WO2020054660A1 - Photosensitive transfer material, method for producing circuit wiring line, method for producing touch panel, method for producing resin pattern, and film - Google Patents
Photosensitive transfer material, method for producing circuit wiring line, method for producing touch panel, method for producing resin pattern, and film Download PDFInfo
- Publication number
- WO2020054660A1 WO2020054660A1 PCT/JP2019/035363 JP2019035363W WO2020054660A1 WO 2020054660 A1 WO2020054660 A1 WO 2020054660A1 JP 2019035363 W JP2019035363 W JP 2019035363W WO 2020054660 A1 WO2020054660 A1 WO 2020054660A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin layer
- film
- layer
- photosensitive resin
- transfer material
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
Definitions
- the present disclosure relates to a photosensitive transfer material, a method for manufacturing circuit wiring, a method for manufacturing a touch panel, a method for manufacturing a resin pattern, and a protective film.
- a display device having a touch panel such as a capacitance type input device (for example, an organic electroluminescence (EL) display device, a liquid crystal display device, etc.), an electrode pattern corresponding to a sensor of a viewing portion, a peripheral wiring portion
- circuit wiring such as a wiring of a take-out wiring part is provided inside the touch panel.
- a photosensitive transfer material also called a dry film resist is being studied because the number of steps for obtaining a required pattern shape is small.
- a protective film is usually provided on the photosensitive resin layer.
- WO 2014/175274 has a support film, a polypropylene film, and a photosensitive layer disposed between the support film and the polypropylene film, wherein the polypropylene film is provided on the photosensitive layer side.
- a photosensitive element is disclosed that has a first surface and a second surface opposite the first surface, wherein the first surface and the second surface are smooth.
- Japanese Patent Application Laid-Open No. 2007-293006 discloses a photosensitive resin transfer material having, in this order, a photosensitive resin layer containing a colorant and a photosensitive resin and a cover film on a support.
- a photosensitive resin transfer material having an intermediate layer between the film and the photosensitive resin layer and a cover film having an adhesive strength in the range of 1.5 to 8.0 g / 10 cm is disclosed.
- JP-A-2018-2947 discloses a protective film characterized in that at least one surface has a surface average roughness (Sa) of a resin having a thickness of 15 nm or less.
- the peelability of the protective film can be improved, for example, by providing irregularities on the surface of the protective film.
- irregularities are provided on the surface of the protective film, the irregularities of the protective film are transferred to the surface of the photosensitive resin layer in contact with the protective film, and irregularities may be formed on the surface of the photosensitive resin layer.
- a photosensitive resin layer having irregularities is attached to a substrate, bubbles remain between the photosensitive resin layer and the substrate, and thus a pattern failure such as a defect in a formed pattern or a defective shape occurs.
- the positive photosensitive resin layer since the positive photosensitive resin layer usually has a high resin content, it has poor flexibility compared to the negative photosensitive resin layer.
- the positive photosensitive resin layer which has less flexibility than the negative photosensitive resin layer, is difficult to deform following the shape of the substrate surface, so the positive photosensitive resin layer with irregularities formed on the surface is attached to the substrate. When combined, air bubbles are likely to remain between the positive photosensitive resin layer and the substrate. For this reason, the frequency of occurrence of the pattern failure becomes remarkable when a photosensitive transfer material having a positive photosensitive resin layer is applied.
- An object of one embodiment of the present disclosure is to provide a photosensitive transfer material that is excellent in peelability of a protective film and that can reduce pattern failure. Another embodiment of the present disclosure aims to provide a method for manufacturing a circuit wiring with reduced pattern failure. Another embodiment of the present disclosure aims to provide a method for manufacturing a touch panel with reduced pattern failure. Another embodiment of the present disclosure aims to provide a method for manufacturing a resin pattern with reduced pattern failure. Another embodiment of the present disclosure aims to provide a film that is excellent in releasability and that can reduce the transfer of unevenness to the surface of an adherend.
- Means for solving the above problems include the following aspects. ⁇ 1> A temporary support, a positive photosensitive resin layer, and a protective film are provided in this order, and the surface of the protective film on the side in contact with the positive photosensitive resin layer has the following (A) And a photosensitive transfer material satisfying (B). (A) The water contact angle is 75 ° or more. (B) The surface roughness Ra is 45 nm or less. ⁇ 2> The photosensitive transfer material according to ⁇ 1>, wherein the surface roughness Ra is 25 nm or less.
- the protective film has a base material and an undercoat layer, and the outermost layer of the protective film on the side in contact with the positive photosensitive resin layer is the undercoat layer ⁇ 1> or ⁇ 2>
- the photosensitive transfer material described in any one of the above.
- ⁇ 4> a biaxially stretched film in which the protective film is a uniaxially stretched film that is a stretched product in the first stretching direction and is stretched along a film surface in a second stretching direction orthogonal to the first stretching direction; An undercoat layer that is a stretched product in the second stretching direction of the coating layer formed on one surface of the stretched film, and the protective film, the outermost layer on the side in contact with the positive photosensitive resin layer,
- the photosensitive transfer material according to ⁇ 1> or ⁇ 2> which is the undercoat layer.
- ⁇ 5> The photosensitive transfer material according to ⁇ 3> or ⁇ 4>, wherein the undercoat layer contains an acid-modified polyolefin.
- ⁇ 6> The photosensitive transfer material according to ⁇ 5>, wherein the acid-modified polyolefin has an acid group, and at least one of the acid groups is an alkali metal salt.
- ⁇ 7> The photosensitive transfer material according to any one of ⁇ 3> to ⁇ 6>, wherein the undercoat layer has a thickness of 10 nm to 550 nm.
- ⁇ 8> The photosensitive transfer material according to any one of ⁇ 1> to ⁇ 7>, having a water-soluble resin layer between the temporary support and the positive photosensitive resin layer.
- ⁇ 9> The photosensitive transfer material according to any one of ⁇ 1> to ⁇ 8>, wherein the positive photosensitive resin layer contains an acid-decomposable resin.
- ⁇ 10> Any of ⁇ 1> to ⁇ 9>, wherein the positive photosensitive resin layer contains a polymer component at a ratio of 80% by mass to 98% by mass based on the total solid content of the positive photosensitive resin layer.
- the photosensitive transfer material according to any one of the above.
- ⁇ 11> a step of peeling off the protective film of the photosensitive transfer material according to any one of ⁇ 1> to ⁇ 10>, and the positive photosensitive layer of the photosensitive transfer material with respect to the temporary support; Bonding the outermost layer on the side having the resin layer to the substrate having the conductive layer; pattern-exposing the positive-type photosensitive resin layer of the photosensitive transfer material after the bonding step; and A method for manufacturing circuit wiring, comprising: a step of developing the positive photosensitive resin layer after the step of forming a resin pattern to form a resin pattern; and a step of etching a substrate in a region where the resin pattern is not arranged.
- ⁇ 12> The step of removing the protective film of the photosensitive transfer material according to any one of ⁇ 1> to ⁇ 10>, and a positive photosensitive resin of the photosensitive transfer material with respect to the temporary support. Bonding the outermost layer on the side having the layer to the substrate having the conductive layer, pattern-exposing the positive-type photosensitive resin layer of the photosensitive transfer material after the bonding step, and performing the pattern exposure.
- a method for manufacturing a touch panel comprising: a step of developing the positive photosensitive resin layer after the step to form a resin pattern; and a step of etching a substrate in a region where the resin pattern is not arranged.
- ⁇ 13> a step of removing the protective film of the photosensitive transfer material according to any one of ⁇ 1> to ⁇ 10>, and a positive photosensitive resin of the photosensitive transfer material with respect to the temporary support Bonding the outermost layer on the side having the layer to the substrate, pattern-exposing the positive-type photosensitive resin layer of the photosensitive transfer material after the bonding step, and performing the pattern-exposing step. Developing the positive photosensitive resin layer to form a resin pattern.
- ⁇ 14> a biaxially stretched polyethylene terephthalate film in which a uniaxially stretched polyethylene terephthalate film, which is a stretched product in the first stretching direction, is stretched along a film surface in a second stretching direction orthogonal to the first stretching direction; A film formed on one surface of the polyethylene terephthalate film, the undercoat layer being a stretched product in the second stretching direction, wherein the undercoat layer satisfies the following (A) and (B).
- A) The water contact angle is 75 ° or more.
- the surface roughness Ra is 45 nm or less.
- ⁇ 16> having a first resin layer and a second resin layer provided on the first resin layer, wherein the first resin layer contains polyester, and the surface of the second resin layer is A film satisfying the following (A) and (B).
- (A) The water contact angle is 75 ° or more.
- (B) The surface roughness Ra is 45 nm or less.
- ⁇ 17> The film according to ⁇ 16>, wherein the thickness of the first resin layer is 5 ⁇ m to 200 ⁇ m, and the thickness of the second resin layer is 10 nm to 550 nm.
- ⁇ 18> The film according to any one of ⁇ 14> to ⁇ 17>, which is a protective film.
- a photosensitive transfer material that is excellent in peelability of a protective film and that can reduce pattern failure.
- FIG. 1 is a schematic diagram illustrating an example of a layer configuration of the photosensitive transfer material according to the present disclosure.
- FIG. 2 is a schematic diagram illustrating an example of a method for manufacturing a circuit wiring according to the present disclosure.
- FIG. 3 is a schematic diagram showing the pattern A.
- FIG. 4 is a schematic diagram showing the pattern B.
- a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
- an upper limit or a lower limit described in a certain numerical range may be replaced with an upper limit or a lower limit of another numerical range described in a stepwise manner.
- the upper limit or the lower limit described in a certain numerical range may be replaced with the value shown in the embodiment.
- “(meth) acryl” represents both acryl and methacryl, or either one
- “(meth) acrylate” means both acrylate and methacrylate, or either one. .
- the amount of each component in the composition when there are a plurality of substances corresponding to each component in the composition, unless otherwise specified, means the total amount of the plurality of substances present in the composition .
- the term “step” includes not only an independent step but also the term as long as the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps. .
- the notation of not indicating substituted or unsubstituted includes not only a group having no substituent but also a group having a substituent.
- the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
- “% by mass” and “% by weight” have the same meaning, and “parts by mass” and “parts by weight” have the same meaning.
- a combination of two or more preferred embodiments is a more preferred embodiment.
- a chemical structural formula may be described as a simplified structural formula in which a hydrogen atom is omitted.
- the total solid content refers to the total mass of components excluding volatile components such as solvents.
- the photosensitive transfer material according to the present disclosure has a temporary support, a positive photosensitive resin layer, and a protective film in this order, and the surface of the protective film on the side in contact with the positive photosensitive resin layer. Satisfies the following (A) and (B).
- (A) The water contact angle is 75 ° or more.
- (B) The surface roughness Ra is 45 nm or less.
- the photosensitive transfer material which concerns on this indication, it is excellent in the peelability of a protective film, and can reduce a pattern failure.
- the reason why the photosensitive transfer material according to the present disclosure exhibits such an effect is not clear, but is presumed as follows.
- the protective film applied to the photosensitive transfer material according to the present disclosure lowers the surface energy of the surface in contact with the positive photosensitive resin layer and reduces unevenness. Can be reduced. And since the unevenness of the surface of the protective film can be reduced, the transfer of the unevenness of the protective film to the surface of the positive photosensitive resin layer can be suppressed.
- the photosensitive transfer material according to the present disclosure can achieve both improvement of the releasability of the protective film and reduction of the pattern failure.
- the protective film applied to the photosensitive transfer material described in the above-mentioned WO 2014/175274 and JP-A-2007-293006 the above (A) and (B) are satisfied. It is considered impossible.
- the photosensitive resin layer to which the protective film is applied is not a positive photosensitive resin layer.
- FIG. 1 schematically illustrates an example of a layer configuration of the photosensitive transfer material according to the present disclosure.
- a temporary support 12 a positive photosensitive resin layer 14, and a protective film 16 are laminated in this order.
- the photosensitive transfer material according to the present disclosure has a temporary support.
- the temporary support is a support that supports the positive photosensitive resin layer and can be separated from the positive photosensitive resin layer.
- the temporary support used in the present disclosure preferably has light transmittance from the viewpoint that the positive photosensitive resin layer can be exposed through the temporary support when the positive photosensitive resin layer is subjected to pattern exposure. Having the light transmittance means that the transmittance of the main wavelength of the light used for pattern exposure is 50% or more, and the transmittance of the main wavelength of the light used for pattern exposure is determined from the viewpoint of improving the exposure sensitivity. Therefore, it is preferably at least 60%, more preferably at least 70%.
- the temporary support include a glass substrate, a resin film, and paper, and a resin film is particularly preferable from the viewpoint of strength, flexibility, and the like.
- the resin film include a cycloolefin polymer film, a polyethylene terephthalate film, a cellulose triacetate film, a polystyrene film, and a polycarbonate film. Among these, a polyethylene terephthalate film is preferred from the viewpoint of solvent resistance and optical characteristics.
- the thickness of the temporary support is not particularly limited, but is preferably in the range of 5 ⁇ m to 200 ⁇ m, and more preferably in the range of 10 ⁇ m to 150 ⁇ m in terms of ease of handling and versatility.
- the thickness of the temporary support may be selected according to the material in view of the strength as the support, the flexibility required for bonding to the substrate, the light transmittance required in the first exposure step, and the like.
- the photosensitive transfer material according to the present disclosure has a positive photosensitive resin layer.
- the positive photosensitive resin layer used in the present disclosure is not particularly limited, and a known positive photosensitive resin layer can be used.
- the positive photosensitive resin layer is preferably a positive photosensitive resin layer containing an acid-decomposable resin from the viewpoint of sensitivity, resolution and removability, and is preferably an acid group protected by an acid-decomposable group. More preferably, it is a chemically amplified positive photosensitive resin layer containing a polymer having a structural unit having the formula: and a photoacid generator.
- the acid-decomposable resin is not limited as long as it is a resin that can be decomposed by the action of an acid, and examples thereof include a polymer having a structural unit having an acid group protected by an acid-decomposable group described below.
- Photoacid generators such as onium salts and oxime sulfonate compounds described below generate an acid in response to actinic radiation (actinic rays).
- the generated acid acts as a catalyst for the deprotection of the protected acid groups in the polymer. For this reason, the acid generated by the action of one photon contributes to a large number of deprotection reactions, and the quantum yield exceeds 1, for example, a large value such as a power of ten. As a result, high sensitivity can be obtained.
- the positive photosensitive resin layer is a polymer having a structural unit having an acid group protected by an acid-decomposable group (hereinafter, also referred to as “structural unit A”) (hereinafter, also simply referred to as “polymer A1”). ) Is preferable. Further, the positive photosensitive resin layer may contain another polymer in addition to the polymer A1.
- the other polymer is a polymer that does not contain a structural unit having an acid group protected by an acid-decomposable group, as described later. Details of other polymers will be described later.
- a polymer (including an acid-decomposable resin) contained in the positive photosensitive resin layer is collectively referred to as a “polymer component”.
- the “polymer component” refers to the polymer A1.
- the “polymer component” refers to both the polymer A1 and the other polymer.
- a compound corresponding to a surfactant, a cross-linking agent, or a dispersant described below is not included in the “polymer component”.
- the polymer A1 preferably further has a structural unit having an acid group (hereinafter, also referred to as “structural unit B”).
- structural unit B a structural unit having an acid group
- the polymer A1 is preferably a non-particle-shaped polymer (also referred to as a “binder polymer”) from the viewpoints of pattern shape, solubility in a developer, and transferability.
- all of the polymers contained in the above-mentioned polymer component are each a polymer having at least a constituent unit having an acid group described below.
- the polymer A1 is preferably an addition polymerization type resin, and more preferably a polymer having a structural unit derived from (meth) acrylic acid or (meth) acrylate.
- the positive photosensitive resin layer is represented by a structural unit represented by the following formula A1 or a structural unit represented by the following formula A2 as a polymer component from the viewpoints of suppressing deformation of a pattern shape, solubility in a developing solution, and transferability. It is preferable to include a polymer having a structural unit and at least one structural unit selected from the group consisting of structural units represented by the following formula A3. Further, from the same viewpoint, as the polymer component, at least one selected from the group consisting of a structural unit represented by the following formula A1, a structural unit represented by the following formula A2, and a structural unit represented by the following formula A3 It is more preferable to include one kind of constituent unit and a polymer having a constituent unit having an acid group.
- the polymer A1 contained in the positive photosensitive resin layer may be only one kind or two or more kinds.
- preferred embodiments of the structural unit A will be described.
- the polymer component preferably includes a polymer A1 having at least a structural unit (structural unit A) having an acid group protected by an acid-decomposable group.
- structural unit A structural unit A
- the polymer component contains a polymer having the structural unit A, a highly sensitive chemically amplified positive photosensitive resin layer can be obtained.
- the “acid group protected by an acid-decomposable group” in the present disclosure those known as an acid group and an acid-decomposable group can be used, and are not particularly limited. Specific examples of the acid group include a carboxy group and a phenolic hydroxyl group.
- the acid group protected by an acid-decomposable group includes a group that is relatively easily decomposed by an acid (for example, an acetal-based functional group such as a tetrahydropyranyl ester group and a tetrahydrofuranyl ester group), and is relatively hard to be decomposed by an acid.
- Groups eg, a tertiary alkyl group such as a tert-butyl ester group, a tertiary alkyl carbonate group such as a tert-butyl carbonate group
- the acid-decomposable group is preferably a group having a structure protected in the form of an acetal.
- the acid-decomposable group is preferably an acid-decomposable group having a molecular weight of 300 or less from the viewpoint of suppressing variation in line width in the obtained circuit wiring.
- structural unit A The structural unit having the acid group protected by the acid-decomposable group (structural unit A) is represented by a structural unit represented by the following formula A1, a structural unit represented by the following formula A2, and a structural unit represented by the following formula A3 It is preferably at least one type of structural unit selected from the group consisting of structural units, and from the viewpoint of sensitivity and resolution, more preferably a structural unit represented by the formula A3 described below, and more preferably a formula A3- The structural unit represented by 3 is particularly preferred.
- R 11 and R 12 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 11 and R 12 is an alkyl group or an aryl group, and R 13 is an alkyl group or Represents an aryl group, R 11 or R 12 and R 13 may be linked to form a cyclic ether, R 14 represents a hydrogen atom or a methyl group, and X 1 represents a single bond or a divalent linking group R 15 represents a substituent, and n represents an integer of 0 to 4.
- R 21 and R 22 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 21 and R 22 is an alkyl group or an aryl group, and R 23 is an alkyl group or Represents an aryl group, R 21 or R 22 and R 23 may be linked to form a cyclic ether, and R 24 is each independently a hydroxy group, a halogen atom, an alkyl group, an alkoxy group, an alkenyl group, Represents an aryl group, an aralkyl group, an alkoxycarbonyl group, a hydroxyalkyl group, an arylcarbonyl group, an aryloxycarbonyl group or a cycloalkyl group, and m represents an integer of 0 to 3.
- R 31 and R 32 each independently represent a hydrogen atom, an alkyl group or an aryl group, at least one of R 31 and R 32 is an alkyl group or an aryl group, and R 33 is an alkyl group or Represents an aryl group, R 31 or R 32 and R 33 may be linked to form a cyclic ether, R 34 represents a hydrogen atom or a methyl group, X 0 represents a single bond or an arylene group, Y represents -S- or -O-.
- R 11 or R 12 when R 11 or R 12 is an alkyl group, an alkyl group having 1 to 10 carbon atoms is preferable. When R 11 or R 12 is an aryl group, a phenyl group is preferred. Each of R 11 and R 12 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- R 13 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms. Further, the alkyl group and the aryl group in R 11 to R 13 may have a substituent.
- R 11 or R 12 and R 13 may be linked to form a cyclic ether, and it is preferable that R 11 or R 12 and R 13 be linked to form a cyclic ether.
- the number of ring members of the cyclic ether is not particularly limited, but is preferably 5 or 6, and more preferably 5.
- the alkylene group may have a linear structure, a branched structure or a cyclic structure, and may have a substituent.
- the carbon number of the alkylene group is preferably 1 to 10, more preferably 1 to 4.
- R N represents an alkyl group or a hydrogen atom, preferably an alkyl group or a hydrogen atom having 1 to 4 carbon atoms, more preferably a hydrogen atom.
- the group containing R 11 to R 13 and X 1 are preferably bonded to each other at the para position.
- R 15 represents a substituent, and is preferably an alkyl group or a halogen atom.
- the number of carbon atoms of the alkyl group is preferably 1 to 10, more preferably 1 to 4.
- n represents an integer of 0 to 4, preferably 0 or 1, and more preferably 0.
- R 14 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom from the viewpoint that the glass transition temperature (Tg) of the polymer A1 can be further reduced. More specifically, the content of the structural unit in which R 14 in the formula A1 is a hydrogen atom is preferably 20% by mass or more based on the total content of the structural units A contained in the polymer A1.
- the content (content ratio: mass ratio) of the structural unit in the structural unit A in which R 14 in the formula A1 is a hydrogen atom is calculated from a 13 C-nuclear magnetic resonance spectrum (NMR) measurement by an ordinary method. It can be confirmed from the peak intensity ratio.
- a structural unit represented by the following formula A1-2 is more preferable from the viewpoint of suppressing deformation of the pattern shape.
- R B4 represents a hydrogen atom or a methyl group
- R B5 to R B11 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R B12 represents a substituent
- n Represents an integer of 0 to 4.
- R B4 is preferably a hydrogen atom.
- R B5 to R B11 are preferably hydrogen atoms.
- R B12 represents a substituent, an alkyl group or a halogen atom.
- the number of carbon atoms of the alkyl group is preferably 1 to 10, more preferably 1 to 4.
- n represents an integer of 0 to 4, preferably 0 or 1, and more preferably 0.
- R B4 in the structural unit of the following represents a hydrogen atom or a methyl group.
- R 21 and R 22 are an alkyl group, an alkyl group having 1 to 10 carbon atoms is preferable.
- R 21 and R 22 are an aryl group, a phenyl group is preferred.
- Each of R 21 and R 22 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, more preferably one is a hydrogen atom and the other is an alkyl group having 1 to 4 carbon atoms.
- R 23 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms.
- R 21 or R 22 and R 23 may be linked to form a cyclic ether.
- R 24 is preferably each independently an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. R 24 may be further substituted by the same group as R 24 .
- m is preferably 1 or 2, and more preferably 1.
- R 31 or R 32 when R 31 or R 32 is an alkyl group, an alkyl group having 1 to 10 carbon atoms is preferable. When R 31 or R 32 is an aryl group, a phenyl group is preferred. Each of R 31 and R 32 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- R 33 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms. Further, the alkyl group and the aryl group in R 31 to R 33 may have a substituent.
- R 31 or R 32 and R 33 may be linked to form a cyclic ether, and it is preferable that R 31 or R 32 and R 33 be linked to form a cyclic ether.
- the number of ring members of the cyclic ether is not particularly limited, but is preferably 5 or 6, and more preferably 5.
- X 0 represents a single bond or an arylene group, and a single bond is preferable.
- the arylene group may have a substituent.
- Y represents —S— or —O—, and is preferably —O— from the viewpoint of exposure sensitivity.
- the structural unit represented by the formula A3 is a structural unit having a carboxy group protected by an acid-decomposable group.
- the polymer A1 contains the structural unit represented by the formula A3, the sensitivity during pattern formation is excellent, and the resolution is more excellent.
- R 34 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom from the viewpoint that the Tg of the polymer A1 can be further reduced. More specifically, the amount of the structural unit in which R 34 in the formula A3 is a hydrogen atom is preferably 20% by mass or more based on the total amount of the structural unit represented by the formula A3 contained in the polymer A1.
- the content of the structural unit R 34 is a hydrogen atom in the formula A1 (content: weight ratio), 13 C-nuclear magnetic resonance spectrum (NMR) normal from the measurement It can be confirmed by the intensity ratio of the peak intensity calculated by the method.
- the structural unit represented by the formula A3 As a structural unit having an acid group protected by an acid-decomposable group, the structural unit represented by the following formula A is more preferred from the viewpoint of further increasing the exposure sensitivity during pattern formation. preferable.
- R 31 , R 32 , R 33 , R 34 and X 0 have the same meanings as R 31 , R 32 , R 33 , R 34 and X 0 in Formula A3, respectively, and the preferred embodiments are also the same. .
- the structural unit represented by the following formula A3-3 is more preferable from the viewpoint of further increasing the sensitivity during pattern formation.
- R 34 represents a hydrogen atom or a methyl group
- R 35 to R 41 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- R 34 is preferably a hydrogen atom.
- R 35 to R 41 are preferably a hydrogen atom.
- R 34 in the structural unit of the following represents a hydrogen atom or a methyl group.
- the structural unit A contained in the polymer A1 may be one type or two or more types.
- the content of the structural unit A in the polymer A1 is preferably 20% by mass or more, more preferably 20% by mass to 90% by mass, and more preferably 30% by mass to the total mass of the polymer A1. More preferably, it is 70% by mass.
- the content (content ratio: mass ratio) of the structural unit A in the polymer A1 can be confirmed by an intensity ratio of peak intensities calculated by a conventional method from 13 C-NMR measurement. Further, after all the polymer components are decomposed into constituent units (monomer units), the ratio of the constituent unit A is preferably 5% by mass to 80% by mass with respect to the total mass of the polymer components. It is more preferably from 10% by mass to 80% by mass, particularly preferably from 30% by mass to 70% by mass.
- the polymer A1 preferably contains a structural unit having an acid group (structural unit B).
- the structural unit B is a structural unit having an acid group not protected by a protecting group, for example, an acid group not protected by an acid-decomposable group, that is, an acid group having no protecting group.
- the acid group in the present specification means a proton dissociable group having a pKa of 12 or less.
- the acid group is usually incorporated into the polymer as a structural unit having an acid group (structural unit B) using a monomer capable of forming an acid group.
- structural unit B structural unit having an acid group
- the pKa of the acid group is preferably equal to or less than 10 and more preferably equal to or less than 6. Further, the pKa of the acid group is preferably -5 or more.
- the acid group examples include a carboxy group, a sulfonamide group, a phosphono group, a sulfo group, a phenolic hydroxyl group, and a sulfonylimide group. Among them, at least one acid group selected from the group consisting of a carboxy group and a phenolic hydroxyl group is preferable.
- the introduction of the structural unit having an acid group into the polymer A1 can be performed by copolymerizing a monomer having an acid group or copolymerizing a monomer having an acid anhydride structure and hydrolyzing the acid anhydride. .
- the structural unit having an acid group which is the structural unit B, is a structural unit derived from a styrene compound or a structural unit derived from a vinyl compound in which an acid group is substituted, or derived from (meth) acrylic acid. More preferably, it is a structural unit.
- the monomer having a carboxy group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, and 4-carboxystyrene.
- Examples of the monomer having a phenolic hydroxyl group include p- Examples include hydroxystyrene and 4-hydroxyphenyl methacrylate, and examples of the monomer having an acid anhydride structure include maleic anhydride.
- the structural unit B a structural unit having a carboxy group or a structural unit having a phenolic hydroxyl group is preferable from the viewpoint that sensitivity during pattern formation becomes better.
- the monomer having an acid group capable of forming the structural unit B is not limited to the examples described above.
- the structural unit B contained in the polymer A1 may be only one type or two or more types.
- the polymer A1 preferably contains 0.1% to 20% by mass, and preferably 0.5% to 15% by mass of a structural unit having an acid group (structural unit B) based on the total mass of the polymer A1. More preferably, the content is 1% by mass to 10% by mass. When it is in the above range, the pattern formability will be better.
- the content (content ratio: mass ratio) of the structural unit B in the polymer A1 can be confirmed by an intensity ratio of peak intensities calculated by a conventional method from 13 C-NMR measurement.
- the polymer A1 does not impair the effect of the photosensitive transfer material according to the present disclosure on other structural units (hereinafter, sometimes referred to as structural units C) other than the structural units A and B described above. It may be included in the range.
- structural units C other structural units
- the monomer forming the structural unit C is not particularly limited, and examples thereof include styrenes, alkyl (meth) acrylate, cyclic alkyl (meth) acrylate, aryl (meth) acrylate, and unsaturated dicarboxylic diester.
- Bicyclo unsaturated compounds maleimide compounds, unsaturated aromatic compounds, conjugated diene compounds, unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated dicarboxylic anhydrides, groups having an aliphatic cyclic skeleton, other Saturated compounds can be mentioned.
- Various characteristics of the polymer A1 can be adjusted by adjusting at least one of the type and the content using the structural unit C. In particular, by appropriately using the structural unit C, the glass transition temperature of the polymer A1 can be easily adjusted. By setting the glass transition temperature to 120 ° C.
- the positive photosensitive resin layer containing the polymer A1 can maintain good transferability and removability from the temporary support at a favorable level, while maintaining good transferability. Better resolution and sensitivity.
- the polymer A1 may include only one type of the structural unit C, or may include two or more types of the structural unit C.
- the structural unit C is, specifically, styrene, tert-butoxystyrene, 4-methylstyrene, ⁇ -methylstyrene, acetoxystyrene, methoxystyrene, ethoxystyrene, chlorostyrene, methyl vinylbenzoate, ethyl vinylbenzoate, ( Methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, ( Structural units formed by polymerizing benzyl (meth) acrylate, isobornyl (meth) acrylate, acrylonitrile, or ethylene glycol monoacetoacetate mono (meth) acrylate can be given.
- Other examples include compounds described in paragraphs 0021
- a structural unit having an aromatic ring or a structural unit having an aliphatic cyclic skeleton is preferable from the viewpoint of improving the electrical characteristics of the obtained transfer material.
- monomers forming these structural units include styrene, tert-butoxystyrene, 4-methylstyrene, ⁇ -methylstyrene, dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate, and (meth) ) Isobornyl acrylate and benzyl (meth) acrylate.
- a structural unit derived from cyclohexyl (meth) acrylate is preferably exemplified.
- an alkyl (meth) acrylate is preferable from the viewpoint of adhesion.
- alkyl (meth) acrylate having an alkyl group having 4 to 12 carbon atoms is more preferable from the viewpoint of adhesion.
- Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
- the content of the structural unit C is preferably 70% by mass or less, more preferably 60% by mass or less, and still more preferably 50% by mass or less, based on the total mass of the polymer A1.
- the lower limit of the content may be 0% by mass, but the content is preferably 1% by mass or more, more preferably 5% by mass or more. When the content is in the above range, the resolution and the adhesion are further improved.
- the polymer A1 contains, as the structural unit C, a structural unit having an ester of the acid group in the structural unit B also optimizes solubility in a developer and physical properties of the positive photosensitive resin layer. Preferred from a viewpoint.
- the polymer A1 preferably includes, as the structural unit B, a structural unit having a carboxy group, and further includes, as a copolymerization component, a structural unit C having a carboxylate ester group.
- the glass transition temperature (Tg) of the polymer A1 in the present disclosure is preferably 90 ° C. or less, and more preferably 20 ° C. or more and 60 ° C. or less from the viewpoint of transferability and adjusting the heating temperature in the above-described heating step. Is more preferable, and it is still more preferable that it is 30 to 50 degreeC.
- the FOX formula is used as a guideline based on the Tg of the homopolymer of each structural unit of the target polymer A1 and the mass ratio of each structural unit. Then, a method of controlling the Tg of the desired polymer A1 can be mentioned.
- the Tg of the homopolymer of the first structural unit contained in the copolymer is Tg1
- the mass fraction in the copolymer of the first structural unit is W1
- the Tg of the homopolymer of the second structural unit is Tg1.
- Tg2 K: Kelvin
- Tg2 the mass fraction of the second structural unit in the copolymer
- the acid value of the polymer A1 is preferably from 0 mgKOH / g to 200 mgKOH / g, more preferably from 0 mgKOH / g to 100 mgKOH / g, and more preferably from 0 mgKOH / g, from the viewpoint of developability and transferability. It is more preferably 50 mgKOH / g or less, particularly preferably 0 mgKOH / g or more and 20 mgKOH / g or less, most preferably 0 mgKOH / g or more and 10 mgKOH / g or less.
- the acid value of the polymer in the present disclosure indicates the mass of potassium hydroxide required to neutralize the acidic component per 1 g of the polymer.
- the resulting solution is neutralized and titrated with a 0.1 M aqueous sodium hydroxide solution at 25 ° C.
- the acid value is calculated by the following equation using the inflection point of the titration pH curve as the end point of the titration.
- A 56.11 ⁇ Vs ⁇ 0.1 ⁇ f / w
- A Acid value (mgKOH / g)
- Vs amount of 0.1 mol / L aqueous sodium hydroxide solution required for titration (mL)
- f titer of 0.1 mol / L aqueous solution of sodium hydroxide
- w mass (g) of a measurement sample (in terms of solid content)
- the molecular weight of the polymer A1 is preferably 60,000 or less in terms of polystyrene equivalent weight average molecular weight. When the weight average molecular weight of the polymer A1 is 60,000 or less, the melt viscosity of the positive-type photosensitive resin layer is suppressed to be low, and bonding at a low temperature (for example, 130 ° C. or less) is realized when bonding with the substrate. be able to.
- the weight average molecular weight of the polymer A1 is preferably from 2,000 to 60,000, and more preferably from 10,000 to 60,000.
- the weight average molecular weight of the polymer can be measured by GPC (gel permeation chromatography), and various commercially available devices can be used as the measuring device.
- the contents of the device and the measuring technique are as follows. It is known to those skilled in the art.
- the weight average molecular weight was measured by gel permeation chromatography (GPC) using HLC (registered trademark) -8220 GPC (manufactured by Tosoh Corporation) as a measuring device and TSKgel (registered trademark) Super HZM-M (4) as a column.
- Super HZ4000 (4.6 mm ID x 15 cm, manufactured by Tosoh Corporation), Super HZ3000 (4.6 mm ID x 15 cm, manufactured by Tosoh Corporation), Super HZ2000 (4.6 mm ID) ⁇ 15 cm, manufactured by Tosoh Corporation) connected in series, and THF (tetrahydrofuran) can be used as an eluent.
- the measurement was performed using a differential refractive index (RI) detector with a sample concentration of 0.2% by mass, a flow rate of 0.35 mL / min, a sample injection amount of 10 ⁇ L, and a measurement temperature of 40 ° C. be able to.
- RI differential refractive index
- the calibration curve is "Standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: "F-40", “F-20”, “F-4”, “F-1”, "A-5000”, “ A-2500 "and” A-1000 "can be produced using any of the seven samples.
- the ratio (dispersion degree) between the number average molecular weight and the weight average molecular weight of the polymer A1 is preferably 1.0 to 5.0, more preferably 1.05 to 3.5.
- the production method (synthesis method) of the polymer A1 is not particularly limited, but examples thereof include a polymerizable monomer for forming the structural unit A and a polymerizable monomer for forming the structural unit B having an acid group. It can be synthesized by polymerizing a monomer and, if necessary, an organic solvent containing a polymerizable monomer for forming the other structural unit C using a polymerization initiator. Further, it can be synthesized by a so-called polymer reaction.
- the positive photosensitive resin layer in the present disclosure from the viewpoint of developing good adhesion to the substrate and from the viewpoint of forming a high-resolution pattern, with respect to the total solid content of the positive photosensitive resin layer,
- the polymer component is preferably contained in a proportion of 50% by mass to 99.9% by mass, more preferably in a proportion of 70% by mass to 98% by mass, and more preferably in a proportion of 80% by mass to 98% by mass. More preferably, it is particularly preferably contained in a proportion of 90% by mass to 98% by mass.
- the positive photosensitive resin layer preferably contains the acid-decomposable resin in a proportion of 50% by mass to 99.9% by mass, and preferably 70% by mass to 9% by mass, based on the total solid content of the positive type photosensitive resin layer. It is more preferably contained in a proportion of 98% by mass, further preferably contained in a proportion of 80% by mass to 98% by mass, and particularly preferably contained in a proportion of 90% by mass to 98% by mass. Further, from the viewpoint of developing good adhesion to the substrate, the positive photosensitive resin layer contains the polymer A1 in an amount of 50% by mass to 99.99% based on the total solid content of the positive photosensitive resin layer. The content is preferably 9% by mass, more preferably 70% to 98% by mass, even more preferably 80% to 98% by mass, and 90% to 98% by mass. It is particularly preferable to include them in the ratio of
- the positive photosensitive resin layer has, as a polymer component, a structural unit having, in addition to the polymer A1, an acid group protected with an acid-decomposable group as long as the effect of the photosensitive transfer material according to the present disclosure is not impaired.
- another polymer may be referred to as “another polymer”.
- the amount of the other polymer is preferably 50% by mass or less, more preferably 30% by mass or less, based on all polymer components. It is more preferably at most 20% by mass.
- the positive photosensitive resin layer may include only one type of other polymer in addition to the polymer A1, or may include two or more types of other polymers.
- polyhydroxystyrene can be used, and SMA 1000P, SMA 2000P, SMA 3000P, SMA 1440F, SMA 17352P, SMA 2625P, and SMA 3840F (all manufactured by Sartomer Co.) are commercially available.
- ARUFON UC-3000, ARUFON UC-3510, ARUFOON UC-3900, ARUFOON UC-3910, ARUFOON UC-3920, and ARUFON UC-3080 can also be used.
- Joncryl 690, Joncryl 78 , Joncryl 67 and Joncryl 586 can also be used.
- the positive photosensitive resin layer preferably contains a photoacid generator.
- the photoacid generator used in the present disclosure is a compound capable of generating an acid by irradiation with radiation such as ultraviolet rays, far ultraviolet rays, X-rays, and charged particle beams.
- the photoacid generator used in the present disclosure is preferably a compound that generates an acid in response to actinic rays having a wavelength of 300 nm or more, preferably 300 nm to 450 nm, but the chemical structure is not limited.
- a photoacid generator that is not directly sensitive to actinic light having a wavelength of 300 nm or more, if it is a compound that responds to actinic light having a wavelength of 300 nm or more by using it in combination with a sensitizer and generates an acid, is used as a sensitizer. It can be preferably used in combination.
- a photoacid generator that generates an acid having a pKa of 4 or less is preferable
- a photoacid generator that generates an acid having a pKa of 3 or less is more preferable
- pKa is 2 or less.
- Particularly preferred are photoacid generators that generate an acid.
- the lower limit of pKa is not particularly defined.
- the pKa is preferably, for example, -10.0 or more.
- the photoacid generator examples include an ionic photoacid generator and a nonionic photoacid generator. Further, from the viewpoint of sensitivity and resolution, the photoacid generator preferably contains at least one compound selected from the group consisting of an onium salt compound described below and an oxime sulfonate compound described below, and an oxime sulfonate compound. More preferably,
- nonionic photoacid generator examples include trichloromethyl-s-triazines, diazomethane compounds, imidosulfonate compounds, and oxime sulfonate compounds.
- the photoacid generator is preferably an oxime sulfonate compound from the viewpoints of sensitivity, resolution, and adhesion.
- These photoacid generators can be used alone or in combination of two or more.
- trichloromethyl-s-triazines and diazomethane derivatives the compounds described in paragraphs 0083 to 0088 of JP-A-2011-221494 can be exemplified.
- oxime sulfonate compound that is, the compound having an oxime sulfonate structure
- a compound having an oxime sulfonate structure represented by the following formula (B1) is preferable.
- R 21 represents an alkyl group or an aryl group
- * represents a bonding site to another atom or another group.
- any group may be substituted, and the alkyl group in R 21 may be linear or have a branched structure. It may have a ring structure. Acceptable substituents are described below.
- the alkyl group for R 21 a linear or branched alkyl group having 1 to 10 carbon atoms is preferable.
- the alkyl group represented by R 21 is an aryl group having 6 to 11 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group (a bridged alicyclic group such as a 7,7-dimethyl-2-oxonorbornyl group) , Preferably a bicycloalkyl group or the like) or a halogen atom.
- the aryl group for R 21 is preferably an aryl group having 6 to 18 carbon atoms, and more preferably a phenyl group or a naphthyl group.
- the aryl group for R 21 may be substituted with one or more groups selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an alkoxy group, and a halogen atom.
- the compound having an oxime sulfonate structure represented by the formula (B1) is also preferably an oxime sulfonate compound described in paragraphs 0078 to 0111 of JP-A-2014-85643.
- Examples of the ionic photoacid generator include onium salt compounds such as diaryliodonium salts and triarylsulfonium salts, and quaternary ammonium salts. Of these, onium salt compounds are preferred, and triarylsulfonium salts and diaryliodonium salts are particularly preferred.
- ionic photoacid generators described in paragraphs 0114 to 0133 of JP-A-2014-85643 can also be preferably used.
- One photoacid generator may be used alone, or two or more photoacid generators may be used in combination.
- the content of the photoacid generator in the positive photosensitive resin layer is 0.1% by mass to 10% by mass based on the total mass of the positive photosensitive resin layer from the viewpoint of sensitivity and resolution. Is more preferable, and more preferably 0.5% by mass to 5% by mass.
- the positive photosensitive resin layer may contain a solvent.
- the photosensitive resin composition for forming the positive photosensitive resin layer in order to easily form the positive photosensitive resin layer, once containing a solvent to adjust the viscosity of the photosensitive resin composition,
- the positive photosensitive resin layer can be suitably formed by drying after applying the photosensitive resin composition containing a solvent.
- Known solvents can be used as the solvent used in the present disclosure.
- Solvents include ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ethers, propylene glycol dialkyl ethers, propylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers , Diethylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol monoalkyl ether acetates, esters, ketones, amides, and lactones. Further, specific examples of the solvent include the solvents described in paragraphs 0174 to 0178 of JP-A-2011-221494, the contents of which are incorporated herein.
- the solvent to be added only one kind may be used, or two or more kinds may be used.
- the solvents that can be used in the present disclosure may be used alone or in combination of two or more.
- two or more solvents for example, a combination of propylene glycol monoalkyl ether acetates and dialkyl ethers, a combination of diacetates and diethylene glycol dialkyl ethers, or an ester and butylene glycol alkyl ether acetate It is preferable to use the compound in combination with a compound.
- the solvent is preferably a solvent having a boiling point of 130 ° C. or more and less than 160 ° C., a solvent having a boiling point of 160 ° C. or more, or a mixture thereof. Examples of the solvent having a boiling point of 130 ° C. or more and less than 160 ° C.
- ethyl 3-ethoxypropionate (boiling point 170 ° C.), diethylene glycol methyl ethyl ether (boiling point 176 ° C.), propylene glycol monomethyl ether propionate (boiling point 160 ° C.), dipropylene glycol methyl ether acetate (Boiling point 213 ° C), 3-methoxybutyl ether acetate (boiling point 171 ° C), diethylene glycol diethyl ether (boiling point 189 ° C), diethylene glycol dimethyl ether (boiling point 162 ° C), propylene glycol diacetate (boiling point 190 ° C), diethylene glycol monoethyl ether acetate (boiling point 190 ° C) (Boiling point 220 ° C), dipropylene glycol dimethyl ether (boiling point 175 ° C), and 1,3-butyl 3-
- Preferred examples of the solvent include esters, ethers, and ketones described below.
- the esters include ethyl acetate, propyl acetate, isobutyl acetate, sec-butyl acetate, isopropyl acetate, and butyl acetate.
- ethers include diisopropyl ether, 1,4-dioxane, 1,2-dimethoxyethane, 1,3-dioxolan, propylene glycol dimethyl ether, propylene glycol monoethyl ether, and the like.
- ketones examples include methyl n-butyl ketone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, methyl n-propyl ketone, methyl isopropyl ketone, and the like.
- Other solvents include toluene, acetonitrile, isopropanol, 2-butanol, isobutyl alcohol and the like.
- the content of the solvent when applying the photosensitive resin composition is preferably 50 parts by mass to 1,900 parts by mass, and more preferably 100 parts by mass, per 100 parts by mass of the total solids in the photosensitive resin composition. More preferably, it is 900 parts by mass. Further, the content of the solvent in the positive photosensitive resin layer is preferably 2% by mass or less, more preferably 1% by mass or less, based on the total mass of the positive photosensitive resin layer. More preferably, it is 0.5% by mass or less.
- the positive photosensitive resin layer in the present disclosure may include a known additive as needed.
- the positive photosensitive resin layer may contain a plasticizer for the purpose of improving plasticity.
- the plasticizer preferably has a smaller weight average molecular weight than the polymer A1.
- the weight average molecular weight of the plasticizer is preferably 500 or more and less than 10,000, more preferably 700 or more and less than 5,000, and even more preferably 800 or more and less than 4,000 from the viewpoint of imparting plasticity.
- the plasticizer is not particularly limited as long as it is a compound that is compatible with the polymer A1 and exhibits plasticity, but from the viewpoint of imparting plasticity, the plasticizer preferably has an alkyleneoxy group in the molecule.
- the alkyleneoxy group contained in the plasticizer preferably has the following structure.
- R represents an alkylene group having 2 to 8 carbon atoms
- n represents an integer of 1 to 50
- * represents a bonding site to another atom.
- a positive photosensitive resin layer obtained by mixing the compound X, the polymer A1, and the photoacid generator.
- compound X a compound having an alkyleneoxy group having the above structure
- the plasticity is not improved as compared with the positive photosensitive resin layer formed without containing the compound X, it does not correspond to the plasticizer in the present disclosure.
- an optionally added surfactant is not generally used in an amount that brings plasticity to the positive photosensitive resin layer, and thus does not fall under the plasticizer in the present specification.
- plasticizer examples include compounds having the following structures, but are not limited thereto.
- the content of the plasticizer is preferably 1% by mass to 50% by mass, and more preferably 2% by mass to 20% by mass based on the total mass of the positive photosensitive resin layer. Is more preferred.
- the positive photosensitive resin layer may include only one type of plasticizer, or may include two or more types of plasticizers.
- the positive photosensitive resin layer may further include a sensitizer.
- the sensitizer absorbs actinic rays and enters an electronically excited state.
- the sensitizer in the electronically excited state comes into contact with the photoacid generator, and causes actions such as electron transfer, energy transfer, and heat generation.
- the photoacid generator undergoes a chemical change and is decomposed to generate an acid.
- Exposure sensitivity can be improved by including a sensitizer.
- anthracene derivative a compound selected from the group consisting of an anthracene derivative, an acridone derivative, a thioxanthone derivative, a coumarin derivative, a basestyryl derivative, and a distyrylbenzene derivative is preferable, and an anthracene derivative is more preferable.
- anthracene derivative examples include anthracene, 9,10-dibutoxyanthracene, 9,10-dichloroanthracene, 2-ethyl-9,10-dimethoxyanthracene, 9-hydroxymethylanthracene, 9-bromoanthracene, 9-chloroanthracene, 9 , 10-Dibromoanthracene, 2-ethylanthracene or 9,10-dimethoxyanthracene is preferred.
- sensitizer examples include the compounds described in paragraphs 0139 to 0141 of WO 2015/093271.
- the content of the sensitizer is preferably from 0% by mass to 10% by mass, more preferably from 0.1% by mass to 10% by mass, based on the total mass of the positive photosensitive resin layer. .
- the positive photosensitive resin layer preferably further contains a basic compound.
- the basic compound can be arbitrarily selected from the basic compounds used in the chemically amplified resist. Examples thereof include aliphatic amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, and quaternary ammonium salts of carboxylic acids. Specific examples thereof include the compounds described in paragraphs 0204 to 0207 of JP-A-2011-221494, the contents of which are incorporated herein.
- examples of the aliphatic amine include trimethylamine, diethylamine, triethylamine, di-n-propylamine, tri-n-propylamine, di-n-pentylamine, tri-n-pentylamine, diethanolamine, and triethanolamine.
- examples include ethanolamine, dicyclohexylamine, and dicyclohexylmethylamine.
- examples of the aromatic amine include aniline, benzylamine, N, N-dimethylaniline, and diphenylamine.
- heterocyclic amine examples include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, N-methyl-4-phenylpyridine, 4-dimethylaminopyridine, imidazole, benzimidazole, 4-methylimidazole, 2-phenylbenzimidazole, 2,4,5-triphenylimidazole, nicotine, nicotinic acid, nicotinamide, quinoline, 8-oxyquinoline, pyrazine, Pyrazole, pyridazine, purine, pyrrolidine, piperidine, piperazine, morpholine, 4-methylmorpholine, 1,5-diazabicyclo [4.3.0] -5-nonene, and 1,8-diazabicyclo [5.3.0] -7-undecene.
- Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, and tetra-n-hexylammonium hydroxide.
- Examples of the quaternary ammonium salt of a carboxylic acid include tetramethylammonium acetate, tetramethylammonium benzoate, tetra-n-butylammonium acetate, and tetra-n-butylammonium benzoate.
- the above basic compounds may be used alone or in combination of two or more.
- the content of the basic compound is preferably 0.001% by mass to 5% by mass, and more preferably 0.005% by mass to 3% by mass based on the total mass of the positive photosensitive resin layer. More preferred.
- the positive photosensitive resin layer in the present disclosure can include a heterocyclic compound.
- the heterocyclic compound in the present disclosure is not particularly limited.
- the positive photosensitive resin layer includes, for example, compounds having an epoxy group or an oxetanyl group in the molecule described below, heterocyclic compounds containing an alkoxymethyl group, various cyclic ethers, oxygen-containing monomers such as cyclic esters (lactones); cyclic amines And nitrogen-containing monomers such as oxazoline; and heterocyclic monomers having d electrons such as silicon, sulfur and phosphorus.
- the content of the heterocyclic compound is 0.01% by mass to 50% by mass based on the total mass of the positive photosensitive resin layer. Is preferably 0.1% by mass to 10% by mass, and more preferably 1% by mass to 5% by mass. The above range is preferable from the viewpoint of adhesion and etching resistance.
- One heterocyclic compound may be used alone, or two or more heterocyclic compounds may be used in combination.
- Specific examples of the compound having an epoxy group in the molecule include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, and aliphatic epoxy resin.
- bisphenol A type epoxy resin bisphenol F type epoxy resin, phenol novolak type epoxy resin and aliphatic epoxy resin are more preferable, and aliphatic epoxy resin is particularly preferable.
- the compound having an oxetanyl group in the molecule include Alonoxetane OXT-201, OXT-211, OXT-212, OXT-213, OXT-121, OXT-221, OX-SQ, and PNOX (these are Toagosei Co., Ltd.) (Manufactured by K.K.).
- the compound containing an oxetanyl group is used alone or in combination with a compound containing an epoxy group.
- the heterocyclic compound is preferably a compound having an epoxy group from the viewpoint of etching resistance and line width stability.
- the positive photosensitive resin layer may contain an alkoxysilane compound.
- Preferred examples of the alkoxysilane compound include trialkoxysilane compounds.
- Examples of the alkoxysilane compound include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltriakoxysilane, ⁇ -glycidoxypropylalkyldialkoxysilane, ⁇ -methacryloxy Propyl trialkoxysilane, ⁇ -methacryloxypropylalkyl dialkoxysilane, ⁇ -chloropropyl trialkoxysilane, ⁇ -mercaptopropyl trialkoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyl trialkoxysilane, vinyl trialkoxysilane Is mentioned.
- ⁇ -glycidoxypropyl trialkoxysilane and ⁇ -methacryloxypropyl trialkoxysilane are more preferable, ⁇ -glycidoxypropyl trialkoxysilane is more preferable, and 3-glycidoxypropyltrimethoxysilane is particularly preferable. preferable. These can be used alone or in combination of two or more.
- the positive photosensitive resin layer preferably contains a surfactant from the viewpoint of uniformity of the film thickness.
- a surfactant any of an anionic surfactant, a cationic surfactant, a nonionic surfactant (nonionic surfactant), and an amphoteric surfactant can be used, but a preferred surfactant is used.
- the surfactant is a non-ionic surfactant. Examples of the nonionic surfactant include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, silicone-based, and fluorine-based surfactants. .
- KP manufactured by Shin-Etsu Chemical Co., Ltd.
- Polyflow manufactured by Kyoeisha Chemical Co., Ltd.
- F-Top manufactured by JEMCO
- Megafac registered trademark, manufactured by DIC Corporation
- Florard Manufactured by Sumitomo 3M Limited
- Asahi Guard registered trademark, manufactured by Asahi Glass Co., Ltd.
- Surflon registered trademark, manufactured by Asahi Glass Co., Ltd.
- PolyFox manufactured by OMNOVA
- SH-8400 Toray Dow) Corning Co., Ltd.
- the surfactant contains a structural unit SA and a structural unit SB represented by the following formula I-1 and has a weight average in terms of polystyrene measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent.
- a copolymer having a molecular weight (Mw) of 1,000 or more and 10,000 or less can be mentioned as a preferable example.
- R 401 and R 403 each independently represent a hydrogen atom or a methyl group
- R 402 represents a linear alkylene group having 1 to 4 carbon atoms
- R 404 represents a hydrogen atom or 1 carbon atom
- L represents an alkylene group having 3 or more and 6 or less carbon atoms
- p and q are mass percentages representing a polymerization ratio
- p represents a numerical value of 10 mass% or more and 80 mass% or less
- Q represents a numerical value of 20% by mass or more and 90% by mass or less
- r represents an integer of 1 or more and 18 or less
- s represents an integer of 1 or more and 10 or less
- * represents a bonding site with another structure.
- L is preferably a branched alkylene group represented by the following formula I-2.
- R 405 in Formula I-2 represents an alkyl group having 1 to 4 carbon atoms, and is preferably an alkyl group having 1 to 3 carbon atoms in terms of compatibility and wettability to the surface to be coated, and has 2 or more carbon atoms. 3 alkyl groups are more preferred.
- the weight average molecular weight (Mw) of the copolymer is more preferably 1,500 or more and 5,000 or less.
- One surfactant may be used alone, or two or more surfactants may be used in combination.
- the amount of the surfactant added is preferably 10% by mass or less, more preferably 0.001% by mass to 10% by mass, and more preferably 0.1% by mass or less with respect to the total mass of the positive photosensitive resin layer. More preferably, the content is from 01% by mass to 3% by mass.
- metal oxide particles In the positive photosensitive resin layer of the present disclosure, metal oxide particles, an antioxidant, a dispersant, an acid multiplying agent, a development accelerator, a conductive fiber, a coloring agent, a thermal radical polymerization initiator, a thermal acid generator, Known additives such as an ultraviolet absorber, a thickener, a crosslinking agent, and an organic or inorganic suspending agent can be further added. Preferred embodiments of the other components are described in paragraphs 0165 to 0184 of JP-A-2014-85643, respectively, and the contents of this publication are incorporated herein.
- a composition can be prepared by preparing a solution in which each component is dissolved in a solvent in advance, and then mixing the obtained solution at a predetermined ratio.
- the composition prepared as described above can be used after being filtered using a filter having a pore size of 0.2 ⁇ m or the like.
- the solid components (for example, a polymer component, a photoacid generator, a basic compound, and a surfactant) in the photosensitive resin composition used in the present disclosure are uniform in the thickness of the positive photosensitive resin layer, In order to improve shape unevenness and the like, it is preferable to adjust by dissolving in the above-mentioned solvent.
- a positive photosensitive resin layer can be formed by applying the photosensitive resin composition on a temporary support and drying it.
- the coating method is not particularly limited, and coating can be performed by a known method such as slit coating, spin coating, curtain coating, or inkjet coating.
- the photosensitive resin composition can be applied after forming an intermediate layer described later on the temporary support.
- the photosensitive transfer material according to the present disclosure has a protective film.
- the surface of the protective film on the side in contact with the positive photosensitive resin layer satisfies the following (A) and (B).
- the water contact angle is 75 ° or more.
- the surface roughness Ra is 45 nm or less.
- the surface of the protective film that is in contact with the positive photosensitive resin layer means the surface of the protective film to be bonded to the positive photosensitive resin layer (that is, the contact surface). Then, it means the surface of the protective film that is exposed by being separated from the positive photosensitive resin layer (that is, the peeled surface). Specific peeling conditions are as described below.
- the photosensitive transfer material according to the present disclosure is peelable at the interface between the protective film and the positive photosensitive resin layer.
- peelable at the interface between the protective film and the positive photosensitive resin layer means that the protective film can be peeled from the positive photosensitive resin layer under the following peeling conditions.
- the photosensitive transfer material according to the present disclosure the protective film undercoat layer and the positive photosensitive resin layer At the interface with The presence of the undercoat layer in the peeled protective film can be confirmed by observing the cross section of the protective film.
- the cross section of the protective film peeled off from the positive photosensitive resin layer under the following peeling conditions is observed using a scanning electron microscope.
- a laminated structure including the base material of the protective film is observed in the observed image, it can be determined that the protective film has an undercoat layer.
- the photosensitive transfer material is cut out to 4.5 cm wide by 9 cm long, and the surface on the temporary support side is stuck on a glass plate with a double-sided adhesive tape.
- One end of the tape is gripped, and 180 ° peeling is performed at a peeling speed of 500 mm / min using a tensile tester.
- the pressure-sensitive adhesive tape and the double-sided pressure-sensitive adhesive tape used are those described in JIS Z 0109: 2015, and the tensile tester is a tensile tester (tester grade 1: relative indication error) specified in JIS B 7721: 2009. ⁇ 1.0%) or equivalent tensile tester is used.
- the water contact angle of the surface of the protective film on the side in contact with the positive photosensitive resin layer is 75 ° or more. By adjusting the water contact angle within the above numerical range, since the surface energy of the surface of the protective film on the side in contact with the positive photosensitive resin layer can be reduced, the peelability of the protective film can be improved. .
- the water contact angle is preferably 78 ° or more, more preferably 82 ° or more, and may be 85 ° or more, or may be 100 ° or more, from the viewpoint of peelability.
- the upper limit of the water contact angle is not limited.
- the water contact angle is preferably 150 ° or less, and more preferably 120 ° or less, from the viewpoint of adhesion.
- the water contact angle can be measured by the following method. Using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., DROPMASTER-501), the contact angle measured 7 seconds after 2 ⁇ L of purified water was dropped on the measurement surface at a temperature of 25 ° C. I do. When the protective film and the positive photosensitive resin layer are in contact with each other, the water contact angle is measured using the peeled surface exposed by peeling the protective film under the above peeling conditions as a measurement surface.
- a contact angle meter manufactured by Kyowa Interface Science Co., Ltd., DROPMASTER-501
- the surface roughness Ra of the surface of the protective film on the side in contact with the positive photosensitive resin layer is 45 nm or less.
- the surface roughness Ra is preferably 42 nm or less, more preferably 25 nm or less, further preferably 20 nm or less, and particularly preferably 14 nm or less.
- the lower limit of the surface roughness Ra is not limited.
- the surface roughness Ra is preferably 1 nm or more from the viewpoint of manufacturing.
- the surface roughness Ra can be measured by the following method. With respect to the measurement surface of the protective film, a surface profile of the protective film is obtained using a three-dimensional optical profiler (New View 7300, manufactured by Zygo) under the following conditions.
- the measurement and analysis software uses MicroScope Application 8.3.2.
- a Surface Map screen is displayed by the analysis software (MetroPro 8.3.2-Microscope Application), and histogram data is obtained in the Surface Map screen.
- the arithmetic average roughness is calculated from the obtained histogram data, and is set as the Ra value.
- the surface roughness Ra is measured using the peeled surface exposed by peeling the protective film under the above peeling conditions as a measurement surface.
- a resin film is preferable.
- the resin film include a polyolefin film (eg, a polypropylene film), a polyester film (eg, a polyethylene terephthalate film), a cellulose triacetate film, a polycarbonate film, a polystyrene film, and the like.
- a polyolefin film is preferable, and a polypropylene film is more preferable as the base material of the protective film, from the viewpoints of peelability and reduction of pattern failure.
- polypropylene film a commercially available product may be used, and for example, Trefane (registered trademark) 25KW37 (manufactured by Toray Industries, Inc.) or the like may be used.
- a polyester film is preferable, and a polyethylene terephthalate film is more preferable.
- the resin film may be an unstretched film or a stretched film, but is preferably a stretched film.
- the stretched film may be a uniaxially stretched film, may be a biaxially stretched film, may be a multiaxially stretched film such as triaxially stretched, but is preferably a biaxially stretched film, From the viewpoint of smoothness, a biaxially oriented polypropylene film or a biaxially oriented polyethylene terephthalate film is more preferable.
- the thickness of the substrate is not particularly limited, but is preferably in the range of 5 ⁇ m to 200 ⁇ m, and more preferably in the range of 10 ⁇ m to 150 ⁇ m.
- the protective film has a base material and an undercoat layer, and the outermost layer of the protective film on the side in contact with the positive photosensitive resin layer is preferably the above-mentioned undercoat layer. Since the surface energy of the protective film can be reduced by having the undercoat layer, the peelability of the protective film can be improved.
- the base material in the protective film is a resin film
- the undercoat layer may be formed on an unstretched film, may be formed on a uniaxially stretched film, or may be formed on a biaxially stretched film. Is also good.
- the undercoat layer may be a stretched product stretched together with the unstretched film serving as the base material, or a stretched product stretched together with the uniaxially stretched film serving as the base material, from the viewpoint of adhesion to the base material. You may.
- the undercoat layer, which is a stretched product can be formed, for example, by stretching a coating layer formed on a resin film as a base material together with the resin film, as described later.
- the protective film is a biaxially stretched film in which a uniaxially stretched film, which is a stretched product in the first stretching direction, is stretched along a film surface in a second stretching direction orthogonal to the first stretching direction;
- An undercoat layer that is a stretched product of the coating layer formed on one surface of the stretched film in the second stretching direction (hereinafter, may be simply referred to as “undercoat layer that is a stretched product”), and is a protective film.
- the outermost layer on the side in contact with the positive photosensitive resin layer is preferably the undercoat layer.
- the surface energy of the protective film can be reduced to improve the peelability of the protective film, and further, the smoothness of the protective film surface and the base material ( That is, the adhesion between the biaxially stretched film) and the undercoat layer can be improved.
- the “biaxially stretched film” in the protective film having a biaxially stretched film and an undercoat layer that is a stretched product has a surface roughness Ra of one surface measured by the method described above of 45 nm.
- the following resin films are referred to.
- the “undercoat layer that is a stretched product” refers to a material having an adhesive force with a biaxially stretched film measured by the following method of 0.098 N / cm or more.
- the method for measuring the adhesion between the biaxially stretched film and the undercoat layer will be described below.
- a tape (Printerc C, manufactured by Nitto Denko Corporation) is attached to the surface of the protective film having an undercoat layer on the undercoat layer side, and cut into 4.5 cm ⁇ 9 cm so that the width of the tape and the protective film match.
- the tape is peeled at 180 ° at a peeling speed of 500 mm / min using a Tensilon universal tester (manufactured by A & D Corporation), and the adhesion is measured.
- the undercoat layer preferably contains a modified resin, and more preferably contains at least one resin selected from the group consisting of an acid-modified resin and a silicone-modified resin, from the viewpoint of reducing releasability and pattern failure. .
- the undercoat layer preferably contains at least one resin selected from the group consisting of a modified polyolefin and a modified acrylic polymer, from the viewpoint of reducing releasability and pattern failure, and comprises an acid-modified polyolefin and More preferably, it contains at least one resin selected from the group consisting of silicone-modified acrylic polymers, and particularly preferably it contains acid-modified polyolefin.
- the acid-modified polyolefin is not limited as long as it is an acid-modified polyolefin, and is, for example, a terminal-modified or graft-modified polyolefin using a compound having an acid group (for example, an unsaturated carboxylic acid or the like) or an anhydride thereof. And the like.
- the acid group include a carboxy group, a sulfo group, and a phosphono group.
- At least one of the acid groups contained in the acid-modified polyolefin is preferably in the form of a salt (ie, a salt of an acid group).
- a salt ie, a salt of an acid group.
- the salt include an alkali metal salt (for example, a sodium salt, a potassium salt, a lithium salt and the like), an amine salt, an ammonium salt and the like.
- at least one of the acid groups in the acid-modified polyolefin is preferably an alkali metal salt, and more preferably a sodium salt, from the viewpoint of the pattern shape.
- polyolefins such as acid-modified polyolefins may be used.
- Chemipearl registered trademark
- S100, S120, S200, S300, S650, SA100 all manufactured by Mitsui Chemicals, Inc.
- Hardlen registered trademark
- NZ1004, NZ1005 all manufactured by Toyobo Co., Ltd.
- Arrowbase registered trademark
- Seixen registered trademark
- AC A, L, NC, N
- Sepolsion registered trademark
- G315, VA407 all manufactured by Sumitomo Seika Co., Ltd.
- Hitec S3121, S3148K all manufactured by Toho Chemical Co., Ltd.
- Examples of the acid-modified polyolefin in which at least one of the acid groups is an amine salt include, for example, Sixen (registered trademark) L and the like.
- Examples of the acid-modified polyolefin in which at least one of the acid groups is an ammonium salt include, for example, Sixen (registered trademark) AC.
- Examples of the acid-modified polyolefin in which at least one of the acid groups is a sodium salt include Sixen (registered trademark) NC, Chemipearl (registered trademark) S120, and the like.
- Silicone-modified acrylic polymer is an acrylic polymer having a silicone moiety.
- the silicone-modified acrylic polymer is not limited, and a known one can be used.
- a commercially available product may be used as the silicone-modified acrylic polymer, and examples thereof include Cymac (registered trademark) US-450 and US-480 (all manufactured by Toagosei Co., Ltd.).
- the resin contained in the undercoat layer may be used alone or in combination of two or more.
- the content of the resin in the undercoat layer is preferably from 50% by mass to 100% by mass, and more preferably from 80% by mass to 100% by mass, based on the total mass of the undercoat layer, from the viewpoint of the releasability and the reduction in pattern failure. Is more preferable.
- the total content of at least one resin selected from the group consisting of the modified polyolefin and the modified acrylic polymer in the undercoat layer is, with respect to the total weight of the undercoat layer, from the viewpoint of reducing releasability and pattern failure. , 50% by mass to 100% by mass, more preferably 80% by mass to 100% by mass.
- the weight average molecular weight of the resin contained in the undercoat layer is preferably from 1,000 to 500,000 in terms of polystyrene in terms of releasability.
- the weight average molecular weight of the resin contained in the undercoat layer can be measured by the method described in the section of “Positive photosensitive resin layer” above.
- the undercoat layer may further contain various additives as necessary.
- the additive include a surfactant, a crosslinking agent, an antioxidant, a preservative, and the like.
- the surfactant examples include known surfactants such as a cationic surfactant, a nonionic surfactant, and an anionic surfactant. Among these, as the surfactant, an anionic surfactant is preferable.
- anionic surfactants include Lapizol (registered trademark) A-90, A-80, BW-30, B-90, and C-70 (all manufactured by NOF Corporation), and NIKKOL (registered trademark).
- OTP-100 (all manufactured by Nikko Chemical Co., Ltd.), Kohakuur (registered trademark) ON, L-40, Phosphanol (registered trademark) 702 (all manufactured by Toho Chemical Industry Co., Ltd.), Beaulite (registered trademark) ) A-5000, SSS (all manufactured by Sanyo Chemical Industries, Ltd.) and the like.
- crosslinking agent examples include known crosslinking agents such as epoxy, isocyanate, melamine, carbodiimide, and oxazoline.
- the thickness of the undercoat layer is not limited, and is preferably from 10 nm to 550 nm, more preferably from 10 nm to 500 nm, still more preferably from 10 nm to 100 nm, from the viewpoint of reducing peeling and pattern failure. It is particularly preferably from 10 nm to 60 nm.
- the method for forming the undercoat layer is not limited.
- an undercoat layer can be formed by applying a coating liquid for forming an undercoat layer containing a solid content of the undercoat layer on a base material and drying.
- the coating method is not limited, and a known method such as slit coating, spin coating, curtain coating, or inkjet coating can be applied.
- the drying method is not limited, and a known method such as a heater or hot air can be applied.
- the undercoat layer may be formed by an inline coating method using a coating solution for forming an undercoat layer.
- the in-line coating method is a method of applying a coating liquid for forming an undercoat layer at a stage before winding the manufactured base material, and an off-line coating method of separately applying after winding the manufactured base material.
- an undercoat layer by an inline coating method one surface of a resin film stretched in the first stretching direction was coated with an undercoat layer formation coating solution, and the undercoat layer formation coating solution was applied.
- a method of forming an undercoat layer by stretching the resin film in a second stretching direction orthogonal to the first stretching direction along the resin film surface is preferable. By stretching in the second stretching direction in a state where the undercoat layer forming coating liquid is applied to one surface of the resin film stretched in the first stretching direction, the adhesion between the resin film and the undercoat layer serving as the base material is improved. And the smoothness of the protective film surface can be improved.
- the stretching method is not limited, and a known method can be applied.
- the stretching temperature may be appropriately selected according to the glass transition temperature (Tg) of the substrate, and is preferably equal to or higher than Tg, and is equal to or lower than 80 ° C. higher than Tg, and is higher by 5 ° C. than Tg. It is more preferable that the temperature is equal to or higher than the temperature and equal to or lower than the temperature higher by 60 ° C. than the Tg.
- the stretching ratio is preferably 2.5 times to 5.0 times, more preferably 3.0 times to 4.5 times.
- the stretching ratio refers to the ratio of the length after stretching to the length before stretching. After the biaxial stretching, the stretched film may be subjected to heat treatment such as heat setting and thermal relaxation.
- the protective film may have an overcoat layer on the outermost layer on the side opposite to the side in contact with the positive photosensitive resin layer.
- the overcoat layer for example, the slipperiness with a mask used at the time of exposure can be improved.
- the resin contained in the overcoat layer examples include polyolefin, acrylic polymer, polyester, polyurethane, cellulose, vinyl chloride-vinyl acetate copolymer, polyvinyl pyrrolidone, polyvinyl acetal, polyvinyl alcohol, polyamide, butadiene-styrene thermoplastic polymer, Epoxy resins, melamine resins and the like can be mentioned.
- an acrylic polymer is preferable as the resin contained in the overcoat layer from the viewpoint of slipperiness. It is preferable that a surfactant, a wax, a matting agent, resin particles, inorganic particles, and the like are further added to the overcoat layer from the viewpoint of slipperiness.
- the overcoat layer preferably contains inorganic particles.
- the particle diameter of the inorganic particles is preferably in the range of 0.03 ⁇ m to 1 ⁇ m, more preferably in the range of 0.05 ⁇ m to 0.5 ⁇ m.
- the thickness of the overcoat layer is not limited, and is preferably from 10 nm to 500 nm, and more preferably from 10 nm to 100 nm, from the viewpoint of slipperiness.
- the photosensitive transfer material according to the present disclosure may have an intermediate layer between the temporary support and the positive photosensitive resin layer.
- a water-soluble resin layer is preferable. By having the water-soluble resin layer, the adhesion between the temporary support and the positive photosensitive resin layer can be improved.
- the water-soluble resin layer is a layer containing a water-soluble resin.
- the water-soluble resin is not limited as long as it is a water-soluble resin, and examples thereof include polyvinyl alcohol, cellulose, polyacrylamide, polyethylene oxide, vinyl ether, polyamide, and copolymers thereof. Among these, cellulose is preferable as the water-soluble resin from the viewpoint of adhesion.
- water-soluble means a property of dissolving 1 g or more in 100 g of water at 25 ° C.
- the content of the water-soluble resin in the water-soluble resin layer is preferably 20% by mass to 100% by mass, and more preferably 50% by mass to 100% by mass based on the total mass of the water-soluble resin layer. % Is more preferable.
- the thickness of the water-soluble resin layer is preferably from 1 ⁇ m to 10 ⁇ m, more preferably from 1 ⁇ m to 5 ⁇ m, from the viewpoint of adhesion.
- the surface of the protective film on the side in contact with the positive photosensitive resin layer may be subjected to surface modification from the viewpoint of peelability.
- the surface modification method is not limited as long as the surface energy of the protective film is reduced, and examples thereof include a corona treatment, a plasma treatment, a laser treatment, and an ultraviolet treatment.
- the method for manufacturing a circuit wiring according to the present disclosure includes a step of peeling the protective film of the photosensitive transfer material (hereinafter, may be referred to as a “peeling step”) and a step of removing the protective film of the photosensitive transfer material from the temporary support.
- peeling step a step of peeling the protective film of the photosensitive transfer material
- bonding step a step of bonding the outermost layer on the side having the positive photosensitive resin layer to the substrate having the conductive layer
- a step of pattern-exposing the positive photosensitive resin layer of the transfer material (hereinafter, may be referred to as an “exposure step”), and developing the positive photosensitive resin layer after the pattern exposure step to form a resin pattern. (Hereinafter, may be referred to as “development step”) and a step of etching the substrate in a region where the resin pattern is not disposed (hereinafter, referred to as “etching step”). That it includes. A), the. According to the method for manufacturing a circuit wiring according to the present disclosure, since the photosensitive transfer material is used, a circuit wiring with reduced pattern failure can be manufactured.
- the method for manufacturing a circuit wiring according to the present disclosure includes a step of peeling off the protective film of the photosensitive transfer material.
- the method for peeling the protective film is not limited, and a known method can be applied.
- the method for manufacturing a circuit wiring according to the present disclosure includes a step of bonding the outermost layer of the photosensitive transfer material having the positive photosensitive resin layer to the temporary support to a substrate having a conductive layer. .
- the substrate 20 (circuit wiring forming substrate) has a base material 22 and a plurality of conductive layers including a first conductive layer 24 and a second conductive layer 26 having different constituent materials.
- the positive photosensitive resin layer 14 of the photosensitive transfer material 100 is brought into contact with the first conductive layer 24 and bonded to the substrate 20 (substrate for forming circuit wiring). Note that such bonding of the circuit wiring forming substrate and the photosensitive transfer material may be referred to as “transfer” or “laminate”.
- Lamination of the photosensitive transfer material to the substrate is performed by superposing the outermost layer of the photosensitive transfer material on the side having the positive photosensitive resin layer with respect to the temporary support on the substrate, and applying pressure and heating using a roll or the like. It is preferably performed.
- a known laminator such as a laminator, a vacuum laminator, or an auto-cut laminator that can further increase the productivity can be used.
- the base material constituting the substrate is a resin film, it is also possible to perform roll-to-roll bonding.
- the substrate has a conductive layer on a substrate such as glass, silicon, or a film, and an optional layer may be formed as necessary.
- the substrate is transparent.
- the base material preferably has a refractive index of 1.50 to 1.52.
- the base material may be composed of a light-transmitting base material such as a glass base material, and tempered glass represented by gorilla glass of Corning and the like can be used. Further, as the above-mentioned transparent substrate, the materials used in JP-A-2010-86684, JP-A-2010-152809 and JP-A-2010-257492 can be preferably used.
- a film substrate When a film substrate is used as the substrate, it is more preferable to use a substrate having small optical distortion and a substrate having high transparency, and a resin film is more preferable.
- Specific materials include polyethylene terephthalate (PET), polyethylene naphthalate, polycarbonate, triacetyl cellulose, and cycloolefin polymer.
- the substrate is preferably a glass substrate or a film substrate, more preferably a film substrate, and particularly preferably a resin film.
- the substrate is a sheet-shaped resin composition.
- any conductive layer used for general circuit wiring or touch panel wiring can be exemplified.
- the conductive layer is preferably a metal layer, and at least one layer selected from the group consisting of conductive metal oxide layers, from the viewpoint of conductivity and fine line forming properties, and is a metal layer. Is more preferable, and a copper layer is particularly preferable.
- the base material may have one conductive layer or two or more conductive layers. In the case of two or more layers, it is preferable to have conductive layers of different materials. Examples of the material of the conductive layer include a metal and a conductive metal oxide. Examples of the metal include Al, Zn, Cu, Fe, Ni, Cr, and Mo.
- conductive metal oxide examples include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and SiO 2 .
- conductive in the present disclosure refers to a volume resistivity of less than 1 ⁇ 10 6 ⁇ cm, and preferably a volume resistivity of less than 1 ⁇ 10 4 ⁇ cm.
- the conductive layer is preferably an electrode pattern corresponding to a sensor of a visual recognition unit used in a capacitive touch panel, or a wiring of a peripheral extraction unit.
- the method for manufacturing a circuit wiring according to the present disclosure includes a step of pattern-exposing the positive photosensitive resin layer of the photosensitive transfer material after the bonding step.
- FIG. 2 (b) schematically shows an example of the exposure step.
- the positive photosensitive resin layer 14 is subjected to pattern exposure via the temporary support 12 of the photosensitive transfer material.
- a mask 30 having a predetermined pattern is disposed above the photosensitive transfer material 100 disposed on the first conductive layer 24 (the side opposite to the side in contact with the first conductive layer 24), and thereafter, the mask 30 And a method of exposing to ultraviolet light from above the mask through the mask.
- the detailed arrangement and specific size of the pattern are not particularly limited.
- a display device for example, a touch panel
- an input device having circuit wiring manufactured by the method for manufacturing circuit wiring according to the present disclosure
- At least a part is preferably a fine line of 100 ⁇ m or less, and more preferably a fine line of 70 ⁇ m or less.
- the light source used for the exposure can be appropriately selected and used as long as the exposed portion of the positive photosensitive resin layer can be irradiated with light (for example, 365 nm, 405 nm, etc.) in a wavelength range that can be dissolved in the developer.
- light for example, 365 nm, 405 nm, etc.
- an ultra-high pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp and the like can be mentioned.
- the exposure amount is preferably from 5mJ / cm 2 ⁇ 200mJ / cm 2, more preferably 10mJ / cm 2 ⁇ 100mJ / cm 2.
- pattern exposure may be performed after the temporary support is separated from the photosensitive resin layer, and before the temporary support is separated, pattern exposure is performed through the temporary support, and then the temporary support is separated. May be.
- the pattern exposure may be exposure through a mask or digital exposure using a laser or the like.
- the method for manufacturing a circuit wiring according to the present disclosure includes a step of forming a resin pattern by developing the positive photosensitive resin layer after the step of pattern exposure.
- FIG. 2C schematically shows an example of the developing step.
- the temporary support 12 is separated from the positive photosensitive resin material layer 14 after the exposure step, and then the positive photosensitive resin layer 14 after the exposure step is developed to form a first pattern 14A.
- the development of the pattern-exposed positive photosensitive resin layer can be performed using a developer.
- the developer is not particularly limited as long as the exposed portion of the positive photosensitive resin layer can be removed.
- a known developer such as a developer described in JP-A-5-72724 may be used. it can.
- the developing solution is preferably a developing solution in which the exposed portion of the photosensitive resin layer has a developing behavior of a dissolving type.
- an alkali aqueous solution-based developer containing a compound having a pKa of 7 to 13 at a concentration of 0.05 mol / L (liter) to 5 mol / L is preferable.
- the developer may further contain an organic solvent miscible with water, a surfactant, and the like.
- a developer described in paragraph 0194 of International Publication No. 2015/093271 is exemplified.
- the development system is not particularly limited, and may be any of paddle development, shower development, shower and spin development, and dip development.
- shower development will be described.
- the exposed portion can be removed.
- the liquid temperature of the developer is preferably from 20 ° C to 40 ° C.
- the method may include a post-baking step of heating a pattern including the photosensitive resin layer obtained by development.
- Post-baking is preferably performed in an environment of 8.1 kPa to 121.6 kPa, and more preferably in an environment of 506.6 kPa or more.
- the heating of the post bake is more preferably performed in an environment of 114.6 kPa or less, and particularly preferably performed in an environment of 101.3 kPa or less.
- the post-baking temperature is preferably from 80 ° C. to 250 ° C., more preferably from 110 ° C. to 170 ° C., and particularly preferably from 130 ° C. to 150 ° C.
- the post-baking time is preferably 1 minute to 30 minutes, more preferably 2 minutes to 10 minutes, and particularly preferably 2 minutes to 4 minutes.
- Post-baking may be performed in an air environment or in a nitrogen-substituted environment.
- steps such as a post-exposure step may be provided before the etching step described later.
- the method of manufacturing a circuit wiring according to the present disclosure includes a step of etching a substrate in a region where the resin pattern is not arranged.
- FIG. 2 An example of the etching step is schematically shown in FIG.
- the etching step at least the first conductive layer 24 and the second conductive layer 26 of the plurality of conductive layers in the region where the first pattern 14A is not arranged are etched.
- a first conductive layer 24A and a second conductive layer 26A having the same pattern as the first pattern 14A are formed.
- etching treatment As a method of the etching treatment, a known method such as a method described in paragraphs 0048 to 0054 of JP-A-2010-152155, a known dry etching method such as plasma etching, or the like can be applied.
- an acidic type or alkaline type etchant may be appropriately selected in accordance with an etching target.
- the acidic type etchant include an aqueous solution of an acidic component alone such as hydrochloric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid, and a mixed aqueous solution of an acidic component and a salt such as ferric chloride, ammonium fluoride, and potassium permanganate. Illustrated.
- the acidic component a component obtained by combining a plurality of acidic components may be used.
- the alkaline type etchant include aqueous solutions of alkali components alone such as sodium hydroxide, potassium hydroxide, ammonia, organic amines, salts of organic amines such as tetramethylammonium hydroxide, and alkali components and potassium permanganate. Examples thereof include a mixed aqueous solution with a salt.
- the alkali component a component obtained by combining a plurality of alkali components may be used.
- the temperature of the etching solution is not particularly limited, but is preferably 45 ° C. or lower.
- the resin pattern used as the etching mask preferably exhibits particularly excellent resistance to acidic and alkaline etching solutions in a temperature range of 45 ° C. or lower. Therefore, peeling of the positive photosensitive resin layer during the etching step is prevented, and a portion where the positive photosensitive resin layer does not exist is selectively etched.
- a washing step and a drying step may be performed as necessary to prevent contamination of the process line.
- the cleaning liquid used in the cleaning step pure water, an organic solvent soluble in pure water, or an aqueous solution in which a surfactant is mixed can be used. From the viewpoint of suppressing peeling unevenness due to droplets remaining on the substrate surface and improving removability, it is preferable to use an organic solvent that can be dissolved in pure water, or an aqueous solution in which a surfactant is mixed, as the cleaning liquid. It is more preferable to use an aqueous solution in which both an organic solvent soluble in water and a surfactant are mixed.
- the water-soluble organic solvent to be mixed with water is not particularly limited, but preferably has a boiling point of 50 ° C to 250 ° C, more preferably 55 ° C to 200 ° C, from the viewpoint of the volatility of the solvent. More preferably, the temperature is from 60 ° C to 150 ° C.
- the water-soluble organic solvent include alcohols such as methanol, ethanol, propanol, isopropanol, and ethylene glycol, 2-acetoxy-2-phenylethanol, 3-methoxy-3-methylethanol, and 3-methoxy-3-methylethanol.
- methanol, ethanol, propanol, isopropanol, 3-methoxy-3-methylbutanol, 2-acetoxy-2-phenylethanol, tetrahydrofuran, and dimethylsulfoxide are preferred.
- the water-soluble organic solvent to be mixed with water may be used alone or in combination of two or more.
- the content of the water-soluble organic solvent to be mixed with water is preferably 0.01% by mass to 95% by mass, and more preferably 0.01% by mass to 20% by mass, based on the total mass of the aqueous solution. More preferably, the content is 0.01% by mass to 10% by mass, and particularly preferably 0.01% by mass to 5% by mass.
- the surfactant to be mixed with water is not particularly limited as long as it is water-soluble, and an anionic surfactant, a cationic surfactant, a nonionic surfactant (nonionic surfactant), or Any of the amphoteric surfactants can be used. From the viewpoint of suppressing foaming of the cleaning liquid, a nonionic surfactant is preferable.
- the anionic surfactant include carboxylate, sulfonate, sulfate, phosphate and the like.
- the cationic surfactant include amine salts and quaternary ammonium salts.
- amphoteric surfactants include betaine types.
- nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, alkylbenzene polyalkylene glycols, polyoxyalkylene glycols, and silicone-based surfactants. Activators and fluorinated surfactants can be mentioned.
- KP manufactured by Shin-Etsu Chemical Co., Ltd.
- Polyflow manufactured by Kyoeisha Chemical Co., Ltd.
- F-top manufactured by JEMCO
- Megafac manufactured by DIC
- Florard Suditomo 3M
- Surflon made by Asahi Glass Co., Ltd.
- PolyFox made by OMNOVA
- Surfynol made by Nissin Chemical Industry Co., Ltd.
- SH-8400 Toray Dow Corning Co., Ltd.
- the surfactant may be used alone, or two or more surfactants may be used in combination, and it is preferable to use two or more surfactants in combination.
- the content of the surfactant mixed with water is preferably 10% by mass or less, more preferably 0.001% by mass to 5% by mass, and more preferably 0.01% by mass with respect to the total mass of the aqueous solution. % To 3% by mass.
- the surface tension of an aqueous solution in which a water-soluble organic solvent or a surfactant is mixed is preferably 50 mN / m or less, and more preferably 10 mN / m, from the viewpoint of suppressing uneven peeling due to droplets remaining on the substrate surface and improving the removability.
- the washing time in the washing step is not particularly limited, and it is preferable to wash the substrate, for example, for 10 seconds to 300 seconds.
- an air blow is used, and an air blow pressure (preferably 0.1 kg / cm 2) is used. (About 5 kg / cm 2 ) may be appropriately adjusted for drying.
- the method for manufacturing a circuit wiring according to the present disclosure includes a step of exposing the entire surface of the positive photosensitive resin layer after the etching step (hereinafter, may be referred to as an “entire exposure step”) and a step of exposing the entire positive photosensitive resin layer. And a step of removing the photosensitive resin layer (hereinafter, sometimes referred to as a “removing step”).
- a step of removing the photosensitive resin layer hereinafter, sometimes referred to as a “removing step”.
- the etching mask removing property may gradually decrease.
- a circuit wiring is manufactured by repeatedly applying the method for manufacturing a circuit wiring to a substrate having a base material and a plurality of conductive layers including a first conductive layer and a second conductive layer having different constituent materials. You can also.
- the method for producing a circuit wiring includes a step of peeling a protective film of the photosensitive transfer material, and an outermost layer of the photosensitive transfer material having a positive photosensitive resin layer with respect to the temporary support.
- At least the first conductive layer and the conductive layer A first etching step of etching the second conductive layer, a second exposure step of pattern-exposing the first pattern after the first etching step with a pattern different from the first pattern, and a second exposure step
- a second etching step a step of exposing the entire surface of the second pattern (hereinafter, may be referred to as an “entire exposure step”), and a step of removing the second pattern (hereinafter, referred to as a “removing step”). ) are preferably included in this order.
- WO 2006/190405 can be referred to, and the contents thereof are incorporated herein.
- the first pattern 14A remaining on the first conductive layer is exposed to at least a portion corresponding to a portion of the first conductive layer to be removed in a second developing step described later.
- the same method as the pattern exposure in the above-described exposure step can be applied except that a mask 40 having a different pattern from the mask 30 used in the first exposure step is used.
- FIG. 1 An example of the second developing step is schematically shown in FIG.
- the first pattern 14A after the second exposure step is developed to form a second pattern 14B.
- the second development step the same method as the development in the development step described above can be applied.
- the same method as the etching in the above-described etching step can be applied, except that an etching solution corresponding to the conductive layer to be removed by etching is selected.
- the second etching step it is preferable to selectively etch less conductive layers in accordance with a desired pattern than in the above-described etching step.
- the first conductive layer 24B is etched by using an etchant that selectively etches only the first conductive layer 24B in a region where the photosensitive resin layer is not disposed. May be different from the pattern of the second conductive layer.
- a circuit wiring including at least two types of conductive layers 24B and 26A is formed.
- the light source used for the exposure in the entire surface exposure step is not particularly limited, and a known exposure light source can be used.
- ⁇ ⁇ From the viewpoint of removability, it is preferable to use a light source containing light having the same wavelength as in the above-mentioned exposure step.
- the exposure amount in the overall exposure step is preferably 5mJ / cm 2 ⁇ 1,000mJ / cm 2, more preferably 10mJ / cm 2 ⁇ 800mJ / cm 2, 100mJ / It is particularly preferred that the density be from cm 2 to 500 mJ / cm 2 .
- the exposure amount in the entire surface exposure step is preferably equal to or more than the exposure amount in the exposure step, and more preferably greater than the exposure amount in the exposure step.
- the method of manufacturing a circuit wiring according to the present disclosure includes a step of heating the entire surface exposed positive photosensitive resin layer during the entire surface exposure step, after the exposure step, or both, and before the removal step described below. (Hereinafter, may be referred to as a “heating step”).
- a heating step By including the heating step, the reaction rate of the photoacid generator and the reaction rate between the generated acid and the positive photosensitive resin can be improved, and as a result, the removal performance can be improved.
- FIG. 10 An example of the removing step is schematically shown in FIG. After the end of the second etching step, the second pattern 14B remains on a part of the first conductive layer 24B. What is necessary is just to remove the remaining second pattern 14B which is the positive photosensitive resin layer.
- the removal in the removing step includes, for example, dissolving and dispersing the positive photosensitive resin layer in a removing liquid.
- the method of removing the remaining positive-type photosensitive resin layer is not particularly limited, but a method of removing by a chemical treatment can be mentioned, and the use of a removing liquid is particularly preferable.
- a method for removing the positive type photosensitive resin layer the substrate having the photosensitive resin layer or the like in the removal solution with stirring at preferably 30 ° C. to 80 ° C., more preferably 50 ° C. to 80 ° C., is used for 1 minute to 30 minutes.
- An immersion method may be used.
- a removal liquid containing 30% by mass or more of water more preferably use a removal solution containing 50% by mass or more of water, and contain 70% by mass or more of water. It is more preferable to use a removing liquid that performs the removal.
- the removing solution is preferably a removing solution containing an inorganic alkali component and / or an organic alkali component. Examples of the inorganic alkali component include sodium hydroxide, potassium hydroxide, magnesium hydroxide, aluminum hydroxide, sodium carbonate, sodium hydrogen carbonate, ammonia and the like.
- Examples of the organic alkali component include a primary amine compound, a secondary amine compound, a tertiary amine compound, a quaternary ammonium salt compound, and the like. Specifically, tetramethylammonium hydroxide, diethylamine, Examples include triethylamine, alkanolamine (eg, monomethylethanolamine, dimethylethanolamine, monoethanolamine, 2-amino-2-methyl-1-propanol, etc.), and aromatic amine (eg, pyridine, quinoline, etc.). Above all, from the viewpoint of removability, a removal solution containing an organic alkali component is more preferred, and a removal solution containing an amine compound is particularly preferred. The content of the alkali component may be appropriately selected from the viewpoint of the basic strength and solubility of the alkali component. %, More preferably 0.1 to 10% by mass.
- the removal liquid preferably contains an organic solvent.
- organic solvent include esters such as ethyl acetate and ethyl lactate, ketones such as acetone, alcohols such as methanol, ethanol, diacetone alcohol and ethylene glycol, amides such as dimethylformamide and dimethylacetamide, methyl cellosolve, and propylene.
- Preferred examples include glycol ethers such as glycol methyl ether, tetrahydrofuran, ⁇ -butyrolactone, acetonitrile, dioxane, dimethyl sulfoxide, N-methylpyrrolidone, and the like.
- a method of removing the positive photosensitive resin by a spray method, a shower method, a paddle method, or the like using a removing liquid is preferable.
- the method for manufacturing a circuit wiring according to the present disclosure may include other arbitrary steps. For example, the following steps may be mentioned, but it is not limited to these steps.
- the method may further include a step of attaching a light-transmissive protective film (not shown) on the first pattern.
- a light-transmissive protective film (not shown)
- the first pattern is subjected to pattern exposure through the protective film, and after the second exposure step, the protective film is removed from the first pattern, and then the second development step is performed.
- the method for manufacturing a circuit wiring according to the present disclosure can include a step of performing a process of reducing visible light reflectance of a part or all of a plurality of conductive layers on a base material.
- An example of the treatment for lowering the visible light reflectance includes an oxidation treatment. For example, by oxidizing copper to form copper oxide, blackening can reduce visible light reflectance.
- Preferred embodiments of the process for reducing the visible light reflectance are described in paragraphs 0017 to 0025 of JP-A-2014-150118 and paragraphs 0041, 0042, 0048, and 0058 of JP-A-2013-206315. And the contents of this publication are incorporated herein.
- the method for manufacturing a circuit wiring according to the present disclosure preferably also includes a step of forming an insulating film on the formed circuit wiring and a step of forming a new conductive layer on the insulating film.
- the above-described second electrode pattern can be formed while being insulated from the first electrode pattern.
- an insulating film having a desired pattern may be formed by photolithography using a photosensitive material having an insulating property.
- a new conductive layer having a desired pattern may be formed by photolithography using a photosensitive material having conductivity.
- the method for manufacturing circuit wiring according to the present disclosure is preferably performed by a roll-to-roll method.
- the roll-to-roll method uses a substrate that can be wound and unwound as a substrate, and unwinds the substrate or a structure including the substrate before any of the steps included in the circuit wiring manufacturing method ( Hereinafter, it may be referred to as a “unwinding step”), and after any of the steps, a step of winding up a structure including a substrate or a substrate (hereinafter, sometimes referred to as a “winding step”). And a method in which at least one step (preferably all steps or all steps other than the heating step) is performed while transporting a structure including a base material or a substrate.
- the unwinding method in the unwinding step and the winding method in the winding step are not particularly limited, and a known method may be used in a manufacturing method using a roll-to-roll method.
- FIG. 2 shows a case in which circuit wiring having two different patterns is formed on a circuit wiring forming substrate having two conductive layers, but a substrate to which the circuit wiring manufacturing method according to the present disclosure is applied. Is not limited to two layers.
- a substrate for circuit wiring formation in which three or more conductive layers are stacked and performing the above-described combination of the exposure step, the developing step, and the etching step three or more times, the three or more conductive layers are respectively different circuit wiring patterns. Can also be formed.
- the method for manufacturing a circuit wiring uses a substrate having a plurality of conductive layers on both surfaces of a base material, respectively, and a conductive layer formed on both surfaces of the base material. It is also preferable to form circuits sequentially or simultaneously. With such a configuration, it is possible to form a circuit wiring for a touch panel in which the first conductive pattern is formed on one surface of the base material and the second conductive pattern is formed on the other surface. In addition, it is also preferable that the circuit wiring for a touch panel having such a configuration is formed on both sides of the base material by roll-to-roll.
- the circuit wiring manufactured by the method for manufacturing a circuit wiring according to the present disclosure can be applied to various devices.
- Examples of the device provided with the circuit wiring manufactured by the method for manufacturing a circuit wiring according to the present disclosure include an input device and the like, and a capacitance touch panel is preferable.
- the input device can be applied to a display device such as an organic EL display device and a liquid crystal display device.
- the method for manufacturing a touch panel according to the present disclosure includes a step of peeling off the protective film of the photosensitive transfer material (hereinafter, may be referred to as a “peeling step”), and a step of removing the photosensitive transfer material from the temporary support. Bonding the outermost layer on the side having the positive photosensitive resin layer to the substrate having the conductive layer (hereinafter, sometimes referred to as a “bonding step”); and the photosensitive transfer after the bonding step.
- a step of pattern-exposing the positive photosensitive resin layer of the material hereinafter, may be referred to as an “exposure step”), and developing the positive photosensitive resin layer after the pattern exposure step to form a resin pattern.
- a step of forming (hereinafter, sometimes referred to as a “development step”) and a step of etching a substrate in a region where the resin pattern is not arranged (hereinafter, referred to as an “etching step”). Including, that there.) I am.
- a step of forming hereinafter, sometimes referred to as a “development step”
- etching step a step of etching a substrate in a region where the resin pattern is not arranged
- a touch panel according to the present disclosure is a touch panel having at least circuit wiring manufactured by the method for manufacturing circuit wiring according to the present disclosure. Further, the touch panel according to the present disclosure preferably includes at least a transparent substrate, an electrode, and an insulating layer or a protective layer.
- the detection method in the touch panel according to the present disclosure may be any of known methods such as a resistance film method, a capacitance method, an ultrasonic method, an electromagnetic induction method, and an optical method. Among them, the capacitance type is preferable.
- the touch panel type a so-called in-cell type (for example, those described in JP-A-2012-517051 shown in FIGS.
- the method for producing a resin pattern according to the present disclosure includes a step of peeling the protective film of the photosensitive transfer material (hereinafter, may be referred to as a “peeling step”) and a step of removing the protective film of the photosensitive transfer material from the temporary support.
- peeling step a step of peeling the protective film of the photosensitive transfer material
- bonding step a step of bonding the outermost layer on the side having the positive photosensitive resin layer to the substrate.
- a step of pattern-exposing the positive photosensitive resin layer (hereinafter sometimes referred to as an “exposure step”), and a step of developing the positive photosensitive resin layer after the pattern exposure step to form a resin pattern (Hereinafter, may be referred to as “developing step”).
- exposure step a step of pattern-exposing the positive photosensitive resin layer
- developing step a step of developing the positive photosensitive resin layer after the pattern exposure step to form a resin pattern
- the substrate in the method for manufacturing a resin pattern according to the present disclosure may be a substrate itself such as glass, silicon, or a film, or a substrate such as glass, silicon, or a film, and if necessary, a conductive layer. May be a substrate on which an arbitrary layer is formed.
- the film according to the present disclosure is a biaxially stretched polyethylene terephthalate film in which a uniaxially stretched polyethylene terephthalate film, which is a stretched product in the first stretching direction, is stretched along a film surface in a second stretching direction orthogonal to the first stretching direction. And an undercoat layer which is a stretched product of the coating layer formed on one surface of the uniaxially stretched polyethylene terephthalate film in the second stretching direction.
- the surface of the undercoat layer has the following (A) and (B) Meet).
- A) The water contact angle is 75 ° or more.
- the surface roughness Ra is 45 nm or less.
- the film according to the present disclosure satisfies the above conditions (A) and (B), the surface energy of the film surface can be reduced and the unevenness can be reduced. Transfer of unevenness can be reduced.
- the film according to the present disclosure has a biaxially stretched polyethylene terephthalate film and an undercoat layer that is a stretched product, and by further reducing the surface energy of the film, the peelability of the film can be further improved.
- the surface smoothness and the adhesion between the biaxially oriented polyethylene terephthalate film and the undercoat layer can also be improved.
- the biaxially stretched polyethylene terephthalate film in the film according to the present disclosure refers to a polyethylene terephthalate film having one surface having a surface roughness Ra of 45 nm or less measured by the method described above.
- the undercoat layer in the film according to the present disclosure is synonymous with the undercoat layer which is a stretched product described in the section “undercoat layer”.
- a preferred embodiment of the film according to the present disclosure is the same as the preferred embodiment of the protective film described in the section of “Photosensitive Transfer Material” above.
- a film according to the present disclosure has a first resin layer and a second resin layer provided on the first resin layer, and the first resin layer is made of polyester. And the surface of the second resin layer satisfies the following (A) and (B).
- the water contact angle is 75 ° or more.
- the surface roughness Ra is 45 nm or less.
- the film according to the present disclosure satisfies the above conditions (A) and (B), the surface energy of the film surface can be reduced and the unevenness can be reduced. Transfer of unevenness can be reduced.
- the first resin layer contains polyester, and may contain other components as needed.
- the polyester is preferably polyethylene terephthalate from the viewpoint of smoothness.
- the thickness of the first resin layer is preferably from 5 ⁇ m to 200 ⁇ m, more preferably from 10 ⁇ m to 150 ⁇ m, further preferably from 10 ⁇ m to 100 ⁇ m, particularly preferably from 10 ⁇ m to 50 ⁇ m.
- the resin contained in the second resin layer is not particularly limited, and examples thereof include polyolefin, acrylic polymer, and polyester.
- the second resin layer preferably contains a modified resin from the viewpoint of releasability and reduction of pattern failure, and contains at least one resin selected from the group consisting of an acid-modified resin and a silicone-modified resin. Is more preferred.
- the second resin layer preferably contains at least one resin selected from the group consisting of a modified polyolefin and a modified acrylic polymer, from the viewpoint of peelability and reduction of pattern failure, It is more preferable to contain at least one resin selected from the group consisting of a modified polyolefin and a silicone-modified acrylic polymer, and it is particularly preferable to contain an acid-modified polyolefin.
- Preferred examples of the acid-modified polyolefin are the same as the acid-modified polyolefin described in the section of “Undercoat layer”.
- the resin contained in the second resin layer may be used alone or in combination of two or more.
- the thickness of the second resin layer is not limited, and is preferably from 10 nm to 550 nm, more preferably from 10 nm to 500 nm, and more preferably from 10 nm to 100 nm, from the viewpoints of peelability and reduction in pattern failure. More preferably, it is particularly preferably from 10 nm to 60 nm.
- the method for producing a film according to the present disclosure is not particularly limited as long as the second resin layer can be provided on the first resin layer.
- the second resin layer may be provided on the first resin layer by a coating method, and the first resin layer and the second resin layer may be provided by a co-extrusion method.
- a first resin layer is formed by film forming, and then a coating liquid for forming a second resin layer is applied on the first resin layer, and a biaxial stretching process is performed. May be performed.
- a first resin layer is formed by film forming, and after performing a uniaxial stretching treatment, a coating liquid for forming a second resin layer is applied. A method of performing another uniaxial stretching treatment may be used.
- the method for producing a film according to the present disclosure is a method in which a first resin layer is formed by film forming, a biaxial stretching process is performed, and then a coating liquid for forming a second resin layer is applied. There may be.
- the method for producing a film according to the present disclosure is a method in which a raw material for forming a first resin layer and a raw material for forming a second resin layer are co-extruded and then biaxially stretched. It may be. Note that the stretching process may be omitted as appropriate.
- the film according to the present disclosure can protect the surface of an object by being attached to various objects. That is, the protective film is preferably used.
- the film according to the present disclosure is excellent in releasability, and can reduce the transfer of unevenness to the adherend surface, for example, a member that needs to avoid deformation of the surface shape (for example, a member having high smoothness, And a member having a characteristic surface shape).
- the protective film according to the present disclosure is more preferably used for protecting various photosensitive transfer materials (dry film resists), and for protecting a photosensitive transfer material having a positive photosensitive resin layer. It is particularly preferred that they be used.
- Undercoat Layer-Forming Coating Solution 1 The following components were mixed together to obtain a coating liquid 1 for forming an undercoat layer.
- the obtained coating solution 1 for forming an undercoat layer was subjected to filtration with a 6 ⁇ m filter (F20, manufactured by Mare Filter Systems Co., Ltd.) and membrane deaeration (2 ⁇ 6 radial flow superphobic, manufactured by Polypore).
- the obtained film roll was used as the protective film of Production Example 1.
- the substrate of the obtained protective film has a haze of 0.2, and has a heat shrinkage of 1.0% in MD (Machine Direction) and 0 in TD (Transverse Direction) when heated at 150 ° C. for 30 minutes. 0.2%.
- the thickness of the undercoat layer measured from a cross-sectional TEM (Transmission Electron Microscope) photograph was 50 nm.
- Production Example 9 A protective film of Production Example 9 was obtained in the same manner as in Production Example 1, except that the coating liquid for forming an undercoat layer was not applied.
- ⁇ Production Example 10> In the coating step, the following coating liquid for forming an overcoat layer is further coated on the surface of the longitudinally stretched film opposite to the surface to which the coating liquid 1 for forming an undercoat layer is applied so that the thickness after film formation is 60 nm. Except for the application, a protective film of Production Example 10 was obtained in the same manner as in Production Example 1.
- Acrylic polymer (AS-563A, manufactured by Daicel Finechem Co., Ltd., solid content: 27.5% by mass): 16.7 partsNonionic surfactant (Naroacty CL95, manufactured by Sanyo Chemical Industry Co., Ltd., solid content: 100) % By mass): 0.07 parts
- Anionic surfactant (Lapisol A-90, manufactured by NOF CORPORATION, solid content: 1% by mass in water): 11.44 parts Carnauba wax dispersion (Cerosol 524, Chukyo) 0.7 parts of a carbodiimide compound (Carbodilite V-02-L2, manufactured by Nisshinbo Industries, diluting with a solid content of 10% by weight in water): 2.09 parts Snowtex XL, manufactured by Nissan Chemical Co., Ltd., solid content: 40% by mass): 0.28 parts, water: 69.0 parts
- ATHF 2-tetrahydrofuranyl acrylate (synthetic product)
- MMA Methyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
- EA ethyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
- CHA cyclohexyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
- PMPMA 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
- PGMEA propylene glycol monomethyl ether acetate
- V-601 dimethyl 2,2'-azobis (2-methylpropionate) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
- Photosensitive resin composition 1 was prepared according to the following formulation.
- -Polymer A1 93.9 parts-Photoacid generator (B-1 below): 2.0 parts-Surfactant (C-1 below): 0.1 parts-Additive (D-1 below): 0.2 parts ⁇ PGMEA: 900 parts
- the photosensitive resin composition 1 was applied on a 25 ⁇ m-thick polyethylene terephthalate film serving as a temporary support using a slit-shaped nozzle so that the dry film thickness became 3.0 ⁇ m. After drying for 2 minutes in a convection oven at 100 ° C., the undercoat layer side of the protective film of Production Example 1 was brought into contact with the photosensitive resin composition layer and pressure-bonded to produce a photosensitive transfer material. The obtained photosensitive transfer material was used as the photosensitive transfer material of Example 1.
- Examples 2 to 4, 7 to 11 The photosensitive transfer materials of Examples 2 to 4 and 7 to 11 were produced in the same manner as in Example 1 except that the protective film was changed as described in Table 2.
- composition 1 for an intermediate layer was prepared according to the following formulation. -Distilled water: 137.0 parts-Methanol: 319.0 parts-NISSO HPC-SSL (manufactured by Nippon Soda Co., Ltd.): 20.6 parts-Snowtex O (manufactured by Nissan Chemical Industries, Ltd.): 68.5 Department
- the composition 1 for an intermediate layer is slit-coated on a 25 ⁇ m-thick polyethylene terephthalate film serving as a temporary support so as to have a dry film thickness of 2.0 ⁇ m, and then dried in a convection oven at 100 ° C. for 2 minutes. Thus, a water-soluble resin layer serving as an intermediate layer was formed.
- the photosensitive resin composition 1 was applied onto the water-soluble resin layer using a slit-shaped nozzle so that the dry film thickness became 3.0 ⁇ m. After drying in a convection oven at 100 ° C. for 2 minutes, the protective film of Production Example 3 was pressed to produce a photosensitive transfer material. The obtained photosensitive transfer material was used as the photosensitive transfer material of Example 5.
- Example 6 A photosensitive transfer material of Example 6 was produced in the same manner as in Example 3, except that the following photosensitive resin composition 2 was used instead of the photosensitive resin composition 1.
- Comparative Example 1 A photosensitive transfer material of Comparative Example 1 was obtained in the same manner as in Example 1, except that the film of Production Example 8 was used instead of the protective film of Production Example 1.
- Comparative Example 2 A photosensitive transfer material of Comparative Example 2 was obtained in the same manner as in Example 1, except that the film of Production Example 9 was used instead of the protective film of Production Example 1.
- Comparative Example 3 A photosensitive transfer material of Comparative Example 3 was obtained in the same manner as in Example 1, except that the following film 2 was used instead of the protective film of Production Example 1.
- the water contact angle was measured using the peeled surface exposed by peeling the protective film from each of the photosensitive transfer materials of Examples 1 to 11 and Comparative Examples 1 to 3 under the following peeling conditions as a measurement surface. Specifically, using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., DROPMASTER-501), the contact angle 7 seconds after dropping 2 ⁇ L of purified water on the measurement surface at a temperature of 25 ° C. was measured. It was measured by the drop method. Table 2 shows the measurement results.
- the photosensitive transfer material was cut out to 4.5 cm wide by 9 cm long, and the surface on the temporary support side was bonded to a glass plate with a double-sided adhesive tape.
- An adhesive tape cut to 4.5 cm wide and 15 cm long is attached to the pasted photosensitive transfer material, the width direction of the adhesive tape is aligned with the width direction of the photosensitive transfer material, and the adhesive tape protrudes in the width direction. Instead, the pieces were bonded so that the adhesive tape protruded by 3 cm before and after the length direction.
- One end of the tape was gripped, and 180 ° peeling was performed at a peeling speed of 500 mm / min using a tensile tester.
- the pressure-sensitive adhesive tape and the double-sided pressure-sensitive adhesive tape used are those described in JIS Z 0109: 2015, and the tensile tester is a tensile tester (tester grade 1: relative indication error) specified in JIS B 7721: 2009. ⁇ 1.0%) or equivalent tensile tester.
- ⁇ Measurement of surface roughness Ra> A three-dimensional optical profiler (New View 7300, manufactured by Zygo) was used for the peeled surface exposed by peeling the protective film from each of the photosensitive transfer materials of Examples 1 to 11 and Comparative Examples 1 to 3 under the above peel conditions.
- the surface profile of the protective film was obtained under the following conditions.
- the measurement and analysis software uses MicroScope Application 8.3.2. Next, a Surface Map screen is displayed by the analysis software (MetroPro 8.3.2-Microscope Application), and histogram data is obtained in the Surface Map screen. The arithmetic average roughness was calculated from the obtained histogram data, and was defined as an Ra value. Table 2 shows the measurement results.
- a polyethylene terephthalate (PET) substrate with a copper layer (hereinafter, referred to as a “PET substrate with a copper layer”) in which a copper layer was formed on a 188 ⁇ m-thick PET film with a thickness of 500 nm by a sputtering method. .)It was used.
- PET substrate with a copper layer a polyethylene terephthalate (PET) substrate with a copper layer
- a copper layer in which a copper layer was formed on a 188 ⁇ m-thick PET film with a thickness of 500 nm by a sputtering method. .)It was used.
- the protective film of each photosensitive transfer material was peeled off and the copper Lamination was performed on a layered PET substrate under the conditions of 100 ° C., 2 m / min, and 0.6 MPa to produce a laminate in which a positive resist layer was laminated on a copper layer.
- the laminated body was exposed to a contact pattern using a photomask provided with a line and space wiring pattern having a line width of 10 ⁇ m (the width ratio of the opening portion to the light shielding portion was 1: 1) without peeling the temporary support. went.
- a high-pressure mercury lamp using i-ray (365 nm) as a main exposure wavelength was used for exposure.
- the photosensitive transfer materials of Examples 1 to 11 have good cover releasability, and the patterns manufactured using these photosensitive transfer materials have reduced pattern failure and excellent pattern shape. I understand. Compared with the photosensitive transfer materials of Examples 1 and 2, the photosensitive transfer material of Example 3 has a good pattern without undercut since the acid group contained in the acid-modified polyolefin is a sodium salt. Obtained.
- ⁇ Photoacid generator> B-1 Compound having the structure shown below (the compound described in paragraph 0227 of JP-A-2013-047765, which was synthesized according to the method described in paragraph 0204).
- Film 1 Polypropylene film Torayfan 25KW37 (manufactured by Toray Industries, Inc.)
- Film 2 Polypropylene film Alphan E-501 (manufactured by Oji F-Tex Corporation)
- Example 101 On a PET substrate having a thickness of 100 ⁇ m, ITO was formed as a second conductive layer by sputtering to a thickness of 150 nm, and copper was formed thereon as a first conductive layer to a thickness of 200 nm by vacuum evaporation. Thus, a circuit forming substrate was obtained.
- the photosensitive transfer material 1 obtained in Example 1 was laminated on the copper layer (roll temperature: 120 ° C., linear pressure: 0.8 MPa, linear velocity: 1.0 m / min.).
- Contact pattern exposure was performed using a photomask provided with a pattern A shown in FIG. 3 having a configuration in which conductive layer pads were connected in one direction without removing the temporary support. In the pattern A shown in FIG.
- a solid line portion SL and a gray portion G are light shielding portions, and a dotted line portion DL is a virtual frame for alignment.
- the temporary support was peeled off, developed and washed with water to obtain a pattern A.
- the ITO layer is etched using an ITO etching solution (ITO-02 manufactured by Kanto Chemical Co., Ltd.) A substrate on which both copper and ITO were drawn in pattern A was obtained.
- pattern exposure was performed using a photomask provided with an opening of pattern B shown in FIG. 4 in an aligned state, and development and washing were performed. In the pattern B shown in FIG.
- a gray portion G is a light-shielding portion, and a dotted line portion DL virtually shows a frame for alignment.
- the copper layer was etched using Cu-02, and the entire surface of the remaining photosensitive resin layer was exposed to light (300 mJ / cm 2 ) using an ultra-high pressure mercury lamp. It was removed using BONDERITE C-AK P123 (manufactured by Co., Ltd.) to obtain a circuit wiring. Observation of the obtained circuit wiring with a microscope revealed no peeling or chipping and a beautiful pattern.
- Example 102 On a PET substrate having a thickness of 100 ⁇ m, ITO was formed as a second conductive layer by sputtering to a thickness of 150 nm, and copper was formed thereon as a first conductive layer to a thickness of 200 nm by vacuum evaporation. Thus, a circuit forming substrate was obtained.
- the photosensitive transfer material 1 obtained in Example 1 was laminated on the copper layer (roll temperature: 120 ° C., linear pressure: 0.8 MPa, linear velocity: 1.0 m / min.). Pattern exposure was performed using a photomask provided with a pattern A shown in FIG. 3 having a configuration in which conductive layer pads were connected in one direction without removing the temporary support.
- the temporary support was peeled off, developed and washed with water to obtain a pattern A.
- the ITO layer is etched using an ITO etching solution (ITO-02 manufactured by Kanto Chemical Co., Ltd.) A substrate on which both copper and ITO were drawn in pattern A was obtained.
- PET (A) was laminated as a protective layer on the remaining resist. In this state, pattern exposure was performed using a photomask provided with an opening for pattern B shown in FIG. 4 in an aligned state, and PET (A) was peeled off, followed by development and washing with water.
- the copper wiring was etched using Cu-02, the entire surface of the remaining photosensitive resin layer was exposed to light (300 mJ / cm 2 ) using an ultra-high pressure mercury lamp, and after being exposed to light for 10 seconds, the removal solution (Henkel ( It was removed using BONDERITE C-AK P123 (manufactured by Co., Ltd.) to obtain a circuit wiring. Observation of the obtained circuit wiring with a microscope revealed no peeling or chipping and a beautiful pattern.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Human Computer Interaction (AREA)
- Materials For Photolithography (AREA)
- Laminated Bodies (AREA)
Abstract
A photosensitive transfer material which sequentially comprises a temporary support, a positive photosensitive resin layer and a protective film in this order, and wherein a surface of the protective film satisfies the requirements (A) and (B) described below, said surface being in contact with the positive photosensitive resin layer; and an application of this photosensitive transfer material.
(A) The water contact angle is 75° or more.
(B) The surface roughness Ra is 45 nm or less.
Description
本開示は、感光性転写材料、回路配線の製造方法、タッチパネルの製造方法、樹脂パターンの製造方法、及び保護フィルムに関する。
The present disclosure relates to a photosensitive transfer material, a method for manufacturing circuit wiring, a method for manufacturing a touch panel, a method for manufacturing a resin pattern, and a protective film.
例えば、静電容量型入力装置等のタッチパネルを備えた表示装置(例えば、有機エレクトロルミネッセンス(EL)表示装置、液晶表示装置等)などにおいては、視認部のセンサーに相当する電極パターン、周辺配線部分及び取り出し配線部分の配線等の回路配線がタッチパネル内部に設けられている。
このような、パターン化した回路配線の形成には、必要とするパターン形状を得るための工程数が少ないといった理由から、ドライフィルムレジストとも称される感光性転写材料を用いることが検討されている。そして、感光性転写材料に含まれる感光性樹脂層を保護するために、通常、感光性樹脂層上には保護フィルムが設けられている。 For example, in a display device having a touch panel such as a capacitance type input device (for example, an organic electroluminescence (EL) display device, a liquid crystal display device, etc.), an electrode pattern corresponding to a sensor of a viewing portion, a peripheral wiring portion In addition, circuit wiring such as a wiring of a take-out wiring part is provided inside the touch panel.
For forming such a patterned circuit wiring, use of a photosensitive transfer material also called a dry film resist is being studied because the number of steps for obtaining a required pattern shape is small. . Then, in order to protect the photosensitive resin layer contained in the photosensitive transfer material, a protective film is usually provided on the photosensitive resin layer.
このような、パターン化した回路配線の形成には、必要とするパターン形状を得るための工程数が少ないといった理由から、ドライフィルムレジストとも称される感光性転写材料を用いることが検討されている。そして、感光性転写材料に含まれる感光性樹脂層を保護するために、通常、感光性樹脂層上には保護フィルムが設けられている。 For example, in a display device having a touch panel such as a capacitance type input device (for example, an organic electroluminescence (EL) display device, a liquid crystal display device, etc.), an electrode pattern corresponding to a sensor of a viewing portion, a peripheral wiring portion In addition, circuit wiring such as a wiring of a take-out wiring part is provided inside the touch panel.
For forming such a patterned circuit wiring, use of a photosensitive transfer material also called a dry film resist is being studied because the number of steps for obtaining a required pattern shape is small. . Then, in order to protect the photosensitive resin layer contained in the photosensitive transfer material, a protective film is usually provided on the photosensitive resin layer.
例えば、国際公開第2014/175274号には、支持フィルムと、ポリプロピレンフィルムと、上記支持フィルム及び上記ポリプロピレンフィルムの間に配置された感光層と、を備え、上記ポリプロピレンフィルムが、上記感光層側の第1の面と、上記第1の面の反対側の第2の面と、を有し、上記第1の面及び上記第2の面が平滑である、感光性エレメントが開示されている。
For example, WO 2014/175274 has a support film, a polypropylene film, and a photosensitive layer disposed between the support film and the polypropylene film, wherein the polypropylene film is provided on the photosensitive layer side. A photosensitive element is disclosed that has a first surface and a second surface opposite the first surface, wherein the first surface and the second surface are smooth.
特開2007-293006号公報には、支持体上に、着色剤および感光性樹脂を含む感光性樹脂層とカバーフィルムをこの順に有する感光性樹脂転写材料であって、上記感光性樹脂層とカバーフィルムとの間に中間層を有し、かつ上記感光性樹脂層とカバーフィルムとの接着強さは1.5~8.0g/10cmの範囲である感光性樹脂転写材料が開示されている。
Japanese Patent Application Laid-Open No. 2007-293006 discloses a photosensitive resin transfer material having, in this order, a photosensitive resin layer containing a colorant and a photosensitive resin and a cover film on a support. A photosensitive resin transfer material having an intermediate layer between the film and the photosensitive resin layer and a cover film having an adhesive strength in the range of 1.5 to 8.0 g / 10 cm is disclosed.
特開2018-2947号公報には、少なくとも片面の表面平均粗さ(Sa)が、15nm以下の樹脂からなることを特徴とする保護フィルムが開示されている。
JP-A-2018-2947 discloses a protective film characterized in that at least one surface has a surface average roughness (Sa) of a resin having a thickness of 15 nm or less.
しかしながら、以下に述べるとおり、保護フィルムの剥離性の向上及びパターン故障の低減を両立できる技術は依然として確立されていない。
保護フィルムの剥離性は、例えば、保護フィルムの表面に凹凸を設けることで向上できる。一方、保護フィルムの表面に凹凸を設けると、保護フィルムに接する感光性樹脂層の表面に保護フィルムの凹凸が転写され、感光性樹脂層の表面に凹凸が形成されることがある。凹凸を有する感光性樹脂層を基板に貼り合わせると、感光性樹脂層と基板との間に気泡が残存するため、形成されるパターンの欠損、形状不良等のパターン故障が発生する。
また、通常、ポジ型感光性樹脂層は、樹脂の含有量が多いため、ネガ型感光性樹脂層に比べて柔軟性に乏しい。ネガ型感光性樹脂層に比べて柔軟性に乏しいポジ型感光性樹脂層は基板表面の形状に追随して変形し難いため、表面に凹凸が形成されたポジ型感光性樹脂層を基板に貼り合わせると、ポジ型感光性樹脂層と基板との間に気泡が残存しやすい。このため、上記パターン故障の発生頻度は、ポジ型感光性樹脂層を有する感光性転写材料を適用した場合において顕著となる。 However, as described below, a technique that can achieve both improvement of the peelability of the protective film and reduction of the pattern failure has not yet been established.
The peelability of the protective film can be improved, for example, by providing irregularities on the surface of the protective film. On the other hand, if irregularities are provided on the surface of the protective film, the irregularities of the protective film are transferred to the surface of the photosensitive resin layer in contact with the protective film, and irregularities may be formed on the surface of the photosensitive resin layer. When a photosensitive resin layer having irregularities is attached to a substrate, bubbles remain between the photosensitive resin layer and the substrate, and thus a pattern failure such as a defect in a formed pattern or a defective shape occurs.
Further, since the positive photosensitive resin layer usually has a high resin content, it has poor flexibility compared to the negative photosensitive resin layer. The positive photosensitive resin layer, which has less flexibility than the negative photosensitive resin layer, is difficult to deform following the shape of the substrate surface, so the positive photosensitive resin layer with irregularities formed on the surface is attached to the substrate. When combined, air bubbles are likely to remain between the positive photosensitive resin layer and the substrate. For this reason, the frequency of occurrence of the pattern failure becomes remarkable when a photosensitive transfer material having a positive photosensitive resin layer is applied.
保護フィルムの剥離性は、例えば、保護フィルムの表面に凹凸を設けることで向上できる。一方、保護フィルムの表面に凹凸を設けると、保護フィルムに接する感光性樹脂層の表面に保護フィルムの凹凸が転写され、感光性樹脂層の表面に凹凸が形成されることがある。凹凸を有する感光性樹脂層を基板に貼り合わせると、感光性樹脂層と基板との間に気泡が残存するため、形成されるパターンの欠損、形状不良等のパターン故障が発生する。
また、通常、ポジ型感光性樹脂層は、樹脂の含有量が多いため、ネガ型感光性樹脂層に比べて柔軟性に乏しい。ネガ型感光性樹脂層に比べて柔軟性に乏しいポジ型感光性樹脂層は基板表面の形状に追随して変形し難いため、表面に凹凸が形成されたポジ型感光性樹脂層を基板に貼り合わせると、ポジ型感光性樹脂層と基板との間に気泡が残存しやすい。このため、上記パターン故障の発生頻度は、ポジ型感光性樹脂層を有する感光性転写材料を適用した場合において顕著となる。 However, as described below, a technique that can achieve both improvement of the peelability of the protective film and reduction of the pattern failure has not yet been established.
The peelability of the protective film can be improved, for example, by providing irregularities on the surface of the protective film. On the other hand, if irregularities are provided on the surface of the protective film, the irregularities of the protective film are transferred to the surface of the photosensitive resin layer in contact with the protective film, and irregularities may be formed on the surface of the photosensitive resin layer. When a photosensitive resin layer having irregularities is attached to a substrate, bubbles remain between the photosensitive resin layer and the substrate, and thus a pattern failure such as a defect in a formed pattern or a defective shape occurs.
Further, since the positive photosensitive resin layer usually has a high resin content, it has poor flexibility compared to the negative photosensitive resin layer. The positive photosensitive resin layer, which has less flexibility than the negative photosensitive resin layer, is difficult to deform following the shape of the substrate surface, so the positive photosensitive resin layer with irregularities formed on the surface is attached to the substrate. When combined, air bubbles are likely to remain between the positive photosensitive resin layer and the substrate. For this reason, the frequency of occurrence of the pattern failure becomes remarkable when a photosensitive transfer material having a positive photosensitive resin layer is applied.
本開示は、上記の事情に鑑みてなされたものである。
本開示の一実施形態は、保護フィルムの剥離性に優れ、かつ、パターン故障を低減できる感光性転写材料を提供することを目的とする。
本開示の他の一実施形態は、パターン故障が低減された回路配線の製造方法を提供することを目的とする。
本開示の他の一実施形態は、パターン故障が低減されたタッチパネルの製造方法を提供することを目的とする。
本開示の他の一実施形態は、パターン故障が低減された樹脂パターンの製造方法を提供することを目的とする。
本開示の他の一実施形態は、剥離性に優れ、かつ、被着体表面への凹凸の転写を低減できるフィルムを提供することを目的とする。 The present disclosure has been made in view of the above circumstances.
An object of one embodiment of the present disclosure is to provide a photosensitive transfer material that is excellent in peelability of a protective film and that can reduce pattern failure.
Another embodiment of the present disclosure aims to provide a method for manufacturing a circuit wiring with reduced pattern failure.
Another embodiment of the present disclosure aims to provide a method for manufacturing a touch panel with reduced pattern failure.
Another embodiment of the present disclosure aims to provide a method for manufacturing a resin pattern with reduced pattern failure.
Another embodiment of the present disclosure aims to provide a film that is excellent in releasability and that can reduce the transfer of unevenness to the surface of an adherend.
本開示の一実施形態は、保護フィルムの剥離性に優れ、かつ、パターン故障を低減できる感光性転写材料を提供することを目的とする。
本開示の他の一実施形態は、パターン故障が低減された回路配線の製造方法を提供することを目的とする。
本開示の他の一実施形態は、パターン故障が低減されたタッチパネルの製造方法を提供することを目的とする。
本開示の他の一実施形態は、パターン故障が低減された樹脂パターンの製造方法を提供することを目的とする。
本開示の他の一実施形態は、剥離性に優れ、かつ、被着体表面への凹凸の転写を低減できるフィルムを提供することを目的とする。 The present disclosure has been made in view of the above circumstances.
An object of one embodiment of the present disclosure is to provide a photosensitive transfer material that is excellent in peelability of a protective film and that can reduce pattern failure.
Another embodiment of the present disclosure aims to provide a method for manufacturing a circuit wiring with reduced pattern failure.
Another embodiment of the present disclosure aims to provide a method for manufacturing a touch panel with reduced pattern failure.
Another embodiment of the present disclosure aims to provide a method for manufacturing a resin pattern with reduced pattern failure.
Another embodiment of the present disclosure aims to provide a film that is excellent in releasability and that can reduce the transfer of unevenness to the surface of an adherend.
上記課題を解決するための手段には、以下の態様が含まれる。
<1> 仮支持体と、ポジ型感光性樹脂層と、保護フィルムと、をこの順に有し、上記保護フィルムの、上記ポジ型感光性樹脂層と接する側の表面が、下記の(A)及び(B)を満たす感光性転写材料。
(A)水接触角が、75°以上である。
(B)表面粗さRaが、45nm以下である。
<2> 上記表面粗さRaが、25nm以下である<1>に記載の感光性転写材料。
<3> 上記保護フィルムが、基材と、下塗り層と、を有し、上記保護フィルムの、上記ポジ型感光性樹脂層と接する側の最外層が、上記下塗り層である<1>又は<2>に記載の感光性転写材料。
<4> 上記保護フィルムが、第一延伸方向の延伸物である一軸延伸フィルムがフィルム面に沿って上記第一延伸方向と直交する第二延伸方向に延伸された二軸延伸フィルムと、上記一軸延伸フィルムの一方面に形成された塗布層の上記第二延伸方向の延伸物である下塗り層と、を有し、上記保護フィルムの、上記ポジ型感光性樹脂層と接する側の最外層が、上記下塗り層である<1>又は<2>に記載の感光性転写材料。
<5> 上記下塗り層が、酸変性ポリオレフィンを含有する<3>又は<4>に記載の感光性転写材料。
<6> 上記酸変性ポリオレフィンが酸基を有し、上記酸基の少なくとも1つがアルカリ金属塩である<5>に記載の感光性転写材料。
<7> 上記下塗り層の厚みが、10nm~550nmである<3>~<6>のいずれか1つに記載の感光性転写材料。
<8> 上記仮支持体と上記ポジ型感光性樹脂層との間に、水溶性樹脂層を有する<1>~<7>のいずれか1つに記載の感光性転写材料。
<9> 上記ポジ型感光性樹脂層が、酸分解性樹脂を含有する<1>~<8>のいずれか1つに記載の感光性転写材料。
<10> 上記ポジ型感光性樹脂層が、上記ポジ型感光性樹脂層の全固形分に対し、重合体成分を80質量%~98質量%の割合で含む<1>~<9>のいずれか1つに記載の感光性転写材料。
<11> <1>~<10>のいずれか1つに記載の感光性転写材料の保護フィルムを剥離する工程と、上記感光性転写材料の、上記仮支持体に対して上記ポジ型感光性樹脂層を有する側の最外層を、導電層を有する基板に貼り合わせる工程と、上記貼り合わせる工程後の上記感光性転写材料の上記ポジ型感光性樹脂層をパターン露光する工程と、上記パターン露光する工程後の上記ポジ型感光性樹脂層を現像して樹脂パターンを形成する工程と、上記樹脂パターンが配置されていない領域における基板をエッチング処理する工程と、を含む、回路配線の製造方法。
<12> <1>~<10>のいずれか1つに記載の感光性転写材料の保護フィルムを剥離する工程と、上記感光性転写材料の、上記仮支持体に対してポジ型感光性樹脂層を有する側の最外層を、導電層を有する基板に貼り合わせる工程と、上記貼り合わせる工程後の上記感光性転写材料の上記ポジ型感光性樹脂層をパターン露光する工程と、上記パターン露光する工程後の上記ポジ型感光性樹脂層を現像して樹脂パターンを形成する工程と、上記樹脂パターンが配置されていない領域における基板をエッチング処理する工程と、を含む、タッチパネルの製造方法。
<13> <1>~<10>のいずれか1つに記載の感光性転写材料の保護フィルムを剥離する工程と、上記感光性転写材料の、上記仮支持体に対してポジ型感光性樹脂層を有する側の最外層を、基板に貼り合わせる工程と、上記貼り合わせる工程後の上記感光性転写材料の上記ポジ型感光性樹脂層をパターン露光する工程と、上記パターン露光する工程後の上記ポジ型感光性樹脂層を現像して樹脂パターンを形成する工程と、を含む、樹脂パターンの製造方法。
<14> 第一延伸方向の延伸物である一軸延伸ポリエチレンテレフタレートフィルムがフィルム面に沿って上記第一延伸方向と直交する第二延伸方向に延伸された二軸延伸ポリエチレンテレフタレートフィルムと、上記一軸延伸ポリエチレンテレフタレートフィルムの一方面に形成された塗布層の上記第二延伸方向の延伸物である下塗り層と、を有し、上記下塗り層が、下記の(A)及び(B)を満たすフィルム。
(A)水接触角が、75°以上である。
(B)表面粗さRaが、45nm以下である。
<15> 上記下塗り層が、酸変性ポリオレフィンを含有する<14>に記載のフィルム。
<16>第1の樹脂層と、第1の樹脂層上に設けられた第2の樹脂層とを有し、第1の樹脂層が、ポリエステルを含み、第2の樹脂層の表面が、下記の(A)及び(B)を満たすフィルム。
(A)水接触角が、75°以上である。
(B)表面粗さRaが、45nm以下である。
<17>第1の樹脂層の厚みが5μm~200μmであり、かつ、第2の樹脂層の厚みが10nm~550nmである、<16>に記載のフィルム。
<18>保護フィルムである、<14>~<17>のいずれか1つに記載のフィルム。 Means for solving the above problems include the following aspects.
<1> A temporary support, a positive photosensitive resin layer, and a protective film are provided in this order, and the surface of the protective film on the side in contact with the positive photosensitive resin layer has the following (A) And a photosensitive transfer material satisfying (B).
(A) The water contact angle is 75 ° or more.
(B) The surface roughness Ra is 45 nm or less.
<2> The photosensitive transfer material according to <1>, wherein the surface roughness Ra is 25 nm or less.
<3> The protective film has a base material and an undercoat layer, and the outermost layer of the protective film on the side in contact with the positive photosensitive resin layer is the undercoat layer <1> or <2> The photosensitive transfer material described in any one of the above.
<4> a biaxially stretched film in which the protective film is a uniaxially stretched film that is a stretched product in the first stretching direction and is stretched along a film surface in a second stretching direction orthogonal to the first stretching direction; An undercoat layer that is a stretched product in the second stretching direction of the coating layer formed on one surface of the stretched film, and the protective film, the outermost layer on the side in contact with the positive photosensitive resin layer, The photosensitive transfer material according to <1> or <2>, which is the undercoat layer.
<5> The photosensitive transfer material according to <3> or <4>, wherein the undercoat layer contains an acid-modified polyolefin.
<6> The photosensitive transfer material according to <5>, wherein the acid-modified polyolefin has an acid group, and at least one of the acid groups is an alkali metal salt.
<7> The photosensitive transfer material according to any one of <3> to <6>, wherein the undercoat layer has a thickness of 10 nm to 550 nm.
<8> The photosensitive transfer material according to any one of <1> to <7>, having a water-soluble resin layer between the temporary support and the positive photosensitive resin layer.
<9> The photosensitive transfer material according to any one of <1> to <8>, wherein the positive photosensitive resin layer contains an acid-decomposable resin.
<10> Any of <1> to <9>, wherein the positive photosensitive resin layer contains a polymer component at a ratio of 80% by mass to 98% by mass based on the total solid content of the positive photosensitive resin layer. The photosensitive transfer material according to any one of the above.
<11> a step of peeling off the protective film of the photosensitive transfer material according to any one of <1> to <10>, and the positive photosensitive layer of the photosensitive transfer material with respect to the temporary support; Bonding the outermost layer on the side having the resin layer to the substrate having the conductive layer; pattern-exposing the positive-type photosensitive resin layer of the photosensitive transfer material after the bonding step; and A method for manufacturing circuit wiring, comprising: a step of developing the positive photosensitive resin layer after the step of forming a resin pattern to form a resin pattern; and a step of etching a substrate in a region where the resin pattern is not arranged.
<12> The step of removing the protective film of the photosensitive transfer material according to any one of <1> to <10>, and a positive photosensitive resin of the photosensitive transfer material with respect to the temporary support. Bonding the outermost layer on the side having the layer to the substrate having the conductive layer, pattern-exposing the positive-type photosensitive resin layer of the photosensitive transfer material after the bonding step, and performing the pattern exposure A method for manufacturing a touch panel, comprising: a step of developing the positive photosensitive resin layer after the step to form a resin pattern; and a step of etching a substrate in a region where the resin pattern is not arranged.
<13> a step of removing the protective film of the photosensitive transfer material according to any one of <1> to <10>, and a positive photosensitive resin of the photosensitive transfer material with respect to the temporary support Bonding the outermost layer on the side having the layer to the substrate, pattern-exposing the positive-type photosensitive resin layer of the photosensitive transfer material after the bonding step, and performing the pattern-exposing step. Developing the positive photosensitive resin layer to form a resin pattern.
<14> a biaxially stretched polyethylene terephthalate film in which a uniaxially stretched polyethylene terephthalate film, which is a stretched product in the first stretching direction, is stretched along a film surface in a second stretching direction orthogonal to the first stretching direction; A film formed on one surface of the polyethylene terephthalate film, the undercoat layer being a stretched product in the second stretching direction, wherein the undercoat layer satisfies the following (A) and (B).
(A) The water contact angle is 75 ° or more.
(B) The surface roughness Ra is 45 nm or less.
<15> The film according to <14>, wherein the undercoat layer contains an acid-modified polyolefin.
<16> having a first resin layer and a second resin layer provided on the first resin layer, wherein the first resin layer contains polyester, and the surface of the second resin layer is A film satisfying the following (A) and (B).
(A) The water contact angle is 75 ° or more.
(B) The surface roughness Ra is 45 nm or less.
<17> The film according to <16>, wherein the thickness of the first resin layer is 5 μm to 200 μm, and the thickness of the second resin layer is 10 nm to 550 nm.
<18> The film according to any one of <14> to <17>, which is a protective film.
<1> 仮支持体と、ポジ型感光性樹脂層と、保護フィルムと、をこの順に有し、上記保護フィルムの、上記ポジ型感光性樹脂層と接する側の表面が、下記の(A)及び(B)を満たす感光性転写材料。
(A)水接触角が、75°以上である。
(B)表面粗さRaが、45nm以下である。
<2> 上記表面粗さRaが、25nm以下である<1>に記載の感光性転写材料。
<3> 上記保護フィルムが、基材と、下塗り層と、を有し、上記保護フィルムの、上記ポジ型感光性樹脂層と接する側の最外層が、上記下塗り層である<1>又は<2>に記載の感光性転写材料。
<4> 上記保護フィルムが、第一延伸方向の延伸物である一軸延伸フィルムがフィルム面に沿って上記第一延伸方向と直交する第二延伸方向に延伸された二軸延伸フィルムと、上記一軸延伸フィルムの一方面に形成された塗布層の上記第二延伸方向の延伸物である下塗り層と、を有し、上記保護フィルムの、上記ポジ型感光性樹脂層と接する側の最外層が、上記下塗り層である<1>又は<2>に記載の感光性転写材料。
<5> 上記下塗り層が、酸変性ポリオレフィンを含有する<3>又は<4>に記載の感光性転写材料。
<6> 上記酸変性ポリオレフィンが酸基を有し、上記酸基の少なくとも1つがアルカリ金属塩である<5>に記載の感光性転写材料。
<7> 上記下塗り層の厚みが、10nm~550nmである<3>~<6>のいずれか1つに記載の感光性転写材料。
<8> 上記仮支持体と上記ポジ型感光性樹脂層との間に、水溶性樹脂層を有する<1>~<7>のいずれか1つに記載の感光性転写材料。
<9> 上記ポジ型感光性樹脂層が、酸分解性樹脂を含有する<1>~<8>のいずれか1つに記載の感光性転写材料。
<10> 上記ポジ型感光性樹脂層が、上記ポジ型感光性樹脂層の全固形分に対し、重合体成分を80質量%~98質量%の割合で含む<1>~<9>のいずれか1つに記載の感光性転写材料。
<11> <1>~<10>のいずれか1つに記載の感光性転写材料の保護フィルムを剥離する工程と、上記感光性転写材料の、上記仮支持体に対して上記ポジ型感光性樹脂層を有する側の最外層を、導電層を有する基板に貼り合わせる工程と、上記貼り合わせる工程後の上記感光性転写材料の上記ポジ型感光性樹脂層をパターン露光する工程と、上記パターン露光する工程後の上記ポジ型感光性樹脂層を現像して樹脂パターンを形成する工程と、上記樹脂パターンが配置されていない領域における基板をエッチング処理する工程と、を含む、回路配線の製造方法。
<12> <1>~<10>のいずれか1つに記載の感光性転写材料の保護フィルムを剥離する工程と、上記感光性転写材料の、上記仮支持体に対してポジ型感光性樹脂層を有する側の最外層を、導電層を有する基板に貼り合わせる工程と、上記貼り合わせる工程後の上記感光性転写材料の上記ポジ型感光性樹脂層をパターン露光する工程と、上記パターン露光する工程後の上記ポジ型感光性樹脂層を現像して樹脂パターンを形成する工程と、上記樹脂パターンが配置されていない領域における基板をエッチング処理する工程と、を含む、タッチパネルの製造方法。
<13> <1>~<10>のいずれか1つに記載の感光性転写材料の保護フィルムを剥離する工程と、上記感光性転写材料の、上記仮支持体に対してポジ型感光性樹脂層を有する側の最外層を、基板に貼り合わせる工程と、上記貼り合わせる工程後の上記感光性転写材料の上記ポジ型感光性樹脂層をパターン露光する工程と、上記パターン露光する工程後の上記ポジ型感光性樹脂層を現像して樹脂パターンを形成する工程と、を含む、樹脂パターンの製造方法。
<14> 第一延伸方向の延伸物である一軸延伸ポリエチレンテレフタレートフィルムがフィルム面に沿って上記第一延伸方向と直交する第二延伸方向に延伸された二軸延伸ポリエチレンテレフタレートフィルムと、上記一軸延伸ポリエチレンテレフタレートフィルムの一方面に形成された塗布層の上記第二延伸方向の延伸物である下塗り層と、を有し、上記下塗り層が、下記の(A)及び(B)を満たすフィルム。
(A)水接触角が、75°以上である。
(B)表面粗さRaが、45nm以下である。
<15> 上記下塗り層が、酸変性ポリオレフィンを含有する<14>に記載のフィルム。
<16>第1の樹脂層と、第1の樹脂層上に設けられた第2の樹脂層とを有し、第1の樹脂層が、ポリエステルを含み、第2の樹脂層の表面が、下記の(A)及び(B)を満たすフィルム。
(A)水接触角が、75°以上である。
(B)表面粗さRaが、45nm以下である。
<17>第1の樹脂層の厚みが5μm~200μmであり、かつ、第2の樹脂層の厚みが10nm~550nmである、<16>に記載のフィルム。
<18>保護フィルムである、<14>~<17>のいずれか1つに記載のフィルム。 Means for solving the above problems include the following aspects.
<1> A temporary support, a positive photosensitive resin layer, and a protective film are provided in this order, and the surface of the protective film on the side in contact with the positive photosensitive resin layer has the following (A) And a photosensitive transfer material satisfying (B).
(A) The water contact angle is 75 ° or more.
(B) The surface roughness Ra is 45 nm or less.
<2> The photosensitive transfer material according to <1>, wherein the surface roughness Ra is 25 nm or less.
<3> The protective film has a base material and an undercoat layer, and the outermost layer of the protective film on the side in contact with the positive photosensitive resin layer is the undercoat layer <1> or <2> The photosensitive transfer material described in any one of the above.
<4> a biaxially stretched film in which the protective film is a uniaxially stretched film that is a stretched product in the first stretching direction and is stretched along a film surface in a second stretching direction orthogonal to the first stretching direction; An undercoat layer that is a stretched product in the second stretching direction of the coating layer formed on one surface of the stretched film, and the protective film, the outermost layer on the side in contact with the positive photosensitive resin layer, The photosensitive transfer material according to <1> or <2>, which is the undercoat layer.
<5> The photosensitive transfer material according to <3> or <4>, wherein the undercoat layer contains an acid-modified polyolefin.
<6> The photosensitive transfer material according to <5>, wherein the acid-modified polyolefin has an acid group, and at least one of the acid groups is an alkali metal salt.
<7> The photosensitive transfer material according to any one of <3> to <6>, wherein the undercoat layer has a thickness of 10 nm to 550 nm.
<8> The photosensitive transfer material according to any one of <1> to <7>, having a water-soluble resin layer between the temporary support and the positive photosensitive resin layer.
<9> The photosensitive transfer material according to any one of <1> to <8>, wherein the positive photosensitive resin layer contains an acid-decomposable resin.
<10> Any of <1> to <9>, wherein the positive photosensitive resin layer contains a polymer component at a ratio of 80% by mass to 98% by mass based on the total solid content of the positive photosensitive resin layer. The photosensitive transfer material according to any one of the above.
<11> a step of peeling off the protective film of the photosensitive transfer material according to any one of <1> to <10>, and the positive photosensitive layer of the photosensitive transfer material with respect to the temporary support; Bonding the outermost layer on the side having the resin layer to the substrate having the conductive layer; pattern-exposing the positive-type photosensitive resin layer of the photosensitive transfer material after the bonding step; and A method for manufacturing circuit wiring, comprising: a step of developing the positive photosensitive resin layer after the step of forming a resin pattern to form a resin pattern; and a step of etching a substrate in a region where the resin pattern is not arranged.
<12> The step of removing the protective film of the photosensitive transfer material according to any one of <1> to <10>, and a positive photosensitive resin of the photosensitive transfer material with respect to the temporary support. Bonding the outermost layer on the side having the layer to the substrate having the conductive layer, pattern-exposing the positive-type photosensitive resin layer of the photosensitive transfer material after the bonding step, and performing the pattern exposure A method for manufacturing a touch panel, comprising: a step of developing the positive photosensitive resin layer after the step to form a resin pattern; and a step of etching a substrate in a region where the resin pattern is not arranged.
<13> a step of removing the protective film of the photosensitive transfer material according to any one of <1> to <10>, and a positive photosensitive resin of the photosensitive transfer material with respect to the temporary support Bonding the outermost layer on the side having the layer to the substrate, pattern-exposing the positive-type photosensitive resin layer of the photosensitive transfer material after the bonding step, and performing the pattern-exposing step. Developing the positive photosensitive resin layer to form a resin pattern.
<14> a biaxially stretched polyethylene terephthalate film in which a uniaxially stretched polyethylene terephthalate film, which is a stretched product in the first stretching direction, is stretched along a film surface in a second stretching direction orthogonal to the first stretching direction; A film formed on one surface of the polyethylene terephthalate film, the undercoat layer being a stretched product in the second stretching direction, wherein the undercoat layer satisfies the following (A) and (B).
(A) The water contact angle is 75 ° or more.
(B) The surface roughness Ra is 45 nm or less.
<15> The film according to <14>, wherein the undercoat layer contains an acid-modified polyolefin.
<16> having a first resin layer and a second resin layer provided on the first resin layer, wherein the first resin layer contains polyester, and the surface of the second resin layer is A film satisfying the following (A) and (B).
(A) The water contact angle is 75 ° or more.
(B) The surface roughness Ra is 45 nm or less.
<17> The film according to <16>, wherein the thickness of the first resin layer is 5 μm to 200 μm, and the thickness of the second resin layer is 10 nm to 550 nm.
<18> The film according to any one of <14> to <17>, which is a protective film.
本開示の一実施形態によれば、保護フィルムの剥離性に優れ、かつ、パターン故障を低減できる感光性転写材料を提供することができる。
本開示の他の一実施形態によれば、パターン故障が低減された回路配線の製造方法を提供することができる。
本開示の他の一実施形態によれば、パターン故障が低減されたタッチパネルの製造方法を提供することができる。
本開示の他の一実施形態によれば、パターン故障が低減された樹脂パターンの製造方法を提供することができる。
本開示の他の一実施形態によれば、剥離性に優れ、かつ、被着体表面への凹凸の転写を低減できるフィルムを提供することができる。 According to an embodiment of the present disclosure, it is possible to provide a photosensitive transfer material that is excellent in peelability of a protective film and that can reduce pattern failure.
According to another embodiment of the present disclosure, it is possible to provide a method of manufacturing a circuit wiring with reduced pattern failure.
According to another embodiment of the present disclosure, it is possible to provide a method of manufacturing a touch panel with reduced pattern failure.
According to another embodiment of the present disclosure, it is possible to provide a method for manufacturing a resin pattern with reduced pattern failure.
According to another embodiment of the present disclosure, it is possible to provide a film that is excellent in releasability and that can reduce the transfer of unevenness to the surface of an adherend.
本開示の他の一実施形態によれば、パターン故障が低減された回路配線の製造方法を提供することができる。
本開示の他の一実施形態によれば、パターン故障が低減されたタッチパネルの製造方法を提供することができる。
本開示の他の一実施形態によれば、パターン故障が低減された樹脂パターンの製造方法を提供することができる。
本開示の他の一実施形態によれば、剥離性に優れ、かつ、被着体表面への凹凸の転写を低減できるフィルムを提供することができる。 According to an embodiment of the present disclosure, it is possible to provide a photosensitive transfer material that is excellent in peelability of a protective film and that can reduce pattern failure.
According to another embodiment of the present disclosure, it is possible to provide a method of manufacturing a circuit wiring with reduced pattern failure.
According to another embodiment of the present disclosure, it is possible to provide a method of manufacturing a touch panel with reduced pattern failure.
According to another embodiment of the present disclosure, it is possible to provide a method for manufacturing a resin pattern with reduced pattern failure.
According to another embodiment of the present disclosure, it is possible to provide a film that is excellent in releasability and that can reduce the transfer of unevenness to the surface of an adherend.
以下、本開示の実施形態について詳細に説明する。なお、本開示は、以下の実施形態に何ら制限されず、本開示の目的の範囲内において、適宜変更を加えて実施することができる。
Hereinafter, embodiments of the present disclosure will be described in detail. The present disclosure is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the present disclosure.
本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において、「(メタ)アクリル」とは、アクリル及びメタクリルの双方、又は、いずれか一方を表し、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの双方、又は、いずれか一方を意味する。
本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
本開示において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
本開示における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有しないものと共に置換基を有するものをも包含するものである。例えば「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
本開示において、化学構造式は、水素原子を省略した簡略構造式で記載する場合もある。
本開示において、全固形分とは、溶剤等の揮発性成分を除いた成分の全質量をいう。 In the present disclosure, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit. In the numerical ranges described stepwise in the present disclosure, an upper limit or a lower limit described in a certain numerical range may be replaced with an upper limit or a lower limit of another numerical range described in a stepwise manner. Further, in the numerical ranges described in the present disclosure, the upper limit or the lower limit described in a certain numerical range may be replaced with the value shown in the embodiment.
In the present disclosure, “(meth) acryl” represents both acryl and methacryl, or either one, and “(meth) acrylate” means both acrylate and methacrylate, or either one. .
In the present disclosure, the amount of each component in the composition, when there are a plurality of substances corresponding to each component in the composition, unless otherwise specified, means the total amount of the plurality of substances present in the composition .
In the present disclosure, the term “step” includes not only an independent step but also the term as long as the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps. .
In the notation of a group (atomic group) in the present disclosure, the notation of not indicating substituted or unsubstituted includes not only a group having no substituent but also a group having a substituent. For example, the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
In the present disclosure, “% by mass” and “% by weight” have the same meaning, and “parts by mass” and “parts by weight” have the same meaning.
In the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
In the present disclosure, a chemical structural formula may be described as a simplified structural formula in which a hydrogen atom is omitted.
In the present disclosure, the total solid content refers to the total mass of components excluding volatile components such as solvents.
本開示において、「(メタ)アクリル」とは、アクリル及びメタクリルの双方、又は、いずれか一方を表し、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの双方、又は、いずれか一方を意味する。
本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
本開示において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
本開示における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有しないものと共に置換基を有するものをも包含するものである。例えば「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
本開示において、化学構造式は、水素原子を省略した簡略構造式で記載する場合もある。
本開示において、全固形分とは、溶剤等の揮発性成分を除いた成分の全質量をいう。 In the present disclosure, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit. In the numerical ranges described stepwise in the present disclosure, an upper limit or a lower limit described in a certain numerical range may be replaced with an upper limit or a lower limit of another numerical range described in a stepwise manner. Further, in the numerical ranges described in the present disclosure, the upper limit or the lower limit described in a certain numerical range may be replaced with the value shown in the embodiment.
In the present disclosure, “(meth) acryl” represents both acryl and methacryl, or either one, and “(meth) acrylate” means both acrylate and methacrylate, or either one. .
In the present disclosure, the amount of each component in the composition, when there are a plurality of substances corresponding to each component in the composition, unless otherwise specified, means the total amount of the plurality of substances present in the composition .
In the present disclosure, the term “step” includes not only an independent step but also the term as long as the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps. .
In the notation of a group (atomic group) in the present disclosure, the notation of not indicating substituted or unsubstituted includes not only a group having no substituent but also a group having a substituent. For example, the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
In the present disclosure, “% by mass” and “% by weight” have the same meaning, and “parts by mass” and “parts by weight” have the same meaning.
In the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
In the present disclosure, a chemical structural formula may be described as a simplified structural formula in which a hydrogen atom is omitted.
In the present disclosure, the total solid content refers to the total mass of components excluding volatile components such as solvents.
<感光性転写材料>
本開示に係る感光性転写材料は、仮支持体と、ポジ型感光性樹脂層と、保護フィルムと、をこの順に有し、上記保護フィルムの、上記ポジ型感光性樹脂層と接する側の表面が、下記の(A)及び(B)を満たす。
(A)水接触角が、75°以上である。
(B)表面粗さRaが、45nm以下である。 <Photosensitive transfer material>
The photosensitive transfer material according to the present disclosure has a temporary support, a positive photosensitive resin layer, and a protective film in this order, and the surface of the protective film on the side in contact with the positive photosensitive resin layer. Satisfies the following (A) and (B).
(A) The water contact angle is 75 ° or more.
(B) The surface roughness Ra is 45 nm or less.
本開示に係る感光性転写材料は、仮支持体と、ポジ型感光性樹脂層と、保護フィルムと、をこの順に有し、上記保護フィルムの、上記ポジ型感光性樹脂層と接する側の表面が、下記の(A)及び(B)を満たす。
(A)水接触角が、75°以上である。
(B)表面粗さRaが、45nm以下である。 <Photosensitive transfer material>
The photosensitive transfer material according to the present disclosure has a temporary support, a positive photosensitive resin layer, and a protective film in this order, and the surface of the protective film on the side in contact with the positive photosensitive resin layer. Satisfies the following (A) and (B).
(A) The water contact angle is 75 ° or more.
(B) The surface roughness Ra is 45 nm or less.
本開示に係る感光性転写材料によれば、保護フィルムの剥離性に優れ、かつ、パターン故障を低減できる。本開示に係る感光性転写材料が、このような効果を奏する理由は明らかではないが、以下のように推察される。
本開示に係る感光性転写材料に適用される保護フィルムは、上記の(A)及び(B)を満たすため、ポジ型感光性樹脂層と接する側の表面の表面エネルギーを下げ、かつ、凹凸を低減できる。そして、保護フィルムの表面の凹凸を低減できることで、ポジ型の感光性樹脂層の表面に保護フィルムの凹凸が転写されることを抑制できる。このため、本開示に係る感光性転写材料は、保護フィルムの剥離性の向上及びパターン故障の低減を両立できると考えられる。
一方、例えば、上述の国際公開第2014/175274号、及び特開2007-293006号公報に記載された感光性転写材料に適用される保護フィルムでは、上記の(A)及び(B)を満たすことはできないと考えられる。また、上述の国際公開第2014/175274号、特開2007-293006号公報、及び特開2018-2947号公報においては、保護フィルムが適用された感光性樹脂層はポジ型感光性樹脂層ではなく、ポジ型感光性樹脂層を有する感光性転写材料に対して保護フィルムを適用した場合についてまで検討されていない。従来提案されている保護フィルムでは、ネガ型感光性樹脂層に比べて柔軟性に乏しいポジ型感光性樹脂層を有する感光性転写材料に適用した場合には、保護フィルムの剥離性の向上及びパターン故障の低減を両立することはできないと考えられる。 ADVANTAGE OF THE INVENTION According to the photosensitive transfer material which concerns on this indication, it is excellent in the peelability of a protective film, and can reduce a pattern failure. The reason why the photosensitive transfer material according to the present disclosure exhibits such an effect is not clear, but is presumed as follows.
In order to satisfy the above (A) and (B), the protective film applied to the photosensitive transfer material according to the present disclosure lowers the surface energy of the surface in contact with the positive photosensitive resin layer and reduces unevenness. Can be reduced. And since the unevenness of the surface of the protective film can be reduced, the transfer of the unevenness of the protective film to the surface of the positive photosensitive resin layer can be suppressed. For this reason, it is considered that the photosensitive transfer material according to the present disclosure can achieve both improvement of the releasability of the protective film and reduction of the pattern failure.
On the other hand, for example, in the protective film applied to the photosensitive transfer material described in the above-mentioned WO 2014/175274 and JP-A-2007-293006, the above (A) and (B) are satisfied. It is considered impossible. In the above-mentioned WO 2014/175274, JP-A-2007-293006, and JP-A-2018-2947, the photosensitive resin layer to which the protective film is applied is not a positive photosensitive resin layer. No studies have been made on the case where a protective film is applied to a photosensitive transfer material having a positive photosensitive resin layer. In the case of a conventionally proposed protective film, when applied to a photosensitive transfer material having a positive photosensitive resin layer that is less flexible than a negative photosensitive resin layer, the peelability of the protective film is improved and the pattern is improved. It is considered that the reduction of failure cannot be achieved at the same time.
本開示に係る感光性転写材料に適用される保護フィルムは、上記の(A)及び(B)を満たすため、ポジ型感光性樹脂層と接する側の表面の表面エネルギーを下げ、かつ、凹凸を低減できる。そして、保護フィルムの表面の凹凸を低減できることで、ポジ型の感光性樹脂層の表面に保護フィルムの凹凸が転写されることを抑制できる。このため、本開示に係る感光性転写材料は、保護フィルムの剥離性の向上及びパターン故障の低減を両立できると考えられる。
一方、例えば、上述の国際公開第2014/175274号、及び特開2007-293006号公報に記載された感光性転写材料に適用される保護フィルムでは、上記の(A)及び(B)を満たすことはできないと考えられる。また、上述の国際公開第2014/175274号、特開2007-293006号公報、及び特開2018-2947号公報においては、保護フィルムが適用された感光性樹脂層はポジ型感光性樹脂層ではなく、ポジ型感光性樹脂層を有する感光性転写材料に対して保護フィルムを適用した場合についてまで検討されていない。従来提案されている保護フィルムでは、ネガ型感光性樹脂層に比べて柔軟性に乏しいポジ型感光性樹脂層を有する感光性転写材料に適用した場合には、保護フィルムの剥離性の向上及びパターン故障の低減を両立することはできないと考えられる。 ADVANTAGE OF THE INVENTION According to the photosensitive transfer material which concerns on this indication, it is excellent in the peelability of a protective film, and can reduce a pattern failure. The reason why the photosensitive transfer material according to the present disclosure exhibits such an effect is not clear, but is presumed as follows.
In order to satisfy the above (A) and (B), the protective film applied to the photosensitive transfer material according to the present disclosure lowers the surface energy of the surface in contact with the positive photosensitive resin layer and reduces unevenness. Can be reduced. And since the unevenness of the surface of the protective film can be reduced, the transfer of the unevenness of the protective film to the surface of the positive photosensitive resin layer can be suppressed. For this reason, it is considered that the photosensitive transfer material according to the present disclosure can achieve both improvement of the releasability of the protective film and reduction of the pattern failure.
On the other hand, for example, in the protective film applied to the photosensitive transfer material described in the above-mentioned WO 2014/175274 and JP-A-2007-293006, the above (A) and (B) are satisfied. It is considered impossible. In the above-mentioned WO 2014/175274, JP-A-2007-293006, and JP-A-2018-2947, the photosensitive resin layer to which the protective film is applied is not a positive photosensitive resin layer. No studies have been made on the case where a protective film is applied to a photosensitive transfer material having a positive photosensitive resin layer. In the case of a conventionally proposed protective film, when applied to a photosensitive transfer material having a positive photosensitive resin layer that is less flexible than a negative photosensitive resin layer, the peelability of the protective film is improved and the pattern is improved. It is considered that the reduction of failure cannot be achieved at the same time.
図1は、本開示に係る感光性転写材料の層構成の一例を概略的に示している。図1に示す感光性転写材料100は、仮支持体12と、ポジ型感光性樹脂層14と、保護フィルム16とがこの順に積層されている。
FIG. 1 schematically illustrates an example of a layer configuration of the photosensitive transfer material according to the present disclosure. In the photosensitive transfer material 100 shown in FIG. 1, a temporary support 12, a positive photosensitive resin layer 14, and a protective film 16 are laminated in this order.
[仮支持体]
本開示に係る感光性転写材料は、仮支持体を有する。
仮支持体は、ポジ型感光性樹脂層を支持し、ポジ型感光性樹脂層から剥離可能な支持体である。
本開示に用いられる仮支持体は、ポジ型感光性樹脂層をパターン露光する際に仮支持体を介してポジ型感光性樹脂層を露光し得る観点から、光透過性を有することが好ましい。
光透過性を有するとは、パターン露光に使用する光の主波長の透過率が50%以上であることを意味し、パターン露光に使用する光の主波長の透過率は、露光感度向上の観点から、60%以上が好ましく、70%以上がより好ましい。透過率の測定方法としては、大塚電子(株)製MCPD Seriesを用いて測定する方法が挙げられる。
仮支持体としては、ガラス基板、樹脂フィルム、紙等が挙げられ、強度及び可撓性等の観点から、樹脂フィルムが特に好ましい。樹脂フィルムとしては、シクロオレフィンポリマーフィルム、ポリエチレンテレフタレートフィルム、トリ酢酸セルロースフィルム、ポリスチレンフィルム、ポリカーボネートフィルム等が挙げられる。これらの中でも、耐溶剤性及び光学特性の観点から、ポリエチレンテレフタレートフィルムが好ましい。 [Temporary support]
The photosensitive transfer material according to the present disclosure has a temporary support.
The temporary support is a support that supports the positive photosensitive resin layer and can be separated from the positive photosensitive resin layer.
The temporary support used in the present disclosure preferably has light transmittance from the viewpoint that the positive photosensitive resin layer can be exposed through the temporary support when the positive photosensitive resin layer is subjected to pattern exposure.
Having the light transmittance means that the transmittance of the main wavelength of the light used for pattern exposure is 50% or more, and the transmittance of the main wavelength of the light used for pattern exposure is determined from the viewpoint of improving the exposure sensitivity. Therefore, it is preferably at least 60%, more preferably at least 70%. As a method of measuring the transmittance, a method of measuring by using MCPD Series manufactured by Otsuka Electronics Co., Ltd. may be mentioned.
Examples of the temporary support include a glass substrate, a resin film, and paper, and a resin film is particularly preferable from the viewpoint of strength, flexibility, and the like. Examples of the resin film include a cycloolefin polymer film, a polyethylene terephthalate film, a cellulose triacetate film, a polystyrene film, and a polycarbonate film. Among these, a polyethylene terephthalate film is preferred from the viewpoint of solvent resistance and optical characteristics.
本開示に係る感光性転写材料は、仮支持体を有する。
仮支持体は、ポジ型感光性樹脂層を支持し、ポジ型感光性樹脂層から剥離可能な支持体である。
本開示に用いられる仮支持体は、ポジ型感光性樹脂層をパターン露光する際に仮支持体を介してポジ型感光性樹脂層を露光し得る観点から、光透過性を有することが好ましい。
光透過性を有するとは、パターン露光に使用する光の主波長の透過率が50%以上であることを意味し、パターン露光に使用する光の主波長の透過率は、露光感度向上の観点から、60%以上が好ましく、70%以上がより好ましい。透過率の測定方法としては、大塚電子(株)製MCPD Seriesを用いて測定する方法が挙げられる。
仮支持体としては、ガラス基板、樹脂フィルム、紙等が挙げられ、強度及び可撓性等の観点から、樹脂フィルムが特に好ましい。樹脂フィルムとしては、シクロオレフィンポリマーフィルム、ポリエチレンテレフタレートフィルム、トリ酢酸セルロースフィルム、ポリスチレンフィルム、ポリカーボネートフィルム等が挙げられる。これらの中でも、耐溶剤性及び光学特性の観点から、ポリエチレンテレフタレートフィルムが好ましい。 [Temporary support]
The photosensitive transfer material according to the present disclosure has a temporary support.
The temporary support is a support that supports the positive photosensitive resin layer and can be separated from the positive photosensitive resin layer.
The temporary support used in the present disclosure preferably has light transmittance from the viewpoint that the positive photosensitive resin layer can be exposed through the temporary support when the positive photosensitive resin layer is subjected to pattern exposure.
Having the light transmittance means that the transmittance of the main wavelength of the light used for pattern exposure is 50% or more, and the transmittance of the main wavelength of the light used for pattern exposure is determined from the viewpoint of improving the exposure sensitivity. Therefore, it is preferably at least 60%, more preferably at least 70%. As a method of measuring the transmittance, a method of measuring by using MCPD Series manufactured by Otsuka Electronics Co., Ltd. may be mentioned.
Examples of the temporary support include a glass substrate, a resin film, and paper, and a resin film is particularly preferable from the viewpoint of strength, flexibility, and the like. Examples of the resin film include a cycloolefin polymer film, a polyethylene terephthalate film, a cellulose triacetate film, a polystyrene film, and a polycarbonate film. Among these, a polyethylene terephthalate film is preferred from the viewpoint of solvent resistance and optical characteristics.
仮支持体の厚みは、特に制限されず、5μm~200μmの範囲が好ましく、取扱い易さ、汎用性などの点で、10μm~150μmの範囲がより好ましい。
仮支持体の厚みは、支持体としての強度、基板との貼り合わせに求められる可撓性、最初の露光工程で要求される光透過性などの観点から、材質に応じて選択すればよい。 The thickness of the temporary support is not particularly limited, but is preferably in the range of 5 μm to 200 μm, and more preferably in the range of 10 μm to 150 μm in terms of ease of handling and versatility.
The thickness of the temporary support may be selected according to the material in view of the strength as the support, the flexibility required for bonding to the substrate, the light transmittance required in the first exposure step, and the like.
仮支持体の厚みは、支持体としての強度、基板との貼り合わせに求められる可撓性、最初の露光工程で要求される光透過性などの観点から、材質に応じて選択すればよい。 The thickness of the temporary support is not particularly limited, but is preferably in the range of 5 μm to 200 μm, and more preferably in the range of 10 μm to 150 μm in terms of ease of handling and versatility.
The thickness of the temporary support may be selected according to the material in view of the strength as the support, the flexibility required for bonding to the substrate, the light transmittance required in the first exposure step, and the like.
仮支持体の好ましい態様については、例えば、特開2014-85643号公報の段落0017~段落0018に記載があり、この公報の内容は本明細書に組み込まれる。
好 ま し い Preferred embodiments of the temporary support are described in, for example, paragraphs 0017 to 0018 of JP-A-2014-85643, the contents of which are incorporated herein.
[ポジ型感光性樹脂層]
本開示に係る感光性転写材料は、ポジ型感光性樹脂層を有する。
本開示において用いられるポジ型感光性樹脂層は、特に制限はなく、公知のポジ型感光性樹脂層を用いることができる。また、上記ポジ型感光性樹脂層は、感度、解像度及び除去性の観点から、酸分解性樹脂を含有するポジ型感光性樹脂層であることが好ましく、酸分解性基で保護された酸基を有する構成単位を有する重合体と、光酸発生剤と、を含む化学増幅ポジ型感光性樹脂層であることがより好ましい。酸分解性樹脂としては、酸との作用によって分解し得る樹脂であれば制限されず、例えば、後述の酸分解性基で保護された酸基を有する構成単位を有する重合体等が挙げられる。
後述するオニウム塩、オキシムスルホネート化合物等の光酸発生剤は、活性放射線(活性光線)に感応して酸を生成する。生成した酸は、上記重合体中の保護された酸基の脱保護に対して触媒として作用する。このため、1個の光量子の作用で生成した酸が、多数の脱保護反応に寄与し、量子収率は1を超え、例えば、10の数乗のような大きい値となり、いわゆる化学増幅の結果として、高感度が得られる。
一方、活性放射線に感応する光酸発生剤としてキノンジアジド化合物を用いた場合、逐次型光化学反応によりカルボキシ基を生成するが、その量子収率は必ず1以下であり、化学増幅型には該当しない。 [Positive photosensitive resin layer]
The photosensitive transfer material according to the present disclosure has a positive photosensitive resin layer.
The positive photosensitive resin layer used in the present disclosure is not particularly limited, and a known positive photosensitive resin layer can be used. The positive photosensitive resin layer is preferably a positive photosensitive resin layer containing an acid-decomposable resin from the viewpoint of sensitivity, resolution and removability, and is preferably an acid group protected by an acid-decomposable group. More preferably, it is a chemically amplified positive photosensitive resin layer containing a polymer having a structural unit having the formula: and a photoacid generator. The acid-decomposable resin is not limited as long as it is a resin that can be decomposed by the action of an acid, and examples thereof include a polymer having a structural unit having an acid group protected by an acid-decomposable group described below.
Photoacid generators such as onium salts and oxime sulfonate compounds described below generate an acid in response to actinic radiation (actinic rays). The generated acid acts as a catalyst for the deprotection of the protected acid groups in the polymer. For this reason, the acid generated by the action of one photon contributes to a large number of deprotection reactions, and the quantum yield exceeds 1, for example, a large value such as a power of ten. As a result, high sensitivity can be obtained.
On the other hand, when a quinonediazide compound is used as a photoacid generator sensitive to actinic radiation, a carboxy group is generated by a sequential photochemical reaction, but the quantum yield is always 1 or less, and does not correspond to a chemically amplified type.
本開示に係る感光性転写材料は、ポジ型感光性樹脂層を有する。
本開示において用いられるポジ型感光性樹脂層は、特に制限はなく、公知のポジ型感光性樹脂層を用いることができる。また、上記ポジ型感光性樹脂層は、感度、解像度及び除去性の観点から、酸分解性樹脂を含有するポジ型感光性樹脂層であることが好ましく、酸分解性基で保護された酸基を有する構成単位を有する重合体と、光酸発生剤と、を含む化学増幅ポジ型感光性樹脂層であることがより好ましい。酸分解性樹脂としては、酸との作用によって分解し得る樹脂であれば制限されず、例えば、後述の酸分解性基で保護された酸基を有する構成単位を有する重合体等が挙げられる。
後述するオニウム塩、オキシムスルホネート化合物等の光酸発生剤は、活性放射線(活性光線)に感応して酸を生成する。生成した酸は、上記重合体中の保護された酸基の脱保護に対して触媒として作用する。このため、1個の光量子の作用で生成した酸が、多数の脱保護反応に寄与し、量子収率は1を超え、例えば、10の数乗のような大きい値となり、いわゆる化学増幅の結果として、高感度が得られる。
一方、活性放射線に感応する光酸発生剤としてキノンジアジド化合物を用いた場合、逐次型光化学反応によりカルボキシ基を生成するが、その量子収率は必ず1以下であり、化学増幅型には該当しない。 [Positive photosensitive resin layer]
The photosensitive transfer material according to the present disclosure has a positive photosensitive resin layer.
The positive photosensitive resin layer used in the present disclosure is not particularly limited, and a known positive photosensitive resin layer can be used. The positive photosensitive resin layer is preferably a positive photosensitive resin layer containing an acid-decomposable resin from the viewpoint of sensitivity, resolution and removability, and is preferably an acid group protected by an acid-decomposable group. More preferably, it is a chemically amplified positive photosensitive resin layer containing a polymer having a structural unit having the formula: and a photoacid generator. The acid-decomposable resin is not limited as long as it is a resin that can be decomposed by the action of an acid, and examples thereof include a polymer having a structural unit having an acid group protected by an acid-decomposable group described below.
Photoacid generators such as onium salts and oxime sulfonate compounds described below generate an acid in response to actinic radiation (actinic rays). The generated acid acts as a catalyst for the deprotection of the protected acid groups in the polymer. For this reason, the acid generated by the action of one photon contributes to a large number of deprotection reactions, and the quantum yield exceeds 1, for example, a large value such as a power of ten. As a result, high sensitivity can be obtained.
On the other hand, when a quinonediazide compound is used as a photoacid generator sensitive to actinic radiation, a carboxy group is generated by a sequential photochemical reaction, but the quantum yield is always 1 or less, and does not correspond to a chemically amplified type.
〔酸分解性基で保護された酸基を有する構成単位を有する重合体〕
上記ポジ型感光性樹脂層は、酸分解性基で保護された酸基を有する構成単位(以下、「構成単位A」ともいう。)を有する重合体(以下、単に「重合体A1」ともいう。)を含むことが好ましい。
また、上記ポジ型感光性樹脂層は、重合体A1に加え、他の重合体を含んでいてもよい。他の重合体とは、後述するとおり、酸分解性基で保護された酸基を有する構成単位を含まない重合体である。他の重合体の詳細については後述する。本開示においては、ポジ型感光性樹脂層に含まれる重合体(酸分解性樹脂を含む。)を総称して「重合体成分」という。例えば、ポジ型感光性樹脂層が重合体A1を含む場合、「重合体成分」とは重合体A1を指す。また、ポジ型感光性樹脂層が重合体A1及び他の重合体を含む場合、「重合体成分」とは重合体A1及び他の重合体の両方を指す。ただし、後述する界面活性剤、架橋剤、又は分散剤に該当する化合物は、「重合体成分」に含まれないものとする。
上記重合体A1は、露光により生じる触媒量の酸性物質の作用により、重合体A1中の酸分解性基で保護された酸基が脱保護反応を受け酸基となる。この酸基により、現像液への溶解が可能となる。
更に、重合体A1は、酸基を有する構成単位(以下、「構成単位B」ともいう。)を更に有することが好ましい。
また、重合体A1は、パターン形状、現像液への溶解性及び転写性の観点から、非粒子形状の重合体(「バインダーポリマー」ともいう。)であることが好ましい。
また、上記重合体成分に含まれる全ての重合体がそれぞれ、後述する酸基を有する構成単位を少なくとも有する重合体であることが好ましい。
(Polymer having a structural unit having an acid group protected by an acid-decomposable group)
The positive photosensitive resin layer is a polymer having a structural unit having an acid group protected by an acid-decomposable group (hereinafter, also referred to as “structural unit A”) (hereinafter, also simply referred to as “polymer A1”). ) Is preferable.
Further, the positive photosensitive resin layer may contain another polymer in addition to the polymer A1. The other polymer is a polymer that does not contain a structural unit having an acid group protected by an acid-decomposable group, as described later. Details of other polymers will be described later. In the present disclosure, a polymer (including an acid-decomposable resin) contained in the positive photosensitive resin layer is collectively referred to as a “polymer component”. For example, when the positive photosensitive resin layer contains the polymer A1, the "polymer component" refers to the polymer A1. When the positive photosensitive resin layer contains the polymer A1 and another polymer, the “polymer component” refers to both the polymer A1 and the other polymer. However, a compound corresponding to a surfactant, a cross-linking agent, or a dispersant described below is not included in the “polymer component”.
In the polymer A1, an acid group protected by an acid-decomposable group in the polymer A1 undergoes a deprotection reaction to become an acid group by the action of a catalytic amount of an acidic substance generated by exposure. This acid group enables dissolution in a developer.
Further, the polymer A1 preferably further has a structural unit having an acid group (hereinafter, also referred to as “structural unit B”).
Further, the polymer A1 is preferably a non-particle-shaped polymer (also referred to as a “binder polymer”) from the viewpoints of pattern shape, solubility in a developer, and transferability.
Further, it is preferable that all of the polymers contained in the above-mentioned polymer component are each a polymer having at least a constituent unit having an acid group described below.
上記ポジ型感光性樹脂層は、酸分解性基で保護された酸基を有する構成単位(以下、「構成単位A」ともいう。)を有する重合体(以下、単に「重合体A1」ともいう。)を含むことが好ましい。
また、上記ポジ型感光性樹脂層は、重合体A1に加え、他の重合体を含んでいてもよい。他の重合体とは、後述するとおり、酸分解性基で保護された酸基を有する構成単位を含まない重合体である。他の重合体の詳細については後述する。本開示においては、ポジ型感光性樹脂層に含まれる重合体(酸分解性樹脂を含む。)を総称して「重合体成分」という。例えば、ポジ型感光性樹脂層が重合体A1を含む場合、「重合体成分」とは重合体A1を指す。また、ポジ型感光性樹脂層が重合体A1及び他の重合体を含む場合、「重合体成分」とは重合体A1及び他の重合体の両方を指す。ただし、後述する界面活性剤、架橋剤、又は分散剤に該当する化合物は、「重合体成分」に含まれないものとする。
上記重合体A1は、露光により生じる触媒量の酸性物質の作用により、重合体A1中の酸分解性基で保護された酸基が脱保護反応を受け酸基となる。この酸基により、現像液への溶解が可能となる。
更に、重合体A1は、酸基を有する構成単位(以下、「構成単位B」ともいう。)を更に有することが好ましい。
また、重合体A1は、パターン形状、現像液への溶解性及び転写性の観点から、非粒子形状の重合体(「バインダーポリマー」ともいう。)であることが好ましい。
また、上記重合体成分に含まれる全ての重合体がそれぞれ、後述する酸基を有する構成単位を少なくとも有する重合体であることが好ましい。
(Polymer having a structural unit having an acid group protected by an acid-decomposable group)
The positive photosensitive resin layer is a polymer having a structural unit having an acid group protected by an acid-decomposable group (hereinafter, also referred to as “structural unit A”) (hereinafter, also simply referred to as “polymer A1”). ) Is preferable.
Further, the positive photosensitive resin layer may contain another polymer in addition to the polymer A1. The other polymer is a polymer that does not contain a structural unit having an acid group protected by an acid-decomposable group, as described later. Details of other polymers will be described later. In the present disclosure, a polymer (including an acid-decomposable resin) contained in the positive photosensitive resin layer is collectively referred to as a “polymer component”. For example, when the positive photosensitive resin layer contains the polymer A1, the "polymer component" refers to the polymer A1. When the positive photosensitive resin layer contains the polymer A1 and another polymer, the “polymer component” refers to both the polymer A1 and the other polymer. However, a compound corresponding to a surfactant, a cross-linking agent, or a dispersant described below is not included in the “polymer component”.
In the polymer A1, an acid group protected by an acid-decomposable group in the polymer A1 undergoes a deprotection reaction to become an acid group by the action of a catalytic amount of an acidic substance generated by exposure. This acid group enables dissolution in a developer.
Further, the polymer A1 preferably further has a structural unit having an acid group (hereinafter, also referred to as “structural unit B”).
Further, the polymer A1 is preferably a non-particle-shaped polymer (also referred to as a “binder polymer”) from the viewpoints of pattern shape, solubility in a developer, and transferability.
Further, it is preferable that all of the polymers contained in the above-mentioned polymer component are each a polymer having at least a constituent unit having an acid group described below.
重合体A1は、付加重合型の樹脂であることが好ましく、(メタ)アクリル酸又は(メタ)アクリル酸エステルに由来する構成単位を有する重合体であることがより好ましい。なお、(メタ)アクリル酸又は(メタ)アクリル酸エステルに由来する構成単位以外の構成単位、例えば、スチレンに由来する構成単位、ビニル化合物に由来する構成単位等を有していてもよい。
The polymer A1 is preferably an addition polymerization type resin, and more preferably a polymer having a structural unit derived from (meth) acrylic acid or (meth) acrylate. In addition, you may have the structural unit other than the structural unit derived from (meth) acrylic acid or (meth) acrylic acid ester, for example, the structural unit derived from styrene, the structural unit derived from a vinyl compound, etc.
上記ポジ型感光性樹脂層は、パターン形状の変形抑制、現像液への溶解性及び転写性の観点から、重合体成分として、下記式A1により表される構成単位、下記式A2により表される構成単位、及び下記式A3により表される構成単位よりなる群から選ばれた少なくとも1種の構成単位を有する重合体を含むことが好ましい。また、同様の観点から、重合体成分として、下記式A1により表される構成単位、下記式A2により表される構成単位、及び下記式A3により表される構成単位よりなる群から選ばれた少なくとも1種の構成単位、並びに、酸基を有する構成単位を有する重合体を含むことがより好ましい。
上記ポジ型感光性樹脂層に含まれる重合体A1は、1種のみであっても、2種以上であってもよい。
以下に構成単位Aの好ましい態様について説明する。 The positive photosensitive resin layer is represented by a structural unit represented by the following formula A1 or a structural unit represented by the following formula A2 as a polymer component from the viewpoints of suppressing deformation of a pattern shape, solubility in a developing solution, and transferability. It is preferable to include a polymer having a structural unit and at least one structural unit selected from the group consisting of structural units represented by the following formula A3. Further, from the same viewpoint, as the polymer component, at least one selected from the group consisting of a structural unit represented by the following formula A1, a structural unit represented by the following formula A2, and a structural unit represented by the following formula A3 It is more preferable to include one kind of constituent unit and a polymer having a constituent unit having an acid group.
The polymer A1 contained in the positive photosensitive resin layer may be only one kind or two or more kinds.
Hereinafter, preferred embodiments of the structural unit A will be described.
上記ポジ型感光性樹脂層に含まれる重合体A1は、1種のみであっても、2種以上であってもよい。
以下に構成単位Aの好ましい態様について説明する。 The positive photosensitive resin layer is represented by a structural unit represented by the following formula A1 or a structural unit represented by the following formula A2 as a polymer component from the viewpoints of suppressing deformation of a pattern shape, solubility in a developing solution, and transferability. It is preferable to include a polymer having a structural unit and at least one structural unit selected from the group consisting of structural units represented by the following formula A3. Further, from the same viewpoint, as the polymer component, at least one selected from the group consisting of a structural unit represented by the following formula A1, a structural unit represented by the following formula A2, and a structural unit represented by the following formula A3 It is more preferable to include one kind of constituent unit and a polymer having a constituent unit having an acid group.
The polymer A1 contained in the positive photosensitive resin layer may be only one kind or two or more kinds.
Hereinafter, preferred embodiments of the structural unit A will be described.
(構成単位A)
上記重合体成分は、酸分解性基で保護された酸基を有する構成単位(構成単位A)を少なくとも有する重合体A1を含むことが好ましい。上記重合体成分が構成単位Aを有する重合体を含むことにより、極めて高感度な化学増幅型のポジ型感光性樹脂層とすることができる。
本開示における「酸分解性基で保護された酸基」は、酸基及び酸分解性基として公知のものを使用でき、特に制限されない。具体的な酸基としては、カルボキシ基、及び、フェノール性水酸基が好ましく挙げられる。また、酸分解性基で保護された酸基としては、酸により比較的分解し易い基(例えば、テトラヒドロピラニルエステル基、テトラヒドロフラニルエステル基等のアセタール系官能基)、酸により比較的分解し難い基(例えば、tert-ブチルエステル基等の第三級アルキル基、tert-ブチルカーボネート基等の第三級アルキルカーボネート基)等を用いることができる。
これらの中でも、上記酸分解性基としては、アセタールの形で保護された構造を有する基であることが好ましい。
また、酸分解性基としては、得られる回路配線における線幅のバラツキが抑制される観点から、分子量が300以下の酸分解性基であることが好ましい。 (Structural unit A)
The polymer component preferably includes a polymer A1 having at least a structural unit (structural unit A) having an acid group protected by an acid-decomposable group. When the polymer component contains a polymer having the structural unit A, a highly sensitive chemically amplified positive photosensitive resin layer can be obtained.
As the “acid group protected by an acid-decomposable group” in the present disclosure, those known as an acid group and an acid-decomposable group can be used, and are not particularly limited. Specific examples of the acid group include a carboxy group and a phenolic hydroxyl group. The acid group protected by an acid-decomposable group includes a group that is relatively easily decomposed by an acid (for example, an acetal-based functional group such as a tetrahydropyranyl ester group and a tetrahydrofuranyl ester group), and is relatively hard to be decomposed by an acid. Groups (eg, a tertiary alkyl group such as a tert-butyl ester group, a tertiary alkyl carbonate group such as a tert-butyl carbonate group) and the like can be used.
Among these, the acid-decomposable group is preferably a group having a structure protected in the form of an acetal.
Further, the acid-decomposable group is preferably an acid-decomposable group having a molecular weight of 300 or less from the viewpoint of suppressing variation in line width in the obtained circuit wiring.
上記重合体成分は、酸分解性基で保護された酸基を有する構成単位(構成単位A)を少なくとも有する重合体A1を含むことが好ましい。上記重合体成分が構成単位Aを有する重合体を含むことにより、極めて高感度な化学増幅型のポジ型感光性樹脂層とすることができる。
本開示における「酸分解性基で保護された酸基」は、酸基及び酸分解性基として公知のものを使用でき、特に制限されない。具体的な酸基としては、カルボキシ基、及び、フェノール性水酸基が好ましく挙げられる。また、酸分解性基で保護された酸基としては、酸により比較的分解し易い基(例えば、テトラヒドロピラニルエステル基、テトラヒドロフラニルエステル基等のアセタール系官能基)、酸により比較的分解し難い基(例えば、tert-ブチルエステル基等の第三級アルキル基、tert-ブチルカーボネート基等の第三級アルキルカーボネート基)等を用いることができる。
これらの中でも、上記酸分解性基としては、アセタールの形で保護された構造を有する基であることが好ましい。
また、酸分解性基としては、得られる回路配線における線幅のバラツキが抑制される観点から、分子量が300以下の酸分解性基であることが好ましい。 (Structural unit A)
The polymer component preferably includes a polymer A1 having at least a structural unit (structural unit A) having an acid group protected by an acid-decomposable group. When the polymer component contains a polymer having the structural unit A, a highly sensitive chemically amplified positive photosensitive resin layer can be obtained.
As the “acid group protected by an acid-decomposable group” in the present disclosure, those known as an acid group and an acid-decomposable group can be used, and are not particularly limited. Specific examples of the acid group include a carboxy group and a phenolic hydroxyl group. The acid group protected by an acid-decomposable group includes a group that is relatively easily decomposed by an acid (for example, an acetal-based functional group such as a tetrahydropyranyl ester group and a tetrahydrofuranyl ester group), and is relatively hard to be decomposed by an acid. Groups (eg, a tertiary alkyl group such as a tert-butyl ester group, a tertiary alkyl carbonate group such as a tert-butyl carbonate group) and the like can be used.
Among these, the acid-decomposable group is preferably a group having a structure protected in the form of an acetal.
Further, the acid-decomposable group is preferably an acid-decomposable group having a molecular weight of 300 or less from the viewpoint of suppressing variation in line width in the obtained circuit wiring.
上記酸分解性基で保護された酸基を有する構成単位(構成単位A)は、下記式A1により表される構成単位、下記式A2により表される構成単位、及び下記式A3により表される構成単位よりなる群から選ばれた少なくとも1種の構成単位であることが好ましく、感度及び解像度の観点から、後述する式A3により表される構成単位であることがより好ましく、後述する式A3-3により表される構成単位であることが特に好ましい。
The structural unit having the acid group protected by the acid-decomposable group (structural unit A) is represented by a structural unit represented by the following formula A1, a structural unit represented by the following formula A2, and a structural unit represented by the following formula A3 It is preferably at least one type of structural unit selected from the group consisting of structural units, and from the viewpoint of sensitivity and resolution, more preferably a structural unit represented by the formula A3 described below, and more preferably a formula A3- The structural unit represented by 3 is particularly preferred.
式A1中、R11及びR12はそれぞれ独立に、水素原子、アルキル基又はアリール基を表し、少なくともR11及びR12のいずれか一方がアルキル基又はアリール基であり、R13はアルキル基又はアリール基を表し、R11又はR12と、R13とが連結して環状エーテルを形成してもよく、R14は水素原子又はメチル基を表し、X1は単結合又は二価の連結基を表し、R15は置換基を表し、nは0~4の整数を表す。
式A2中、R21及びR22はそれぞれ独立に、水素原子、アルキル基又はアリール基を表し、少なくともR21及びR22のいずれか一方がアルキル基又はアリール基であり、R23はアルキル基又はアリール基を表し、R21又はR22と、R23とが連結して環状エーテルを形成してもよく、R24はそれぞれ独立に、ヒドロキシ基、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アリール基、アラルキル基、アルコキシカルボニル基、ヒドロキシアルキル基、アリールカルボニル基、アリールオキシカルボニル基又はシクロアルキル基を表し、mは0~3の整数を表す。
式A3中、R31及びR32はそれぞれ独立に、水素原子、アルキル基又はアリール基を表し、少なくともR31及びR32のいずれか一方がアルキル基又はアリール基であり、R33はアルキル基又はアリール基を表し、R31又はR32と、R33とが連結して環状エーテルを形成してもよく、R34は水素原子又はメチル基を表し、X0は単結合又はアリーレン基を表し、Yは-S-、又は-O-を表す。 In Formula A1, R 11 and R 12 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 11 and R 12 is an alkyl group or an aryl group, and R 13 is an alkyl group or Represents an aryl group, R 11 or R 12 and R 13 may be linked to form a cyclic ether, R 14 represents a hydrogen atom or a methyl group, and X 1 represents a single bond or a divalent linking group R 15 represents a substituent, and n represents an integer of 0 to 4.
In Formula A2, R 21 and R 22 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 21 and R 22 is an alkyl group or an aryl group, and R 23 is an alkyl group or Represents an aryl group, R 21 or R 22 and R 23 may be linked to form a cyclic ether, and R 24 is each independently a hydroxy group, a halogen atom, an alkyl group, an alkoxy group, an alkenyl group, Represents an aryl group, an aralkyl group, an alkoxycarbonyl group, a hydroxyalkyl group, an arylcarbonyl group, an aryloxycarbonyl group or a cycloalkyl group, and m represents an integer of 0 to 3.
In Formula A3, R 31 and R 32 each independently represent a hydrogen atom, an alkyl group or an aryl group, at least one of R 31 and R 32 is an alkyl group or an aryl group, and R 33 is an alkyl group or Represents an aryl group, R 31 or R 32 and R 33 may be linked to form a cyclic ether, R 34 represents a hydrogen atom or a methyl group, X 0 represents a single bond or an arylene group, Y represents -S- or -O-.
式A2中、R21及びR22はそれぞれ独立に、水素原子、アルキル基又はアリール基を表し、少なくともR21及びR22のいずれか一方がアルキル基又はアリール基であり、R23はアルキル基又はアリール基を表し、R21又はR22と、R23とが連結して環状エーテルを形成してもよく、R24はそれぞれ独立に、ヒドロキシ基、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アリール基、アラルキル基、アルコキシカルボニル基、ヒドロキシアルキル基、アリールカルボニル基、アリールオキシカルボニル基又はシクロアルキル基を表し、mは0~3の整数を表す。
式A3中、R31及びR32はそれぞれ独立に、水素原子、アルキル基又はアリール基を表し、少なくともR31及びR32のいずれか一方がアルキル基又はアリール基であり、R33はアルキル基又はアリール基を表し、R31又はR32と、R33とが連結して環状エーテルを形成してもよく、R34は水素原子又はメチル基を表し、X0は単結合又はアリーレン基を表し、Yは-S-、又は-O-を表す。 In Formula A1, R 11 and R 12 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 11 and R 12 is an alkyl group or an aryl group, and R 13 is an alkyl group or Represents an aryl group, R 11 or R 12 and R 13 may be linked to form a cyclic ether, R 14 represents a hydrogen atom or a methyl group, and X 1 represents a single bond or a divalent linking group R 15 represents a substituent, and n represents an integer of 0 to 4.
In Formula A2, R 21 and R 22 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 21 and R 22 is an alkyl group or an aryl group, and R 23 is an alkyl group or Represents an aryl group, R 21 or R 22 and R 23 may be linked to form a cyclic ether, and R 24 is each independently a hydroxy group, a halogen atom, an alkyl group, an alkoxy group, an alkenyl group, Represents an aryl group, an aralkyl group, an alkoxycarbonyl group, a hydroxyalkyl group, an arylcarbonyl group, an aryloxycarbonyl group or a cycloalkyl group, and m represents an integer of 0 to 3.
In Formula A3, R 31 and R 32 each independently represent a hydrogen atom, an alkyl group or an aryl group, at least one of R 31 and R 32 is an alkyl group or an aryl group, and R 33 is an alkyl group or Represents an aryl group, R 31 or R 32 and R 33 may be linked to form a cyclic ether, R 34 represents a hydrogen atom or a methyl group, X 0 represents a single bond or an arylene group, Y represents -S- or -O-.
-式A1により表される構成単位の好ましい態様-
式A1中、R11又はR12がアルキル基の場合、炭素数1~10のアルキル基が好ましい。R11又はR12がアリール基の場合、フェニル基が好ましい。R11及びR12は、それぞれ、水素原子又は炭素数1~4のアルキル基が好ましい。
式A1中、R13は、アルキル基又はアリール基を表し、炭素数1~10のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましい。
また、R11~R13におけるアルキル基及びアリール基は、置換基を有していてもよい。
式A1中、R11又はR12と、R13とが連結して環状エーテルを形成してもよく、R11又はR12と、R13とが連結して環状エーテルを形成することが好ましい。環状エーテルの環員数は特に制限はないが、5又は6であることが好ましく、5であることがより好ましい。
式A1中、X1は単結合又は二価の連結基を表し、単結合又はアルキレン基、-C(=O)O-、-C(=O)NRN-、-O-又はこれらの組み合わせが好ましく、単結合がより好ましい。アルキレン基は、直鎖状でも分岐を有していても環状構造を有していてもよく、置換基を有していてもよい。アルキレン基の炭素数は1~10が好ましく、1~4がより好ましい。X1が-C(=O)O-を含む場合、-C(=O)O-に含まれる炭素原子と、R14が結合した炭素原子とが直接結合する態様が好ましい。X1が-C(=O)NRN-を含む場合、-C(=O)NRN-に含まれる炭素原子と、R14が結合した炭素原子とが直接結合する態様が好ましい。RNはアルキル基又は水素原子を表し、炭素数1~4のアルキル基又は水素原子が好ましく、水素原子がより好ましい。
式A1中、R11~R13を含む基と、X1とは、互いにパラ位で結合することが好ましい。
式A1中、R15は置換基を表し、アルキル基又はハロゲン原子が好ましい。アルキル基の炭素数は、1~10が好ましく、1~4がより好ましい。
式A1中、nは0~4の整数を表し、0又は1が好ましく、0がより好ましい。 -Preferred embodiment of the structural unit represented by Formula A1-
In the formula A1, when R 11 or R 12 is an alkyl group, an alkyl group having 1 to 10 carbon atoms is preferable. When R 11 or R 12 is an aryl group, a phenyl group is preferred. Each of R 11 and R 12 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
In the formula A1, R 13 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms.
Further, the alkyl group and the aryl group in R 11 to R 13 may have a substituent.
In Formula A1, R 11 or R 12 and R 13 may be linked to form a cyclic ether, and it is preferable that R 11 or R 12 and R 13 be linked to form a cyclic ether. The number of ring members of the cyclic ether is not particularly limited, but is preferably 5 or 6, and more preferably 5.
In the formula A1, X 1 represents a single bond or a divalent linking group, a single bond or an alkylene group, —C (= O) O—, —C (= O) NR N —, —O—, or a combination thereof. Is preferable, and a single bond is more preferable. The alkylene group may have a linear structure, a branched structure or a cyclic structure, and may have a substituent. The carbon number of the alkylene group is preferably 1 to 10, more preferably 1 to 4. When X 1 contains —C (= O) O—, a mode in which the carbon atom contained in —C (= O) O— and the carbon atom to which R 14 is bonded is directly bonded is preferable. When containing, -C (= O) NR N - - X 1 is -C (= O) NR N and carbon atoms contained in a mode in which the carbon atom to which R 14 is bonded is directly bonded is preferable. R N represents an alkyl group or a hydrogen atom, preferably an alkyl group or a hydrogen atom having 1 to 4 carbon atoms, more preferably a hydrogen atom.
In the formula A1, the group containing R 11 to R 13 and X 1 are preferably bonded to each other at the para position.
In the formula A1, R 15 represents a substituent, and is preferably an alkyl group or a halogen atom. The number of carbon atoms of the alkyl group is preferably 1 to 10, more preferably 1 to 4.
In the formula A1, n represents an integer of 0 to 4, preferably 0 or 1, and more preferably 0.
式A1中、R11又はR12がアルキル基の場合、炭素数1~10のアルキル基が好ましい。R11又はR12がアリール基の場合、フェニル基が好ましい。R11及びR12は、それぞれ、水素原子又は炭素数1~4のアルキル基が好ましい。
式A1中、R13は、アルキル基又はアリール基を表し、炭素数1~10のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましい。
また、R11~R13におけるアルキル基及びアリール基は、置換基を有していてもよい。
式A1中、R11又はR12と、R13とが連結して環状エーテルを形成してもよく、R11又はR12と、R13とが連結して環状エーテルを形成することが好ましい。環状エーテルの環員数は特に制限はないが、5又は6であることが好ましく、5であることがより好ましい。
式A1中、X1は単結合又は二価の連結基を表し、単結合又はアルキレン基、-C(=O)O-、-C(=O)NRN-、-O-又はこれらの組み合わせが好ましく、単結合がより好ましい。アルキレン基は、直鎖状でも分岐を有していても環状構造を有していてもよく、置換基を有していてもよい。アルキレン基の炭素数は1~10が好ましく、1~4がより好ましい。X1が-C(=O)O-を含む場合、-C(=O)O-に含まれる炭素原子と、R14が結合した炭素原子とが直接結合する態様が好ましい。X1が-C(=O)NRN-を含む場合、-C(=O)NRN-に含まれる炭素原子と、R14が結合した炭素原子とが直接結合する態様が好ましい。RNはアルキル基又は水素原子を表し、炭素数1~4のアルキル基又は水素原子が好ましく、水素原子がより好ましい。
式A1中、R11~R13を含む基と、X1とは、互いにパラ位で結合することが好ましい。
式A1中、R15は置換基を表し、アルキル基又はハロゲン原子が好ましい。アルキル基の炭素数は、1~10が好ましく、1~4がより好ましい。
式A1中、nは0~4の整数を表し、0又は1が好ましく、0がより好ましい。 -Preferred embodiment of the structural unit represented by Formula A1-
In the formula A1, when R 11 or R 12 is an alkyl group, an alkyl group having 1 to 10 carbon atoms is preferable. When R 11 or R 12 is an aryl group, a phenyl group is preferred. Each of R 11 and R 12 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
In the formula A1, R 13 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms.
Further, the alkyl group and the aryl group in R 11 to R 13 may have a substituent.
In Formula A1, R 11 or R 12 and R 13 may be linked to form a cyclic ether, and it is preferable that R 11 or R 12 and R 13 be linked to form a cyclic ether. The number of ring members of the cyclic ether is not particularly limited, but is preferably 5 or 6, and more preferably 5.
In the formula A1, X 1 represents a single bond or a divalent linking group, a single bond or an alkylene group, —C (= O) O—, —C (= O) NR N —, —O—, or a combination thereof. Is preferable, and a single bond is more preferable. The alkylene group may have a linear structure, a branched structure or a cyclic structure, and may have a substituent. The carbon number of the alkylene group is preferably 1 to 10, more preferably 1 to 4. When X 1 contains —C (= O) O—, a mode in which the carbon atom contained in —C (= O) O— and the carbon atom to which R 14 is bonded is directly bonded is preferable. When containing, -C (= O) NR N - - X 1 is -C (= O) NR N and carbon atoms contained in a mode in which the carbon atom to which R 14 is bonded is directly bonded is preferable. R N represents an alkyl group or a hydrogen atom, preferably an alkyl group or a hydrogen atom having 1 to 4 carbon atoms, more preferably a hydrogen atom.
In the formula A1, the group containing R 11 to R 13 and X 1 are preferably bonded to each other at the para position.
In the formula A1, R 15 represents a substituent, and is preferably an alkyl group or a halogen atom. The number of carbon atoms of the alkyl group is preferably 1 to 10, more preferably 1 to 4.
In the formula A1, n represents an integer of 0 to 4, preferably 0 or 1, and more preferably 0.
式A1中、R14は水素原子又はメチル基を表し、重合体A1のガラス転移温度(Tg)をより低くし得るという観点から、水素原子であることが好ましい。
より具体的には、重合体A1に含まれる構成単位Aの全含有量に対し、式A1におけるR14が水素原子である構成単位は20質量%以上であることが好ましい。
なお、構成単位A中の、式A1におけるR14が水素原子である構成単位の含有量(含有割合:質量比)は、13C-核磁気共鳴スペクトル(NMR)測定から常法により算出されるピーク強度の強度比により確認することができる。 In the formula A1, R 14 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom from the viewpoint that the glass transition temperature (Tg) of the polymer A1 can be further reduced.
More specifically, the content of the structural unit in which R 14 in the formula A1 is a hydrogen atom is preferably 20% by mass or more based on the total content of the structural units A contained in the polymer A1.
The content (content ratio: mass ratio) of the structural unit in the structural unit A in which R 14 in the formula A1 is a hydrogen atom is calculated from a 13 C-nuclear magnetic resonance spectrum (NMR) measurement by an ordinary method. It can be confirmed from the peak intensity ratio.
より具体的には、重合体A1に含まれる構成単位Aの全含有量に対し、式A1におけるR14が水素原子である構成単位は20質量%以上であることが好ましい。
なお、構成単位A中の、式A1におけるR14が水素原子である構成単位の含有量(含有割合:質量比)は、13C-核磁気共鳴スペクトル(NMR)測定から常法により算出されるピーク強度の強度比により確認することができる。 In the formula A1, R 14 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom from the viewpoint that the glass transition temperature (Tg) of the polymer A1 can be further reduced.
More specifically, the content of the structural unit in which R 14 in the formula A1 is a hydrogen atom is preferably 20% by mass or more based on the total content of the structural units A contained in the polymer A1.
The content (content ratio: mass ratio) of the structural unit in the structural unit A in which R 14 in the formula A1 is a hydrogen atom is calculated from a 13 C-nuclear magnetic resonance spectrum (NMR) measurement by an ordinary method. It can be confirmed from the peak intensity ratio.
式A1で表される構成単位の中でも、パターン形状の変形抑制の観点から、下記式A1-2で表される構成単位がより好ましい。
中 で も Among the structural units represented by the formula A1, a structural unit represented by the following formula A1-2 is more preferable from the viewpoint of suppressing deformation of the pattern shape.
式A1-2中、RB4は水素原子又はメチル基を表し、RB5~RB11はそれぞれ独立に、水素原子又は炭素数1~4のアルキル基を表し、RB12は置換基を表し、nは0~4の整数を表す。
式A1-2中、RB4は水素原子が好ましい。
式A1-2中、RB5~RB11は、水素原子が好ましい。
式A1-2中、RB12は置換基を表し、アルキル基又はハロゲン原子が好ましい。アルキル基の炭素数は、1~10が好ましく、1~4がより好ましい。
式A1-2中、nは0~4の整数を表し、0又は1が好ましく、0がより好ましい。 In Formula A1-2, R B4 represents a hydrogen atom or a methyl group, R B5 to R B11 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R B12 represents a substituent, and n Represents an integer of 0 to 4.
In the formula A1-2, R B4 is preferably a hydrogen atom.
In formula A1-2, R B5 to R B11 are preferably hydrogen atoms.
In the formula A1-2, R B12 represents a substituent, an alkyl group or a halogen atom. The number of carbon atoms of the alkyl group is preferably 1 to 10, more preferably 1 to 4.
In the formula A1-2, n represents an integer of 0 to 4, preferably 0 or 1, and more preferably 0.
式A1-2中、RB4は水素原子が好ましい。
式A1-2中、RB5~RB11は、水素原子が好ましい。
式A1-2中、RB12は置換基を表し、アルキル基又はハロゲン原子が好ましい。アルキル基の炭素数は、1~10が好ましく、1~4がより好ましい。
式A1-2中、nは0~4の整数を表し、0又は1が好ましく、0がより好ましい。 In Formula A1-2, R B4 represents a hydrogen atom or a methyl group, R B5 to R B11 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R B12 represents a substituent, and n Represents an integer of 0 to 4.
In the formula A1-2, R B4 is preferably a hydrogen atom.
In formula A1-2, R B5 to R B11 are preferably hydrogen atoms.
In the formula A1-2, R B12 represents a substituent, an alkyl group or a halogen atom. The number of carbon atoms of the alkyl group is preferably 1 to 10, more preferably 1 to 4.
In the formula A1-2, n represents an integer of 0 to 4, preferably 0 or 1, and more preferably 0.
式A1で表される構成単位の好ましい具体例としては、下記の構成単位が例示できる。なお、下記の構成単位におけるRB4は水素原子又はメチル基を表す。
Preferred specific examples of the structural unit represented by Formula A1 include the following structural units. Incidentally, R B4 in the structural unit of the following represents a hydrogen atom or a methyl group.
-式A2により表される構成単位の好ましい態様-
式A2中、R21及びR22がアルキル基の場合、炭素数1~10のアルキル基が好ましい。R21及びR22がアリール基の場合、フェニル基が好ましい。R21及びR22は、それぞれ、水素原子又は炭素数1~4のアルキル基が好ましく、一方が水素原子であり、他方が炭素数1~4のアルキル基であることがより好ましい。
上記一般式A2中、R23はアルキル基又はアリール基を表し、炭素数1~10のアルキル基が好ましく、1~6のアルキル基がより好ましい。
R21又はR22と、R23とが連結して環状エーテルを形成してもよい。
式A2中、R24はそれぞれ独立に、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基であることが好ましい。R24は、R24と同様の基により更に置換されていてもよい。
式A2中、mは1又は2であることが好ましく、1であることがより好ましい。 -Preferred embodiment of the structural unit represented by Formula A2-
In the formula A2, when R 21 and R 22 are an alkyl group, an alkyl group having 1 to 10 carbon atoms is preferable. When R 21 and R 22 are an aryl group, a phenyl group is preferred. Each of R 21 and R 22 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, more preferably one is a hydrogen atom and the other is an alkyl group having 1 to 4 carbon atoms.
In the general formula A2, R 23 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms.
R 21 or R 22 and R 23 may be linked to form a cyclic ether.
In the formula A2, R 24 is preferably each independently an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. R 24 may be further substituted by the same group as R 24 .
In the formula A2, m is preferably 1 or 2, and more preferably 1.
式A2中、R21及びR22がアルキル基の場合、炭素数1~10のアルキル基が好ましい。R21及びR22がアリール基の場合、フェニル基が好ましい。R21及びR22は、それぞれ、水素原子又は炭素数1~4のアルキル基が好ましく、一方が水素原子であり、他方が炭素数1~4のアルキル基であることがより好ましい。
上記一般式A2中、R23はアルキル基又はアリール基を表し、炭素数1~10のアルキル基が好ましく、1~6のアルキル基がより好ましい。
R21又はR22と、R23とが連結して環状エーテルを形成してもよい。
式A2中、R24はそれぞれ独立に、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基であることが好ましい。R24は、R24と同様の基により更に置換されていてもよい。
式A2中、mは1又は2であることが好ましく、1であることがより好ましい。 -Preferred embodiment of the structural unit represented by Formula A2-
In the formula A2, when R 21 and R 22 are an alkyl group, an alkyl group having 1 to 10 carbon atoms is preferable. When R 21 and R 22 are an aryl group, a phenyl group is preferred. Each of R 21 and R 22 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, more preferably one is a hydrogen atom and the other is an alkyl group having 1 to 4 carbon atoms.
In the general formula A2, R 23 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms.
R 21 or R 22 and R 23 may be linked to form a cyclic ether.
In the formula A2, R 24 is preferably each independently an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. R 24 may be further substituted by the same group as R 24 .
In the formula A2, m is preferably 1 or 2, and more preferably 1.
式A2で表される構成単位の好ましい具体例としては、下記の構成単位が例示できる。
好 ま し い Preferable specific examples of the structural unit represented by Formula A2 include the following structural units.
-式A3により表される構成単位の好ましい態様-
式A3中、R31又はR32がアルキル基の場合、炭素数は1~10のアルキル基が好ましい。R31又はR32がアリール基の場合、フェニル基が好ましい。R31及びR32は、それぞれ、水素原子又は炭素数1~4のアルキル基が好ましい。
式A3中、R33は、アルキル基又はアリール基を表し、炭素数1~10のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましい。
また、R31~R33におけるアルキル基及びアリール基は、置換基を有していてもよい。
式A3中、R31又はR32と、R33とが連結して環状エーテルを形成してもよく、R31又はR32と、R33とが連結して環状エーテルを形成することが好ましい。環状エーテルの環員数は特に制限はないが、5又は6であることが好ましく、5であることがより好ましい。
式A3中、X0は単結合又はアリーレン基を表し、単結合が好ましい。アリーレン基は、置換基を有していてもよい。
式A3中、Yは、-S-、又は-O-を表し、露光感度の観点から、-O-が好ましい。 -Preferred embodiment of the structural unit represented by Formula A3-
In the formula A3, when R 31 or R 32 is an alkyl group, an alkyl group having 1 to 10 carbon atoms is preferable. When R 31 or R 32 is an aryl group, a phenyl group is preferred. Each of R 31 and R 32 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
In Formula A3, R 33 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms.
Further, the alkyl group and the aryl group in R 31 to R 33 may have a substituent.
In Formula A3, R 31 or R 32 and R 33 may be linked to form a cyclic ether, and it is preferable that R 31 or R 32 and R 33 be linked to form a cyclic ether. The number of ring members of the cyclic ether is not particularly limited, but is preferably 5 or 6, and more preferably 5.
In Formula A3, X 0 represents a single bond or an arylene group, and a single bond is preferable. The arylene group may have a substituent.
In Formula A3, Y represents —S— or —O—, and is preferably —O— from the viewpoint of exposure sensitivity.
式A3中、R31又はR32がアルキル基の場合、炭素数は1~10のアルキル基が好ましい。R31又はR32がアリール基の場合、フェニル基が好ましい。R31及びR32は、それぞれ、水素原子又は炭素数1~4のアルキル基が好ましい。
式A3中、R33は、アルキル基又はアリール基を表し、炭素数1~10のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましい。
また、R31~R33におけるアルキル基及びアリール基は、置換基を有していてもよい。
式A3中、R31又はR32と、R33とが連結して環状エーテルを形成してもよく、R31又はR32と、R33とが連結して環状エーテルを形成することが好ましい。環状エーテルの環員数は特に制限はないが、5又は6であることが好ましく、5であることがより好ましい。
式A3中、X0は単結合又はアリーレン基を表し、単結合が好ましい。アリーレン基は、置換基を有していてもよい。
式A3中、Yは、-S-、又は-O-を表し、露光感度の観点から、-O-が好ましい。 -Preferred embodiment of the structural unit represented by Formula A3-
In the formula A3, when R 31 or R 32 is an alkyl group, an alkyl group having 1 to 10 carbon atoms is preferable. When R 31 or R 32 is an aryl group, a phenyl group is preferred. Each of R 31 and R 32 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
In Formula A3, R 33 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms.
Further, the alkyl group and the aryl group in R 31 to R 33 may have a substituent.
In Formula A3, R 31 or R 32 and R 33 may be linked to form a cyclic ether, and it is preferable that R 31 or R 32 and R 33 be linked to form a cyclic ether. The number of ring members of the cyclic ether is not particularly limited, but is preferably 5 or 6, and more preferably 5.
In Formula A3, X 0 represents a single bond or an arylene group, and a single bond is preferable. The arylene group may have a substituent.
In Formula A3, Y represents —S— or —O—, and is preferably —O— from the viewpoint of exposure sensitivity.
上記式A3で表される構成単位は、酸分解性基で保護されたカルボキシ基を有する構成単位である。重合体A1が式A3で表される構成単位を含むことで、パターン形成時の感度が優れ、また、解像度がより優れる。
式A3中、R34は水素原子又はメチル基を表し、重合体A1のTgをより低くし得るという観点から、水素原子であることが好ましい。
より具体的には、重合体A1に含まれる式A3で表される構成単位の全量に対し、式A3におけるR34が水素原子である構成単位は20質量%以上であることが好ましい。
なお、式A3で表される構成単位中の、式A1におけるR34が水素原子である構成単位の含有量(含有割合:質量比)は、13C-核磁気共鳴スペクトル(NMR)測定から常法により算出されるピーク強度の強度比により確認することができる。 The structural unit represented by the formula A3 is a structural unit having a carboxy group protected by an acid-decomposable group. When the polymer A1 contains the structural unit represented by the formula A3, the sensitivity during pattern formation is excellent, and the resolution is more excellent.
In the formula A3, R 34 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom from the viewpoint that the Tg of the polymer A1 can be further reduced.
More specifically, the amount of the structural unit in which R 34 in the formula A3 is a hydrogen atom is preferably 20% by mass or more based on the total amount of the structural unit represented by the formula A3 contained in the polymer A1.
Incidentally, in the structural unit represented by the formula A3, the content of the structural unit R 34 is a hydrogen atom in the formula A1 (content: weight ratio), 13 C-nuclear magnetic resonance spectrum (NMR) normal from the measurement It can be confirmed by the intensity ratio of the peak intensity calculated by the method.
式A3中、R34は水素原子又はメチル基を表し、重合体A1のTgをより低くし得るという観点から、水素原子であることが好ましい。
より具体的には、重合体A1に含まれる式A3で表される構成単位の全量に対し、式A3におけるR34が水素原子である構成単位は20質量%以上であることが好ましい。
なお、式A3で表される構成単位中の、式A1におけるR34が水素原子である構成単位の含有量(含有割合:質量比)は、13C-核磁気共鳴スペクトル(NMR)測定から常法により算出されるピーク強度の強度比により確認することができる。 The structural unit represented by the formula A3 is a structural unit having a carboxy group protected by an acid-decomposable group. When the polymer A1 contains the structural unit represented by the formula A3, the sensitivity during pattern formation is excellent, and the resolution is more excellent.
In the formula A3, R 34 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom from the viewpoint that the Tg of the polymer A1 can be further reduced.
More specifically, the amount of the structural unit in which R 34 in the formula A3 is a hydrogen atom is preferably 20% by mass or more based on the total amount of the structural unit represented by the formula A3 contained in the polymer A1.
Incidentally, in the structural unit represented by the formula A3, the content of the structural unit R 34 is a hydrogen atom in the formula A1 (content: weight ratio), 13 C-nuclear magnetic resonance spectrum (NMR) normal from the measurement It can be confirmed by the intensity ratio of the peak intensity calculated by the method.
式A3で表される構成単位の中でも、酸分解性基で保護された酸基を有する構成単位として、下記式Aで表される構成単位が、パターン形成時の露光感度を更に高める観点からより好ましい。
Among the structural units represented by the formula A3, as a structural unit having an acid group protected by an acid-decomposable group, the structural unit represented by the following formula A is more preferred from the viewpoint of further increasing the exposure sensitivity during pattern formation. preferable.
式A中、R31、R32、R33、R34及びX0はそれぞれ、式A3中のR31、R32、R33、R34及びX0と同義であり、好ましい態様も同様である。
In Formula A, R 31 , R 32 , R 33 , R 34 and X 0 have the same meanings as R 31 , R 32 , R 33 , R 34 and X 0 in Formula A3, respectively, and the preferred embodiments are also the same. .
式A3で表される構成単位の中でも、下記式A3-3で表される構成単位が、パターン形成時の感度を更に高める観点からより好ましい。
構成 Among the structural units represented by the formula A3, the structural unit represented by the following formula A3-3 is more preferable from the viewpoint of further increasing the sensitivity during pattern formation.
式A3-3中、R34は水素原子又はメチル基を表し、R35~R41はそれぞれ独立に、水素原子又は炭素数1~4のアルキル基を表す。
式A3-3中、R34は水素原子が好ましい。
式A3-3中、R35~R41は、水素原子が好ましい。 In Formula A3-3, R 34 represents a hydrogen atom or a methyl group, and R 35 to R 41 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
In the formula A3-3, R 34 is preferably a hydrogen atom.
In Formula A3-3, R 35 to R 41 are preferably a hydrogen atom.
式A3-3中、R34は水素原子が好ましい。
式A3-3中、R35~R41は、水素原子が好ましい。 In Formula A3-3, R 34 represents a hydrogen atom or a methyl group, and R 35 to R 41 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
In the formula A3-3, R 34 is preferably a hydrogen atom.
In Formula A3-3, R 35 to R 41 are preferably a hydrogen atom.
式A3で表される、酸分解性基で保護されたカルボキシ基を有する構成単位の好ましい具体例としては、下記の構成単位が例示できる。なお、下記の構成単位におけるR34は水素原子又はメチル基を表す。
Preferred specific examples of the structural unit having a carboxy group protected by an acid-decomposable group represented by the formula A3 include the following structural units. Incidentally, R 34 in the structural unit of the following represents a hydrogen atom or a methyl group.
重合体A1に含まれる構成単位Aは、1種であっても、2種以上であってもよい。
重合体A1における構成単位Aの含有量は、重合体A1の全質量に対して、20質量%以上であることが好ましく、20質量%~90質量%であることがより好ましく、30質量%~70質量%であることが更に好ましい。
重合体A1における構成単位Aの含有量(含有割合:質量比)は、13C-NMR測定から常法により算出されるピーク強度の強度比により確認することができる。
また、全ての重合体成分を構成単位(モノマー単位)に分解したうえで、構成単位Aの割合は、重合体成分の全質量に対して、5質量%~80質量%であることが好ましく、10質量%~80質量%であることがより好ましく、30質量%~70質量%であることが特に好ましい。 The structural unit A contained in the polymer A1 may be one type or two or more types.
The content of the structural unit A in the polymer A1 is preferably 20% by mass or more, more preferably 20% by mass to 90% by mass, and more preferably 30% by mass to the total mass of the polymer A1. More preferably, it is 70% by mass.
The content (content ratio: mass ratio) of the structural unit A in the polymer A1 can be confirmed by an intensity ratio of peak intensities calculated by a conventional method from 13 C-NMR measurement.
Further, after all the polymer components are decomposed into constituent units (monomer units), the ratio of the constituent unit A is preferably 5% by mass to 80% by mass with respect to the total mass of the polymer components. It is more preferably from 10% by mass to 80% by mass, particularly preferably from 30% by mass to 70% by mass.
重合体A1における構成単位Aの含有量は、重合体A1の全質量に対して、20質量%以上であることが好ましく、20質量%~90質量%であることがより好ましく、30質量%~70質量%であることが更に好ましい。
重合体A1における構成単位Aの含有量(含有割合:質量比)は、13C-NMR測定から常法により算出されるピーク強度の強度比により確認することができる。
また、全ての重合体成分を構成単位(モノマー単位)に分解したうえで、構成単位Aの割合は、重合体成分の全質量に対して、5質量%~80質量%であることが好ましく、10質量%~80質量%であることがより好ましく、30質量%~70質量%であることが特に好ましい。 The structural unit A contained in the polymer A1 may be one type or two or more types.
The content of the structural unit A in the polymer A1 is preferably 20% by mass or more, more preferably 20% by mass to 90% by mass, and more preferably 30% by mass to the total mass of the polymer A1. More preferably, it is 70% by mass.
The content (content ratio: mass ratio) of the structural unit A in the polymer A1 can be confirmed by an intensity ratio of peak intensities calculated by a conventional method from 13 C-NMR measurement.
Further, after all the polymer components are decomposed into constituent units (monomer units), the ratio of the constituent unit A is preferably 5% by mass to 80% by mass with respect to the total mass of the polymer components. It is more preferably from 10% by mass to 80% by mass, particularly preferably from 30% by mass to 70% by mass.
(構成単位B)
上記重合体A1は、酸基を有する構成単位(構成単位B)を含むことが好ましい。
構成単位Bは、保護基で保護されていない酸基、例えば、酸分解性基で保護されていない酸基、すなわち、保護基を有さない酸基を有する構成単位である。重合体A1が構成単位Bを含むことで、パターン形成時の感度が良好となり、パターン露光後の現像工程においてアルカリ性の現像液に溶けやすくなり、現像時間の短縮化を図ることができる。
本明細書における酸基とは、pKaが12以下のプロトン解離性基を意味する。酸基は、通常、酸基を形成しうるモノマーを用いて、酸基を有する構成単位(構成単位B)として、重合体に組み込まれる。感度向上の観点から、酸基のpKaは、10以下が好ましく、6以下がより好ましい。また、酸基のpKaは、-5以上であることが好ましい。 (Structural unit B)
The polymer A1 preferably contains a structural unit having an acid group (structural unit B).
The structural unit B is a structural unit having an acid group not protected by a protecting group, for example, an acid group not protected by an acid-decomposable group, that is, an acid group having no protecting group. When the polymer A1 contains the structural unit B, the sensitivity at the time of pattern formation is improved, and the polymer A1 is easily dissolved in an alkaline developing solution in a developing step after pattern exposure, so that the development time can be reduced.
The acid group in the present specification means a proton dissociable group having a pKa of 12 or less. The acid group is usually incorporated into the polymer as a structural unit having an acid group (structural unit B) using a monomer capable of forming an acid group. In light of improvement in sensitivity, the pKa of the acid group is preferably equal to or less than 10 and more preferably equal to or less than 6. Further, the pKa of the acid group is preferably -5 or more.
上記重合体A1は、酸基を有する構成単位(構成単位B)を含むことが好ましい。
構成単位Bは、保護基で保護されていない酸基、例えば、酸分解性基で保護されていない酸基、すなわち、保護基を有さない酸基を有する構成単位である。重合体A1が構成単位Bを含むことで、パターン形成時の感度が良好となり、パターン露光後の現像工程においてアルカリ性の現像液に溶けやすくなり、現像時間の短縮化を図ることができる。
本明細書における酸基とは、pKaが12以下のプロトン解離性基を意味する。酸基は、通常、酸基を形成しうるモノマーを用いて、酸基を有する構成単位(構成単位B)として、重合体に組み込まれる。感度向上の観点から、酸基のpKaは、10以下が好ましく、6以下がより好ましい。また、酸基のpKaは、-5以上であることが好ましい。 (Structural unit B)
The polymer A1 preferably contains a structural unit having an acid group (structural unit B).
The structural unit B is a structural unit having an acid group not protected by a protecting group, for example, an acid group not protected by an acid-decomposable group, that is, an acid group having no protecting group. When the polymer A1 contains the structural unit B, the sensitivity at the time of pattern formation is improved, and the polymer A1 is easily dissolved in an alkaline developing solution in a developing step after pattern exposure, so that the development time can be reduced.
The acid group in the present specification means a proton dissociable group having a pKa of 12 or less. The acid group is usually incorporated into the polymer as a structural unit having an acid group (structural unit B) using a monomer capable of forming an acid group. In light of improvement in sensitivity, the pKa of the acid group is preferably equal to or less than 10 and more preferably equal to or less than 6. Further, the pKa of the acid group is preferably -5 or more.
上記酸基としては、カルボキシ基、スルホンアミド基、ホスホノ基、スルホ基、フェノール性水酸基、スルホニルイミド基等が例示される。中でも、カルボキ基及びフェノール性水酸基よりなる群から選ばれる少なくとも1種の酸基が好ましい。
重合体A1への酸基を有する構成単位の導入は、酸基を有するモノマーを共重合させること又は酸無水物構造を有するモノマーを共重合させ酸無水物を加水分解することで行うことができる。
構成単位Bである、酸基を有する構成単位は、スチレン化合物に由来する構成単位若しくはビニル化合物に由来する構成単位に対して酸基が置換した構成単位、又は、(メタ)アクリル酸に由来する構成単位であることがより好ましい。具体的には、カルボキシ基を有するモノマーとしては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、4-カルボキシスチレン等が挙げられ、フェノール性水酸基を有するモノマーとしてはp-ヒドロキシスチレン、4-ヒドロキシフェニルメタクリレート等が挙げられ、酸無水物構造を有するモノマーとしては、無水マレイン酸等が挙げられる。 Examples of the acid group include a carboxy group, a sulfonamide group, a phosphono group, a sulfo group, a phenolic hydroxyl group, and a sulfonylimide group. Among them, at least one acid group selected from the group consisting of a carboxy group and a phenolic hydroxyl group is preferable.
The introduction of the structural unit having an acid group into the polymer A1 can be performed by copolymerizing a monomer having an acid group or copolymerizing a monomer having an acid anhydride structure and hydrolyzing the acid anhydride. .
The structural unit having an acid group, which is the structural unit B, is a structural unit derived from a styrene compound or a structural unit derived from a vinyl compound in which an acid group is substituted, or derived from (meth) acrylic acid. More preferably, it is a structural unit. Specifically, examples of the monomer having a carboxy group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, and 4-carboxystyrene. Examples of the monomer having a phenolic hydroxyl group include p- Examples include hydroxystyrene and 4-hydroxyphenyl methacrylate, and examples of the monomer having an acid anhydride structure include maleic anhydride.
重合体A1への酸基を有する構成単位の導入は、酸基を有するモノマーを共重合させること又は酸無水物構造を有するモノマーを共重合させ酸無水物を加水分解することで行うことができる。
構成単位Bである、酸基を有する構成単位は、スチレン化合物に由来する構成単位若しくはビニル化合物に由来する構成単位に対して酸基が置換した構成単位、又は、(メタ)アクリル酸に由来する構成単位であることがより好ましい。具体的には、カルボキシ基を有するモノマーとしては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、4-カルボキシスチレン等が挙げられ、フェノール性水酸基を有するモノマーとしてはp-ヒドロキシスチレン、4-ヒドロキシフェニルメタクリレート等が挙げられ、酸無水物構造を有するモノマーとしては、無水マレイン酸等が挙げられる。 Examples of the acid group include a carboxy group, a sulfonamide group, a phosphono group, a sulfo group, a phenolic hydroxyl group, and a sulfonylimide group. Among them, at least one acid group selected from the group consisting of a carboxy group and a phenolic hydroxyl group is preferable.
The introduction of the structural unit having an acid group into the polymer A1 can be performed by copolymerizing a monomer having an acid group or copolymerizing a monomer having an acid anhydride structure and hydrolyzing the acid anhydride. .
The structural unit having an acid group, which is the structural unit B, is a structural unit derived from a styrene compound or a structural unit derived from a vinyl compound in which an acid group is substituted, or derived from (meth) acrylic acid. More preferably, it is a structural unit. Specifically, examples of the monomer having a carboxy group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, and 4-carboxystyrene. Examples of the monomer having a phenolic hydroxyl group include p- Examples include hydroxystyrene and 4-hydroxyphenyl methacrylate, and examples of the monomer having an acid anhydride structure include maleic anhydride.
構成単位Bとしては、カルボキシ基を有する構成単位、又は、フェノール性水酸基を有する構成単位が、パターン形成時の感度がより良好となるという観点から好ましい。
構成単位Bを形成しうる酸基を有するモノマーは既述の例に制限されない。 As the structural unit B, a structural unit having a carboxy group or a structural unit having a phenolic hydroxyl group is preferable from the viewpoint that sensitivity during pattern formation becomes better.
The monomer having an acid group capable of forming the structural unit B is not limited to the examples described above.
構成単位Bを形成しうる酸基を有するモノマーは既述の例に制限されない。 As the structural unit B, a structural unit having a carboxy group or a structural unit having a phenolic hydroxyl group is preferable from the viewpoint that sensitivity during pattern formation becomes better.
The monomer having an acid group capable of forming the structural unit B is not limited to the examples described above.
重合体A1に含まれる構成単位Bは、1種のみであっても、2種以上であってもよい。
重合体A1は、重合体A1の全質量に対し、酸基を有する構成単位(構成単位B)を0.1質量%~20質量%含むことが好ましく、0.5質量%~15質量%含むことがより好ましく、1質量%~10質量%含むことが更に好ましい。上記範囲であると、パターン形成性がより良好となる。
重合体A1における構成単位Bの含有量(含有割合:質量比)は、13C-NMR測定から常法により算出されるピーク強度の強度比により確認することができる。 The structural unit B contained in the polymer A1 may be only one type or two or more types.
The polymer A1 preferably contains 0.1% to 20% by mass, and preferably 0.5% to 15% by mass of a structural unit having an acid group (structural unit B) based on the total mass of the polymer A1. More preferably, the content is 1% by mass to 10% by mass. When it is in the above range, the pattern formability will be better.
The content (content ratio: mass ratio) of the structural unit B in the polymer A1 can be confirmed by an intensity ratio of peak intensities calculated by a conventional method from 13 C-NMR measurement.
重合体A1は、重合体A1の全質量に対し、酸基を有する構成単位(構成単位B)を0.1質量%~20質量%含むことが好ましく、0.5質量%~15質量%含むことがより好ましく、1質量%~10質量%含むことが更に好ましい。上記範囲であると、パターン形成性がより良好となる。
重合体A1における構成単位Bの含有量(含有割合:質量比)は、13C-NMR測定から常法により算出されるピーク強度の強度比により確認することができる。 The structural unit B contained in the polymer A1 may be only one type or two or more types.
The polymer A1 preferably contains 0.1% to 20% by mass, and preferably 0.5% to 15% by mass of a structural unit having an acid group (structural unit B) based on the total mass of the polymer A1. More preferably, the content is 1% by mass to 10% by mass. When it is in the above range, the pattern formability will be better.
The content (content ratio: mass ratio) of the structural unit B in the polymer A1 can be confirmed by an intensity ratio of peak intensities calculated by a conventional method from 13 C-NMR measurement.
(その他の構成単位)
重合体A1は、既述の構成単位A及び構成単位B以外の、他の構成単位(以下、構成単位Cと称することがある。)を、本開示に係る感光性転写材料の効果を損なわない範囲で含んでいてもよい。
構成単位Cを形成するモノマーとしては、特に制限はなく、例えば、スチレン類、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸環状アルキルエステル、(メタ)アクリル酸アリールエステル、不飽和ジカルボン酸ジエステル、ビシクロ不飽和化合物、マレイミド化合物、不飽和芳香族化合物、共役ジエン系化合物、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和ジカルボン酸無水物、脂肪族環式骨格を有する基、その他の不飽和化合物を挙げることができる。
構成単位Cを用いて、種類及び含有量の少なくともいずれかを調整することで、重合体A1の諸特性を調整することができる。特に、構成単位Cを適切に使用することで、重合体A1のガラス転移温度を容易に調整することができる。
ガラス転移温度を120℃以下とすることで、重合体A1を含有するポジ型感光性樹脂層は、転写性、及び仮支持体からの除去性を良好なレベルに維持しつつ、パターン形成時の解像度及び感度がより良好となる。
重合体A1は、構成単位Cを1種のみ含んでもよく、2種以上含んでいてもよい。 (Other constituent units)
The polymer A1 does not impair the effect of the photosensitive transfer material according to the present disclosure on other structural units (hereinafter, sometimes referred to as structural units C) other than the structural units A and B described above. It may be included in the range.
The monomer forming the structural unit C is not particularly limited, and examples thereof include styrenes, alkyl (meth) acrylate, cyclic alkyl (meth) acrylate, aryl (meth) acrylate, and unsaturated dicarboxylic diester. , Bicyclo unsaturated compounds, maleimide compounds, unsaturated aromatic compounds, conjugated diene compounds, unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated dicarboxylic anhydrides, groups having an aliphatic cyclic skeleton, other Saturated compounds can be mentioned.
Various characteristics of the polymer A1 can be adjusted by adjusting at least one of the type and the content using the structural unit C. In particular, by appropriately using the structural unit C, the glass transition temperature of the polymer A1 can be easily adjusted.
By setting the glass transition temperature to 120 ° C. or lower, the positive photosensitive resin layer containing the polymer A1 can maintain good transferability and removability from the temporary support at a favorable level, while maintaining good transferability. Better resolution and sensitivity.
The polymer A1 may include only one type of the structural unit C, or may include two or more types of the structural unit C.
重合体A1は、既述の構成単位A及び構成単位B以外の、他の構成単位(以下、構成単位Cと称することがある。)を、本開示に係る感光性転写材料の効果を損なわない範囲で含んでいてもよい。
構成単位Cを形成するモノマーとしては、特に制限はなく、例えば、スチレン類、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸環状アルキルエステル、(メタ)アクリル酸アリールエステル、不飽和ジカルボン酸ジエステル、ビシクロ不飽和化合物、マレイミド化合物、不飽和芳香族化合物、共役ジエン系化合物、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和ジカルボン酸無水物、脂肪族環式骨格を有する基、その他の不飽和化合物を挙げることができる。
構成単位Cを用いて、種類及び含有量の少なくともいずれかを調整することで、重合体A1の諸特性を調整することができる。特に、構成単位Cを適切に使用することで、重合体A1のガラス転移温度を容易に調整することができる。
ガラス転移温度を120℃以下とすることで、重合体A1を含有するポジ型感光性樹脂層は、転写性、及び仮支持体からの除去性を良好なレベルに維持しつつ、パターン形成時の解像度及び感度がより良好となる。
重合体A1は、構成単位Cを1種のみ含んでもよく、2種以上含んでいてもよい。 (Other constituent units)
The polymer A1 does not impair the effect of the photosensitive transfer material according to the present disclosure on other structural units (hereinafter, sometimes referred to as structural units C) other than the structural units A and B described above. It may be included in the range.
The monomer forming the structural unit C is not particularly limited, and examples thereof include styrenes, alkyl (meth) acrylate, cyclic alkyl (meth) acrylate, aryl (meth) acrylate, and unsaturated dicarboxylic diester. , Bicyclo unsaturated compounds, maleimide compounds, unsaturated aromatic compounds, conjugated diene compounds, unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated dicarboxylic anhydrides, groups having an aliphatic cyclic skeleton, other Saturated compounds can be mentioned.
Various characteristics of the polymer A1 can be adjusted by adjusting at least one of the type and the content using the structural unit C. In particular, by appropriately using the structural unit C, the glass transition temperature of the polymer A1 can be easily adjusted.
By setting the glass transition temperature to 120 ° C. or lower, the positive photosensitive resin layer containing the polymer A1 can maintain good transferability and removability from the temporary support at a favorable level, while maintaining good transferability. Better resolution and sensitivity.
The polymer A1 may include only one type of the structural unit C, or may include two or more types of the structural unit C.
構成単位Cは、具体的には、スチレン、tert-ブトキシスチレン、4-メチルスチレン、α-メチルスチレン、アセトキシスチレン、メトキシスチレン、エトキシスチレン、クロロスチレン、ビニル安息香酸メチル、ビニル安息香酸エチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸イソボルニル、アクリロニトリル、又は、エチレングリコールモノアセトアセテートモノ(メタ)アクリレートなどを重合して形成される構成単位を挙げることができる。その他、特開2004-264623号公報の段落0021~段落0024に記載の化合物を挙げることができる。
The structural unit C is, specifically, styrene, tert-butoxystyrene, 4-methylstyrene, α-methylstyrene, acetoxystyrene, methoxystyrene, ethoxystyrene, chlorostyrene, methyl vinylbenzoate, ethyl vinylbenzoate, ( Methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, ( Structural units formed by polymerizing benzyl (meth) acrylate, isobornyl (meth) acrylate, acrylonitrile, or ethylene glycol monoacetoacetate mono (meth) acrylate can be given. Other examples include compounds described in paragraphs 0021 to 0024 of JP-A-2004-264623.
また、構成単位Cとしては、芳香環を有する構成単位、又は、脂肪族環式骨格を有する構成単位が、得られる転写材料の電気特性を向上させる観点で好ましい。これら構成単位を形成するモノマーとして、具体的には、スチレン、tert-ブトキシスチレン、4-メチルスチレン、α-メチルスチレン、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニル、及び、(メタ)アクリル酸ベンジルが挙げられる。中でも、構成単位Cとしては、シクロヘキシル(メタ)アクリレート由来の構成単位が好ましく挙げられる。
As the structural unit C, a structural unit having an aromatic ring or a structural unit having an aliphatic cyclic skeleton is preferable from the viewpoint of improving the electrical characteristics of the obtained transfer material. Specific examples of monomers forming these structural units include styrene, tert-butoxystyrene, 4-methylstyrene, α-methylstyrene, dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate, and (meth) ) Isobornyl acrylate and benzyl (meth) acrylate. Among them, as the structural unit C, a structural unit derived from cyclohexyl (meth) acrylate is preferably exemplified.
また、構成単位Cを形成するモノマーとしては、例えば、(メタ)アクリル酸アルキルエステルが、密着性の観点で好ましい。中でも、炭素数4~12のアルキル基を有する(メタ)アクリル酸アルキルエステルが密着性の観点でより好ましい。具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル、及び、(メタ)アクリル酸2-エチルヘキシルが挙げられる。
モ ノ マ ー As the monomer forming the structural unit C, for example, an alkyl (meth) acrylate is preferable from the viewpoint of adhesion. Among them, alkyl (meth) acrylate having an alkyl group having 4 to 12 carbon atoms is more preferable from the viewpoint of adhesion. Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
構成単位Cの含有量は、重合体A1の全質量に対し、70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下が更に好ましい。含有量の下限値は、0質量%でもよいが、含有量は、1質量%以上であることが好ましく、5質量%以上であることがより好ましい。上記範囲であると、解像度及び密着性がより向上する。
The content of the structural unit C is preferably 70% by mass or less, more preferably 60% by mass or less, and still more preferably 50% by mass or less, based on the total mass of the polymer A1. The lower limit of the content may be 0% by mass, but the content is preferably 1% by mass or more, more preferably 5% by mass or more. When the content is in the above range, the resolution and the adhesion are further improved.
重合体A1が、構成単位Cとして、上記構成単位Bにおける酸基のエステルを有する構成単位を含むことも、現像液に対する溶解性、及び、上記ポジ型感光性樹脂層の物理物性を最適化する観点から好ましい。
中でも、重合体A1は、構成単位Bとして、カルボキシ基を有する構成単位を含み、更に、カルボン酸エステル基を含む構成単位Cを共重合成分として含むことが好ましく、例えば、(メタ)アクリル酸由来の構成単位Bと、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル又は(メタ)アクリル酸n-ブチル由来の構成単位(c)とを含む重合体がより好ましい。
以下、本開示における重合体A1の好ましい例を挙げるが、本開示は以下の例示に制限されない。なお、下記例示化合物における構成単位の比率、及び重量平均分子量は、好ましい物性を得るために適宜選択される。 The fact that the polymer A1 contains, as the structural unit C, a structural unit having an ester of the acid group in the structural unit B also optimizes solubility in a developer and physical properties of the positive photosensitive resin layer. Preferred from a viewpoint.
Above all, the polymer A1 preferably includes, as the structural unit B, a structural unit having a carboxy group, and further includes, as a copolymerization component, a structural unit C having a carboxylate ester group. And a structural unit (c) derived from cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate or n-butyl (meth) acrylate.
Hereinafter, preferable examples of the polymer A1 in the present disclosure will be described, but the present disclosure is not limited to the following examples. The ratio of the structural units and the weight average molecular weight in the following exemplified compounds are appropriately selected in order to obtain preferable physical properties.
中でも、重合体A1は、構成単位Bとして、カルボキシ基を有する構成単位を含み、更に、カルボン酸エステル基を含む構成単位Cを共重合成分として含むことが好ましく、例えば、(メタ)アクリル酸由来の構成単位Bと、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル又は(メタ)アクリル酸n-ブチル由来の構成単位(c)とを含む重合体がより好ましい。
以下、本開示における重合体A1の好ましい例を挙げるが、本開示は以下の例示に制限されない。なお、下記例示化合物における構成単位の比率、及び重量平均分子量は、好ましい物性を得るために適宜選択される。 The fact that the polymer A1 contains, as the structural unit C, a structural unit having an ester of the acid group in the structural unit B also optimizes solubility in a developer and physical properties of the positive photosensitive resin layer. Preferred from a viewpoint.
Above all, the polymer A1 preferably includes, as the structural unit B, a structural unit having a carboxy group, and further includes, as a copolymerization component, a structural unit C having a carboxylate ester group. And a structural unit (c) derived from cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate or n-butyl (meth) acrylate.
Hereinafter, preferable examples of the polymer A1 in the present disclosure will be described, but the present disclosure is not limited to the following examples. The ratio of the structural units and the weight average molecular weight in the following exemplified compounds are appropriately selected in order to obtain preferable physical properties.
(重合体A1のガラス転移温度:Tg)
本開示における重合体A1のガラス転移温度(Tg)は、転写性の観点、及び、上述の加熱工程における加熱温度を調節する観点から、90℃以下であることが好ましく、20℃以上60℃以下であることがより好ましく、30℃以上50℃以下であることが更に好ましい。 (Glass transition temperature of polymer A1: Tg)
The glass transition temperature (Tg) of the polymer A1 in the present disclosure is preferably 90 ° C. or less, and more preferably 20 ° C. or more and 60 ° C. or less from the viewpoint of transferability and adjusting the heating temperature in the above-described heating step. Is more preferable, and it is still more preferable that it is 30 to 50 degreeC.
本開示における重合体A1のガラス転移温度(Tg)は、転写性の観点、及び、上述の加熱工程における加熱温度を調節する観点から、90℃以下であることが好ましく、20℃以上60℃以下であることがより好ましく、30℃以上50℃以下であることが更に好ましい。 (Glass transition temperature of polymer A1: Tg)
The glass transition temperature (Tg) of the polymer A1 in the present disclosure is preferably 90 ° C. or less, and more preferably 20 ° C. or more and 60 ° C. or less from the viewpoint of transferability and adjusting the heating temperature in the above-described heating step. Is more preferable, and it is still more preferable that it is 30 to 50 degreeC.
重合体A1のTgを、既述の好ましい範囲に調整する方法としては、例えば、目的とする重合体A1の各構成単位の単独重合体のTgと各構成単位の質量比より、FOX式を指針にして、目的とする重合体A1のTgを制御方法が挙げられる。
例えば、共重合体に含まれる第1の構成単位の単独重合体のTgをTg1、第1の構成単位の共重合体における質量分率をW1とし、第2の構成単位の単独重合体のTgをTg2とし、第2の構成単位の共重合体における質量分率をW2としたときに、第1の構成単位と第2の構成単位とを含む共重合体のTg0(K:ケルビン)は、以下の式にしたがって推定することが可能である。
FOX式:1/Tg0=(W1/Tg1)+(W2/Tg2)
既述のFOX式を用いて、共重合体に含まれる各構成単位の種類と質量分率を調整して、所望のTgを有する共重合体を得ることができる。
また、重合体A1の重量平均分子量を調整することにより、重合体A1のTgを調整することも可能である。 As a method for adjusting the Tg of the polymer A1 to the above-described preferable range, for example, the FOX formula is used as a guideline based on the Tg of the homopolymer of each structural unit of the target polymer A1 and the mass ratio of each structural unit. Then, a method of controlling the Tg of the desired polymer A1 can be mentioned.
For example, the Tg of the homopolymer of the first structural unit contained in the copolymer is Tg1, the mass fraction in the copolymer of the first structural unit is W1, and the Tg of the homopolymer of the second structural unit is Tg1. And Tg2 (K: Kelvin) of the copolymer containing the first structural unit and the second structural unit, where Tg2 is the mass fraction of the second structural unit in the copolymer and W2 is It can be estimated according to the following equation:
FOX formula: 1 / Tg0 = (W1 / Tg1) + (W2 / Tg2)
By using the above-described FOX formula, the type and mass fraction of each structural unit contained in the copolymer can be adjusted to obtain a copolymer having a desired Tg.
Further, it is also possible to adjust the Tg of the polymer A1 by adjusting the weight average molecular weight of the polymer A1.
例えば、共重合体に含まれる第1の構成単位の単独重合体のTgをTg1、第1の構成単位の共重合体における質量分率をW1とし、第2の構成単位の単独重合体のTgをTg2とし、第2の構成単位の共重合体における質量分率をW2としたときに、第1の構成単位と第2の構成単位とを含む共重合体のTg0(K:ケルビン)は、以下の式にしたがって推定することが可能である。
FOX式:1/Tg0=(W1/Tg1)+(W2/Tg2)
既述のFOX式を用いて、共重合体に含まれる各構成単位の種類と質量分率を調整して、所望のTgを有する共重合体を得ることができる。
また、重合体A1の重量平均分子量を調整することにより、重合体A1のTgを調整することも可能である。 As a method for adjusting the Tg of the polymer A1 to the above-described preferable range, for example, the FOX formula is used as a guideline based on the Tg of the homopolymer of each structural unit of the target polymer A1 and the mass ratio of each structural unit. Then, a method of controlling the Tg of the desired polymer A1 can be mentioned.
For example, the Tg of the homopolymer of the first structural unit contained in the copolymer is Tg1, the mass fraction in the copolymer of the first structural unit is W1, and the Tg of the homopolymer of the second structural unit is Tg1. And Tg2 (K: Kelvin) of the copolymer containing the first structural unit and the second structural unit, where Tg2 is the mass fraction of the second structural unit in the copolymer and W2 is It can be estimated according to the following equation:
FOX formula: 1 / Tg0 = (W1 / Tg1) + (W2 / Tg2)
By using the above-described FOX formula, the type and mass fraction of each structural unit contained in the copolymer can be adjusted to obtain a copolymer having a desired Tg.
Further, it is also possible to adjust the Tg of the polymer A1 by adjusting the weight average molecular weight of the polymer A1.
(重合体A1の酸価)
重合体A1の酸価は、現像性及び転写性の観点から、0mgKOH/g以上200mgKOH/g以下であることが好ましく、0mgKOH/g以上100mgKOH/g以下であることがより好ましく、0mgKOH/g以上50mgKOH/g以下であることが更に好ましく、0mgKOH/g以上20mgKOH/g以下であることが特に好ましく、0mgKOH/g以上10mgKOH/g以下であることが最も好ましい。 (Acid value of polymer A1)
The acid value of the polymer A1 is preferably from 0 mgKOH / g to 200 mgKOH / g, more preferably from 0 mgKOH / g to 100 mgKOH / g, and more preferably from 0 mgKOH / g, from the viewpoint of developability and transferability. It is more preferably 50 mgKOH / g or less, particularly preferably 0 mgKOH / g or more and 20 mgKOH / g or less, most preferably 0 mgKOH / g or more and 10 mgKOH / g or less.
重合体A1の酸価は、現像性及び転写性の観点から、0mgKOH/g以上200mgKOH/g以下であることが好ましく、0mgKOH/g以上100mgKOH/g以下であることがより好ましく、0mgKOH/g以上50mgKOH/g以下であることが更に好ましく、0mgKOH/g以上20mgKOH/g以下であることが特に好ましく、0mgKOH/g以上10mgKOH/g以下であることが最も好ましい。 (Acid value of polymer A1)
The acid value of the polymer A1 is preferably from 0 mgKOH / g to 200 mgKOH / g, more preferably from 0 mgKOH / g to 100 mgKOH / g, and more preferably from 0 mgKOH / g, from the viewpoint of developability and transferability. It is more preferably 50 mgKOH / g or less, particularly preferably 0 mgKOH / g or more and 20 mgKOH / g or less, most preferably 0 mgKOH / g or more and 10 mgKOH / g or less.
本開示における重合体の酸価は、重合体1gあたりの酸性成分を中和するのに要する水酸化カリウムの質量を表したものである。具体的には、測定サンプルをテトラヒドロフラン/水=9/1(体積比)混合溶媒に溶解し、電位差滴定装置(商品名:AT-510、京都電子工業(株)製)を用いて、得られた溶液を25℃において、0.1M水酸化ナトリウム水溶液で中和滴定する。滴定pH曲線の変曲点を滴定終点として、次式により酸価を算出する。
A=56.11×Vs×0.1×f/w
A:酸価(mgKOH/g)
Vs:滴定に要した0.1mol/L水酸化ナトリウム水溶液の使用量(mL)
f:0.1mol/L水酸化ナトリウム水溶液の力価
w:測定サンプルの質量(g)(固形分換算) The acid value of the polymer in the present disclosure indicates the mass of potassium hydroxide required to neutralize the acidic component per 1 g of the polymer. Specifically, the measurement sample is dissolved in a mixed solvent of tetrahydrofuran / water = 9/1 (volume ratio) and obtained using a potentiometric titrator (trade name: AT-510, manufactured by Kyoto Electronics Industry Co., Ltd.). The resulting solution is neutralized and titrated with a 0.1 M aqueous sodium hydroxide solution at 25 ° C. The acid value is calculated by the following equation using the inflection point of the titration pH curve as the end point of the titration.
A = 56.11 × Vs × 0.1 × f / w
A: Acid value (mgKOH / g)
Vs: amount of 0.1 mol / L aqueous sodium hydroxide solution required for titration (mL)
f: titer of 0.1 mol / L aqueous solution of sodium hydroxide w: mass (g) of a measurement sample (in terms of solid content)
A=56.11×Vs×0.1×f/w
A:酸価(mgKOH/g)
Vs:滴定に要した0.1mol/L水酸化ナトリウム水溶液の使用量(mL)
f:0.1mol/L水酸化ナトリウム水溶液の力価
w:測定サンプルの質量(g)(固形分換算) The acid value of the polymer in the present disclosure indicates the mass of potassium hydroxide required to neutralize the acidic component per 1 g of the polymer. Specifically, the measurement sample is dissolved in a mixed solvent of tetrahydrofuran / water = 9/1 (volume ratio) and obtained using a potentiometric titrator (trade name: AT-510, manufactured by Kyoto Electronics Industry Co., Ltd.). The resulting solution is neutralized and titrated with a 0.1 M aqueous sodium hydroxide solution at 25 ° C. The acid value is calculated by the following equation using the inflection point of the titration pH curve as the end point of the titration.
A = 56.11 × Vs × 0.1 × f / w
A: Acid value (mgKOH / g)
Vs: amount of 0.1 mol / L aqueous sodium hydroxide solution required for titration (mL)
f: titer of 0.1 mol / L aqueous solution of sodium hydroxide w: mass (g) of a measurement sample (in terms of solid content)
(重合体A1の分子量:Mw)
重合体A1の分子量は、ポリスチレン換算重量平均分子量で、60,000以下であることが好ましい。重合体A1の重量平均分子量が60,000以下であることで、ポジ型感光性樹脂層の溶融粘度を低く抑え、基板と貼り合わせる際において低温(例えば130℃以下)での貼り合わせを実現することができる。
また、重合体A1の重量平均分子量は、2,000~60,000であることが好ましく、10,000~60,000であることがより好ましい。
なお、重合体の重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)によって測定することができ、測定装置としては、様々な市販の装置を用いることができ、装置の内容、及び、測定技術は同当業者に公知である。
ゲルパーミエーションクロマトグラフィ(GPC)による重量平均分子量の測定は、測定装置として、HLC(登録商標)-8220GPC(東ソー(株)製)を用い、カラムとして、TSKgel(登録商標)Super HZM-M(4.6mmID×15cm、東ソー(株)製)、Super HZ4000(4.6mmID×15cm、東ソー(株)製)、Super HZ3000(4.6mmID×15cm、東ソー(株)製)、Super HZ2000(4.6mmID×15cm、東ソー(株)製)をそれぞれ1本、直列に連結したものを用い、溶離液として、THF(テトラヒドロフラン)を用いることができる。
また、測定条件としては、試料濃度を0.2質量%、流速を0.35mL/min、サンプル注入量を10μL、及び測定温度を40℃とし、示差屈折率(RI)検出器を用いて行うことができる。
検量線は、東ソー(株)製の「標準試料TSK standard,polystyrene」:「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」及び「A-1000」の7サンプルのいずれかを用いて作製できる。 (Molecular weight of polymer A1: Mw)
The molecular weight of the polymer A1 is preferably 60,000 or less in terms of polystyrene equivalent weight average molecular weight. When the weight average molecular weight of the polymer A1 is 60,000 or less, the melt viscosity of the positive-type photosensitive resin layer is suppressed to be low, and bonding at a low temperature (for example, 130 ° C. or less) is realized when bonding with the substrate. be able to.
The weight average molecular weight of the polymer A1 is preferably from 2,000 to 60,000, and more preferably from 10,000 to 60,000.
The weight average molecular weight of the polymer can be measured by GPC (gel permeation chromatography), and various commercially available devices can be used as the measuring device. The contents of the device and the measuring technique are as follows. It is known to those skilled in the art.
The weight average molecular weight was measured by gel permeation chromatography (GPC) using HLC (registered trademark) -8220 GPC (manufactured by Tosoh Corporation) as a measuring device and TSKgel (registered trademark) Super HZM-M (4) as a column. Super HZ4000 (4.6 mm ID x 15 cm, manufactured by Tosoh Corporation), Super HZ3000 (4.6 mm ID x 15 cm, manufactured by Tosoh Corporation), Super HZ2000 (4.6 mm ID) × 15 cm, manufactured by Tosoh Corporation) connected in series, and THF (tetrahydrofuran) can be used as an eluent.
The measurement was performed using a differential refractive index (RI) detector with a sample concentration of 0.2% by mass, a flow rate of 0.35 mL / min, a sample injection amount of 10 μL, and a measurement temperature of 40 ° C. be able to.
The calibration curve is "Standard sample TSK standard, polystyrene" manufactured by Tosoh Corporation: "F-40", "F-20", "F-4", "F-1", "A-5000", " A-2500 "and" A-1000 "can be produced using any of the seven samples.
重合体A1の分子量は、ポリスチレン換算重量平均分子量で、60,000以下であることが好ましい。重合体A1の重量平均分子量が60,000以下であることで、ポジ型感光性樹脂層の溶融粘度を低く抑え、基板と貼り合わせる際において低温(例えば130℃以下)での貼り合わせを実現することができる。
また、重合体A1の重量平均分子量は、2,000~60,000であることが好ましく、10,000~60,000であることがより好ましい。
なお、重合体の重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)によって測定することができ、測定装置としては、様々な市販の装置を用いることができ、装置の内容、及び、測定技術は同当業者に公知である。
ゲルパーミエーションクロマトグラフィ(GPC)による重量平均分子量の測定は、測定装置として、HLC(登録商標)-8220GPC(東ソー(株)製)を用い、カラムとして、TSKgel(登録商標)Super HZM-M(4.6mmID×15cm、東ソー(株)製)、Super HZ4000(4.6mmID×15cm、東ソー(株)製)、Super HZ3000(4.6mmID×15cm、東ソー(株)製)、Super HZ2000(4.6mmID×15cm、東ソー(株)製)をそれぞれ1本、直列に連結したものを用い、溶離液として、THF(テトラヒドロフラン)を用いることができる。
また、測定条件としては、試料濃度を0.2質量%、流速を0.35mL/min、サンプル注入量を10μL、及び測定温度を40℃とし、示差屈折率(RI)検出器を用いて行うことができる。
検量線は、東ソー(株)製の「標準試料TSK standard,polystyrene」:「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」及び「A-1000」の7サンプルのいずれかを用いて作製できる。 (Molecular weight of polymer A1: Mw)
The molecular weight of the polymer A1 is preferably 60,000 or less in terms of polystyrene equivalent weight average molecular weight. When the weight average molecular weight of the polymer A1 is 60,000 or less, the melt viscosity of the positive-type photosensitive resin layer is suppressed to be low, and bonding at a low temperature (for example, 130 ° C. or less) is realized when bonding with the substrate. be able to.
The weight average molecular weight of the polymer A1 is preferably from 2,000 to 60,000, and more preferably from 10,000 to 60,000.
The weight average molecular weight of the polymer can be measured by GPC (gel permeation chromatography), and various commercially available devices can be used as the measuring device. The contents of the device and the measuring technique are as follows. It is known to those skilled in the art.
The weight average molecular weight was measured by gel permeation chromatography (GPC) using HLC (registered trademark) -8220 GPC (manufactured by Tosoh Corporation) as a measuring device and TSKgel (registered trademark) Super HZM-M (4) as a column. Super HZ4000 (4.6 mm ID x 15 cm, manufactured by Tosoh Corporation), Super HZ3000 (4.6 mm ID x 15 cm, manufactured by Tosoh Corporation), Super HZ2000 (4.6 mm ID) × 15 cm, manufactured by Tosoh Corporation) connected in series, and THF (tetrahydrofuran) can be used as an eluent.
The measurement was performed using a differential refractive index (RI) detector with a sample concentration of 0.2% by mass, a flow rate of 0.35 mL / min, a sample injection amount of 10 μL, and a measurement temperature of 40 ° C. be able to.
The calibration curve is "Standard sample TSK standard, polystyrene" manufactured by Tosoh Corporation: "F-40", "F-20", "F-4", "F-1", "A-5000", " A-2500 "and" A-1000 "can be produced using any of the seven samples.
重合体A1の数平均分子量と重量平均分子量との比(分散度)は、1.0~5.0が好ましく、1.05~3.5がより好ましい。
(4) The ratio (dispersion degree) between the number average molecular weight and the weight average molecular weight of the polymer A1 is preferably 1.0 to 5.0, more preferably 1.05 to 3.5.
(重合体A1の製造方法)
重合体A1の製造方法(合成法)は特に制限されないが、一例を挙げると、構成単位Aを形成するための重合性単量体、酸基を有する構成単位Bを形成するための重合性単量体、更に必要に応じて、その他の構成単位Cを形成するための重合性単量体を含む有機溶剤中、重合開始剤を用いて重合することにより合成することができる。また、いわゆる高分子反応で合成することもできる。 (Method for producing polymer A1)
The production method (synthesis method) of the polymer A1 is not particularly limited, but examples thereof include a polymerizable monomer for forming the structural unit A and a polymerizable monomer for forming the structural unit B having an acid group. It can be synthesized by polymerizing a monomer and, if necessary, an organic solvent containing a polymerizable monomer for forming the other structural unit C using a polymerization initiator. Further, it can be synthesized by a so-called polymer reaction.
重合体A1の製造方法(合成法)は特に制限されないが、一例を挙げると、構成単位Aを形成するための重合性単量体、酸基を有する構成単位Bを形成するための重合性単量体、更に必要に応じて、その他の構成単位Cを形成するための重合性単量体を含む有機溶剤中、重合開始剤を用いて重合することにより合成することができる。また、いわゆる高分子反応で合成することもできる。 (Method for producing polymer A1)
The production method (synthesis method) of the polymer A1 is not particularly limited, but examples thereof include a polymerizable monomer for forming the structural unit A and a polymerizable monomer for forming the structural unit B having an acid group. It can be synthesized by polymerizing a monomer and, if necessary, an organic solvent containing a polymerizable monomer for forming the other structural unit C using a polymerization initiator. Further, it can be synthesized by a so-called polymer reaction.
本開示における上記ポジ型感光性樹脂層は、基板に対して良好な密着性を発現させる観点及び高解像パターンを形成する観点から、上記ポジ型感光性樹脂層の全固形分に対し、上記重合体成分を50質量%~99.9質量%の割合で含むことが好ましく、70質量%~98質量%の割合で含むことがより好ましく、80質量%~98質量%の割合で含むことがさらに好ましく、90質量%~98質量%の割合で含むことが特に好ましい。
上記ポジ型感光性樹脂層は、上記ポジ型感光性樹脂層の全固形分に対し、上記酸分解性樹脂を50質量%~99.9質量%の割合で含むことが好ましく、70質量%~98質量%の割合で含むことがより好ましく、80質量%~98質量%の割合で含むことがさらに好ましく、90質量%~98質量%の割合で含むことが特に好ましい。
また、上記ポジ型感光性樹脂層は、基板に対して良好な密着性を発現させる観点から、上記ポジ型感光性樹脂層の全固形分に対し、上記重合体A1を50質量%~99.9質量%の割合で含むことが好ましく、70質量%~98質量%の割合で含むことがより好ましく、80質量%~98質量%の割合で含むことがさらに好ましく、90質量%~98質量%の割合で含むことが特に好ましい。 The positive photosensitive resin layer in the present disclosure, from the viewpoint of developing good adhesion to the substrate and from the viewpoint of forming a high-resolution pattern, with respect to the total solid content of the positive photosensitive resin layer, The polymer component is preferably contained in a proportion of 50% by mass to 99.9% by mass, more preferably in a proportion of 70% by mass to 98% by mass, and more preferably in a proportion of 80% by mass to 98% by mass. More preferably, it is particularly preferably contained in a proportion of 90% by mass to 98% by mass.
The positive photosensitive resin layer preferably contains the acid-decomposable resin in a proportion of 50% by mass to 99.9% by mass, and preferably 70% by mass to 9% by mass, based on the total solid content of the positive type photosensitive resin layer. It is more preferably contained in a proportion of 98% by mass, further preferably contained in a proportion of 80% by mass to 98% by mass, and particularly preferably contained in a proportion of 90% by mass to 98% by mass.
Further, from the viewpoint of developing good adhesion to the substrate, the positive photosensitive resin layer contains the polymer A1 in an amount of 50% by mass to 99.99% based on the total solid content of the positive photosensitive resin layer. The content is preferably 9% by mass, more preferably 70% to 98% by mass, even more preferably 80% to 98% by mass, and 90% to 98% by mass. It is particularly preferable to include them in the ratio of
上記ポジ型感光性樹脂層は、上記ポジ型感光性樹脂層の全固形分に対し、上記酸分解性樹脂を50質量%~99.9質量%の割合で含むことが好ましく、70質量%~98質量%の割合で含むことがより好ましく、80質量%~98質量%の割合で含むことがさらに好ましく、90質量%~98質量%の割合で含むことが特に好ましい。
また、上記ポジ型感光性樹脂層は、基板に対して良好な密着性を発現させる観点から、上記ポジ型感光性樹脂層の全固形分に対し、上記重合体A1を50質量%~99.9質量%の割合で含むことが好ましく、70質量%~98質量%の割合で含むことがより好ましく、80質量%~98質量%の割合で含むことがさらに好ましく、90質量%~98質量%の割合で含むことが特に好ましい。 The positive photosensitive resin layer in the present disclosure, from the viewpoint of developing good adhesion to the substrate and from the viewpoint of forming a high-resolution pattern, with respect to the total solid content of the positive photosensitive resin layer, The polymer component is preferably contained in a proportion of 50% by mass to 99.9% by mass, more preferably in a proportion of 70% by mass to 98% by mass, and more preferably in a proportion of 80% by mass to 98% by mass. More preferably, it is particularly preferably contained in a proportion of 90% by mass to 98% by mass.
The positive photosensitive resin layer preferably contains the acid-decomposable resin in a proportion of 50% by mass to 99.9% by mass, and preferably 70% by mass to 9% by mass, based on the total solid content of the positive type photosensitive resin layer. It is more preferably contained in a proportion of 98% by mass, further preferably contained in a proportion of 80% by mass to 98% by mass, and particularly preferably contained in a proportion of 90% by mass to 98% by mass.
Further, from the viewpoint of developing good adhesion to the substrate, the positive photosensitive resin layer contains the polymer A1 in an amount of 50% by mass to 99.99% based on the total solid content of the positive photosensitive resin layer. The content is preferably 9% by mass, more preferably 70% to 98% by mass, even more preferably 80% to 98% by mass, and 90% to 98% by mass. It is particularly preferable to include them in the ratio of
〔他の重合体〕
上記ポジ型感光性樹脂層は、重合体成分として、重合体A1に加え、本開示に係る感光性転写材料の効果を損なわない範囲において、酸分解性基で保護された酸基を有する構成単位を含まない重合体(「他の重合体」と称する場合がある。)を更に含んでいてもよい。上記ポジ型感光性樹脂層が他の重合体を含む場合、他の重合体の配合量は、全重合体成分中、50質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが更に好ましい。 (Other polymers)
The positive photosensitive resin layer has, as a polymer component, a structural unit having, in addition to the polymer A1, an acid group protected with an acid-decomposable group as long as the effect of the photosensitive transfer material according to the present disclosure is not impaired. (Hereinafter, may be referred to as “another polymer”). When the positive photosensitive resin layer contains another polymer, the amount of the other polymer is preferably 50% by mass or less, more preferably 30% by mass or less, based on all polymer components. It is more preferably at most 20% by mass.
上記ポジ型感光性樹脂層は、重合体成分として、重合体A1に加え、本開示に係る感光性転写材料の効果を損なわない範囲において、酸分解性基で保護された酸基を有する構成単位を含まない重合体(「他の重合体」と称する場合がある。)を更に含んでいてもよい。上記ポジ型感光性樹脂層が他の重合体を含む場合、他の重合体の配合量は、全重合体成分中、50質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが更に好ましい。 (Other polymers)
The positive photosensitive resin layer has, as a polymer component, a structural unit having, in addition to the polymer A1, an acid group protected with an acid-decomposable group as long as the effect of the photosensitive transfer material according to the present disclosure is not impaired. (Hereinafter, may be referred to as “another polymer”). When the positive photosensitive resin layer contains another polymer, the amount of the other polymer is preferably 50% by mass or less, more preferably 30% by mass or less, based on all polymer components. It is more preferably at most 20% by mass.
上記ポジ型感光性樹脂層は、重合体A1に加え、他の重合体を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。
他の重合体として、例えばポリヒドロキシスチレンを用いることができ、市販されている、SMA 1000P、SMA 2000P、SMA 3000P、SMA 1440F、SMA 17352P、SMA 2625P、及び、SMA 3840F(以上、サートマー社製)、ARUFON UC-3000、ARUFON UC-3510、ARUFON UC-3900、ARUFON UC-3910、ARUFON UC-3920、及び、ARUFON UC-3080(以上、東亞合成(株)製)、並びに、Joncryl 690、Joncryl 678、Joncryl 67、及び、Joncryl 586(以上、BASF社製)を用いることもできる。 The positive photosensitive resin layer may include only one type of other polymer in addition to the polymer A1, or may include two or more types of other polymers.
As another polymer, for example, polyhydroxystyrene can be used, and SMA 1000P, SMA 2000P, SMA 3000P, SMA 1440F, SMA 17352P, SMA 2625P, and SMA 3840F (all manufactured by Sartomer Co.) are commercially available. ARUFON UC-3000, ARUFON UC-3510, ARUFOON UC-3900, ARUFOON UC-3910, ARUFOON UC-3920, and ARUFON UC-3080 (all manufactured by Toagosei Co., Ltd.), and Joncryl 690, Joncryl 78 , Joncryl 67 and Joncryl 586 (all manufactured by BASF) can also be used.
他の重合体として、例えばポリヒドロキシスチレンを用いることができ、市販されている、SMA 1000P、SMA 2000P、SMA 3000P、SMA 1440F、SMA 17352P、SMA 2625P、及び、SMA 3840F(以上、サートマー社製)、ARUFON UC-3000、ARUFON UC-3510、ARUFON UC-3900、ARUFON UC-3910、ARUFON UC-3920、及び、ARUFON UC-3080(以上、東亞合成(株)製)、並びに、Joncryl 690、Joncryl 678、Joncryl 67、及び、Joncryl 586(以上、BASF社製)を用いることもできる。 The positive photosensitive resin layer may include only one type of other polymer in addition to the polymer A1, or may include two or more types of other polymers.
As another polymer, for example, polyhydroxystyrene can be used, and SMA 1000P, SMA 2000P, SMA 3000P, SMA 1440F, SMA 17352P, SMA 2625P, and SMA 3840F (all manufactured by Sartomer Co.) are commercially available. ARUFON UC-3000, ARUFON UC-3510, ARUFOON UC-3900, ARUFOON UC-3910, ARUFOON UC-3920, and ARUFON UC-3080 (all manufactured by Toagosei Co., Ltd.), and Joncryl 690, Joncryl 78 , Joncryl 67 and Joncryl 586 (all manufactured by BASF) can also be used.
〔光酸発生剤〕
上記ポジ型感光性樹脂層は、光酸発生剤を含むことが好ましい。
本開示で使用される光酸発生剤としては、紫外線、遠紫外線、X線、荷電粒子線等の放射線を照射することにより酸を発生することができる化合物である。
本開示で使用される光酸発生剤としては、波長300nm以上、好ましくは波長300nm~450nmの活性光線に感応し、酸を発生する化合物が好ましいが、その化学構造は制限されない。また、波長300nm以上の活性光線に直接感応しない光酸発生剤についても、増感剤と併用することによって波長300nm以上の活性光線に感応し、酸を発生する化合物であれば、増感剤と組み合わせて好ましく用いることができる。
本開示で使用される光酸発生剤としては、pKaが4以下の酸を発生する光酸発生剤が好ましく、pKaが3以下の酸を発生する光酸発生剤がより好ましく、pKaが2以下の酸を発生する光酸発生剤が特に好ましい。pKaの下限値は特に定めない。pKaは、例えば、-10.0以上であることが好ましい。 (Photoacid generator)
The positive photosensitive resin layer preferably contains a photoacid generator.
The photoacid generator used in the present disclosure is a compound capable of generating an acid by irradiation with radiation such as ultraviolet rays, far ultraviolet rays, X-rays, and charged particle beams.
The photoacid generator used in the present disclosure is preferably a compound that generates an acid in response to actinic rays having a wavelength of 300 nm or more, preferably 300 nm to 450 nm, but the chemical structure is not limited. Also, a photoacid generator that is not directly sensitive to actinic light having a wavelength of 300 nm or more, if it is a compound that responds to actinic light having a wavelength of 300 nm or more by using it in combination with a sensitizer and generates an acid, is used as a sensitizer. It can be preferably used in combination.
As the photoacid generator used in the present disclosure, a photoacid generator that generates an acid having a pKa of 4 or less is preferable, a photoacid generator that generates an acid having a pKa of 3 or less is more preferable, and pKa is 2 or less. Particularly preferred are photoacid generators that generate an acid. The lower limit of pKa is not particularly defined. The pKa is preferably, for example, -10.0 or more.
上記ポジ型感光性樹脂層は、光酸発生剤を含むことが好ましい。
本開示で使用される光酸発生剤としては、紫外線、遠紫外線、X線、荷電粒子線等の放射線を照射することにより酸を発生することができる化合物である。
本開示で使用される光酸発生剤としては、波長300nm以上、好ましくは波長300nm~450nmの活性光線に感応し、酸を発生する化合物が好ましいが、その化学構造は制限されない。また、波長300nm以上の活性光線に直接感応しない光酸発生剤についても、増感剤と併用することによって波長300nm以上の活性光線に感応し、酸を発生する化合物であれば、増感剤と組み合わせて好ましく用いることができる。
本開示で使用される光酸発生剤としては、pKaが4以下の酸を発生する光酸発生剤が好ましく、pKaが3以下の酸を発生する光酸発生剤がより好ましく、pKaが2以下の酸を発生する光酸発生剤が特に好ましい。pKaの下限値は特に定めない。pKaは、例えば、-10.0以上であることが好ましい。 (Photoacid generator)
The positive photosensitive resin layer preferably contains a photoacid generator.
The photoacid generator used in the present disclosure is a compound capable of generating an acid by irradiation with radiation such as ultraviolet rays, far ultraviolet rays, X-rays, and charged particle beams.
The photoacid generator used in the present disclosure is preferably a compound that generates an acid in response to actinic rays having a wavelength of 300 nm or more, preferably 300 nm to 450 nm, but the chemical structure is not limited. Also, a photoacid generator that is not directly sensitive to actinic light having a wavelength of 300 nm or more, if it is a compound that responds to actinic light having a wavelength of 300 nm or more by using it in combination with a sensitizer and generates an acid, is used as a sensitizer. It can be preferably used in combination.
As the photoacid generator used in the present disclosure, a photoacid generator that generates an acid having a pKa of 4 or less is preferable, a photoacid generator that generates an acid having a pKa of 3 or less is more preferable, and pKa is 2 or less. Particularly preferred are photoacid generators that generate an acid. The lower limit of pKa is not particularly defined. The pKa is preferably, for example, -10.0 or more.
光酸発生剤としては、イオン性光酸発生剤と、非イオン性光酸発生剤とを挙げることができる。
また、光酸発生剤としては、感度及び解像度の観点から、後述するオニウム塩化合物、及び、後述するオキシムスルホネート化合物よりなる群から選ばれた少なくとも1種の化合物を含むことが好ましく、オキシムスルホネート化合物を含むことがより好ましい。 Examples of the photoacid generator include an ionic photoacid generator and a nonionic photoacid generator.
Further, from the viewpoint of sensitivity and resolution, the photoacid generator preferably contains at least one compound selected from the group consisting of an onium salt compound described below and an oxime sulfonate compound described below, and an oxime sulfonate compound. More preferably,
また、光酸発生剤としては、感度及び解像度の観点から、後述するオニウム塩化合物、及び、後述するオキシムスルホネート化合物よりなる群から選ばれた少なくとも1種の化合物を含むことが好ましく、オキシムスルホネート化合物を含むことがより好ましい。 Examples of the photoacid generator include an ionic photoacid generator and a nonionic photoacid generator.
Further, from the viewpoint of sensitivity and resolution, the photoacid generator preferably contains at least one compound selected from the group consisting of an onium salt compound described below and an oxime sulfonate compound described below, and an oxime sulfonate compound. More preferably,
非イオン性光酸発生剤の例として、トリクロロメチル-s-トリアジン類、ジアゾメタン化合物、イミドスルホネート化合物、及び、オキシムスルホネート化合物などを挙げることができる。これらの中でも、感度、解像度、及び、密着性の観点から、光酸発生剤がオキシムスルホネート化合物であることが好ましい。これら光酸発生剤は、1種単独又は2種類以上を組み合わせて使用することができる。トリクロロメチル-s-トリアジン類、及び、ジアゾメタン誘導体の具体例としては、特開2011-221494号公報の段落0083~段落0088に記載の化合物が例示できる。
例 Examples of the nonionic photoacid generator include trichloromethyl-s-triazines, diazomethane compounds, imidosulfonate compounds, and oxime sulfonate compounds. Among these, the photoacid generator is preferably an oxime sulfonate compound from the viewpoints of sensitivity, resolution, and adhesion. These photoacid generators can be used alone or in combination of two or more. As specific examples of trichloromethyl-s-triazines and diazomethane derivatives, the compounds described in paragraphs 0083 to 0088 of JP-A-2011-221494 can be exemplified.
オキシムスルホネート化合物、すなわち、オキシムスルホネート構造を有する化合物としては、下記式(B1)で表されるオキシムスルホネート構造を有する化合物が好ましい。
As the oxime sulfonate compound, that is, the compound having an oxime sulfonate structure, a compound having an oxime sulfonate structure represented by the following formula (B1) is preferable.
式(B1)中、R21は、アルキル基又はアリール基を表し、*は他の原子又は他の基との結合部位を表す。
In the formula (B1), R 21 represents an alkyl group or an aryl group, and * represents a bonding site to another atom or another group.
式(B1)で表されるオキシムスルホネート構造を有する化合物は、いずれの基も置換されてもよく、R21におけるアルキル基は、直鎖状であっても、分岐構造を有していても、環構造を有していてもよい。許容される置換基は以下に説明する。
R21のアルキル基としては、炭素数1~10の、直鎖状又は分岐状アルキル基が好ましい。R21のアルキル基は、炭素数6~11のアリール基、炭素数1~10のアルコキシ基、シクロアルキル基(7,7-ジメチル-2-オキソノルボルニル基などの有橋式脂環基を含む、好ましくはビシクロアルキル基等)、又は、ハロゲン原子で置換されてもよい。
R21のアリール基としては、炭素数6~18のアリール基が好ましく、フェニル基又はナフチル基がより好ましい。R21のアリール基は、炭素数1~4のアルキル基、アルコキシ基及びハロゲン原子よりなる群から選ばれた1つ以上の基で置換されてもよい。 In the compound having an oxime sulfonate structure represented by the formula (B1), any group may be substituted, and the alkyl group in R 21 may be linear or have a branched structure. It may have a ring structure. Acceptable substituents are described below.
As the alkyl group for R 21, a linear or branched alkyl group having 1 to 10 carbon atoms is preferable. The alkyl group represented by R 21 is an aryl group having 6 to 11 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group (a bridged alicyclic group such as a 7,7-dimethyl-2-oxonorbornyl group) , Preferably a bicycloalkyl group or the like) or a halogen atom.
The aryl group for R 21 is preferably an aryl group having 6 to 18 carbon atoms, and more preferably a phenyl group or a naphthyl group. The aryl group for R 21 may be substituted with one or more groups selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an alkoxy group, and a halogen atom.
R21のアルキル基としては、炭素数1~10の、直鎖状又は分岐状アルキル基が好ましい。R21のアルキル基は、炭素数6~11のアリール基、炭素数1~10のアルコキシ基、シクロアルキル基(7,7-ジメチル-2-オキソノルボルニル基などの有橋式脂環基を含む、好ましくはビシクロアルキル基等)、又は、ハロゲン原子で置換されてもよい。
R21のアリール基としては、炭素数6~18のアリール基が好ましく、フェニル基又はナフチル基がより好ましい。R21のアリール基は、炭素数1~4のアルキル基、アルコキシ基及びハロゲン原子よりなる群から選ばれた1つ以上の基で置換されてもよい。 In the compound having an oxime sulfonate structure represented by the formula (B1), any group may be substituted, and the alkyl group in R 21 may be linear or have a branched structure. It may have a ring structure. Acceptable substituents are described below.
As the alkyl group for R 21, a linear or branched alkyl group having 1 to 10 carbon atoms is preferable. The alkyl group represented by R 21 is an aryl group having 6 to 11 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group (a bridged alicyclic group such as a 7,7-dimethyl-2-oxonorbornyl group) , Preferably a bicycloalkyl group or the like) or a halogen atom.
The aryl group for R 21 is preferably an aryl group having 6 to 18 carbon atoms, and more preferably a phenyl group or a naphthyl group. The aryl group for R 21 may be substituted with one or more groups selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an alkoxy group, and a halogen atom.
式(B1)で表されるオキシムスルホネート構造を有する化合物は、特開2014-85643号公報の段落0078~段落0111に記載のオキシムスルホネート化合物であることも好ましい。
化合物 The compound having an oxime sulfonate structure represented by the formula (B1) is also preferably an oxime sulfonate compound described in paragraphs 0078 to 0111 of JP-A-2014-85643.
イオン性光酸発生剤の例として、ジアリールヨードニウム塩類及びトリアリールスルホニウム塩類等のオニウム塩化合物、第四級アンモニウム塩類等を挙げることができる。これらのうち、オニウム塩化合物が好ましく、トリアリールスルホニウム塩類及びジアリールヨードニウム塩類が特に好ましい。
Examples of the ionic photoacid generator include onium salt compounds such as diaryliodonium salts and triarylsulfonium salts, and quaternary ammonium salts. Of these, onium salt compounds are preferred, and triarylsulfonium salts and diaryliodonium salts are particularly preferred.
イオン性光酸発生剤としては特開2014-85643号公報の段落0114~段落0133に記載のイオン性光酸発生剤も好ましく用いることができる。
イ オ ン As the ionic photoacid generator, ionic photoacid generators described in paragraphs 0114 to 0133 of JP-A-2014-85643 can also be preferably used.
光酸発生剤は、1種単独で使用してもよいし、2種以上を併用してもよい。
上記ポジ型感光性樹脂層における光酸発生剤の含有量は、感度及び解像度の観点から、上記ポジ型感光性樹脂層の全質量に対して、0.1質量%~10質量%であることが好ましく、0.5質量%~5質量%であることがより好ましい。 One photoacid generator may be used alone, or two or more photoacid generators may be used in combination.
The content of the photoacid generator in the positive photosensitive resin layer is 0.1% by mass to 10% by mass based on the total mass of the positive photosensitive resin layer from the viewpoint of sensitivity and resolution. Is more preferable, and more preferably 0.5% by mass to 5% by mass.
上記ポジ型感光性樹脂層における光酸発生剤の含有量は、感度及び解像度の観点から、上記ポジ型感光性樹脂層の全質量に対して、0.1質量%~10質量%であることが好ましく、0.5質量%~5質量%であることがより好ましい。 One photoacid generator may be used alone, or two or more photoacid generators may be used in combination.
The content of the photoacid generator in the positive photosensitive resin layer is 0.1% by mass to 10% by mass based on the total mass of the positive photosensitive resin layer from the viewpoint of sensitivity and resolution. Is more preferable, and more preferably 0.5% by mass to 5% by mass.
〔溶剤〕
上記ポジ型感光性樹脂層は、溶剤を含んでいてもよい。
また、上記ポジ型感光性樹脂層を形成する感光性樹脂組成物は、上記ポジ型感光性樹脂層を容易に形成するため、一旦溶剤を含有させて感光性樹脂組成物の粘度を調節し、溶剤を含む感光性樹脂組成物を塗布した後に乾燥して、上記ポジ型感光性樹脂層を好適に形成することができる。
本開示に使用される溶剤としては、公知の溶剤を用いることができる。溶剤としては、エチレングリコールモノアルキルエーテル類、エチレングリコールジアルキルエーテル類、エチレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテル類、プロピレングリコールジアルキルエーテル類、プロピレングリコールモノアルキルエーテルアセテート類、ジエチレングリコールジアルキルエーテル類、ジエチレングリコールモノアルキルエーテルアセテート類、ジプロピレングリコールモノアルキルエーテル類、ジプロピレングリコールジアルキルエーテル類、ジプロピレングリコールモノアルキルエーテルアセテート類、エステル類、ケトン類、アミド類、及び、ラクトン類が例示できる。また、溶剤の具体例としては特開2011-221494号公報の段落0174~段落0178に記載の溶剤も挙げられ、これらの内容は本明細書に組み込まれる。 〔solvent〕
The positive photosensitive resin layer may contain a solvent.
Further, the photosensitive resin composition for forming the positive photosensitive resin layer, in order to easily form the positive photosensitive resin layer, once containing a solvent to adjust the viscosity of the photosensitive resin composition, The positive photosensitive resin layer can be suitably formed by drying after applying the photosensitive resin composition containing a solvent.
Known solvents can be used as the solvent used in the present disclosure. Solvents include ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ethers, propylene glycol dialkyl ethers, propylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers , Diethylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol monoalkyl ether acetates, esters, ketones, amides, and lactones. Further, specific examples of the solvent include the solvents described in paragraphs 0174 to 0178 of JP-A-2011-221494, the contents of which are incorporated herein.
上記ポジ型感光性樹脂層は、溶剤を含んでいてもよい。
また、上記ポジ型感光性樹脂層を形成する感光性樹脂組成物は、上記ポジ型感光性樹脂層を容易に形成するため、一旦溶剤を含有させて感光性樹脂組成物の粘度を調節し、溶剤を含む感光性樹脂組成物を塗布した後に乾燥して、上記ポジ型感光性樹脂層を好適に形成することができる。
本開示に使用される溶剤としては、公知の溶剤を用いることができる。溶剤としては、エチレングリコールモノアルキルエーテル類、エチレングリコールジアルキルエーテル類、エチレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテル類、プロピレングリコールジアルキルエーテル類、プロピレングリコールモノアルキルエーテルアセテート類、ジエチレングリコールジアルキルエーテル類、ジエチレングリコールモノアルキルエーテルアセテート類、ジプロピレングリコールモノアルキルエーテル類、ジプロピレングリコールジアルキルエーテル類、ジプロピレングリコールモノアルキルエーテルアセテート類、エステル類、ケトン類、アミド類、及び、ラクトン類が例示できる。また、溶剤の具体例としては特開2011-221494号公報の段落0174~段落0178に記載の溶剤も挙げられ、これらの内容は本明細書に組み込まれる。 〔solvent〕
The positive photosensitive resin layer may contain a solvent.
Further, the photosensitive resin composition for forming the positive photosensitive resin layer, in order to easily form the positive photosensitive resin layer, once containing a solvent to adjust the viscosity of the photosensitive resin composition, The positive photosensitive resin layer can be suitably formed by drying after applying the photosensitive resin composition containing a solvent.
Known solvents can be used as the solvent used in the present disclosure. Solvents include ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ethers, propylene glycol dialkyl ethers, propylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers , Diethylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol monoalkyl ether acetates, esters, ketones, amides, and lactones. Further, specific examples of the solvent include the solvents described in paragraphs 0174 to 0178 of JP-A-2011-221494, the contents of which are incorporated herein.
また、既述の溶剤に、更に必要に応じて、ベンジルエチルエーテル、ジヘキシルエーテル、エチレングリコールモノフェニルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、イソホロン、カプロン酸、カプリル酸、1-オクタノール、1-ノナール、ベンジルアルコール、アニソール、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、炭酸エチレン、炭酸プロピレン等の溶剤を添加することもできる。
添加する溶剤は、1種のみ用いてもよく、2種以上を使用してもよい。
本開示に用いることができる溶剤は、1種単独で用いてもよく、2種を併用することがより好ましい。溶剤を2種以上使用する場合には、例えば、プロピレングリコールモノアルキルエーテルアセテート類とジアルキルエーテル類との併用、ジアセテート類とジエチレングリコールジアルキルエーテル類との併用、又は、エステル類とブチレングリコールアルキルエーテルアセテート類との併用が好ましい。 Further, if necessary, benzyl ethyl ether, dihexyl ether, ethylene glycol monophenyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, isophorone, caproic acid, caprylic acid, 1-octanol, -Solvents such as nonal, benzyl alcohol, anisole, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, ethylene carbonate and propylene carbonate can also be added.
As the solvent to be added, only one kind may be used, or two or more kinds may be used.
The solvents that can be used in the present disclosure may be used alone or in combination of two or more. When using two or more solvents, for example, a combination of propylene glycol monoalkyl ether acetates and dialkyl ethers, a combination of diacetates and diethylene glycol dialkyl ethers, or an ester and butylene glycol alkyl ether acetate It is preferable to use the compound in combination with a compound.
添加する溶剤は、1種のみ用いてもよく、2種以上を使用してもよい。
本開示に用いることができる溶剤は、1種単独で用いてもよく、2種を併用することがより好ましい。溶剤を2種以上使用する場合には、例えば、プロピレングリコールモノアルキルエーテルアセテート類とジアルキルエーテル類との併用、ジアセテート類とジエチレングリコールジアルキルエーテル類との併用、又は、エステル類とブチレングリコールアルキルエーテルアセテート類との併用が好ましい。 Further, if necessary, benzyl ethyl ether, dihexyl ether, ethylene glycol monophenyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, isophorone, caproic acid, caprylic acid, 1-octanol, -Solvents such as nonal, benzyl alcohol, anisole, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, ethylene carbonate and propylene carbonate can also be added.
As the solvent to be added, only one kind may be used, or two or more kinds may be used.
The solvents that can be used in the present disclosure may be used alone or in combination of two or more. When using two or more solvents, for example, a combination of propylene glycol monoalkyl ether acetates and dialkyl ethers, a combination of diacetates and diethylene glycol dialkyl ethers, or an ester and butylene glycol alkyl ether acetate It is preferable to use the compound in combination with a compound.
また、溶剤としては、沸点130℃以上160℃未満の溶剤、沸点160℃以上の溶剤、又は、これらの混合物であることが好ましい。
沸点130℃以上160℃未満の溶剤としては、プロピレングリコールモノメチルエーテルアセテート(沸点146℃)、プロピレングリコールモノエチルエーテルアセテート(沸点158℃)、プロピレングリコールメチル-n-ブチルエーテル(沸点155℃)、及び、プロピレングリコールメチル-n-プロピルエーテル(沸点131℃)が例示できる。
沸点160℃以上の溶剤としては、3-エトキシプロピオン酸エチル(沸点170℃)、ジエチレングリコールメチルエチルエーテル(沸点176℃)、プロピレングリコールモノメチルエーテルプロピオネート(沸点160℃)、ジプロピレングリコールメチルエーテルアセテート(沸点213℃)、3-メトキシブチルエーテルアセテート(沸点171℃)、ジエチレングリコールジエチルエーテル(沸点189℃)、ジエチレングリコールジメチルエーテル(沸点162℃)、プロピレングリコールジアセテート(沸点190℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点220℃)、ジプロピレングリコールジメチルエーテル(沸点175℃)、及び、1,3-ブチレングリコールジアセテート(沸点232℃)が例示できる。 The solvent is preferably a solvent having a boiling point of 130 ° C. or more and less than 160 ° C., a solvent having a boiling point of 160 ° C. or more, or a mixture thereof.
Examples of the solvent having a boiling point of 130 ° C. or more and less than 160 ° C. include propylene glycol monomethyl ether acetate (boiling point 146 ° C.), propylene glycol monoethyl ether acetate (boiling point 158 ° C.), propylene glycol methyl-n-butyl ether (boiling point 155 ° C.), and Propylene glycol methyl-n-propyl ether (boiling point 131 ° C.) can be exemplified.
Solvents having a boiling point of 160 ° C. or higher include ethyl 3-ethoxypropionate (boiling point 170 ° C.), diethylene glycol methyl ethyl ether (boiling point 176 ° C.), propylene glycol monomethyl ether propionate (boiling point 160 ° C.), dipropylene glycol methyl ether acetate (Boiling point 213 ° C), 3-methoxybutyl ether acetate (boiling point 171 ° C), diethylene glycol diethyl ether (boiling point 189 ° C), diethylene glycol dimethyl ether (boiling point 162 ° C), propylene glycol diacetate (boiling point 190 ° C), diethylene glycol monoethyl ether acetate (boiling point 190 ° C) (Boiling point 220 ° C), dipropylene glycol dimethyl ether (boiling point 175 ° C), and 1,3-butylene glycol diacetate (boiling point 232 ° C) It can be exemplified.
沸点130℃以上160℃未満の溶剤としては、プロピレングリコールモノメチルエーテルアセテート(沸点146℃)、プロピレングリコールモノエチルエーテルアセテート(沸点158℃)、プロピレングリコールメチル-n-ブチルエーテル(沸点155℃)、及び、プロピレングリコールメチル-n-プロピルエーテル(沸点131℃)が例示できる。
沸点160℃以上の溶剤としては、3-エトキシプロピオン酸エチル(沸点170℃)、ジエチレングリコールメチルエチルエーテル(沸点176℃)、プロピレングリコールモノメチルエーテルプロピオネート(沸点160℃)、ジプロピレングリコールメチルエーテルアセテート(沸点213℃)、3-メトキシブチルエーテルアセテート(沸点171℃)、ジエチレングリコールジエチルエーテル(沸点189℃)、ジエチレングリコールジメチルエーテル(沸点162℃)、プロピレングリコールジアセテート(沸点190℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点220℃)、ジプロピレングリコールジメチルエーテル(沸点175℃)、及び、1,3-ブチレングリコールジアセテート(沸点232℃)が例示できる。 The solvent is preferably a solvent having a boiling point of 130 ° C. or more and less than 160 ° C., a solvent having a boiling point of 160 ° C. or more, or a mixture thereof.
Examples of the solvent having a boiling point of 130 ° C. or more and less than 160 ° C. include propylene glycol monomethyl ether acetate (boiling point 146 ° C.), propylene glycol monoethyl ether acetate (boiling point 158 ° C.), propylene glycol methyl-n-butyl ether (boiling point 155 ° C.), and Propylene glycol methyl-n-propyl ether (boiling point 131 ° C.) can be exemplified.
Solvents having a boiling point of 160 ° C. or higher include ethyl 3-ethoxypropionate (boiling point 170 ° C.), diethylene glycol methyl ethyl ether (boiling point 176 ° C.), propylene glycol monomethyl ether propionate (boiling point 160 ° C.), dipropylene glycol methyl ether acetate (Boiling point 213 ° C), 3-methoxybutyl ether acetate (boiling point 171 ° C), diethylene glycol diethyl ether (boiling point 189 ° C), diethylene glycol dimethyl ether (boiling point 162 ° C), propylene glycol diacetate (boiling point 190 ° C), diethylene glycol monoethyl ether acetate (boiling point 190 ° C) (Boiling point 220 ° C), dipropylene glycol dimethyl ether (boiling point 175 ° C), and 1,3-butylene glycol diacetate (boiling point 232 ° C) It can be exemplified.
また、溶剤としては、以下に記載のエステル類、エーテル類、ケトン類等も好ましく挙げられる。
エステル類としては、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸sec-ブチル、酢酸イソプロピル、酢酸ブチル等が挙げられる。
エーテル類としては、ジイソプロピルエーテル、1,4-ジオキサン、1,2-ジメトキシエタン、1,3-ジオキソラン、プロピレングリコールジメチルエーテル、プロピレングリコールモノエチルエーテル等が挙げられる。
ケトン類としては、メチルn-ブチルケトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、メチルn-プロピルケトン、メチルイソプロピルケトン等が挙げられる。
また、その他の溶剤としては、トルエン、アセトニトリル、イソプロパノール、2-ブタノール、イソブチルアルコール等が挙げられる。 Preferred examples of the solvent include esters, ethers, and ketones described below.
Examples of the esters include ethyl acetate, propyl acetate, isobutyl acetate, sec-butyl acetate, isopropyl acetate, and butyl acetate.
Examples of ethers include diisopropyl ether, 1,4-dioxane, 1,2-dimethoxyethane, 1,3-dioxolan, propylene glycol dimethyl ether, propylene glycol monoethyl ether, and the like.
Examples of ketones include methyl n-butyl ketone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, methyl n-propyl ketone, methyl isopropyl ketone, and the like.
Other solvents include toluene, acetonitrile, isopropanol, 2-butanol, isobutyl alcohol and the like.
エステル類としては、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸sec-ブチル、酢酸イソプロピル、酢酸ブチル等が挙げられる。
エーテル類としては、ジイソプロピルエーテル、1,4-ジオキサン、1,2-ジメトキシエタン、1,3-ジオキソラン、プロピレングリコールジメチルエーテル、プロピレングリコールモノエチルエーテル等が挙げられる。
ケトン類としては、メチルn-ブチルケトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、メチルn-プロピルケトン、メチルイソプロピルケトン等が挙げられる。
また、その他の溶剤としては、トルエン、アセトニトリル、イソプロパノール、2-ブタノール、イソブチルアルコール等が挙げられる。 Preferred examples of the solvent include esters, ethers, and ketones described below.
Examples of the esters include ethyl acetate, propyl acetate, isobutyl acetate, sec-butyl acetate, isopropyl acetate, and butyl acetate.
Examples of ethers include diisopropyl ether, 1,4-dioxane, 1,2-dimethoxyethane, 1,3-dioxolan, propylene glycol dimethyl ether, propylene glycol monoethyl ether, and the like.
Examples of ketones include methyl n-butyl ketone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, methyl n-propyl ketone, methyl isopropyl ketone, and the like.
Other solvents include toluene, acetonitrile, isopropanol, 2-butanol, isobutyl alcohol and the like.
感光性樹脂組成物を塗布する際における溶剤の含有量は、感光性樹脂組成物中の全固形分100質量部あたり、50質量部~1,900質量部であることが好ましく、100質量部~900質量部であることがより好ましい。
また、上記ポジ型感光性樹脂層における溶剤の含有量は、上記ポジ型感光性樹脂層の全質量に対し、2質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることが更に好ましい。 The content of the solvent when applying the photosensitive resin composition is preferably 50 parts by mass to 1,900 parts by mass, and more preferably 100 parts by mass, per 100 parts by mass of the total solids in the photosensitive resin composition. More preferably, it is 900 parts by mass.
Further, the content of the solvent in the positive photosensitive resin layer is preferably 2% by mass or less, more preferably 1% by mass or less, based on the total mass of the positive photosensitive resin layer. More preferably, it is 0.5% by mass or less.
また、上記ポジ型感光性樹脂層における溶剤の含有量は、上記ポジ型感光性樹脂層の全質量に対し、2質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることが更に好ましい。 The content of the solvent when applying the photosensitive resin composition is preferably 50 parts by mass to 1,900 parts by mass, and more preferably 100 parts by mass, per 100 parts by mass of the total solids in the photosensitive resin composition. More preferably, it is 900 parts by mass.
Further, the content of the solvent in the positive photosensitive resin layer is preferably 2% by mass or less, more preferably 1% by mass or less, based on the total mass of the positive photosensitive resin layer. More preferably, it is 0.5% by mass or less.
〔その他の添加剤〕
本開示における上記ポジ型感光性樹脂層は、必要に応じて公知の添加剤を含むことができる。 [Other additives]
The positive photosensitive resin layer in the present disclosure may include a known additive as needed.
本開示における上記ポジ型感光性樹脂層は、必要に応じて公知の添加剤を含むことができる。 [Other additives]
The positive photosensitive resin layer in the present disclosure may include a known additive as needed.
(可塑剤)
上記ポジ型感光性樹脂層は、可塑性を改良する目的で、可塑剤を含有してもよい。
上記可塑剤は、重合体A1よりも重量平均分子量が小さいことが好ましい。
可塑剤の重量平均分子量は、可塑性付与の観点から500以上10,000未満が好ましく、700以上5,000未満がより好ましく、800以上4,000未満が更に好ましい。
可塑剤は、重合体A1と相溶して可塑性を発現する化合物であれば特に制限されないが、可塑性付与の観点から、可塑剤は、分子中にアルキレンオキシ基を有することが好ましい。可塑剤に含まれるアルキレンオキシ基は下記構造を有することが好ましい。 (Plasticizer)
The positive photosensitive resin layer may contain a plasticizer for the purpose of improving plasticity.
The plasticizer preferably has a smaller weight average molecular weight than the polymer A1.
The weight average molecular weight of the plasticizer is preferably 500 or more and less than 10,000, more preferably 700 or more and less than 5,000, and even more preferably 800 or more and less than 4,000 from the viewpoint of imparting plasticity.
The plasticizer is not particularly limited as long as it is a compound that is compatible with the polymer A1 and exhibits plasticity, but from the viewpoint of imparting plasticity, the plasticizer preferably has an alkyleneoxy group in the molecule. The alkyleneoxy group contained in the plasticizer preferably has the following structure.
上記ポジ型感光性樹脂層は、可塑性を改良する目的で、可塑剤を含有してもよい。
上記可塑剤は、重合体A1よりも重量平均分子量が小さいことが好ましい。
可塑剤の重量平均分子量は、可塑性付与の観点から500以上10,000未満が好ましく、700以上5,000未満がより好ましく、800以上4,000未満が更に好ましい。
可塑剤は、重合体A1と相溶して可塑性を発現する化合物であれば特に制限されないが、可塑性付与の観点から、可塑剤は、分子中にアルキレンオキシ基を有することが好ましい。可塑剤に含まれるアルキレンオキシ基は下記構造を有することが好ましい。 (Plasticizer)
The positive photosensitive resin layer may contain a plasticizer for the purpose of improving plasticity.
The plasticizer preferably has a smaller weight average molecular weight than the polymer A1.
The weight average molecular weight of the plasticizer is preferably 500 or more and less than 10,000, more preferably 700 or more and less than 5,000, and even more preferably 800 or more and less than 4,000 from the viewpoint of imparting plasticity.
The plasticizer is not particularly limited as long as it is a compound that is compatible with the polymer A1 and exhibits plasticity, but from the viewpoint of imparting plasticity, the plasticizer preferably has an alkyleneoxy group in the molecule. The alkyleneoxy group contained in the plasticizer preferably has the following structure.
上記式中、Rは炭素数2~8のアルキレン基を表し、nは1~50の整数を表し、*は他の原子との結合部位を表す。
中 In the above formula, R represents an alkylene group having 2 to 8 carbon atoms, n represents an integer of 1 to 50, and * represents a bonding site to another atom.
なお、例えば、上記構造のアルキレンオキシ基を有する化合物(「化合物X」とする。)であっても、化合物X、重合体A1及び光酸発生剤を混合して得たポジ型感光性樹脂層が、化合物Xを含まずに形成したポジ型感光性樹脂層に比べて可塑性が向上しない場合は、本開示における可塑剤には該当しない。例えば、任意に添加される界面活性剤は、一般にポジ型感光性樹脂層に可塑性をもたらす量で使用されることはないため、本明細書における可塑剤には該当しない。
In addition, for example, even with a compound having an alkyleneoxy group having the above structure (hereinafter, referred to as “compound X”), a positive photosensitive resin layer obtained by mixing the compound X, the polymer A1, and the photoacid generator. However, when the plasticity is not improved as compared with the positive photosensitive resin layer formed without containing the compound X, it does not correspond to the plasticizer in the present disclosure. For example, an optionally added surfactant is not generally used in an amount that brings plasticity to the positive photosensitive resin layer, and thus does not fall under the plasticizer in the present specification.
上記可塑剤としては、例えば、下記構造を有する化合物が挙げられるが、これらに制限されるものではない。
Examples of the plasticizer include compounds having the following structures, but are not limited thereto.
可塑剤の含有量は、密着性の観点から、上記ポジ型感光性樹脂層の全質量に対して、1質量%~50質量%であることが好ましく、2質量%~20質量%であることがより好ましい。
上記ポジ型感光性樹脂層は、可塑剤を1種のみを含んでいてもよく、2種以上を含んでいてもよい。 From the viewpoint of adhesion, the content of the plasticizer is preferably 1% by mass to 50% by mass, and more preferably 2% by mass to 20% by mass based on the total mass of the positive photosensitive resin layer. Is more preferred.
The positive photosensitive resin layer may include only one type of plasticizer, or may include two or more types of plasticizers.
上記ポジ型感光性樹脂層は、可塑剤を1種のみを含んでいてもよく、2種以上を含んでいてもよい。 From the viewpoint of adhesion, the content of the plasticizer is preferably 1% by mass to 50% by mass, and more preferably 2% by mass to 20% by mass based on the total mass of the positive photosensitive resin layer. Is more preferred.
The positive photosensitive resin layer may include only one type of plasticizer, or may include two or more types of plasticizers.
(増感剤)
上記ポジ型感光性樹脂層は、増感剤を更に含むことができる。
増感剤は、活性光線を吸収して電子励起状態となる。電子励起状態となった増感剤は、光酸発生剤と接触して、電子移動、エネルギー移動、及び、発熱などの作用が生じる。これにより光酸発生剤は化学変化を起こして分解し、酸を生成する。
増感剤を含有させることで、露光感度を向上させることができる。 (Sensitizer)
The positive photosensitive resin layer may further include a sensitizer.
The sensitizer absorbs actinic rays and enters an electronically excited state. The sensitizer in the electronically excited state comes into contact with the photoacid generator, and causes actions such as electron transfer, energy transfer, and heat generation. As a result, the photoacid generator undergoes a chemical change and is decomposed to generate an acid.
Exposure sensitivity can be improved by including a sensitizer.
上記ポジ型感光性樹脂層は、増感剤を更に含むことができる。
増感剤は、活性光線を吸収して電子励起状態となる。電子励起状態となった増感剤は、光酸発生剤と接触して、電子移動、エネルギー移動、及び、発熱などの作用が生じる。これにより光酸発生剤は化学変化を起こして分解し、酸を生成する。
増感剤を含有させることで、露光感度を向上させることができる。 (Sensitizer)
The positive photosensitive resin layer may further include a sensitizer.
The sensitizer absorbs actinic rays and enters an electronically excited state. The sensitizer in the electronically excited state comes into contact with the photoacid generator, and causes actions such as electron transfer, energy transfer, and heat generation. As a result, the photoacid generator undergoes a chemical change and is decomposed to generate an acid.
Exposure sensitivity can be improved by including a sensitizer.
増感剤としては、アントラセン誘導体、アクリドン誘導体、チオキサントン誘導体、クマリン誘導体、ベーススチリル誘導体、及び、ジスチリルベンゼン誘導体よりなる群から選ばれた化合物が好ましく、アントラセン誘導体がより好ましい。
アントラセン誘導体としては、アントラセン、9,10-ジブトキシアントラセン、9,10-ジクロロアントラセン、2-エチル-9,10-ジメトキシアントラセン、9-ヒドロキシメチルアントラセン、9-ブロモアントラセン、9-クロロアントラセン、9,10-ジブロモアントラセン、2-エチルアントラセン、又は、9,10-ジメトキシアントラセンが好ましい。 As the sensitizer, a compound selected from the group consisting of an anthracene derivative, an acridone derivative, a thioxanthone derivative, a coumarin derivative, a basestyryl derivative, and a distyrylbenzene derivative is preferable, and an anthracene derivative is more preferable.
Examples of the anthracene derivative include anthracene, 9,10-dibutoxyanthracene, 9,10-dichloroanthracene, 2-ethyl-9,10-dimethoxyanthracene, 9-hydroxymethylanthracene, 9-bromoanthracene, 9-chloroanthracene, 9 , 10-Dibromoanthracene, 2-ethylanthracene or 9,10-dimethoxyanthracene is preferred.
アントラセン誘導体としては、アントラセン、9,10-ジブトキシアントラセン、9,10-ジクロロアントラセン、2-エチル-9,10-ジメトキシアントラセン、9-ヒドロキシメチルアントラセン、9-ブロモアントラセン、9-クロロアントラセン、9,10-ジブロモアントラセン、2-エチルアントラセン、又は、9,10-ジメトキシアントラセンが好ましい。 As the sensitizer, a compound selected from the group consisting of an anthracene derivative, an acridone derivative, a thioxanthone derivative, a coumarin derivative, a basestyryl derivative, and a distyrylbenzene derivative is preferable, and an anthracene derivative is more preferable.
Examples of the anthracene derivative include anthracene, 9,10-dibutoxyanthracene, 9,10-dichloroanthracene, 2-ethyl-9,10-dimethoxyanthracene, 9-hydroxymethylanthracene, 9-bromoanthracene, 9-chloroanthracene, 9 , 10-Dibromoanthracene, 2-ethylanthracene or 9,10-dimethoxyanthracene is preferred.
上記増感剤としては、国際公開第2015/093271号の段落0139~段落0141に記載の化合物を挙げることができる。
と し て Examples of the sensitizer include the compounds described in paragraphs 0139 to 0141 of WO 2015/093271.
増感剤の含有量は、上記ポジ型感光性樹脂層の全質量に対して、0質量%~10質量%であることが好ましく、0.1質量%~10質量%であることがより好ましい。
The content of the sensitizer is preferably from 0% by mass to 10% by mass, more preferably from 0.1% by mass to 10% by mass, based on the total mass of the positive photosensitive resin layer. .
(塩基性化合物)
上記ポジ型感光性樹脂層は、塩基性化合物を更に含むことが好ましい。
塩基性化合物としては、化学増幅レジストで用いられる塩基性化合物の中から任意に選択して使用することができる。例えば、脂肪族アミン、芳香族アミン、複素環式アミン、第四級アンモニウムヒドロキシド、及び、カルボン酸の第四級アンモニウム塩等が挙げられる。これらの具体例としては、特開2011-221494号公報の段落0204~段落0207に記載の化合物が挙げられ、これらの内容は本明細書に組み込まれる。 (Basic compound)
The positive photosensitive resin layer preferably further contains a basic compound.
The basic compound can be arbitrarily selected from the basic compounds used in the chemically amplified resist. Examples thereof include aliphatic amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, and quaternary ammonium salts of carboxylic acids. Specific examples thereof include the compounds described in paragraphs 0204 to 0207 of JP-A-2011-221494, the contents of which are incorporated herein.
上記ポジ型感光性樹脂層は、塩基性化合物を更に含むことが好ましい。
塩基性化合物としては、化学増幅レジストで用いられる塩基性化合物の中から任意に選択して使用することができる。例えば、脂肪族アミン、芳香族アミン、複素環式アミン、第四級アンモニウムヒドロキシド、及び、カルボン酸の第四級アンモニウム塩等が挙げられる。これらの具体例としては、特開2011-221494号公報の段落0204~段落0207に記載の化合物が挙げられ、これらの内容は本明細書に組み込まれる。 (Basic compound)
The positive photosensitive resin layer preferably further contains a basic compound.
The basic compound can be arbitrarily selected from the basic compounds used in the chemically amplified resist. Examples thereof include aliphatic amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, and quaternary ammonium salts of carboxylic acids. Specific examples thereof include the compounds described in paragraphs 0204 to 0207 of JP-A-2011-221494, the contents of which are incorporated herein.
具体的には、脂肪族アミンとしては、例えば、トリメチルアミン、ジエチルアミン、トリエチルアミン、ジ-n-プロピルアミン、トリ-n-プロピルアミン、ジ-n-ペンチルアミン、トリ-n-ペンチルアミン、ジエタノールアミン、トリエタノールアミン、ジシクロヘキシルアミン、及び、ジシクロヘキシルメチルアミンなどが挙げられる。
芳香族アミンとしては、例えば、アニリン、ベンジルアミン、N,N-ジメチルアニリン、及び、ジフェニルアミンが挙げられる。
複素環式アミンとしては、例えば、ピリジン、2-メチルピリジン、4-メチルピリジン、2-エチルピリジン、4-エチルピリジン、2-フェニルピリジン、4-フェニルピリジン、N-メチル-4-フェニルピリジン、4-ジメチルアミノピリジン、イミダゾール、ベンズイミダゾール、4-メチルイミダゾール、2-フェニルベンズイミダゾール、2,4,5-トリフェニルイミダゾール、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、8-オキシキノリン、ピラジン、ピラゾール、ピリダジン、プリン、ピロリジン、ピペリジン、ピペラジン、モルホリン、4-メチルモルホリン、1,5-ジアザビシクロ[4.3.0]-5-ノネン、及び、1,8-ジアザビシクロ[5.3.0]-7-ウンデセンが挙げられる。
第四級アンモニウムヒドロキシドとしては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラ-n-ブチルアンモニウムヒドロキシド、及び、テトラ-n-ヘキシルアンモニウムヒドロキシドが挙げられる。
カルボン酸の第四級アンモニウム塩としては、例えば、テトラメチルアンモニウムアセテート、テトラメチルアンモニウムベンゾエート、テトラ-n-ブチルアンモニウムアセテート、及び、テトラ-n-ブチルアンモニウムベンゾエートが挙げられる。 Specifically, examples of the aliphatic amine include trimethylamine, diethylamine, triethylamine, di-n-propylamine, tri-n-propylamine, di-n-pentylamine, tri-n-pentylamine, diethanolamine, and triethanolamine. Examples include ethanolamine, dicyclohexylamine, and dicyclohexylmethylamine.
Examples of the aromatic amine include aniline, benzylamine, N, N-dimethylaniline, and diphenylamine.
Examples of the heterocyclic amine include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, N-methyl-4-phenylpyridine, 4-dimethylaminopyridine, imidazole, benzimidazole, 4-methylimidazole, 2-phenylbenzimidazole, 2,4,5-triphenylimidazole, nicotine, nicotinic acid, nicotinamide, quinoline, 8-oxyquinoline, pyrazine, Pyrazole, pyridazine, purine, pyrrolidine, piperidine, piperazine, morpholine, 4-methylmorpholine, 1,5-diazabicyclo [4.3.0] -5-nonene, and 1,8-diazabicyclo [5.3.0] -7-undecene.
Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, and tetra-n-hexylammonium hydroxide.
Examples of the quaternary ammonium salt of a carboxylic acid include tetramethylammonium acetate, tetramethylammonium benzoate, tetra-n-butylammonium acetate, and tetra-n-butylammonium benzoate.
芳香族アミンとしては、例えば、アニリン、ベンジルアミン、N,N-ジメチルアニリン、及び、ジフェニルアミンが挙げられる。
複素環式アミンとしては、例えば、ピリジン、2-メチルピリジン、4-メチルピリジン、2-エチルピリジン、4-エチルピリジン、2-フェニルピリジン、4-フェニルピリジン、N-メチル-4-フェニルピリジン、4-ジメチルアミノピリジン、イミダゾール、ベンズイミダゾール、4-メチルイミダゾール、2-フェニルベンズイミダゾール、2,4,5-トリフェニルイミダゾール、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、8-オキシキノリン、ピラジン、ピラゾール、ピリダジン、プリン、ピロリジン、ピペリジン、ピペラジン、モルホリン、4-メチルモルホリン、1,5-ジアザビシクロ[4.3.0]-5-ノネン、及び、1,8-ジアザビシクロ[5.3.0]-7-ウンデセンが挙げられる。
第四級アンモニウムヒドロキシドとしては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラ-n-ブチルアンモニウムヒドロキシド、及び、テトラ-n-ヘキシルアンモニウムヒドロキシドが挙げられる。
カルボン酸の第四級アンモニウム塩としては、例えば、テトラメチルアンモニウムアセテート、テトラメチルアンモニウムベンゾエート、テトラ-n-ブチルアンモニウムアセテート、及び、テトラ-n-ブチルアンモニウムベンゾエートが挙げられる。 Specifically, examples of the aliphatic amine include trimethylamine, diethylamine, triethylamine, di-n-propylamine, tri-n-propylamine, di-n-pentylamine, tri-n-pentylamine, diethanolamine, and triethanolamine. Examples include ethanolamine, dicyclohexylamine, and dicyclohexylmethylamine.
Examples of the aromatic amine include aniline, benzylamine, N, N-dimethylaniline, and diphenylamine.
Examples of the heterocyclic amine include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, N-methyl-4-phenylpyridine, 4-dimethylaminopyridine, imidazole, benzimidazole, 4-methylimidazole, 2-phenylbenzimidazole, 2,4,5-triphenylimidazole, nicotine, nicotinic acid, nicotinamide, quinoline, 8-oxyquinoline, pyrazine, Pyrazole, pyridazine, purine, pyrrolidine, piperidine, piperazine, morpholine, 4-methylmorpholine, 1,5-diazabicyclo [4.3.0] -5-nonene, and 1,8-diazabicyclo [5.3.0] -7-undecene.
Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, and tetra-n-hexylammonium hydroxide.
Examples of the quaternary ammonium salt of a carboxylic acid include tetramethylammonium acetate, tetramethylammonium benzoate, tetra-n-butylammonium acetate, and tetra-n-butylammonium benzoate.
上記塩基性化合物は、1種単独で使用しても、2種以上を併用してもよい。
塩基性化合物の含有量は、上記ポジ型感光性樹脂層の全質量に対して、0.001質量%~5質量%であることが好ましく、0.005質量%~3質量%であることがより好ましい。 The above basic compounds may be used alone or in combination of two or more.
The content of the basic compound is preferably 0.001% by mass to 5% by mass, and more preferably 0.005% by mass to 3% by mass based on the total mass of the positive photosensitive resin layer. More preferred.
塩基性化合物の含有量は、上記ポジ型感光性樹脂層の全質量に対して、0.001質量%~5質量%であることが好ましく、0.005質量%~3質量%であることがより好ましい。 The above basic compounds may be used alone or in combination of two or more.
The content of the basic compound is preferably 0.001% by mass to 5% by mass, and more preferably 0.005% by mass to 3% by mass based on the total mass of the positive photosensitive resin layer. More preferred.
(ヘテロ環状化合物)
本開示におけるポジ型感光性樹脂層は、ヘテロ環状化合物を含むことができる。
本開示におけるヘテロ環状化合物には、特に制限はない。ポジ型感光性樹脂層は、例えば、以下に述べる分子内にエポキシ基又はオキセタニル基を有する化合物、アルコキシメチル基含有ヘテロ環状化合物、各種環状エーテル、環状エステル(ラクトン)などの含酸素モノマー;環状アミン、オキサゾリンなどの含窒素モノマー;珪素、硫黄、リンなどのd電子をもつヘテロ環モノマー等を含むことができる。 (Heterocyclic compound)
The positive photosensitive resin layer in the present disclosure can include a heterocyclic compound.
The heterocyclic compound in the present disclosure is not particularly limited. The positive photosensitive resin layer includes, for example, compounds having an epoxy group or an oxetanyl group in the molecule described below, heterocyclic compounds containing an alkoxymethyl group, various cyclic ethers, oxygen-containing monomers such as cyclic esters (lactones); cyclic amines And nitrogen-containing monomers such as oxazoline; and heterocyclic monomers having d electrons such as silicon, sulfur and phosphorus.
本開示におけるポジ型感光性樹脂層は、ヘテロ環状化合物を含むことができる。
本開示におけるヘテロ環状化合物には、特に制限はない。ポジ型感光性樹脂層は、例えば、以下に述べる分子内にエポキシ基又はオキセタニル基を有する化合物、アルコキシメチル基含有ヘテロ環状化合物、各種環状エーテル、環状エステル(ラクトン)などの含酸素モノマー;環状アミン、オキサゾリンなどの含窒素モノマー;珪素、硫黄、リンなどのd電子をもつヘテロ環モノマー等を含むことができる。 (Heterocyclic compound)
The positive photosensitive resin layer in the present disclosure can include a heterocyclic compound.
The heterocyclic compound in the present disclosure is not particularly limited. The positive photosensitive resin layer includes, for example, compounds having an epoxy group or an oxetanyl group in the molecule described below, heterocyclic compounds containing an alkoxymethyl group, various cyclic ethers, oxygen-containing monomers such as cyclic esters (lactones); cyclic amines And nitrogen-containing monomers such as oxazoline; and heterocyclic monomers having d electrons such as silicon, sulfur and phosphorus.
ポジ型感光性樹脂層中におけるヘテロ環状化合物の含有量は、ヘテロ環状化合物を含む場合には、上記ポジ型感光性樹脂層の全質量に対し、0.01質量%~50質量%であることが好ましく、0.1質量%~10質量%であることがより好ましく、1質量%~5質量%であることが更に好ましい。上記範囲であると、密着性及びエッチング耐性の観点で好ましい。ヘテロ環状化合物は1種のみを用いてもよく、2種以上を併用することもできる。
When the heterocyclic compound is contained in the positive photosensitive resin layer, the content of the heterocyclic compound is 0.01% by mass to 50% by mass based on the total mass of the positive photosensitive resin layer. Is preferably 0.1% by mass to 10% by mass, and more preferably 1% by mass to 5% by mass. The above range is preferable from the viewpoint of adhesion and etching resistance. One heterocyclic compound may be used alone, or two or more heterocyclic compounds may be used in combination.
分子内にエポキシ基を有する化合物の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂肪族エポキシ樹脂等を挙げることができる。
具体 Specific examples of the compound having an epoxy group in the molecule include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, and aliphatic epoxy resin.
分子内にエポキシ基を有する化合物は市販品として入手できる。例えば、JER828、JER1007、JER157S70、JER157S65(三菱ケミカル(株)製)、特開2011-221494号公報の段落0189に記載の市販品などが挙げられる。
その他の市販品として、ADEKA RESIN EP-4000S、同EP-4003S、同EP-4010S、同EP-4011S(以上、(株)ADEKA製)、NC-2000、NC-3000、NC-7300、XD-1000、EPPN-501、EPPN-502(以上、(株)ADEKA製)、デナコールEX-611、EX-612、EX-614、EX-614B、EX-622、EX-512、EX-521、EX-411、EX-421、EX-313、EX-314、EX-321、EX-211、EX-212、EX-810、EX-811、EX-850、EX-851、EX-821、EX-830、EX-832、EX-841、EX-911、EX-941、EX-920、EX-931、EX-212L、EX-214L、EX-216L、EX-321L、EX-850L、DLC-201、DLC-203、DLC-204、DLC-205、DLC-206、DLC-301、DLC-402、EX-111,EX-121、EX-141、EX-145、EX-146、EX-147、EX-171、EX-192(以上、ナガセケムテック製)、YH-300、YH-301、YH-302、YH-315、YH-324、YH-325(以上、新日鐵住金化学(株)製)セロキサイド2021P、2081、2000、3000、EHPE3150、エポリードGT400、セルビナースB0134、B0177((株)ダイセル製)などが挙げられる。
分子内にエポキシ基を有する化合物は1種単独で用いてもよく、2種以上を併用してもよい。 Compounds having an epoxy group in the molecule are commercially available. Examples thereof include JER828, JER1007, JER157S70, JER157S65 (manufactured by Mitsubishi Chemical Corporation), and commercially available products described in paragraph 0189 of JP-A-2011-221494.
Other commercially available products include ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4011S (all manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, and XD- 1000, EPPN-501, EPPN-502 (all made by ADEKA Corporation), Denacol EX-611, EX-612, EX-614, EX-614B, EX-622, EX-512, EX-521, EX- 411, EX-421, EX-313, EX-314, EX-321, EX-211, EX-212, EX-810, EX-811, EX-850, EX-851, EX-821, EX-830, EX-832, EX-841, EX-911, EX-941, EX-920, EX-931, EX-212 , EX-214L, EX-216L, EX-321L, EX-850L, DLC-201, DLC-203, DLC-204, DLC-205, DLC-206, DLC-301, DLC-402, EX-111, EX -121, EX-141, EX-145, EX-146, EX-147, EX-171, EX-192 (all manufactured by Nagase Chemtech), YH-300, YH-301, YH-302, YH-315 , YH-324, YH-325 (all manufactured by Nippon Steel & Sumitomo Metal Corporation) Celloxide 2021P, 2081, 2000, 3000, EHPE3150, Eporide GT400, Cellbinars B0134, B0177 (manufactured by Daicel Corporation). .
The compound having an epoxy group in the molecule may be used alone or in combination of two or more.
その他の市販品として、ADEKA RESIN EP-4000S、同EP-4003S、同EP-4010S、同EP-4011S(以上、(株)ADEKA製)、NC-2000、NC-3000、NC-7300、XD-1000、EPPN-501、EPPN-502(以上、(株)ADEKA製)、デナコールEX-611、EX-612、EX-614、EX-614B、EX-622、EX-512、EX-521、EX-411、EX-421、EX-313、EX-314、EX-321、EX-211、EX-212、EX-810、EX-811、EX-850、EX-851、EX-821、EX-830、EX-832、EX-841、EX-911、EX-941、EX-920、EX-931、EX-212L、EX-214L、EX-216L、EX-321L、EX-850L、DLC-201、DLC-203、DLC-204、DLC-205、DLC-206、DLC-301、DLC-402、EX-111,EX-121、EX-141、EX-145、EX-146、EX-147、EX-171、EX-192(以上、ナガセケムテック製)、YH-300、YH-301、YH-302、YH-315、YH-324、YH-325(以上、新日鐵住金化学(株)製)セロキサイド2021P、2081、2000、3000、EHPE3150、エポリードGT400、セルビナースB0134、B0177((株)ダイセル製)などが挙げられる。
分子内にエポキシ基を有する化合物は1種単独で用いてもよく、2種以上を併用してもよい。 Compounds having an epoxy group in the molecule are commercially available. Examples thereof include JER828, JER1007, JER157S70, JER157S65 (manufactured by Mitsubishi Chemical Corporation), and commercially available products described in paragraph 0189 of JP-A-2011-221494.
Other commercially available products include ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4011S (all manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, and XD- 1000, EPPN-501, EPPN-502 (all made by ADEKA Corporation), Denacol EX-611, EX-612, EX-614, EX-614B, EX-622, EX-512, EX-521, EX- 411, EX-421, EX-313, EX-314, EX-321, EX-211, EX-212, EX-810, EX-811, EX-850, EX-851, EX-821, EX-830, EX-832, EX-841, EX-911, EX-941, EX-920, EX-931, EX-212 , EX-214L, EX-216L, EX-321L, EX-850L, DLC-201, DLC-203, DLC-204, DLC-205, DLC-206, DLC-301, DLC-402, EX-111, EX -121, EX-141, EX-145, EX-146, EX-147, EX-171, EX-192 (all manufactured by Nagase Chemtech), YH-300, YH-301, YH-302, YH-315 , YH-324, YH-325 (all manufactured by Nippon Steel & Sumitomo Metal Corporation) Celloxide 2021P, 2081, 2000, 3000, EHPE3150, Eporide GT400, Cellbinars B0134, B0177 (manufactured by Daicel Corporation). .
The compound having an epoxy group in the molecule may be used alone or in combination of two or more.
分子内にエポキシ基を有する化合物の中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂及び脂肪族エポキシ樹脂がより好ましく挙げられ、脂肪族エポキシ樹脂が特に好ましく挙げられる。
の Among the compounds having an epoxy group in the molecule, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolak type epoxy resin and aliphatic epoxy resin are more preferable, and aliphatic epoxy resin is particularly preferable.
分子内にオキセタニル基を有する化合物の具体例としては、アロンオキセタンOXT-201、OXT-211、OXT-212、OXT-213、OXT-121、OXT-221、OX-SQ、PNOX(以上、東亞合成(株)製)を用いることができる。
Specific examples of the compound having an oxetanyl group in the molecule include Alonoxetane OXT-201, OXT-211, OXT-212, OXT-213, OXT-121, OXT-221, OX-SQ, and PNOX (these are Toagosei Co., Ltd.) (Manufactured by K.K.).
また、オキセタニル基を含む化合物は、単独で又はエポキシ基を含む化合物と混合して使用することが好ましい。
It is preferable that the compound containing an oxetanyl group is used alone or in combination with a compound containing an epoxy group.
本開示におけるポジ型感光性樹脂層においては、ヘテロ環状化合物がエポキシ基を有する化合物であることが、エッチング耐性及び線幅安定性の観点から好ましい。
は In the positive photosensitive resin layer of the present disclosure, the heterocyclic compound is preferably a compound having an epoxy group from the viewpoint of etching resistance and line width stability.
(アルコキシシラン化合物)
上記ポジ型感光性樹脂層は、アルコキシシラン化合物を含有してもよい。アルコキシシラン化合物としては、トリアルコキシシラン化合物が好ましく挙げられる。
アルコキシシラン化合物としては、例えば、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリアコキシシラン、γ-グリシドキシプロピルアルキルジアルコキシシラン、γ-メタクリロキシプロピルトリアルコキシシラン、γ-メタクリロキシプロピルアルキルジアルコキシシラン、γ-クロロプロピルトリアルコキシシラン、γ-メルカプトプロピルトリアルコキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリアルコキシシラン、ビニルトリアルコキシシランが挙げられる。これらのうち、γ-グリシドキシプロピルトリアルコキシシラン及びγ-メタクリロキシプロピルトリアルコキシシランがより好ましく、γ-グリシドキシプロピルトリアルコキシシランが更に好ましく、3-グリシドキシプロピルトリメトキシシランが特に好ましい。これらは1種単独又は2種以上を組み合わせて使用することができる。 (Alkoxysilane compound)
The positive photosensitive resin layer may contain an alkoxysilane compound. Preferred examples of the alkoxysilane compound include trialkoxysilane compounds.
Examples of the alkoxysilane compound include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-glycidoxypropyltriakoxysilane, γ-glycidoxypropylalkyldialkoxysilane, γ-methacryloxy Propyl trialkoxysilane, γ-methacryloxypropylalkyl dialkoxysilane, γ-chloropropyl trialkoxysilane, γ-mercaptopropyl trialkoxysilane, β- (3,4-epoxycyclohexyl) ethyl trialkoxysilane, vinyl trialkoxysilane Is mentioned. Among them, γ-glycidoxypropyl trialkoxysilane and γ-methacryloxypropyl trialkoxysilane are more preferable, γ-glycidoxypropyl trialkoxysilane is more preferable, and 3-glycidoxypropyltrimethoxysilane is particularly preferable. preferable. These can be used alone or in combination of two or more.
上記ポジ型感光性樹脂層は、アルコキシシラン化合物を含有してもよい。アルコキシシラン化合物としては、トリアルコキシシラン化合物が好ましく挙げられる。
アルコキシシラン化合物としては、例えば、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリアコキシシラン、γ-グリシドキシプロピルアルキルジアルコキシシラン、γ-メタクリロキシプロピルトリアルコキシシラン、γ-メタクリロキシプロピルアルキルジアルコキシシラン、γ-クロロプロピルトリアルコキシシラン、γ-メルカプトプロピルトリアルコキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリアルコキシシラン、ビニルトリアルコキシシランが挙げられる。これらのうち、γ-グリシドキシプロピルトリアルコキシシラン及びγ-メタクリロキシプロピルトリアルコキシシランがより好ましく、γ-グリシドキシプロピルトリアルコキシシランが更に好ましく、3-グリシドキシプロピルトリメトキシシランが特に好ましい。これらは1種単独又は2種以上を組み合わせて使用することができる。 (Alkoxysilane compound)
The positive photosensitive resin layer may contain an alkoxysilane compound. Preferred examples of the alkoxysilane compound include trialkoxysilane compounds.
Examples of the alkoxysilane compound include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-glycidoxypropyltriakoxysilane, γ-glycidoxypropylalkyldialkoxysilane, γ-methacryloxy Propyl trialkoxysilane, γ-methacryloxypropylalkyl dialkoxysilane, γ-chloropropyl trialkoxysilane, γ-mercaptopropyl trialkoxysilane, β- (3,4-epoxycyclohexyl) ethyl trialkoxysilane, vinyl trialkoxysilane Is mentioned. Among them, γ-glycidoxypropyl trialkoxysilane and γ-methacryloxypropyl trialkoxysilane are more preferable, γ-glycidoxypropyl trialkoxysilane is more preferable, and 3-glycidoxypropyltrimethoxysilane is particularly preferable. preferable. These can be used alone or in combination of two or more.
(界面活性剤)
上記ポジ型感光性樹脂層は、膜厚均一性の観点から界面活性剤を含有することが好ましい。界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤(非イオン系界面活性剤)、又は、両性界面活性剤のいずれでも使用することができるが、好ましい界面活性剤はノニオン界面活性剤である。
ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリオキシエチレングリコールの高級脂肪酸ジエステル類、シリコーン系、フッ素系界面活性剤を挙げることができる。また、以下商品名で、KP(信越化学工業(株)製)、ポリフロー(共栄社化学(株)製)、エフトップ(JEMCO社製)、メガファック(登録商標、DIC(株)製)、フロラード(住友スリーエム(株)製)、アサヒガード(登録商標、旭硝子(株)製)、サーフロン(登録商標、旭硝子(株)製)、PolyFox(OMNOVA社製)、及び、SH-8400(東レ・ダウコーニング(株)製)等の各シリーズを挙げることができる。
また、界面活性剤として、下記式I-1で表される構成単位SA及び構成単位SBを含み、テトラヒドロフラン(THF)を溶剤とした場合のゲルパーミエーションクロマトグラフィーで測定されるポリスチレン換算の重量平均分子量(Mw)が1,000以上10,000以下である共重合体を好ましい例として挙げることができる。 (Surfactant)
The positive photosensitive resin layer preferably contains a surfactant from the viewpoint of uniformity of the film thickness. As the surfactant, any of an anionic surfactant, a cationic surfactant, a nonionic surfactant (nonionic surfactant), and an amphoteric surfactant can be used, but a preferred surfactant is used. The surfactant is a non-ionic surfactant.
Examples of the nonionic surfactant include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, silicone-based, and fluorine-based surfactants. . In the following trade names, KP (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow (manufactured by Kyoeisha Chemical Co., Ltd.), F-Top (manufactured by JEMCO), Megafac (registered trademark, manufactured by DIC Corporation), Florard (Manufactured by Sumitomo 3M Limited), Asahi Guard (registered trademark, manufactured by Asahi Glass Co., Ltd.), Surflon (registered trademark, manufactured by Asahi Glass Co., Ltd.), PolyFox (manufactured by OMNOVA), and SH-8400 (Toray Dow) Corning Co., Ltd.).
Further, the surfactant contains a structural unit SA and a structural unit SB represented by the following formula I-1 and has a weight average in terms of polystyrene measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent. A copolymer having a molecular weight (Mw) of 1,000 or more and 10,000 or less can be mentioned as a preferable example.
上記ポジ型感光性樹脂層は、膜厚均一性の観点から界面活性剤を含有することが好ましい。界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤(非イオン系界面活性剤)、又は、両性界面活性剤のいずれでも使用することができるが、好ましい界面活性剤はノニオン界面活性剤である。
ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリオキシエチレングリコールの高級脂肪酸ジエステル類、シリコーン系、フッ素系界面活性剤を挙げることができる。また、以下商品名で、KP(信越化学工業(株)製)、ポリフロー(共栄社化学(株)製)、エフトップ(JEMCO社製)、メガファック(登録商標、DIC(株)製)、フロラード(住友スリーエム(株)製)、アサヒガード(登録商標、旭硝子(株)製)、サーフロン(登録商標、旭硝子(株)製)、PolyFox(OMNOVA社製)、及び、SH-8400(東レ・ダウコーニング(株)製)等の各シリーズを挙げることができる。
また、界面活性剤として、下記式I-1で表される構成単位SA及び構成単位SBを含み、テトラヒドロフラン(THF)を溶剤とした場合のゲルパーミエーションクロマトグラフィーで測定されるポリスチレン換算の重量平均分子量(Mw)が1,000以上10,000以下である共重合体を好ましい例として挙げることができる。 (Surfactant)
The positive photosensitive resin layer preferably contains a surfactant from the viewpoint of uniformity of the film thickness. As the surfactant, any of an anionic surfactant, a cationic surfactant, a nonionic surfactant (nonionic surfactant), and an amphoteric surfactant can be used, but a preferred surfactant is used. The surfactant is a non-ionic surfactant.
Examples of the nonionic surfactant include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, silicone-based, and fluorine-based surfactants. . In the following trade names, KP (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow (manufactured by Kyoeisha Chemical Co., Ltd.), F-Top (manufactured by JEMCO), Megafac (registered trademark, manufactured by DIC Corporation), Florard (Manufactured by Sumitomo 3M Limited), Asahi Guard (registered trademark, manufactured by Asahi Glass Co., Ltd.), Surflon (registered trademark, manufactured by Asahi Glass Co., Ltd.), PolyFox (manufactured by OMNOVA), and SH-8400 (Toray Dow) Corning Co., Ltd.).
Further, the surfactant contains a structural unit SA and a structural unit SB represented by the following formula I-1 and has a weight average in terms of polystyrene measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent. A copolymer having a molecular weight (Mw) of 1,000 or more and 10,000 or less can be mentioned as a preferable example.
式I-1中、R401及びR403はそれぞれ独立に、水素原子又はメチル基を表し、R402は炭素数1以上4以下の直鎖アルキレン基を表し、R404は水素原子又は炭素数1以上4以下のアルキル基を表し、Lは炭素数3以上6以下のアルキレン基を表し、p及びqは重合比を表す質量百分率であり、pは10質量%以上80質量%以下の数値を表し、qは20質量%以上90質量%以下の数値を表し、rは1以上18以下の整数を表し、sは1以上10以下の整数を表し、*は他の構造との結合部位を表す。
In Formula I-1, R 401 and R 403 each independently represent a hydrogen atom or a methyl group, R 402 represents a linear alkylene group having 1 to 4 carbon atoms, and R 404 represents a hydrogen atom or 1 carbon atom. L represents an alkylene group having 3 or more and 6 or less carbon atoms, p and q are mass percentages representing a polymerization ratio, and p represents a numerical value of 10 mass% or more and 80 mass% or less. , Q represents a numerical value of 20% by mass or more and 90% by mass or less, r represents an integer of 1 or more and 18 or less, s represents an integer of 1 or more and 10 or less, and * represents a bonding site with another structure.
Lは、下記式I-2で表される分岐アルキレン基であることが好ましい。式I-2におけるR405は、炭素数1以上4以下のアルキル基を表し、相溶性と被塗布面に対する濡れ性の点で、炭素数1以上3以下のアルキル基が好ましく、炭素数2又は3のアルキル基がより好ましい。pとqとの和(p+q)は、p+q=100、すなわち、100質量%であることが好ましい。
L is preferably a branched alkylene group represented by the following formula I-2. R 405 in Formula I-2 represents an alkyl group having 1 to 4 carbon atoms, and is preferably an alkyl group having 1 to 3 carbon atoms in terms of compatibility and wettability to the surface to be coated, and has 2 or more carbon atoms. 3 alkyl groups are more preferred. The sum of p and q (p + q) is preferably p + q = 100, that is, 100% by mass.
共重合体の重量平均分子量(Mw)は、1,500以上5,000以下がより好ましい。
重量 The weight average molecular weight (Mw) of the copolymer is more preferably 1,500 or more and 5,000 or less.
その他、特許第4502784号公報の段落0017、特開2009-237362号公報の段落0060~段落0071に記載の界面活性剤も用いることができる。
In addition, the surfactants described in paragraph 0017 of Japanese Patent No. 4502784 and paragraphs 0060 to 0071 of JP-A-2009-237362 can be used.
界面活性剤は、1種単独で用いてもよく、2種以上を併用してもよい。
界面活性剤の添加量は、上記ポジ型感光性樹脂層の全質量に対して、10質量%以下であることが好ましく、0.001質量%~10質量%であることがより好ましく、0.01質量%~3質量%であることが更に好ましい。 One surfactant may be used alone, or two or more surfactants may be used in combination.
The amount of the surfactant added is preferably 10% by mass or less, more preferably 0.001% by mass to 10% by mass, and more preferably 0.1% by mass or less with respect to the total mass of the positive photosensitive resin layer. More preferably, the content is from 01% by mass to 3% by mass.
界面活性剤の添加量は、上記ポジ型感光性樹脂層の全質量に対して、10質量%以下であることが好ましく、0.001質量%~10質量%であることがより好ましく、0.01質量%~3質量%であることが更に好ましい。 One surfactant may be used alone, or two or more surfactants may be used in combination.
The amount of the surfactant added is preferably 10% by mass or less, more preferably 0.001% by mass to 10% by mass, and more preferably 0.1% by mass or less with respect to the total mass of the positive photosensitive resin layer. More preferably, the content is from 01% by mass to 3% by mass.
(その他の成分)
本開示におけるポジ型感光性樹脂層には、金属酸化物粒子、酸化防止剤、分散剤、酸増殖剤、現像促進剤、導電性繊維、着色剤、熱ラジカル重合開始剤、熱酸発生剤、紫外線吸収剤、増粘剤、架橋剤、及び、有機又は無機の沈殿防止剤などの公知の添加剤を更に加えることができる。
その他の成分の好ましい態様については特開2014-85643号公報の段落0165~段落0184にそれぞれ記載があり、この公報の内容は本明細書に組み込まれる。 (Other components)
In the positive photosensitive resin layer of the present disclosure, metal oxide particles, an antioxidant, a dispersant, an acid multiplying agent, a development accelerator, a conductive fiber, a coloring agent, a thermal radical polymerization initiator, a thermal acid generator, Known additives such as an ultraviolet absorber, a thickener, a crosslinking agent, and an organic or inorganic suspending agent can be further added.
Preferred embodiments of the other components are described in paragraphs 0165 to 0184 of JP-A-2014-85643, respectively, and the contents of this publication are incorporated herein.
本開示におけるポジ型感光性樹脂層には、金属酸化物粒子、酸化防止剤、分散剤、酸増殖剤、現像促進剤、導電性繊維、着色剤、熱ラジカル重合開始剤、熱酸発生剤、紫外線吸収剤、増粘剤、架橋剤、及び、有機又は無機の沈殿防止剤などの公知の添加剤を更に加えることができる。
その他の成分の好ましい態様については特開2014-85643号公報の段落0165~段落0184にそれぞれ記載があり、この公報の内容は本明細書に組み込まれる。 (Other components)
In the positive photosensitive resin layer of the present disclosure, metal oxide particles, an antioxidant, a dispersant, an acid multiplying agent, a development accelerator, a conductive fiber, a coloring agent, a thermal radical polymerization initiator, a thermal acid generator, Known additives such as an ultraviolet absorber, a thickener, a crosslinking agent, and an organic or inorganic suspending agent can be further added.
Preferred embodiments of the other components are described in paragraphs 0165 to 0184 of JP-A-2014-85643, respectively, and the contents of this publication are incorporated herein.
〔ポジ型感光性樹脂層の形成方法〕
各成分、及び、溶剤を任意の割合でかつ任意の方法で混合し、撹拌溶解してポジ型感光性樹脂層を形成するための感光性樹脂組成物を調製することができる。例えば、各成分を、それぞれ予め溶剤に溶解させた溶液とした後、得られた溶液を所定の割合で混合して組成物を調製することもできる。以上の如くして調製した組成物は、孔径0.2μmのフィルター等を用いてろ過した後に、使用に供することもできる。
本開示に用いられる感光性樹脂組成物における固形成分(例えば、重合体成分、光酸発生剤、塩基性化合物、及び、界面活性剤)は、ポジ型感光性樹脂層の膜厚均一性、面状ムラ等を向上させるために、上述した溶剤に溶解して調整することが好ましい。 (Method of forming positive photosensitive resin layer)
The respective components and the solvent can be mixed at an arbitrary ratio and in an arbitrary method, and stirred and dissolved to prepare a photosensitive resin composition for forming a positive photosensitive resin layer. For example, a composition can be prepared by preparing a solution in which each component is dissolved in a solvent in advance, and then mixing the obtained solution at a predetermined ratio. The composition prepared as described above can be used after being filtered using a filter having a pore size of 0.2 μm or the like.
The solid components (for example, a polymer component, a photoacid generator, a basic compound, and a surfactant) in the photosensitive resin composition used in the present disclosure are uniform in the thickness of the positive photosensitive resin layer, In order to improve shape unevenness and the like, it is preferable to adjust by dissolving in the above-mentioned solvent.
各成分、及び、溶剤を任意の割合でかつ任意の方法で混合し、撹拌溶解してポジ型感光性樹脂層を形成するための感光性樹脂組成物を調製することができる。例えば、各成分を、それぞれ予め溶剤に溶解させた溶液とした後、得られた溶液を所定の割合で混合して組成物を調製することもできる。以上の如くして調製した組成物は、孔径0.2μmのフィルター等を用いてろ過した後に、使用に供することもできる。
本開示に用いられる感光性樹脂組成物における固形成分(例えば、重合体成分、光酸発生剤、塩基性化合物、及び、界面活性剤)は、ポジ型感光性樹脂層の膜厚均一性、面状ムラ等を向上させるために、上述した溶剤に溶解して調整することが好ましい。 (Method of forming positive photosensitive resin layer)
The respective components and the solvent can be mixed at an arbitrary ratio and in an arbitrary method, and stirred and dissolved to prepare a photosensitive resin composition for forming a positive photosensitive resin layer. For example, a composition can be prepared by preparing a solution in which each component is dissolved in a solvent in advance, and then mixing the obtained solution at a predetermined ratio. The composition prepared as described above can be used after being filtered using a filter having a pore size of 0.2 μm or the like.
The solid components (for example, a polymer component, a photoacid generator, a basic compound, and a surfactant) in the photosensitive resin composition used in the present disclosure are uniform in the thickness of the positive photosensitive resin layer, In order to improve shape unevenness and the like, it is preferable to adjust by dissolving in the above-mentioned solvent.
感光性樹脂組成物を仮支持体上に塗布し、乾燥させることで、ポジ型感光性樹脂層を形成することができる。
塗布方法は特に制限されず、スリット塗布、スピン塗布、カーテン塗布、インクジェット塗布などの公知の方法で塗布することができる。
なお、仮支持体上に後述の中間層を形成した上に、感光性樹脂組成物を塗布することもできる。 A positive photosensitive resin layer can be formed by applying the photosensitive resin composition on a temporary support and drying it.
The coating method is not particularly limited, and coating can be performed by a known method such as slit coating, spin coating, curtain coating, or inkjet coating.
The photosensitive resin composition can be applied after forming an intermediate layer described later on the temporary support.
塗布方法は特に制限されず、スリット塗布、スピン塗布、カーテン塗布、インクジェット塗布などの公知の方法で塗布することができる。
なお、仮支持体上に後述の中間層を形成した上に、感光性樹脂組成物を塗布することもできる。 A positive photosensitive resin layer can be formed by applying the photosensitive resin composition on a temporary support and drying it.
The coating method is not particularly limited, and coating can be performed by a known method such as slit coating, spin coating, curtain coating, or inkjet coating.
The photosensitive resin composition can be applied after forming an intermediate layer described later on the temporary support.
[保護フィルム]
本開示に係る感光性転写材料は、保護フィルムを有する。また、保護フィルムの、ポジ型感光性樹脂層と接する側の表面は、下記の(A)及び(B)を満たす。
(A)水接触角が、75°以上である。
(B)表面粗さRaが、45nm以下である。
上記の(A)及び(B)を満たすことで、保護フィルムの、ポジ型感光性樹脂層と接する側の表面の表面エネルギーを下げ、かつ、凹凸を低減できるため、保護フィルムの剥離性の向上及びパターン故障の低減を両立できる。 [Protective film]
The photosensitive transfer material according to the present disclosure has a protective film. The surface of the protective film on the side in contact with the positive photosensitive resin layer satisfies the following (A) and (B).
(A) The water contact angle is 75 ° or more.
(B) The surface roughness Ra is 45 nm or less.
By satisfying the above conditions (A) and (B), the surface energy of the surface of the protective film on the side in contact with the positive photosensitive resin layer can be reduced, and the unevenness can be reduced. And reduction of pattern failure can be achieved at the same time.
本開示に係る感光性転写材料は、保護フィルムを有する。また、保護フィルムの、ポジ型感光性樹脂層と接する側の表面は、下記の(A)及び(B)を満たす。
(A)水接触角が、75°以上である。
(B)表面粗さRaが、45nm以下である。
上記の(A)及び(B)を満たすことで、保護フィルムの、ポジ型感光性樹脂層と接する側の表面の表面エネルギーを下げ、かつ、凹凸を低減できるため、保護フィルムの剥離性の向上及びパターン故障の低減を両立できる。 [Protective film]
The photosensitive transfer material according to the present disclosure has a protective film. The surface of the protective film on the side in contact with the positive photosensitive resin layer satisfies the following (A) and (B).
(A) The water contact angle is 75 ° or more.
(B) The surface roughness Ra is 45 nm or less.
By satisfying the above conditions (A) and (B), the surface energy of the surface of the protective film on the side in contact with the positive photosensitive resin layer can be reduced, and the unevenness can be reduced. And reduction of pattern failure can be achieved at the same time.
本開示において、「保護フィルムの、ポジ型感光性樹脂層と接する側の表面」とは、保護フィルムの、ポジ型感光性樹脂層との貼り合わせ面(すなわち、接触面)を意味し、換言すると、ポジ型感光性樹脂層から剥離されることで露出する保護フィルムの表面(すなわち、剥離面)を意味する。具体的な剥離条件については、下記に説明するとおりである。
In the present disclosure, “the surface of the protective film that is in contact with the positive photosensitive resin layer” means the surface of the protective film to be bonded to the positive photosensitive resin layer (that is, the contact surface). Then, it means the surface of the protective film that is exposed by being separated from the positive photosensitive resin layer (that is, the peeled surface). Specific peeling conditions are as described below.
本開示に係る感光性転写材料は、保護フィルムとポジ型感光性樹脂層との界面で剥離可能である。ここで、「保護フィルムとポジ型感光性樹脂層との界面で剥離可能」とは、下記剥離条件によって、保護フィルムをポジ型感光性樹脂層から剥離できることを意味する。また、保護フィルムが後述する下塗り層を有し、下塗り層がポジ型感光性転写材料と接している場合、本開示に係る感光性転写材料は、保護フィルムの下塗り層とポジ型感光性樹脂層との界面で剥離可能である。剥離された保護フィルムにおける下塗り層の存在は、保護フィルムの断面観察によって確認することができる。具体的には、下記剥離条件によってポジ型感光性樹脂層から剥離された保護フィルムの断面を、走査型電子顕微鏡を用いて観察する。その観察画像において、保護フィルムの基材を含む積層構造が観察される場合に、保護フィルムは下塗り層を有すると判断できる。
感光 The photosensitive transfer material according to the present disclosure is peelable at the interface between the protective film and the positive photosensitive resin layer. Here, “peelable at the interface between the protective film and the positive photosensitive resin layer” means that the protective film can be peeled from the positive photosensitive resin layer under the following peeling conditions. Further, when the protective film has an undercoat layer described below, and the undercoat layer is in contact with the positive photosensitive transfer material, the photosensitive transfer material according to the present disclosure, the protective film undercoat layer and the positive photosensitive resin layer At the interface with The presence of the undercoat layer in the peeled protective film can be confirmed by observing the cross section of the protective film. Specifically, the cross section of the protective film peeled off from the positive photosensitive resin layer under the following peeling conditions is observed using a scanning electron microscope. When a laminated structure including the base material of the protective film is observed in the observed image, it can be determined that the protective film has an undercoat layer.
〔剥離条件〕
感光性転写材料を、幅4.5cm×長さ9cmに切り抜き、仮支持体側の面をガラス板上に両面粘着テープで貼り合わせる。貼り合わされた感光性転写材料に、幅4.5cm×長さ15cmに切りぬいた粘着テープを、粘着テープの幅方向と感光性転写材料の幅方向とを合わせ、幅方向には粘着テープがはみ出さず、長さ方向に前後3cmずつ粘着テープがはみ出すように貼り合せる。テープの一方の端部を把持し、引張試験機を用いて500mm/minの剥離速度で180°剥離を行う。ここで、粘着テープ及び両面粘着テープは、JIS Z 0109:2015に記載のものを使用し、引張試験機は、JIS B 7721:2009に規定する引張試験機(試験機の等級1:相対指示誤差±1.0%)又はこれと同等の引張試験機を使用する。 (Peeling conditions)
The photosensitive transfer material is cut out to 4.5 cm wide by 9 cm long, and the surface on the temporary support side is stuck on a glass plate with a double-sided adhesive tape. A 4.5cm wide x 15cm long adhesive tape cut into the laminated photosensitive transfer material, the width direction of the adhesive tape is aligned with the width direction of the photosensitive transfer material, and the adhesive tape protrudes in the width direction. Instead, the adhesive tape is stuck so that the adhesive tape protrudes by 3 cm in the longitudinal direction. One end of the tape is gripped, and 180 ° peeling is performed at a peeling speed of 500 mm / min using a tensile tester. Here, the pressure-sensitive adhesive tape and the double-sided pressure-sensitive adhesive tape used are those described in JIS Z 0109: 2015, and the tensile tester is a tensile tester (tester grade 1: relative indication error) specified in JIS B 7721: 2009. ± 1.0%) or equivalent tensile tester is used.
感光性転写材料を、幅4.5cm×長さ9cmに切り抜き、仮支持体側の面をガラス板上に両面粘着テープで貼り合わせる。貼り合わされた感光性転写材料に、幅4.5cm×長さ15cmに切りぬいた粘着テープを、粘着テープの幅方向と感光性転写材料の幅方向とを合わせ、幅方向には粘着テープがはみ出さず、長さ方向に前後3cmずつ粘着テープがはみ出すように貼り合せる。テープの一方の端部を把持し、引張試験機を用いて500mm/minの剥離速度で180°剥離を行う。ここで、粘着テープ及び両面粘着テープは、JIS Z 0109:2015に記載のものを使用し、引張試験機は、JIS B 7721:2009に規定する引張試験機(試験機の等級1:相対指示誤差±1.0%)又はこれと同等の引張試験機を使用する。 (Peeling conditions)
The photosensitive transfer material is cut out to 4.5 cm wide by 9 cm long, and the surface on the temporary support side is stuck on a glass plate with a double-sided adhesive tape. A 4.5cm wide x 15cm long adhesive tape cut into the laminated photosensitive transfer material, the width direction of the adhesive tape is aligned with the width direction of the photosensitive transfer material, and the adhesive tape protrudes in the width direction. Instead, the adhesive tape is stuck so that the adhesive tape protrudes by 3 cm in the longitudinal direction. One end of the tape is gripped, and 180 ° peeling is performed at a peeling speed of 500 mm / min using a tensile tester. Here, the pressure-sensitive adhesive tape and the double-sided pressure-sensitive adhesive tape used are those described in JIS Z 0109: 2015, and the tensile tester is a tensile tester (tester grade 1: relative indication error) specified in JIS B 7721: 2009. ± 1.0%) or equivalent tensile tester is used.
〔水接触角〕
保護フィルムの、ポジ型感光性樹脂層と接する側の表面の水接触角は、75°以上である。水接触角を上記数値範囲内に調整することによって、保護フィルムの、ポジ型感光性樹脂層と接する側の表面の表面エネルギーを下げることができるため、保護フィルムの剥離性を向上させることができる。
水接触角は、剥離性の観点から、78°以上であることが好ましく、82°以上であることがより好ましく、85°以上としてもよく、100°以上としてもよい。
水接触角の上限値は、制限されない。水接触角は、密着性の観点から、150°以下であることが好ましく、120°以下であることがより好ましい。 (Water contact angle)
The water contact angle of the surface of the protective film on the side in contact with the positive photosensitive resin layer is 75 ° or more. By adjusting the water contact angle within the above numerical range, since the surface energy of the surface of the protective film on the side in contact with the positive photosensitive resin layer can be reduced, the peelability of the protective film can be improved. .
The water contact angle is preferably 78 ° or more, more preferably 82 ° or more, and may be 85 ° or more, or may be 100 ° or more, from the viewpoint of peelability.
The upper limit of the water contact angle is not limited. The water contact angle is preferably 150 ° or less, and more preferably 120 ° or less, from the viewpoint of adhesion.
保護フィルムの、ポジ型感光性樹脂層と接する側の表面の水接触角は、75°以上である。水接触角を上記数値範囲内に調整することによって、保護フィルムの、ポジ型感光性樹脂層と接する側の表面の表面エネルギーを下げることができるため、保護フィルムの剥離性を向上させることができる。
水接触角は、剥離性の観点から、78°以上であることが好ましく、82°以上であることがより好ましく、85°以上としてもよく、100°以上としてもよい。
水接触角の上限値は、制限されない。水接触角は、密着性の観点から、150°以下であることが好ましく、120°以下であることがより好ましい。 (Water contact angle)
The water contact angle of the surface of the protective film on the side in contact with the positive photosensitive resin layer is 75 ° or more. By adjusting the water contact angle within the above numerical range, since the surface energy of the surface of the protective film on the side in contact with the positive photosensitive resin layer can be reduced, the peelability of the protective film can be improved. .
The water contact angle is preferably 78 ° or more, more preferably 82 ° or more, and may be 85 ° or more, or may be 100 ° or more, from the viewpoint of peelability.
The upper limit of the water contact angle is not limited. The water contact angle is preferably 150 ° or less, and more preferably 120 ° or less, from the viewpoint of adhesion.
水接触角は、以下の方法によって測定することができる。
接触角計(協和界面科学社製、DROPMASTER-501)を用い、25℃の温度条件下で、測定面に精製水2μLを着滴してから7秒後の接触角を液滴法にて測定する。なお、保護フィルムとポジ型感光性樹脂層とが接している場合には、上記剥離条件で保護フィルムを剥離することによって露出した剥離面を測定面として水接触角を測定する。 The water contact angle can be measured by the following method.
Using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., DROPMASTER-501), the contact angle measured 7 seconds after 2 μL of purified water was dropped on the measurement surface at a temperature of 25 ° C. I do. When the protective film and the positive photosensitive resin layer are in contact with each other, the water contact angle is measured using the peeled surface exposed by peeling the protective film under the above peeling conditions as a measurement surface.
接触角計(協和界面科学社製、DROPMASTER-501)を用い、25℃の温度条件下で、測定面に精製水2μLを着滴してから7秒後の接触角を液滴法にて測定する。なお、保護フィルムとポジ型感光性樹脂層とが接している場合には、上記剥離条件で保護フィルムを剥離することによって露出した剥離面を測定面として水接触角を測定する。 The water contact angle can be measured by the following method.
Using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., DROPMASTER-501), the contact angle measured 7 seconds after 2 μL of purified water was dropped on the measurement surface at a temperature of 25 ° C. I do. When the protective film and the positive photosensitive resin layer are in contact with each other, the water contact angle is measured using the peeled surface exposed by peeling the protective film under the above peeling conditions as a measurement surface.
〔表面粗さRa〕
保護フィルムの、ポジ型感光性樹脂層と接する側の表面の表面粗さRaは、45nm以下である。表面粗さRaを上記数値範囲内に調整することによって、ポジ型感光性樹脂層の表面に形成される凹凸の発生を低減できるため、パターン故障を低減することができる。
表面粗さRaは、パターン故障の低減の観点から、小さいほどよい。具体的に、表面粗さRaは、42nm以下であることが好ましく、25nm以下であることがより好ましく、20nm以下であることがさらに好ましく、14nm以下であることが特に好ましい。
表面粗さRaの下限値は、制限されない。表面粗さRaは、製造の観点から、1nm以上であることが好ましい。 [Surface roughness Ra]
The surface roughness Ra of the surface of the protective film on the side in contact with the positive photosensitive resin layer is 45 nm or less. By adjusting the surface roughness Ra within the above numerical range, the occurrence of irregularities formed on the surface of the positive photosensitive resin layer can be reduced, so that pattern failure can be reduced.
The smaller the surface roughness Ra, the better from the viewpoint of reducing pattern failure. Specifically, the surface roughness Ra is preferably 42 nm or less, more preferably 25 nm or less, further preferably 20 nm or less, and particularly preferably 14 nm or less.
The lower limit of the surface roughness Ra is not limited. The surface roughness Ra is preferably 1 nm or more from the viewpoint of manufacturing.
保護フィルムの、ポジ型感光性樹脂層と接する側の表面の表面粗さRaは、45nm以下である。表面粗さRaを上記数値範囲内に調整することによって、ポジ型感光性樹脂層の表面に形成される凹凸の発生を低減できるため、パターン故障を低減することができる。
表面粗さRaは、パターン故障の低減の観点から、小さいほどよい。具体的に、表面粗さRaは、42nm以下であることが好ましく、25nm以下であることがより好ましく、20nm以下であることがさらに好ましく、14nm以下であることが特に好ましい。
表面粗さRaの下限値は、制限されない。表面粗さRaは、製造の観点から、1nm以上であることが好ましい。 [Surface roughness Ra]
The surface roughness Ra of the surface of the protective film on the side in contact with the positive photosensitive resin layer is 45 nm or less. By adjusting the surface roughness Ra within the above numerical range, the occurrence of irregularities formed on the surface of the positive photosensitive resin layer can be reduced, so that pattern failure can be reduced.
The smaller the surface roughness Ra, the better from the viewpoint of reducing pattern failure. Specifically, the surface roughness Ra is preferably 42 nm or less, more preferably 25 nm or less, further preferably 20 nm or less, and particularly preferably 14 nm or less.
The lower limit of the surface roughness Ra is not limited. The surface roughness Ra is preferably 1 nm or more from the viewpoint of manufacturing.
表面粗さRaは、以下の方法によって測定することができる。
保護フィルムの測定面について、3次元光学プロファイラー(New View7300、Zygo社製)を用いて、以下の条件にて、保護フィルムの表面プロファイルを得る。なお、測定及び解析ソフトには、MetroPro ver8.3.2のMicroscope Applicationを用いる。次に、上記解析ソフト(MetroPro ver8.3.2-Microscope Application)にてSurface Map画面を表示し、Surface Map画面中でヒストグラムデータを得る。得られたヒストグラムデータから、算術平均粗さを算出し、Ra値とする。なお、保護フィルムとポジ型感光性樹脂層とが接している場合には、上記剥離条件で保護フィルムを剥離することによって露出した剥離面を測定面として表面粗さRaを測定する。
(測定条件)
対物レンズ:50倍
Zoom:0.5倍
測定領域:1.00mm×1.00mm
(解析条件)
Removed:plane
Filter:off
FilterType:average
Remove spikes:on
Spike Height(xRMS):7.5 The surface roughness Ra can be measured by the following method.
With respect to the measurement surface of the protective film, a surface profile of the protective film is obtained using a three-dimensional optical profiler (New View 7300, manufactured by Zygo) under the following conditions. The measurement and analysis software uses MicroScope Application 8.3.2. Next, a Surface Map screen is displayed by the analysis software (MetroPro 8.3.2-Microscope Application), and histogram data is obtained in the Surface Map screen. The arithmetic average roughness is calculated from the obtained histogram data, and is set as the Ra value. When the protective film and the positive photosensitive resin layer are in contact with each other, the surface roughness Ra is measured using the peeled surface exposed by peeling the protective film under the above peeling conditions as a measurement surface.
(Measurement condition)
Objective lens: 50 × Zoom: 0.5 × Measurement area: 1.00 mm × 1.00 mm
(Analysis conditions)
Removed: plane
Filter: off
FilterType: average
Remove spikes: on
Spike Height (xRMS): 7.5
保護フィルムの測定面について、3次元光学プロファイラー(New View7300、Zygo社製)を用いて、以下の条件にて、保護フィルムの表面プロファイルを得る。なお、測定及び解析ソフトには、MetroPro ver8.3.2のMicroscope Applicationを用いる。次に、上記解析ソフト(MetroPro ver8.3.2-Microscope Application)にてSurface Map画面を表示し、Surface Map画面中でヒストグラムデータを得る。得られたヒストグラムデータから、算術平均粗さを算出し、Ra値とする。なお、保護フィルムとポジ型感光性樹脂層とが接している場合には、上記剥離条件で保護フィルムを剥離することによって露出した剥離面を測定面として表面粗さRaを測定する。
(測定条件)
対物レンズ:50倍
Zoom:0.5倍
測定領域:1.00mm×1.00mm
(解析条件)
Removed:plane
Filter:off
FilterType:average
Remove spikes:on
Spike Height(xRMS):7.5 The surface roughness Ra can be measured by the following method.
With respect to the measurement surface of the protective film, a surface profile of the protective film is obtained using a three-dimensional optical profiler (New View 7300, manufactured by Zygo) under the following conditions. The measurement and analysis software uses MicroScope Application 8.3.2. Next, a Surface Map screen is displayed by the analysis software (MetroPro 8.3.2-Microscope Application), and histogram data is obtained in the Surface Map screen. The arithmetic average roughness is calculated from the obtained histogram data, and is set as the Ra value. When the protective film and the positive photosensitive resin layer are in contact with each other, the surface roughness Ra is measured using the peeled surface exposed by peeling the protective film under the above peeling conditions as a measurement surface.
(Measurement condition)
Objective lens: 50 × Zoom: 0.5 × Measurement area: 1.00 mm × 1.00 mm
(Analysis conditions)
Removed: plane
Filter: off
FilterType: average
Remove spikes: on
Spike Height (xRMS): 7.5
〔基材〕
保護フィルムの基材としては、樹脂フィルムが好ましい。樹脂フィルムとしては、例えば、ポリオレフィンフィルム(例えば、ポリプロピレンフィルム等)、ポリエステルフィルム(例えば、ポリエチレンテレフタレートフィルム等)、トリ酢酸セルロースフィルム、ポリカーボネートフィルム、ポリスチレンフィルム等が挙げられる。これらの中でも、保護フィルムの基材としては、剥離性及びパターン故障の低減の観点から、ポリオレフィンフィルムが好ましく、ポリプロピレンフィルムがより好ましい。ポリプロピレンフィルムとしては市販品を用いてもよく、例えば、トレファン(登録商標)25KW37(東レ(株)製)等が挙げられる。また、保護フィルムの基材としては、平滑性の観点から、ポリエステルフィルムが好ましく、ポリエチレンテレフタレートフィルムがより好ましい。 〔Base material〕
As the base material of the protective film, a resin film is preferable. Examples of the resin film include a polyolefin film (eg, a polypropylene film), a polyester film (eg, a polyethylene terephthalate film), a cellulose triacetate film, a polycarbonate film, a polystyrene film, and the like. Among these, a polyolefin film is preferable, and a polypropylene film is more preferable as the base material of the protective film, from the viewpoints of peelability and reduction of pattern failure. As the polypropylene film, a commercially available product may be used, and for example, Trefane (registered trademark) 25KW37 (manufactured by Toray Industries, Inc.) or the like may be used. Further, as the base material of the protective film, from the viewpoint of smoothness, a polyester film is preferable, and a polyethylene terephthalate film is more preferable.
保護フィルムの基材としては、樹脂フィルムが好ましい。樹脂フィルムとしては、例えば、ポリオレフィンフィルム(例えば、ポリプロピレンフィルム等)、ポリエステルフィルム(例えば、ポリエチレンテレフタレートフィルム等)、トリ酢酸セルロースフィルム、ポリカーボネートフィルム、ポリスチレンフィルム等が挙げられる。これらの中でも、保護フィルムの基材としては、剥離性及びパターン故障の低減の観点から、ポリオレフィンフィルムが好ましく、ポリプロピレンフィルムがより好ましい。ポリプロピレンフィルムとしては市販品を用いてもよく、例えば、トレファン(登録商標)25KW37(東レ(株)製)等が挙げられる。また、保護フィルムの基材としては、平滑性の観点から、ポリエステルフィルムが好ましく、ポリエチレンテレフタレートフィルムがより好ましい。 〔Base material〕
As the base material of the protective film, a resin film is preferable. Examples of the resin film include a polyolefin film (eg, a polypropylene film), a polyester film (eg, a polyethylene terephthalate film), a cellulose triacetate film, a polycarbonate film, a polystyrene film, and the like. Among these, a polyolefin film is preferable, and a polypropylene film is more preferable as the base material of the protective film, from the viewpoints of peelability and reduction of pattern failure. As the polypropylene film, a commercially available product may be used, and for example, Trefane (registered trademark) 25KW37 (manufactured by Toray Industries, Inc.) or the like may be used. Further, as the base material of the protective film, from the viewpoint of smoothness, a polyester film is preferable, and a polyethylene terephthalate film is more preferable.
樹脂フィルムは、未延伸フィルムであってもよく、延伸フィルムであってもよいが、延伸フィルムであることが好ましい。延伸フィルムとしては、一軸延伸フィルムであってもよく、二軸延伸フィルムであってもよく、三軸延伸等の多軸延伸フィルムであってもよいが、二軸延伸フィルムであることが好ましく、平滑性の観点から、二軸延伸ポリプロピレンフィルム、又は二軸延伸ポリエチレンテレフタレートフィルムであることがより好ましい。
The resin film may be an unstretched film or a stretched film, but is preferably a stretched film. The stretched film may be a uniaxially stretched film, may be a biaxially stretched film, may be a multiaxially stretched film such as triaxially stretched, but is preferably a biaxially stretched film, From the viewpoint of smoothness, a biaxially oriented polypropylene film or a biaxially oriented polyethylene terephthalate film is more preferable.
基材の厚みは、特に制限されず、5μm~200μmの範囲が好ましく、10μm~150μmの範囲がより好ましい。
厚 み The thickness of the substrate is not particularly limited, but is preferably in the range of 5 μm to 200 μm, and more preferably in the range of 10 μm to 150 μm.
〔下塗り層〕
保護フィルムは、基材と、下塗り層と、を有し、保護フィルムの、ポジ型感光性樹脂層と接する側の最外層が、上記下塗り層であることが好ましい。下塗り層を有することで、保護フィルムの表面エネルギーを下げることができるため、保護フィルムの剥離性を向上させることができる。
保護フィルムにおける基材が樹脂フィルムである場合、下塗り層は、未延伸フィルム上に形成されていてもよく、一軸延伸フィルム上に形成されていてもよく、二軸延伸フィルム上に形成されていてもよい。また、下塗り層は、基材との密着性の観点から、基材となる未延伸フィルムと共に延伸された延伸物であってもよく、基材となる一軸延伸フィルムと共に延伸された延伸物であってもよい。延伸物である下塗り層は、後述するとおり、例えば、基材となる樹脂フィルム上に形成された塗布層を、樹脂フィルムと共に延伸することによって形成することができる。 (Undercoat layer)
The protective film has a base material and an undercoat layer, and the outermost layer of the protective film on the side in contact with the positive photosensitive resin layer is preferably the above-mentioned undercoat layer. Since the surface energy of the protective film can be reduced by having the undercoat layer, the peelability of the protective film can be improved.
When the base material in the protective film is a resin film, the undercoat layer may be formed on an unstretched film, may be formed on a uniaxially stretched film, or may be formed on a biaxially stretched film. Is also good. The undercoat layer may be a stretched product stretched together with the unstretched film serving as the base material, or a stretched product stretched together with the uniaxially stretched film serving as the base material, from the viewpoint of adhesion to the base material. You may. The undercoat layer, which is a stretched product, can be formed, for example, by stretching a coating layer formed on a resin film as a base material together with the resin film, as described later.
保護フィルムは、基材と、下塗り層と、を有し、保護フィルムの、ポジ型感光性樹脂層と接する側の最外層が、上記下塗り層であることが好ましい。下塗り層を有することで、保護フィルムの表面エネルギーを下げることができるため、保護フィルムの剥離性を向上させることができる。
保護フィルムにおける基材が樹脂フィルムである場合、下塗り層は、未延伸フィルム上に形成されていてもよく、一軸延伸フィルム上に形成されていてもよく、二軸延伸フィルム上に形成されていてもよい。また、下塗り層は、基材との密着性の観点から、基材となる未延伸フィルムと共に延伸された延伸物であってもよく、基材となる一軸延伸フィルムと共に延伸された延伸物であってもよい。延伸物である下塗り層は、後述するとおり、例えば、基材となる樹脂フィルム上に形成された塗布層を、樹脂フィルムと共に延伸することによって形成することができる。 (Undercoat layer)
The protective film has a base material and an undercoat layer, and the outermost layer of the protective film on the side in contact with the positive photosensitive resin layer is preferably the above-mentioned undercoat layer. Since the surface energy of the protective film can be reduced by having the undercoat layer, the peelability of the protective film can be improved.
When the base material in the protective film is a resin film, the undercoat layer may be formed on an unstretched film, may be formed on a uniaxially stretched film, or may be formed on a biaxially stretched film. Is also good. The undercoat layer may be a stretched product stretched together with the unstretched film serving as the base material, or a stretched product stretched together with the uniaxially stretched film serving as the base material, from the viewpoint of adhesion to the base material. You may. The undercoat layer, which is a stretched product, can be formed, for example, by stretching a coating layer formed on a resin film as a base material together with the resin film, as described later.
より好ましい態様として、保護フィルムは、第一延伸方向の延伸物である一軸延伸フィルムがフィルム面に沿って第一延伸方向と直交する第二延伸方向に延伸された二軸延伸フィルムと、上記一軸延伸フィルムの一方面に形成された塗布層の上記第二延伸方向の延伸物である下塗り層(以下、単に「延伸物である下塗り層」ということがある。)と、を有し、保護フィルムの、ポジ型感光性樹脂層と接する側の最外層が、上記下塗り層であることが好ましい。二軸延伸フィルムと、延伸物である下塗り層と、を有することで、保護フィルムの表面エネルギーを下げることによって保護フィルムの剥離性を向上でき、さらに、保護フィルム表面の平滑性、及び基材(すなわち、二軸延伸フィルム)と下塗り層との密着性を向上できる。
ここで、二軸延伸フィルムと、延伸物である下塗り層と、を有する上記保護フィルムにおける「二軸延伸フィルム」とは、既述の方法によって測定される一方の面の表面粗さRaが45nm以下の樹脂フィルムをいう。 As a more preferred embodiment, the protective film is a biaxially stretched film in which a uniaxially stretched film, which is a stretched product in the first stretching direction, is stretched along a film surface in a second stretching direction orthogonal to the first stretching direction; An undercoat layer that is a stretched product of the coating layer formed on one surface of the stretched film in the second stretching direction (hereinafter, may be simply referred to as “undercoat layer that is a stretched product”), and is a protective film. The outermost layer on the side in contact with the positive photosensitive resin layer is preferably the undercoat layer. By having a biaxially stretched film and an undercoat layer which is a stretched product, the surface energy of the protective film can be reduced to improve the peelability of the protective film, and further, the smoothness of the protective film surface and the base material ( That is, the adhesion between the biaxially stretched film) and the undercoat layer can be improved.
Here, the “biaxially stretched film” in the protective film having a biaxially stretched film and an undercoat layer that is a stretched product has a surface roughness Ra of one surface measured by the method described above of 45 nm. The following resin films are referred to.
ここで、二軸延伸フィルムと、延伸物である下塗り層と、を有する上記保護フィルムにおける「二軸延伸フィルム」とは、既述の方法によって測定される一方の面の表面粗さRaが45nm以下の樹脂フィルムをいう。 As a more preferred embodiment, the protective film is a biaxially stretched film in which a uniaxially stretched film, which is a stretched product in the first stretching direction, is stretched along a film surface in a second stretching direction orthogonal to the first stretching direction; An undercoat layer that is a stretched product of the coating layer formed on one surface of the stretched film in the second stretching direction (hereinafter, may be simply referred to as “undercoat layer that is a stretched product”), and is a protective film. The outermost layer on the side in contact with the positive photosensitive resin layer is preferably the undercoat layer. By having a biaxially stretched film and an undercoat layer which is a stretched product, the surface energy of the protective film can be reduced to improve the peelability of the protective film, and further, the smoothness of the protective film surface and the base material ( That is, the adhesion between the biaxially stretched film) and the undercoat layer can be improved.
Here, the “biaxially stretched film” in the protective film having a biaxially stretched film and an undercoat layer that is a stretched product has a surface roughness Ra of one surface measured by the method described above of 45 nm. The following resin films are referred to.
本開示において、「延伸物である下塗り層」とは、下記方法によって測定される二軸延伸フィルムとの密着力が、0.098N/cm以上のものをいう。
二軸延伸フィルムと下塗り層との密着力の測定方法について、以下説明する。
下塗り層を有する保護フィルムの、下塗り層側の表面にテープ(プリンタックC、日東電工(株)製)を貼り、テープと保護フィルムとの幅が合うように4.5cm×9cmに切り抜く。次いで、テープを、テンシロン万能試験機(株式会社エーアンドデイー社製)を用いて500mm/minの剥離速度で180°剥離し、密着力を測定する。 In the present disclosure, the “undercoat layer that is a stretched product” refers to a material having an adhesive force with a biaxially stretched film measured by the following method of 0.098 N / cm or more.
The method for measuring the adhesion between the biaxially stretched film and the undercoat layer will be described below.
A tape (Printerc C, manufactured by Nitto Denko Corporation) is attached to the surface of the protective film having an undercoat layer on the undercoat layer side, and cut into 4.5 cm × 9 cm so that the width of the tape and the protective film match. Next, the tape is peeled at 180 ° at a peeling speed of 500 mm / min using a Tensilon universal tester (manufactured by A & D Corporation), and the adhesion is measured.
二軸延伸フィルムと下塗り層との密着力の測定方法について、以下説明する。
下塗り層を有する保護フィルムの、下塗り層側の表面にテープ(プリンタックC、日東電工(株)製)を貼り、テープと保護フィルムとの幅が合うように4.5cm×9cmに切り抜く。次いで、テープを、テンシロン万能試験機(株式会社エーアンドデイー社製)を用いて500mm/minの剥離速度で180°剥離し、密着力を測定する。 In the present disclosure, the “undercoat layer that is a stretched product” refers to a material having an adhesive force with a biaxially stretched film measured by the following method of 0.098 N / cm or more.
The method for measuring the adhesion between the biaxially stretched film and the undercoat layer will be described below.
A tape (Printerc C, manufactured by Nitto Denko Corporation) is attached to the surface of the protective film having an undercoat layer on the undercoat layer side, and cut into 4.5 cm × 9 cm so that the width of the tape and the protective film match. Next, the tape is peeled at 180 ° at a peeling speed of 500 mm / min using a Tensilon universal tester (manufactured by A & D Corporation), and the adhesion is measured.
下塗り層に含有される樹脂としては、例えば、ポリオレフィン、アクリルポリマー、ポリエステル等が挙げられる。下塗り層は、剥離性及びパターン故障の低減の観点から、変性樹脂を含有することが好ましく、酸変性樹脂及びシリコーン変性樹脂からなる群より選択される少なくとも1種の樹脂を含有することがより好ましい。より具体的には、下塗り層は、剥離性及びパターン故障の低減の観点から、変性ポリオレフィン及び変性アクリルポリマーからなる群より選択される少なくとも1種の樹脂を含有することが好ましく、酸変性ポリオレフィン及びシリコーン変性アクリルポリマーからなる群より選択される少なくとも1種の樹脂を含有することがより好ましく、酸変性ポリオレフィンを含有することが特に好ましい。
樹脂 Examples of the resin contained in the undercoat layer include polyolefin, acrylic polymer, polyester and the like. The undercoat layer preferably contains a modified resin, and more preferably contains at least one resin selected from the group consisting of an acid-modified resin and a silicone-modified resin, from the viewpoint of reducing releasability and pattern failure. . More specifically, the undercoat layer preferably contains at least one resin selected from the group consisting of a modified polyolefin and a modified acrylic polymer, from the viewpoint of reducing releasability and pattern failure, and comprises an acid-modified polyolefin and More preferably, it contains at least one resin selected from the group consisting of silicone-modified acrylic polymers, and particularly preferably it contains acid-modified polyolefin.
酸変性ポリオレフィンとしては、酸変性されたポリオレフィンであれば制限されず、例えば、酸基を有する化合物(例えば、不飽和カルボン酸等)又はその無水物を用いて、末端変性又はグラフト変性されたポリオレフィン等が挙げられる。酸基としては、例えば、カルボキシ基、スルホ基、ホスホノ基等が挙げられる。
The acid-modified polyolefin is not limited as long as it is an acid-modified polyolefin, and is, for example, a terminal-modified or graft-modified polyolefin using a compound having an acid group (for example, an unsaturated carboxylic acid or the like) or an anhydride thereof. And the like. Examples of the acid group include a carboxy group, a sulfo group, and a phosphono group.
酸変性ポリオレフィンに含まれる酸基の少なくとも1つは、塩の形態(すなわち、酸基の塩)であることが好ましい。酸変性ポリオレフィンに含まれる酸基の少なくとも1つが塩の形態であることで、ポジ型感光性樹脂の過剰な分解を低減できるため、パターン形状を良化できる。塩としては、アルカリ金属塩(例えば、ナトリウム塩、カリウム塩、リチウム塩等)、アミン塩、アンモニウム塩等が挙げられる。これらの中でも、酸変性ポリオレフィンにおける酸基の少なくとも1つは、パターン形状の観点から、アルカリ金属塩であることが好ましく、ナトリウム塩であることがより好ましい。
少 な く と も At least one of the acid groups contained in the acid-modified polyolefin is preferably in the form of a salt (ie, a salt of an acid group). When at least one of the acid groups contained in the acid-modified polyolefin is in the form of a salt, excessive decomposition of the positive photosensitive resin can be reduced, so that the pattern shape can be improved. Examples of the salt include an alkali metal salt (for example, a sodium salt, a potassium salt, a lithium salt and the like), an amine salt, an ammonium salt and the like. Among these, at least one of the acid groups in the acid-modified polyolefin is preferably an alkali metal salt, and more preferably a sodium salt, from the viewpoint of the pattern shape.
酸変性ポリオレフィン等のポリオレフィンとしては市販品を用いてもよく、例えば、ケミパール(登録商標)S100、S120、S200、S300、S650、SA100(いずれも三井化学(株)製)、ハードレン(登録商標)AP-2、NZ1004、NZ1005(いずれも東洋紡(株)製)、アローベース(登録商標)DA-1010、DB-4010、SB-1200、SD-1200、SE-1010、SE-1013(いずれもユニチカ(株)製)、ザイクセン(登録商標)AC、A、L、NC、N(いずれも住友精化(株)製)、セポルジョン(登録商標)G315、VA407(いずれも住友精化(株)製)、ハイテックS3121、S3148K(いずれも東邦化学(株)製)等が挙げられる。
酸基の少なくとも1つがアミン塩である酸変性ポリオレフィンとしては、例えば、ザイクセン(登録商標)L等が挙げられる。
酸基の少なくとも1つがアンモニウム塩である酸変性ポリオレフィンとしては、例えば、ザイクセン(登録商標)AC等が挙げられる。
酸基の少なくとも1つがナトリウム塩である酸変性ポリオレフィンとしては、例えば、ザイクセン(登録商標)NC、ケミパール(登録商標)S120等が挙げられる。 Commercially available polyolefins such as acid-modified polyolefins may be used. For example, Chemipearl (registered trademark) S100, S120, S200, S300, S650, SA100 (all manufactured by Mitsui Chemicals, Inc.), Hardlen (registered trademark) AP-2, NZ1004, NZ1005 (all manufactured by Toyobo Co., Ltd.), Arrowbase (registered trademark) DA-1010, DB-4010, SB-1200, SD-1200, SE-1010, SE-1013 (all are Unitika) Co., Ltd.), Seixen (registered trademark) AC, A, L, NC, N (all manufactured by Sumitomo Seika Co., Ltd.), Sepolsion (registered trademark) G315, VA407 (all manufactured by Sumitomo Seika Co., Ltd.) ), Hitec S3121, S3148K (all manufactured by Toho Chemical Co., Ltd.).
Examples of the acid-modified polyolefin in which at least one of the acid groups is an amine salt include, for example, Sixen (registered trademark) L and the like.
Examples of the acid-modified polyolefin in which at least one of the acid groups is an ammonium salt include, for example, Sixen (registered trademark) AC.
Examples of the acid-modified polyolefin in which at least one of the acid groups is a sodium salt include Sixen (registered trademark) NC, Chemipearl (registered trademark) S120, and the like.
酸基の少なくとも1つがアミン塩である酸変性ポリオレフィンとしては、例えば、ザイクセン(登録商標)L等が挙げられる。
酸基の少なくとも1つがアンモニウム塩である酸変性ポリオレフィンとしては、例えば、ザイクセン(登録商標)AC等が挙げられる。
酸基の少なくとも1つがナトリウム塩である酸変性ポリオレフィンとしては、例えば、ザイクセン(登録商標)NC、ケミパール(登録商標)S120等が挙げられる。 Commercially available polyolefins such as acid-modified polyolefins may be used. For example, Chemipearl (registered trademark) S100, S120, S200, S300, S650, SA100 (all manufactured by Mitsui Chemicals, Inc.), Hardlen (registered trademark) AP-2, NZ1004, NZ1005 (all manufactured by Toyobo Co., Ltd.), Arrowbase (registered trademark) DA-1010, DB-4010, SB-1200, SD-1200, SE-1010, SE-1013 (all are Unitika) Co., Ltd.), Seixen (registered trademark) AC, A, L, NC, N (all manufactured by Sumitomo Seika Co., Ltd.), Sepolsion (registered trademark) G315, VA407 (all manufactured by Sumitomo Seika Co., Ltd.) ), Hitec S3121, S3148K (all manufactured by Toho Chemical Co., Ltd.).
Examples of the acid-modified polyolefin in which at least one of the acid groups is an amine salt include, for example, Sixen (registered trademark) L and the like.
Examples of the acid-modified polyolefin in which at least one of the acid groups is an ammonium salt include, for example, Sixen (registered trademark) AC.
Examples of the acid-modified polyolefin in which at least one of the acid groups is a sodium salt include Sixen (registered trademark) NC, Chemipearl (registered trademark) S120, and the like.
シリコーン変性アクリルポリマーは、シリコーン部位を有するアクリルポリマーである。シリコーン変性アクリルポリマーとしては、制限されず、公知のものを使用することができる。シリコーン変性アクリルポリマーとしては市販品を用いてもよく、例えば、サイマック(登録商標)US-450、US-480等(いずれも東亞合成(株)製)が挙げられる。
Silicone-modified acrylic polymer is an acrylic polymer having a silicone moiety. The silicone-modified acrylic polymer is not limited, and a known one can be used. A commercially available product may be used as the silicone-modified acrylic polymer, and examples thereof include Cymac (registered trademark) US-450 and US-480 (all manufactured by Toagosei Co., Ltd.).
下塗り層に含有される樹脂は、1種単独で用いられてもよく、2種以上を組み合わせて用いてもよい。
樹脂 The resin contained in the undercoat layer may be used alone or in combination of two or more.
下塗り層中の樹脂の含有量は、剥離性及びパターン故障の低減の観点から、下塗り層の全質量に対して、50質量%~100質量%であることが好ましく、80質量%~100質量%であることがより好ましい。また、下塗り層中の変性ポリオレフィン及び変性アクリルポリマーからなる群より選択される少なくとも1種の樹脂の含有量の合計は、剥離性及びパターン故障の低減の観点から、下塗り層の全質量に対して、50質量%~100質量%であることが好ましく、80質量%~100質量%であることがより好ましい。
The content of the resin in the undercoat layer is preferably from 50% by mass to 100% by mass, and more preferably from 80% by mass to 100% by mass, based on the total mass of the undercoat layer, from the viewpoint of the releasability and the reduction in pattern failure. Is more preferable. In addition, the total content of at least one resin selected from the group consisting of the modified polyolefin and the modified acrylic polymer in the undercoat layer is, with respect to the total weight of the undercoat layer, from the viewpoint of reducing releasability and pattern failure. , 50% by mass to 100% by mass, more preferably 80% by mass to 100% by mass.
下塗り層に含有される樹脂の重量平均分子量は、剥離性の観点から、ポリスチレン換算重量平均分子量で、1,000~500,000であることが好ましい。下塗り層に含有される樹脂の重量平均分子量の測定方法は、上記「ポジ型感光性樹脂層」の項において説明した方法によって行うことができる。
樹脂 The weight average molecular weight of the resin contained in the undercoat layer is preferably from 1,000 to 500,000 in terms of polystyrene in terms of releasability. The weight average molecular weight of the resin contained in the undercoat layer can be measured by the method described in the section of “Positive photosensitive resin layer” above.
下塗り層は、必要に応じて、種々の添加剤をさらに含有していてもよい。添加剤としては、例えば、界面活性剤、架橋剤、酸化防止剤、防腐剤等が挙げられる。
The undercoat layer may further contain various additives as necessary. Examples of the additive include a surfactant, a crosslinking agent, an antioxidant, a preservative, and the like.
界面活性剤としては、例えば、カチオン性界面活性剤、ノニオン性界面活性剤、アニオン性界面活性剤等の公知の界面活性剤が挙げられる。これらの中でも、界面活性剤としては、アニオン性界面活性剤が好ましい。アニオン性界面活性剤の例としては、ラピゾール(登録商標)A-90、A-80、BW-30、B-90、C-70(いずれも日油(株)製)、NIKKOL(登録商標)OTP-100(いずれも日光ケミカル(株)製)、コハクール(登録商標)ON、L-40、フォスファノール(登録商標)702(いずれも東邦化学工業(株)製)、ビューライト(登録商標)A-5000、SSS(いずれも三洋化成工業(株)製)等が挙げられる。
Examples of the surfactant include known surfactants such as a cationic surfactant, a nonionic surfactant, and an anionic surfactant. Among these, as the surfactant, an anionic surfactant is preferable. Examples of anionic surfactants include Lapizol (registered trademark) A-90, A-80, BW-30, B-90, and C-70 (all manufactured by NOF Corporation), and NIKKOL (registered trademark). OTP-100 (all manufactured by Nikko Chemical Co., Ltd.), Kohakuur (registered trademark) ON, L-40, Phosphanol (registered trademark) 702 (all manufactured by Toho Chemical Industry Co., Ltd.), Beaulite (registered trademark) ) A-5000, SSS (all manufactured by Sanyo Chemical Industries, Ltd.) and the like.
架橋剤としては、例えば、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の公知の架橋剤を挙げることができる。
Examples of the crosslinking agent include known crosslinking agents such as epoxy, isocyanate, melamine, carbodiimide, and oxazoline.
下塗り層の厚みは、制限されず、剥離性及びパターン故障の低減の観点から、10nm~550nmであることが好ましく、10nm~500nmであることがより好ましく、10nm~100nmであることがさらに好ましく、10nm~60nmであることが特に好ましい。
The thickness of the undercoat layer is not limited, and is preferably from 10 nm to 550 nm, more preferably from 10 nm to 500 nm, still more preferably from 10 nm to 100 nm, from the viewpoint of reducing peeling and pattern failure. It is particularly preferably from 10 nm to 60 nm.
下塗り層の形成方法は、制限されず、例えば、基材上に、下塗り層の固形分を含む下塗り層形成用塗布液を塗布し、乾燥させることにより下塗り層を形成できる。
塗布方法は、制限されず、スリット塗布、スピン塗布、カーテン塗布、インクジェット塗布等の公知の方法を適用することができる。
乾燥方法は、制限されず、ヒーター、温風等の公知の方法を適用することができる。
また、下塗り層は、下塗り層形成用塗布液を用い、インラインコート法により形成されてもよい。インラインコート法は、製造された基材を巻き取る前の段階で下塗り層形成用塗布液を塗布する方法である点で、製造された基材を巻き取ってから別途塗布を行うオフラインコート法と区別される。インラインコート法により下塗り層を形成する方法の一例として、第一延伸方向に延伸された樹脂フィルムの一方の面に、下塗り層形成用塗布液を塗布し、下塗り層形成用塗布液が塗布された樹脂フィルムを、樹脂フィルム面に沿って第一延伸方向と直交する第二延伸方向に延伸することにより、下塗り層を形成する方法が好適である。第一延伸方向に延伸された樹脂フィルムの一方の面に下塗り層形成用塗布液を塗布した状態で第二延伸方向に延伸することで、基材となる樹脂フィルムと下塗り層との密着性を向上でき、また、保護フィルム表面の平滑性を向上できる。
延伸方法は、制限されず、公知の方法を適用することができる。
延伸温度は、基材のガラス転移温度(Tg)に応じて適宜選択すればよく、Tgと同じ温度以上であり、かつ、Tgより80℃高い温度以下であることが好ましく、Tgより5℃高い温度以上であり、かつ、Tgより60℃高い温度以下であることがより好ましい。
延伸倍率は、2.5倍~5.0倍であることが好ましく、3.0倍~4.5倍であることがより好ましい。なお、延伸倍率は、延伸前の長さに対する延伸後の長さの比をいう。
また、二軸延伸後に、延伸フィルムに対して熱固定、熱緩和等の熱処理を行ってもよい。 The method for forming the undercoat layer is not limited. For example, an undercoat layer can be formed by applying a coating liquid for forming an undercoat layer containing a solid content of the undercoat layer on a base material and drying.
The coating method is not limited, and a known method such as slit coating, spin coating, curtain coating, or inkjet coating can be applied.
The drying method is not limited, and a known method such as a heater or hot air can be applied.
The undercoat layer may be formed by an inline coating method using a coating solution for forming an undercoat layer. The in-line coating method is a method of applying a coating liquid for forming an undercoat layer at a stage before winding the manufactured base material, and an off-line coating method of separately applying after winding the manufactured base material. Be distinguished. As an example of a method of forming an undercoat layer by an inline coating method, one surface of a resin film stretched in the first stretching direction was coated with an undercoat layer formation coating solution, and the undercoat layer formation coating solution was applied. A method of forming an undercoat layer by stretching the resin film in a second stretching direction orthogonal to the first stretching direction along the resin film surface is preferable. By stretching in the second stretching direction in a state where the undercoat layer forming coating liquid is applied to one surface of the resin film stretched in the first stretching direction, the adhesion between the resin film and the undercoat layer serving as the base material is improved. And the smoothness of the protective film surface can be improved.
The stretching method is not limited, and a known method can be applied.
The stretching temperature may be appropriately selected according to the glass transition temperature (Tg) of the substrate, and is preferably equal to or higher than Tg, and is equal to or lower than 80 ° C. higher than Tg, and is higher by 5 ° C. than Tg. It is more preferable that the temperature is equal to or higher than the temperature and equal to or lower than the temperature higher by 60 ° C. than the Tg.
The stretching ratio is preferably 2.5 times to 5.0 times, more preferably 3.0 times to 4.5 times. The stretching ratio refers to the ratio of the length after stretching to the length before stretching.
After the biaxial stretching, the stretched film may be subjected to heat treatment such as heat setting and thermal relaxation.
塗布方法は、制限されず、スリット塗布、スピン塗布、カーテン塗布、インクジェット塗布等の公知の方法を適用することができる。
乾燥方法は、制限されず、ヒーター、温風等の公知の方法を適用することができる。
また、下塗り層は、下塗り層形成用塗布液を用い、インラインコート法により形成されてもよい。インラインコート法は、製造された基材を巻き取る前の段階で下塗り層形成用塗布液を塗布する方法である点で、製造された基材を巻き取ってから別途塗布を行うオフラインコート法と区別される。インラインコート法により下塗り層を形成する方法の一例として、第一延伸方向に延伸された樹脂フィルムの一方の面に、下塗り層形成用塗布液を塗布し、下塗り層形成用塗布液が塗布された樹脂フィルムを、樹脂フィルム面に沿って第一延伸方向と直交する第二延伸方向に延伸することにより、下塗り層を形成する方法が好適である。第一延伸方向に延伸された樹脂フィルムの一方の面に下塗り層形成用塗布液を塗布した状態で第二延伸方向に延伸することで、基材となる樹脂フィルムと下塗り層との密着性を向上でき、また、保護フィルム表面の平滑性を向上できる。
延伸方法は、制限されず、公知の方法を適用することができる。
延伸温度は、基材のガラス転移温度(Tg)に応じて適宜選択すればよく、Tgと同じ温度以上であり、かつ、Tgより80℃高い温度以下であることが好ましく、Tgより5℃高い温度以上であり、かつ、Tgより60℃高い温度以下であることがより好ましい。
延伸倍率は、2.5倍~5.0倍であることが好ましく、3.0倍~4.5倍であることがより好ましい。なお、延伸倍率は、延伸前の長さに対する延伸後の長さの比をいう。
また、二軸延伸後に、延伸フィルムに対して熱固定、熱緩和等の熱処理を行ってもよい。 The method for forming the undercoat layer is not limited. For example, an undercoat layer can be formed by applying a coating liquid for forming an undercoat layer containing a solid content of the undercoat layer on a base material and drying.
The coating method is not limited, and a known method such as slit coating, spin coating, curtain coating, or inkjet coating can be applied.
The drying method is not limited, and a known method such as a heater or hot air can be applied.
The undercoat layer may be formed by an inline coating method using a coating solution for forming an undercoat layer. The in-line coating method is a method of applying a coating liquid for forming an undercoat layer at a stage before winding the manufactured base material, and an off-line coating method of separately applying after winding the manufactured base material. Be distinguished. As an example of a method of forming an undercoat layer by an inline coating method, one surface of a resin film stretched in the first stretching direction was coated with an undercoat layer formation coating solution, and the undercoat layer formation coating solution was applied. A method of forming an undercoat layer by stretching the resin film in a second stretching direction orthogonal to the first stretching direction along the resin film surface is preferable. By stretching in the second stretching direction in a state where the undercoat layer forming coating liquid is applied to one surface of the resin film stretched in the first stretching direction, the adhesion between the resin film and the undercoat layer serving as the base material is improved. And the smoothness of the protective film surface can be improved.
The stretching method is not limited, and a known method can be applied.
The stretching temperature may be appropriately selected according to the glass transition temperature (Tg) of the substrate, and is preferably equal to or higher than Tg, and is equal to or lower than 80 ° C. higher than Tg, and is higher by 5 ° C. than Tg. It is more preferable that the temperature is equal to or higher than the temperature and equal to or lower than the temperature higher by 60 ° C. than the Tg.
The stretching ratio is preferably 2.5 times to 5.0 times, more preferably 3.0 times to 4.5 times. The stretching ratio refers to the ratio of the length after stretching to the length before stretching.
After the biaxial stretching, the stretched film may be subjected to heat treatment such as heat setting and thermal relaxation.
〔上塗り層〕
保護フィルムは、ポジ型感光性樹脂層と接する側とは反対側の最外層に上塗り層を有していてもよい。上塗り層を有することで、例えば、露光の際に使用するマスクとの滑り性を向上させることができる。 (Overcoat layer)
The protective film may have an overcoat layer on the outermost layer on the side opposite to the side in contact with the positive photosensitive resin layer. By having the overcoat layer, for example, the slipperiness with a mask used at the time of exposure can be improved.
保護フィルムは、ポジ型感光性樹脂層と接する側とは反対側の最外層に上塗り層を有していてもよい。上塗り層を有することで、例えば、露光の際に使用するマスクとの滑り性を向上させることができる。 (Overcoat layer)
The protective film may have an overcoat layer on the outermost layer on the side opposite to the side in contact with the positive photosensitive resin layer. By having the overcoat layer, for example, the slipperiness with a mask used at the time of exposure can be improved.
上塗り層に含有される樹脂としては、例えば、ポリオレフィン、アクリルポリマー、ポリエステル、ポリウレタン、セルロース、塩化ビニル-酢酸ビニル共重合体、ポリビニルピロリドン、ポリビニルアセタール、ポリビニルアルコール、ポリアミド、ブタジエン-スチレン熱可塑性ポリマー、エポキシ樹脂、メラミン樹脂等が挙げられる。これらの中でも、上塗り層に含有される樹脂としては、滑り性の観点から、アクリルポリマーが好ましい。
上塗り層には、滑り性の観点から、さらに界面活性剤、ワックス、マット剤、樹脂粒子、無機粒子等を添加することが好ましい。特に、搬送性の観点から、上塗り層は無機粒子を含むことが好ましい。上記無機粒子の粒子径は、0.03μm~1μmの範囲であることが好ましく、0.05μm~0.5μmの範囲であることがより好ましい。 Examples of the resin contained in the overcoat layer include polyolefin, acrylic polymer, polyester, polyurethane, cellulose, vinyl chloride-vinyl acetate copolymer, polyvinyl pyrrolidone, polyvinyl acetal, polyvinyl alcohol, polyamide, butadiene-styrene thermoplastic polymer, Epoxy resins, melamine resins and the like can be mentioned. Among these, an acrylic polymer is preferable as the resin contained in the overcoat layer from the viewpoint of slipperiness.
It is preferable that a surfactant, a wax, a matting agent, resin particles, inorganic particles, and the like are further added to the overcoat layer from the viewpoint of slipperiness. In particular, from the viewpoint of transportability, the overcoat layer preferably contains inorganic particles. The particle diameter of the inorganic particles is preferably in the range of 0.03 μm to 1 μm, more preferably in the range of 0.05 μm to 0.5 μm.
上塗り層には、滑り性の観点から、さらに界面活性剤、ワックス、マット剤、樹脂粒子、無機粒子等を添加することが好ましい。特に、搬送性の観点から、上塗り層は無機粒子を含むことが好ましい。上記無機粒子の粒子径は、0.03μm~1μmの範囲であることが好ましく、0.05μm~0.5μmの範囲であることがより好ましい。 Examples of the resin contained in the overcoat layer include polyolefin, acrylic polymer, polyester, polyurethane, cellulose, vinyl chloride-vinyl acetate copolymer, polyvinyl pyrrolidone, polyvinyl acetal, polyvinyl alcohol, polyamide, butadiene-styrene thermoplastic polymer, Epoxy resins, melamine resins and the like can be mentioned. Among these, an acrylic polymer is preferable as the resin contained in the overcoat layer from the viewpoint of slipperiness.
It is preferable that a surfactant, a wax, a matting agent, resin particles, inorganic particles, and the like are further added to the overcoat layer from the viewpoint of slipperiness. In particular, from the viewpoint of transportability, the overcoat layer preferably contains inorganic particles. The particle diameter of the inorganic particles is preferably in the range of 0.03 μm to 1 μm, more preferably in the range of 0.05 μm to 0.5 μm.
上塗り層の厚みは、制限されず、滑り性の観点から、10nm~500nmであることが好ましく、10nm~100nmであることがより好ましい。
[中間層]
本開示に係る感光性転写材料は、仮支持体とポジ型感光性樹脂層との間に、中間層を有することができる。中間層としては、水溶性樹脂層が好ましい。水溶性樹脂層を有することで、仮支持体とポジ型感光性樹脂層との密着性を向上することができる。 The thickness of the overcoat layer is not limited, and is preferably from 10 nm to 500 nm, and more preferably from 10 nm to 100 nm, from the viewpoint of slipperiness.
[Intermediate layer]
The photosensitive transfer material according to the present disclosure may have an intermediate layer between the temporary support and the positive photosensitive resin layer. As the intermediate layer, a water-soluble resin layer is preferable. By having the water-soluble resin layer, the adhesion between the temporary support and the positive photosensitive resin layer can be improved.
[中間層]
本開示に係る感光性転写材料は、仮支持体とポジ型感光性樹脂層との間に、中間層を有することができる。中間層としては、水溶性樹脂層が好ましい。水溶性樹脂層を有することで、仮支持体とポジ型感光性樹脂層との密着性を向上することができる。 The thickness of the overcoat layer is not limited, and is preferably from 10 nm to 500 nm, and more preferably from 10 nm to 100 nm, from the viewpoint of slipperiness.
[Intermediate layer]
The photosensitive transfer material according to the present disclosure may have an intermediate layer between the temporary support and the positive photosensitive resin layer. As the intermediate layer, a water-soluble resin layer is preferable. By having the water-soluble resin layer, the adhesion between the temporary support and the positive photosensitive resin layer can be improved.
〔水溶性樹脂層〕
水溶性樹脂層は、水溶性樹脂を含有する層である。水溶性樹脂としては、水溶性を示す樹脂であれば制限されず、ポリビニルアルコール、セルロース、ポリアクリルアミド、ポリエチレンオキサイド、ビニルエーテル、ポリアミド、これらの共重合体等が挙げられる。これらの中でも、水溶性樹脂としては、密着性の観点から、セルロースが好ましい。
本開示において「水溶性」とは、25℃の水100gに対して1g以上溶解する性質を意味する。 (Water-soluble resin layer)
The water-soluble resin layer is a layer containing a water-soluble resin. The water-soluble resin is not limited as long as it is a water-soluble resin, and examples thereof include polyvinyl alcohol, cellulose, polyacrylamide, polyethylene oxide, vinyl ether, polyamide, and copolymers thereof. Among these, cellulose is preferable as the water-soluble resin from the viewpoint of adhesion.
In the present disclosure, “water-soluble” means a property of dissolving 1 g or more in 100 g of water at 25 ° C.
水溶性樹脂層は、水溶性樹脂を含有する層である。水溶性樹脂としては、水溶性を示す樹脂であれば制限されず、ポリビニルアルコール、セルロース、ポリアクリルアミド、ポリエチレンオキサイド、ビニルエーテル、ポリアミド、これらの共重合体等が挙げられる。これらの中でも、水溶性樹脂としては、密着性の観点から、セルロースが好ましい。
本開示において「水溶性」とは、25℃の水100gに対して1g以上溶解する性質を意味する。 (Water-soluble resin layer)
The water-soluble resin layer is a layer containing a water-soluble resin. The water-soluble resin is not limited as long as it is a water-soluble resin, and examples thereof include polyvinyl alcohol, cellulose, polyacrylamide, polyethylene oxide, vinyl ether, polyamide, and copolymers thereof. Among these, cellulose is preferable as the water-soluble resin from the viewpoint of adhesion.
In the present disclosure, “water-soluble” means a property of dissolving 1 g or more in 100 g of water at 25 ° C.
水溶性樹脂層中の水溶性樹脂の含有量は、密着性の観点から、水溶性樹脂層の全質量に対して、20質量%~100質量%であることが好ましく、50質量%~100質量%であることがより好ましい。
From the viewpoint of adhesion, the content of the water-soluble resin in the water-soluble resin layer is preferably 20% by mass to 100% by mass, and more preferably 50% by mass to 100% by mass based on the total mass of the water-soluble resin layer. % Is more preferable.
水溶性樹脂層の厚みは、密着性の観点から、1μm~10μmが好ましく、1μm~5μmがより好ましい。
か ら The thickness of the water-soluble resin layer is preferably from 1 μm to 10 μm, more preferably from 1 μm to 5 μm, from the viewpoint of adhesion.
保護フィルムの、ポジ型感光性樹脂層と接する側の表面は、剥離性の観点から、表面改質が施されていてもよい。表面改質の方法としては、保護フィルムの表面エネルギーを低下させるものであれば制限されず、例えば、コロナ処理、プラズマ処理、レーザー処理、紫外線処理等が挙げられる。
表面 The surface of the protective film on the side in contact with the positive photosensitive resin layer may be subjected to surface modification from the viewpoint of peelability. The surface modification method is not limited as long as the surface energy of the protective film is reduced, and examples thereof include a corona treatment, a plasma treatment, a laser treatment, and an ultraviolet treatment.
<回路配線の製造方法>
本開示に係る回路配線の製造方法は、上記感光性転写材料の保護フィルムを剥離する工程(以下、「剥離工程」ということがある。)と、上記感光性転写材料の、上記仮支持体に対してポジ型感光性樹脂層を有する側の最外層を、導電層を有する基板に貼り合わせる工程(以下、「貼り合わせ工程」ということがある。)と、上記貼り合わせる工程後の上記感光性転写材料の上記ポジ型感光性樹脂層をパターン露光する工程(以下、「露光工程」ということがある。)と、上記パターン露光する工程後の上記ポジ型感光性樹脂層を現像して樹脂パターンを形成する工程(以下、「現像工程」ということがある。)と、上記樹脂パターンが配置されていない領域における基板をエッチング処理する工程(以下、「エッチング工程」ということがある。)と、を含む。
本開示に係る回路配線の製造方法によれば、上記感光性転写材料を用いるため、パターン故障が低減された回路配線を製造することができる。 <Method of manufacturing circuit wiring>
The method for manufacturing a circuit wiring according to the present disclosure includes a step of peeling the protective film of the photosensitive transfer material (hereinafter, may be referred to as a “peeling step”) and a step of removing the protective film of the photosensitive transfer material from the temporary support. On the other hand, a step of bonding the outermost layer on the side having the positive photosensitive resin layer to the substrate having the conductive layer (hereinafter, may be referred to as a “bonding step”), and the photosensitivity after the bonding step. A step of pattern-exposing the positive photosensitive resin layer of the transfer material (hereinafter, may be referred to as an “exposure step”), and developing the positive photosensitive resin layer after the pattern exposure step to form a resin pattern. (Hereinafter, may be referred to as “development step”) and a step of etching the substrate in a region where the resin pattern is not disposed (hereinafter, referred to as “etching step”). That it includes. A), the.
According to the method for manufacturing a circuit wiring according to the present disclosure, since the photosensitive transfer material is used, a circuit wiring with reduced pattern failure can be manufactured.
本開示に係る回路配線の製造方法は、上記感光性転写材料の保護フィルムを剥離する工程(以下、「剥離工程」ということがある。)と、上記感光性転写材料の、上記仮支持体に対してポジ型感光性樹脂層を有する側の最外層を、導電層を有する基板に貼り合わせる工程(以下、「貼り合わせ工程」ということがある。)と、上記貼り合わせる工程後の上記感光性転写材料の上記ポジ型感光性樹脂層をパターン露光する工程(以下、「露光工程」ということがある。)と、上記パターン露光する工程後の上記ポジ型感光性樹脂層を現像して樹脂パターンを形成する工程(以下、「現像工程」ということがある。)と、上記樹脂パターンが配置されていない領域における基板をエッチング処理する工程(以下、「エッチング工程」ということがある。)と、を含む。
本開示に係る回路配線の製造方法によれば、上記感光性転写材料を用いるため、パターン故障が低減された回路配線を製造することができる。 <Method of manufacturing circuit wiring>
The method for manufacturing a circuit wiring according to the present disclosure includes a step of peeling the protective film of the photosensitive transfer material (hereinafter, may be referred to as a “peeling step”) and a step of removing the protective film of the photosensitive transfer material from the temporary support. On the other hand, a step of bonding the outermost layer on the side having the positive photosensitive resin layer to the substrate having the conductive layer (hereinafter, may be referred to as a “bonding step”), and the photosensitivity after the bonding step. A step of pattern-exposing the positive photosensitive resin layer of the transfer material (hereinafter, may be referred to as an “exposure step”), and developing the positive photosensitive resin layer after the pattern exposure step to form a resin pattern. (Hereinafter, may be referred to as “development step”) and a step of etching the substrate in a region where the resin pattern is not disposed (hereinafter, referred to as “etching step”). That it includes. A), the.
According to the method for manufacturing a circuit wiring according to the present disclosure, since the photosensitive transfer material is used, a circuit wiring with reduced pattern failure can be manufactured.
以下、本開示に係る回路配線の製造方法について、詳細に説明する。
Hereinafter, a method for manufacturing a circuit wiring according to the present disclosure will be described in detail.
[剥離工程]
本開示に係る回路配線の製造方法は、上記感光性転写材料の保護フィルムを剥離する工程を含む。保護フィルムを剥離する方法は、制限されず、公知の方法を適用することができる。 [Peeling step]
The method for manufacturing a circuit wiring according to the present disclosure includes a step of peeling off the protective film of the photosensitive transfer material. The method for peeling the protective film is not limited, and a known method can be applied.
本開示に係る回路配線の製造方法は、上記感光性転写材料の保護フィルムを剥離する工程を含む。保護フィルムを剥離する方法は、制限されず、公知の方法を適用することができる。 [Peeling step]
The method for manufacturing a circuit wiring according to the present disclosure includes a step of peeling off the protective film of the photosensitive transfer material. The method for peeling the protective film is not limited, and a known method can be applied.
[貼り合わせ工程]
本開示に係る回路配線の製造方法は、上記感光性転写材料の、上記仮支持体に対してポジ型感光性樹脂層を有する側の最外層を、導電層を有する基板に貼り合わせる工程を含む。 [Lamination process]
The method for manufacturing a circuit wiring according to the present disclosure includes a step of bonding the outermost layer of the photosensitive transfer material having the positive photosensitive resin layer to the temporary support to a substrate having a conductive layer. .
本開示に係る回路配線の製造方法は、上記感光性転写材料の、上記仮支持体に対してポジ型感光性樹脂層を有する側の最外層を、導電層を有する基板に貼り合わせる工程を含む。 [Lamination process]
The method for manufacturing a circuit wiring according to the present disclosure includes a step of bonding the outermost layer of the photosensitive transfer material having the positive photosensitive resin layer to the temporary support to a substrate having a conductive layer. .
貼り合わせ工程の一例を、図2(a)に概略的に示す。基板20(回路配線形成用基板)は、基材22と、互いに構成材料が異なる第1導電層24及び第2導電層26を含む複数の導電層とを有し、基材22の表面上に、基材22の表面から遠い順に、最表面層である第1導電層24と第2導電層26とが積層されている。貼り合わせ工程では、基板20(回路配線形成用基板)に対し、本開示に係る感光性転写材料100のポジ型感光性樹脂層14を第1導電層24に接触させて貼り合わせる。なお、このような回路配線形成用基板と感光性転写材料との貼り合わせを「転写」又は「ラミネート」と称する場合がある。
(2) An example of the bonding step is schematically shown in FIG. The substrate 20 (circuit wiring forming substrate) has a base material 22 and a plurality of conductive layers including a first conductive layer 24 and a second conductive layer 26 having different constituent materials. The first conductive layer 24 and the second conductive layer 26, which are the outermost layers, are laminated in order from the farthest from the surface of the base material 22. In the bonding step, the positive photosensitive resin layer 14 of the photosensitive transfer material 100 according to the present disclosure is brought into contact with the first conductive layer 24 and bonded to the substrate 20 (substrate for forming circuit wiring). Note that such bonding of the circuit wiring forming substrate and the photosensitive transfer material may be referred to as “transfer” or “laminate”.
感光性転写材料の基板への貼り合わせは、感光性転写材料の、仮支持体に対してポジ型感光性樹脂層を有する側の最外層を基板上に重ね、ロール等による加圧及び加熱によって行われることが好ましい。貼り合わせには、ラミネーター、真空ラミネーター、より生産性を高めることができるオートカットラミネーター等の公知のラミネーターを使用することができる。基板を構成する基材が樹脂フィルムである場合は、ロールツーロールでの貼り合わせも行うこともできる。
Lamination of the photosensitive transfer material to the substrate is performed by superposing the outermost layer of the photosensitive transfer material on the side having the positive photosensitive resin layer with respect to the temporary support on the substrate, and applying pressure and heating using a roll or the like. It is preferably performed. For lamination, a known laminator such as a laminator, a vacuum laminator, or an auto-cut laminator that can further increase the productivity can be used. When the base material constituting the substrate is a resin film, it is also possible to perform roll-to-roll bonding.
基板は、ガラス、シリコン、フィルムなどの基材上に、導電層を有し、必要により任意の層が形成されてもよい。
基材は透明であることが好ましい。
基材の屈折率は、1.50~1.52であることが好ましい。
基材は、ガラス基材等の透光性基材で構成されていてもよく、コーニング社のゴリラガラスに代表される強化ガラスなどを用いることができる。また、上述の透明基材としては、特開2010-86684号公報、特開2010-152809号公報及び特開2010-257492号公報に用いられている材料を好ましく用いることができる。
基材としてフィルム基材を用いる場合は、光学的に歪みが小さい基材、及び、透明度が高い基材を用いることがより好ましく、樹脂フィルムが更に好ましい。具体的な素材には、ポリエチレンテレフタレート(polyethylene terephthalate;PET)、ポリエチレンナフタレート、ポリカーボネート、トリアセチルセルロース、シクロオレフィンポリマーを挙げることができる。 The substrate has a conductive layer on a substrate such as glass, silicon, or a film, and an optional layer may be formed as necessary.
Preferably, the substrate is transparent.
The base material preferably has a refractive index of 1.50 to 1.52.
The base material may be composed of a light-transmitting base material such as a glass base material, and tempered glass represented by gorilla glass of Corning and the like can be used. Further, as the above-mentioned transparent substrate, the materials used in JP-A-2010-86684, JP-A-2010-152809 and JP-A-2010-257492 can be preferably used.
When a film substrate is used as the substrate, it is more preferable to use a substrate having small optical distortion and a substrate having high transparency, and a resin film is more preferable. Specific materials include polyethylene terephthalate (PET), polyethylene naphthalate, polycarbonate, triacetyl cellulose, and cycloolefin polymer.
基材は透明であることが好ましい。
基材の屈折率は、1.50~1.52であることが好ましい。
基材は、ガラス基材等の透光性基材で構成されていてもよく、コーニング社のゴリラガラスに代表される強化ガラスなどを用いることができる。また、上述の透明基材としては、特開2010-86684号公報、特開2010-152809号公報及び特開2010-257492号公報に用いられている材料を好ましく用いることができる。
基材としてフィルム基材を用いる場合は、光学的に歪みが小さい基材、及び、透明度が高い基材を用いることがより好ましく、樹脂フィルムが更に好ましい。具体的な素材には、ポリエチレンテレフタレート(polyethylene terephthalate;PET)、ポリエチレンナフタレート、ポリカーボネート、トリアセチルセルロース、シクロオレフィンポリマーを挙げることができる。 The substrate has a conductive layer on a substrate such as glass, silicon, or a film, and an optional layer may be formed as necessary.
Preferably, the substrate is transparent.
The base material preferably has a refractive index of 1.50 to 1.52.
The base material may be composed of a light-transmitting base material such as a glass base material, and tempered glass represented by gorilla glass of Corning and the like can be used. Further, as the above-mentioned transparent substrate, the materials used in JP-A-2010-86684, JP-A-2010-152809 and JP-A-2010-257492 can be preferably used.
When a film substrate is used as the substrate, it is more preferable to use a substrate having small optical distortion and a substrate having high transparency, and a resin film is more preferable. Specific materials include polyethylene terephthalate (PET), polyethylene naphthalate, polycarbonate, triacetyl cellulose, and cycloolefin polymer.
基材上に導電層を有する基板においては、基材がガラス基材又はフィルム基材であることが好ましく、フィルム基材であることがより好ましく、樹脂フィルムであることが特に好ましい。本開示に係る回路配線の製造方法は、タッチパネル用の回路配線である場合、基材がシート状樹脂組成物であることが特に好ましい。
基板 In a substrate having a conductive layer on a substrate, the substrate is preferably a glass substrate or a film substrate, more preferably a film substrate, and particularly preferably a resin film. In the method for producing a circuit wiring according to the present disclosure, when the circuit wiring is for a touch panel, it is particularly preferable that the substrate is a sheet-shaped resin composition.
基材上に形成されている導電層としては、一般的な回路配線又はタッチパネル配線に用いられる任意の導電層を挙げることができる。
導電層としては、導電性及び細線形成性の観点から、金属層、及び、導電性金属酸化物層よりなる群から選ばれた少なくとも1種の層であることが好ましく挙げられ、金属層であることがより好ましく挙げられ、銅層であることが特に好ましく挙げられる。
また、基材上に導電層を1層有していても、2層以上有していてもよい。2層以上の場合は、異なる材質の導電層を有することが好ましい。
導電層の材料としては、金属及び導電性金属酸化物などを挙げることができる。
金属としては、Al、Zn、Cu、Fe、Ni、Cr、Mo等を挙げることができる。
導電性金属酸化物としては、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、SiO2等を挙げることができる。なお、本開示における「導電性」とは、体積抵抗率が1×106Ωcm未満であることをいい、体積抵抗率が1×104Ωcm未満であることが好ましい。 As the conductive layer formed on the base material, any conductive layer used for general circuit wiring or touch panel wiring can be exemplified.
The conductive layer is preferably a metal layer, and at least one layer selected from the group consisting of conductive metal oxide layers, from the viewpoint of conductivity and fine line forming properties, and is a metal layer. Is more preferable, and a copper layer is particularly preferable.
Further, the base material may have one conductive layer or two or more conductive layers. In the case of two or more layers, it is preferable to have conductive layers of different materials.
Examples of the material of the conductive layer include a metal and a conductive metal oxide.
Examples of the metal include Al, Zn, Cu, Fe, Ni, Cr, and Mo.
Examples of the conductive metal oxide include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and SiO 2 . In addition, “conductive” in the present disclosure refers to a volume resistivity of less than 1 × 10 6 Ωcm, and preferably a volume resistivity of less than 1 × 10 4 Ωcm.
導電層としては、導電性及び細線形成性の観点から、金属層、及び、導電性金属酸化物層よりなる群から選ばれた少なくとも1種の層であることが好ましく挙げられ、金属層であることがより好ましく挙げられ、銅層であることが特に好ましく挙げられる。
また、基材上に導電層を1層有していても、2層以上有していてもよい。2層以上の場合は、異なる材質の導電層を有することが好ましい。
導電層の材料としては、金属及び導電性金属酸化物などを挙げることができる。
金属としては、Al、Zn、Cu、Fe、Ni、Cr、Mo等を挙げることができる。
導電性金属酸化物としては、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、SiO2等を挙げることができる。なお、本開示における「導電性」とは、体積抵抗率が1×106Ωcm未満であることをいい、体積抵抗率が1×104Ωcm未満であることが好ましい。 As the conductive layer formed on the base material, any conductive layer used for general circuit wiring or touch panel wiring can be exemplified.
The conductive layer is preferably a metal layer, and at least one layer selected from the group consisting of conductive metal oxide layers, from the viewpoint of conductivity and fine line forming properties, and is a metal layer. Is more preferable, and a copper layer is particularly preferable.
Further, the base material may have one conductive layer or two or more conductive layers. In the case of two or more layers, it is preferable to have conductive layers of different materials.
Examples of the material of the conductive layer include a metal and a conductive metal oxide.
Examples of the metal include Al, Zn, Cu, Fe, Ni, Cr, and Mo.
Examples of the conductive metal oxide include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and SiO 2 . In addition, “conductive” in the present disclosure refers to a volume resistivity of less than 1 × 10 6 Ωcm, and preferably a volume resistivity of less than 1 × 10 4 Ωcm.
本開示に係る回路配線の製造方法において、基材上に複数の導電層を有する基板を用いる場合、複数の導電層のうち少なくとも一つの導電層は導電性金属酸化物を含むことが好ましい。
導電層としては、静電容量型タッチパネルに用いられる視認部のセンサーに相当する電極パターン又は周辺取り出し部の配線であることが好ましい。 In the method for manufacturing a circuit wiring according to the present disclosure, when a substrate having a plurality of conductive layers on a base material is used, at least one of the plurality of conductive layers preferably contains a conductive metal oxide.
The conductive layer is preferably an electrode pattern corresponding to a sensor of a visual recognition unit used in a capacitive touch panel, or a wiring of a peripheral extraction unit.
導電層としては、静電容量型タッチパネルに用いられる視認部のセンサーに相当する電極パターン又は周辺取り出し部の配線であることが好ましい。 In the method for manufacturing a circuit wiring according to the present disclosure, when a substrate having a plurality of conductive layers on a base material is used, at least one of the plurality of conductive layers preferably contains a conductive metal oxide.
The conductive layer is preferably an electrode pattern corresponding to a sensor of a visual recognition unit used in a capacitive touch panel, or a wiring of a peripheral extraction unit.
[露光工程]
本開示に係る回路配線の製造方法は、上記貼り合わせる工程後の上記感光性転写材料の上記ポジ型感光性樹脂層をパターン露光する工程を含む。 [Exposure process]
The method for manufacturing a circuit wiring according to the present disclosure includes a step of pattern-exposing the positive photosensitive resin layer of the photosensitive transfer material after the bonding step.
本開示に係る回路配線の製造方法は、上記貼り合わせる工程後の上記感光性転写材料の上記ポジ型感光性樹脂層をパターン露光する工程を含む。 [Exposure process]
The method for manufacturing a circuit wiring according to the present disclosure includes a step of pattern-exposing the positive photosensitive resin layer of the photosensitive transfer material after the bonding step.
露光工程の一例を、図2(b)に概略的に示す。例えば、図2(b)に示す露光工程では、感光性転写材料の仮支持体12を介してポジ型感光性樹脂層14をパターン露光する。例えば、第1導電層24の上に配置された感光性転写材料100の上方(第1導電層24と接する側とは反対側)に所定のパターンを有するマスク30を配置し、その後、マスク30を介してマスク上方から紫外線で露光する方法などが挙げられる。
FIG. 2 (b) schematically shows an example of the exposure step. For example, in the exposure step shown in FIG. 2B, the positive photosensitive resin layer 14 is subjected to pattern exposure via the temporary support 12 of the photosensitive transfer material. For example, a mask 30 having a predetermined pattern is disposed above the photosensitive transfer material 100 disposed on the first conductive layer 24 (the side opposite to the side in contact with the first conductive layer 24), and thereafter, the mask 30 And a method of exposing to ultraviolet light from above the mask through the mask.
本開示においてパターンの詳細な配置及び具体的サイズは特に制限されない。本開示に係る回路配線の製造方法により製造される回路配線を有する入力装置を備えた表示装置(例えばタッチパネル)の表示品質を高め、また、取り出し配線の占める面積をできるだけ小さくしたいことから、パターンの少なくとも一部(特にタッチパネルの電極パターン及び取り出し配線の部分)は100μm以下の細線であることが好ましく、70μm以下の細線であることが更に好ましい。
に お い て In the present disclosure, the detailed arrangement and specific size of the pattern are not particularly limited. In order to improve the display quality of a display device (for example, a touch panel) provided with an input device having circuit wiring manufactured by the method for manufacturing circuit wiring according to the present disclosure, and to reduce the area occupied by the extracted wiring as much as possible, At least a part (particularly, the part of the electrode pattern and the lead-out wiring of the touch panel) is preferably a fine line of 100 μm or less, and more preferably a fine line of 70 μm or less.
露光に使用する光源としては、ポジ型感光性樹脂層の露光された箇所が現像液に溶解しうる波長域の光(例えば、365nm、405nm等)を照射できれば適宜選定して用いることができる。具体的には、超高圧水銀灯、高圧水銀灯、メタルハライドランプ等が挙げられる。
(4) The light source used for the exposure can be appropriately selected and used as long as the exposed portion of the positive photosensitive resin layer can be irradiated with light (for example, 365 nm, 405 nm, etc.) in a wavelength range that can be dissolved in the developer. Specifically, an ultra-high pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp and the like can be mentioned.
露光量としては、5mJ/cm2~200mJ/cm2であることが好ましく、10mJ/cm2~100mJ/cm2であることがより好ましい。
The exposure amount is preferably from 5mJ / cm 2 ~ 200mJ / cm 2, more preferably 10mJ / cm 2 ~ 100mJ / cm 2.
露光工程においては、感光性樹脂層から仮支持体を剥離した後にパターン露光してもよく、仮支持体を剥離する前に、仮支持体を介してパターン露光し、その後、仮支持体を剥離してもよい。感光性樹脂層とマスクとの接触によるマスク汚染の防止、及びマスクに付着した異物による露光への影響を避けるためには、仮支持体を剥離せずにパターン露光することが好ましい。なお、パターン露光は、マスクを介した露光でもよいし、レーザー等を用いたデジタル露光でもよい。
In the exposure step, pattern exposure may be performed after the temporary support is separated from the photosensitive resin layer, and before the temporary support is separated, pattern exposure is performed through the temporary support, and then the temporary support is separated. May be. In order to prevent mask contamination due to the contact between the photosensitive resin layer and the mask and to avoid the influence of foreign matter adhering to the mask on the exposure, it is preferable to perform pattern exposure without removing the temporary support. The pattern exposure may be exposure through a mask or digital exposure using a laser or the like.
[現像工程]
本開示に係る回路配線の製造方法は、上記パターン露光する工程後の上記ポジ型感光性樹脂層を現像して樹脂パターンを形成する工程を含む。 [Development step]
The method for manufacturing a circuit wiring according to the present disclosure includes a step of forming a resin pattern by developing the positive photosensitive resin layer after the step of pattern exposure.
本開示に係る回路配線の製造方法は、上記パターン露光する工程後の上記ポジ型感光性樹脂層を現像して樹脂パターンを形成する工程を含む。 [Development step]
The method for manufacturing a circuit wiring according to the present disclosure includes a step of forming a resin pattern by developing the positive photosensitive resin layer after the step of pattern exposure.
現像工程の一例を、図2(c)に概略的に示す。現像工程では、露光工程後のポジ型感光性樹脂物層14から仮支持体12を剥離した後、露光工程後のポジ型感光性樹脂層14を現像して第1パターン14Aを形成する。
FIG. 2C schematically shows an example of the developing step. In the developing step, the temporary support 12 is separated from the positive photosensitive resin material layer 14 after the exposure step, and then the positive photosensitive resin layer 14 after the exposure step is developed to form a first pattern 14A.
パターン露光されたポジ型感光性樹脂層の現像は、現像液を用いて行うことができる。
現像液としては、ポジ型感光性樹脂層の露光部分を除去することができれば特に制限はなく、例えば、特開平5-72724号公報に記載の現像液など、公知の現像液を使用することができる。なお、現像液は感光性樹脂層の露光部が溶解型の現像挙動をする現像液が好ましい。例えば、pKa=7~13の化合物を0.05mol/L(リットル)~5mol/Lの濃度で含むアルカリ水溶液系の現像液が好ましい。現像液は、更に、水と混和性を有する有機溶剤、界面活性剤等を含有してもよい。本開示において好適に用いられる現像液としては、例えば、国際公開第2015/093271号の段落0194に記載の現像液が挙げられる。 The development of the pattern-exposed positive photosensitive resin layer can be performed using a developer.
The developer is not particularly limited as long as the exposed portion of the positive photosensitive resin layer can be removed. For example, a known developer such as a developer described in JP-A-5-72724 may be used. it can. The developing solution is preferably a developing solution in which the exposed portion of the photosensitive resin layer has a developing behavior of a dissolving type. For example, an alkali aqueous solution-based developer containing a compound having a pKa of 7 to 13 at a concentration of 0.05 mol / L (liter) to 5 mol / L is preferable. The developer may further contain an organic solvent miscible with water, a surfactant, and the like. As the developer suitably used in the present disclosure, for example, a developer described in paragraph 0194 of International Publication No. 2015/093271 is exemplified.
現像液としては、ポジ型感光性樹脂層の露光部分を除去することができれば特に制限はなく、例えば、特開平5-72724号公報に記載の現像液など、公知の現像液を使用することができる。なお、現像液は感光性樹脂層の露光部が溶解型の現像挙動をする現像液が好ましい。例えば、pKa=7~13の化合物を0.05mol/L(リットル)~5mol/Lの濃度で含むアルカリ水溶液系の現像液が好ましい。現像液は、更に、水と混和性を有する有機溶剤、界面活性剤等を含有してもよい。本開示において好適に用いられる現像液としては、例えば、国際公開第2015/093271号の段落0194に記載の現像液が挙げられる。 The development of the pattern-exposed positive photosensitive resin layer can be performed using a developer.
The developer is not particularly limited as long as the exposed portion of the positive photosensitive resin layer can be removed. For example, a known developer such as a developer described in JP-A-5-72724 may be used. it can. The developing solution is preferably a developing solution in which the exposed portion of the photosensitive resin layer has a developing behavior of a dissolving type. For example, an alkali aqueous solution-based developer containing a compound having a pKa of 7 to 13 at a concentration of 0.05 mol / L (liter) to 5 mol / L is preferable. The developer may further contain an organic solvent miscible with water, a surfactant, and the like. As the developer suitably used in the present disclosure, for example, a developer described in paragraph 0194 of International Publication No. 2015/093271 is exemplified.
現像方式としては、特に制限はなくパドル現像、シャワー現像、シャワー及びスピン現像、ディップ現像等のいずれでもよい。ここで、シャワー現像について説明すると、露光後の感光性樹脂層に現像液をシャワーにより吹き付けることにより、露光部分を除去することができる。また、現像の後に、洗浄剤などをシャワーにより吹き付け、ブラシなどで擦りながら、現像残渣を除去することが好ましい。現像液の液温度は20℃~40℃が好ましい。
The development system is not particularly limited, and may be any of paddle development, shower development, shower and spin development, and dip development. Here, the shower development will be described. By exposing the photosensitive resin layer after exposure to a developer by spraying, the exposed portion can be removed. After the development, it is preferable to remove a development residue while spraying a detergent or the like with a shower and rubbing with a brush or the like. The liquid temperature of the developer is preferably from 20 ° C to 40 ° C.
さらに、現像して得られた感光性樹脂層を含むパターンを加熱処理するポストベーク工程を有していてもよい。
ポストベークの加熱は8.1kPa~121.6kPaの環境下で行うことが好ましく、506.6kPa以上の環境下で行うことがより好ましい。一方、ポストベークの加熱は、114.6kPa以下の環境下で行うことがより好ましく、101.3kPa以下の環境下で行うことが特に好ましい。
ポストベークの温度は、80℃~250℃であることが好ましく、110℃~170℃であることがより好ましく、130℃~150℃であることが特に好ましい。
ポストベークの時間は、1分~30分であることが好ましく、2分~10分であることがより好ましく、2分~4分であることが特に好ましい。
ポストベークは、空気環境下で行っても、窒素置換環境下で行ってもよい。 Further, the method may include a post-baking step of heating a pattern including the photosensitive resin layer obtained by development.
Post-baking is preferably performed in an environment of 8.1 kPa to 121.6 kPa, and more preferably in an environment of 506.6 kPa or more. On the other hand, the heating of the post bake is more preferably performed in an environment of 114.6 kPa or less, and particularly preferably performed in an environment of 101.3 kPa or less.
The post-baking temperature is preferably from 80 ° C. to 250 ° C., more preferably from 110 ° C. to 170 ° C., and particularly preferably from 130 ° C. to 150 ° C.
The post-baking time is preferably 1 minute to 30 minutes, more preferably 2 minutes to 10 minutes, and particularly preferably 2 minutes to 4 minutes.
Post-baking may be performed in an air environment or in a nitrogen-substituted environment.
ポストベークの加熱は8.1kPa~121.6kPaの環境下で行うことが好ましく、506.6kPa以上の環境下で行うことがより好ましい。一方、ポストベークの加熱は、114.6kPa以下の環境下で行うことがより好ましく、101.3kPa以下の環境下で行うことが特に好ましい。
ポストベークの温度は、80℃~250℃であることが好ましく、110℃~170℃であることがより好ましく、130℃~150℃であることが特に好ましい。
ポストベークの時間は、1分~30分であることが好ましく、2分~10分であることがより好ましく、2分~4分であることが特に好ましい。
ポストベークは、空気環境下で行っても、窒素置換環境下で行ってもよい。 Further, the method may include a post-baking step of heating a pattern including the photosensitive resin layer obtained by development.
Post-baking is preferably performed in an environment of 8.1 kPa to 121.6 kPa, and more preferably in an environment of 506.6 kPa or more. On the other hand, the heating of the post bake is more preferably performed in an environment of 114.6 kPa or less, and particularly preferably performed in an environment of 101.3 kPa or less.
The post-baking temperature is preferably from 80 ° C. to 250 ° C., more preferably from 110 ° C. to 170 ° C., and particularly preferably from 130 ° C. to 150 ° C.
The post-baking time is preferably 1 minute to 30 minutes, more preferably 2 minutes to 10 minutes, and particularly preferably 2 minutes to 4 minutes.
Post-baking may be performed in an air environment or in a nitrogen-substituted environment.
また、後述のエッチング工程の前に、ポスト露光工程等、その他の工程を有していてもよい。
Also, other steps such as a post-exposure step may be provided before the etching step described later.
[エッチング工程]
本開示に係る回路配線の製造方法は、上記樹脂パターンが配置されていない領域における基板をエッチング処理する工程を含む。 [Etching process]
The method of manufacturing a circuit wiring according to the present disclosure includes a step of etching a substrate in a region where the resin pattern is not arranged.
本開示に係る回路配線の製造方法は、上記樹脂パターンが配置されていない領域における基板をエッチング処理する工程を含む。 [Etching process]
The method of manufacturing a circuit wiring according to the present disclosure includes a step of etching a substrate in a region where the resin pattern is not arranged.
エッチング工程の一例を、図2(d)に概略的に示す。エッチング工程では、第1パターン14Aが配置されていない領域における複数の導電層のうち少なくとも第1導電層24及び第2導電層26をエッチング処理する。エッチングにより、第1パターン14Aと同じパターンを有する第1導電層24A及び第2導電層26Aが形成される。
(2) An example of the etching step is schematically shown in FIG. In the etching step, at least the first conductive layer 24 and the second conductive layer 26 of the plurality of conductive layers in the region where the first pattern 14A is not arranged are etched. By etching, a first conductive layer 24A and a second conductive layer 26A having the same pattern as the first pattern 14A are formed.
エッチング処理の方法としては、特開2010-152155号公報の段落0048~段落0054等に記載の方法、公知のプラズマエッチング等のドライエッチングによる方法など、公知の方法を適用することができる。
(4) As a method of the etching treatment, a known method such as a method described in paragraphs 0048 to 0054 of JP-A-2010-152155, a known dry etching method such as plasma etching, or the like can be applied.
例えば、エッチング処理の方法としては、一般的に行われている、エッチング液に浸漬するウェットエッチング法が挙げられる。ウェットエッチングに用いられるエッチング液は、エッチングの対象に合わせて酸性タイプ又はアルカリ性タイプのエッチング液を適宜選択すればよい。
酸性タイプのエッチング液としては、塩酸、硫酸、フッ酸、リン酸等の酸性成分単独の水溶液、酸性成分と塩化第二鉄、フッ化アンモニウム、過マンガン酸カリウム等の塩との混合水溶液等が例示される。酸性成分は、複数の酸性成分を組み合わせた成分を使用してもよい。
アルカリ性タイプのエッチング液としては、水酸化ナトリウム、水酸化カリウム、アンモニア、有機アミン、テトラメチルアンモニウムハイドロオキサイドのような有機アミンの塩等のアルカリ成分単独の水溶液、アルカリ成分と過マンガン酸カリウム等の塩との混合水溶液等が例示される。アルカリ成分は、複数のアルカリ成分を組み合わせた成分を使用してもよい。 For example, as a method of the etching treatment, there is a commonly-used wet etching method of immersing in an etching solution. As an etchant used for wet etching, an acidic type or alkaline type etchant may be appropriately selected in accordance with an etching target.
Examples of the acidic type etchant include an aqueous solution of an acidic component alone such as hydrochloric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid, and a mixed aqueous solution of an acidic component and a salt such as ferric chloride, ammonium fluoride, and potassium permanganate. Illustrated. As the acidic component, a component obtained by combining a plurality of acidic components may be used.
Examples of the alkaline type etchant include aqueous solutions of alkali components alone such as sodium hydroxide, potassium hydroxide, ammonia, organic amines, salts of organic amines such as tetramethylammonium hydroxide, and alkali components and potassium permanganate. Examples thereof include a mixed aqueous solution with a salt. As the alkali component, a component obtained by combining a plurality of alkali components may be used.
酸性タイプのエッチング液としては、塩酸、硫酸、フッ酸、リン酸等の酸性成分単独の水溶液、酸性成分と塩化第二鉄、フッ化アンモニウム、過マンガン酸カリウム等の塩との混合水溶液等が例示される。酸性成分は、複数の酸性成分を組み合わせた成分を使用してもよい。
アルカリ性タイプのエッチング液としては、水酸化ナトリウム、水酸化カリウム、アンモニア、有機アミン、テトラメチルアンモニウムハイドロオキサイドのような有機アミンの塩等のアルカリ成分単独の水溶液、アルカリ成分と過マンガン酸カリウム等の塩との混合水溶液等が例示される。アルカリ成分は、複数のアルカリ成分を組み合わせた成分を使用してもよい。 For example, as a method of the etching treatment, there is a commonly-used wet etching method of immersing in an etching solution. As an etchant used for wet etching, an acidic type or alkaline type etchant may be appropriately selected in accordance with an etching target.
Examples of the acidic type etchant include an aqueous solution of an acidic component alone such as hydrochloric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid, and a mixed aqueous solution of an acidic component and a salt such as ferric chloride, ammonium fluoride, and potassium permanganate. Illustrated. As the acidic component, a component obtained by combining a plurality of acidic components may be used.
Examples of the alkaline type etchant include aqueous solutions of alkali components alone such as sodium hydroxide, potassium hydroxide, ammonia, organic amines, salts of organic amines such as tetramethylammonium hydroxide, and alkali components and potassium permanganate. Examples thereof include a mixed aqueous solution with a salt. As the alkali component, a component obtained by combining a plurality of alkali components may be used.
エッチング液の温度は特に制限されないが、45℃以下であることが好ましい。本開示においてエッチングマスク(エッチングパターン)として使用される樹脂パターンは、45℃以下の温度域における酸性及びアルカリ性のエッチング液に対して特に優れた耐性を発揮することが好ましい。したがって、エッチング工程中にポジ型感光性樹脂層が剥離することが防止され、ポジ型感光性樹脂層の存在しない部分が選択的にエッチングされることになる。
温度 The temperature of the etching solution is not particularly limited, but is preferably 45 ° C. or lower. In the present disclosure, the resin pattern used as the etching mask (etching pattern) preferably exhibits particularly excellent resistance to acidic and alkaline etching solutions in a temperature range of 45 ° C. or lower. Therefore, peeling of the positive photosensitive resin layer during the etching step is prevented, and a portion where the positive photosensitive resin layer does not exist is selectively etched.
エッチング工程後、工程ラインの汚染を防ぐために、必要に応じて洗浄工程及び乾燥工程を行ってもよい。
洗浄工程で用いる洗浄液としては、純水、又は、純水に溶解可能な有機溶剤、又は、界面活性剤を混合させた水溶液を用いることができる。基板表面に残存する液滴による剥離ムラの抑制及び除去性向上の観点から、洗浄液として、純水に溶解可能な有機溶剤、又は、界面活性剤を混合させた水溶液を用いることが好ましく、純水に溶解可能な有機溶剤、及び、界面活性剤の両方を混合させた水溶液を用いることがより好ましい。 After the etching step, a washing step and a drying step may be performed as necessary to prevent contamination of the process line.
As the cleaning liquid used in the cleaning step, pure water, an organic solvent soluble in pure water, or an aqueous solution in which a surfactant is mixed can be used. From the viewpoint of suppressing peeling unevenness due to droplets remaining on the substrate surface and improving removability, it is preferable to use an organic solvent that can be dissolved in pure water, or an aqueous solution in which a surfactant is mixed, as the cleaning liquid. It is more preferable to use an aqueous solution in which both an organic solvent soluble in water and a surfactant are mixed.
洗浄工程で用いる洗浄液としては、純水、又は、純水に溶解可能な有機溶剤、又は、界面活性剤を混合させた水溶液を用いることができる。基板表面に残存する液滴による剥離ムラの抑制及び除去性向上の観点から、洗浄液として、純水に溶解可能な有機溶剤、又は、界面活性剤を混合させた水溶液を用いることが好ましく、純水に溶解可能な有機溶剤、及び、界面活性剤の両方を混合させた水溶液を用いることがより好ましい。 After the etching step, a washing step and a drying step may be performed as necessary to prevent contamination of the process line.
As the cleaning liquid used in the cleaning step, pure water, an organic solvent soluble in pure water, or an aqueous solution in which a surfactant is mixed can be used. From the viewpoint of suppressing peeling unevenness due to droplets remaining on the substrate surface and improving removability, it is preferable to use an organic solvent that can be dissolved in pure water, or an aqueous solution in which a surfactant is mixed, as the cleaning liquid. It is more preferable to use an aqueous solution in which both an organic solvent soluble in water and a surfactant are mixed.
水と混合させる水溶性の有機溶剤としては、特に制限はないが、溶剤の揮発性の観点から、沸点が50℃~250℃であるものが好ましく、55℃~200℃であるものがより好ましく、60℃~150℃であるものが更に好ましい。
水溶性の有機溶剤の例としては、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等のアルコール類、2-アセトキシ-2-フェニルエタノール、3-メトキシ-3-メチルエタノール、3-メトキシ-3-メチルブタノール、2-ブトキシエトキシエタノール等のアルコキシアルコール類、アセトン、メチルエチルケトン等のケトン類、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル等のグリコールエーテル類、テトラヒドロフラン、アセトニトリル、ジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド、1,3-ジオキソラン、などが挙げられる。
上記の中でも、メタノール、エタノール、プロパノール、イソプロパノール、3-メトキシ-3-メチルブタノール、2-アセトキシ-2-フェニルエタノール、テトラヒドロフラン、ジメチルスルホキシドが好ましい。 The water-soluble organic solvent to be mixed with water is not particularly limited, but preferably has a boiling point of 50 ° C to 250 ° C, more preferably 55 ° C to 200 ° C, from the viewpoint of the volatility of the solvent. More preferably, the temperature is from 60 ° C to 150 ° C.
Examples of the water-soluble organic solvent include alcohols such as methanol, ethanol, propanol, isopropanol, and ethylene glycol, 2-acetoxy-2-phenylethanol, 3-methoxy-3-methylethanol, and 3-methoxy-3-methylethanol. Butanol, alkoxy alcohols such as 2-butoxyethoxyethanol, ketones such as acetone and methyl ethyl ketone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, glycol ethers such as ethylene glycol dimethyl ether, tetrahydrofuran, acetonitrile, dimethylacetamide, dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide, 1,3-dioxolan, and the like can be mentioned.
Among the above, methanol, ethanol, propanol, isopropanol, 3-methoxy-3-methylbutanol, 2-acetoxy-2-phenylethanol, tetrahydrofuran, and dimethylsulfoxide are preferred.
水溶性の有機溶剤の例としては、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等のアルコール類、2-アセトキシ-2-フェニルエタノール、3-メトキシ-3-メチルエタノール、3-メトキシ-3-メチルブタノール、2-ブトキシエトキシエタノール等のアルコキシアルコール類、アセトン、メチルエチルケトン等のケトン類、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル等のグリコールエーテル類、テトラヒドロフラン、アセトニトリル、ジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド、1,3-ジオキソラン、などが挙げられる。
上記の中でも、メタノール、エタノール、プロパノール、イソプロパノール、3-メトキシ-3-メチルブタノール、2-アセトキシ-2-フェニルエタノール、テトラヒドロフラン、ジメチルスルホキシドが好ましい。 The water-soluble organic solvent to be mixed with water is not particularly limited, but preferably has a boiling point of 50 ° C to 250 ° C, more preferably 55 ° C to 200 ° C, from the viewpoint of the volatility of the solvent. More preferably, the temperature is from 60 ° C to 150 ° C.
Examples of the water-soluble organic solvent include alcohols such as methanol, ethanol, propanol, isopropanol, and ethylene glycol, 2-acetoxy-2-phenylethanol, 3-methoxy-3-methylethanol, and 3-methoxy-3-methylethanol. Butanol, alkoxy alcohols such as 2-butoxyethoxyethanol, ketones such as acetone and methyl ethyl ketone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, glycol ethers such as ethylene glycol dimethyl ether, tetrahydrofuran, acetonitrile, dimethylacetamide, dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide, 1,3-dioxolan, and the like can be mentioned.
Among the above, methanol, ethanol, propanol, isopropanol, 3-methoxy-3-methylbutanol, 2-acetoxy-2-phenylethanol, tetrahydrofuran, and dimethylsulfoxide are preferred.
水と混合させる水溶性の有機溶剤は、1種単独で用いられてもよく、2種以上を組み合わせて用いてもよい。
は The water-soluble organic solvent to be mixed with water may be used alone or in combination of two or more.
水と混合させる水溶性の有機溶剤の含有量は、水溶液の全質量に対して、0.01質量%~95質量%であることが好ましく、0.01質量%~20質量%であることがより好ましく、0.01質量%~10質量%であることが更に好ましく、0.01質量%~5質量%が特に好ましい。
The content of the water-soluble organic solvent to be mixed with water is preferably 0.01% by mass to 95% by mass, and more preferably 0.01% by mass to 20% by mass, based on the total mass of the aqueous solution. More preferably, the content is 0.01% by mass to 10% by mass, and particularly preferably 0.01% by mass to 5% by mass.
水と混合させる界面活性剤としては、水溶性のものであれば、特に制限はなく、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤(非イオン系界面活性剤)、又は、両性界面活性剤のいずれでも使用することができる。洗浄液の泡立ちを抑制する観点からは、ノニオン性の界面活性剤が好ましい。
アニオン系界面活性剤の例としては、カルボン酸塩類、スルホン酸塩類、硫酸エステル塩類、リン酸エステル塩類等を挙げることができる。
カチオン系界面活性剤の例としては、アミン塩類、及び、第四級アンモニウム塩類を挙げることができる。
両性界面活性剤の例としては、ベタイン型類を挙げることができる。
ノニオン系界面活性剤の例としては、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレングリコールの高級脂肪酸ジエステル類、アルキルベンゼンポリアルキレングリコール類、ポリオキシアルキレングリコール類、シリコーン系界面活性剤、フッ素系界面活性剤を挙げることができる。
また、以下商品名で、KP(信越化学工業(株)製)、ポリフロー(共栄社化学(株)製)、エフトップ(JEMCO社製)、メガファック(DIC(株)製)、フロラード(住友スリーエム(株)製)、アサヒガード、サーフロン(旭硝子(株)製)、PolyFox(OMNOVA社製)、サーフィノール(日信化学工業(株)製)及び、SH-8400(東レ・ダウコーニング(株)製)等の各シリーズを挙げることができる。 The surfactant to be mixed with water is not particularly limited as long as it is water-soluble, and an anionic surfactant, a cationic surfactant, a nonionic surfactant (nonionic surfactant), or Any of the amphoteric surfactants can be used. From the viewpoint of suppressing foaming of the cleaning liquid, a nonionic surfactant is preferable.
Examples of the anionic surfactant include carboxylate, sulfonate, sulfate, phosphate and the like.
Examples of the cationic surfactant include amine salts and quaternary ammonium salts.
Examples of amphoteric surfactants include betaine types.
Examples of nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, alkylbenzene polyalkylene glycols, polyoxyalkylene glycols, and silicone-based surfactants. Activators and fluorinated surfactants can be mentioned.
In the following trade names, KP (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow (manufactured by Kyoeisha Chemical Co., Ltd.), F-top (manufactured by JEMCO), Megafac (manufactured by DIC), Florard (Sumitomo 3M) Asahi Guard, Surflon (made by Asahi Glass Co., Ltd.), PolyFox (made by OMNOVA), Surfynol (made by Nissin Chemical Industry Co., Ltd.), and SH-8400 (Toray Dow Corning Co., Ltd.) Series).
アニオン系界面活性剤の例としては、カルボン酸塩類、スルホン酸塩類、硫酸エステル塩類、リン酸エステル塩類等を挙げることができる。
カチオン系界面活性剤の例としては、アミン塩類、及び、第四級アンモニウム塩類を挙げることができる。
両性界面活性剤の例としては、ベタイン型類を挙げることができる。
ノニオン系界面活性剤の例としては、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレングリコールの高級脂肪酸ジエステル類、アルキルベンゼンポリアルキレングリコール類、ポリオキシアルキレングリコール類、シリコーン系界面活性剤、フッ素系界面活性剤を挙げることができる。
また、以下商品名で、KP(信越化学工業(株)製)、ポリフロー(共栄社化学(株)製)、エフトップ(JEMCO社製)、メガファック(DIC(株)製)、フロラード(住友スリーエム(株)製)、アサヒガード、サーフロン(旭硝子(株)製)、PolyFox(OMNOVA社製)、サーフィノール(日信化学工業(株)製)及び、SH-8400(東レ・ダウコーニング(株)製)等の各シリーズを挙げることができる。 The surfactant to be mixed with water is not particularly limited as long as it is water-soluble, and an anionic surfactant, a cationic surfactant, a nonionic surfactant (nonionic surfactant), or Any of the amphoteric surfactants can be used. From the viewpoint of suppressing foaming of the cleaning liquid, a nonionic surfactant is preferable.
Examples of the anionic surfactant include carboxylate, sulfonate, sulfate, phosphate and the like.
Examples of the cationic surfactant include amine salts and quaternary ammonium salts.
Examples of amphoteric surfactants include betaine types.
Examples of nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, alkylbenzene polyalkylene glycols, polyoxyalkylene glycols, and silicone-based surfactants. Activators and fluorinated surfactants can be mentioned.
In the following trade names, KP (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow (manufactured by Kyoeisha Chemical Co., Ltd.), F-top (manufactured by JEMCO), Megafac (manufactured by DIC), Florard (Sumitomo 3M) Asahi Guard, Surflon (made by Asahi Glass Co., Ltd.), PolyFox (made by OMNOVA), Surfynol (made by Nissin Chemical Industry Co., Ltd.), and SH-8400 (Toray Dow Corning Co., Ltd.) Series).
界面活性剤は、1種単独で用いてもよく、2種以上を併用してもよく、2種以上を併用して用いることが好ましい。
は The surfactant may be used alone, or two or more surfactants may be used in combination, and it is preferable to use two or more surfactants in combination.
水と混合させる界面活性剤の含有量は、水溶液の全質量に対して、10質量%以下であることが好ましく、0.001質量%~5質量%であることがより好ましく、0.01質量%~3質量%であることが更に好ましい。
The content of the surfactant mixed with water is preferably 10% by mass or less, more preferably 0.001% by mass to 5% by mass, and more preferably 0.01% by mass with respect to the total mass of the aqueous solution. % To 3% by mass.
水溶性の有機溶剤又は界面活性剤を混合させた水溶液の表面張力は、基板表面に残存する液滴による剥離ムラの抑制及び除去性向上の観点から、50mN/m以下であることが好ましく、10mN/m~50mN/mであることがより好ましく、15mN/m~40mN/mであることが更に好ましく、20mN/m~40mN/mであることが最も好ましい。
The surface tension of an aqueous solution in which a water-soluble organic solvent or a surfactant is mixed is preferably 50 mN / m or less, and more preferably 10 mN / m, from the viewpoint of suppressing uneven peeling due to droplets remaining on the substrate surface and improving the removability. / M to 50 mN / m, more preferably 15 mN / m to 40 mN / m, and most preferably 20 mN / m to 40 mN / m.
洗浄工程の洗浄時間としては、特に制限はなく、例えば、10秒~300秒間基板を洗浄することが好ましく、乾燥工程については、例えばエアブローを使用し、エアブロー圧(好ましくは0.1kg/cm2~5kg/cm2程度)を適宜調整して乾燥を行えばよい。
The washing time in the washing step is not particularly limited, and it is preferable to wash the substrate, for example, for 10 seconds to 300 seconds. In the drying step, for example, an air blow is used, and an air blow pressure (preferably 0.1 kg / cm 2) is used. (About 5 kg / cm 2 ) may be appropriately adjusted for drying.
また、本開示に係る回路配線の製造方法として、好ましい2つの態様を以下に示す。
好 ま し い Further, two preferable embodiments are shown below as a method of manufacturing a circuit wiring according to the present disclosure.
本開示の回路配線の製造方法は、上記エッチング工程後に、上記ポジ型感光性樹脂層を全面露光する工程(以下、「全面露光工程」ということがある。)と、上記全面露光されたポジ型感光性樹脂層を除去する工程(以下、「除去工程」ということがある。)と、を含むことが好ましい。
従来の回路配線の製造方法においては、エッチングマスクの除去液を長時間使用した場合、徐々にエッチングマスクの除去性が低下することがある。エッチング工程の後に、エッチングマスクとして使用したポジ型感光性樹脂層を全面露光することにより、除去液への溶解性及び除去液の浸透性が向上し、除去液を長時間使用した場合においても除去性に優れる。
また、基材と、互いに構成材料が異なる第1導電層及び第2導電層を含む複数の導電層と、を有する基板に対し、上記回路配線の製造方法を繰り返し適用して回路配線を製造することもできる。 The method for manufacturing a circuit wiring according to the present disclosure includes a step of exposing the entire surface of the positive photosensitive resin layer after the etching step (hereinafter, may be referred to as an “entire exposure step”) and a step of exposing the entire positive photosensitive resin layer. And a step of removing the photosensitive resin layer (hereinafter, sometimes referred to as a “removing step”).
In a conventional method for manufacturing a circuit wiring, when an etching mask removing liquid is used for a long time, the etching mask removing property may gradually decrease. After the etching step, by exposing the entire surface of the positive photosensitive resin layer used as an etching mask, the solubility in the removing solution and the permeability of the removing solution are improved, and the removing solution is removed even when the removing solution is used for a long time. Excellent in nature.
Further, a circuit wiring is manufactured by repeatedly applying the method for manufacturing a circuit wiring to a substrate having a base material and a plurality of conductive layers including a first conductive layer and a second conductive layer having different constituent materials. You can also.
従来の回路配線の製造方法においては、エッチングマスクの除去液を長時間使用した場合、徐々にエッチングマスクの除去性が低下することがある。エッチング工程の後に、エッチングマスクとして使用したポジ型感光性樹脂層を全面露光することにより、除去液への溶解性及び除去液の浸透性が向上し、除去液を長時間使用した場合においても除去性に優れる。
また、基材と、互いに構成材料が異なる第1導電層及び第2導電層を含む複数の導電層と、を有する基板に対し、上記回路配線の製造方法を繰り返し適用して回路配線を製造することもできる。 The method for manufacturing a circuit wiring according to the present disclosure includes a step of exposing the entire surface of the positive photosensitive resin layer after the etching step (hereinafter, may be referred to as an “entire exposure step”) and a step of exposing the entire positive photosensitive resin layer. And a step of removing the photosensitive resin layer (hereinafter, sometimes referred to as a “removing step”).
In a conventional method for manufacturing a circuit wiring, when an etching mask removing liquid is used for a long time, the etching mask removing property may gradually decrease. After the etching step, by exposing the entire surface of the positive photosensitive resin layer used as an etching mask, the solubility in the removing solution and the permeability of the removing solution are improved, and the removing solution is removed even when the removing solution is used for a long time. Excellent in nature.
Further, a circuit wiring is manufactured by repeatedly applying the method for manufacturing a circuit wiring to a substrate having a base material and a plurality of conductive layers including a first conductive layer and a second conductive layer having different constituent materials. You can also.
本開示の回路配線の製造方法は、上記感光性転写材料の保護フィルムを剥離する工程と、上記感光性転写材料の、上記仮支持体に対してポジ型感光性樹脂層を有する側の最外層を、基材と、互いに構成材料が異なる第1導電層及び第2導電層を含む複数の導電層と、を有し、上記基材の表面上に、上記基材の表面から遠い順に、最表面層である上記第1導電層及び上記第2導電層が積層されている基板に貼り合わせる工程と、上記貼り合わせる工程後の上記感光性転写材料の上記ポジ型感光性樹脂層をパターン露光する第1露光工程と、上記第1露光工程後の上記ポジ型感光性樹脂層を現像して第1パターンを形成する第1現像工程と、上記第1パターンが配置されていない領域における上記複数の導電層のうち少なくとも上記第1導電層及び上記第2導電層をエッチング処理する第1エッチング工程と、上記第1エッチング工程後の上記第1パターンを上記第1パターンとは異なるパターンでパターン露光する第2露光工程と、上記第2露光工程後の上記第1パターンを現像して第2パターンを形成する第2現像工程と、上記第2パターンが配置されていない領域における上記複数の導電層のうち少なくとも上記第1導電層をエッチング処理する第2エッチング工程と、上記第2パターンを全面露光する工程(以下、「全面露光工程」ということがある。)と、上記第2パターンを除去する工程(以下、「除去工程」ということがある。)と、をこの順に含むことが好ましい。
上記回路配線の製造方法の実施形態としては、国際公開第2006/190405号を参考にすることができ、この内容は本明細書に組み込まれる。 The method for producing a circuit wiring according to the present disclosure includes a step of peeling a protective film of the photosensitive transfer material, and an outermost layer of the photosensitive transfer material having a positive photosensitive resin layer with respect to the temporary support. A base material, and a plurality of conductive layers including a first conductive layer and a second conductive layer having different constituent materials from each other, and on the surface of the base material, A step of bonding the first conductive layer and the second conductive layer, which are surface layers, to a substrate on which the first conductive layer and the second conductive layer are stacked, and pattern exposure of the positive photosensitive resin layer of the photosensitive transfer material after the bonding step. A first exposure step, a first development step of developing the positive photosensitive resin layer after the first exposure step to form a first pattern, and the plurality of the plurality of areas in a region where the first pattern is not arranged. At least the first conductive layer and the conductive layer A first etching step of etching the second conductive layer, a second exposure step of pattern-exposing the first pattern after the first etching step with a pattern different from the first pattern, and a second exposure step A second developing step of developing the first pattern to form a second pattern, and etching at least the first conductive layer among the plurality of conductive layers in a region where the second pattern is not arranged. A second etching step, a step of exposing the entire surface of the second pattern (hereinafter, may be referred to as an “entire exposure step”), and a step of removing the second pattern (hereinafter, referred to as a “removing step”). ) Are preferably included in this order.
As an embodiment of the method of manufacturing the circuit wiring, WO 2006/190405 can be referred to, and the contents thereof are incorporated herein.
上記回路配線の製造方法の実施形態としては、国際公開第2006/190405号を参考にすることができ、この内容は本明細書に組み込まれる。 The method for producing a circuit wiring according to the present disclosure includes a step of peeling a protective film of the photosensitive transfer material, and an outermost layer of the photosensitive transfer material having a positive photosensitive resin layer with respect to the temporary support. A base material, and a plurality of conductive layers including a first conductive layer and a second conductive layer having different constituent materials from each other, and on the surface of the base material, A step of bonding the first conductive layer and the second conductive layer, which are surface layers, to a substrate on which the first conductive layer and the second conductive layer are stacked, and pattern exposure of the positive photosensitive resin layer of the photosensitive transfer material after the bonding step. A first exposure step, a first development step of developing the positive photosensitive resin layer after the first exposure step to form a first pattern, and the plurality of the plurality of areas in a region where the first pattern is not arranged. At least the first conductive layer and the conductive layer A first etching step of etching the second conductive layer, a second exposure step of pattern-exposing the first pattern after the first etching step with a pattern different from the first pattern, and a second exposure step A second developing step of developing the first pattern to form a second pattern, and etching at least the first conductive layer among the plurality of conductive layers in a region where the second pattern is not arranged. A second etching step, a step of exposing the entire surface of the second pattern (hereinafter, may be referred to as an “entire exposure step”), and a step of removing the second pattern (hereinafter, referred to as a “removing step”). ) Are preferably included in this order.
As an embodiment of the method of manufacturing the circuit wiring, WO 2006/190405 can be referred to, and the contents thereof are incorporated herein.
以下、本開示に係る回路配線の製造方法として、上記した好ましい2つの態様について説明する。なお、以下に説明されていない工程における条件等の実施形態については、既述の工程において説明した条件等の実施形態を適用することができる。
Hereinafter, the above-described two preferred embodiments will be described as a method of manufacturing a circuit wiring according to the present disclosure. Note that the embodiments such as the conditions described in the above-described steps can be applied to the embodiments such as the conditions in the steps not described below.
[第2露光工程]
第2露光工程の一例を、図2(e)に概略的に示す。
第1エッチング工程後、第1エッチング工程後の第1パターン14Aを第1パターン14Aとは異なるパターンでパターン露光する。 [Second exposure step]
An example of the second exposure step is schematically shown in FIG.
After the first etching step, thefirst pattern 14A after the first etching step is subjected to pattern exposure with a pattern different from the first pattern 14A.
第2露光工程の一例を、図2(e)に概略的に示す。
第1エッチング工程後、第1エッチング工程後の第1パターン14Aを第1パターン14Aとは異なるパターンでパターン露光する。 [Second exposure step]
An example of the second exposure step is schematically shown in FIG.
After the first etching step, the
第2露光工程では、第1導電層上に残存する第1パターン14Aに対し、後述する第2現像工程において少なくとも第1導電層の除去すべき部分に相当する箇所を露光する。
第2露光工程におけるパターン露光は、第1露光工程で用いたマスク30とはパターンが異なるマスク40を用いること以外は既述の露光工程におけるパターン露光と同じ方法を適用することができる。 In the second exposure step, thefirst pattern 14A remaining on the first conductive layer is exposed to at least a portion corresponding to a portion of the first conductive layer to be removed in a second developing step described later.
For the pattern exposure in the second exposure step, the same method as the pattern exposure in the above-described exposure step can be applied except that amask 40 having a different pattern from the mask 30 used in the first exposure step is used.
第2露光工程におけるパターン露光は、第1露光工程で用いたマスク30とはパターンが異なるマスク40を用いること以外は既述の露光工程におけるパターン露光と同じ方法を適用することができる。 In the second exposure step, the
For the pattern exposure in the second exposure step, the same method as the pattern exposure in the above-described exposure step can be applied except that a
[第2現像工程]
第2現像工程の一例を、図2(f)に概略的に示す。
第2現像工程では、第2露光工程後の第1パターン14Aを現像して第2パターン14Bを形成する。
現像により、第1パターン14Aのうち第2露光工程において露光された部分が除去される。
なお、第2現像工程では、既述の現像工程における現像と同じ方法を適用することができる。 [Second developing step]
An example of the second developing step is schematically shown in FIG.
In the second development step, thefirst pattern 14A after the second exposure step is developed to form a second pattern 14B.
By development, a portion of thefirst pattern 14A that has been exposed in the second exposure step is removed.
In the second development step, the same method as the development in the development step described above can be applied.
第2現像工程の一例を、図2(f)に概略的に示す。
第2現像工程では、第2露光工程後の第1パターン14Aを現像して第2パターン14Bを形成する。
現像により、第1パターン14Aのうち第2露光工程において露光された部分が除去される。
なお、第2現像工程では、既述の現像工程における現像と同じ方法を適用することができる。 [Second developing step]
An example of the second developing step is schematically shown in FIG.
In the second development step, the
By development, a portion of the
In the second development step, the same method as the development in the development step described above can be applied.
[第2エッチング工程]
第2エッチング工程の一例を、図2(g)に概略的に示す。
第2エッチング工程では、第2パターン14Bが配置されていない領域における複数の導電層のうち少なくとも第1導電層24Aをエッチング処理する。 [Second etching step]
An example of the second etching step is schematically shown in FIG.
In the second etching step, at least the firstconductive layer 24A of the plurality of conductive layers in the region where the second pattern 14B is not arranged is etched.
第2エッチング工程の一例を、図2(g)に概略的に示す。
第2エッチング工程では、第2パターン14Bが配置されていない領域における複数の導電層のうち少なくとも第1導電層24Aをエッチング処理する。 [Second etching step]
An example of the second etching step is schematically shown in FIG.
In the second etching step, at least the first
第2エッチング工程におけるエッチングは、エッチングにより除去すべき導電層に応じたエッチング液を選択すること以外は既述のエッチング工程におけるエッチングと同じ方法を適用することができる。
第2エッチング工程では、所望のパターンに応じて、既述のエッチング工程よりも少ない導電層を選択的にエッチングすることが好ましい。例えば、図2(g)に示すように、感光性樹脂層が配置されていない領域において第1導電層24Bのみを選択的にエッチングするエッチング液を用いてエッチングを行うことで、第1導電層を第2導電層のパターンとは異なるパターンにすることができる。
第2エッチング工程の終了後、少なくとも2種類のパターンの導電層24B、26Aを含む回路配線が形成される。 For the etching in the second etching step, the same method as the etching in the above-described etching step can be applied, except that an etching solution corresponding to the conductive layer to be removed by etching is selected.
In the second etching step, it is preferable to selectively etch less conductive layers in accordance with a desired pattern than in the above-described etching step. For example, as shown in FIG. 2G, the firstconductive layer 24B is etched by using an etchant that selectively etches only the first conductive layer 24B in a region where the photosensitive resin layer is not disposed. May be different from the pattern of the second conductive layer.
After completion of the second etching step, a circuit wiring including at least two types of conductive layers 24B and 26A is formed.
第2エッチング工程では、所望のパターンに応じて、既述のエッチング工程よりも少ない導電層を選択的にエッチングすることが好ましい。例えば、図2(g)に示すように、感光性樹脂層が配置されていない領域において第1導電層24Bのみを選択的にエッチングするエッチング液を用いてエッチングを行うことで、第1導電層を第2導電層のパターンとは異なるパターンにすることができる。
第2エッチング工程の終了後、少なくとも2種類のパターンの導電層24B、26Aを含む回路配線が形成される。 For the etching in the second etching step, the same method as the etching in the above-described etching step can be applied, except that an etching solution corresponding to the conductive layer to be removed by etching is selected.
In the second etching step, it is preferable to selectively etch less conductive layers in accordance with a desired pattern than in the above-described etching step. For example, as shown in FIG. 2G, the first
After completion of the second etching step, a circuit wiring including at least two types of
[全面露光工程]
全面露光工程においては、現像により残像するポジ型感光性樹脂層の全てを露光すればよく、ポジ型感光性樹脂層のない部分については、露光してもしなくてもよい。簡便性の観点から、例えば、基板の、ポジ型感光性樹脂層を有する側の面の全面を露光することが好ましい。 [Overall exposure process]
In the whole-surface exposure step, all of the positive-type photosensitive resin layer that causes an afterimage by development may be exposed, and the portion without the positive-type photosensitive resin layer may or may not be exposed. From the viewpoint of simplicity, for example, it is preferable to expose the entire surface of the substrate on the side having the positive photosensitive resin layer.
全面露光工程においては、現像により残像するポジ型感光性樹脂層の全てを露光すればよく、ポジ型感光性樹脂層のない部分については、露光してもしなくてもよい。簡便性の観点から、例えば、基板の、ポジ型感光性樹脂層を有する側の面の全面を露光することが好ましい。 [Overall exposure process]
In the whole-surface exposure step, all of the positive-type photosensitive resin layer that causes an afterimage by development may be exposed, and the portion without the positive-type photosensitive resin layer may or may not be exposed. From the viewpoint of simplicity, for example, it is preferable to expose the entire surface of the substrate on the side having the positive photosensitive resin layer.
全面露光工程における露光に使用する光源としては、特に制限はなく、公知の露光光源を用いることができる。 除去性の観点から、上記露光工程と同じ波長の光を含む光源を用いることが好ましい。
光源 The light source used for the exposure in the entire surface exposure step is not particularly limited, and a known exposure light source can be used.か ら From the viewpoint of removability, it is preferable to use a light source containing light having the same wavelength as in the above-mentioned exposure step.
全面露光工程における露光量としては、除去性の観点から、5mJ/cm2~1,000mJ/cm2であることが好ましく、10mJ/cm2~800mJ/cm2であることがより好ましく、100mJ/cm2~500mJ/cm2であることが特に好ましい。
The exposure amount in the overall exposure step, from the viewpoint of removability is preferably 5mJ / cm 2 ~ 1,000mJ / cm 2, more preferably 10mJ / cm 2 ~ 800mJ / cm 2, 100mJ / It is particularly preferred that the density be from cm 2 to 500 mJ / cm 2 .
全面露光工程における露光量としては、除去性の観点から、上記露光工程における露光量以上であることが好ましく、上記露光工程における露光量よりも多いことがより好ましい。
露 光 From the viewpoint of removability, the exposure amount in the entire surface exposure step is preferably equal to or more than the exposure amount in the exposure step, and more preferably greater than the exposure amount in the exposure step.
<加熱工程>
本開示に係る回路配線の製造方法は、上記全面露光工程中、露光工程後、又はその両方、かつ、後述する除去工程の前に、上記全面露光されたポジ型感光性樹脂層を加熱する工程(以下、「加熱工程」ということがある。)を含んでいてもよい。加熱工程を含むことにより、より光酸発生剤の反応速度、及び、発生した酸とポジ型感光性樹脂との反応速度を向上することができ、結果、除去性能が向上する。 <Heating process>
The method of manufacturing a circuit wiring according to the present disclosure includes a step of heating the entire surface exposed positive photosensitive resin layer during the entire surface exposure step, after the exposure step, or both, and before the removal step described below. (Hereinafter, may be referred to as a “heating step”). By including the heating step, the reaction rate of the photoacid generator and the reaction rate between the generated acid and the positive photosensitive resin can be improved, and as a result, the removal performance can be improved.
本開示に係る回路配線の製造方法は、上記全面露光工程中、露光工程後、又はその両方、かつ、後述する除去工程の前に、上記全面露光されたポジ型感光性樹脂層を加熱する工程(以下、「加熱工程」ということがある。)を含んでいてもよい。加熱工程を含むことにより、より光酸発生剤の反応速度、及び、発生した酸とポジ型感光性樹脂との反応速度を向上することができ、結果、除去性能が向上する。 <Heating process>
The method of manufacturing a circuit wiring according to the present disclosure includes a step of heating the entire surface exposed positive photosensitive resin layer during the entire surface exposure step, after the exposure step, or both, and before the removal step described below. (Hereinafter, may be referred to as a “heating step”). By including the heating step, the reaction rate of the photoacid generator and the reaction rate between the generated acid and the positive photosensitive resin can be improved, and as a result, the removal performance can be improved.
[除去工程]
除去工程の一例を、図2(h)に概略的に示す。
第2エッチング工程の終了後、第1導電層24B上の一部には第2パターン14Bが残存している。残存する全てのポジ型感光性樹脂層である第2パターン14Bを除去すればよい。
なお、除去工程における除去には、例えば、ポジ型感光性樹脂層の除去液への溶解及び分散が含まれる。 [Removal step]
An example of the removing step is schematically shown in FIG.
After the end of the second etching step, thesecond pattern 14B remains on a part of the first conductive layer 24B. What is necessary is just to remove the remaining second pattern 14B which is the positive photosensitive resin layer.
The removal in the removing step includes, for example, dissolving and dispersing the positive photosensitive resin layer in a removing liquid.
除去工程の一例を、図2(h)に概略的に示す。
第2エッチング工程の終了後、第1導電層24B上の一部には第2パターン14Bが残存している。残存する全てのポジ型感光性樹脂層である第2パターン14Bを除去すればよい。
なお、除去工程における除去には、例えば、ポジ型感光性樹脂層の除去液への溶解及び分散が含まれる。 [Removal step]
An example of the removing step is schematically shown in FIG.
After the end of the second etching step, the
The removal in the removing step includes, for example, dissolving and dispersing the positive photosensitive resin layer in a removing liquid.
残存するポジ型感光性樹脂層を除去する方法としては特に制限はないが、薬品処理により除去する方法を挙げることができ、除去液を用いることが特に好ましく挙げることができる。
ポジ型感光性樹脂層の除去方法としては、好ましくは30℃~80℃、より好ましくは50℃~80℃にて撹拌中の除去液に感光性樹脂層などを有する基板を1分~30分間浸漬する方法が挙げられる。 The method of removing the remaining positive-type photosensitive resin layer is not particularly limited, but a method of removing by a chemical treatment can be mentioned, and the use of a removing liquid is particularly preferable.
As a method for removing the positive type photosensitive resin layer, the substrate having the photosensitive resin layer or the like in the removal solution with stirring at preferably 30 ° C. to 80 ° C., more preferably 50 ° C. to 80 ° C., is used for 1 minute to 30 minutes. An immersion method may be used.
ポジ型感光性樹脂層の除去方法としては、好ましくは30℃~80℃、より好ましくは50℃~80℃にて撹拌中の除去液に感光性樹脂層などを有する基板を1分~30分間浸漬する方法が挙げられる。 The method of removing the remaining positive-type photosensitive resin layer is not particularly limited, but a method of removing by a chemical treatment can be mentioned, and the use of a removing liquid is particularly preferable.
As a method for removing the positive type photosensitive resin layer, the substrate having the photosensitive resin layer or the like in the removal solution with stirring at preferably 30 ° C. to 80 ° C., more preferably 50 ° C. to 80 ° C., is used for 1 minute to 30 minutes. An immersion method may be used.
除去工程において、除去性の観点から、水を30質量%以上含有する除去液を用いることが好ましく、水を50質量%以上含有する除去液を用いることがより好ましく、水を70質量%以上含有する除去液を用いることが更に好ましい。
除去液としては、無機アルカリ成分、及び/又は有機アルカリ成分を含有する除去液であることが好ましい。無機アルカリ成分としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化アルミニウム、炭酸ナトリウム、炭酸水素ナトリウム、アンモニア等が挙げられる。有機アルカリ成分としては、例えば、第1級アミン化合物、第2級アミン化合物、第3級アミン化合物、第4級アンモニウム塩化合物等が挙げられ、具体的には、テトラメチルアンモニウムヒドロキシド、ジエチルアミン、トリエチルアミン、アルカノールアミン(例えば、モノメチルエタノールアミン、ジメチルエタノールアミン、モノエタノールアミン、2-アミノ-2-メチル-1-プロパノール等)、芳香族アミン(例えば、ピリジン、キノリン等)が挙げられる。
中でも、除去性の観点から、有機アルカリ成分を含有する除去液であることがより好ましく、アミン化合物を含有する除去液であることが特に好ましい。
アルカリ成分の含有量は、アルカリ成分の塩基性の強さ及び溶解性の観点から、適宜選択すればよいが、除去性の観点から、除去液の全質量に対し、0.01質量%~20質量%であることが好ましく、0.1質量%~10質量%であることがより好ましい。 In the removal step, from the viewpoint of removability, it is preferable to use a removal liquid containing 30% by mass or more of water, more preferably use a removal solution containing 50% by mass or more of water, and contain 70% by mass or more of water. It is more preferable to use a removing liquid that performs the removal.
The removing solution is preferably a removing solution containing an inorganic alkali component and / or an organic alkali component. Examples of the inorganic alkali component include sodium hydroxide, potassium hydroxide, magnesium hydroxide, aluminum hydroxide, sodium carbonate, sodium hydrogen carbonate, ammonia and the like. Examples of the organic alkali component include a primary amine compound, a secondary amine compound, a tertiary amine compound, a quaternary ammonium salt compound, and the like. Specifically, tetramethylammonium hydroxide, diethylamine, Examples include triethylamine, alkanolamine (eg, monomethylethanolamine, dimethylethanolamine, monoethanolamine, 2-amino-2-methyl-1-propanol, etc.), and aromatic amine (eg, pyridine, quinoline, etc.).
Above all, from the viewpoint of removability, a removal solution containing an organic alkali component is more preferred, and a removal solution containing an amine compound is particularly preferred.
The content of the alkali component may be appropriately selected from the viewpoint of the basic strength and solubility of the alkali component. %, More preferably 0.1 to 10% by mass.
除去液としては、無機アルカリ成分、及び/又は有機アルカリ成分を含有する除去液であることが好ましい。無機アルカリ成分としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化アルミニウム、炭酸ナトリウム、炭酸水素ナトリウム、アンモニア等が挙げられる。有機アルカリ成分としては、例えば、第1級アミン化合物、第2級アミン化合物、第3級アミン化合物、第4級アンモニウム塩化合物等が挙げられ、具体的には、テトラメチルアンモニウムヒドロキシド、ジエチルアミン、トリエチルアミン、アルカノールアミン(例えば、モノメチルエタノールアミン、ジメチルエタノールアミン、モノエタノールアミン、2-アミノ-2-メチル-1-プロパノール等)、芳香族アミン(例えば、ピリジン、キノリン等)が挙げられる。
中でも、除去性の観点から、有機アルカリ成分を含有する除去液であることがより好ましく、アミン化合物を含有する除去液であることが特に好ましい。
アルカリ成分の含有量は、アルカリ成分の塩基性の強さ及び溶解性の観点から、適宜選択すればよいが、除去性の観点から、除去液の全質量に対し、0.01質量%~20質量%であることが好ましく、0.1質量%~10質量%であることがより好ましい。 In the removal step, from the viewpoint of removability, it is preferable to use a removal liquid containing 30% by mass or more of water, more preferably use a removal solution containing 50% by mass or more of water, and contain 70% by mass or more of water. It is more preferable to use a removing liquid that performs the removal.
The removing solution is preferably a removing solution containing an inorganic alkali component and / or an organic alkali component. Examples of the inorganic alkali component include sodium hydroxide, potassium hydroxide, magnesium hydroxide, aluminum hydroxide, sodium carbonate, sodium hydrogen carbonate, ammonia and the like. Examples of the organic alkali component include a primary amine compound, a secondary amine compound, a tertiary amine compound, a quaternary ammonium salt compound, and the like. Specifically, tetramethylammonium hydroxide, diethylamine, Examples include triethylamine, alkanolamine (eg, monomethylethanolamine, dimethylethanolamine, monoethanolamine, 2-amino-2-methyl-1-propanol, etc.), and aromatic amine (eg, pyridine, quinoline, etc.).
Above all, from the viewpoint of removability, a removal solution containing an organic alkali component is more preferred, and a removal solution containing an amine compound is particularly preferred.
The content of the alkali component may be appropriately selected from the viewpoint of the basic strength and solubility of the alkali component. %, More preferably 0.1 to 10% by mass.
除去液は、有機溶剤を含有することが好ましい。
有機溶剤としては、酢酸エチル、乳酸エチル等のエステル類、アセトン等のケトン類、メタノール、エタノール、ジアセトンアルコール、エチレングリコール等のアルコール類、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類、メチルセロソルブ、プロピレングリコールメチルエーテル等のグリコールエーテル類、テトラヒドロフラン、γ―ブチロラクトン、アセトニトリル、ジオキサン、ジメチルスルホキシド、N-メチルピロリドン等が好ましく挙げられる。 The removal liquid preferably contains an organic solvent.
Examples of the organic solvent include esters such as ethyl acetate and ethyl lactate, ketones such as acetone, alcohols such as methanol, ethanol, diacetone alcohol and ethylene glycol, amides such as dimethylformamide and dimethylacetamide, methyl cellosolve, and propylene. Preferred examples include glycol ethers such as glycol methyl ether, tetrahydrofuran, γ-butyrolactone, acetonitrile, dioxane, dimethyl sulfoxide, N-methylpyrrolidone, and the like.
有機溶剤としては、酢酸エチル、乳酸エチル等のエステル類、アセトン等のケトン類、メタノール、エタノール、ジアセトンアルコール、エチレングリコール等のアルコール類、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類、メチルセロソルブ、プロピレングリコールメチルエーテル等のグリコールエーテル類、テトラヒドロフラン、γ―ブチロラクトン、アセトニトリル、ジオキサン、ジメチルスルホキシド、N-メチルピロリドン等が好ましく挙げられる。 The removal liquid preferably contains an organic solvent.
Examples of the organic solvent include esters such as ethyl acetate and ethyl lactate, ketones such as acetone, alcohols such as methanol, ethanol, diacetone alcohol and ethylene glycol, amides such as dimethylformamide and dimethylacetamide, methyl cellosolve, and propylene. Preferred examples include glycol ethers such as glycol methyl ether, tetrahydrofuran, γ-butyrolactone, acetonitrile, dioxane, dimethyl sulfoxide, N-methylpyrrolidone, and the like.
除去液は、除去性の観点から、界面活性剤を含有することが好ましい。
界面活性剤としては、特に制限されず、公知の界面活性剤を用いることができる。界面活性剤の含有量は、除去性の観点から、除去液の全質量に対し、0.1質量%~10質量%であることが好ましい。
除去液は、目的に応じて防錆剤、酸、イオン性液体、高分子分散剤等を含んでいてもよい。 The removal liquid preferably contains a surfactant from the viewpoint of removability.
The surfactant is not particularly limited, and a known surfactant can be used. The content of the surfactant is preferably from 0.1% by mass to 10% by mass with respect to the total mass of the removing solution from the viewpoint of removability.
The removal liquid may contain a rust inhibitor, an acid, an ionic liquid, a polymer dispersant, or the like according to the purpose.
界面活性剤としては、特に制限されず、公知の界面活性剤を用いることができる。界面活性剤の含有量は、除去性の観点から、除去液の全質量に対し、0.1質量%~10質量%であることが好ましい。
除去液は、目的に応じて防錆剤、酸、イオン性液体、高分子分散剤等を含んでいてもよい。 The removal liquid preferably contains a surfactant from the viewpoint of removability.
The surfactant is not particularly limited, and a known surfactant can be used. The content of the surfactant is preferably from 0.1% by mass to 10% by mass with respect to the total mass of the removing solution from the viewpoint of removability.
The removal liquid may contain a rust inhibitor, an acid, an ionic liquid, a polymer dispersant, or the like according to the purpose.
除去工程においては、除去液を使用し、スプレー法、シャワー法、パドル法等によりポジ型感光性樹脂を除去する方法が好ましく挙げられる。
In the removing step, a method of removing the positive photosensitive resin by a spray method, a shower method, a paddle method, or the like using a removing liquid is preferable.
本開示に係る回路配線の製造方法は、他の任意の工程を含んでもよい。例えば、以下のような工程が挙げられるが、これらの工程に制限されない。
回路 The method for manufacturing a circuit wiring according to the present disclosure may include other arbitrary steps. For example, the following steps may be mentioned, but it is not limited to these steps.
[保護フィルムを貼り付ける工程]
第1エッチング工程の後、第2露光工程の前に、第1パターン上に、光透過性を有する保護フィルム(不図示)を貼り付ける工程をさらに有してもよい。
この場合、第2露光工程において、保護フィルムを介して第1パターンをパターン露光し、第2露光工程後、第1パターンから保護フィルムを除去した後、第2現像工程を行うことが好ましい。 [Process of attaching protective film]
After the first etching step and before the second exposure step, the method may further include a step of attaching a light-transmissive protective film (not shown) on the first pattern.
In this case, in the second exposure step, it is preferable that the first pattern is subjected to pattern exposure through the protective film, and after the second exposure step, the protective film is removed from the first pattern, and then the second development step is performed.
第1エッチング工程の後、第2露光工程の前に、第1パターン上に、光透過性を有する保護フィルム(不図示)を貼り付ける工程をさらに有してもよい。
この場合、第2露光工程において、保護フィルムを介して第1パターンをパターン露光し、第2露光工程後、第1パターンから保護フィルムを除去した後、第2現像工程を行うことが好ましい。 [Process of attaching protective film]
After the first etching step and before the second exposure step, the method may further include a step of attaching a light-transmissive protective film (not shown) on the first pattern.
In this case, in the second exposure step, it is preferable that the first pattern is subjected to pattern exposure through the protective film, and after the second exposure step, the protective film is removed from the first pattern, and then the second development step is performed.
[可視光線反射率を低下させる工程]
本開示に係る回路配線の製造方法は、基材上の複数の導電層の一部又は全ての可視光線反射率を低下させる処理をする工程を含むことが可能である。
可視光線反射率を低下させる処理としては、酸化処理などを挙げることができる。例えば、銅を酸化処理して酸化銅とすることで、黒化することにより、可視光線反射率を低下させることができる。
可視光線反射率を低下させる処理の好ましい態様については、特開2014-150118号公報の段落0017~段落0025、並びに、特開2013-206315号公報の段落0041、段落0042、段落0048及び段落0058に記載があり、この公報の内容は本明細書に組み込まれる。 [Step of lowering visible light reflectance]
The method for manufacturing a circuit wiring according to the present disclosure can include a step of performing a process of reducing visible light reflectance of a part or all of a plurality of conductive layers on a base material.
An example of the treatment for lowering the visible light reflectance includes an oxidation treatment. For example, by oxidizing copper to form copper oxide, blackening can reduce visible light reflectance.
Preferred embodiments of the process for reducing the visible light reflectance are described in paragraphs 0017 to 0025 of JP-A-2014-150118 and paragraphs 0041, 0042, 0048, and 0058 of JP-A-2013-206315. And the contents of this publication are incorporated herein.
本開示に係る回路配線の製造方法は、基材上の複数の導電層の一部又は全ての可視光線反射率を低下させる処理をする工程を含むことが可能である。
可視光線反射率を低下させる処理としては、酸化処理などを挙げることができる。例えば、銅を酸化処理して酸化銅とすることで、黒化することにより、可視光線反射率を低下させることができる。
可視光線反射率を低下させる処理の好ましい態様については、特開2014-150118号公報の段落0017~段落0025、並びに、特開2013-206315号公報の段落0041、段落0042、段落0048及び段落0058に記載があり、この公報の内容は本明細書に組み込まれる。 [Step of lowering visible light reflectance]
The method for manufacturing a circuit wiring according to the present disclosure can include a step of performing a process of reducing visible light reflectance of a part or all of a plurality of conductive layers on a base material.
An example of the treatment for lowering the visible light reflectance includes an oxidation treatment. For example, by oxidizing copper to form copper oxide, blackening can reduce visible light reflectance.
Preferred embodiments of the process for reducing the visible light reflectance are described in paragraphs 0017 to 0025 of JP-A-2014-150118 and paragraphs 0041, 0042, 0048, and 0058 of JP-A-2013-206315. And the contents of this publication are incorporated herein.
[絶縁膜を形成する工程、絶縁膜上に新たな導電層を形成する工程]
本開示に係る回路配線の製造方法は、形成した回路配線上に絶縁膜を形成する工程と、絶縁膜上に新たな導電層を形成する工程と、を含むことも好ましい。
このような構成により、上述の第二の電極パターンを、第一の電極パターンと絶縁しつつ、形成することができる。
絶縁膜を形成する工程については、特に制限はなく、公知の永久膜を形成する方法を挙げることができる。また、絶縁性を有する感光性材料を用いて、フォトリソグラフィにより所望のパターンの絶縁膜を形成してもよい。
絶縁膜上に新たな導電層を形成する工程については、特に制限はない。導電性を有する感光性材料を用いて、フォトリソグラフィにより所望のパターンの新たな導電層を形成してもよい。 [Step of forming insulating film, step of forming new conductive layer on insulating film]
The method for manufacturing a circuit wiring according to the present disclosure preferably also includes a step of forming an insulating film on the formed circuit wiring and a step of forming a new conductive layer on the insulating film.
With such a configuration, the above-described second electrode pattern can be formed while being insulated from the first electrode pattern.
There is no particular limitation on the step of forming the insulating film, and a known method of forming a permanent film can be used. Alternatively, an insulating film having a desired pattern may be formed by photolithography using a photosensitive material having an insulating property.
There is no particular limitation on the step of forming a new conductive layer on the insulating film. A new conductive layer having a desired pattern may be formed by photolithography using a photosensitive material having conductivity.
本開示に係る回路配線の製造方法は、形成した回路配線上に絶縁膜を形成する工程と、絶縁膜上に新たな導電層を形成する工程と、を含むことも好ましい。
このような構成により、上述の第二の電極パターンを、第一の電極パターンと絶縁しつつ、形成することができる。
絶縁膜を形成する工程については、特に制限はなく、公知の永久膜を形成する方法を挙げることができる。また、絶縁性を有する感光性材料を用いて、フォトリソグラフィにより所望のパターンの絶縁膜を形成してもよい。
絶縁膜上に新たな導電層を形成する工程については、特に制限はない。導電性を有する感光性材料を用いて、フォトリソグラフィにより所望のパターンの新たな導電層を形成してもよい。 [Step of forming insulating film, step of forming new conductive layer on insulating film]
The method for manufacturing a circuit wiring according to the present disclosure preferably also includes a step of forming an insulating film on the formed circuit wiring and a step of forming a new conductive layer on the insulating film.
With such a configuration, the above-described second electrode pattern can be formed while being insulated from the first electrode pattern.
There is no particular limitation on the step of forming the insulating film, and a known method of forming a permanent film can be used. Alternatively, an insulating film having a desired pattern may be formed by photolithography using a photosensitive material having an insulating property.
There is no particular limitation on the step of forming a new conductive layer on the insulating film. A new conductive layer having a desired pattern may be formed by photolithography using a photosensitive material having conductivity.
[ロールツーロール方式]
本開示に係る回路配線の製造方法は、ロールツーロール方式により行われることが好ましい。
ロールツーロール方式とは、基板として、巻き取り及び巻き出しが可能な基板を用い、回路配線の製造方法に含まれるいずれかの工程の前に、基板又は基板を含む構造体を巻き出す工程(以下、「巻き出し工程」ということがある。)と、いずれかの工程の後に、基材又は基板を含む構造体を巻き取る工程(以下、「巻き取り工程」ということがある。)と、を含み、少なくともいずれかの工程(好ましくは、全ての工程、又は加熱工程以外の全ての工程)を、基材又は基板を含む構造体を搬送しながら行う方式をいう。
巻き出し工程における巻き出し方法、及び巻き取り工程における巻き取り方法としては、特に制限されず、ロールツーロール方式を適用する製造方法において、公知の方法を用いればよい。 [Roll-to-roll method]
The method for manufacturing circuit wiring according to the present disclosure is preferably performed by a roll-to-roll method.
The roll-to-roll method uses a substrate that can be wound and unwound as a substrate, and unwinds the substrate or a structure including the substrate before any of the steps included in the circuit wiring manufacturing method ( Hereinafter, it may be referred to as a “unwinding step”), and after any of the steps, a step of winding up a structure including a substrate or a substrate (hereinafter, sometimes referred to as a “winding step”). And a method in which at least one step (preferably all steps or all steps other than the heating step) is performed while transporting a structure including a base material or a substrate.
The unwinding method in the unwinding step and the winding method in the winding step are not particularly limited, and a known method may be used in a manufacturing method using a roll-to-roll method.
本開示に係る回路配線の製造方法は、ロールツーロール方式により行われることが好ましい。
ロールツーロール方式とは、基板として、巻き取り及び巻き出しが可能な基板を用い、回路配線の製造方法に含まれるいずれかの工程の前に、基板又は基板を含む構造体を巻き出す工程(以下、「巻き出し工程」ということがある。)と、いずれかの工程の後に、基材又は基板を含む構造体を巻き取る工程(以下、「巻き取り工程」ということがある。)と、を含み、少なくともいずれかの工程(好ましくは、全ての工程、又は加熱工程以外の全ての工程)を、基材又は基板を含む構造体を搬送しながら行う方式をいう。
巻き出し工程における巻き出し方法、及び巻き取り工程における巻き取り方法としては、特に制限されず、ロールツーロール方式を適用する製造方法において、公知の方法を用いればよい。 [Roll-to-roll method]
The method for manufacturing circuit wiring according to the present disclosure is preferably performed by a roll-to-roll method.
The roll-to-roll method uses a substrate that can be wound and unwound as a substrate, and unwinds the substrate or a structure including the substrate before any of the steps included in the circuit wiring manufacturing method ( Hereinafter, it may be referred to as a “unwinding step”), and after any of the steps, a step of winding up a structure including a substrate or a substrate (hereinafter, sometimes referred to as a “winding step”). And a method in which at least one step (preferably all steps or all steps other than the heating step) is performed while transporting a structure including a base material or a substrate.
The unwinding method in the unwinding step and the winding method in the winding step are not particularly limited, and a known method may be used in a manufacturing method using a roll-to-roll method.
また、本開示における露光工程、現像工程、及びその他の工程の例としては、特開2006-23696号公報の段落0035~段落0051に記載の方法を本開示においても好適に用いることができる。
方法 Also, as examples of the exposure step, the development step, and other steps in the present disclosure, the methods described in paragraphs 0035 to 0051 of JP-A-2006-23696 can be suitably used in the present disclosure.
図2では、2層の導電層を備えた回路配線形成用基板に対して2つの異なるパターンを有する回路配線を形成する場合を示したが、本開示に係る回路配線の製造方法を適用する基板の導電層の数は2層に制限されない。導電層が3層以上積層された回路配線形成用基板を用い、上述した露光工程、現像工程、及びエッチング工程の組み合わせを3回以上行うことで、3層以上の導電層をそれぞれ異なる回路配線パターンに形成することもできる。
FIG. 2 shows a case in which circuit wiring having two different patterns is formed on a circuit wiring forming substrate having two conductive layers, but a substrate to which the circuit wiring manufacturing method according to the present disclosure is applied. Is not limited to two layers. By using a substrate for circuit wiring formation in which three or more conductive layers are stacked and performing the above-described combination of the exposure step, the developing step, and the etching step three or more times, the three or more conductive layers are respectively different circuit wiring patterns. Can also be formed.
図2には示していないが、本開示に係る回路配線の製造方法は、基材の両方の表面にそれぞれ複数の導電層を有する基板を用い、基材の両方の表面に形成された導電層に対して逐次又は同時に回路形成することも好ましい。このような構成により、基材の一方の表面に第一の導電パターン、もう一方の表面に第二の導電パターンを形成したタッチパネル用回路配線を形成することができる。また、このような構成のタッチパネル用回路配線を、ロールツーロールで基材の両面から形成することも好ましい。
Although not shown in FIG. 2, the method for manufacturing a circuit wiring according to the present disclosure uses a substrate having a plurality of conductive layers on both surfaces of a base material, respectively, and a conductive layer formed on both surfaces of the base material. It is also preferable to form circuits sequentially or simultaneously. With such a configuration, it is possible to form a circuit wiring for a touch panel in which the first conductive pattern is formed on one surface of the base material and the second conductive pattern is formed on the other surface. In addition, it is also preferable that the circuit wiring for a touch panel having such a configuration is formed on both sides of the base material by roll-to-roll.
本開示に係る回路配線の製造方法により製造される回路配線は、種々の装置に適用することができる。本開示に係る回路配線の製造方法により製造される回路配線を備えた装置としては、例えば、入力装置等が挙げられ、静電容量型タッチパネルであることが好ましい。また、上記入力装置は、有機EL表示装置、液晶表示装置等の表示装置に適用することができる。
回路 The circuit wiring manufactured by the method for manufacturing a circuit wiring according to the present disclosure can be applied to various devices. Examples of the device provided with the circuit wiring manufactured by the method for manufacturing a circuit wiring according to the present disclosure include an input device and the like, and a capacitance touch panel is preferable. Further, the input device can be applied to a display device such as an organic EL display device and a liquid crystal display device.
<タッチパネルの製造方法>
本開示に係るタッチパネルの製造方法は、上記感光性転写材料の保護フィルムを剥離する工程(以下、「剥離工程」ということがある。)と、上記感光性転写材料の、上記仮支持体に対してポジ型感光性樹脂層を有する側の最外層を、導電層を有する基板に貼り合わせる工程(以下、「貼り合わせ工程」ということがある。)と、上記貼り合わせる工程後の上記感光性転写材料の上記ポジ型感光性樹脂層をパターン露光する工程(以下、「露光工程」ということがある。)と、上記パターン露光する工程後の上記ポジ型感光性樹脂層を現像して樹脂パターンを形成する工程(以下、「現像工程」ということがある。)と、上記樹脂パターンが配置されていない領域における基板をエッチング処理する工程(以下、「エッチング工程」ということがある。)と、を含む。
本開示に係るタッチパネルの製造方法によれば、上記感光性転写材料を用いるため、パターン故障が低減されたタッチパネルを製造することができる。 <Touch panel manufacturing method>
The method for manufacturing a touch panel according to the present disclosure includes a step of peeling off the protective film of the photosensitive transfer material (hereinafter, may be referred to as a “peeling step”), and a step of removing the photosensitive transfer material from the temporary support. Bonding the outermost layer on the side having the positive photosensitive resin layer to the substrate having the conductive layer (hereinafter, sometimes referred to as a “bonding step”); and the photosensitive transfer after the bonding step. A step of pattern-exposing the positive photosensitive resin layer of the material (hereinafter, may be referred to as an “exposure step”), and developing the positive photosensitive resin layer after the pattern exposure step to form a resin pattern. A step of forming (hereinafter, sometimes referred to as a “development step”) and a step of etching a substrate in a region where the resin pattern is not arranged (hereinafter, referred to as an “etching step”). Including, that there.) I am.
According to the method for manufacturing a touch panel according to the present disclosure, since the photosensitive transfer material is used, a touch panel with reduced pattern failure can be manufactured.
本開示に係るタッチパネルの製造方法は、上記感光性転写材料の保護フィルムを剥離する工程(以下、「剥離工程」ということがある。)と、上記感光性転写材料の、上記仮支持体に対してポジ型感光性樹脂層を有する側の最外層を、導電層を有する基板に貼り合わせる工程(以下、「貼り合わせ工程」ということがある。)と、上記貼り合わせる工程後の上記感光性転写材料の上記ポジ型感光性樹脂層をパターン露光する工程(以下、「露光工程」ということがある。)と、上記パターン露光する工程後の上記ポジ型感光性樹脂層を現像して樹脂パターンを形成する工程(以下、「現像工程」ということがある。)と、上記樹脂パターンが配置されていない領域における基板をエッチング処理する工程(以下、「エッチング工程」ということがある。)と、を含む。
本開示に係るタッチパネルの製造方法によれば、上記感光性転写材料を用いるため、パターン故障が低減されたタッチパネルを製造することができる。 <Touch panel manufacturing method>
The method for manufacturing a touch panel according to the present disclosure includes a step of peeling off the protective film of the photosensitive transfer material (hereinafter, may be referred to as a “peeling step”), and a step of removing the photosensitive transfer material from the temporary support. Bonding the outermost layer on the side having the positive photosensitive resin layer to the substrate having the conductive layer (hereinafter, sometimes referred to as a “bonding step”); and the photosensitive transfer after the bonding step. A step of pattern-exposing the positive photosensitive resin layer of the material (hereinafter, may be referred to as an “exposure step”), and developing the positive photosensitive resin layer after the pattern exposure step to form a resin pattern. A step of forming (hereinafter, sometimes referred to as a “development step”) and a step of etching a substrate in a region where the resin pattern is not arranged (hereinafter, referred to as an “etching step”). Including, that there.) I am.
According to the method for manufacturing a touch panel according to the present disclosure, since the photosensitive transfer material is used, a touch panel with reduced pattern failure can be manufactured.
本開示に係るタッチパネルの製造方法における、剥離工程、貼り合わせ工程、露光工程、現像工程、及びエッチング工程の各工程の具体的な態様については、上述の「回路配線の製造方法」の項において説明したとおりであり、好ましい態様も同様である。
Specific modes of the peeling step, the bonding step, the exposing step, the developing step, and the etching step in the method for manufacturing a touch panel according to the present disclosure will be described in the above section “Method for Manufacturing Circuit Wiring”. The same applies to the preferred embodiments.
本開示に係るタッチパネルは、本開示に係る回路配線の製造方法により製造された回路配線を少なくとも有するタッチパネルである。また、本開示に係るタッチパネルは、透明基板と、電極と、絶縁層又は保護層とを少なくとも有することが好ましい。
本開示に係るタッチパネルにおける検出方法は、抵抗膜方式、静電容量方式、超音波方式、電磁誘導方式、光学方式などの公知の方式いずれでもよい。中でも、静電容量方式が好ましい。
タッチパネル型としては、いわゆる、インセル型(例えば、特表2012-517051号公報の図5、図6、図7、図8に記載のもの)、いわゆる、オンセル型(例えば、特開2013-168125号公報の図19に記載のもの、特開2012-89102号公報の図1及び図5に記載のもの)、OGS(One Glass Solution)型、TOL(Touch-on-Lens)型(例えば、特開2013-54727号公報の図2に記載のもの)、その他の構成(例えば、特開2013-164871号公報の図6に記載のもの)、各種アウトセル型(いわゆる、GG、G1・G2、GFF、GF2、GF1、G1Fなど)を挙げることができる。
本開示に係るタッチパネルとしては、『最新タッチパネル技術』(2009年7月6日、(株)テクノタイムズ社発行)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004,12)、FPD International 2009 Forum T-11講演テキストブック、Cypress Semiconductor Corporation アプリケーションノートAN2292等に開示されている構成を適用することができる。 A touch panel according to the present disclosure is a touch panel having at least circuit wiring manufactured by the method for manufacturing circuit wiring according to the present disclosure. Further, the touch panel according to the present disclosure preferably includes at least a transparent substrate, an electrode, and an insulating layer or a protective layer.
The detection method in the touch panel according to the present disclosure may be any of known methods such as a resistance film method, a capacitance method, an ultrasonic method, an electromagnetic induction method, and an optical method. Among them, the capacitance type is preferable.
As the touch panel type, a so-called in-cell type (for example, those described in JP-A-2012-517051 shown in FIGS. 5, 6, 7, and 8) and a so-called on-cell type (for example, JP-A-2013-168125) Japanese Unexamined Patent Publication No. 19-89102, Japanese Unexamined Patent Publication No. 2012-89102, and FIGS. 1 and 5), OGS (One Glass Solution) type, TOL (Touch-on-Lens) type (for example, No. 2013-54727, FIG. 2), other configurations (for example, those described in FIG. 6 of JP-A-2013-164871), various out-cell types (so-called GG, G1, G2, GFF, GF2, GF1, G1F, etc.).
As the touch panel according to the present disclosure, “Latest Touch Panel Technology” (July 6, 2009, Techno Times Co., Ltd.), supervised by Yuji Mitani, “Technology and Development of Touch Panel”, CMC Publishing (2004, 12) , FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292, and the like.
本開示に係るタッチパネルにおける検出方法は、抵抗膜方式、静電容量方式、超音波方式、電磁誘導方式、光学方式などの公知の方式いずれでもよい。中でも、静電容量方式が好ましい。
タッチパネル型としては、いわゆる、インセル型(例えば、特表2012-517051号公報の図5、図6、図7、図8に記載のもの)、いわゆる、オンセル型(例えば、特開2013-168125号公報の図19に記載のもの、特開2012-89102号公報の図1及び図5に記載のもの)、OGS(One Glass Solution)型、TOL(Touch-on-Lens)型(例えば、特開2013-54727号公報の図2に記載のもの)、その他の構成(例えば、特開2013-164871号公報の図6に記載のもの)、各種アウトセル型(いわゆる、GG、G1・G2、GFF、GF2、GF1、G1Fなど)を挙げることができる。
本開示に係るタッチパネルとしては、『最新タッチパネル技術』(2009年7月6日、(株)テクノタイムズ社発行)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004,12)、FPD International 2009 Forum T-11講演テキストブック、Cypress Semiconductor Corporation アプリケーションノートAN2292等に開示されている構成を適用することができる。 A touch panel according to the present disclosure is a touch panel having at least circuit wiring manufactured by the method for manufacturing circuit wiring according to the present disclosure. Further, the touch panel according to the present disclosure preferably includes at least a transparent substrate, an electrode, and an insulating layer or a protective layer.
The detection method in the touch panel according to the present disclosure may be any of known methods such as a resistance film method, a capacitance method, an ultrasonic method, an electromagnetic induction method, and an optical method. Among them, the capacitance type is preferable.
As the touch panel type, a so-called in-cell type (for example, those described in JP-A-2012-517051 shown in FIGS. 5, 6, 7, and 8) and a so-called on-cell type (for example, JP-A-2013-168125) Japanese Unexamined Patent Publication No. 19-89102, Japanese Unexamined Patent Publication No. 2012-89102, and FIGS. 1 and 5), OGS (One Glass Solution) type, TOL (Touch-on-Lens) type (for example, No. 2013-54727, FIG. 2), other configurations (for example, those described in FIG. 6 of JP-A-2013-164871), various out-cell types (so-called GG, G1, G2, GFF, GF2, GF1, G1F, etc.).
As the touch panel according to the present disclosure, “Latest Touch Panel Technology” (July 6, 2009, Techno Times Co., Ltd.), supervised by Yuji Mitani, “Technology and Development of Touch Panel”, CMC Publishing (2004, 12) , FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292, and the like.
<樹脂パターンの製造方法>
本開示に係る樹脂パターンの製造方法は、上記感光性転写材料の保護フィルムを剥離する工程(以下、「剥離工程」ということがある。)と、上記感光性転写材料の、上記仮支持体に対してポジ型感光性樹脂層を有する側の最外層を、基板に貼り合わせる工程(以下、「貼り合わせ工程」ということがある。)と、上記貼り合わせる工程後の上記感光性転写材料の上記ポジ型感光性樹脂層をパターン露光する工程(以下、「露光工程」ということがある。)と、上記パターン露光する工程後の上記ポジ型感光性樹脂層を現像して樹脂パターンを形成する工程(以下、「現像工程」ということがある。)と、を含む。本開示に係る樹脂パターンの製造方法によれば、上記感光性転写材料を用いるため、パターン故障が低減された樹脂パターンを製造することができる。 <Production method of resin pattern>
The method for producing a resin pattern according to the present disclosure includes a step of peeling the protective film of the photosensitive transfer material (hereinafter, may be referred to as a “peeling step”) and a step of removing the protective film of the photosensitive transfer material from the temporary support. On the other hand, a step of bonding the outermost layer on the side having the positive photosensitive resin layer to the substrate (hereinafter, sometimes referred to as a "bonding step"), and the above-described step of bonding the photosensitive transfer material after the bonding step. A step of pattern-exposing the positive photosensitive resin layer (hereinafter sometimes referred to as an “exposure step”), and a step of developing the positive photosensitive resin layer after the pattern exposure step to form a resin pattern (Hereinafter, may be referred to as “developing step”). According to the method for manufacturing a resin pattern according to the present disclosure, since the photosensitive transfer material is used, a resin pattern with reduced pattern failure can be manufactured.
本開示に係る樹脂パターンの製造方法は、上記感光性転写材料の保護フィルムを剥離する工程(以下、「剥離工程」ということがある。)と、上記感光性転写材料の、上記仮支持体に対してポジ型感光性樹脂層を有する側の最外層を、基板に貼り合わせる工程(以下、「貼り合わせ工程」ということがある。)と、上記貼り合わせる工程後の上記感光性転写材料の上記ポジ型感光性樹脂層をパターン露光する工程(以下、「露光工程」ということがある。)と、上記パターン露光する工程後の上記ポジ型感光性樹脂層を現像して樹脂パターンを形成する工程(以下、「現像工程」ということがある。)と、を含む。本開示に係る樹脂パターンの製造方法によれば、上記感光性転写材料を用いるため、パターン故障が低減された樹脂パターンを製造することができる。 <Production method of resin pattern>
The method for producing a resin pattern according to the present disclosure includes a step of peeling the protective film of the photosensitive transfer material (hereinafter, may be referred to as a “peeling step”) and a step of removing the protective film of the photosensitive transfer material from the temporary support. On the other hand, a step of bonding the outermost layer on the side having the positive photosensitive resin layer to the substrate (hereinafter, sometimes referred to as a "bonding step"), and the above-described step of bonding the photosensitive transfer material after the bonding step. A step of pattern-exposing the positive photosensitive resin layer (hereinafter sometimes referred to as an “exposure step”), and a step of developing the positive photosensitive resin layer after the pattern exposure step to form a resin pattern (Hereinafter, may be referred to as “developing step”). According to the method for manufacturing a resin pattern according to the present disclosure, since the photosensitive transfer material is used, a resin pattern with reduced pattern failure can be manufactured.
本開示に係る樹脂パターンの製造方法における、剥離工程、貼り合わせ工程、露光工程、及び現像工程の各工程の具体的な態様については、上述の「回路配線の製造方法」の項において説明したとおりであり、好ましい態様も同様である。また、本開示に係る樹脂パターンの製造方法における基板は、ガラス、シリコン、フィルムなどの基材自体が基板であってもよく、ガラス、シリコン、フィルムなどの基材上に、必要により導電層などの任意の層が形成された基板であってもよい。
In the method for manufacturing a resin pattern according to the present disclosure, the specific modes of the peeling step, the bonding step, the exposing step, and the developing step are as described in the above section “Method for manufacturing circuit wiring”. And the preferred embodiment is also the same. In addition, the substrate in the method for manufacturing a resin pattern according to the present disclosure may be a substrate itself such as glass, silicon, or a film, or a substrate such as glass, silicon, or a film, and if necessary, a conductive layer. May be a substrate on which an arbitrary layer is formed.
<フィルム>
本開示に係るフィルムは、第一延伸方向の延伸物である一軸延伸ポリエチレンテレフタレートフィルムがフィルム面に沿って上記第一延伸方向と直交する第二延伸方向に延伸された二軸延伸ポリエチレンテレフタレートフィルムと、上記一軸延伸ポリエチレンテレフタレートフィルムの一方面に形成された塗布層の上記第二延伸方向の延伸物である下塗り層と、を有し、上記下塗り層の表面が、下記の(A)及び(B)を満たす。
(A)水接触角が、75°以上である。
(B)表面粗さRaが、45nm以下である。 <Film>
The film according to the present disclosure is a biaxially stretched polyethylene terephthalate film in which a uniaxially stretched polyethylene terephthalate film, which is a stretched product in the first stretching direction, is stretched along a film surface in a second stretching direction orthogonal to the first stretching direction. And an undercoat layer which is a stretched product of the coating layer formed on one surface of the uniaxially stretched polyethylene terephthalate film in the second stretching direction. The surface of the undercoat layer has the following (A) and (B) Meet).
(A) The water contact angle is 75 ° or more.
(B) The surface roughness Ra is 45 nm or less.
本開示に係るフィルムは、第一延伸方向の延伸物である一軸延伸ポリエチレンテレフタレートフィルムがフィルム面に沿って上記第一延伸方向と直交する第二延伸方向に延伸された二軸延伸ポリエチレンテレフタレートフィルムと、上記一軸延伸ポリエチレンテレフタレートフィルムの一方面に形成された塗布層の上記第二延伸方向の延伸物である下塗り層と、を有し、上記下塗り層の表面が、下記の(A)及び(B)を満たす。
(A)水接触角が、75°以上である。
(B)表面粗さRaが、45nm以下である。 <Film>
The film according to the present disclosure is a biaxially stretched polyethylene terephthalate film in which a uniaxially stretched polyethylene terephthalate film, which is a stretched product in the first stretching direction, is stretched along a film surface in a second stretching direction orthogonal to the first stretching direction. And an undercoat layer which is a stretched product of the coating layer formed on one surface of the uniaxially stretched polyethylene terephthalate film in the second stretching direction. The surface of the undercoat layer has the following (A) and (B) Meet).
(A) The water contact angle is 75 ° or more.
(B) The surface roughness Ra is 45 nm or less.
本開示に係るフィルムは、上記の(A)及び(B)を満たすことで、フィルム表面の表面エネルギーを下げ、かつ、凹凸を低減できるため、剥離性に優れ、かつ、被着体表面への凹凸の転写を低減できる。
Since the film according to the present disclosure satisfies the above conditions (A) and (B), the surface energy of the film surface can be reduced and the unevenness can be reduced. Transfer of unevenness can be reduced.
さらに、本開示に係るフィルムは、二軸延伸ポリエチレンテレフタレートフィルムと、延伸物である下塗り層と、を有することで、フィルムの表面エネルギーを下げることによってフィルムの剥離性をさらに向上でき、そして、フィルム表面の平滑性、及び二軸延伸ポリエチレンテレフタレートフィルムと下塗り層との密着性も向上できる。
Furthermore, the film according to the present disclosure has a biaxially stretched polyethylene terephthalate film and an undercoat layer that is a stretched product, and by further reducing the surface energy of the film, the peelability of the film can be further improved. The surface smoothness and the adhesion between the biaxially oriented polyethylene terephthalate film and the undercoat layer can also be improved.
本開示に係るフィルムにおける上記二軸延伸ポリエチレンテレフタレートフィルムは、既述の方法によって測定される一方の面の表面粗さRaが45nm以下のポリエチレンテレフタレートフィルムをいう。
上 記 The biaxially stretched polyethylene terephthalate film in the film according to the present disclosure refers to a polyethylene terephthalate film having one surface having a surface roughness Ra of 45 nm or less measured by the method described above.
本開示に係るフィルムにおける上記下塗り層は、上記「下塗り層」の項において説明した延伸物である下塗り層と同義である。
上 記 The undercoat layer in the film according to the present disclosure is synonymous with the undercoat layer which is a stretched product described in the section “undercoat layer”.
本開示に係るフィルムの好ましい実施形態は、上記「感光性転写材料」の項において説明した保護フィルムの好ましい実施形態と同様である。
好 ま し い A preferred embodiment of the film according to the present disclosure is the same as the preferred embodiment of the protective film described in the section of “Photosensitive Transfer Material” above.
また、他の実施形態として、本開示に係るフィルムは、第1の樹脂層と、第1の樹脂層上に設けられた第2の樹脂層とを有し、第1の樹脂層が、ポリエステルを含み、第2の樹脂層の表面が、下記の(A)及び(B)を満たす。
(A)水接触角が、75°以上である。
(B)表面粗さRaが、45nm以下である。 Further, as another embodiment, a film according to the present disclosure has a first resin layer and a second resin layer provided on the first resin layer, and the first resin layer is made of polyester. And the surface of the second resin layer satisfies the following (A) and (B).
(A) The water contact angle is 75 ° or more.
(B) The surface roughness Ra is 45 nm or less.
(A)水接触角が、75°以上である。
(B)表面粗さRaが、45nm以下である。 Further, as another embodiment, a film according to the present disclosure has a first resin layer and a second resin layer provided on the first resin layer, and the first resin layer is made of polyester. And the surface of the second resin layer satisfies the following (A) and (B).
(A) The water contact angle is 75 ° or more.
(B) The surface roughness Ra is 45 nm or less.
本開示に係るフィルムは、上記の(A)及び(B)を満たすことで、フィルム表面の表面エネルギーを下げ、かつ、凹凸を低減できるため、剥離性に優れ、かつ、被着体表面への凹凸の転写を低減できる。
Since the film according to the present disclosure satisfies the above conditions (A) and (B), the surface energy of the film surface can be reduced and the unevenness can be reduced. Transfer of unevenness can be reduced.
第1の樹脂層は、ポリエステルを含み、必要に応じて他の成分を含んでいてもよい。ポリエステルは、平滑性の観点から、ポリエチレンテレフタレートであることが好ましい。
The first resin layer contains polyester, and may contain other components as needed. The polyester is preferably polyethylene terephthalate from the viewpoint of smoothness.
第1の樹脂層の厚みは、5μm~200μmであることが好ましく、10μm~150μmであることがより好ましく、10μm~100μmであることが更に好ましく、10μm~50μmであることが特に好ましい。
厚 み The thickness of the first resin layer is preferably from 5 μm to 200 μm, more preferably from 10 μm to 150 μm, further preferably from 10 μm to 100 μm, particularly preferably from 10 μm to 50 μm.
第2の樹脂層に含有される樹脂は特に限定されず、例えば、ポリオレフィン、アクリルポリマー、ポリエステル等が挙げられる。第2の樹脂層は、剥離性及びパターン故障の低減の観点から、変性樹脂を含有することが好ましく、酸変性樹脂及びシリコーン変性樹脂からなる群より選択される少なくとも1種の樹脂を含有することがより好ましい。より具体的には、第2の樹脂層は、剥離性及びパターン故障の低減の観点から、変性ポリオレフィン及び変性アクリルポリマーからなる群より選択される少なくとも1種の樹脂を含有することが好ましく、酸変性ポリオレフィン及びシリコーン変性アクリルポリマーからなる群より選択される少なくとも1種の樹脂を含有することがより好ましく、酸変性ポリオレフィンを含有することが特に好ましい。
樹脂 The resin contained in the second resin layer is not particularly limited, and examples thereof include polyolefin, acrylic polymer, and polyester. The second resin layer preferably contains a modified resin from the viewpoint of releasability and reduction of pattern failure, and contains at least one resin selected from the group consisting of an acid-modified resin and a silicone-modified resin. Is more preferred. More specifically, the second resin layer preferably contains at least one resin selected from the group consisting of a modified polyolefin and a modified acrylic polymer, from the viewpoint of peelability and reduction of pattern failure, It is more preferable to contain at least one resin selected from the group consisting of a modified polyolefin and a silicone-modified acrylic polymer, and it is particularly preferable to contain an acid-modified polyolefin.
酸変性ポリオレフィンの好ましい例は、上記「下塗り層」の項において説明した酸変性ポリオレフィンと同様である。
Preferred examples of the acid-modified polyolefin are the same as the acid-modified polyolefin described in the section of “Undercoat layer”.
第2の樹脂層に含有される樹脂は、1種単独で用いられてもよく、2種以上を組み合わせて用いてもよい。
樹脂 The resin contained in the second resin layer may be used alone or in combination of two or more.
第2の樹脂層の厚みは、制限されず、剥離性及びパターン故障の低減の観点から、10nm~550nmであることが好ましく、10nm~500nmであることがより好ましく、10nm~100nmであることがさらに好ましく、10nm~60nmであることが特に好ましい。
The thickness of the second resin layer is not limited, and is preferably from 10 nm to 550 nm, more preferably from 10 nm to 500 nm, and more preferably from 10 nm to 100 nm, from the viewpoints of peelability and reduction in pattern failure. More preferably, it is particularly preferably from 10 nm to 60 nm.
本開示に係るフィルムの製造方法は、第1の樹脂層上に第2の樹脂層を設けることができれば、特に限定されない。第2の樹脂層は、第1の樹脂層上に、塗布方法によって設けられてもよく、第1の樹脂層と第2の樹脂層とは、共押し出し法によって設けられてもよい。
フ ィ ル ム The method for producing a film according to the present disclosure is not particularly limited as long as the second resin layer can be provided on the first resin layer. The second resin layer may be provided on the first resin layer by a coating method, and the first resin layer and the second resin layer may be provided by a co-extrusion method.
本開示に係るフィルムの製造方法は、第1の樹脂層をフィルム成形により形成した後、第1の樹脂層上に第2の樹脂層を形成するための塗布液を塗布し、2軸延伸処理を行う方法であってもよい。また、本開示に係るフィルムの製造方法は、第1の樹脂層をフィルム成形により形成し、1軸延伸処理を行った後、第2の樹脂層を形成するための塗布液を塗布し、さらに他の1軸延伸処理を行う方法であってもよい。また、本開示に係るフィルムの製造方法は、第1の樹脂層をフィルム成形により形成し、2軸延伸処理を行った後、第2の樹脂層を形成するための塗布液を塗布する方法であってもよい。
In the method for producing a film according to the present disclosure, a first resin layer is formed by film forming, and then a coating liquid for forming a second resin layer is applied on the first resin layer, and a biaxial stretching process is performed. May be performed. Further, in the method for producing a film according to the present disclosure, a first resin layer is formed by film forming, and after performing a uniaxial stretching treatment, a coating liquid for forming a second resin layer is applied. A method of performing another uniaxial stretching treatment may be used. In addition, the method for producing a film according to the present disclosure is a method in which a first resin layer is formed by film forming, a biaxial stretching process is performed, and then a coating liquid for forming a second resin layer is applied. There may be.
また、本開示に係るフィルムの製造方法は、第1の樹脂層を形成するための原料と、第2の樹脂層を形成するための原料とを共押し出しした後、2軸延伸処理を行う方法であってもよい。なお、延伸処理は適宜省略してもよい。
Further, the method for producing a film according to the present disclosure is a method in which a raw material for forming a first resin layer and a raw material for forming a second resin layer are co-extruded and then biaxially stretched. It may be. Note that the stretching process may be omitted as appropriate.
本開示に係るフィルムは、種々の対象物に貼り合わせることにより、対象物の表面を保護できる。すなわち、保護フィルムであることが好ましい。本開示に係るフィルムは、剥離性に優れ、かつ、被着体表面への凹凸の転写を低減できるため、例えば、表面形状の変形を避ける必要のある部材(例えば、高い平滑性を有する部材、及び表面形状に特徴のある部材)を保護するために用いられることが好ましい。また、本開示に係る保護フィルムは、種々の感光性転写材料(ドライフィルムレジスト)を保護するために用いられることがより好ましく、ポジ型感光性樹脂層を有する感光性転写材料を保護するために用いられることが特に好ましい。
フ ィ ル ム The film according to the present disclosure can protect the surface of an object by being attached to various objects. That is, the protective film is preferably used. The film according to the present disclosure is excellent in releasability, and can reduce the transfer of unevenness to the adherend surface, for example, a member that needs to avoid deformation of the surface shape (for example, a member having high smoothness, And a member having a characteristic surface shape). Further, the protective film according to the present disclosure is more preferably used for protecting various photosensitive transfer materials (dry film resists), and for protecting a photosensitive transfer material having a positive photosensitive resin layer. It is particularly preferred that they be used.
以下、実施例により本開示を詳細に説明するが、本開示はこれらに制限されるものではない。なお、特に断りのない限り、「部」、「%」は質量基準である。
Hereinafter, the present disclosure will be described in detail with reference to Examples, but the present disclosure is not limited thereto. Unless otherwise specified, “parts” and “%” are based on mass.
<製造例1>
以下の手順にしたがって、基材として用いるポリエチレンテレフタレート(PET)の一方の面に、下記下塗り層形成用塗布液1を塗布した後、延伸することによって製造例1の保護フィルムを得た。 <Production Example 1>
According to the following procedure, the following coating liquid 1 for forming an undercoat layer was applied to one surface of polyethylene terephthalate (PET) used as a substrate, and then stretched to obtain a protective film of Production Example 1.
以下の手順にしたがって、基材として用いるポリエチレンテレフタレート(PET)の一方の面に、下記下塗り層形成用塗布液1を塗布した後、延伸することによって製造例1の保護フィルムを得た。 <Production Example 1>
According to the following procedure, the following coating liquid 1 for forming an undercoat layer was applied to one surface of polyethylene terephthalate (PET) used as a substrate, and then stretched to obtain a protective film of Production Example 1.
[下塗り層形成用塗布液1の調製]
下記に示す配合で、各成分を混合し、下塗り層形成用塗布液1を得た。得られた下塗り層形成用塗布液1を、6μmフィルター(F20、マーレフィルターシステムズ(株)製)でのろ過及び膜脱気(2x6ラジアルフロースーパーフォビック、ポリポア(株)製)を実施した。
・酸変性ポリオレフィン(ザイクセンL、住友精化(株)製、固形分25質量%):16.7部
・アニオン系界面活性剤(ラピゾールA-90、日油(株)製、固形分1質量%水希釈):5.6部
・水:77.7部 [Preparation of Undercoat Layer-Forming Coating Solution 1]
The following components were mixed together to obtain a coating liquid 1 for forming an undercoat layer. The obtained coating solution 1 for forming an undercoat layer was subjected to filtration with a 6 μm filter (F20, manufactured by Mare Filter Systems Co., Ltd.) and membrane deaeration (2 × 6 radial flow superphobic, manufactured by Polypore).
-Acid-modified polyolefin (Siixen L, manufactured by Sumitomo Seika Co., Ltd., solid content: 25% by mass): 16.7 parts-Anionic surfactant (Lapisol A-90, manufactured by NOF Corporation, solid content: 1 mass%) % Water dilution): 5.6 parts, water: 77.7 parts
下記に示す配合で、各成分を混合し、下塗り層形成用塗布液1を得た。得られた下塗り層形成用塗布液1を、6μmフィルター(F20、マーレフィルターシステムズ(株)製)でのろ過及び膜脱気(2x6ラジアルフロースーパーフォビック、ポリポア(株)製)を実施した。
・酸変性ポリオレフィン(ザイクセンL、住友精化(株)製、固形分25質量%):16.7部
・アニオン系界面活性剤(ラピゾールA-90、日油(株)製、固形分1質量%水希釈):5.6部
・水:77.7部 [Preparation of Undercoat Layer-Forming Coating Solution 1]
The following components were mixed together to obtain a coating liquid 1 for forming an undercoat layer. The obtained coating solution 1 for forming an undercoat layer was subjected to filtration with a 6 μm filter (F20, manufactured by Mare Filter Systems Co., Ltd.) and membrane deaeration (2 × 6 radial flow superphobic, manufactured by Polypore).
-Acid-modified polyolefin (Siixen L, manufactured by Sumitomo Seika Co., Ltd., solid content: 25% by mass): 16.7 parts-Anionic surfactant (Lapisol A-90, manufactured by NOF Corporation, solid content: 1 mass%) % Water dilution): 5.6 parts, water: 77.7 parts
[押出成形]
特許第5575671号公報に記載のチタン化合物を重合触媒としたポリエチレンテレフタレート(PET)のペレットを、含水率50ppm以下に乾燥させた後、直径30mmの1軸混練押出し機のホッパーに投入し、280℃で溶融して押出した。この溶融体(メルト)を、濾過器(孔径3μm)を通した後、ダイから25℃の冷却ロールに押出し、未延伸フィルムを得た。なお、押出されたメルトは、静電印加法を用い冷却ロールに密着させた。 [Extrusion molding]
After drying polyethylene terephthalate (PET) pellets using a titanium compound described in Japanese Patent No. 5575671 as a polymerization catalyst to a water content of 50 ppm or less, the pellets were put into a hopper of a single-screw kneading extruder having a diameter of 30 mm. And extruded. This melt (melt) was passed through a filter (pore size: 3 μm) and then extruded from a die to a cooling roll at 25 ° C. to obtain an unstretched film. Note that the extruded melt was brought into close contact with a cooling roll by using an electrostatic application method.
特許第5575671号公報に記載のチタン化合物を重合触媒としたポリエチレンテレフタレート(PET)のペレットを、含水率50ppm以下に乾燥させた後、直径30mmの1軸混練押出し機のホッパーに投入し、280℃で溶融して押出した。この溶融体(メルト)を、濾過器(孔径3μm)を通した後、ダイから25℃の冷却ロールに押出し、未延伸フィルムを得た。なお、押出されたメルトは、静電印加法を用い冷却ロールに密着させた。 [Extrusion molding]
After drying polyethylene terephthalate (PET) pellets using a titanium compound described in Japanese Patent No. 5575671 as a polymerization catalyst to a water content of 50 ppm or less, the pellets were put into a hopper of a single-screw kneading extruder having a diameter of 30 mm. And extruded. This melt (melt) was passed through a filter (pore size: 3 μm) and then extruded from a die to a cooling roll at 25 ° C. to obtain an unstretched film. Note that the extruded melt was brought into close contact with a cooling roll by using an electrostatic application method.
[延伸、塗布]
上記方法で冷却ロール上に押出し、固化した未延伸フィルムに対し、以下の方法で逐次2軸延伸を施し、厚み25μmの基材(ポリエステルフィルム)と、厚み50nmの下塗り層と、を有する保護フィルムを得た。 [Stretching, coating]
The unstretched film extruded and solidified on the cooling roll by the above method is subjected to sequential biaxial stretching by the following method, and has a 25 μm-thick base material (polyester film) and a 50 nm-thick undercoat layer. I got
上記方法で冷却ロール上に押出し、固化した未延伸フィルムに対し、以下の方法で逐次2軸延伸を施し、厚み25μmの基材(ポリエステルフィルム)と、厚み50nmの下塗り層と、を有する保護フィルムを得た。 [Stretching, coating]
The unstretched film extruded and solidified on the cooling roll by the above method is subjected to sequential biaxial stretching by the following method, and has a 25 μm-thick base material (polyester film) and a 50 nm-thick undercoat layer. I got
(a)縦延伸
未延伸フィルムを周速の異なる2対のニップロールの間に通し、縦方向(すなわち、搬送方向)に延伸した。なお、予熱温度を75℃、延伸温度を90℃、延伸倍率を3.4倍、延伸速度を1300%/秒として延伸を実施した。 (A) Longitudinal stretching The unstretched film was passed between two pairs of nip rolls having different peripheral speeds and stretched in the longitudinal direction (that is, the transport direction). The stretching was performed at a preheating temperature of 75 ° C., a stretching temperature of 90 ° C., a stretching ratio of 3.4 times, and a stretching speed of 1300% / sec.
未延伸フィルムを周速の異なる2対のニップロールの間に通し、縦方向(すなわち、搬送方向)に延伸した。なお、予熱温度を75℃、延伸温度を90℃、延伸倍率を3.4倍、延伸速度を1300%/秒として延伸を実施した。 (A) Longitudinal stretching The unstretched film was passed between two pairs of nip rolls having different peripheral speeds and stretched in the longitudinal direction (that is, the transport direction). The stretching was performed at a preheating temperature of 75 ° C., a stretching temperature of 90 ° C., a stretching ratio of 3.4 times, and a stretching speed of 1300% / sec.
(b)塗布
縦延伸したフィルムの一方の面に下塗り層形成用塗布液1を、製膜後の厚みが50nmとなるようにバーコーターで塗布した。 (B) Coating An undercoat layer forming coating liquid 1 was coated on one surface of the longitudinally stretched film by a bar coater so that the thickness after film formation was 50 nm.
縦延伸したフィルムの一方の面に下塗り層形成用塗布液1を、製膜後の厚みが50nmとなるようにバーコーターで塗布した。 (B) Coating An undercoat layer forming coating liquid 1 was coated on one surface of the longitudinally stretched film by a bar coater so that the thickness after film formation was 50 nm.
(c)横延伸
縦延伸と塗布を行ったフィルムに対し、テンターを用いて下記条件にて横延伸した。
-条件-
予熱温度:110℃
延伸温度:120℃
延伸倍率:4.2倍
延伸速度:50%/秒 (C) Lateral stretching The film that had been longitudinally stretched and applied was laterally stretched using a tenter under the following conditions.
-conditions-
Preheating temperature: 110 ° C
Stretching temperature: 120 ° C
Stretching ratio: 4.2 times Stretching speed: 50% / sec
縦延伸と塗布を行ったフィルムに対し、テンターを用いて下記条件にて横延伸した。
-条件-
予熱温度:110℃
延伸温度:120℃
延伸倍率:4.2倍
延伸速度:50%/秒 (C) Lateral stretching The film that had been longitudinally stretched and applied was laterally stretched using a tenter under the following conditions.
-conditions-
Preheating temperature: 110 ° C
Stretching temperature: 120 ° C
Stretching ratio: 4.2 times Stretching speed: 50% / sec
[熱固定、熱緩和]
続いて、縦延伸及び横延伸を終えた後の延伸フィルムを下記条件で熱固定した。さらに、熱固定した後、テンター幅を縮め下記条件で熱緩和した。
-熱工程条件-
熱固定温度:227℃
熱固定時間:6秒
-熱緩和条件-
熱緩和温度:190℃
熱緩和率:4% [Heat fixation, thermal relaxation]
Subsequently, the stretched film after the completion of the longitudinal stretching and the transverse stretching was heat-set under the following conditions. Furthermore, after heat setting, the width of the tenter was reduced and the heat was relaxed under the following conditions.
-Thermal process conditions-
Heat setting temperature: 227 ° C
Heat setting time: 6 seconds-Thermal relaxation condition-
Thermal relaxation temperature: 190 ° C
Thermal relaxation rate: 4%
続いて、縦延伸及び横延伸を終えた後の延伸フィルムを下記条件で熱固定した。さらに、熱固定した後、テンター幅を縮め下記条件で熱緩和した。
-熱工程条件-
熱固定温度:227℃
熱固定時間:6秒
-熱緩和条件-
熱緩和温度:190℃
熱緩和率:4% [Heat fixation, thermal relaxation]
Subsequently, the stretched film after the completion of the longitudinal stretching and the transverse stretching was heat-set under the following conditions. Furthermore, after heat setting, the width of the tenter was reduced and the heat was relaxed under the following conditions.
-Thermal process conditions-
Heat setting temperature: 227 ° C
Heat setting time: 6 seconds-Thermal relaxation condition-
Thermal relaxation temperature: 190 ° C
Thermal relaxation rate: 4%
[巻き取り]
熱固定及び熱緩和の後、両端をトリミングし、端部に幅10mmで押出し加工(ナーリング)を行った後、張力40kg/mで巻き取った。なお、フィルムロールの幅は1.5m、巻長は6300mであった。得られたフィルムロールを、製造例1の保護フィルムとした。
得られた保護フィルムの基材は、ヘイズが0.2であり、150℃で30分加熱した場合の熱収縮率は、MD(Machine Direction)が1.0%、TD(Transverse Direction)が0.2%であった。断面TEM(Transmission Electron Microscope)写真から測定した下塗り層の膜厚は、50nmであった。 [Take-up]
After heat fixation and thermal relaxation, both ends were trimmed, and after extruding (knurling) the ends at a width of 10 mm, they were wound up at a tension of 40 kg / m. In addition, the width of the film roll was 1.5 m, and the winding length was 6,300 m. The obtained film roll was used as the protective film of Production Example 1.
The substrate of the obtained protective film has a haze of 0.2, and has a heat shrinkage of 1.0% in MD (Machine Direction) and 0 in TD (Transverse Direction) when heated at 150 ° C. for 30 minutes. 0.2%. The thickness of the undercoat layer measured from a cross-sectional TEM (Transmission Electron Microscope) photograph was 50 nm.
熱固定及び熱緩和の後、両端をトリミングし、端部に幅10mmで押出し加工(ナーリング)を行った後、張力40kg/mで巻き取った。なお、フィルムロールの幅は1.5m、巻長は6300mであった。得られたフィルムロールを、製造例1の保護フィルムとした。
得られた保護フィルムの基材は、ヘイズが0.2であり、150℃で30分加熱した場合の熱収縮率は、MD(Machine Direction)が1.0%、TD(Transverse Direction)が0.2%であった。断面TEM(Transmission Electron Microscope)写真から測定した下塗り層の膜厚は、50nmであった。 [Take-up]
After heat fixation and thermal relaxation, both ends were trimmed, and after extruding (knurling) the ends at a width of 10 mm, they were wound up at a tension of 40 kg / m. In addition, the width of the film roll was 1.5 m, and the winding length was 6,300 m. The obtained film roll was used as the protective film of Production Example 1.
The substrate of the obtained protective film has a haze of 0.2, and has a heat shrinkage of 1.0% in MD (Machine Direction) and 0 in TD (Transverse Direction) when heated at 150 ° C. for 30 minutes. 0.2%. The thickness of the undercoat layer measured from a cross-sectional TEM (Transmission Electron Microscope) photograph was 50 nm.
<製造例2~7>
下塗り層形成用塗布液1の配合を表1の記載にしたがって変更した点、及び塗布時のバーを調整して下塗り層の製膜後の厚みを表1の記載にしたがって変更した点以外は、製造例1と同様にして製造例2~7の保護フィルムを得た。 <Production Examples 2 to 7>
Except that the composition of the undercoat layer forming coating liquid 1 was changed according to the description in Table 1, and that the thickness of the undercoat layer after film formation was changed according to the description in Table 1 by adjusting the bar during coating, In the same manner as in Production Example 1, protective films of Production Examples 2 to 7 were obtained.
下塗り層形成用塗布液1の配合を表1の記載にしたがって変更した点、及び塗布時のバーを調整して下塗り層の製膜後の厚みを表1の記載にしたがって変更した点以外は、製造例1と同様にして製造例2~7の保護フィルムを得た。 <Production Examples 2 to 7>
Except that the composition of the undercoat layer forming coating liquid 1 was changed according to the description in Table 1, and that the thickness of the undercoat layer after film formation was changed according to the description in Table 1 by adjusting the bar during coating, In the same manner as in Production Example 1, protective films of Production Examples 2 to 7 were obtained.
<製造例8>
下塗り層形成用塗布液1の代わりに下記下塗り層形成用塗布液2を使用した点、及び塗布時のバーを調整して下塗り層の製膜後の厚みを80nmに変更した点以外は、製造例1と同様にして製造例8の保護フィルムを得た。
(下塗り層形成用塗布液2)
・ウレタンポリマー(エラストロンH3DF、第一工業製薬(株)製、固形分28質量%):16.5部
・ブロックイソシアネート(デュラネートWM44-L70G、旭化成(株)製、固形分70質量%):1.5部
・アニオン系界面活性剤(ラピゾールA-90、日油(株)製、固形分1質量%水希釈):4.2部
・炭酸水素ナトリウム(旭硝子(株)製、固形分5質量%水希釈):0.3部
・カルナバワックス分散物(セロゾール524、中京油脂(株)製、固形分30質量%):0.5部
・有機スズ水分散物(エラストロンCat21、第一工業製薬(株)製、固形分1質量%水希釈):3.3部
・水:73.7部 <Production Example 8>
Except that the following undercoat layer forming coating liquid 2 was used in place of the undercoat layer forming coating liquid 1 and that the thickness of the undercoat layer after film formation was changed to 80 nm by adjusting the bar at the time of coating, the production was carried out. A protective film of Production Example 8 was obtained in the same manner as in Example 1.
(Coating solution 2 for forming undercoat layer)
-Urethane polymer (Elastron H3DF, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., solid content 28% by mass): 16.5 parts-Blocked isocyanate (Duranate WM44-L70G, manufactured by Asahi Kasei Corporation, solid content 70% by mass): 1 0.5 parts anionic surfactant (Lapisol A-90, manufactured by NOF CORPORATION, solid content 1% by mass in water): 4.2 parts sodium hydrogen carbonate (Asahi Glass Co., Ltd., solid content 5%) % Water dilution): 0.3 part Carnauba wax dispersion (Cerosol 524, manufactured by Chukyo Yushi Co., Ltd.,solid content 30% by mass): 0.5 part Organosin water dispersion (Elastron Cat21, Daiichi Kogyo Pharmaceutical Co., Ltd.) (Manufactured by Corporation, solid content 1% by mass diluted with water): 3.3 parts, water: 73.7 parts
下塗り層形成用塗布液1の代わりに下記下塗り層形成用塗布液2を使用した点、及び塗布時のバーを調整して下塗り層の製膜後の厚みを80nmに変更した点以外は、製造例1と同様にして製造例8の保護フィルムを得た。
(下塗り層形成用塗布液2)
・ウレタンポリマー(エラストロンH3DF、第一工業製薬(株)製、固形分28質量%):16.5部
・ブロックイソシアネート(デュラネートWM44-L70G、旭化成(株)製、固形分70質量%):1.5部
・アニオン系界面活性剤(ラピゾールA-90、日油(株)製、固形分1質量%水希釈):4.2部
・炭酸水素ナトリウム(旭硝子(株)製、固形分5質量%水希釈):0.3部
・カルナバワックス分散物(セロゾール524、中京油脂(株)製、固形分30質量%):0.5部
・有機スズ水分散物(エラストロンCat21、第一工業製薬(株)製、固形分1質量%水希釈):3.3部
・水:73.7部 <Production Example 8>
Except that the following undercoat layer forming coating liquid 2 was used in place of the undercoat layer forming coating liquid 1 and that the thickness of the undercoat layer after film formation was changed to 80 nm by adjusting the bar at the time of coating, the production was carried out. A protective film of Production Example 8 was obtained in the same manner as in Example 1.
(Coating solution 2 for forming undercoat layer)
-Urethane polymer (Elastron H3DF, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., solid content 28% by mass): 16.5 parts-Blocked isocyanate (Duranate WM44-L70G, manufactured by Asahi Kasei Corporation, solid content 70% by mass): 1 0.5 parts anionic surfactant (Lapisol A-90, manufactured by NOF CORPORATION, solid content 1% by mass in water): 4.2 parts sodium hydrogen carbonate (Asahi Glass Co., Ltd., solid content 5%) % Water dilution): 0.3 part Carnauba wax dispersion (Cerosol 524, manufactured by Chukyo Yushi Co., Ltd.,
<製造例9>
下塗り層形成用塗布液を塗布しない点以外は、製造例1と同様にして製造例9の保護フィルムを得た。 <Production Example 9>
A protective film of Production Example 9 was obtained in the same manner as in Production Example 1, except that the coating liquid for forming an undercoat layer was not applied.
下塗り層形成用塗布液を塗布しない点以外は、製造例1と同様にして製造例9の保護フィルムを得た。 <Production Example 9>
A protective film of Production Example 9 was obtained in the same manner as in Production Example 1, except that the coating liquid for forming an undercoat layer was not applied.
<製造例10>
塗布工程において、縦延伸したフィルムの、下塗り層形成用塗布液1を塗布した面とは反対側の面に、製膜後の厚みが60nmとなるように下記の上塗り層形成用塗布液をさらに塗布した点以外は、製造例1と同様にして製造例10の保護フィルムを得た。
(上塗り層形成用塗布液)
・アクリルポリマー(AS-563A、ダイセルファインケム(株)製、固形分27.5質量%):16.7部
・ノニオン系界面活性剤(ナロアクティーCL95、三洋化成工業(株)製、固形分100質量%):0.07部
・アニオン系界面活性剤(ラピゾールA-90、日油(株)製、固形分1質量%水希釈):11.44部
・カルナバワックス分散物(セロゾール524、中京油脂(株)製、固形分30質量%)0.7部
・カルボジイミド化合物(カルボジライトV-02-L2、日清紡(株)製、固形分10質量%水希釈):2.09部
・マット剤(スノーテックスXL、日産化学(株)製、固形分40質量%):0.28部
・水:69.0部 <Production Example 10>
In the coating step, the following coating liquid for forming an overcoat layer is further coated on the surface of the longitudinally stretched film opposite to the surface to which the coating liquid 1 for forming an undercoat layer is applied so that the thickness after film formation is 60 nm. Except for the application, a protective film of Production Example 10 was obtained in the same manner as in Production Example 1.
(Coating liquid for overcoat layer formation)
Acrylic polymer (AS-563A, manufactured by Daicel Finechem Co., Ltd., solid content: 27.5% by mass): 16.7 partsNonionic surfactant (Naroacty CL95, manufactured by Sanyo Chemical Industry Co., Ltd., solid content: 100) % By mass): 0.07 parts Anionic surfactant (Lapisol A-90, manufactured by NOF CORPORATION, solid content: 1% by mass in water): 11.44 parts Carnauba wax dispersion (Cerosol 524, Chukyo) 0.7 parts of a carbodiimide compound (Carbodilite V-02-L2, manufactured by Nisshinbo Industries, diluting with a solid content of 10% by weight in water): 2.09 parts Snowtex XL, manufactured by Nissan Chemical Co., Ltd., solid content: 40% by mass): 0.28 parts, water: 69.0 parts
塗布工程において、縦延伸したフィルムの、下塗り層形成用塗布液1を塗布した面とは反対側の面に、製膜後の厚みが60nmとなるように下記の上塗り層形成用塗布液をさらに塗布した点以外は、製造例1と同様にして製造例10の保護フィルムを得た。
(上塗り層形成用塗布液)
・アクリルポリマー(AS-563A、ダイセルファインケム(株)製、固形分27.5質量%):16.7部
・ノニオン系界面活性剤(ナロアクティーCL95、三洋化成工業(株)製、固形分100質量%):0.07部
・アニオン系界面活性剤(ラピゾールA-90、日油(株)製、固形分1質量%水希釈):11.44部
・カルナバワックス分散物(セロゾール524、中京油脂(株)製、固形分30質量%)0.7部
・カルボジイミド化合物(カルボジライトV-02-L2、日清紡(株)製、固形分10質量%水希釈):2.09部
・マット剤(スノーテックスXL、日産化学(株)製、固形分40質量%):0.28部
・水:69.0部 <Production Example 10>
In the coating step, the following coating liquid for forming an overcoat layer is further coated on the surface of the longitudinally stretched film opposite to the surface to which the coating liquid 1 for forming an undercoat layer is applied so that the thickness after film formation is 60 nm. Except for the application, a protective film of Production Example 10 was obtained in the same manner as in Production Example 1.
(Coating liquid for overcoat layer formation)
Acrylic polymer (AS-563A, manufactured by Daicel Finechem Co., Ltd., solid content: 27.5% by mass): 16.7 partsNonionic surfactant (Naroacty CL95, manufactured by Sanyo Chemical Industry Co., Ltd., solid content: 100) % By mass): 0.07 parts Anionic surfactant (Lapisol A-90, manufactured by NOF CORPORATION, solid content: 1% by mass in water): 11.44 parts Carnauba wax dispersion (Cerosol 524, Chukyo) 0.7 parts of a carbodiimide compound (Carbodilite V-02-L2, manufactured by Nisshinbo Industries, diluting with a solid content of 10% by weight in water): 2.09 parts Snowtex XL, manufactured by Nissan Chemical Co., Ltd., solid content: 40% by mass): 0.28 parts, water: 69.0 parts
<略語>
以下の実施例において、以下の略語はそれぞれ以下の化合物を表す。
ATHF:2-テトラヒドロフラニルアクリレート(合成品)
MMA:メチルメタクリレート(東京化成工業(株)製)
EA:エチルアクリレート(東京化成工業(株)製)
CHA:アクリル酸シクロヘキシル(東京化成工業(株)製)
PMPMA:メタクリル酸1,2,2,6,6-ペンタメチル-4-ピペリジル(東京化成工業(株)製)
PGMEA(プロピレングリコールモノメチルエーテルアセテート):(昭和電工(株)製)
V-601:ジメチル2,2’-アゾビス(2-メチルプロピオネート)(富士フイルム和光純薬工業(株)製) <Abbreviation>
In the following examples, the following abbreviations represent the following compounds, respectively.
ATHF: 2-tetrahydrofuranyl acrylate (synthetic product)
MMA: Methyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
EA: ethyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
CHA: cyclohexyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
PMPMA: 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
PGMEA (propylene glycol monomethyl ether acetate): (manufactured by Showa Denko KK)
V-601: dimethyl 2,2'-azobis (2-methylpropionate) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
以下の実施例において、以下の略語はそれぞれ以下の化合物を表す。
ATHF:2-テトラヒドロフラニルアクリレート(合成品)
MMA:メチルメタクリレート(東京化成工業(株)製)
EA:エチルアクリレート(東京化成工業(株)製)
CHA:アクリル酸シクロヘキシル(東京化成工業(株)製)
PMPMA:メタクリル酸1,2,2,6,6-ペンタメチル-4-ピペリジル(東京化成工業(株)製)
PGMEA(プロピレングリコールモノメチルエーテルアセテート):(昭和電工(株)製)
V-601:ジメチル2,2’-アゾビス(2-メチルプロピオネート)(富士フイルム和光純薬工業(株)製) <Abbreviation>
In the following examples, the following abbreviations represent the following compounds, respectively.
ATHF: 2-tetrahydrofuranyl acrylate (synthetic product)
MMA: Methyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
EA: ethyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
CHA: cyclohexyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
PMPMA: 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
PGMEA (propylene glycol monomethyl ether acetate): (manufactured by Showa Denko KK)
V-601: dimethyl 2,2'-azobis (2-methylpropionate) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
<実施例1>
[ATHFの合成]
3つ口フラスコにアクリル酸(72.1g、1.0mol)、ヘキサン(72.1g)を加え20℃に冷却した。カンファースルホン酸(7.0mg、0.03mmol)、2-ジヒドロフラン(77.9g、1.0mol)を滴下した後に、20℃±2℃で1.5時間撹拌した後、35℃まで昇温して2時間攪拌した。ヌッチェにキョーワード200(水酸化アルミニウム吸着剤、協和化学工業(株)製)、キョーワード1000(ハイドロタルサイト系吸着剤、協和化学工業(株)製)の順に敷き詰めた後、反応液をろ過することでろ過液を得た。得られたろ過液にヒドロキノンモノメチルエーテル(MEHQ、1.2mg)を加えた後、40℃で減圧濃縮することで、2-テトラヒドロフラニルアクリレート(ATHF)140.8gを無色油状物として得た(収率99.0%)。 <Example 1>
[Synthesis of ATHF]
Acrylic acid (72.1 g, 1.0 mol) and hexane (72.1 g) were added to a three-neck flask and cooled to 20 ° C. After dropwise addition of camphorsulfonic acid (7.0 mg, 0.03 mmol) and 2-dihydrofuran (77.9 g, 1.0 mol), the mixture was stirred at 20 ° C. ± 2 ° C. for 1.5 hours, and then heated to 35 ° C. And stirred for 2 hours. After spreading Kyoward 200 (aluminum hydroxide adsorbent, manufactured by Kyowa Chemical Industry Co., Ltd.) and Kyoward 1000 (hydrotalcite-based adsorbent, manufactured by Kyowa Chemical Industry Co., Ltd.) in order on Nutsche, the reaction solution was filtered. Then, a filtrate was obtained. Hydroquinone monomethyl ether (MEHQ, 1.2 mg) was added to the obtained filtrate, and the mixture was concentrated at 40 ° C. under reduced pressure to obtain 140.8 g of 2-tetrahydrofuranyl acrylate (ATHF) as a colorless oil. Rate 99.0%).
[ATHFの合成]
3つ口フラスコにアクリル酸(72.1g、1.0mol)、ヘキサン(72.1g)を加え20℃に冷却した。カンファースルホン酸(7.0mg、0.03mmol)、2-ジヒドロフラン(77.9g、1.0mol)を滴下した後に、20℃±2℃で1.5時間撹拌した後、35℃まで昇温して2時間攪拌した。ヌッチェにキョーワード200(水酸化アルミニウム吸着剤、協和化学工業(株)製)、キョーワード1000(ハイドロタルサイト系吸着剤、協和化学工業(株)製)の順に敷き詰めた後、反応液をろ過することでろ過液を得た。得られたろ過液にヒドロキノンモノメチルエーテル(MEHQ、1.2mg)を加えた後、40℃で減圧濃縮することで、2-テトラヒドロフラニルアクリレート(ATHF)140.8gを無色油状物として得た(収率99.0%)。 <Example 1>
[Synthesis of ATHF]
Acrylic acid (72.1 g, 1.0 mol) and hexane (72.1 g) were added to a three-neck flask and cooled to 20 ° C. After dropwise addition of camphorsulfonic acid (7.0 mg, 0.03 mmol) and 2-dihydrofuran (77.9 g, 1.0 mol), the mixture was stirred at 20 ° C. ± 2 ° C. for 1.5 hours, and then heated to 35 ° C. And stirred for 2 hours. After spreading Kyoward 200 (aluminum hydroxide adsorbent, manufactured by Kyowa Chemical Industry Co., Ltd.) and Kyoward 1000 (hydrotalcite-based adsorbent, manufactured by Kyowa Chemical Industry Co., Ltd.) in order on Nutsche, the reaction solution was filtered. Then, a filtrate was obtained. Hydroquinone monomethyl ether (MEHQ, 1.2 mg) was added to the obtained filtrate, and the mixture was concentrated at 40 ° C. under reduced pressure to obtain 140.8 g of 2-tetrahydrofuranyl acrylate (ATHF) as a colorless oil. Rate 99.0%).
[重合体A1の合成]
3つ口フラスコにPGMEA(75.0g)を入れ、窒素雰囲気下において90℃に昇温した。ATHF(29.0g)、CHA(5.0g)、EA(30.0g)、MMA(35.0g)、PMPMA(1.0g)、V-601(4.1g)、PGMEA(75.0g)を加えた溶液を、90℃±2℃に維持した3つ口フラスコ溶液中に2時間かけて滴下した。滴下終了後,90℃±2℃にて2時間撹拌することで、重合体A1(固形分濃度40.0%)を得た。 [Synthesis of Polymer A1]
PGMEA (75.0 g) was charged into a three-necked flask and heated to 90 ° C. under a nitrogen atmosphere. ATHF (29.0 g), CHA (5.0 g), EA (30.0 g), MMA (35.0 g), PMPMA (1.0 g), V-601 (4.1 g), PGMEA (75.0 g) Was added dropwise over 2 hours to a three-neck flask solution maintained at 90 ° C. ± 2 ° C. After completion of the dropwise addition, the mixture was stirred at 90 ° C. ± 2 ° C. for 2 hours to obtain a polymer A1 (solid content: 40.0%).
3つ口フラスコにPGMEA(75.0g)を入れ、窒素雰囲気下において90℃に昇温した。ATHF(29.0g)、CHA(5.0g)、EA(30.0g)、MMA(35.0g)、PMPMA(1.0g)、V-601(4.1g)、PGMEA(75.0g)を加えた溶液を、90℃±2℃に維持した3つ口フラスコ溶液中に2時間かけて滴下した。滴下終了後,90℃±2℃にて2時間撹拌することで、重合体A1(固形分濃度40.0%)を得た。 [Synthesis of Polymer A1]
PGMEA (75.0 g) was charged into a three-necked flask and heated to 90 ° C. under a nitrogen atmosphere. ATHF (29.0 g), CHA (5.0 g), EA (30.0 g), MMA (35.0 g), PMPMA (1.0 g), V-601 (4.1 g), PGMEA (75.0 g) Was added dropwise over 2 hours to a three-neck flask solution maintained at 90 ° C. ± 2 ° C. After completion of the dropwise addition, the mixture was stirred at 90 ° C. ± 2 ° C. for 2 hours to obtain a polymer A1 (solid content: 40.0%).
[感光性樹脂組成物1の調製]
以下の処方で感光性樹脂組成物1を調製した。
・重合体A1:93.9部
・光酸発生剤(下記B-1):2.0部
・界面活性剤(下記C-1):0.1部
・添加剤(下記D-1):0.2部
・PGMEA:900部 [Preparation of photosensitive resin composition 1]
Photosensitive resin composition 1 was prepared according to the following formulation.
-Polymer A1: 93.9 parts-Photoacid generator (B-1 below): 2.0 parts-Surfactant (C-1 below): 0.1 parts-Additive (D-1 below): 0.2 parts ・ PGMEA: 900 parts
以下の処方で感光性樹脂組成物1を調製した。
・重合体A1:93.9部
・光酸発生剤(下記B-1):2.0部
・界面活性剤(下記C-1):0.1部
・添加剤(下記D-1):0.2部
・PGMEA:900部 [Preparation of photosensitive resin composition 1]
Photosensitive resin composition 1 was prepared according to the following formulation.
-Polymer A1: 93.9 parts-Photoacid generator (B-1 below): 2.0 parts-Surfactant (C-1 below): 0.1 parts-Additive (D-1 below): 0.2 parts ・ PGMEA: 900 parts
[感光性転写材料の作製]
仮支持体となる厚さ25μmのポリエチレンテレフタレートフィルムの上に、感光性樹脂組成物1を、スリット状ノズルを用いて乾燥膜厚が3.0μmとなるように塗布した。100℃のコンベクションオーブンで2分間乾燥させた後、製造例1の保護フィルムの、下塗り層側を感光性樹脂組成物層に接触させて圧着し、感光性転写材料を作製した。得られた感光性転写材料を実施例1の感光性転写材料とした。 [Preparation of photosensitive transfer material]
The photosensitive resin composition 1 was applied on a 25 μm-thick polyethylene terephthalate film serving as a temporary support using a slit-shaped nozzle so that the dry film thickness became 3.0 μm. After drying for 2 minutes in a convection oven at 100 ° C., the undercoat layer side of the protective film of Production Example 1 was brought into contact with the photosensitive resin composition layer and pressure-bonded to produce a photosensitive transfer material. The obtained photosensitive transfer material was used as the photosensitive transfer material of Example 1.
仮支持体となる厚さ25μmのポリエチレンテレフタレートフィルムの上に、感光性樹脂組成物1を、スリット状ノズルを用いて乾燥膜厚が3.0μmとなるように塗布した。100℃のコンベクションオーブンで2分間乾燥させた後、製造例1の保護フィルムの、下塗り層側を感光性樹脂組成物層に接触させて圧着し、感光性転写材料を作製した。得られた感光性転写材料を実施例1の感光性転写材料とした。 [Preparation of photosensitive transfer material]
The photosensitive resin composition 1 was applied on a 25 μm-thick polyethylene terephthalate film serving as a temporary support using a slit-shaped nozzle so that the dry film thickness became 3.0 μm. After drying for 2 minutes in a convection oven at 100 ° C., the undercoat layer side of the protective film of Production Example 1 was brought into contact with the photosensitive resin composition layer and pressure-bonded to produce a photosensitive transfer material. The obtained photosensitive transfer material was used as the photosensitive transfer material of Example 1.
<実施例2~4、7~11>
保護フィルムを表2の記載にしたがって変更した点以外は、実施例1と同様にして実施例2~4、7~11の感光性転写材料を作製した。 <Examples 2 to 4, 7 to 11>
The photosensitive transfer materials of Examples 2 to 4 and 7 to 11 were produced in the same manner as in Example 1 except that the protective film was changed as described in Table 2.
保護フィルムを表2の記載にしたがって変更した点以外は、実施例1と同様にして実施例2~4、7~11の感光性転写材料を作製した。 <Examples 2 to 4, 7 to 11>
The photosensitive transfer materials of Examples 2 to 4 and 7 to 11 were produced in the same manner as in Example 1 except that the protective film was changed as described in Table 2.
<実施例5>
[中間層用組成物1の調製]
以下の処方で中間層用組成物1を調製した。
・蒸留水:137.0部
・メタノール:319.0部
・NISSO HPC-SSL(日本曹達(株)製):20.6部
・スノーテックスO(日産化学工業(株)製):68.5部 <Example 5>
[Preparation of Composition 1 for Intermediate Layer]
Composition 1 for an intermediate layer was prepared according to the following formulation.
-Distilled water: 137.0 parts-Methanol: 319.0 parts-NISSO HPC-SSL (manufactured by Nippon Soda Co., Ltd.): 20.6 parts-Snowtex O (manufactured by Nissan Chemical Industries, Ltd.): 68.5 Department
[中間層用組成物1の調製]
以下の処方で中間層用組成物1を調製した。
・蒸留水:137.0部
・メタノール:319.0部
・NISSO HPC-SSL(日本曹達(株)製):20.6部
・スノーテックスO(日産化学工業(株)製):68.5部 <Example 5>
[Preparation of Composition 1 for Intermediate Layer]
Composition 1 for an intermediate layer was prepared according to the following formulation.
-Distilled water: 137.0 parts-Methanol: 319.0 parts-NISSO HPC-SSL (manufactured by Nippon Soda Co., Ltd.): 20.6 parts-Snowtex O (manufactured by Nissan Chemical Industries, Ltd.): 68.5 Department
[感光性転写材料の作製]
仮支持体となる厚さ25μmのポリエチレンテレフタレートフィルムの上に、中間層用組成物1を乾燥膜厚2.0μmとなるようにスリットコートし、次いで、100℃のコンベクションオーブンで2分間乾燥させることで、中間層となる水溶性樹脂層を形成した。次に感光性樹脂組成物1を、この水溶性樹脂層上に、スリット状ノズルを用いて乾燥膜厚が3.0μmとなるように塗布した。100℃のコンベクションオーブンで2分間乾燥させた後、製造例3の保護フィルムを圧着して感光性転写材料を作製した。得られた感光性転写材料を、実施例5の感光性転写材料とした。 [Preparation of photosensitive transfer material]
The composition 1 for an intermediate layer is slit-coated on a 25 μm-thick polyethylene terephthalate film serving as a temporary support so as to have a dry film thickness of 2.0 μm, and then dried in a convection oven at 100 ° C. for 2 minutes. Thus, a water-soluble resin layer serving as an intermediate layer was formed. Next, the photosensitive resin composition 1 was applied onto the water-soluble resin layer using a slit-shaped nozzle so that the dry film thickness became 3.0 μm. After drying in a convection oven at 100 ° C. for 2 minutes, the protective film of Production Example 3 was pressed to produce a photosensitive transfer material. The obtained photosensitive transfer material was used as the photosensitive transfer material of Example 5.
仮支持体となる厚さ25μmのポリエチレンテレフタレートフィルムの上に、中間層用組成物1を乾燥膜厚2.0μmとなるようにスリットコートし、次いで、100℃のコンベクションオーブンで2分間乾燥させることで、中間層となる水溶性樹脂層を形成した。次に感光性樹脂組成物1を、この水溶性樹脂層上に、スリット状ノズルを用いて乾燥膜厚が3.0μmとなるように塗布した。100℃のコンベクションオーブンで2分間乾燥させた後、製造例3の保護フィルムを圧着して感光性転写材料を作製した。得られた感光性転写材料を、実施例5の感光性転写材料とした。 [Preparation of photosensitive transfer material]
The composition 1 for an intermediate layer is slit-coated on a 25 μm-thick polyethylene terephthalate film serving as a temporary support so as to have a dry film thickness of 2.0 μm, and then dried in a convection oven at 100 ° C. for 2 minutes. Thus, a water-soluble resin layer serving as an intermediate layer was formed. Next, the photosensitive resin composition 1 was applied onto the water-soluble resin layer using a slit-shaped nozzle so that the dry film thickness became 3.0 μm. After drying in a convection oven at 100 ° C. for 2 minutes, the protective film of Production Example 3 was pressed to produce a photosensitive transfer material. The obtained photosensitive transfer material was used as the photosensitive transfer material of Example 5.
<実施例6>
感光性樹脂組成物1の代わりに下記感光性樹脂組成物2を使用した点以外は、実施例3と同様にして実施例6の感光性転写材料を作製した。 <Example 6>
A photosensitive transfer material of Example 6 was produced in the same manner as in Example 3, except that the following photosensitive resin composition 2 was used instead of the photosensitive resin composition 1.
感光性樹脂組成物1の代わりに下記感光性樹脂組成物2を使用した点以外は、実施例3と同様にして実施例6の感光性転写材料を作製した。 <Example 6>
A photosensitive transfer material of Example 6 was produced in the same manner as in Example 3, except that the following photosensitive resin composition 2 was used instead of the photosensitive resin composition 1.
[感光性樹脂組成物2の調製]
以下の処方で感光性樹脂組成物2を調製した。
・ノボラック樹脂(メタクレゾール:パラクレゾール=30:70、分子量5,500):79.9部
・感光剤:特開平4-22955号公報の第4頁に記載のナフトキノンジアジド化合物(1):20.0部
・界面活性剤(下記C-1):0.1部
・PGMEA:900部 [Preparation of photosensitive resin composition 2]
Photosensitive resin composition 2 was prepared according to the following formulation.
-Novolak resin (meta-cresol: para-cresol = 30:70, molecular weight 5,500): 79.9 parts-Photosensitizer: naphthoquinonediazide compound (1): 20 described on page 4 of JP-A-4-22955 0.0 part ・ Surfactant (C-1 below): 0.1 part ・ PGMEA: 900 parts
以下の処方で感光性樹脂組成物2を調製した。
・ノボラック樹脂(メタクレゾール:パラクレゾール=30:70、分子量5,500):79.9部
・感光剤:特開平4-22955号公報の第4頁に記載のナフトキノンジアジド化合物(1):20.0部
・界面活性剤(下記C-1):0.1部
・PGMEA:900部 [Preparation of photosensitive resin composition 2]
Photosensitive resin composition 2 was prepared according to the following formulation.
-Novolak resin (meta-cresol: para-cresol = 30:70, molecular weight 5,500): 79.9 parts-Photosensitizer: naphthoquinonediazide compound (1): 20 described on page 4 of JP-A-4-22955 0.0 part ・ Surfactant (C-1 below): 0.1 part ・ PGMEA: 900 parts
<比較例1>
製造例1の保護フィルムの代わりに製造例8のフィルムを用いた点以外は、実施例1と同様にして比較例1の感光性転写材料を得た。 <Comparative Example 1>
A photosensitive transfer material of Comparative Example 1 was obtained in the same manner as in Example 1, except that the film of Production Example 8 was used instead of the protective film of Production Example 1.
製造例1の保護フィルムの代わりに製造例8のフィルムを用いた点以外は、実施例1と同様にして比較例1の感光性転写材料を得た。 <Comparative Example 1>
A photosensitive transfer material of Comparative Example 1 was obtained in the same manner as in Example 1, except that the film of Production Example 8 was used instead of the protective film of Production Example 1.
<比較例2>
製造例1の保護フィルムの代わりに製造例9のフィルムを用いた点以外は、実施例1と同様にして比較例2の感光性転写材料を得た。 <Comparative Example 2>
A photosensitive transfer material of Comparative Example 2 was obtained in the same manner as in Example 1, except that the film of Production Example 9 was used instead of the protective film of Production Example 1.
製造例1の保護フィルムの代わりに製造例9のフィルムを用いた点以外は、実施例1と同様にして比較例2の感光性転写材料を得た。 <Comparative Example 2>
A photosensitive transfer material of Comparative Example 2 was obtained in the same manner as in Example 1, except that the film of Production Example 9 was used instead of the protective film of Production Example 1.
<比較例3>
製造例1の保護フィルムの代わりに下記フィルム2を用いた点以外は、実施例1と同様にして比較例3の感光性転写材料を得た。 <Comparative Example 3>
A photosensitive transfer material of Comparative Example 3 was obtained in the same manner as in Example 1, except that the following film 2 was used instead of the protective film of Production Example 1.
製造例1の保護フィルムの代わりに下記フィルム2を用いた点以外は、実施例1と同様にして比較例3の感光性転写材料を得た。 <Comparative Example 3>
A photosensitive transfer material of Comparative Example 3 was obtained in the same manner as in Example 1, except that the following film 2 was used instead of the protective film of Production Example 1.
<水接触角の測定>
下記の剥離条件にて実施例1~11及び比較例1~3の各感光性転写材料から保護フィルムを剥離することによって露出した剥離面を測定面として水接触角を測定した。具体的には、接触角計(協和界面科学社製、DROPMASTER-501)を用い、25℃の温度条件下で、測定面に精製水2μLを着滴してから7秒後の接触角を液滴法にて測定した。測定結果を表2に示す。 <Measurement of water contact angle>
The water contact angle was measured using the peeled surface exposed by peeling the protective film from each of the photosensitive transfer materials of Examples 1 to 11 and Comparative Examples 1 to 3 under the following peeling conditions as a measurement surface. Specifically, using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., DROPMASTER-501), the contact angle 7 seconds after dropping 2 μL of purified water on the measurement surface at a temperature of 25 ° C. was measured. It was measured by the drop method. Table 2 shows the measurement results.
下記の剥離条件にて実施例1~11及び比較例1~3の各感光性転写材料から保護フィルムを剥離することによって露出した剥離面を測定面として水接触角を測定した。具体的には、接触角計(協和界面科学社製、DROPMASTER-501)を用い、25℃の温度条件下で、測定面に精製水2μLを着滴してから7秒後の接触角を液滴法にて測定した。測定結果を表2に示す。 <Measurement of water contact angle>
The water contact angle was measured using the peeled surface exposed by peeling the protective film from each of the photosensitive transfer materials of Examples 1 to 11 and Comparative Examples 1 to 3 under the following peeling conditions as a measurement surface. Specifically, using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., DROPMASTER-501), the contact angle 7 seconds after dropping 2 μL of purified water on the measurement surface at a temperature of 25 ° C. was measured. It was measured by the drop method. Table 2 shows the measurement results.
[剥離条件]
感光性転写材料を、幅4.5cm×長さ9cmに切り抜き、仮支持体側の面をガラス板上に両面粘着テープで貼り合わせた。貼り合わされた感光性転写材料に、幅4.5cm×長さ15cmに切りぬいた粘着テープを、粘着テープの幅方向と感光性転写材料の幅方向を合わせ、幅方向には粘着テープがはみ出さず、長さ方向に前後3cmずつ粘着テープがはみ出すように貼り合せた。テープの一方の端部を把持し、引張試験機を用いて500mm/minの剥離速度で180°剥離を行った。ここで、粘着テープ及び両面粘着テープは、JIS Z 0109:2015に記載のものを使用し、引張試験機は、JIS B 7721:2009に規定する引張試験機(試験機の等級1:相対指示誤差±1.0%)又はこれと同等の引張試験機を使用した。 [Peeling conditions]
The photosensitive transfer material was cut out to 4.5 cm wide by 9 cm long, and the surface on the temporary support side was bonded to a glass plate with a double-sided adhesive tape. An adhesive tape cut to 4.5 cm wide and 15 cm long is attached to the pasted photosensitive transfer material, the width direction of the adhesive tape is aligned with the width direction of the photosensitive transfer material, and the adhesive tape protrudes in the width direction. Instead, the pieces were bonded so that the adhesive tape protruded by 3 cm before and after the length direction. One end of the tape was gripped, and 180 ° peeling was performed at a peeling speed of 500 mm / min using a tensile tester. Here, the pressure-sensitive adhesive tape and the double-sided pressure-sensitive adhesive tape used are those described in JIS Z 0109: 2015, and the tensile tester is a tensile tester (tester grade 1: relative indication error) specified in JIS B 7721: 2009. ± 1.0%) or equivalent tensile tester.
感光性転写材料を、幅4.5cm×長さ9cmに切り抜き、仮支持体側の面をガラス板上に両面粘着テープで貼り合わせた。貼り合わされた感光性転写材料に、幅4.5cm×長さ15cmに切りぬいた粘着テープを、粘着テープの幅方向と感光性転写材料の幅方向を合わせ、幅方向には粘着テープがはみ出さず、長さ方向に前後3cmずつ粘着テープがはみ出すように貼り合せた。テープの一方の端部を把持し、引張試験機を用いて500mm/minの剥離速度で180°剥離を行った。ここで、粘着テープ及び両面粘着テープは、JIS Z 0109:2015に記載のものを使用し、引張試験機は、JIS B 7721:2009に規定する引張試験機(試験機の等級1:相対指示誤差±1.0%)又はこれと同等の引張試験機を使用した。 [Peeling conditions]
The photosensitive transfer material was cut out to 4.5 cm wide by 9 cm long, and the surface on the temporary support side was bonded to a glass plate with a double-sided adhesive tape. An adhesive tape cut to 4.5 cm wide and 15 cm long is attached to the pasted photosensitive transfer material, the width direction of the adhesive tape is aligned with the width direction of the photosensitive transfer material, and the adhesive tape protrudes in the width direction. Instead, the pieces were bonded so that the adhesive tape protruded by 3 cm before and after the length direction. One end of the tape was gripped, and 180 ° peeling was performed at a peeling speed of 500 mm / min using a tensile tester. Here, the pressure-sensitive adhesive tape and the double-sided pressure-sensitive adhesive tape used are those described in JIS Z 0109: 2015, and the tensile tester is a tensile tester (tester grade 1: relative indication error) specified in JIS B 7721: 2009. ± 1.0%) or equivalent tensile tester.
<表面粗さRaの測定>
上記の剥離条件にて実施例1~11及び比較例1~3の各感光性転写材料から保護フィルムを剥離することによって露出した剥離面について、3次元光学プロファイラー(New View7300、Zygo社製)を用いて、以下の条件にて、保護フィルムの表面プロファイルを得た。なお、測定・解析ソフトにはMetroPro ver8.3.2のMicroscope Applicationを用いる。次に、上記解析ソフト(MetroPro ver8.3.2-Microscope Application)にてSurface Map画面を表示し、Surface Map画面中でヒストグラムデータを得る。得られたヒストグラムデータから、算術平均粗さを算出し、Ra値とした。測定結果を表2に示す。
[測定条件]
対物レンズ:50倍
Zoom:0.5倍
測定領域:1.00mm×1.00mm
[解析条件]
Removed:plane
Filter:off
FilterType:average
Remove spikes:on
Spike Height(xRMS):7.5 <Measurement of surface roughness Ra>
A three-dimensional optical profiler (New View 7300, manufactured by Zygo) was used for the peeled surface exposed by peeling the protective film from each of the photosensitive transfer materials of Examples 1 to 11 and Comparative Examples 1 to 3 under the above peel conditions. The surface profile of the protective film was obtained under the following conditions. The measurement and analysis software uses MicroScope Application 8.3.2. Next, a Surface Map screen is displayed by the analysis software (MetroPro 8.3.2-Microscope Application), and histogram data is obtained in the Surface Map screen. The arithmetic average roughness was calculated from the obtained histogram data, and was defined as an Ra value. Table 2 shows the measurement results.
[Measurement condition]
Objective lens: 50 × Zoom: 0.5 × Measurement area: 1.00 mm × 1.00 mm
[Analysis conditions]
Removed: plane
Filter: off
FilterType: average
Remove spikes: on
Spike Height (xRMS): 7.5
上記の剥離条件にて実施例1~11及び比較例1~3の各感光性転写材料から保護フィルムを剥離することによって露出した剥離面について、3次元光学プロファイラー(New View7300、Zygo社製)を用いて、以下の条件にて、保護フィルムの表面プロファイルを得た。なお、測定・解析ソフトにはMetroPro ver8.3.2のMicroscope Applicationを用いる。次に、上記解析ソフト(MetroPro ver8.3.2-Microscope Application)にてSurface Map画面を表示し、Surface Map画面中でヒストグラムデータを得る。得られたヒストグラムデータから、算術平均粗さを算出し、Ra値とした。測定結果を表2に示す。
[測定条件]
対物レンズ:50倍
Zoom:0.5倍
測定領域:1.00mm×1.00mm
[解析条件]
Removed:plane
Filter:off
FilterType:average
Remove spikes:on
Spike Height(xRMS):7.5 <Measurement of surface roughness Ra>
A three-dimensional optical profiler (New View 7300, manufactured by Zygo) was used for the peeled surface exposed by peeling the protective film from each of the photosensitive transfer materials of Examples 1 to 11 and Comparative Examples 1 to 3 under the above peel conditions. The surface profile of the protective film was obtained under the following conditions. The measurement and analysis software uses MicroScope Application 8.3.2. Next, a Surface Map screen is displayed by the analysis software (MetroPro 8.3.2-Microscope Application), and histogram data is obtained in the Surface Map screen. The arithmetic average roughness was calculated from the obtained histogram data, and was defined as an Ra value. Table 2 shows the measurement results.
[Measurement condition]
Objective lens: 50 × Zoom: 0.5 × Measurement area: 1.00 mm × 1.00 mm
[Analysis conditions]
Removed: plane
Filter: off
FilterType: average
Remove spikes: on
Spike Height (xRMS): 7.5
<保護フィルムの剥離性評価>
実施例1~11及び比較例1~3の各感光性転写材料を、温度23℃、相対湿度55%にて2ヶ月間保管した後、上記剥離条件にて、保護フィルムを剥離した。下記基準に従って、保護フィルムの剥離性について評価した。評価結果を表2に示す。なお、2が実用範囲である。 <Evaluation of peelability of protective film>
After the photosensitive transfer materials of Examples 1 to 11 and Comparative Examples 1 to 3 were stored at a temperature of 23 ° C. and a relative humidity of 55% for 2 months, the protective film was peeled off under the above peeling conditions. The peelability of the protective film was evaluated according to the following criteria. Table 2 shows the evaluation results. In addition, 2 is a practical range.
実施例1~11及び比較例1~3の各感光性転写材料を、温度23℃、相対湿度55%にて2ヶ月間保管した後、上記剥離条件にて、保護フィルムを剥離した。下記基準に従って、保護フィルムの剥離性について評価した。評価結果を表2に示す。なお、2が実用範囲である。 <Evaluation of peelability of protective film>
After the photosensitive transfer materials of Examples 1 to 11 and Comparative Examples 1 to 3 were stored at a temperature of 23 ° C. and a relative humidity of 55% for 2 months, the protective film was peeled off under the above peeling conditions. The peelability of the protective film was evaluated according to the following criteria. Table 2 shows the evaluation results. In addition, 2 is a practical range.
[基準]
2:保護フィルムのみが剥離できる
1:剥離した保護フィルムにポジ型感光性樹脂層が付着する。 [Standard]
2: Only the protective film can be peeled off 1: The positive photosensitive resin layer adheres to the peeled protective film.
2:保護フィルムのみが剥離できる
1:剥離した保護フィルムにポジ型感光性樹脂層が付着する。 [Standard]
2: Only the protective film can be peeled off 1: The positive photosensitive resin layer adheres to the peeled protective film.
<パターン形状評価>
パターン形状評価においては、厚さ188μmのPETフィルム上に厚さ500nmでスパッタ法にて銅層を作製した銅層付きポリエチレンテレフタレート(PET)基板(以下、「銅層付きPET基板」ということがある。)を使用した。
実施例1~11及び比較例1~3の各感光性転写材料を、温度23℃、相対湿度55%にて2ヶ月間保管した後、各感光性転写材料の保護フィルムを剥離し、上記銅層付きPET基板上に、100℃、2m/min、0.6MPaの条件でラミネートし、銅層上にポジ型レジスト層が積層した積層体を作製した。
この積層体に対し、仮支持体を剥離せずに、線幅10μmのラインアンドスペース配線パターン(開口部:遮光部の幅比は1:1)を設けたフォトマスクを用いてコンタクトパターン露光を行った。露光にはi線(365nm)を露光主波長とする高圧水銀灯を用いた。
露光後に5時間引き置いた後、仮支持体を剥離して現像した。現像は、28℃の1.0%炭酸ナトリウム水溶液を用い、シャワー現像で40秒行った。上記方法にて10μmのラインアンドスペースパターンを形成し、ライン幅とスペース幅の比が1:1になる露光量を求め、その露光量で試料をパターン形成した。このパターンの形態をSEM(Scanning Electron Microscope、倍率20000倍)で観察し、パターンの形状を下記基準で評価した。評価結果を表2に示す。なお、2以上が実用可能レベルである。
[基準]
3:アンダーカットのないテーパー形状である。
2:部分的にアンダーカットが存在する、又はパターンが欠けている部分がある。
1:パターンが残存していない部分がある。 <Pattern shape evaluation>
In the pattern shape evaluation, a polyethylene terephthalate (PET) substrate with a copper layer (hereinafter, referred to as a “PET substrate with a copper layer”) in which a copper layer was formed on a 188 μm-thick PET film with a thickness of 500 nm by a sputtering method. .)It was used.
After storing the photosensitive transfer materials of Examples 1 to 11 and Comparative Examples 1 to 3 at a temperature of 23 ° C. and a relative humidity of 55% for 2 months, the protective film of each photosensitive transfer material was peeled off and the copper Lamination was performed on a layered PET substrate under the conditions of 100 ° C., 2 m / min, and 0.6 MPa to produce a laminate in which a positive resist layer was laminated on a copper layer.
The laminated body was exposed to a contact pattern using a photomask provided with a line and space wiring pattern having a line width of 10 μm (the width ratio of the opening portion to the light shielding portion was 1: 1) without peeling the temporary support. went. For exposure, a high-pressure mercury lamp using i-ray (365 nm) as a main exposure wavelength was used.
After leaving for 5 hours after exposure, the temporary support was peeled off and developed. The development was performed by using a 1.0% aqueous sodium carbonate solution at 28 ° C. for 40 seconds by shower development. A 10 μm line-and-space pattern was formed by the above method, an exposure amount at which the ratio of the line width to the space width was 1: 1 was obtained, and a pattern was formed on the sample with the exposure amount. The form of this pattern was observed by SEM (Scanning Electron Microscope, 20,000 times magnification), and the form of the pattern was evaluated based on the following criteria. Table 2 shows the evaluation results. In addition, 2 or more is a practicable level.
[Standard]
3: Tapered shape without undercut.
2: There is a part where an undercut exists or a part where a pattern is missing.
1: There is a portion where no pattern remains.
パターン形状評価においては、厚さ188μmのPETフィルム上に厚さ500nmでスパッタ法にて銅層を作製した銅層付きポリエチレンテレフタレート(PET)基板(以下、「銅層付きPET基板」ということがある。)を使用した。
実施例1~11及び比較例1~3の各感光性転写材料を、温度23℃、相対湿度55%にて2ヶ月間保管した後、各感光性転写材料の保護フィルムを剥離し、上記銅層付きPET基板上に、100℃、2m/min、0.6MPaの条件でラミネートし、銅層上にポジ型レジスト層が積層した積層体を作製した。
この積層体に対し、仮支持体を剥離せずに、線幅10μmのラインアンドスペース配線パターン(開口部:遮光部の幅比は1:1)を設けたフォトマスクを用いてコンタクトパターン露光を行った。露光にはi線(365nm)を露光主波長とする高圧水銀灯を用いた。
露光後に5時間引き置いた後、仮支持体を剥離して現像した。現像は、28℃の1.0%炭酸ナトリウム水溶液を用い、シャワー現像で40秒行った。上記方法にて10μmのラインアンドスペースパターンを形成し、ライン幅とスペース幅の比が1:1になる露光量を求め、その露光量で試料をパターン形成した。このパターンの形態をSEM(Scanning Electron Microscope、倍率20000倍)で観察し、パターンの形状を下記基準で評価した。評価結果を表2に示す。なお、2以上が実用可能レベルである。
[基準]
3:アンダーカットのないテーパー形状である。
2:部分的にアンダーカットが存在する、又はパターンが欠けている部分がある。
1:パターンが残存していない部分がある。 <Pattern shape evaluation>
In the pattern shape evaluation, a polyethylene terephthalate (PET) substrate with a copper layer (hereinafter, referred to as a “PET substrate with a copper layer”) in which a copper layer was formed on a 188 μm-thick PET film with a thickness of 500 nm by a sputtering method. .)It was used.
After storing the photosensitive transfer materials of Examples 1 to 11 and Comparative Examples 1 to 3 at a temperature of 23 ° C. and a relative humidity of 55% for 2 months, the protective film of each photosensitive transfer material was peeled off and the copper Lamination was performed on a layered PET substrate under the conditions of 100 ° C., 2 m / min, and 0.6 MPa to produce a laminate in which a positive resist layer was laminated on a copper layer.
The laminated body was exposed to a contact pattern using a photomask provided with a line and space wiring pattern having a line width of 10 μm (the width ratio of the opening portion to the light shielding portion was 1: 1) without peeling the temporary support. went. For exposure, a high-pressure mercury lamp using i-ray (365 nm) as a main exposure wavelength was used.
After leaving for 5 hours after exposure, the temporary support was peeled off and developed. The development was performed by using a 1.0% aqueous sodium carbonate solution at 28 ° C. for 40 seconds by shower development. A 10 μm line-and-space pattern was formed by the above method, an exposure amount at which the ratio of the line width to the space width was 1: 1 was obtained, and a pattern was formed on the sample with the exposure amount. The form of this pattern was observed by SEM (Scanning Electron Microscope, 20,000 times magnification), and the form of the pattern was evaluated based on the following criteria. Table 2 shows the evaluation results. In addition, 2 or more is a practicable level.
[Standard]
3: Tapered shape without undercut.
2: There is a part where an undercut exists or a part where a pattern is missing.
1: There is a portion where no pattern remains.
表2より、実施例1~11の感光性転写材料はカバーの剥離性が良好であり、また、これらの感光性転写材料を用いて作製したパターンは、パターン故障が低減され、パターン形状に優れることがわかった。実施例3の感光性転写材料は、実施例1~2の感光性転写材料と比較して、酸変性ポリオレフィンに含まれる酸基がナトリウム塩になっているので、アンダーカットのない良好なパターンが得られた。
As can be seen from Table 2, the photosensitive transfer materials of Examples 1 to 11 have good cover releasability, and the patterns manufactured using these photosensitive transfer materials have reduced pattern failure and excellent pattern shape. I understand. Compared with the photosensitive transfer materials of Examples 1 and 2, the photosensitive transfer material of Example 3 has a good pattern without undercut since the acid group contained in the acid-modified polyolefin is a sodium salt. Obtained.
一方、比較例1~2の感光性転写材料は、23℃、55%(相対湿度)で2ヶ月保管すると保護フィルムが正常に剥離できなくなり、感光性転写材料としての使用が困難であった。また、比較例3の感光性転写材料は、パターンが残存していない部分があり、実用できるレベルではなかった。
On the other hand, when the photosensitive transfer materials of Comparative Examples 1 and 2 were stored at 23 ° C. and 55% (relative humidity) for 2 months, the protective film could not be peeled off normally, and it was difficult to use them as photosensitive transfer materials. Further, the photosensitive transfer material of Comparative Example 3 had a portion where no pattern remained, and was not at a practical level.
<光酸発生剤>
B-1:下記に示す構造の化合物(特開2013-047765号公報の段落0227に記載の化合物であり、段落0204に記載の方法に従って合成した。) <Photoacid generator>
B-1: Compound having the structure shown below (the compound described in paragraph 0227 of JP-A-2013-047765, which was synthesized according to the method described in paragraph 0204).
B-1:下記に示す構造の化合物(特開2013-047765号公報の段落0227に記載の化合物であり、段落0204に記載の方法に従って合成した。) <Photoacid generator>
B-1: Compound having the structure shown below (the compound described in paragraph 0227 of JP-A-2013-047765, which was synthesized according to the method described in paragraph 0204).
<界面活性剤>
C-1:メガファックF552(DIC(株)製) <Surfactant>
C-1: Megafac F552 (manufactured by DIC Corporation)
C-1:メガファックF552(DIC(株)製) <Surfactant>
C-1: Megafac F552 (manufactured by DIC Corporation)
<添加剤>
D-1:下記に示す構造の化合物 <Additives>
D-1: Compound having the structure shown below
D-1:下記に示す構造の化合物 <Additives>
D-1: Compound having the structure shown below
<保護フィルム>
フィルム1:ポリプロピレンフィルム トレファン 25KW37(東レ(株)製)
フィルム2:ポリプロピレンフィルム アルファン E-501(王子エフテックス(株)製) <Protective film>
Film 1: Polypropylene film Torayfan 25KW37 (manufactured by Toray Industries, Inc.)
Film 2: Polypropylene film Alphan E-501 (manufactured by Oji F-Tex Corporation)
フィルム1:ポリプロピレンフィルム トレファン 25KW37(東レ(株)製)
フィルム2:ポリプロピレンフィルム アルファン E-501(王子エフテックス(株)製) <Protective film>
Film 1: Polypropylene film Torayfan 25KW37 (manufactured by Toray Industries, Inc.)
Film 2: Polypropylene film Alphan E-501 (manufactured by Oji F-Tex Corporation)
<実施例101>
100μm厚PET基材上に、第2層の導電層としてITOをスパッタリングで150nm厚にて成膜し、その上に第1層の導電層として銅を真空蒸着法で200nm厚にて成膜して、回路形成基板とした。
銅層上に実施例1で得た感光性転写材料1をラミネートした(ロール温度120℃、線圧0.8MPa、線速度1.0m/min.)。仮支持体を剥離せずに一方向に導電層パッドが連結された構成を持つ図3に示すパターンAを設けたフォトマスクを用いてコンタクトパターン露光した。図3に示されるパターンAにおいて、実線部SL及びグレー部Gは遮光部であり、点線部DLはアライメント合わせの枠を仮想的に示したものである。その後仮支持体を剥離し、現像、水洗を行ってパターンAを得た。次いで銅エッチング液(関東化学(株)製Cu-02)を用いて銅層をエッチングした後、ITOエッチング液(関東化学(株)製ITO-02)を用いてITO層をエッチングすることで、銅とITOとが共にパターンAで描画された基板を得た。
次いで、アライメントを合わせた状態で図4に示すパターンBの開口部を設けたフォトマスクを用いてパターン露光し、現像、水洗を行った。図4に示されるパターンBにおいて、グレー部Gは遮光部であり、点線部DLはアライメント合わせの枠を仮想的に示したものである。
その後、Cu-02を用いて銅層をエッチングし、残った感光性樹脂層を、超高圧水銀灯により全面露光(300mJ/cm2)し、露光後に10秒間引き置いた後、除去液(Henkel(株)製BONDERITE C-AK P123)を用いて除去し、回路配線を得た。
得られた回路配線を、顕微鏡で観察したところ、剥がれ及び欠けは無く、きれいなパターンであった。 <Example 101>
On a PET substrate having a thickness of 100 μm, ITO was formed as a second conductive layer by sputtering to a thickness of 150 nm, and copper was formed thereon as a first conductive layer to a thickness of 200 nm by vacuum evaporation. Thus, a circuit forming substrate was obtained.
The photosensitive transfer material 1 obtained in Example 1 was laminated on the copper layer (roll temperature: 120 ° C., linear pressure: 0.8 MPa, linear velocity: 1.0 m / min.). Contact pattern exposure was performed using a photomask provided with a pattern A shown in FIG. 3 having a configuration in which conductive layer pads were connected in one direction without removing the temporary support. In the pattern A shown in FIG. 3, a solid line portion SL and a gray portion G are light shielding portions, and a dotted line portion DL is a virtual frame for alignment. Thereafter, the temporary support was peeled off, developed and washed with water to obtain a pattern A. Next, after etching the copper layer using a copper etching solution (Cu-02 manufactured by Kanto Chemical Co., Ltd.), the ITO layer is etched using an ITO etching solution (ITO-02 manufactured by Kanto Chemical Co., Ltd.) A substrate on which both copper and ITO were drawn in pattern A was obtained.
Next, pattern exposure was performed using a photomask provided with an opening of pattern B shown in FIG. 4 in an aligned state, and development and washing were performed. In the pattern B shown in FIG. 4, a gray portion G is a light-shielding portion, and a dotted line portion DL virtually shows a frame for alignment.
Thereafter, the copper layer was etched using Cu-02, and the entire surface of the remaining photosensitive resin layer was exposed to light (300 mJ / cm 2 ) using an ultra-high pressure mercury lamp. It was removed using BONDERITE C-AK P123 (manufactured by Co., Ltd.) to obtain a circuit wiring.
Observation of the obtained circuit wiring with a microscope revealed no peeling or chipping and a beautiful pattern.
100μm厚PET基材上に、第2層の導電層としてITOをスパッタリングで150nm厚にて成膜し、その上に第1層の導電層として銅を真空蒸着法で200nm厚にて成膜して、回路形成基板とした。
銅層上に実施例1で得た感光性転写材料1をラミネートした(ロール温度120℃、線圧0.8MPa、線速度1.0m/min.)。仮支持体を剥離せずに一方向に導電層パッドが連結された構成を持つ図3に示すパターンAを設けたフォトマスクを用いてコンタクトパターン露光した。図3に示されるパターンAにおいて、実線部SL及びグレー部Gは遮光部であり、点線部DLはアライメント合わせの枠を仮想的に示したものである。その後仮支持体を剥離し、現像、水洗を行ってパターンAを得た。次いで銅エッチング液(関東化学(株)製Cu-02)を用いて銅層をエッチングした後、ITOエッチング液(関東化学(株)製ITO-02)を用いてITO層をエッチングすることで、銅とITOとが共にパターンAで描画された基板を得た。
次いで、アライメントを合わせた状態で図4に示すパターンBの開口部を設けたフォトマスクを用いてパターン露光し、現像、水洗を行った。図4に示されるパターンBにおいて、グレー部Gは遮光部であり、点線部DLはアライメント合わせの枠を仮想的に示したものである。
その後、Cu-02を用いて銅層をエッチングし、残った感光性樹脂層を、超高圧水銀灯により全面露光(300mJ/cm2)し、露光後に10秒間引き置いた後、除去液(Henkel(株)製BONDERITE C-AK P123)を用いて除去し、回路配線を得た。
得られた回路配線を、顕微鏡で観察したところ、剥がれ及び欠けは無く、きれいなパターンであった。 <Example 101>
On a PET substrate having a thickness of 100 μm, ITO was formed as a second conductive layer by sputtering to a thickness of 150 nm, and copper was formed thereon as a first conductive layer to a thickness of 200 nm by vacuum evaporation. Thus, a circuit forming substrate was obtained.
The photosensitive transfer material 1 obtained in Example 1 was laminated on the copper layer (roll temperature: 120 ° C., linear pressure: 0.8 MPa, linear velocity: 1.0 m / min.). Contact pattern exposure was performed using a photomask provided with a pattern A shown in FIG. 3 having a configuration in which conductive layer pads were connected in one direction without removing the temporary support. In the pattern A shown in FIG. 3, a solid line portion SL and a gray portion G are light shielding portions, and a dotted line portion DL is a virtual frame for alignment. Thereafter, the temporary support was peeled off, developed and washed with water to obtain a pattern A. Next, after etching the copper layer using a copper etching solution (Cu-02 manufactured by Kanto Chemical Co., Ltd.), the ITO layer is etched using an ITO etching solution (ITO-02 manufactured by Kanto Chemical Co., Ltd.) A substrate on which both copper and ITO were drawn in pattern A was obtained.
Next, pattern exposure was performed using a photomask provided with an opening of pattern B shown in FIG. 4 in an aligned state, and development and washing were performed. In the pattern B shown in FIG. 4, a gray portion G is a light-shielding portion, and a dotted line portion DL virtually shows a frame for alignment.
Thereafter, the copper layer was etched using Cu-02, and the entire surface of the remaining photosensitive resin layer was exposed to light (300 mJ / cm 2 ) using an ultra-high pressure mercury lamp. It was removed using BONDERITE C-AK P123 (manufactured by Co., Ltd.) to obtain a circuit wiring.
Observation of the obtained circuit wiring with a microscope revealed no peeling or chipping and a beautiful pattern.
<実施例102>
100μm厚PET基材上に、第2層の導電層としてITOをスパッタリングで150nm厚にて成膜し、その上に第1層の導電層として銅を真空蒸着法で200nm厚にて成膜して、回路形成基板とした。
銅層上に実施例1で得た感光性転写材料1をラミネートした(ロール温度120℃、線圧0.8MPa、線速度1.0m/min.)。
仮支持体を剥離せずに一方向に導電層パッドが連結された構成を持つ図3に示すパターンAを設けたフォトマスクを用いてパターン露光した。その後仮支持体を剥離し、現像、水洗を行ってパターンAを得た。次いで銅エッチング液(関東化学(株)製Cu-02)を用いて銅層をエッチングした後、ITOエッチング液(関東化学(株)製ITO-02)を用いてITO層をエッチングすることで、銅とITOが共にパターンAで描画された基板を得た。
次いで、残存しているレジスト上に保護層としてPET(A)をラミネートした。この状態で、アライメントを合わせた状態で図4に示すパターンBの開口部を設けたフォトマスクを用いてパターン露光し、PET(A)を剥離した後に現像、水洗を行った。
その後、Cu-02を用いて銅配線をエッチングし、残った感光性樹脂層を、超高圧水銀灯により全面露光(300mJ/cm2)し、露光後に10秒間引き置いた後、除去液(Henkel(株)製BONDERITE C-AK P123)を用いて除去し、回路配線を得た。
得られた回路配線を、顕微鏡で観察したところ、剥がれ及び欠けは無く、きれいなパターンであった。 <Example 102>
On a PET substrate having a thickness of 100 μm, ITO was formed as a second conductive layer by sputtering to a thickness of 150 nm, and copper was formed thereon as a first conductive layer to a thickness of 200 nm by vacuum evaporation. Thus, a circuit forming substrate was obtained.
The photosensitive transfer material 1 obtained in Example 1 was laminated on the copper layer (roll temperature: 120 ° C., linear pressure: 0.8 MPa, linear velocity: 1.0 m / min.).
Pattern exposure was performed using a photomask provided with a pattern A shown in FIG. 3 having a configuration in which conductive layer pads were connected in one direction without removing the temporary support. Thereafter, the temporary support was peeled off, developed and washed with water to obtain a pattern A. Next, after etching the copper layer using a copper etching solution (Cu-02 manufactured by Kanto Chemical Co., Ltd.), the ITO layer is etched using an ITO etching solution (ITO-02 manufactured by Kanto Chemical Co., Ltd.) A substrate on which both copper and ITO were drawn in pattern A was obtained.
Next, PET (A) was laminated as a protective layer on the remaining resist. In this state, pattern exposure was performed using a photomask provided with an opening for pattern B shown in FIG. 4 in an aligned state, and PET (A) was peeled off, followed by development and washing with water.
Thereafter, the copper wiring was etched using Cu-02, the entire surface of the remaining photosensitive resin layer was exposed to light (300 mJ / cm 2 ) using an ultra-high pressure mercury lamp, and after being exposed to light for 10 seconds, the removal solution (Henkel ( It was removed using BONDERITE C-AK P123 (manufactured by Co., Ltd.) to obtain a circuit wiring.
Observation of the obtained circuit wiring with a microscope revealed no peeling or chipping and a beautiful pattern.
100μm厚PET基材上に、第2層の導電層としてITOをスパッタリングで150nm厚にて成膜し、その上に第1層の導電層として銅を真空蒸着法で200nm厚にて成膜して、回路形成基板とした。
銅層上に実施例1で得た感光性転写材料1をラミネートした(ロール温度120℃、線圧0.8MPa、線速度1.0m/min.)。
仮支持体を剥離せずに一方向に導電層パッドが連結された構成を持つ図3に示すパターンAを設けたフォトマスクを用いてパターン露光した。その後仮支持体を剥離し、現像、水洗を行ってパターンAを得た。次いで銅エッチング液(関東化学(株)製Cu-02)を用いて銅層をエッチングした後、ITOエッチング液(関東化学(株)製ITO-02)を用いてITO層をエッチングすることで、銅とITOが共にパターンAで描画された基板を得た。
次いで、残存しているレジスト上に保護層としてPET(A)をラミネートした。この状態で、アライメントを合わせた状態で図4に示すパターンBの開口部を設けたフォトマスクを用いてパターン露光し、PET(A)を剥離した後に現像、水洗を行った。
その後、Cu-02を用いて銅配線をエッチングし、残った感光性樹脂層を、超高圧水銀灯により全面露光(300mJ/cm2)し、露光後に10秒間引き置いた後、除去液(Henkel(株)製BONDERITE C-AK P123)を用いて除去し、回路配線を得た。
得られた回路配線を、顕微鏡で観察したところ、剥がれ及び欠けは無く、きれいなパターンであった。 <Example 102>
On a PET substrate having a thickness of 100 μm, ITO was formed as a second conductive layer by sputtering to a thickness of 150 nm, and copper was formed thereon as a first conductive layer to a thickness of 200 nm by vacuum evaporation. Thus, a circuit forming substrate was obtained.
The photosensitive transfer material 1 obtained in Example 1 was laminated on the copper layer (roll temperature: 120 ° C., linear pressure: 0.8 MPa, linear velocity: 1.0 m / min.).
Pattern exposure was performed using a photomask provided with a pattern A shown in FIG. 3 having a configuration in which conductive layer pads were connected in one direction without removing the temporary support. Thereafter, the temporary support was peeled off, developed and washed with water to obtain a pattern A. Next, after etching the copper layer using a copper etching solution (Cu-02 manufactured by Kanto Chemical Co., Ltd.), the ITO layer is etched using an ITO etching solution (ITO-02 manufactured by Kanto Chemical Co., Ltd.) A substrate on which both copper and ITO were drawn in pattern A was obtained.
Next, PET (A) was laminated as a protective layer on the remaining resist. In this state, pattern exposure was performed using a photomask provided with an opening for pattern B shown in FIG. 4 in an aligned state, and PET (A) was peeled off, followed by development and washing with water.
Thereafter, the copper wiring was etched using Cu-02, the entire surface of the remaining photosensitive resin layer was exposed to light (300 mJ / cm 2 ) using an ultra-high pressure mercury lamp, and after being exposed to light for 10 seconds, the removal solution (Henkel ( It was removed using BONDERITE C-AK P123 (manufactured by Co., Ltd.) to obtain a circuit wiring.
Observation of the obtained circuit wiring with a microscope revealed no peeling or chipping and a beautiful pattern.
なお、2018年9月12日に出願された日本国特許出願2018-170973、及び、2019年3月25日に出願された日本国特許出願2019-057423の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosures of Japanese Patent Application No. 2018-170973 filed on September 12, 2018 and Japanese Patent Application No. 2019-057423 filed on March 25, 2019 are incorporated herein by reference in their entirety. Is included in the book. In addition, all documents, patent applications, and technical standards described herein are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. , Incorporated herein by reference.
Claims (18)
- 仮支持体と、
ポジ型感光性樹脂層と、
保護フィルムと、
をこの順に有し、前記保護フィルムの、前記ポジ型感光性樹脂層と接する側の表面が、下記の(A)及び(B)を満たす感光性転写材料。
(A)水接触角が、75°以上である。
(B)表面粗さRaが、45nm以下である。 A temporary support,
A positive photosensitive resin layer,
Protective film,
In this order, and the surface of the protective film in contact with the positive photosensitive resin layer satisfies the following (A) and (B).
(A) The water contact angle is 75 ° or more.
(B) The surface roughness Ra is 45 nm or less. - 前記表面粗さRaが、25nm以下である請求項1に記載の感光性転写材料。 感光 The photosensitive transfer material according to claim 1, wherein the surface roughness Ra is 25 nm or less.
- 前記保護フィルムが、基材と、下塗り層と、を有し、前記保護フィルムの、前記ポジ型感光性樹脂層と接する側の最外層が、前記下塗り層である請求項1又は請求項2に記載の感光性転写材料。 The said protective film has a base material and an undercoat layer, The outermost layer of the said protective film in contact with the said positive photosensitive resin layer is the said undercoat layer, Claim 1 or Claim 2. The photosensitive transfer material as described in the above.
- 前記保護フィルムが、
第一延伸方向の延伸物である一軸延伸フィルムがフィルム面に沿って前記第一延伸方向と直交する第二延伸方向に延伸された二軸延伸フィルムと、
前記一軸延伸フィルムの一方面に形成された塗布層の前記第二延伸方向の延伸物である下塗り層と、
を有し、
前記保護フィルムの、前記ポジ型感光性樹脂層と接する側の最外層が、前記下塗り層である請求項1又は請求項2に記載の感光性転写材料。 The protective film,
A biaxially stretched film in which a uniaxially stretched film that is a stretched product in the first stretching direction is stretched in a second stretching direction orthogonal to the first stretching direction along the film surface,
An undercoat layer, which is a stretched product in the second stretching direction of the coating layer formed on one surface of the uniaxially stretched film,
Has,
The photosensitive transfer material according to claim 1, wherein an outermost layer of the protective film on a side in contact with the positive photosensitive resin layer is the undercoat layer. - 前記下塗り層が、酸変性ポリオレフィンを含有する請求項3又は請求項4に記載の感光性転写材料。 The photosensitive transfer material according to claim 3 or 4, wherein the undercoat layer contains an acid-modified polyolefin.
- 前記酸変性ポリオレフィンが酸基を有し、前記酸基の少なくとも1つがアルカリ金属塩である請求項5に記載の感光性転写材料。 6. The photosensitive transfer material according to claim 5, wherein the acid-modified polyolefin has an acid group, and at least one of the acid groups is an alkali metal salt.
- 前記下塗り層の厚みが、10nm~550nmである請求項3~請求項6のいずれか1項に記載の感光性転写材料。 The photosensitive transfer material according to any one of claims 3 to 6, wherein the undercoat layer has a thickness of 10 nm to 550 nm.
- 前記仮支持体と前記ポジ型感光性樹脂層との間に、水溶性樹脂層を有する請求項1~請求項7のいずれか1項に記載の感光性転写材料。 8. The photosensitive transfer material according to claim 1, further comprising a water-soluble resin layer between the temporary support and the positive photosensitive resin layer.
- 前記ポジ型感光性樹脂層が、酸分解性樹脂を含有する請求項1~請求項8のいずれか1項に記載の感光性転写材料。 The photosensitive transfer material according to any one of claims 1 to 8, wherein the positive photosensitive resin layer contains an acid-decomposable resin.
- 前記ポジ型感光性樹脂層が、前記ポジ型感光性樹脂層の全固形分に対し、重合体成分を80質量%~98質量%の割合で含む請求項1~請求項9のいずれか1項に記載の感光性転写材料。 10. The positive photosensitive resin layer according to claim 1, wherein the positive photosensitive resin layer contains a polymer component at a ratio of 80% by mass to 98% by mass based on the total solid content of the positive photosensitive resin layer. 3. The photosensitive transfer material according to item 1.
- 請求項1~請求項10のいずれか1項に記載の感光性転写材料の保護フィルムを剥離する工程と、
前記感光性転写材料の、前記仮支持体に対して前記ポジ型感光性樹脂層を有する側の最外層を、導電層を有する基板に貼り合わせる工程と、
前記貼り合わせる工程後の前記感光性転写材料の前記ポジ型感光性樹脂層をパターン露光する工程と、
前記パターン露光する工程後の前記ポジ型感光性樹脂層を現像して樹脂パターンを形成する工程と、
前記樹脂パターンが配置されていない領域における基板をエッチング処理する工程と、
を含む、回路配線の製造方法。 Removing the protective film of the photosensitive transfer material according to any one of claims 1 to 10,
A step of bonding the outermost layer of the photosensitive transfer material on the side having the positive photosensitive resin layer to the temporary support to a substrate having a conductive layer,
Pattern exposure of the positive photosensitive resin layer of the photosensitive transfer material after the bonding step,
Developing the positive photosensitive resin layer after the pattern exposure step to form a resin pattern,
A step of etching the substrate in a region where the resin pattern is not arranged,
And a method for manufacturing a circuit wiring. - 請求項1~請求項10のいずれか1項に記載の感光性転写材料の保護フィルムを剥離する工程と、
前記感光性転写材料の、前記仮支持体に対してポジ型感光性樹脂層を有する側の最外層を、導電層を有する基板に貼り合わせる工程と、
前記貼り合わせる工程後の前記感光性転写材料の前記ポジ型感光性樹脂層をパターン露光する工程と、
前記パターン露光する工程後の前記ポジ型感光性樹脂層を現像して樹脂パターンを形成する工程と、
前記樹脂パターンが配置されていない領域における基板をエッチング処理する工程と、
を含む、タッチパネルの製造方法。 Removing the protective film of the photosensitive transfer material according to any one of claims 1 to 10,
A step of bonding the outermost layer on the side having the positive photosensitive resin layer to the temporary support of the photosensitive transfer material, to a substrate having a conductive layer,
Pattern exposure of the positive photosensitive resin layer of the photosensitive transfer material after the bonding step,
Developing the positive photosensitive resin layer after the pattern exposure step to form a resin pattern,
A step of etching the substrate in a region where the resin pattern is not arranged,
A method for manufacturing a touch panel, comprising: - 請求項1~請求項10のいずれか1項に記載の感光性転写材料の保護フィルムを剥離する工程と、
前記感光性転写材料の、前記仮支持体に対してポジ型感光性樹脂層を有する側の最外層を、基板に貼り合わせる工程と、
前記貼り合わせる工程後の前記感光性転写材料の前記ポジ型感光性樹脂層をパターン露光する工程と、
前記パターン露光する工程後の前記ポジ型感光性樹脂層を現像して樹脂パターンを形成する工程と、
を含む、樹脂パターンの製造方法。 Removing the protective film of the photosensitive transfer material according to any one of claims 1 to 10,
A step of bonding the outermost layer of the photosensitive transfer material on the side having the positive photosensitive resin layer to the temporary support to a substrate,
Pattern exposure of the positive photosensitive resin layer of the photosensitive transfer material after the bonding step,
Developing the positive photosensitive resin layer after the pattern exposure step to form a resin pattern,
A method for producing a resin pattern, comprising: - 第一延伸方向の延伸物である一軸延伸ポリエチレンテレフタレートフィルムがフィルム面に沿って前記第一延伸方向と直交する第二延伸方向に延伸された二軸延伸ポリエチレンテレフタレートフィルムと、
前記一軸延伸ポリエチレンテレフタレートフィルムの一方面に形成された塗布層の前記第二延伸方向の延伸物である下塗り層と、
を有し、
前記下塗り層の表面が、下記の(A)及び(B)を満たすフィルム。
(A)水接触角が、75°以上である。
(B)表面粗さRaが、45nm以下である。 A biaxially stretched polyethylene terephthalate film in which a uniaxially stretched polyethylene terephthalate film which is a stretched product in the first stretching direction is stretched along a film surface in a second stretching direction orthogonal to the first stretching direction,
An undercoat layer that is a stretched product in the second stretching direction of a coating layer formed on one surface of the uniaxially stretched polyethylene terephthalate film,
Has,
A film wherein the surface of the undercoat layer satisfies the following (A) and (B).
(A) The water contact angle is 75 ° or more.
(B) The surface roughness Ra is 45 nm or less. - 前記下塗り層が、酸変性ポリオレフィンを含有する請求項14に記載のフィルム。 The film according to claim 14, wherein the undercoat layer contains an acid-modified polyolefin.
- 第1の樹脂層と、前記第1の樹脂層上に設けられた第2の樹脂層とを有し、
前記第1の樹脂層が、ポリエステルを含み、
前記第2の樹脂層の表面が、下記の(A)及び(B)を満たすフィルム。
(A)水接触角が、75°以上である。
(B)表面粗さRaが、45nm以下である。 A first resin layer, and a second resin layer provided on the first resin layer;
The first resin layer contains polyester,
A film in which the surface of the second resin layer satisfies the following (A) and (B).
(A) The water contact angle is 75 ° or more.
(B) The surface roughness Ra is 45 nm or less. - 前記第1の樹脂層の厚みが5μm~200μmであり、かつ、前記第2の樹脂層の厚みが10nm~550nmである、請求項16に記載のフィルム。 17. The film according to claim 16, wherein the thickness of the first resin layer is 5 μm to 200 μm, and the thickness of the second resin layer is 10 nm to 550 nm.
- 保護フィルムである、請求項14~請求項17のいずれか1項に記載のフィルム。 The film according to any one of claims 14 to 17, which is a protective film.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020546006A JP7065991B2 (en) | 2018-09-12 | 2019-09-09 | Photosensitive transfer material, circuit wiring manufacturing method, touch panel manufacturing method, resin pattern manufacturing method, and film |
CN201980048920.1A CN112470074A (en) | 2018-09-12 | 2019-09-09 | Photosensitive transfer material, method for manufacturing circuit wiring, method for manufacturing touch panel, method for manufacturing resin pattern, and film |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-170973 | 2018-09-12 | ||
JP2018170973 | 2018-09-12 | ||
JP2019057423 | 2019-03-25 | ||
JP2019-057423 | 2019-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020054660A1 true WO2020054660A1 (en) | 2020-03-19 |
Family
ID=69778084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/035363 WO2020054660A1 (en) | 2018-09-12 | 2019-09-09 | Photosensitive transfer material, method for producing circuit wiring line, method for producing touch panel, method for producing resin pattern, and film |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7065991B2 (en) |
CN (1) | CN112470074A (en) |
TW (1) | TW202017748A (en) |
WO (1) | WO2020054660A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022054599A1 (en) * | 2020-09-14 | 2022-03-17 | 富士フイルム株式会社 | Photosensitive transfer material, method for producing resin pattern, etching method, and method for manufacturing electronic device |
JPWO2022054374A1 (en) * | 2020-09-14 | 2022-03-17 | ||
WO2022138493A1 (en) * | 2020-12-25 | 2022-06-30 | 富士フイルム株式会社 | Method for manufacturing laminate, method for manufacturing circuit wiring, and transfer film |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008302547A (en) * | 2007-06-06 | 2008-12-18 | Mitsubishi Plastics Inc | Protective polyester film for photosensitive adhesive resin |
JP2014085643A (en) * | 2012-10-26 | 2014-05-12 | Fujifilm Corp | Photosensitive transfer material, pattern formation method, and etching method |
WO2014175274A1 (en) * | 2013-04-24 | 2014-10-30 | 日立化成株式会社 | Photosensitive element, photosensitive element roll, method for producing resist pattern, and electronic component |
JP2015183117A (en) * | 2014-03-25 | 2015-10-22 | 富士フイルム株式会社 | Transparent film, production method thereof, laminated film, transparent conductive film, hard coat film, touch panel, polarizer and display |
JP2016210066A (en) * | 2015-05-07 | 2016-12-15 | 三菱樹脂株式会社 | Laminated polyester film |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010045151A (en) * | 1999-11-03 | 2001-06-05 | 구광시 | Dry-film photoresist |
JP2009080194A (en) * | 2007-09-25 | 2009-04-16 | Fujifilm Corp | Polymerizable resin composition, transfer material, color filter and method for producing same, spacer for liquid crystal display device and method for producing the same, and liquid crystal display device |
-
2019
- 2019-09-09 JP JP2020546006A patent/JP7065991B2/en active Active
- 2019-09-09 CN CN201980048920.1A patent/CN112470074A/en active Pending
- 2019-09-09 WO PCT/JP2019/035363 patent/WO2020054660A1/en active Application Filing
- 2019-09-11 TW TW108132823A patent/TW202017748A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008302547A (en) * | 2007-06-06 | 2008-12-18 | Mitsubishi Plastics Inc | Protective polyester film for photosensitive adhesive resin |
JP2014085643A (en) * | 2012-10-26 | 2014-05-12 | Fujifilm Corp | Photosensitive transfer material, pattern formation method, and etching method |
WO2014175274A1 (en) * | 2013-04-24 | 2014-10-30 | 日立化成株式会社 | Photosensitive element, photosensitive element roll, method for producing resist pattern, and electronic component |
JP2015183117A (en) * | 2014-03-25 | 2015-10-22 | 富士フイルム株式会社 | Transparent film, production method thereof, laminated film, transparent conductive film, hard coat film, touch panel, polarizer and display |
JP2016210066A (en) * | 2015-05-07 | 2016-12-15 | 三菱樹脂株式会社 | Laminated polyester film |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022054599A1 (en) * | 2020-09-14 | 2022-03-17 | 富士フイルム株式会社 | Photosensitive transfer material, method for producing resin pattern, etching method, and method for manufacturing electronic device |
JPWO2022054374A1 (en) * | 2020-09-14 | 2022-03-17 | ||
WO2022054374A1 (en) * | 2020-09-14 | 2022-03-17 | 富士フイルム株式会社 | Photosensitive transfer material, production method for resin pattern, production method for circuit wiring, and production method for electronic device |
WO2022138493A1 (en) * | 2020-12-25 | 2022-06-30 | 富士フイルム株式会社 | Method for manufacturing laminate, method for manufacturing circuit wiring, and transfer film |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020054660A1 (en) | 2021-05-20 |
JP7065991B2 (en) | 2022-05-12 |
CN112470074A (en) | 2021-03-09 |
TW202017748A (en) | 2020-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107132731B (en) | Photosensitive transfer material and method for manufacturing circuit wiring | |
WO2020054660A1 (en) | Photosensitive transfer material, method for producing circuit wiring line, method for producing touch panel, method for producing resin pattern, and film | |
TW201922815A (en) | Method for producing a circuit wiring, method for producing a touch panel, and method for producing a patterned substrate | |
TW201924935A (en) | Photosensitive transfer material, method for manufacturing resin pattern, and method for manufacturing circuit | |
TW201921108A (en) | Photosensitive transfer material, method for manufacturing circuit wiring, and method for manufacturing touch panel | |
TW201912667A (en) | Photosensitive transfer material, method of manufacturing the same, and method of manufacturing circuit wiring | |
JP6992097B2 (en) | Resist pattern manufacturing method, circuit board manufacturing method, and touch panel manufacturing method | |
JP6821046B2 (en) | Circuit wiring manufacturing method and touch panel manufacturing method | |
WO2018179641A1 (en) | Photosensitive transferring material and method for producing circuit wiring | |
WO2020158316A1 (en) | Photosensitive transfer material, resin pattern production method, circuit wiring production method, touch panel production method, and, film and production method therefor | |
JP6685461B2 (en) | Photosensitive transfer material, method for manufacturing circuit wiring, and method for manufacturing touch panel | |
WO2019225362A1 (en) | Photosensitive transfer material, method for producing resin pattern, method for manufacturing circuit wiring, and method for manufacturing touch panel | |
WO2020116068A1 (en) | Transfer material, method for producing resin pattern, method for producing circuit wiring, and method for manufacturing touch panel | |
JP6830398B2 (en) | Method for producing a polymer solution for a photosensitive transfer material, a method for producing a composition for a photosensitive transfer material, a method for producing a photosensitive transfer material, a method for producing a circuit wiring, a method for producing a touch panel, a method for producing a polymer solution for a photosensitive transfer material. Compositions used in the production of, polymer solutions for photosensitive transfer materials, compositions for photosensitive transfer materials and photosensitive transfer materials | |
WO2019077924A1 (en) | Method for producing circuit board and method for producing touch panel | |
JP6685460B2 (en) | Photosensitive transfer material, method for manufacturing circuit wiring, and method for manufacturing touch panel | |
WO2019021622A1 (en) | Photosensitive resin composition, photosensitive transfer material, circuit wiring production method, and touch panel production method | |
WO2019225363A1 (en) | Photosensitive transfer material, method for producing resin pattern, method for manufacturing circuit wiring, and method for manufacturing touch panel | |
JP2019128445A (en) | Photosensitive transfer material and manufacturing method thereof, and resin pattern manufacturing method and circuit wiring manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19861120 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020546006 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19861120 Country of ref document: EP Kind code of ref document: A1 |