-2-butene and trans-2-butene, and the like are preferably used.
  • a catalyst comprising water, an organoaluminum compound and a soluble cobalt compound is added to the mixture prepared in the first step, and 1,3-butadiene is subjected to cis-1,4 polymerization. That is, first, water is added to the mixture prepared in the first step to adjust the concentration of water.
  • the concentration of water is preferably in the range of 0.1 to 1.4 mol, particularly preferably 0.2 to 1.2 mol, per 1 mol of the organic aluminum compound used in the cis-1,4 polymerization. Outside this range, the catalytic activity is reduced, the cis-1,4 structure content is reduced, and the molecular weight is unusually low or high, which is not preferable.
  • a known method can be applied as a method for adjusting the concentration of water.
  • a method of adding and dispersing through a porous filter medium JP-A-4-85304 is also effective.
  • the organoaluminum compound is added to the mixture obtained by adjusting the concentration of water as described above.
  • the organoaluminum compound include trialkylaluminum, dialkylaluminum chloride, dialkylaluminum bromide, alkylaluminum sesquichloride, alkylaluminum sesquibromide, and alkylaluminum dichloride.
  • a trialkylaluminum represented by the general formula AlR 3 (where R is a hydrocarbon group having 1 to 10 carbon atoms) can be preferably used.
  • trialkyl aluminum include trimethyl aluminum, triethyl aluminum, tri-n-propyl aluminum, triisopropyl aluminum, tri-n-butyl aluminum, triisobutyl aluminum, tripentyl aluminum, trihexyl aluminum, tricyclohexyl aluminum, trioctyl Aluminum, triphenylaluminum, tri-p-tolylaluminum, and tribenzylaluminum can be mentioned.
  • the alkyl groups in the trialkylaluminum may be the same or different.
  • organoaluminum compounds such as dimethylaluminum chloride and diethylaluminum chloride
  • organoaluminum halides such as sesquiethylaluminum chloride and ethylaluminum dichloride, diethylaluminum hydride, diisobutylaluminum hydride and sesquiethylaluminum hydride and the likecan also be used.
  • Two or more of these organoaluminum compounds can be used in combination.
  • the amount of the organoaluminum compound used is: (a) in the case of cis-1,4 polymerization using a catalyst comprising water, an organoaluminum compound and a soluble cobalt compound, at least 0.1 mmol per mol of 1,3-butadiene; In particular, it is preferably from 0.5 to 50 mmol.
  • a catalyst comprising an organoaluminum compound, a nickel compound and a fluorine compound, 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 1 mol per mol of 1,3-butadiene is used. It is preferred that
  • a soluble cobalt compound is added to the mixture to which the organoaluminum compound has been added, and 1,3-butadiene is subjected to cis-1,4 polymerization.
  • the soluble cobalt compound include those which are soluble in an inert organic solvent containing hydrocarbon as a main component or liquid 1,3-butadiene, or which can be uniformly dispersed, for example, cobalt (II) acetylacetonate and cobalt (III) Organic compounds having 6 or more carbon atoms such as ⁇ -diketone complex of cobalt such as acetylacetonate, ⁇ -keto acid ester complex of cobalt such as ethyl acetoacetate complex, cobalt octoate, cobalt naphthenate and cobalt benzoate.
  • Cobalt salts of carboxylic acids cobalt halide complexes such as cobalt chloride pyridine complexes and cobalt chloride ethyl alcohol complexes are used.
  • the amount of the soluble cobalt compound used is preferably at least 0.001 micromol, particularly preferably at least 0.005 micromol, per mole of 1,3-butadiene.
  • the molar ratio of the organic aluminum compound to the soluble cobalt compound (Al / Co) is 10 or more, and particularly preferably 50 or more.
  • a catalyst comprising water, an organoaluminum compound and a soluble cobalt compound
  • a catalyst comprising an organoaluminum compound, a nickel compound and a fluorine compound is added to convert 1,3-butadiene into cis-1
  • Four polymerization may be carried out.
  • water may or may not be added as a component of the cis-1,4 polymerization catalyst.
  • nickel compound a salt or complex of nickel is preferably used.
  • nickel halides such as nickel chloride and nickel bromide
  • nickel salts of inorganic acids such as nickel nitrate, nickel carboxylate having 1 to 18 carbon atoms such as nickel octylate, nickel acetate and nickel octoate
  • Nickel complexes such as nickel naphthenate, nickel malonate, nickel bisacetylacetonate and trisacetylacetonate, acetoacetate ethyl ester, nickel halide triarylphosphine complex, trialkylphosphine complex, pyridine complex and picoline complex
  • complexes such as an organic base complex and an ethyl alcohol complex can be exemplified.
  • the use amount of the nickel compound is preferably 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 3 mol per mol of 1,3-butadiene.
  • a boron trifluoride ether, an alcohol, or a complex of a mixture thereof, or a hydrogen fluoride ether, an alcohol, or a mixture of these complexes is preferably used.
  • Particularly preferred are boron trifluoride diethyl etherate, boron trifluoride dibutyl etherate, hydrogen fluoride diethyl etherate, and hydrogen hydrogen dibutyl etherate.
  • the use amount of the fluorine compound is preferably 1 ⁇ 10 ⁇ 4 to 1 mol per 1 mol of 1,3-butadiene.
  • the temperature at which cis-1,4 polymerization of 1,3-butadiene is performed is more than 0 ° C. and 100 ° C. or less, preferably 10 to 100 ° C., and more preferably 20 to 100 ° C.
  • the polymerization time is preferably in the range of 10 minutes to 2 hours.
  • the cis-1,4 polymerization is preferably performed so that the polymer concentration after the cis-1,4 polymerization is 5 to 26% by mass.
  • the polymerization is carried out by stirring and mixing the solution in a polymerization tank (polymerization vessel).
  • a polymerization tank used for the polymerization a polymerization tank equipped with a high-viscosity liquid stirring device, for example, an apparatus described in Japanese Patent Publication No. 40-2645 can be used.
  • known molecular weight regulators for example, non-conjugated dienes such as cyclooctadiene, arene and methylarene (1,2-butadiene), or ⁇ -olefins such as ethylene, propylene and butene-1 Kinds can be used.
  • a known gelling inhibitor can be used.
  • 1,3-butadiene in the polymerization reaction mixture obtained in the second step is subjected to syndiotactic-1,2 polymerization.
  • 1,3-butadiene may or may not be added to the obtained cis-1,4 polymer.
  • the method of polymerizing 1,2 is not particularly limited, but the polymerization of 1,2 is represented by the general formula AlR 3 (where R is a hydrocarbon group having 1 to 10 carbon atoms). It is preferable that 1,3-butadiene is polymerized into 1,2 by adding an organic aluminum compound and carbon disulfide, and a soluble cobalt compound may be further added as necessary. Further, water may be added to the polymerization system during the polymerization of 1,2.
  • the organoaluminum compound represented by the general formula AlR 3 trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, triphenylaluminum and the like are preferable.
  • the amount of the organoaluminum compound is preferably 0.1 mmol or more, especially 0.5 to 50 mmol, per 1 mol of 1,3-butadiene.
  • the concentration of carbon disulfide is 20 mmol / L or less, particularly preferably 0.01 to 10 mmol / L.
  • known phenyl isothiocyanate or xanthate compound may be used as a substitute for carbon disulfide.
  • Water is preferably added to the polymerization system after bringing 1,3-butadiene into contact with the organoaluminum compound.
  • the addition amount of water is preferably 0.1 to 1.5 mol per 1 mol of the organic aluminum compound.
  • the soluble cobalt compound the same compounds as those described in the second step can be used.
  • the method for producing a vinyl-cis-polybutadiene rubber according to the present invention is characterized in that in the third step, a melting point depressant for lowering the melting point of the obtained 1,2-polybutadiene is added.
  • the melting point depressant include dimethyl sulfoxide (DMSO) and acetone. From the viewpoint of separation and purification from unreacted 1,3-butadiene, dimethyl sulfoxide (DMSO) is particularly preferable.
  • the amount of the melting point depressant added is preferably from 0.01 to 10, more preferably from 0.05 to 5, and particularly preferably from 0.1 to 3, based on the organoaluminum compound added in the third step.
  • the melting point of 1,2-polybutadiene obtained in the third step can be adjusted to 150 to 195 ° C. If the molar ratio of the added amount is more than 10, the melting point will be excessively lowered, and the effect of improving the elastic modulus of 1,2-polybutadiene tends to be small, and if it is less than 0.1, the effect of improving the fuel efficiency tends to be small. Therefore, it is not preferable.
  • the temperature for polymerization of # 1 and # 2 is preferably from -5 to 100 ° C, more preferably from -5 to 80 ° C.
  • the polymerization time is preferably in the range of 2 minutes to 2 hours.
  • the 1,2 polymerization is preferably performed so that the polymer concentration after the 1,2 polymerization is 3 to 30% by mass.
  • the polymerization is carried out by stirring and mixing the polymerization solution in a polymerization tank (polymerization vessel).
  • the polymerization tank used for the polymerization of 1, 2 has a higher viscosity during the polymerization of 1, 2 and the polymer is liable to be adhered. Therefore, a polymerization tank equipped with a high-viscosity liquid stirring device, for example, described in Japanese Patent Publication No. 40-2645. Can be used.
  • a known antioxidant can be added according to a conventional method.
  • anti-aging agents include phenolic 2,6-di-t-butyl-p-cresol (BHT), phosphorus-based trinonylphenyl phosphite (TNP), and sulfur-based 4,6-bis (octylthio).
  • BHT phenolic 2,6-di-t-butyl-p-cresol
  • TNP phosphorus-based trinonylphenyl phosphite
  • sulfur-based 4,6-bis octylthio
  • the addition of the antioxidant is 0.001 to 5 parts by mass based on 100 parts by mass of the vinyl cis-polybutadiene rubber.
  • the polymerization reaction is a method of introducing a large amount of a polar solvent such as alcohol or water such as methanol or ethanol into the polymerization solution, an inorganic acid such as hydrochloric acid and sulfuric acid, an organic acid such as acetic acid and benzoic acid, a phosphite, or Stopping is performed by a method known per se, such as a method of introducing hydrogen chloride gas into the polymerization solution.
  • a polar solvent such as alcohol or water such as methanol or ethanol
  • an inorganic acid such as hydrochloric acid and sulfuric acid
  • an organic acid such as acetic acid and benzoic acid
  • a phosphite phosphite
  • the concentration of the crystal part of 1,2-polybutadiene contained in the vinyl-cis-polybutadiene rubber can be arbitrarily changed according to, for example, a required function.
  • a specific method for example, by heating the produced vinyl cis-polybutadiene rubber before or after drying in a liquid, in nitrogen, in the air, or in an atmosphere other than these, a part of the crystal is formed. Alternatively, all can be amorphized.
  • the rubber composition of the present invention comprises a rubber component (A) + (B) containing 1 to 50 parts by mass of the vinyl-cis-polybutadiene rubber (A) and 50 to 99 parts by mass of a diene rubber (B) other than (A). B) 100 parts by mass and 1 to 150 parts by mass of a rubber reinforcing agent (C).
  • the diene rubber other than (A) as the component (B) for example, at least one or more selected from natural rubber, isoprene rubber, butadiene rubber, emulsion-polymerized or solution-polymerized styrene-butadiene rubber, and butyl rubber Diene rubber can be used. It preferably contains natural rubber and / or butadiene rubber. When used for a base tread, the rubber composition preferably contains natural rubber and butadiene rubber, and more preferably contains 30 parts by mass or more of natural rubber.
  • the component (B) When the component (B) is mixed with the component (A), it may be mixed during the usual kneading of a Banbury, a roll, or the like, or may be used by previously mixing and drying in a solution state after polymerization. You may.
  • the ratio of the component (A) to the component (B) is 5 to 45 parts by mass for the component (A) and 65 to 95 parts by mass for 100 parts by mass of the rubber component (A) + (B).
  • the component (A) is more preferably 10 to 40 parts by mass, the component (B) more preferably 60 to 90 parts by mass, particularly the component (A) 15 to 35 parts by mass, and the component (B) When the component is 65 to 85 parts by mass, it is most suitable as a rubber composition for a tire.
  • the rubber reinforcing agent of the component (C) includes various fillers such as carbon black and silica, inorganic reinforcing agents such as activated calcium carbonate and ultrafine magnesium silicate, and syndiotactic-1,2-polybutadiene.
  • Organic reinforcing agents such as resin, polyethylene resin, polypropylene resin, high styrene resin, phenol resin, lignin, and modified melamine resin.
  • the syndiotactic-1,2-polybutadiene in the vinyl cis-polybutadiene rubber (A) is not included in the rubber reinforcing agent (C).
  • Examples of the carbon black include, but are not particularly limited to, FEF, FF, GPF, SAF, ISAF, SRF, and HAF.
  • the content of carbon black is preferably at least 20 parts by mass from the viewpoint of steering stability, and is preferably at most 100 parts by mass from the viewpoint of fuel economy. It is preferable that the particle diameter is 15 nm or more and 90 nm or less, the nitrogen adsorption specific surface area is 15 to 135 m 2 / g, and the dibutyl phthalate (DBP) oil absorption is 60 ml / 100 g or more and 180 ml / 100 g or less.
  • silica can be used as a rubber reinforcing agent.
  • the type of silica is not particularly limited, and can be used according to the intended use, such as general-grade silica and special silica surface-treated with a silane coupling agent.
  • the silica is not particularly limited, and examples thereof include wet silica (hydrous silicic acid), dry silica (silicic anhydride), calcium silicate, and aluminum silicate. Of these, wet silica is preferable. These silicas may be used alone or in combination of two or more.
  • the compounding ratio of the component (C) is preferably from 10 to 150 parts by mass, more preferably from 20 to 120 parts by mass, per 100 parts by mass of the rubber component (A) + (B).
  • the amount of the component (C) is less than 10 parts by mass, the tensile stress tends to decrease, and when the amount is more than 150 parts by mass, the workability tends to deteriorate.
  • the component (C) contains a total of 30 parts by mass or more of a filler such as carbon black and silica. It is preferably 150 parts by mass or less from the viewpoint of processability. Although the detailed mechanism is unknown, it is assumed that 1,2-polybutadiene and a filler such as carbon black and silica form a network, thereby improving the elastic modulus.
  • the rubber composition of the present invention may contain, if necessary, petroleum resin, coumarone indene resin, vulcanizing agent, vulcanization aid, antioxidant, filler, process oil, zinc white, stearic acid, which are other components.
  • petroleum resin coumarone indene resin
  • vulcanizing agent vulcanizing agent
  • vulcanization aid antioxidant
  • filler filler
  • process oil zinc white, stearic acid
  • it may contain chemicals commonly used in the rubber industry.
  • Examples of the petroleum resin include C 5 resin, C 5 -C 9 resin, C 9 resin, terpene resin, terpene-aromatic compound resin, rosin resin, dicyclopentadiene resin, and alkylphenol resin. Is raised.
  • vulcanizing agent known vulcanizing agents such as sulfur, organic peroxides, resin vulcanizing agents, and metal oxides such as magnesium oxide are used.
  • vulcanization accelerator known vulcanization accelerators such as aldehydes, ammonias, amines, guanidines, thioureas, thiazoles, thiurams, dithiocarbamates, xanthates and the like are used.
  • filler examples include calcium carbonate, basic magnesium carbonate, clay, Lissajous, diatomaceous earth, recycled rubber, powdered rubber, and the like.
  • anti-aging agent examples include amine-ketone, imidazole, amine, phenol, sulfur and phosphorus compounds.
  • Aromatic, naphthenic, and paraffinic process oils may be used.
  • the rubber composition of the present invention can be obtained by kneading the above-mentioned components using a conventional Banbury, open roll, kneader, twin-screw kneader or the like.
  • the vulcanized rubber composition obtained by vulcanizing the rubber composition of the present invention can be used for tires for passenger cars and competitions, and for large and heavy tires by utilizing the improved steering stability and low loss balance. It is also applicable to heavy tire applications.
  • the rubber composition according to the present invention can be used for each part of a tire such as a cap tread, a base tread, a side reinforcing rubber, a carcass, a belt, a chafer, a bead, a stiffener, and an inner liner. It is preferably used for a base tread.
  • the tire using the rubber composition according to the present invention is preferably a pneumatic tire, and as the filling gas, normal or oxygen partial pressure-adjusted air, nitrogen, and inert gas such as argon and helium are used. There are gas and the like.
  • the rubber composition according to the present invention When the rubber composition according to the present invention is used for each member of a tire, the rubber composition according to the present invention containing each component is processed in an unvulcanized stage, and attached by a normal method on a tire molding machine. The molded tire can be obtained. The green tire can be heated and pressurized by a vulcanizer to obtain a tire.
  • the rubber composition according to the present invention can be used for anti-vibration rubber, seismic isolation rubber, belts (belt conveyors), rubber crawlers, various hoses, and moran, in addition to tire applications.
  • the physical properties of the vinyl cis-polybutadiene rubber (A) and the rubber composition were measured as follows.
  • concentration of the crystal part of 1,2-polybutadiene contained in the vinyl cis-polybutadiene rubber was measured by a differential scanning calorimeter (DSC-50, manufactured by Shimadzu Corporation). It was calculated from the heat of fusion of the 1,2-polybutadiene crystal part. Specifically, first, about 10 mg of vinyl-cis-polybutadiene rubber was heated at a heating rate of 10 ° C./min, and the heat of fusion was calculated from an endothermic peak derived from the melting of 1,2-polybutadiene. Next, the concentration (% by mass) of the crystal part of 1,2-polybutadiene contained in the vinyl-cis-polybutadiene rubber was calculated from the known heat of fusion per unit mass of 1,2-polybutadiene.
  • concentration of the amorphous part of 1,2-polybutadiene contained in the vinyl-cis-polybutadiene rubber is defined as the concentration of the crystalline part of 1,2-polybutadiene and 1,4-polybutadiene. It was calculated from the concentration of polybutadiene by the following equation (1).
  • Weight average molecular weight (Mw) GPC (manufactured by Shimadzu Corporation) was carried out at a temperature of 40 ° C. using polystyrene as a standard substance and tetrahydrofuran as a solvent, and the weight average molecular weight (Mw) was calculated by using a calibration curve obtained from the obtained molecular weight distribution curve. .
  • Mooney viscosity (ML 1 + 4 , 100 ° C) According to JIS-K6300-1, preheating was performed at 100 ° C. for 1 minute using a Mooney viscometer manufactured by Shimadzu Corporation, and measurement was performed for 4 minutes to determine the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the rubber.
  • Low loss (tan ⁇ ) After vulcanizing the obtained rubber composition at 160 ° C. for 20 minutes, it was measured at a temperature of 50 ° C., a dynamic strain of 0.1%, and a frequency of 15 Hz using a viscoelasticity measuring device ARES (manufactured by TA Instruments). The index was calculated for each reciprocal of Comparative Example 1 and Examples 1 to 4 with tan ⁇ of Comparative Example 2 set to 100. The larger the index is, the smaller the tan ⁇ is and the lower the loss is. As a reference example, the rubber composition was vulcanized at 150 ° C.
  • Balance between Low Loss Property and Driving Stability The value obtained by adding the Low Loss Property Index and the Driving Stability Index and dividing by 2 was used as a balance index between the Low Loss Property and Driving Stability. The larger the index, the better the balance between low loss and steering stability. When the balance index is 108 or more, it can be said that the balance between the low loss property and the steering stability is excellent.
  • COD 1,5-cyclooctadiene
  • Co (Oct) 2 Cobalt octoate
  • cis-1,4 polymerization was performed at 35 ° C. for 12 minutes.
  • triethylaluminum (TEA) was added using a syringe so as to have a concentration of 3.91 mmol / L, and the mixture was maintained for 2 minutes.
  • Co (Oct) 2 cobalt octoate
  • DMSO dimethylsulfoxide
  • CS 2 carbon disulfide
  • Trisnonylphenyl phosphite was added to the resulting polymerization reaction mixture to terminate the syndiotactic-1,2 polymerization. Thereafter, the autoclave was cooled and depressurized to obtain a polymerization reaction mixture. Next, the polymerization reaction product was poured into water at 80 ° C. to precipitate vinyl-cis-polybutadiene rubber. The precipitated vinyl-cis-polybutadiene rubber was recovered, placed in a stainless steel autoclave together with water, sealed, and kept at 130 ° C. for 10 minutes. After cooling, the vinyl cis-polybutadiene rubber was taken out of the stainless steel autoclave and dried at 100 ° C. for 1 hour.
  • Table 1 shows the composition and melting point of the vinyl cis-polybutadiene rubber according to Synthesis Example 1.
  • the weight average molecular weight (Mw) of the vinyl cis-polybutadiene rubber of Synthesis Example 1 was 404,000, and the Mooney viscosity (ML 1 + 4 , 100 ° C.) was 38.6.
  • Cis-1,4 polymerization was carried out by supplying a cyclohexane-toluene solution of COD 34 ml / h and 0.03 mass% of cobalt octoate (Co (Oct) 2 ) to the polymerization tank.
  • the obtained cis-1,4 polymerization solution was supplied to a 5.3 L, 1,2-polybutadiene polymerization tank made of stainless steel equipped with a ribbon-type stirrer, and polymerized at 35 ° C. in syndiotactic-1,2.
  • the obtained syndiotactic-1,2 polymer solution was supplied to a 1.0 L stainless steel mixing tank equipped with a stirrer, and 100 ml / h of water, 4,6-bis (octylthioethyl) -o-cresol and tris Nonylphenyl phosphite was added in an amount of 1% by mass with respect to 100 parts by mass of the vinyl cis-polybutadiene rubber. After terminating the polymerization, the mixture was poured into hot water maintained at 130 ° C. to precipitate the vinyl cis-polybutadiene rubber. I let it. The precipitate was dried at 100 ° C. for 1 hour.
  • Table 1 shows the composition of the vinyl-cis-polybutadiene rubber according to Synthesis Example 2 and the melting point of 1,2-polybutadiene.
  • the weight average molecular weight (Mw) of the vinyl cis-polybutadiene rubber of Synthesis Example 2 was 411,000.
  • COD 1,5-cyclooctadiene
  • Co (Oct) 2 Cobalt octoate
  • cis-1,4 polymerization was carried out at 35 ° C. for 12 minutes.
  • triethylaluminum (TEA) was added using a syringe so as to have a concentration of 3.91 mmol / L, and the mixture was maintained for 2 minutes.
  • Co (Oct) 2 cobalt octoate
  • DMSO dimethyl sulfoxide
  • CS 2 carbon disulfide
  • Trisnonylphenyl phosphite was added to the resulting polymerization reaction mixture to terminate the syndiotactic-1,2 polymerization. Thereafter, the autoclave was cooled and depressurized, and the polymerization reaction mixture was taken out into a vat. The vat was put into a vacuum drier heated to 100 ° C., and the unreacted butadiene and solvent were removed to obtain a vinyl-cis-polybutadiene rubber according to Synthesis Example 3.
  • Table 1 shows the composition of the vinyl cis-polybutadiene rubber according to Synthesis Example 3 and the melting point of 1,2-polybutadiene.
  • the weight average molecular weight (Mw) of the vinyl cis-polybutadiene rubber of Synthesis Example 3 was 404,000, and the Mooney viscosity (ML 1 + 4 , 100 ° C.) was 38.6.
  • a cis-polybutadiene rubber was produced.
  • Table 1 shows the composition of the vinyl cis-polybutadiene rubber according to Synthesis Example 4 and the melting point of 1,2-polybutadiene.
  • the weight average molecular weight (Mw) of the vinyl cis-polybutadiene rubber of Synthesis Example 4 was 484,000.
  • cobalt octoate (Co (Oct) 2 ) was added to a concentration of 0.10 mmol / L.
  • the solution was added using a syringe so as to have a concentration of 150 mmol / L, kept for 2 minutes, and dimethyl sulfoxide (DMSO) was added using a syringe so as to have a concentration of 5.40 mmol / L.
  • DMSO dimethyl sulfoxide
  • carbon disulfide (CS 2 ) was added using a syringe to a concentration of 0.54 mmol / L, and syndiotactic-1,2 polymerization was carried out at 45 ° C. for 20 minutes.
  • 1,4-Naphthoquinone was added to the resulting polymerization reaction mixture to terminate the syndiotactic-1,2 polymerization. Thereafter, the autoclave was cooled and depressurized, and the polymerization reaction mixture was taken out into a vat. The vat was put into a vacuum dryer heated to 100 ° C., and the unreacted butadiene and the solvent were removed to obtain a vinyl cis-polybutadiene rubber.
  • Table 1 shows the composition of the vinyl-cis-polybutadiene rubber and the melting point of 1,2-polybutadiene according to the reference synthesis example.
  • the weight average molecular weight (Mw) of the vinyl cis-polybutadiene rubber of Reference Synthesis Example was 490,000, and the Mooney viscosity (ML 1 + 4 , 100 ° C.) was 41.7.
  • Comparative Example 1 contained no vinyl-cis-polybutadiene rubber
  • Comparative Example 2 contained a commercially available vinyl-cis-polybutadiene rubber (VCR412: 12% concentration of 1,2-polybutadiene and a melting point of 200 ° C.). Prepared specimens were measured for physical properties in the same manner as in Examples 1-4. Table 2 shows the results.
  • the vinyl-cis-polybutadiene rubber according to the reference synthesis example was kneaded by adding carbon black, natural rubber, process oil, zinc white, stearic acid and an antioxidant according to Table 3, and then primary kneading was performed.
  • a blend (Reference Example 2) was prepared by performing a secondary blend in which an agent and sulfur were added. Further, after molding this compound and press vulcanizing to obtain a rubber composition, the low loss property (tan ⁇ ) and the steering stability (storage modulus) were measured, and the balance between the low loss property and the steering stability was measured. Was calculated. Table 3 also shows the measurement results of the physical properties of these rubber compositions. Further, as Reference Example 1, one prepared by blending VCR412 was prepared.
  • the rubber compositions according to Examples 1 to 4 achieve a better balance between low loss and steering stability than the rubber compositions of Comparative Examples 1 and 2. Further, by comparing Example 1 with Examples 2 to 4, it was found that the rubber composition using vinyl cis-polybutadiene rubber having a low concentration of the amorphous portion of 1,2-polybutadiene had lower loss and steering stability. It can be seen that the balance of sex is improved.

Abstract

This rubber composition is characterized by containing: 100 parts by mass of a rubber component (A)+(B) that includes 1-50 parts by mass of a vinyl cis-polybutadiene rubber (A) containing 35-99 mass% of 1,2-polybutadiene having a melting point of 150-195°C and 50-99 parts by mass of a diene-based rubber (B) excluding (A); and 1-150 parts by mass of a rubber reinforcing agent (C). This tire is obtained by using said rubber composition.

Description

ゴム組成物及びタイヤRubber composition and tire
 本発明は、ゴム組成物及びそれを用いたタイヤに関する。より詳細には、ビニル・シス-ポリブタジエンゴムを用いたゴム組成物及びそれを用いたタイヤに関する。 The present invention relates to a rubber composition and a tire using the same. More specifically, the present invention relates to a rubber composition using a vinyl cis-polybutadiene rubber and a tire using the same.
 従来、ビニル・シス-ポリブタジエンゴムの製造は、ベンゼン、トルエン及びキシレンなどの炭化水素を主成分とする不活性有機溶媒中において、所定の触媒を用いて、1,3-ブタジエンをシス-1,4重合し、続いて、シンジオタクチック-1,2重合(以下、単に「1,2重合」という場合がある。)する方法により行われている。 Conventionally, vinyl cis-polybutadiene rubber has been produced by converting 1,3-butadiene into cis-1,1-butadiene using a predetermined catalyst in an inert organic solvent mainly containing a hydrocarbon such as benzene, toluene and xylene. It is carried out by a method of polymerizing 4 followed by syndiotactic-1,2 polymerization (hereinafter sometimes simply referred to as “1,2 polymerization”).
 また、ビニル・シス-ポリブタジエンゴムは、ゴム組成物にしたときの用途によって、種々の特性の改良が望まれている。例えば、特許文献1には、溶媒をC4留分としてSPBを微粒子化することによって引張特性や耐亀裂性を向上させたビニル・シス-ポリブタジエンゴムが記載されている。特許文献2には、ハロゲン含有の有機アルミニウム化合物中のハロゲン原子のモル数と有機アルミニウム化合物(AlR3)のモル数の比を最適な値にすることによって耐疲労性を向上させたビニル・シス-ポリブタジエンゴムが記載されている。特許文献3には、触媒使用量を調整し、優れた生産性や適した剛性を付与したビニル・シス-ポリブタジエンゴムが記載されている。特許文献4と特許文献5には、沸騰n-ヘキサン不溶分(HI)、長鎖分岐指数および分岐度を特定の範囲にし、優れたコールドフローや剛性率を付与したビニル・シス-ポリブタジエンゴムが記載されている。 ビ ニ ル Vinyl cis-polybutadiene rubber is desired to have various improved properties depending on the use of the rubber composition. For example, Patent Literature 1 describes a vinyl-cis-polybutadiene rubber in which SPB is finely divided into fine particles of SPB using a solvent as a C4 fraction to improve tensile properties and crack resistance. Patent Literature 2 discloses a vinyl cis-metal having improved fatigue resistance by setting the ratio of the number of moles of a halogen atom in a halogen-containing organoaluminum compound to the number of moles of an organoaluminum compound (AlR3) to an optimum value. Polybutadiene rubber is described. Patent Literature 3 describes a vinyl cis-polybutadiene rubber in which the amount of a catalyst used is adjusted to impart excellent productivity and suitable rigidity. Patent Documents 4 and 5 disclose a vinyl cis-polybutadiene rubber having a boiling n-hexane insoluble matter (HI), a long chain branching index and a degree of branching within a specific range, and imparting excellent cold flow and rigidity. Has been described.
特許第03855480号公報Japanese Patent No. 0385480 特許第05287436号公報Japanese Patent No. 05287436 特許第05447708号公報Japanese Patent No. 0544708 特許第05447707号公報Patent No. 0544707 特許第05585710号公報Japanese Patent No. 0558710
 しかしながら、種々の改良されたビニル・シス-ポリブタジエンゴムである特許文献1乃至5に記載のビニル・シス-ポリブタジエンゴムにおいても、ゴム組成物にしたときに、操縦安定性や低ロス性などの他の物性に関しては、未だ改良の余地がある。 However, the vinyl cis-polybutadiene rubbers described in Patent Literatures 1 to 5, which are various improved vinyl cis-polybutadiene rubbers, also have other properties such as steering stability and low loss when formed into a rubber composition. There is still room for improvement with regard to the physical properties of.
 本発明は、上記問題点に鑑みてなされたものであり、操縦安定性と低ロス性のバランスに優れたゴム組成物及びそれを用いたタイヤを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a rubber composition excellent in balance between steering stability and low loss property, and a tire using the same.
 本発明者らは、以上の目的を達成するために、鋭意検討した結果、ゴム組成物に配合されるビニル・シス-ポリブタジエンゴム中に特定の融点を有する1,2-ポリブタジエンを特定の濃度で含有させることにより、優れた操縦安定性を有するゴム組成物が製造できることを見出し、本発明に至った。 Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above object, and have found that 1,2-polybutadiene having a specific melting point is contained in a specific concentration in vinyl-cis-polybutadiene rubber compounded in a rubber composition. The present inventors have found that a rubber composition having excellent steering stability can be produced by containing the rubber composition, and have led to the present invention.
 すなわち、本発明は、融点が150~195℃である1,2-ポリブタジエンを35~99質量%含有するビニル・シス-ポリブタジエンゴム(A)1~50質量部、及び(A)以外のジエン系ゴム(B)50~99質量部を含むゴム成分(A)+(B)100質量部と、ゴム補強剤(C)1~150質量部とを含有することを特徴とするゴム組成物及びそれを用いたタイヤに関する。 That is, the present invention provides 1 to 50 parts by mass of a vinyl cis-polybutadiene rubber (A) containing 35 to 99% by mass of 1,2-polybutadiene having a melting point of 150 to 195 ° C., and a diene system other than (A). Rubber composition comprising 100 parts by mass of rubber component (A) + (B) containing 50 to 99 parts by mass of rubber (B) and 1 to 150 parts by mass of rubber reinforcing agent (C), and rubber composition A tire using the same.
 以上のように、本発明によれば、低ロス性と操縦安定性のバランスに優れたゴム組成物及びそれを用いたタイヤを提供することができる。 As described above, according to the present invention, it is possible to provide a rubber composition excellent in balance between low loss properties and steering stability, and a tire using the same.
<ビニル・シス-ポリブタジエンゴム(A)>
 本発明のゴム組成物に用いるビニル・シス-ポリブタジエンゴム(A)は、1,4-ポリブタジエン中に、融点が150~195℃の1,2-ポリブタジエンが35~99質量%含有される。
<Vinyl cis-polybutadiene rubber (A)>
The vinyl cis-polybutadiene rubber (A) used in the rubber composition of the present invention contains 35 to 99% by mass of 1,2-polybutadiene having a melting point of 150 to 195 ° C in 1,4-polybutadiene.
(1,2-ポリブタジエン)
 本発明に用いるビニル・シス-ポリブタジエンゴム(A)において、1,2-ポリブタジエンの融点は150~195℃であるが、160~190℃であることが好ましく、170~185℃であることがさらに好ましい。1,2-ポリブタジエン(B)の融点が150℃より低いとダイ・スウェルが悪化するため好ましくなく、195℃より高いと低燃費性が悪化するため、好ましくない。
(1,2-polybutadiene)
In the vinyl cis-polybutadiene rubber (A) used in the present invention, 1,2-polybutadiene has a melting point of 150 to 195 ° C, preferably 160 to 190 ° C, more preferably 170 to 185 ° C. preferable. If the melting point of 1,2-polybutadiene (B) is lower than 150 ° C., the die swell is deteriorated, and if it is higher than 195 ° C., the fuel efficiency is deteriorated, which is not preferable.
 ここで、示差走査熱量計により測定した1,2-ポリブタジエン由来の吸熱ピークのピークトップの温度を1,2-ポリブタジエンの融点とする。1,2-ポリブタジエン由来の吸熱ピークが複数存在するときは、ピーク分離を行って、最大面積のピークのピークトップを1,2-ポリブタジエンの融点とする。 Here, let the peak temperature of the endothermic peak derived from 1,2-polybutadiene measured by a differential scanning calorimeter be the melting point of 1,2-polybutadiene. When there are a plurality of endothermic peaks derived from 1,2-polybutadiene, peak separation is performed, and the peak top of the peak having the largest area is determined as the melting point of 1,2-polybutadiene.
 1,2-ポリブタジエンの含有量は、ビニル・シス-ポリブタジエンゴムに対して、35~99質量%であり、35~90質量%が好ましく、40~80質量%がより好ましい。含有量が99質量%より多いと、例えば配合後の1,2-ポリブタジエンの分散性が不十分でビニル・シス-ポリブタジエンゴムの効果が小さく、好ましくない。35質量%より少ないと1,2-ポリブタジエンの弾性率向上効果が十分に発現されず、好ましくない。ここで、1,2-ポリブタジエンの結晶部の濃度を1,2-ポリブタジエンの濃度とする。 The content of 1,2-polybutadiene is 35 to 99% by mass, preferably 35 to 90% by mass, more preferably 40 to 80% by mass, based on the vinyl-cis-polybutadiene rubber. If the content is more than 99% by mass, for example, the dispersibility of 1,2-polybutadiene after compounding is insufficient and the effect of the vinyl-cis-polybutadiene rubber is small, which is not preferable. When the amount is less than 35% by mass, the effect of improving the elastic modulus of 1,2-polybutadiene is not sufficiently exhibited, which is not preferable. Here, the concentration of the crystal part of 1,2-polybutadiene is defined as the concentration of 1,2-polybutadiene.
 1,2-ポリブタジエンの結晶部の濃度は、示差走査熱量計によって測定された1,2-ポリブタジエン結晶部の融解熱量から算出する。
 具体的には、まず、ビニル・シス-ポリブタジエンゴムを昇温速度10℃/minで昇温し、1,2-ポリブタジエンの融解に由来する吸熱ピークから融解熱量を算出する。次いで、1,2-ポリブタジエンの既知の単位質量当たりの融解熱量から、ビニル・シス-ポリブタジエンゴムに含まれる1,2-ポリブタジエンの結晶部の濃度(質量%)を算出することができる。
The concentration of the 1,2-polybutadiene crystal part is calculated from the heat of fusion of the 1,2-polybutadiene crystal part measured by a differential scanning calorimeter.
Specifically, first, the vinyl-cis-polybutadiene rubber is heated at a heating rate of 10 ° C./min, and the heat of fusion is calculated from an endothermic peak derived from the melting of 1,2-polybutadiene. Next, the concentration (% by mass) of the crystal part of 1,2-polybutadiene contained in the vinyl-cis-polybutadiene rubber can be calculated from the known heat of fusion of 1,2-polybutadiene per unit mass.
 ビニル・シス-ポリブタジエンゴムには、1,2-ポリブタジエンの非晶部を含んでもよく、1,2-ポリブタジエンの非晶部の含有量は、ビニル・シス-ポリブタジエンゴムに対して、0~30質量%が好ましく、0~25質量%がより好ましく、0~10質量%が特に好ましい。より低ロス性及び操縦安定性の安定性に優れたゴム組成物を提供可能なビニル・シス-ポリブタジエンゴムを得ることができる。 The vinyl-cis-polybutadiene rubber may contain an amorphous portion of 1,2-polybutadiene, and the content of the amorphous portion of 1,2-polybutadiene is 0 to 30 with respect to the vinyl-cis-polybutadiene rubber. % By mass, more preferably 0 to 25% by mass, and particularly preferably 0 to 10% by mass. It is possible to obtain a vinyl-cis-polybutadiene rubber capable of providing a rubber composition having a lower loss property and a more excellent handling stability.
 ビニル・シス-ポリブタジエンゴム(A)中の1,2-ポリブタジエンの含有量は、後述するビニル・シス-ポリブタジエンゴム(A)の製造方法の第3工程において、1,3-ブタジエンをシンジオタクチック-1,2重合において調整される。 The content of 1,2-polybutadiene in the vinyl-cis-polybutadiene rubber (A) is determined by synthesizing 1,3-butadiene in the third step of the method for producing the vinyl-cis-polybutadiene rubber (A) described below. -1, adjusted in polymerization.
 また、1,2-ポリブタジエンのピークトップ分子量(Mp)は、1,000~300,000が好ましく、5,000~150,000がより好ましい。ピークトップ分子量(Mp)が300,000より大きいと伸びが悪化する傾向にあり、1,000より小さいと弾性率が悪化する傾向にある。本発明において、ピークトップ分子量(Mp)とは、ゲル浸透クロマトグラフィー(GPC)測定により得られた溶出曲線におけるピークトップの分子量であり、ポリスチレンを標準物質として得た検量線から算出することができる。 は Further, the peak top molecular weight (Mp) of 1,2-polybutadiene is preferably from 1,000 to 300,000, more preferably from 5,000 to 150,000. When the peak top molecular weight (Mp) is larger than 300,000, elongation tends to be deteriorated, and when it is smaller than 1,000, the elastic modulus tends to be deteriorated. In the present invention, the peak top molecular weight (Mp) is a molecular weight of a peak top in an elution curve obtained by gel permeation chromatography (GPC) measurement, and can be calculated from a calibration curve obtained using polystyrene as a standard substance. .
(1,4-ポリブタジエン)
 本発明に用いるビニル・シス-ポリブタジエンゴム(A)において、1,4-ポリブタジエンは、後述するビニル・シス-ポリブタジエンゴム(A)の製造方法の第2工程において、1,3-ブタジエンをシス-1,4重合することによって得られる。ポリブタジエンのムーニー粘度(ML1+4,100℃)は、20~60が好ましく、25~45がより好ましい。ムーニー粘度(ML1+4,100℃)が20より小さいと低ロス性が低下し、60より大きいと加工性が低下する。
 また、ポリブタジエンのシス-1,4構造含有率は90%以上であることが好ましく、特に95%以上であることが好ましい。
(1,4-polybutadiene)
In the vinyl cis-polybutadiene rubber (A) used in the present invention, 1,4-polybutadiene is converted to 1,3-butadiene in the second step of the method for producing the vinyl cis-polybutadiene rubber (A) described below. It is obtained by 1,4 polymerization. The Mooney viscosity (ML 1 + 4 , 100 ° C.) of polybutadiene is preferably from 20 to 60, and more preferably from 25 to 45. If the Mooney viscosity (ML 1 + 4 , 100 ° C.) is smaller than 20, the low loss property is reduced, and if it is larger than 60, the workability is reduced.
The cis-1,4 structure content of polybutadiene is preferably at least 90%, particularly preferably at least 95%.
 また、1,4-ポリブタジエンの重量平均分子量(Mw)は、200,000~800,000が好ましく、400,000~650,000がより好ましい。重量平均分子量(Mw)が200,000より小さいと低ロス性が低下し、800,000より大きいと加工性が低下する。
 また、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、2.00~5.00が好ましく、2.20~3.50がより好ましい。
The weight average molecular weight (Mw) of 1,4-polybutadiene is preferably from 200,000 to 800,000, more preferably from 400,000 to 650,000. If the weight average molecular weight (Mw) is smaller than 200,000, the low loss property is reduced, and if it is larger than 800,000, the processability is reduced.
Further, the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) is preferably 2.00 to 5.00, more preferably 2.20 to 3.50.
 また、シス-1,4重合で得られる1,4-ポリブタジエンは実質的にゲル分を含有しない。 1 , 1,4-polybutadiene obtained by cis-1,4 polymerization contains substantially no gel component.
<ビニル・シス-ポリブタジエンゴム(A)の製造方法>
 本発明に係るビニル・シス-ポリブタジエンゴムの製造方法は、1,3-ブタジエンと、炭化水素を主成分とする不活性有機溶媒との混合物を調製する第1工程と、第1工程で調整された混合物に(a)水、有機アルミニウム化合物及び可溶性コバルト化合物からなる触媒、又は(b)有機アルミニウム化合物、ニッケル化合物及びフッ素化合物からなる触媒を添加して、1,3-ブタジエンをシス-1,4重合する第2工程と、第2工程で得られた重合反応混合物中の1,3-ブタジエンをシンジオタクチック-1,2重合する第3工程と、を備え、第3工程において、得られる1,2-ポリブタジエンの融点を低下させる融点降下剤を添加することを特徴とする。
<Method for producing vinyl cis-polybutadiene rubber (A)>
The method for producing a vinyl-cis-polybutadiene rubber according to the present invention comprises a first step of preparing a mixture of 1,3-butadiene and an inert organic solvent containing a hydrocarbon as a main component, and a first step. (A) a catalyst composed of water, an organoaluminum compound and a soluble cobalt compound, or (b) a catalyst composed of an organoaluminum compound, a nickel compound and a fluorine compound, to convert 1,3-butadiene into cis-1,1. 4) a second step of polymerizing, and a third step of syndiotactic-1,2 polymerization of 1,3-butadiene in the polymerization reaction mixture obtained in the second step, obtained in the third step It is characterized by adding a melting point depressant for lowering the melting point of 1,2-polybutadiene.
(第1工程)
 本発明に係るビニル・シス-ポリブタジエンゴム(A)の製造方法において使用する炭化水素を主成分とする不活性有機溶媒としては、トルエン、ベンゼン及びキシレン等の芳香族炭化水素、n-ヘキサン、ブタン、ヘプタン及びペンタン等の脂肪族炭化水素、シクロヘキサン及びシクロペンタン等の脂環族炭化水素、上記のオレフィン化合物及びシス-2-ブテン、トランス-2-ブテン等のオレフィン系炭化水素、ミネラルスピリット、ソルベントナフサ及びケロシン等の炭化水素系溶媒、並びに塩化メチレン等のハロゲン化炭化水素系溶媒などが挙げられる。また、1,3-ブタジエンモノマーそのものを重合溶媒として用いてもよい。
(First step)
Examples of the inert organic solvent containing a hydrocarbon as a main component used in the method for producing the vinyl-cis-polybutadiene rubber (A) according to the present invention include aromatic hydrocarbons such as toluene, benzene and xylene, n-hexane and butane. , Hydrocarbons such as heptane and pentane, alicyclic hydrocarbons such as cyclohexane and cyclopentane, the above-mentioned olefin compounds and olefinic hydrocarbons such as cis-2-butene and trans-2-butene, mineral spirits and solvents Examples include hydrocarbon solvents such as naphtha and kerosene, and halogenated hydrocarbon solvents such as methylene chloride. Further, the 1,3-butadiene monomer itself may be used as the polymerization solvent.
 上記の不活性有機溶媒の中でも、トルエン、シクロヘキサン、及びシス-2-ブテンとトランス-2-ブテンとの混合物などが好適に用いられる。 中 で も Among the above-mentioned inert organic solvents, toluene, cyclohexane, a mixture of cis-2-butene and trans-2-butene, and the like are preferably used.
(第2工程)
 次に、第1工程で調整された混合物に(a)水、有機アルミニウム化合物及び可溶性コバルト化合物からなる触媒を添加して、1,3-ブタジエンをシス-1,4重合する。すなわち、先ず、第1工程で調製された混合物に水を添加して、水分の濃度を調整する。水分の濃度は、シス-1,4重合で用いる有機アルミニウム化合物1モル当たり、好ましくは0.1~1.4モル、特に好ましくは0.2~1.2モルの範囲である。この範囲外では触媒活性が低下したり、シス-1,4構造含有率が低下したり、分子量が異常に低く又は高くなったりするため好ましくない。また、上記の範囲外では、重合時のゲルの発生を抑制することができず、このため重合槽などへのゲルの付着が起り、さらに連続重合時間を延ばすことができないので好ましくない。水分の濃度を調整する方法は、公知の方法が適用できる。多孔質濾過材を通して添加・分散させる方法(特開平4-85304号公報)も有効である。
(2nd process)
Next, (a) a catalyst comprising water, an organoaluminum compound and a soluble cobalt compound is added to the mixture prepared in the first step, and 1,3-butadiene is subjected to cis-1,4 polymerization. That is, first, water is added to the mixture prepared in the first step to adjust the concentration of water. The concentration of water is preferably in the range of 0.1 to 1.4 mol, particularly preferably 0.2 to 1.2 mol, per 1 mol of the organic aluminum compound used in the cis-1,4 polymerization. Outside this range, the catalytic activity is reduced, the cis-1,4 structure content is reduced, and the molecular weight is unusually low or high, which is not preferable. If the amount is outside the above range, the generation of gel during polymerization cannot be suppressed, so that the gel adheres to a polymerization tank or the like, and the continuous polymerization time cannot be extended, which is not preferable. A known method can be applied as a method for adjusting the concentration of water. A method of adding and dispersing through a porous filter medium (JP-A-4-85304) is also effective.
 次に、上記のように水分の濃度を調整して得られた混合物に、有機アルミニウム化合物を添加する。有機アルミニウム化合物としては、トリアルキルアルミニウム、ジアルキルアルミニウムクロライド、ジアルキルアルミニウムブロマイド、アルキルアルミニウムセスキクロライド、アルキルアルミニウムセスキブロマイド、及びアルキルアルミニウムジクロライドなどが挙げられる。 Next, the organoaluminum compound is added to the mixture obtained by adjusting the concentration of water as described above. Examples of the organoaluminum compound include trialkylaluminum, dialkylaluminum chloride, dialkylaluminum bromide, alkylaluminum sesquichloride, alkylaluminum sesquibromide, and alkylaluminum dichloride.
 上記の有機アルミニウム化合物のうち、一般式AlR(但し、Rは炭素原子数1~10の炭化水素基である)により表わされるトリアルキルアルミニウムを好ましく用いることができる。トリアルキルアルミニウムの例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム、トリフェニルアルミニウム、トリ-p-トリルアルミニウム、及びトリベンジルアルミニウムを挙げることができる。なお、トリアルキルアルミニウム内のアルキル基は、互いに同一でも、あるいは異なっていてもよい。 Among the above-mentioned organoaluminum compounds, a trialkylaluminum represented by the general formula AlR 3 (where R is a hydrocarbon group having 1 to 10 carbon atoms) can be preferably used. Examples of trialkyl aluminum include trimethyl aluminum, triethyl aluminum, tri-n-propyl aluminum, triisopropyl aluminum, tri-n-butyl aluminum, triisobutyl aluminum, tripentyl aluminum, trihexyl aluminum, tricyclohexyl aluminum, trioctyl Aluminum, triphenylaluminum, tri-p-tolylaluminum, and tribenzylaluminum can be mentioned. The alkyl groups in the trialkylaluminum may be the same or different.
 上記の有機アルミニウム化合物に加えて、ジメチルアルミニウムクロライド及びジエチルアルミニウムクロライドなどのジアルキルアルミニウムクロライド、セスキエチルアルミニウムクロライド及びエチルアルミニウムジクロライドなどの有機アルミニウムハロゲン化合物、ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド及びセスキエチルアルミニウムハイドライドなどの水素化有機アルミニウム化合物を用いることもできる。 In addition to the above organoaluminum compounds, dialkylaluminum chlorides such as dimethylaluminum chloride and diethylaluminum chloride, organoaluminum halides such as sesquiethylaluminum chloride and ethylaluminum dichloride, diethylaluminum hydride, diisobutylaluminum hydride and sesquiethylaluminum hydride and the like Can also be used.
 これらの有機アルミニウム化合物は、2種類以上を併用することもできる。 Two or more of these organoaluminum compounds can be used in combination.
 有機アルミニウム化合物の使用量は、(a)水、有機アルミニウム化合物及び可溶性コバルト化合物からなる触媒を用いてシス-1,4重合する場合は、1,3-ブタジエン1モル当たり0.1ミリモル以上、特に0.5~50ミリモルであることが好ましい。また、(b)有機アルミニウム化合物、ニッケル化合物及びフッ素化合物からなる触媒を用いてシス-1,4重合する場合は、1,3-ブタジエン1モル当たり1×10-5~1×10-1モルであることが好ましい。 The amount of the organoaluminum compound used is: (a) in the case of cis-1,4 polymerization using a catalyst comprising water, an organoaluminum compound and a soluble cobalt compound, at least 0.1 mmol per mol of 1,3-butadiene; In particular, it is preferably from 0.5 to 50 mmol. When cis-1,4 polymerization is carried out using (b) a catalyst comprising an organoaluminum compound, a nickel compound and a fluorine compound, 1 × 10 −5 to 1 × 10 −1 mol per mol of 1,3-butadiene is used. It is preferred that
 次いで、有機アルミニウム化合物を添加した混合物に可溶性コバルト化合物を添加して、1,3-ブタジエンをシス-1,4重合する。可溶性コバルト化合物としては、炭化水素を主成分とする不活性有機溶媒若しくは液体1,3-ブタジエンに可溶なものであるか、又は均一に分散できる、例えば、コバルト(II)アセチルアセトナート及びコバルト(III)アセチルアセトナートなどコバルトのβ-ジケトン錯体、コバルトアセト酢酸エチルエステル錯体のようなコバルトのβ-ケト酸エステル錯体、コバルトオクトエート、コバルトナフテネート及びコバルトベンゾエートなどの炭素数6以上の有機カルボン酸のコバルト塩、塩化コバルトピリジン錯体及び塩化コバルトエチルアルコール錯体などのハロゲン化コバルト錯体などが用いられる。可溶性コバルト化合物の使用量は、1,3-ブタジエン1モル当たり0.001マイクロモル以上、特に0.005マイクロモル以上であることが好ましい。また、可溶性コバルト化合物に対する有機アルミニウム化合物のモル比(Al/Co)は10以上であり、特に50以上であることが好ましい。 Next, a soluble cobalt compound is added to the mixture to which the organoaluminum compound has been added, and 1,3-butadiene is subjected to cis-1,4 polymerization. Examples of the soluble cobalt compound include those which are soluble in an inert organic solvent containing hydrocarbon as a main component or liquid 1,3-butadiene, or which can be uniformly dispersed, for example, cobalt (II) acetylacetonate and cobalt (III) Organic compounds having 6 or more carbon atoms such as β-diketone complex of cobalt such as acetylacetonate, β-keto acid ester complex of cobalt such as ethyl acetoacetate complex, cobalt octoate, cobalt naphthenate and cobalt benzoate. Cobalt salts of carboxylic acids, cobalt halide complexes such as cobalt chloride pyridine complexes and cobalt chloride ethyl alcohol complexes are used. The amount of the soluble cobalt compound used is preferably at least 0.001 micromol, particularly preferably at least 0.005 micromol, per mole of 1,3-butadiene. Further, the molar ratio of the organic aluminum compound to the soluble cobalt compound (Al / Co) is 10 or more, and particularly preferably 50 or more.
 また、(a)水、有機アルミニウム化合物及び可溶性コバルト化合物からなる触媒の代わりに(b)有機アルミニウム化合物、ニッケル化合物及びフッ素化合物からなる触媒を添加して、1,3-ブタジエンをシス-1,4重合してもよい。この場合、水は、シス-1,4重合触媒の成分として添加しても、添加しなくてもよい。 Further, instead of (a) a catalyst comprising water, an organoaluminum compound and a soluble cobalt compound, (b) a catalyst comprising an organoaluminum compound, a nickel compound and a fluorine compound is added to convert 1,3-butadiene into cis-1, Four polymerization may be carried out. In this case, water may or may not be added as a component of the cis-1,4 polymerization catalyst.
 ニッケル化合物としては、ニッケルの塩や錯体が好ましく用いられる。特に好ましいものとして、塩化ニッケル及び臭化ニッケルなどのハロゲン化ニッケル、硝酸ニッケルなどの無機酸のニッケル塩、オクチル酸ニッケル、酢酸ニッケル、ニッケルオクトエートなどの炭素原子数1~18のカルボン酸ニッケル、ナフテン酸ニッケル、マロン酸ニッケル、ニッケルのビスアセチルアセトナート及びトリスアセチルアセトネート、アセト酢酸エチルエステルなどのニッケル錯体、ハロゲン化ニッケルのトリアリールホスフィン錯体、トリアルキルホスフィン錯体、ピリジン錯体及びピコリン錯体等の有機塩基錯体、並びにエチルアルコール錯体などの各種錯体を挙げることができる。ニッケル化合物の使用量は、1,3-ブタジエン1モル当たり1×10-7~1×10-3モルであることが好ましい。 As the nickel compound, a salt or complex of nickel is preferably used. Particularly preferred are nickel halides such as nickel chloride and nickel bromide, nickel salts of inorganic acids such as nickel nitrate, nickel carboxylate having 1 to 18 carbon atoms such as nickel octylate, nickel acetate and nickel octoate; Nickel complexes such as nickel naphthenate, nickel malonate, nickel bisacetylacetonate and trisacetylacetonate, acetoacetate ethyl ester, nickel halide triarylphosphine complex, trialkylphosphine complex, pyridine complex and picoline complex Various complexes such as an organic base complex and an ethyl alcohol complex can be exemplified. The use amount of the nickel compound is preferably 1 × 10 −7 to 1 × 10 −3 mol per mol of 1,3-butadiene.
 フッ素化合物としては、三フッ化ホウ素のエーテル、アルコール、又はこれらの混合物の錯体、あるいはフッ化水素のエーテル、アルコール、又はこれらの錯体の混合物が好ましく用いられる。特に好ましいものとして、三フッ化ホウ素ジエチルエーテレート、三フッ化ホウ素ジブチルエーテレート、フッ化水素ジエチルエーテレート、及びフッ化水素ジブチルエーテレートを挙げることができる。フッ素化合物の使用量は、1,3-ブタジエン1モル当たり1×10-4~1モルであることが好ましい。 As the fluorine compound, a boron trifluoride ether, an alcohol, or a complex of a mixture thereof, or a hydrogen fluoride ether, an alcohol, or a mixture of these complexes is preferably used. Particularly preferred are boron trifluoride diethyl etherate, boron trifluoride dibutyl etherate, hydrogen fluoride diethyl etherate, and hydrogen hydrogen dibutyl etherate. The use amount of the fluorine compound is preferably 1 × 10 −4 to 1 mol per 1 mol of 1,3-butadiene.
 1,3-ブタジエンをシス-1,4重合する温度は、0℃を超えて100℃以下、好ましくは10~100℃、さらに好ましくは20~100℃である。重合時間は、10分~2時間の範囲が好ましい。シス-1,4重合後のポリマー濃度が5~26質量%となるように、シス-1,4重合を行うことが好ましい。重合は、重合槽(重合器)内にて溶液を攪拌混合して行う。重合に用いる重合槽としては、高粘度液攪拌装置付きの重合槽、例えば特公昭40-2645号公報に記載された装置を用いることができる。 The temperature at which cis-1,4 polymerization of 1,3-butadiene is performed is more than 0 ° C. and 100 ° C. or less, preferably 10 to 100 ° C., and more preferably 20 to 100 ° C. The polymerization time is preferably in the range of 10 minutes to 2 hours. The cis-1,4 polymerization is preferably performed so that the polymer concentration after the cis-1,4 polymerization is 5 to 26% by mass. The polymerization is carried out by stirring and mixing the solution in a polymerization tank (polymerization vessel). As a polymerization tank used for the polymerization, a polymerization tank equipped with a high-viscosity liquid stirring device, for example, an apparatus described in Japanese Patent Publication No. 40-2645 can be used.
 シス-1,4重合時に、公知の分子量調節剤、例えばシクロオクタジエン、アレン、メチルアレン(1,2-ブタジエン)などの非共役ジエン類、又はエチレン、プロピレン、ブテン-1などのα-オレフィン類を使用することができる。また、重合時のゲルの生成をさらに抑制するため、公知のゲル化防止剤を使用することができる。 During cis-1,4 polymerization, known molecular weight regulators, for example, non-conjugated dienes such as cyclooctadiene, arene and methylarene (1,2-butadiene), or α-olefins such as ethylene, propylene and butene-1 Kinds can be used. In order to further suppress the formation of a gel at the time of polymerization, a known gelling inhibitor can be used.
(第3工程)
 次に、第2工程で得られた重合反応混合物中の1,3-ブタジエンをシンジオタクチック-1,2重合する。その際に、得られたシス-1,4重合物に、1,3-ブタジエンを添加しても添加しなくてもよい。また、この1,2重合する方法は、特に限定されないが、1,2重合する際に、一般式AlR(但し、Rは炭素原子数1~10の炭化水素基である)により表される有機アルミニウム化合物及び二硫化炭素を添加して1,3-ブタジエンを1,2重合することが好ましく、必要に応じて可溶性コバルト化合物をさらに添加してもよい。またさらに、1,2重合する際に、重合系に水を添加してもよい。
(3rd step)
Next, 1,3-butadiene in the polymerization reaction mixture obtained in the second step is subjected to syndiotactic-1,2 polymerization. At that time, 1,3-butadiene may or may not be added to the obtained cis-1,4 polymer. The method of polymerizing 1,2 is not particularly limited, but the polymerization of 1,2 is represented by the general formula AlR 3 (where R is a hydrocarbon group having 1 to 10 carbon atoms). It is preferable that 1,3-butadiene is polymerized into 1,2 by adding an organic aluminum compound and carbon disulfide, and a soluble cobalt compound may be further added as necessary. Further, water may be added to the polymerization system during the polymerization of 1,2.
 前記一般式AlRにより表される有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn-ヘキシルアルミニウム及びトリフェニルアルミニウムなどが好適である。有機アルミニウム化合物は、1,3-ブタジエン1モル当たり0.1ミリモル以上、特に0.5~50ミリモルが好ましい。二硫化炭素の濃度は、20ミリモル/L以下、特に好ましくは0.01~10ミリモル/Lである。二硫化炭素の代替として、公知のイソチオシアン酸フェニルやキサントゲン酸化合物を使用してもよい。水は、1,3-ブタジエンを有機アルミニウム化合物と接触させた後、重合系に添加することが好ましい。水の添加量は、有機アルミニウム化合物1モル当たり0.1~1.5モルが好ましい。可溶性コバルト化合物としては、前記第2工程で記載したものと同様のものを用いることができる。 As the organoaluminum compound represented by the general formula AlR 3 , trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, triphenylaluminum and the like are preferable. The amount of the organoaluminum compound is preferably 0.1 mmol or more, especially 0.5 to 50 mmol, per 1 mol of 1,3-butadiene. The concentration of carbon disulfide is 20 mmol / L or less, particularly preferably 0.01 to 10 mmol / L. As a substitute for carbon disulfide, known phenyl isothiocyanate or xanthate compound may be used. Water is preferably added to the polymerization system after bringing 1,3-butadiene into contact with the organoaluminum compound. The addition amount of water is preferably 0.1 to 1.5 mol per 1 mol of the organic aluminum compound. As the soluble cobalt compound, the same compounds as those described in the second step can be used.
 本発明に係るビニル・シス-ポリブタジエンゴムの製造方法は、第3工程において、得られる1,2-ポリブタジエンの融点を低下させる融点降下剤を添加することを特徴とする。融点降下剤としては、ジメチルスルホキシド(DMSO)、アセトンなどが挙げられ、未反応の1,3-ブタジエンとの分離・精製の観点から、ジメチルスルホキシド(DMSO)が特に好ましい。 方法 The method for producing a vinyl-cis-polybutadiene rubber according to the present invention is characterized in that in the third step, a melting point depressant for lowering the melting point of the obtained 1,2-polybutadiene is added. Examples of the melting point depressant include dimethyl sulfoxide (DMSO) and acetone. From the viewpoint of separation and purification from unreacted 1,3-butadiene, dimethyl sulfoxide (DMSO) is particularly preferable.
 融点降下剤の添加量は、第3工程で添加する有機アルミニウム化合物に対して、モル比0.01~10が好ましく、0.05~5がより好ましく、0.1~3が特に好ましい。融点降下剤を上記の量添加することで、第3工程において得られる1,2-ポリブタジエンの融点を150~195℃に調整することができる。添加量のモル比が10より多いと融点が過剰に低下し、1,2-ポリブタジエンの弾性率向上効果が小さい傾向にあり、0.1より少ないと低燃費性の改善効果が小さい傾向にあるため、好ましくない。 添加 The amount of the melting point depressant added is preferably from 0.01 to 10, more preferably from 0.05 to 5, and particularly preferably from 0.1 to 3, based on the organoaluminum compound added in the third step. By adding the above-mentioned melting point depressant, the melting point of 1,2-polybutadiene obtained in the third step can be adjusted to 150 to 195 ° C. If the molar ratio of the added amount is more than 10, the melting point will be excessively lowered, and the effect of improving the elastic modulus of 1,2-polybutadiene tends to be small, and if it is less than 0.1, the effect of improving the fuel efficiency tends to be small. Therefore, it is not preferable.
 1,2重合する温度は、-5~100℃が好ましく、特に-5~80℃が好ましい。1,2重合する際に、1,3-ブタジエンを追加で添加することにより、1,2重合時の1,2-ポリブタジエンの収量を増大させることもできる。重合時間は、2分~2時間の範囲が好ましい。1,2重合後のポリマー濃度が3~30質量%となるように、1,2重合を行うことが好ましい。重合は重合槽(重合器)内にて重合溶液を攪拌混合して行う。1,2重合に用いる重合槽としては、1,2重合中は更に高粘度となり、ポリマーが付着しやすいので、高粘度液攪拌装置付きの重合槽、例えば特公昭40-2645号公報に記載された装置を用いることができる。 The temperature for polymerization of # 1 and # 2 is preferably from -5 to 100 ° C, more preferably from -5 to 80 ° C. By adding 1,3-butadiene during the 1,2 polymerization, the yield of 1,2-polybutadiene during the 1,2 polymerization can be increased. The polymerization time is preferably in the range of 2 minutes to 2 hours. The 1,2 polymerization is preferably performed so that the polymer concentration after the 1,2 polymerization is 3 to 30% by mass. The polymerization is carried out by stirring and mixing the polymerization solution in a polymerization tank (polymerization vessel). The polymerization tank used for the polymerization of 1, 2 has a higher viscosity during the polymerization of 1, 2 and the polymer is liable to be adhered. Therefore, a polymerization tank equipped with a high-viscosity liquid stirring device, for example, described in Japanese Patent Publication No. 40-2645. Can be used.
 重合反応が所定の重合率に達した後、常法に従って公知の老化防止剤を添加することができる。老化防止剤としては、フェノール系の2,6-ジ-t-ブチル-p-クレゾール(BHT)、リン系のトリノニルフェニルフォスファイト(TNP)、並びに硫黄系の4,6-ビス(オクチルチオメチル)-o-クレゾール及びジラウリル-3,3’-チオジプロピオネート(TPL)などが挙げられる。これらを単独でも2種以上組み合わせて用いてもよく、老化防止剤の添加は、ビニル・シス-ポリブタジエンゴム100質量部に対して0.001~5質量部である。 後 After the polymerization reaction reaches a predetermined polymerization rate, a known antioxidant can be added according to a conventional method. Examples of anti-aging agents include phenolic 2,6-di-t-butyl-p-cresol (BHT), phosphorus-based trinonylphenyl phosphite (TNP), and sulfur-based 4,6-bis (octylthio). Methyl) -o-cresol and dilauryl-3,3′-thiodipropionate (TPL). These may be used alone or in combination of two or more kinds. The addition of the antioxidant is 0.001 to 5 parts by mass based on 100 parts by mass of the vinyl cis-polybutadiene rubber.
 重合反応は、重合溶液にメタノール及びエタノールなどのアルコール、又は水などの極性溶媒を大量に投入する方法、塩酸及び硫酸などの無機酸、酢酸及び安息香酸などの有機酸、亜リン酸エステル、又は塩化水素ガスを重合溶液に導入する方法など、それ自体公知の方法を用いて停止する。次いで、通常の方法に従い、生成したビニル・シス-ポリブタジエンゴムを分離、洗浄、続いて乾燥する。 The polymerization reaction is a method of introducing a large amount of a polar solvent such as alcohol or water such as methanol or ethanol into the polymerization solution, an inorganic acid such as hydrochloric acid and sulfuric acid, an organic acid such as acetic acid and benzoic acid, a phosphite, or Stopping is performed by a method known per se, such as a method of introducing hydrogen chloride gas into the polymerization solution. The resulting vinyl cis-polybutadiene rubber is then separated, washed and subsequently dried according to conventional methods.
 ビニル・シス-ポリブタジエンゴムに含まれる1,2-ポリブタジエンの結晶部の濃度を、例えば必要とする機能に合わせて、任意に変化させることができる。具体的な方法としては、例えば、生成したビニル・シス-ポリブタジエンゴムを、乾燥前或いは乾燥後に、液体中或いは窒素中或いは大気中、或いはこれら以外の雰囲気下で加熱することによって、結晶の一部或いは全部を非晶化することができる。 The concentration of the crystal part of 1,2-polybutadiene contained in the vinyl-cis-polybutadiene rubber can be arbitrarily changed according to, for example, a required function. As a specific method, for example, by heating the produced vinyl cis-polybutadiene rubber before or after drying in a liquid, in nitrogen, in the air, or in an atmosphere other than these, a part of the crystal is formed. Alternatively, all can be amorphized.
<ゴム組成物>
 本発明のゴム組成物は、前記ビニル・シス-ポリブタジエンゴム(A)1~50質量部、及び(A)以外のジエン系ゴム(B)50~99質量部を含むゴム成分(A)+(B)100質量部と、ゴム補強剤(C)1~150質量部とを含有する。
<Rubber composition>
The rubber composition of the present invention comprises a rubber component (A) + (B) containing 1 to 50 parts by mass of the vinyl-cis-polybutadiene rubber (A) and 50 to 99 parts by mass of a diene rubber (B) other than (A). B) 100 parts by mass and 1 to 150 parts by mass of a rubber reinforcing agent (C).
((A)以外のジエン系ゴム(B))
 本発明において、(B)成分の(A)以外のジエン系ゴムとしては、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、乳化重合若しくは溶液重合スチレン-ブタジエンゴム、ブチルゴムから選ばれる少なくとも1種類以上のジエン系ゴムを用いることができる。天然ゴム及び/又はブタジエンゴムを含有することが好ましい。ベーストレッドに用いる場合には、天然ゴム及びブタジエンゴムを含有することがより好ましく、天然ゴムを30質量部以上含むことが更に好ましい。(B)成分を(A)成分と混合させるときには、通常行われているバンバリー、ロールなどの混練時に混合してもよいし、重合後の溶液状態のままで予め混合、乾燥したものを使用してもよい。
(Diene rubber other than (A) (B))
In the present invention, as the diene rubber other than (A) as the component (B), for example, at least one or more selected from natural rubber, isoprene rubber, butadiene rubber, emulsion-polymerized or solution-polymerized styrene-butadiene rubber, and butyl rubber Diene rubber can be used. It preferably contains natural rubber and / or butadiene rubber. When used for a base tread, the rubber composition preferably contains natural rubber and butadiene rubber, and more preferably contains 30 parts by mass or more of natural rubber. When the component (B) is mixed with the component (A), it may be mixed during the usual kneading of a Banbury, a roll, or the like, or may be used by previously mixing and drying in a solution state after polymerization. You may.
 (A)成分と(B)成分との割合は、ゴム成分(A)+(B)100質量部に対して、(A)成分が5~45質量部、(B)成分が65~95質量部であることが好ましく、(A)成分が10~40質量部、(B)成分が60~90質量部であることがより好ましく、特に(A)成分が15~35質量部、(B)成分が65~85質量部である場合、タイヤ用のゴム組成物として最適である。 The ratio of the component (A) to the component (B) is 5 to 45 parts by mass for the component (A) and 65 to 95 parts by mass for 100 parts by mass of the rubber component (A) + (B). The component (A) is more preferably 10 to 40 parts by mass, the component (B) more preferably 60 to 90 parts by mass, particularly the component (A) 15 to 35 parts by mass, and the component (B) When the component is 65 to 85 parts by mass, it is most suitable as a rubber composition for a tire.
(ゴム補強剤(C))
 本発明において、(C)成分のゴム補強剤としては、各種のカーボンブラック、シリカ等の充填剤、活性化炭酸カルシウム、超微粒子珪酸マグネシウム等の無機補強剤やシンジオタクチック-1,2-ポリブタジエン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ハイスチレン樹脂、フェノール樹脂、リグニン、及び変性メラミン樹脂等の有機補強剤が挙げられる。なお、ビニル・シス-ポリブタジエンゴム(A)中のシンジオタクチック-1,2-ポリブタジエンは、ゴム補強剤(C)には含まれないものとする。
 カーボンブラックとしては、特に制限されないが、例えば、FEF,FF,GPF,SAF,ISAF,SRF,HAF等を挙げることができる。カーボンブラックの含有量は、操縦安定性の観点から20質量部以上が好ましく、低燃費性の観点から100質量部以下が好ましい。
 粒子径が15nm以上、90nm以下、窒素吸着比表面積が15~135m/g、ジブチルフタレート(DBP)吸油量が60ml/100g以上、180ml/100g以下であることが好ましい。
 本発明において、ゴム補強剤としてシリカを用いることができる。シリカの種類は特に制限されず、一般グレードのシリカ、シランカップリング剤などで表面処理を施した特殊シリカなど、用途に応じて使用することができる。
 シリカとしては、特に制限はなく、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられ、これらの中でも、湿式シリカが好ましい。これらシリカは、一種単独で使用してもよいし、二種以上を併用してもよい。
(Rubber reinforcement (C))
In the present invention, the rubber reinforcing agent of the component (C) includes various fillers such as carbon black and silica, inorganic reinforcing agents such as activated calcium carbonate and ultrafine magnesium silicate, and syndiotactic-1,2-polybutadiene. Organic reinforcing agents such as resin, polyethylene resin, polypropylene resin, high styrene resin, phenol resin, lignin, and modified melamine resin. The syndiotactic-1,2-polybutadiene in the vinyl cis-polybutadiene rubber (A) is not included in the rubber reinforcing agent (C).
Examples of the carbon black include, but are not particularly limited to, FEF, FF, GPF, SAF, ISAF, SRF, and HAF. The content of carbon black is preferably at least 20 parts by mass from the viewpoint of steering stability, and is preferably at most 100 parts by mass from the viewpoint of fuel economy.
It is preferable that the particle diameter is 15 nm or more and 90 nm or less, the nitrogen adsorption specific surface area is 15 to 135 m 2 / g, and the dibutyl phthalate (DBP) oil absorption is 60 ml / 100 g or more and 180 ml / 100 g or less.
In the present invention, silica can be used as a rubber reinforcing agent. The type of silica is not particularly limited, and can be used according to the intended use, such as general-grade silica and special silica surface-treated with a silane coupling agent.
The silica is not particularly limited, and examples thereof include wet silica (hydrous silicic acid), dry silica (silicic anhydride), calcium silicate, and aluminum silicate. Of these, wet silica is preferable. These silicas may be used alone or in combination of two or more.
 (C)成分の配合割合は、ゴム成分(A)+(B)100質量部に対して、10~150質量部が好ましく、20~120質量部がより好ましい。(C)成分が10質量部より少ないと、引張応力が低下する傾向があり、150質量部より多いと、加工性が悪化する傾向がある。 配合 The compounding ratio of the component (C) is preferably from 10 to 150 parts by mass, more preferably from 20 to 120 parts by mass, per 100 parts by mass of the rubber component (A) + (B). When the amount of the component (C) is less than 10 parts by mass, the tensile stress tends to decrease, and when the amount is more than 150 parts by mass, the workability tends to deteriorate.
 (C)成分のうち、カーボンブラック、シリカ等の充填剤を合計30質量部以上含むことが弾性率向上の観点から好ましい。加工性の観点から150質量部以下であることが好ましい。その詳細な機構は不明ではあるが、1,2-ポリブタジエンとカーボンブラック、シリカ等の充填剤がネットワークを形成することにより、弾性率を向上するものと推定される。 From the viewpoint of improving the elastic modulus, it is preferable that the component (C) contains a total of 30 parts by mass or more of a filler such as carbon black and silica. It is preferably 150 parts by mass or less from the viewpoint of processability. Although the detailed mechanism is unknown, it is assumed that 1,2-polybutadiene and a filler such as carbon black and silica form a network, thereby improving the elastic modulus.
(その他の成分)
 本発明のゴム組成物は、必要に応じて、その他の成分である石油樹脂、クマロンインデン樹脂、加硫剤、加硫助剤、老化防止剤、充填剤、プロセスオイル、亜鉛華、ステアリン酸など、通常ゴム業界で用いられる薬品を含有してもよい。
(Other components)
The rubber composition of the present invention may contain, if necessary, petroleum resin, coumarone indene resin, vulcanizing agent, vulcanization aid, antioxidant, filler, process oil, zinc white, stearic acid, which are other components. For example, it may contain chemicals commonly used in the rubber industry.
 石油樹脂としては、C系樹脂、C-C系樹脂、C系樹脂、テルペン系樹脂、テルペン-芳香族化合物系樹脂、ロジン系樹脂、ジシクロペンタジエン樹脂、及びアルキルフェノール系樹脂等などがあげられる。 Examples of the petroleum resin include C 5 resin, C 5 -C 9 resin, C 9 resin, terpene resin, terpene-aromatic compound resin, rosin resin, dicyclopentadiene resin, and alkylphenol resin. Is raised.
 加硫剤としては、公知の加硫剤、例えば硫黄、有機過酸化物、樹脂加硫剤、酸化マグネシウムなどの金属酸化物などが用いられる。 As the vulcanizing agent, known vulcanizing agents such as sulfur, organic peroxides, resin vulcanizing agents, and metal oxides such as magnesium oxide are used.
 加硫促進剤としては、公知の加硫促進剤、例えばアルデヒド類、アンモニア類、アミン類、グアニジン類、チオウレア類、チアゾール類、チウラム類、ジチオカーバメイト類、キサンテート類などが用いられる。 As the vulcanization accelerator, known vulcanization accelerators such as aldehydes, ammonias, amines, guanidines, thioureas, thiazoles, thiurams, dithiocarbamates, xanthates and the like are used.
 充填剤としては、炭酸カルシウム、塩基性炭酸マグネシウム、クレー、リサージュ、珪藻土、再生ゴム及び粉末ゴムなどが挙げられる。 Examples of the filler include calcium carbonate, basic magnesium carbonate, clay, Lissajous, diatomaceous earth, recycled rubber, powdered rubber, and the like.
 老化防止剤としては、アミン-ケトン系、イミダゾール系、アミン系、フェノール系、硫黄系及び燐系などが挙げられる。 Examples of the anti-aging agent include amine-ketone, imidazole, amine, phenol, sulfur and phosphorus compounds.
 プロセスオイルは、アロマティック系、ナフテン系、パラフィン系のいずれを用いてもよい。 Aromatic, naphthenic, and paraffinic process oils may be used.
 本発明のゴム組成物は、前記各成分を通常行われているバンバリー、オープンロール、ニーダー、二軸混練り機などを用いて混練りすることで得られる。 ゴ ム The rubber composition of the present invention can be obtained by kneading the above-mentioned components using a conventional Banbury, open roll, kneader, twin-screw kneader or the like.
 本発明のゴム組成物を加硫して得られる加硫ゴム組成物は、その改良された操縦安定性と低ロス性のバランスを生かして、乗用車及び競技用等のタイヤ用途、また大型、重荷重用タイヤ用途にも適用可能である。 The vulcanized rubber composition obtained by vulcanizing the rubber composition of the present invention can be used for tires for passenger cars and competitions, and for large and heavy tires by utilizing the improved steering stability and low loss balance. It is also applicable to heavy tire applications.
 本発明に係るゴム組成物は、キャップトレッド、ベーストレッド、サイド補強ゴム、カーカス、ベルト、チェーファー、ビード、スティフナー、インナーライナー等のタイヤの各部位に用いることができ、特にタイヤのキャップトレッド、ベーストレッドに用いることが好ましい。 The rubber composition according to the present invention can be used for each part of a tire such as a cap tread, a base tread, a side reinforcing rubber, a carcass, a belt, a chafer, a bead, a stiffener, and an inner liner. It is preferably used for a base tread.
 本発明に係るゴム組成物を用いたタイヤは、空気入りタイヤであることが好ましく、充填する気体としては、通常の又は酸素分圧が調整された空気、窒素、並びにアルゴン及びヘリウム等の不活性ガスなどがある。 The tire using the rubber composition according to the present invention is preferably a pneumatic tire, and as the filling gas, normal or oxygen partial pressure-adjusted air, nitrogen, and inert gas such as argon and helium are used. There are gas and the like.
 本発明に係るゴム組成物をタイヤの各部材に用いる場合、各成分を含有させた本発明に係るゴム組成物が未加硫の段階で加工され、タイヤ成形機上で通常の方法により貼り付け成形され、生タイヤを得ることができる。この生タイヤを加硫機注で加熱加圧して、タイヤを得ることができる。 When the rubber composition according to the present invention is used for each member of a tire, the rubber composition according to the present invention containing each component is processed in an unvulcanized stage, and attached by a normal method on a tire molding machine. The molded tire can be obtained. The green tire can be heated and pressurized by a vulcanizer to obtain a tire.
 また、本発明に係るゴム組成物は、タイヤ用途以外に、防振ゴム、免震ゴム、ベルト(ベルトコンベア)、ゴムクローラ、各種ホース、モランなどに用いることができる。 ゴ ム In addition, the rubber composition according to the present invention can be used for anti-vibration rubber, seismic isolation rubber, belts (belt conveyors), rubber crawlers, various hoses, and moran, in addition to tire applications.
 以下、本発明を実施例に基づいて具体的に説明するが、これらは本発明の目的を限定するものではない。なお、ビニル・シス-ポリブタジエンゴム(A)及びゴム組成物の物性は、以下のようにして測定した。 Hereinafter, the present invention will be specifically described based on examples, but these do not limit the purpose of the present invention. The physical properties of the vinyl cis-polybutadiene rubber (A) and the rubber composition were measured as follows.
<ビニル・シス-ポリブタジエンゴム(A)>
1.1,2-ポリブタジエンの結晶部の濃度
 ビニル・シス-ポリブタジエンゴムに含まれる1,2-ポリブタジエンの結晶部の濃度は、示差走査熱量計(島津製作所製、DSC-50)によって測定された1,2-ポリブタジエン結晶部の融解熱量から算出した。具体的には、まず、ビニル・シス-ポリブタジエンゴム約10mgを昇温速度10℃/minで昇温し、1,2-ポリブタジエンの融解に由来する吸熱ピークから融解熱量を算出した。次いで、1,2-ポリブタジエンの既知の単位質量当たりの融解熱量から、ビニル・シス-ポリブタジエンゴムに含まれる1,2-ポリブタジエンの結晶部の濃度(質量%)を算出した。
<Vinyl cis-polybutadiene rubber (A)>
1.1 Concentration of Crystalline Part of 1,2-Polybutadiene The concentration of the crystal part of 1,2-polybutadiene contained in the vinyl cis-polybutadiene rubber was measured by a differential scanning calorimeter (DSC-50, manufactured by Shimadzu Corporation). It was calculated from the heat of fusion of the 1,2-polybutadiene crystal part. Specifically, first, about 10 mg of vinyl-cis-polybutadiene rubber was heated at a heating rate of 10 ° C./min, and the heat of fusion was calculated from an endothermic peak derived from the melting of 1,2-polybutadiene. Next, the concentration (% by mass) of the crystal part of 1,2-polybutadiene contained in the vinyl-cis-polybutadiene rubber was calculated from the known heat of fusion per unit mass of 1,2-polybutadiene.
2.1,2-ポリブタジエンの非晶部の濃度
 ビニル・シス-ポリブタジエンゴムに含まれる1,2-ポリブタジエンの非晶部の濃度は、1,2-ポリブタジエンの結晶部の濃度と1,4-ポリブタジエンの濃度から、下記式(1)によって算出した。
(1,2-ポリブタジエンの非晶部の濃度(質量%))=100-(非晶化処理後の1,2-ポリブタジエンの結晶部の濃度(質量%))-(1,4-ポリブタジエンの濃度(質量%))・・・式(1)
 なお、1,4-ポリブタジエンの濃度(質量%)は、下記式(2)によって算出した。
(1,4-ポリブタジエンの濃度(質量%))=100-(非晶化処理前の1,2-ポリブタジエンの結晶部の濃度(質量%))
 ここで、「非晶化処理後」とは、ビニル・シス-ポリブタジエンゴムに含まれる1,2-ポリブタジエンの結晶部の濃度を調整するために行われる1,2-ポリブタジエンの結晶部の一部の非晶化処理の後のことをいい、「非晶化処理前」とは、その非晶化処理の前のことをいう。
2.1 Concentration of Amorphous Part of 1,2-Polybutadiene The concentration of the amorphous part of 1,2-polybutadiene contained in the vinyl-cis-polybutadiene rubber is defined as the concentration of the crystalline part of 1,2-polybutadiene and 1,4-polybutadiene. It was calculated from the concentration of polybutadiene by the following equation (1).
(Concentration of amorphous portion of 1,2-polybutadiene (% by mass)) = 100− (Concentration of crystal portion of 1,2-polybutadiene after amorphization treatment (% by mass)) − (concentration of 1,4-polybutadiene Concentration (% by mass)) Formula (1)
The 1,4-polybutadiene concentration (% by mass) was calculated by the following equation (2).
(Concentration of 1,4-polybutadiene (% by mass)) = 100− (Concentration of 1,2-polybutadiene crystal part before amorphization treatment (% by mass))
Here, “after the amorphization treatment” means a part of the crystal part of 1,2-polybutadiene performed to adjust the concentration of the crystal part of 1,2-polybutadiene contained in the vinyl-cis-polybutadiene rubber. Means before the amorphization treatment, and "before the amorphization treatment" means before the amorphization treatment.
3.1,2-ポリブタジエンの融点
 1,2-ポリブタジエンの融点は、試料約10mg、昇温速度10℃/minとした場合の値を示差走査熱量計(島津製作所製、DSC-50)により測定した。1,2-ポリブタジエン由来の吸熱ピークのピークトップの温度を融点とした。なお、1,2-ポリブタジエン由来の吸熱ピークが複数存在するときは、ピーク分離を行って、最大面積のピークのピークトップの温度を融点とした。
3. Melting point of 1,2-polybutadiene The melting point of 1,2-polybutadiene was measured with a differential scanning calorimeter (DSC-50, manufactured by Shimadzu Corporation) at a temperature of about 10 mg at a heating rate of 10 ° C./min. did. The temperature at the peak top of the endothermic peak derived from 1,2-polybutadiene was defined as the melting point. When there were a plurality of endothermic peaks derived from 1,2-polybutadiene, peak separation was performed, and the peak top temperature of the peak having the largest area was defined as the melting point.
4.重量平均分子量(Mw)
 ポリスチレンを標準物質としてテトラヒドロフランを溶媒として温度40℃で、GPC(島津製作所製)法により行い、得られた分子量分布曲線から求めた検量線を用いて計算し、重量平均分子量(Mw)を求めた。
4. Weight average molecular weight (Mw)
GPC (manufactured by Shimadzu Corporation) was carried out at a temperature of 40 ° C. using polystyrene as a standard substance and tetrahydrofuran as a solvent, and the weight average molecular weight (Mw) was calculated by using a calibration curve obtained from the obtained molecular weight distribution curve. .
5.ムーニー粘度(ML1+4,100℃)
 JIS-K6300-1に従い、島津製作所製のムーニー粘度計を使用して100℃で1分間予熱したのち、4分間測定してゴムのムーニー粘度(ML1+4,100℃)を求めた。
5. Mooney viscosity (ML 1 + 4 , 100 ° C)
According to JIS-K6300-1, preheating was performed at 100 ° C. for 1 minute using a Mooney viscometer manufactured by Shimadzu Corporation, and measurement was performed for 4 minutes to determine the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the rubber.
<ゴム組成物>
1.低ロス性(tanδ)
 得られたゴム組成物を160℃で20分加硫後、粘弾性測定装置ARES(TA Instruments社製)を用い、温度50℃、動歪0.1%、周波数15Hzで測定した。そして、比較例2のtanδを100とし、比較例1と実施例1~4のそれぞれの逆数について指数を算出した。指数が大きいほど、tanδが小さく、低ロス性に優れることを示す。
 また、参考例として、ゴム組成物を150℃で25分加硫後、粘弾性測定装置EPLEXOR(GABO社製)を用い、温度50℃、動歪0.2%、周波数16Hzで測定した。そして、参考例1のtanδを100とし、参考例2の逆数について指数を算出した。指数が大きいほど、tanδが小さく、低ロス性に優れることを示す。
<Rubber composition>
1. Low loss (tan δ)
After vulcanizing the obtained rubber composition at 160 ° C. for 20 minutes, it was measured at a temperature of 50 ° C., a dynamic strain of 0.1%, and a frequency of 15 Hz using a viscoelasticity measuring device ARES (manufactured by TA Instruments). The index was calculated for each reciprocal of Comparative Example 1 and Examples 1 to 4 with tan δ of Comparative Example 2 set to 100. The larger the index is, the smaller the tan δ is and the lower the loss is.
As a reference example, the rubber composition was vulcanized at 150 ° C. for 25 minutes, and then measured at a temperature of 50 ° C., a dynamic strain of 0.2%, and a frequency of 16 Hz using a viscoelasticity measuring device EPLEXOR (manufactured by GABO). Then, the tan δ of Reference Example 1 was set to 100, and an index was calculated for the reciprocal of Reference Example 2. The larger the index is, the smaller the tan δ is and the lower the loss is.
2.操縦安定性(貯蔵弾性率)
 得られたゴム組成物を160℃で20分加硫後、粘弾性測定装置ARES(TA Instruments社製)を用いた動的粘弾性試験において、温度30℃、動歪0.1%、周波数15Hzで貯蔵弾性率G’を測定した。そして、比較例2のG’を100とし、比較例1と実施例1~4のそれぞれについて指数を算出した。指数が大きいほど、G’が大きく、操縦安定性に優れることを示す。
 また、参考例として、ゴム組成物を150℃で25分加硫後、粘弾性測定装置EPLEXOR(GABO社製)を用い、温度50℃、動歪0.2%、周波数16Hzで測定した。そして、参考例1の貯蔵弾性率E’を100とし、参考例2について指数を算出した。指数が大きいほど、E’が大きく、操縦安定性に優れることを示す。
2. Driving stability (storage modulus)
After vulcanizing the obtained rubber composition at 160 ° C. for 20 minutes, in a dynamic viscoelasticity test using a viscoelasticity measuring device ARES (manufactured by TA Instruments), the temperature was 30 ° C., the dynamic strain was 0.1%, and the frequency was 15 Hz. Was used to measure the storage modulus G ′. The index was calculated for each of Comparative Example 1 and Examples 1 to 4, with G ′ of Comparative Example 2 being 100. The larger the index, the larger G ', indicating that the steering stability is excellent.
As a reference example, the rubber composition was vulcanized at 150 ° C. for 25 minutes, and then measured at a temperature of 50 ° C., a dynamic strain of 0.2%, and a frequency of 16 Hz using a viscoelasticity measuring device EPLEXOR (manufactured by GABO). Then, the index was calculated for Reference Example 2, with the storage elastic modulus E 'of Reference Example 1 being 100. The larger the index, the larger the E ', indicating that the steering stability is more excellent.
3.低ロス性と操縦安定性のバランス
 低ロス性指数と操縦安定性指数を足して、2で割った値を、低ロス性と操縦安定性のバランス指数とした。指数が大きいほど、低ロス性と操縦安定性のバランスに優れることを示す。バランス指数が108以上であれば、低ロス性と操縦安定性のバランスに優れていると言える。
3. Balance between Low Loss Property and Driving Stability The value obtained by adding the Low Loss Property Index and the Driving Stability Index and dividing by 2 was used as a balance index between the Low Loss Property and Driving Stability. The larger the index, the better the balance between low loss and steering stability. When the balance index is 108 or more, it can be said that the balance between the low loss property and the steering stability is excellent.
(合成例1)
 ヘリカル羽を備えチッソ置換を終えた1.5Lステンレス製オートクレーブに、シクロヘキサン(450mL)を投入しオートクレーブを密閉し、次いで1,3-ブタジエン(450mL)を圧送することで、原料溶液(FB)900mlを作製した。原料溶液に、2.47mmol/Lの濃度となるように、水(HO)をシリンジを用いて添加し、その後、オートクレーブを30℃まで昇温し、30分・500rpmで攪拌した。オートクレーブを25℃まで冷却した後、ジエチルアルミニウムクロライド及びトリエチルアルミニウム(モル比3:1)を3.0mmol/Lの濃度となるように、シリンジを用いて添加し、5分攪拌した。次いで、1,5-シクロオクタジエン(COD)を28.5mmol/Lの濃度となるようにシリンジを用いて添加し、35℃まで昇温させた。コバルトオクトエート(Co(Oct))を6.18μmol/Lの濃度となるようにシリンジを用いて添加し、35℃で12分シス-1,4重合を実施した。得られた重合反応混合物に、トリエチルアルミニウム(TEA)を3.91mmol/Lの濃度となるようにシリンジを用いて添加し2分間保持、次いで、コバルトオクトエート(Co(Oct))を0.800mmol/Lの濃度となるようにシリンジを用いて添加し、更に2分間保持し、ジメチルスルホキシド(DMSO)を0.98mmol/Lの濃度となるようにシリンジを用いて添加した。最後に、二硫化炭素(CS)を1.17mmol/Lの濃度となるようにシリンジを用いて添加し、35℃で25分シンジオタクチック-1,2重合を実施した。得られた重合反応混合物にトリスノニルフェニルフォスファイトを添加し、シンジオタクチック-1,2重合を停止させた。その後、オートクレーブを冷却・脱圧し、重合反応混合物を得た。次に、重合反応物を80℃の水に投入し、ビニル・シス-ポリブタジエンゴムを析出させた。析出したビニル・シス-ポリブタジエンゴムを回収し、水と共にステンレス製オートクレーブに入れ、密閉し、130℃で10分保持した。冷却後、ステンレス製オートクレーブからビニル・シス-ポリブタジエンゴムを取り出し、100℃で1時間乾燥した。合成例1に係るビニル・シス-ポリブタジエンゴムの組成と融点を表1に示す。また、合成例1のビニル・シス-ポリブタジエンゴムの重量平均分子量(Mw)は404,000であり、ムーニー粘度(ML1+4,100℃)は、38.6であった。
(Synthesis example 1)
Cyclohexane (450 mL) is charged into a 1.5 L stainless steel autoclave equipped with helical blades and replaced with nitrogen, and the autoclave is sealed. Was prepared. Water (H 2 O) was added to the raw material solution using a syringe so as to have a concentration of 2.47 mmol / L, and then the autoclave was heated to 30 ° C. and stirred at 500 rpm for 30 minutes. After cooling the autoclave to 25 ° C., diethyl aluminum chloride and triethyl aluminum (molar ratio 3: 1) were added using a syringe so as to have a concentration of 3.0 mmol / L, followed by stirring for 5 minutes. Next, 1,5-cyclooctadiene (COD) was added using a syringe to a concentration of 28.5 mmol / L, and the temperature was raised to 35 ° C. Cobalt octoate (Co (Oct) 2 ) was added using a syringe to a concentration of 6.18 μmol / L, and cis-1,4 polymerization was performed at 35 ° C. for 12 minutes. To the obtained polymerization reaction mixture, triethylaluminum (TEA) was added using a syringe so as to have a concentration of 3.91 mmol / L, and the mixture was maintained for 2 minutes. Then, cobalt octoate (Co (Oct) 2 ) was added to 0.1%. The solution was added using a syringe to a concentration of 800 mmol / L, kept for 2 minutes, and dimethylsulfoxide (DMSO) was added using a syringe to a concentration of 0.98 mmol / L. Finally, carbon disulfide (CS 2 ) was added using a syringe to a concentration of 1.17 mmol / L, and syndiotactic-1,2 polymerization was performed at 35 ° C. for 25 minutes. Trisnonylphenyl phosphite was added to the resulting polymerization reaction mixture to terminate the syndiotactic-1,2 polymerization. Thereafter, the autoclave was cooled and depressurized to obtain a polymerization reaction mixture. Next, the polymerization reaction product was poured into water at 80 ° C. to precipitate vinyl-cis-polybutadiene rubber. The precipitated vinyl-cis-polybutadiene rubber was recovered, placed in a stainless steel autoclave together with water, sealed, and kept at 130 ° C. for 10 minutes. After cooling, the vinyl cis-polybutadiene rubber was taken out of the stainless steel autoclave and dried at 100 ° C. for 1 hour. Table 1 shows the composition and melting point of the vinyl cis-polybutadiene rubber according to Synthesis Example 1. The weight average molecular weight (Mw) of the vinyl cis-polybutadiene rubber of Synthesis Example 1 was 404,000, and the Mooney viscosity (ML 1 + 4 , 100 ° C.) was 38.6.
(合成例2)
 44.5質量%の1,3-ブタジエンと二硫化炭素248質量ppmを含むシクロヘキサン溶液10L/hと水0.41ml/hを60℃の温度にて混合し、この混合液を30℃に保持された5.0Lの撹拌機付ステンレス製熟成槽に供給した。併せて、10質量%のジエチルアルミニウムクロライドのシクロヘキサン溶液と10質量%のトリエチルアルミニウムのシクロヘキサン溶液の混合液(Alモル比3:1)を57ml/hで、同じ熟成槽に供給した。得られた熟成液を、35℃に保持された5.3Lの撹拌機付ステンレス製シス重合槽に供給した。この重合槽には、COD34ml/hと0.03質量%のコバルトオクトエート(Co(Oct))のシクロヘキサン-トルエン溶液も供給してシス-1,4重合を行った。得られたシス-1,4重合液を、5.3Lのリボン型撹拌機付ステンレス製1,2-ポリブタジエン重合槽に供給し、35℃でシンジオタクチック-1,2重合を行った。この重合槽には、10質量%のトリエチルアルミニウムのシクロヘキサン溶液80ml/hと7.5質量%のコバルトオクトエート(Co(Oct))のシクロヘキサン-トルエン溶液36ml/hと5質量%のDMSOのトルエン溶液36ml/hと、1.0質量%の1,3-ブタジエンを含むシクロヘキサン溶液1L/hも同時に供給した。得られたシンジオタクチック-1,2重合液を1.0Lの撹拌機付ステンレス製混合槽に供給し、水100ml/hと、4,6-ビス(オクチルチオエチル)-o-クレゾールとトリスノニルフェニルフォスファイトをそれぞれビニル・シス-ポリブタジエンゴム100質量部に対して1質量%加え、重合を停止した後、130℃に保持された熱水中に投入し、ビニル・シス-ポリブタジエンゴムを析出させた。この析出物を100℃で1時間乾燥した。合成例2に係るビニル・シス-ポリブタジエンゴムの組成と1,2-ポリブタジエンの融点を表1に示す。また、合成例2のビニル・シス-ポリブタジエンゴムの重量平均分子量(Mw)は411,000であった。
(Synthesis example 2)
10 L / h of a cyclohexane solution containing 44.5 mass% of 1,3-butadiene and 248 mass ppm of carbon disulfide and 0.41 ml / h of water are mixed at a temperature of 60 ° C., and the mixture is kept at 30 ° C. And supplied to a 5.0 L stainless aging tank equipped with a stirrer. In addition, a mixture of a 10% by mass cyclohexane solution of diethylaluminum chloride and a 10% by mass cyclohexane solution of triethylaluminum (Al molar ratio: 3: 1) was supplied to the same aging tank at a rate of 57 ml / h. The obtained aging solution was supplied to a 5.3 L stainless steel cis polymerization tank equipped with a stirrer and maintained at 35 ° C. Cis-1,4 polymerization was carried out by supplying a cyclohexane-toluene solution of COD 34 ml / h and 0.03 mass% of cobalt octoate (Co (Oct) 2 ) to the polymerization tank. The obtained cis-1,4 polymerization solution was supplied to a 5.3 L, 1,2-polybutadiene polymerization tank made of stainless steel equipped with a ribbon-type stirrer, and polymerized at 35 ° C. in syndiotactic-1,2. In this polymerization tank, 80 ml / h of a 10% by mass solution of triethylaluminum in cyclohexane and 36 ml / h of a 7.5% by mass solution of cobalt octoate (Co (Oct) 2 ) in cyclohexane and 5% by mass of DMSO were added. 36 ml / h of a toluene solution and 1 L / h of a cyclohexane solution containing 1.0% by mass of 1,3-butadiene were also supplied at the same time. The obtained syndiotactic-1,2 polymer solution was supplied to a 1.0 L stainless steel mixing tank equipped with a stirrer, and 100 ml / h of water, 4,6-bis (octylthioethyl) -o-cresol and tris Nonylphenyl phosphite was added in an amount of 1% by mass with respect to 100 parts by mass of the vinyl cis-polybutadiene rubber. After terminating the polymerization, the mixture was poured into hot water maintained at 130 ° C. to precipitate the vinyl cis-polybutadiene rubber. I let it. The precipitate was dried at 100 ° C. for 1 hour. Table 1 shows the composition of the vinyl-cis-polybutadiene rubber according to Synthesis Example 2 and the melting point of 1,2-polybutadiene. The weight average molecular weight (Mw) of the vinyl cis-polybutadiene rubber of Synthesis Example 2 was 411,000.
(合成例3)
 ヘリカル羽を備えチッソ置換を終えた1.5Lステンレス製オートクレーブに、シクロヘキサン(450mL)を投入しオートクレーブを密閉し、次いで1,3-ブタジエン(450mL)を圧送することで、原料溶液(FB)900mlを作製した。原料溶液に、1.85mmol/Lの濃度となるように、水(HO)をシリンジを用いて添加し、その後、オートクレーブを60℃まで昇温し、30分・500rpmで攪拌した。オートクレーブを25℃まで冷却した後、ジエチルアルミニウムクロライド及びトリエチルアルミニウム(モル比3:1)を3.0mmol/Lの濃度となるように、シリンジを用いて添加し、5分攪拌した。次いで、1,5-シクロオクタジエン(COD)を21.7mmol/Lの濃度となるようにシリンジを用いて添加し、35℃まで昇温させた。コバルトオクトエート(Co(Oct))を5.02μmol/Lの濃度となるようにシリンジを用いて添加し、35℃で12分シス-1,4重合を実施した。得られた重合反応混合物に、トリエチルアルミニウム(TEA)を3.91mmol/Lの濃度となるようにシリンジを用いて添加し2分間保持、次いで、コバルトオクトエート(Co(Oct))を0.756mmol/Lの濃度となるようにシリンジを用いて添加し、更に2分間保持し、ジメチルスルホキシド(DMSO)を0.94mmol/Lの濃度となるようにシリンジを用いて添加した。最後に、二硫化炭素(CS)を1.17mmol/Lの濃度となるようにシリンジを用いて添加し、35℃で25分シンジオタクチック-1,2重合を実施した。得られた重合反応混合物にトリスノニルフェニルフォスファイトを添加し、シンジオタクチック-1,2重合を停止させた。その後、オートクレーブを冷却・脱圧し、重合反応混合物をバットに取り出した。100℃に温めた真空乾燥機にバットごと投入し、未反応のブタジエン及び溶剤を除去することで、合成例3に係るビニル・シス-ポリブタジエンゴムを得た。合成例3に係るビニル・シスーポリブタジエンゴムの組成と1,2-ポリブタジエンの融点を表1に示した。また、合成例3のビニル・シス-ポリブタジエンゴムの重量平均分子量(Mw)は404,000であり、ムーニー粘度(ML1+4,100℃)は、38.6であった。
(Synthesis example 3)
Cyclohexane (450 mL) is charged into a 1.5 L stainless steel autoclave equipped with helical blades and replaced with nitrogen, and the autoclave is sealed. Was prepared. Water (H 2 O) was added to the raw material solution using a syringe so as to have a concentration of 1.85 mmol / L, and then the autoclave was heated to 60 ° C. and stirred at 500 rpm for 30 minutes. After cooling the autoclave to 25 ° C., diethyl aluminum chloride and triethyl aluminum (molar ratio 3: 1) were added using a syringe so as to have a concentration of 3.0 mmol / L, followed by stirring for 5 minutes. Next, 1,5-cyclooctadiene (COD) was added using a syringe to a concentration of 21.7 mmol / L, and the temperature was raised to 35 ° C. Cobalt octoate (Co (Oct) 2 ) was added using a syringe to a concentration of 5.02 μmol / L, and cis-1,4 polymerization was carried out at 35 ° C. for 12 minutes. To the obtained polymerization reaction mixture, triethylaluminum (TEA) was added using a syringe so as to have a concentration of 3.91 mmol / L, and the mixture was maintained for 2 minutes. Then, cobalt octoate (Co (Oct) 2 ) was added to 0.1%. The solution was added using a syringe to a concentration of 756 mmol / L, kept for 2 minutes, and dimethyl sulfoxide (DMSO) was added using a syringe to a concentration of 0.94 mmol / L. Finally, carbon disulfide (CS 2 ) was added using a syringe to a concentration of 1.17 mmol / L, and syndiotactic-1,2 polymerization was performed at 35 ° C. for 25 minutes. Trisnonylphenyl phosphite was added to the resulting polymerization reaction mixture to terminate the syndiotactic-1,2 polymerization. Thereafter, the autoclave was cooled and depressurized, and the polymerization reaction mixture was taken out into a vat. The vat was put into a vacuum drier heated to 100 ° C., and the unreacted butadiene and solvent were removed to obtain a vinyl-cis-polybutadiene rubber according to Synthesis Example 3. Table 1 shows the composition of the vinyl cis-polybutadiene rubber according to Synthesis Example 3 and the melting point of 1,2-polybutadiene. The weight average molecular weight (Mw) of the vinyl cis-polybutadiene rubber of Synthesis Example 3 was 404,000, and the Mooney viscosity (ML 1 + 4 , 100 ° C.) was 38.6.
(合成例4)
 シス-1,4重合において、水の濃度を1.60mmol/Lに、1,5-シクロオクタジエン(COD)濃度を16.3mmol/Lに、コバルトオクトエート(Co(Oct))濃度を1.54μmol/Lに、そしてシンジオタクチック-1,2重合において、コバルトオクトエート(Co(Oct))濃度を0.800mmol/Lに、それぞれ変えた以外、合成例3と同様にビニル・シス-ポリブタジエンゴムを製造した。合成例4に係るビニル・シスーポリブタジエンゴムの組成と1,2-ポリブタジエンの融点を表1に示した。また、合成例4のビニル・シス-ポリブタジエンゴムの重量平均分子量(Mw)は484,000であった
(Synthesis example 4)
In the cis-1,4 polymerization, the concentration of water was set to 1.60 mmol / L, the concentration of 1,5-cyclooctadiene (COD) was set to 16.3 mmol / L, and the concentration of cobalt octoate (Co (Oct) 2 ) was set. In the same manner as in Synthesis Example 3, except that the concentration of cobalt octoate (Co (Oct) 2 ) was changed to 1.500 μmol / L and the concentration of cobalt octoate (Co (Oct) 2 ) was changed to 0.800 mmol / L in the syndiotactic-1,2 polymerization. A cis-polybutadiene rubber was produced. Table 1 shows the composition of the vinyl cis-polybutadiene rubber according to Synthesis Example 4 and the melting point of 1,2-polybutadiene. The weight average molecular weight (Mw) of the vinyl cis-polybutadiene rubber of Synthesis Example 4 was 484,000.
(参考合成例)
 ヘリカル羽を備えチッソ置換を終えた1.5Lステンレス製オートクレーブに、シクロヘキサン(360mL)を投入しオートクレーブを密閉し、次いで1,3-ブタジエン(240mL)を圧送することで、原料溶液(FB)600mlを作製した。原料溶液に、1.76mmol/Lの濃度となるように、水(HO)をシリンジを用いて添加し、その後、オートクレーブを60℃まで昇温し、30分・500rpmで攪拌した。オートクレーブを25℃まで冷却した後、ジエチルアルミニウムクロライド及びトリエチルアルミニウム(モル比3:1)を3.6mmol/Lの濃度となるように、シリンジを用いて添加し、5分攪拌した。次いで、1,5-シクロオクタジエン(COD)を18.3mmol/Lの濃度となるようにシリンジを用いて添加し、45℃まで昇温させた。コバルトオクトエート(Co(Oct))を12.5μmol/Lの濃度となるようにシリンジを用いて添加し、45℃で20分シス-1,4重合を実施した。得られた重合反応混合物に、トリエチルアルミニウム(TEA)を5.40mmol/Lの濃度となるようにシリンジを用いて添加し2分間保持、次いで、コバルトオクトエート(Co(Oct))を0.150mmol/Lの濃度となるようにシリンジを用いて添加し、更に2分間保持し、ジメチルスルホキシド(DMSO)を5.40mmol/Lの濃度となるようにシリンジを用いて添加した。最後に、二硫化炭素(CS)を0.54mmol/Lの濃度となるようにシリンジを用いて添加し、45℃で20分シンジオタクチック-1,2重合を実施した。得られた重合反応混合物に1,4-ナフトキノンを添加し、シンジオタクチック-1,2重合を停止させた。その後、オートクレーブを冷却・脱圧し、重合反応混合物をバットに取り出した。100℃に温めた真空乾燥機にバットごと投入し、未反応のブタジエン及び溶剤を除去することで、ビニル・シス-ポリブタジエンゴムを得た。参考合成例に係るビニル・シス-ポリブタジエンゴムの組成と1,2-ポリブタジエンの融点を表1に示した。また、参考合成例のビニル・シス-ポリブタジエンゴムの重量平均分子量(Mw)は490,000であり、ムーニー粘度(ML1+4,100℃)は、41.7であった。
(Reference synthesis example)
Cyclohexane (360 mL) was charged into a 1.5 L stainless steel autoclave equipped with helical blades and replaced with nitrogen, and the autoclave was sealed. Was prepared. Water (H 2 O) was added to the raw material solution using a syringe so as to have a concentration of 1.76 mmol / L, and then the autoclave was heated to 60 ° C. and stirred at 500 rpm for 30 minutes. After cooling the autoclave to 25 ° C., diethylaluminum chloride and triethylaluminum (molar ratio 3: 1) were added using a syringe such that the concentration became 3.6 mmol / L, and the mixture was stirred for 5 minutes. Next, 1,5-cyclooctadiene (COD) was added using a syringe so as to have a concentration of 18.3 mmol / L, and the temperature was raised to 45 ° C. Cobalt octoate (Co (Oct) 2 ) was added using a syringe to a concentration of 12.5 μmol / L, and cis-1,4 polymerization was carried out at 45 ° C. for 20 minutes. To the obtained polymerization reaction mixture, triethylaluminum (TEA) was added using a syringe so as to have a concentration of 5.40 mmol / L, and the mixture was maintained for 2 minutes. Then, cobalt octoate (Co (Oct) 2 ) was added to a concentration of 0.10 mmol / L. The solution was added using a syringe so as to have a concentration of 150 mmol / L, kept for 2 minutes, and dimethyl sulfoxide (DMSO) was added using a syringe so as to have a concentration of 5.40 mmol / L. Finally, carbon disulfide (CS 2 ) was added using a syringe to a concentration of 0.54 mmol / L, and syndiotactic-1,2 polymerization was carried out at 45 ° C. for 20 minutes. 1,4-Naphthoquinone was added to the resulting polymerization reaction mixture to terminate the syndiotactic-1,2 polymerization. Thereafter, the autoclave was cooled and depressurized, and the polymerization reaction mixture was taken out into a vat. The vat was put into a vacuum dryer heated to 100 ° C., and the unreacted butadiene and the solvent were removed to obtain a vinyl cis-polybutadiene rubber. Table 1 shows the composition of the vinyl-cis-polybutadiene rubber and the melting point of 1,2-polybutadiene according to the reference synthesis example. The weight average molecular weight (Mw) of the vinyl cis-polybutadiene rubber of Reference Synthesis Example was 490,000, and the Mooney viscosity (ML 1 + 4 , 100 ° C.) was 41.7.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 前記合成例1~4で得られたビニル・シス-ポリブタジエンゴムを表2に従ってプラストミルでカーボンブラック、天然ゴム、プロセスオイル、亜鉛華、ステアリン酸および老化防止剤(それぞれ質量部、以下同じ)を加えて混練する一次配合を実施し、次いで、加硫促進剤および硫黄を添加する二次配合を実施して、配合物を作成した。さらに、この配合物を成型し、プレス加硫してゴム組成物を得た後、低ロス性(tanδ)、操縦安定性(貯蔵弾性率)を測定し、低ロス性と操縦安定性のバランスを算出した。これらゴム組成物の物性測定結果についても、表2に示す。 According to Table 2, carbon black, natural rubber, process oil, zinc white, stearic acid, and an antioxidant (each by mass, hereinafter the same) were added to the vinyl-cis-polybutadiene rubber obtained in Synthesis Examples 1 to 4 according to Table 2 using a plastmill. A primary blending was performed, followed by a secondary blending with the addition of a vulcanization accelerator and sulfur to produce a blend. Further, after molding this compound and press vulcanizing to obtain a rubber composition, the low loss property (tan δ) and the steering stability (storage modulus) were measured, and the balance between the low loss property and the steering stability was measured. Was calculated. Table 2 also shows the measurement results of the physical properties of these rubber compositions.
 また、比較例1としてビニル・シス-ポリブタジエンゴムを含有させていないもの、比較例2として市販のビニル・シス-ポリブタジエンゴム(VCR412:1,2-ポリブタジエンの濃度12%及び融点200℃)を含有させたものを用意し、実施例1~4と同様に物性測定を行った。その結果を表2に示す。 Comparative Example 1 contained no vinyl-cis-polybutadiene rubber, and Comparative Example 2 contained a commercially available vinyl-cis-polybutadiene rubber (VCR412: 12% concentration of 1,2-polybutadiene and a melting point of 200 ° C.). Prepared specimens were measured for physical properties in the same manner as in Examples 1-4. Table 2 shows the results.
 また参考合成例に係るビニル・シス-ポリブタジエンゴムを表3に従ってカーボンブラック、天然ゴム、プロセスオイル、亜鉛華、ステアリン酸および老化防止剤を加えて混練する一次配合を実施し、次いで、加硫促進剤および硫黄を添加する二次配合を実施して、配合物(参考例2)を作成した。さらに、この配合物を成型し、プレス加硫してゴム組成物を得た後、低ロス性(tanδ)、操縦安定性(貯蔵弾性率)を測定し、低ロス性と操縦安定性のバランスを算出した。これらゴム組成物の物性測定結果についても、表3に示す。また、参考例1として、VCR412を配合したものを用意した。 Further, the vinyl-cis-polybutadiene rubber according to the reference synthesis example was kneaded by adding carbon black, natural rubber, process oil, zinc white, stearic acid and an antioxidant according to Table 3, and then primary kneading was performed. A blend (Reference Example 2) was prepared by performing a secondary blend in which an agent and sulfur were added. Further, after molding this compound and press vulcanizing to obtain a rubber composition, the low loss property (tan δ) and the steering stability (storage modulus) were measured, and the balance between the low loss property and the steering stability was measured. Was calculated. Table 3 also shows the measurement results of the physical properties of these rubber compositions. Further, as Reference Example 1, one prepared by blending VCR412 was prepared.
Figure JPOXMLDOC01-appb-T000002
(注1)天然ゴム(RSS♯3) (注2)ブタジエンゴム;宇部興産株式会社製「UBEPOL 150L」 (注3)宇部興産株式会社製「UBEPOL VCR412」 (注4)旭カーボン株式会社製「#80」 (注5)出光興産社製「ダイアナプロセスNH-70S」 (注6)大内新興化学工業社製「ノクラック6C」 (注7)大内新興化学工業社製「ノクセラーD」
Figure JPOXMLDOC01-appb-T000002
(Note 1) Natural rubber (RSS No. 3) (Note 2) Butadiene rubber; "UBEPOL 150L" manufactured by Ube Industries, Ltd. (Note 3) "UBEPOL VCR412" manufactured by Ube Industries, Ltd. (Note 4) Asahi Carbon Co., Ltd. # 80 "(Note 5)" Diana Process NH-70S "manufactured by Idemitsu Kosan Co., Ltd. (Note 6)" Nocrack 6C "manufactured by Ouchi Shinko Chemical Industry Co., Ltd. (Note 7)" Noxeller D "manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
Figure JPOXMLDOC01-appb-T000003
(注1)天然ゴム(RSS♯1) (注2)宇部興産株式会社製「UBEPOL VCR412」 (注3)三菱化学株式会社製 「ダイアブラックI」 (注4)H&R社製 「Viva Tec 400」 (注5)住友化学社製「アンチゲン6C」 (注6)大内新興化学工業社製「ノクセラーNS」
Figure JPOXMLDOC01-appb-T000003
(Note 1) Natural rubber (RSS # 1) (Note 2) "UBEPOL VCR412" manufactured by Ube Industries, Ltd. (Note 3) "Diablack I" manufactured by Mitsubishi Chemical Corporation (Note 4) "Viva Tec 400" manufactured by H & R (Note 5) Sumitomo Chemical Co., Ltd. "Antigen 6C" (Note 6) Ouchi Shinko Chemical Co., Ltd. "Noxeller NS"
 以上より、実施例1~4に係るゴム組成物は、比較例1及び2のゴム組成物と比較して、低ロス性と操縦安定性のバランスの改善が図られていることが分かる。また、実施例1と実施例2~4との比較により、1,2-ポリブタジエンの非晶部の濃度が低いビニル・シス-ポリブタジエンゴムを用いたゴム組成物は、より低ロス性と操縦安定性のバランスの改善が図られていることが分かる。 From the above, it can be seen that the rubber compositions according to Examples 1 to 4 achieve a better balance between low loss and steering stability than the rubber compositions of Comparative Examples 1 and 2. Further, by comparing Example 1 with Examples 2 to 4, it was found that the rubber composition using vinyl cis-polybutadiene rubber having a low concentration of the amorphous portion of 1,2-polybutadiene had lower loss and steering stability. It can be seen that the balance of sex is improved.

Claims (6)

  1.  融点が150~195℃である1,2-ポリブタジエンを35~99質量%含有するビニル・シス-ポリブタジエンゴム(A)1~50質量部、及び(A)以外のジエン系ゴム(B)50~99質量部を含むゴム成分(A)+(B)100質量部と、ゴム補強剤(C)1~150質量部とを含有することを特徴とするゴム組成物。 1 to 50 parts by mass of a vinyl cis-polybutadiene rubber (A) containing 35 to 99% by mass of 1,2-polybutadiene having a melting point of 150 to 195 ° C., and 50 to 50% of a diene rubber (B) other than (A) A rubber composition comprising 100 parts by mass of a rubber component (A) + (B) containing 99 parts by mass, and 1 to 150 parts by mass of a rubber reinforcing agent (C).
  2.  前記ビニル・シス-ポリブタジエンゴム(A)が、
     1,3-ブタジエンと、炭化水素を主成分とする不活性有機溶媒との混合物を調製する第1工程と、
     第1工程で調整された混合物に(a)水、有機アルミニウム化合物及び可溶性コバルト化合物からなる触媒、又は(b)有機アルミニウム化合物、ニッケル化合物及びフッ素化合物からなる触媒を添加して、1,3-ブタジエンをシス-1,4重合する第2工程と、
     第2工程で得られた重合反応混合物中の1,3-ブタジエンをシンジオタクチック-1,2重合する第3工程と、を備え、
     第3工程において、得られる1,2-ポリブタジエンの融点を低下させる融点降下剤を添加する製造方法により得られたことを特徴とする請求項1記載のゴム組成物。
    The vinyl cis-polybutadiene rubber (A) is
    A first step of preparing a mixture of 1,3-butadiene and a hydrocarbon-based inert organic solvent;
    The mixture prepared in the first step is added with (a) a catalyst comprising water, an organoaluminum compound and a soluble cobalt compound, or (b) a catalyst comprising an organoaluminum compound, a nickel compound and a fluorine compound to give 1,3- A second step of cis-1,4 polymerization of butadiene;
    A third step of syndiotactic-1,2 polymerization of 1,3-butadiene in the polymerization reaction mixture obtained in the second step,
    2. The rubber composition according to claim 1, obtained in the third step by a production method in which a melting point depressant for lowering the melting point of the obtained 1,2-polybutadiene is added.
  3.  前記融点降下剤が、ジメチルスルホキシドであることを特徴とする請求項1又は2記載のゴム組成物。 3. The rubber composition according to claim 1, wherein the melting point depressant is dimethyl sulfoxide.
  4.  請求項1乃至3いずれか記載のゴム組成物を用いたタイヤ。 A tire using the rubber composition according to any one of claims 1 to 3.
  5.  請求項1乃至3いずれか記載のゴム組成物をキャップトレッドに用いたことを特徴とするタイヤ。 A tire using the rubber composition according to any one of claims 1 to 3 for a cap tread.
  6.  請求項1乃至3いずれか記載のゴム組成物をベーストレッドに用いたことを特徴とするタイヤ。 A tire using the rubber composition according to any one of claims 1 to 3 for a base tread.
PCT/JP2019/035520 2018-09-14 2019-09-10 Rubber composition and tire WO2020054707A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020546027A JP7031003B2 (en) 2018-09-14 2019-09-10 Rubber composition and tires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018172014 2018-09-14
JP2018-172014 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020054707A1 true WO2020054707A1 (en) 2020-03-19

Family

ID=69776798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035520 WO2020054707A1 (en) 2018-09-14 2019-09-10 Rubber composition and tire

Country Status (2)

Country Link
JP (1) JP7031003B2 (en)
WO (1) WO2020054707A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293852A (en) * 1993-02-09 1994-10-21 Ube Ind Ltd New polybutadiene composition, and its production
JP2007099925A (en) * 2005-10-05 2007-04-19 Ube Ind Ltd Rubber vibration insulator composition
JP2007126649A (en) * 2005-10-05 2007-05-24 Ube Ind Ltd Vibration-proof rubber composition
JP2008163144A (en) * 2006-12-27 2008-07-17 Ube Ind Ltd Production method of vinyl-cis-polybutadiene rubber and vinyl-cis-polybutadiene rubber
JP2010235867A (en) * 2009-03-31 2010-10-21 Ube Ind Ltd Method of producing reinforced polybutadiene rubber
JP2017132959A (en) * 2016-01-29 2017-08-03 株式会社ブリヂストン Rubber composition and tire
JP2017132955A (en) * 2016-01-29 2017-08-03 宇部興産株式会社 Vinyl-cis-polybutadiene rubber and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293852A (en) * 1993-02-09 1994-10-21 Ube Ind Ltd New polybutadiene composition, and its production
JP2007099925A (en) * 2005-10-05 2007-04-19 Ube Ind Ltd Rubber vibration insulator composition
JP2007126649A (en) * 2005-10-05 2007-05-24 Ube Ind Ltd Vibration-proof rubber composition
JP2008163144A (en) * 2006-12-27 2008-07-17 Ube Ind Ltd Production method of vinyl-cis-polybutadiene rubber and vinyl-cis-polybutadiene rubber
JP2010235867A (en) * 2009-03-31 2010-10-21 Ube Ind Ltd Method of producing reinforced polybutadiene rubber
JP2017132959A (en) * 2016-01-29 2017-08-03 株式会社ブリヂストン Rubber composition and tire
JP2017132955A (en) * 2016-01-29 2017-08-03 宇部興産株式会社 Vinyl-cis-polybutadiene rubber and method for producing the same

Also Published As

Publication number Publication date
JP7031003B2 (en) 2022-03-07
JPWO2020054707A1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
US20070197714A1 (en) Process for producing polybutadiene rubber and rubber composition
JP5928660B2 (en) Polybutadiene and method for producing the same
JP5928084B2 (en) Method for producing vinyl cis-polybutadiene rubber and vinyl cis-polybutadiene rubber
JP2019056073A (en) Vinyl-cis-polybutadiene rubber
JP5928058B2 (en) Method for producing vinyl cis-polybutadiene rubber and vinyl cis-polybutadiene rubber
JPWO2015151626A1 (en) Rubber composition for tire
JP4867268B2 (en) Anti-vibration rubber composition
JP2023087070A (en) rubber composition
JP6765817B2 (en) Rubber composition and tires
JP2007063391A (en) Manufacturing process of modified butadiene rubber
JP7031003B2 (en) Rubber composition and tires
JP2005247899A (en) Rubber composition
JP6754575B2 (en) Rubber composition and tires
JP6726972B2 (en) Rubber composition and tire
JP2010235865A (en) Method of producing reinforced polybutadiene rubber
JP4433910B2 (en) High hardness compounded rubber composition
JP7027564B2 (en) Vinyl cis-polybutadiene rubber and its manufacturing method
JP6891574B2 (en) Polybutadiene, polybutadiene rubber, rubber composition, rubber composition for tires, tires
JP5678764B2 (en) Method for producing vinyl cis-polybutadiene rubber and vinyl cis-polybutadiene rubber
JP2018044146A (en) Vinyl-cis-polybutadiene rubber
JP2010235867A (en) Method of producing reinforced polybutadiene rubber
JP2007126648A (en) Vibration-proof rubber composition
JP6606415B2 (en) Rubber composition and tire
JP2020100697A (en) Method for producing rubber composition for tire, rubber composition for tire and tire
JP2020100695A (en) Method for producing carbon fiber-containing polybutadiene composition, carbon fiber-containing polybutadiene composition, carbon fiber-containing rubber composition, method for producing rubber composition for belt, rubber composition for belt and rubber belt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546027

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19861122

Country of ref document: EP

Kind code of ref document: A1