WO2020054630A1 - Functional ingredient-increasing agent for plants - Google Patents

Functional ingredient-increasing agent for plants Download PDF

Info

Publication number
WO2020054630A1
WO2020054630A1 PCT/JP2019/035243 JP2019035243W WO2020054630A1 WO 2020054630 A1 WO2020054630 A1 WO 2020054630A1 JP 2019035243 W JP2019035243 W JP 2019035243W WO 2020054630 A1 WO2020054630 A1 WO 2020054630A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
agent
functional component
functional
increasing
Prior art date
Application number
PCT/JP2019/035243
Other languages
French (fr)
Japanese (ja)
Inventor
偏弘 野原
大野 勝也
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to JP2020526643A priority Critical patent/JP6786746B2/en
Publication of WO2020054630A1 publication Critical patent/WO2020054630A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/42Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing within the same carbon skeleton a carboxylic group or a thio analogue, or a derivative thereof, and a carbon atom having only two bonds to hetero atoms with at the most one bond to halogen, e.g. keto-carboxylic acids

Definitions

  • the present invention relates to an agent for increasing a functional component of a plant.
  • Patent Document 1 discloses a technique of irradiating ultraviolet rays to increase the amount of polyphenol contained in strawberry berries.
  • the present invention has been made in view of the above problems, and has no adverse effect on living tissues of plants and aims to increase the amount of functional components contained in plants safely by spraying or irrigating the plants as appropriate.
  • An object of the present invention is to provide a plant functional ingredient increasing agent that can be used.
  • R 1 is a linear or branched alkyl group having 6 to 12 carbon atoms, which may contain one or more double bonds
  • R 2 an alkyl group having 2 to 8 carbon atoms, which may contain one or more branched and / or double bonds
  • the present invention relates to an agent for increasing a functional component of a plant, comprising an oxo fatty acid derivative having the structural formula: or a salt thereof as an active ingredient.
  • the functional component of a plant wherein the oxo fatty acid derivative is an oxo fatty acid derivative in which the alkyl group of R 1 in the oxo fatty acid derivative has 8 to 10 carbon atoms and the alkyl group of R 2 has 4 to 6 carbon atoms. Enhancers are preferred.
  • the oxo fatty acid derivative is an oxo fatty acid derivative in which R 1 of the oxo fatty acid derivative contains a double bond forming a conjugated double bond with a double bond between the ⁇ and ⁇ carbons of the carbonyl group in formula (I). Plant functional ingredient enhancers are preferred.
  • the oxo fatty acid derivative is preferably an oxo fatty acid derivative in which R 1 of the oxo fatty acid derivative is an alkyl group having 9 carbon atoms and R 2 is an alkyl group having 5 carbon atoms. .
  • a plant functional ingredient enhancer wherein the oxo fatty acid derivative is 13-oxo-9,11-octadecadienoic acid or a salt thereof is preferred.
  • the agent for increasing the functional component of a plant is preferably a spraying agent or a dipping agent that is brought into contact with the foliage or roots of the plant, or an agent for increasing the functional component of a plant used as a soil irrigation agent.
  • the plant functional component enhancer wherein the plant functional component is an antioxidant functional component, amino acids or peptides is preferred.
  • the plant functional component enhancer is selected from the group consisting of vitamins, polyphenols, carotenoids, amino acids and combinations thereof.
  • the plant functional ingredient increasing agent is preferably a plant functional ingredient which is at least one selected from the group consisting of vitamin C, polyphenol, lutein, ⁇ -carotene, lycopene, and GABA.
  • the agent for increasing a functional component of a plant according to the present invention increases the functional component in a plant by accelerating the production and / or suppressing the decomposition of the functional component in the plant.
  • the plant functional component increasing agent of the present invention can increase the functional component of a plant by appropriately spraying or irrigating the plant without using stress cultivation or a high content variety.
  • the present invention also relates to a plant functional ingredient enhancer comprising as an active ingredient a compound of the formula (I) or a salt thereof, including all geometric isomers and stereoisomers.
  • the amount of the functional component contained in the plant can be increased. Since an increase in the same component as the component that increases in the stress cultivation generally performed can be confirmed in the plant, the oxo fatty acid derivative or the salt thereof of the present invention is originally absorbed in the plant, and therefore, the environment is naturally increased in the plant. It is thought to contain a substance and / or a precursor thereof that performs the same action in a plant as a molecule that is produced and acts as a signal by stress. That is, the oxo fatty acid derivative or a salt thereof of the present invention can enhance the stress tolerance function inherent in plants. As a result, promotion of production and / or suppression of decomposition of the functional component in the plant occurs, and the functional component in the plant increases.
  • Oxo fatty acids are so-called rare fatty acids that are known to be produced as intermediates in the metabolism of unsaturated fatty acids. These rare fatty acids are substances that have attracted attention particularly from the viewpoint of application to various industrial uses such as their physiological activities.
  • 13-oxo-9,11-octadecadienoic acid used as an example of an oxo fatty acid derivative or a salt thereof is a compound having a carbon number of 18 and having a carbonyl group and two conjugated double bonds in the molecule.
  • it is an oxo fatty acid produced from linoleic acid, which is an unsaturated fatty acid, by an enzymatic reaction or other means, and is one of the rare fatty acids.
  • 13-oxo-9,11-octadecadienoic acid naturally exists in plants such as tomato.
  • 13-oxo-9,11-octadecadienoic acid has been found active in improving lifestyle-related diseases such as lipid metabolism. Has been done.
  • an oxo fatty acid derivative such as 13-oxo-9,11-octadecadienoic acid or a salt thereof has an effect of increasing the amount of a functional component contained in a plant.
  • the plant functional ingredient increasing agent of the present invention only needs to contain an oxo fatty acid derivative or a salt thereof, and their origin is not particularly limited. That is, as the oxo fatty acid derivative or a salt thereof, a commercially available product may be used, or a product contained in a plant such as tomato may be used as it is or after being extracted and / or purified. Alternatively, the oxo fatty acid derivative or a salt thereof may be obtained by reacting an enzyme, for example, an enzyme derived from a microorganism with a substrate such as an unsaturated fatty acid, as described above, or obtained by, for example, chemical synthesis. And those produced using microorganisms.
  • an enzyme for example, an enzyme derived from a microorganism with a substrate such as an unsaturated fatty acid, as described above, or obtained by, for example, chemical synthesis.
  • an oxo fatty acid derivative or a salt thereof is enzymatically converted using linoleic acid as a raw material by the action of lipoxygenase (LOX) and / or dehydrogenase (dehydrogenase) such as alcohol dehydrogenase (ADH). Or through a catalytic reaction using a metal catalyst.
  • LOX lipoxygenase
  • dehydrogenase dehydrogenase
  • ADH alcohol dehydrogenase
  • 13-oxo-9,11-octadecadienoic acid which can be used as an example of an oxo fatty acid derivative or a salt thereof, includes all its isomers. That is, the oxo fatty acid contained in the plant functional ingredient enhancer of the present invention, no matter what isomer is present in the plant functional ingredient enhancer, the same as the plant functional ingredient enhancer It works.
  • the plant functional ingredient enhancer of the present invention may contain an oxo fatty acid derivative or a salt thereof at a desired concentration.
  • an oxo fatty acid derivative or a salt thereof may be used as the oxo fatty acid derivative or a salt thereof.
  • the oxo fatty acid derivative may be present in the form of a salt, and examples of the salt include an ammonium salt and a metal salt. It is desirable that the metal salt generates a monovalent metal ion.
  • sodium salts and potassium salts can be suitably used, although not limited thereto.
  • the plant functional ingredient-enhancing agent of the present invention is characterized by containing a natural product of an oxo fatty acid derivative or a salt thereof.
  • the amount of components can be increased. That is, by using the agent for increasing the functional component of a plant of the present invention, the functional component in the plant can be safely and simply increased.
  • the plant functional ingredient increasing agent of the present invention can induce the expression of stress-responsive genes such as PR1, PR2, and PDF1.2 in plants to which it is applied.
  • a plant of the Solanaceae family can induce the expression of stress-responsive genes such as PR1a and LOXD.
  • cuticle development, trichome development, promotion of hair root development, increase in the production of antioxidants, and promotion of the function of preventing water transpiration (depending on the type, variety and growth stage of the plant, as well as the cultivation environment and season) Increased production of proline and thicker leaves), thicker stems, etc. occur. That is, the agent for increasing a functional component of a plant of the present invention enhances the stress tolerance function that the plant originally has.
  • the functional components of the plant can be increased without using stress cultivation. Problems such as a decrease in yield and a decrease in resistance to pests, which occur when stress cultivation or a high content variety is used, do not occur. ADVANTAGE OF THE INVENTION According to the functional ingredient increasing agent of the plant of this invention, the stress tolerance function of a plant can be improved by simple processing, without changing the conventional cultivation method, and the amount of the functional component contained in a plant can be increased.
  • Examples of the functional component whose content is increased by the present invention include vitamins, polyphenols, carotenoids, peptides, amino acids, and the like.
  • vitamins include vitamin C
  • examples of polyphenols include chlorogenic acid, scopoletin, sinapinic acid, and sinapiraldehyde.
  • Examples of carotenoids include ⁇ -carotene, lutein, and lycopene.
  • Examples of the peptides and amino acids include GABA, glutamic acid, and peptides to which these are bound by dehydration condensation.
  • the plant functional ingredient enhancer of the present invention can increase at least one of these functional ingredients.
  • Plants to which the present invention can be applied are not particularly limited, and include, for example, plants of the Solanaceae, Brassicaceae, Asteraceae, Leguminosae, Lily, Rosaceae, Aceraceae, Lamiaceae, and Amaranthaceae.
  • leaf vegetables such as lettuce, spinach, komatsuna, mizuna, cabbage, leaf radish, Chinese cabbage, perilla, baby leaves such as romaine lettuce, beetroot, komatsuna, spinach, mizuna, arugula, mustard, kale, chicory, etc., licorice, ephedra, etc.
  • the plant may be cultivated in any manner, that is, planted in soil or immersed in a hydroponic solution.
  • the agent for increasing a functional component of a plant of the present invention can be applied by any method, and for example, can be used as an agent for spraying or dipping to contact the foliage or roots of the plant, or as an agent for soil irrigation.
  • the present invention is very advantageous because the functional components of the plant can be increased only by spraying the agent for increasing the functional components of the plant of the present invention without preparing special equipment and the like.
  • the present invention also relates to a plant cultivated by the cultivation method described above, wherein the functional component is increased.
  • Such plants are considered to be useful as food or as raw materials for cosmetics, pharmaceuticals, supplements and the like.
  • lipoxygenase manufactured by Sigma-Aldrich, derived from Glycine max
  • the product in the reaction solution after completion of the reaction was identified by LC-MS using MS 2 spectrum analysis using 13-oxo-9,11-octadecadienoic acid manufactured by Cayman Chemical as a standard substance. Quantitation was performed by UV 272 nm by absolute calibration method.
  • a potassium salt aqueous solution of about 300 ppm was prepared using the produced 13-oxo-9,11-octadecadienoic acid and its isomer, and used as an agent for increasing the functional component of a test plant, and the following evaluation was performed.
  • Example 1 effect of increasing functional ingredients in strawberries Strawberries (variety: Beni Hoppe) were cultivated in soil and 7 to 9 strains were cultivated by general fertilizer solution irrigation. Immediately before the onset of flowering and fruiting, using a diluent obtained by diluting the functional ingredient increasing agent of the test plant 4000 times with water, once every 6 days twice a day at a rate of about 100 ml per strain. Was irrigated. Harvesting was performed immediately after the irrigation treatment. Fifteen fruits were randomly selected from the harvested fruits for further analysis. -Comparative example 1 The test was performed in the same manner as in Example 1 except that the solution to be irrigated was replaced with water instead of the functional component increasing agent of the test plant.
  • Example 2 Effect of increasing functional components in spinach-Example 2
  • Spinach (variety: Benten) was cultivated by house soil cultivation in about 50 strains. After the development of the true leaves, the leaves were sprayed at a rate of about 20 ml per strain using a diluent obtained by diluting the functional ingredient enhancer of the test plant 4000 times with water. After the treatment, they were cultivated for 15 days and harvested. Five strains were randomly selected from the harvested strains and used for later analysis. ⁇ Comparative Example 2 The test was performed in the same manner as in Example 2 except that the solution to be irrigated was replaced with water instead of the agent for increasing the functional component of the test plant.
  • Example 3 Effect of increasing functional components in carrot About 60 strains of carrot (cultivar: Koyo No. 2) were cultivated by soil cultivation. After the development of the true leaves, using a diluent obtained by diluting the functional ingredient enhancer of the test plant 4000 times with water, sprayed onto the leaves 8 times, once every 7 days, at a rate of about 50 ml per strain. Processed. Carrot roots that grew 60 days after the start of the treatment were collected. Six strains were randomly selected from the collected strains and used for later analysis. -Comparative example 3 The test was performed in the same manner as in Example 3, except that the solution to be irrigated was replaced with water instead of the functional component increasing agent of the test plant.
  • Example 4 Effect of Increasing Functional Ingredients in Perilla Perilla (large leaves; variety: fragrant green leaf) was cultivated by soil cultivation in about 20 strains. After the development of the true leaves, using a diluent obtained by diluting the functional ingredient increasing agent of the test plant 4000 times with water, the leaves were sprayed four times, once every seven days, at a rate of about 100 ml per strain. . Thirty days after the start of the treatment, the grown leaves were collected, and 800 g of randomly selected leaves from the collected leaves were subjected to subsequent analysis. -Comparative example 4 Example 4 was carried out in the same manner as in Example 4 except that the solution to be sprayed was changed to water instead of the functional ingredient enhancer of the test plant.
  • Example 5 Effect of increasing functional ingredients in eggplant-Example 5
  • Five eggplants (variety: Senryo 2) were cultivated by soil cultivation. After the development of the true leaves, a diluent obtained by diluting the functional ingredient increasing agent of the test plant 4000 times with water was irrigated four times, once every seven days, at a rate of about 100 ml per strain. . Thirty days after the start of the treatment, the grown fruit part was collected, and a 2 kg portion randomly selected from the collected fruit part was subjected to subsequent analysis.
  • Example 5 was the same as Example 5, except that the solution to be irrigated was changed to water instead of the functional component increasing agent of the test plant.
  • Example 6 Effect of Increasing Functional Ingredients in Tomato
  • Two mini tomatoes cultivated in the house were hydroponically cultivated. From about two months after planting, 1-2 ml of the functional ingredient-enhancing agent of the test plant was added to the plant once every seven days. Three to five randomly selected mini tomatoes harvested after the treatment were subjected to analysis, and the values for nine weeks were averaged to obtain an analysis value. Comparative Example 6 Example 6 was carried out in the same manner as in Example 6, except that the solution to be added instead of the functional component increasing agent of the test plant was water.
  • each vegetable obtained in Examples 1 to 6 and Comparative Examples 1 to 6 that is, strawberry is a fruit, spinach is above the ground, carrot is a root, large leaves are leaves, eggplant and tomato are fruits
  • the amount and functionality of the functional components to be used were evaluated. Specifically, 1 g of a strawberry-milled sample was extracted with 10 ml of ethanol. For the tomato, 1 g of a sample ground with a mixer was extracted with 7 ml of water (for GABA analysis), and the remaining residue was extracted with 8 ml of acetone (for lycopene analysis). The remaining vegetables were sent to Designer Foods Co., Ltd. for analysis.
  • the functional components in the edible portion functional components generally known to be contained in each vegetable were evaluated. Specifically, the total polyphenol content is measured by the Folin-Ciocalteu method for strawberries, lutein for spinach, ⁇ -carotene for carrots, lycopene and GABA for tomatoes by HPLC, and total anthocyanin content by ultraviolet-visible spectroscopy. And Vitamin C were measured using an RQflex (registered trademark) (manufactured by Merck) reflectometer. Table 1 shows the obtained results.
  • the antioxidant property of each sample was evaluated. Specifically, as the antioxidant power of each sample, the superoxide annihilation ability, hydroxy radical scavenging ability and singlet oxygen scavenging ability of the sample with respect to superoxide anion, hydroxyl radical and singlet oxygen, which are typical active oxygens, are measured by electron.
  • the antioxidant properties of each sample were examined by measuring the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging ability of the sample by a spin resonance apparatus (ESR) and by absorptiometry. Analysis commissioned to Designer Foods Co., Ltd.). Table 2 shows the results.
  • hydroxy radical scavenging ability is equivalent to DMSO ( ⁇ mol DMSO)
  • singlet oxygen scavenging ability is His equivalent ( ⁇ molHis)
  • DPPH radical scavenging ability is Trolox using Trolox as a standard substance.
  • the amount of superoxide scavenging ability is the equivalent amount (mgTE) and the number of units of superoxide dismutase (SOD) corresponding to 1 g of the sample.
  • the amount of the functional component contained in the vegetable of the example treated with the functional component increasing agent of the test plant was 1.1 to 1.5 times that of the comparative example. Was increasing.
  • the antioxidant properties of the vegetables of the examples were also increased by about 1.1 to 1.4 times.
  • the perilla of Example 4 was not evaluated for antioxidant properties by measuring the above antioxidant index. This is because, as shown in Table 1, in the perilla of Example 4, the amount of vitamin C used as a positive control in the evaluation of the antioxidant function increased by as much as 30%. This is because it was presumed that in perilla treated with a sex component enhancer, the antioxidant property was clearly increased due to the increase in vitamin C. The antioxidant property of the tomato of Example 6 was not evaluated.
  • lycopene far exceeds the antioxidant power of vitamin E, a commonly known fat-soluble antioxidant, and is one of the strongest antioxidants among other carotenoids such as ⁇ -carotene and lutein. It is widely recognized that they have Further, as shown in Table 1, GABA, another functional component increased in tomato, is a kind of amino acids also called ⁇ -aminobutyric acid, and has a weak antioxidant effect, but has a suppressive neurotransmitter substance in the human body. It has been found that it is a functional ingredient that acts as an antioxidant, and is used in many fortified foods such as supplements because of its relaxing action and anti-stress action.
  • the plant functional ingredient enhancer of the present invention increases the amount of the functional component contained in the plant, and furthermore, increases the amount of the functional component having an antioxidant activity to thereby increase the antioxidant activity. It can be seen that the functional indices such as are clearly improved.
  • the plant functional ingredient increasing agent of the present invention has a remarkable effect of promoting the production of the plant functional ingredient and / or inhibiting the decomposition of the plant functional ingredient, and the effect of increasing the functional ingredient in the plant. It can be seen that this is an excellent plant functional ingredient enhancer.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cultivation Of Plants (AREA)

Abstract

The purpose of the invention is to provide a functional ingredient-increasing agent for plants with which, even without using stress cultivation or a race with a high functional ingredient content, it is possible to increase the amount of functional ingredients in a plant by spraying the agent on plants or using same for irrigation, as appropriate. This functional ingredient-increasing agent for plants is characterized by comprising, as an active ingredient, an oxo-fatty acid derivative having a structural formula HOOC-(R1)-C=C-C(=O)-R2 (I) (in the formula, R1 is a straight or branched alkyl group that has 6 to 12 carbon atoms and may contain one or more double bonds, and R2 is an alkyl group that has 2 to 8 carbon atoms and may contain one or more branches and/or double bonds), or a salt thereof.

Description

植物の機能性成分増加剤Plant functional ingredient enhancer
 本発明は、植物の機能性成分増加剤に関する。 The present invention relates to an agent for increasing a functional component of a plant.
多くの植物には、ビタミン類、カロテノイド、ポリフェノール類などの様々な機能性成分が含まれている。近年、健康志向から農作物に含まれるこれら機能性成分に対する関心が高まっており、特に、細胞や組織に損傷を与え、ガンや生活習慣病、老化を促進させる一因になっていると考えられる活性酸素等のラジカルを除去する抗酸化活性がある機能性成分や、生体のたんぱく質の構成ユニットでもあり様々な神経伝達物質として機能するアミノ酸、ペプチド類を多く含む農産物のニーズは高い。そこで、植物体中での有用な機能性成分の産生を有意に高めるための試みが行われてきている。 Many plants contain various functional components such as vitamins, carotenoids, and polyphenols. In recent years, there has been a growing interest in these functional components contained in crops from health consciousness, in particular, activities that may damage cells and tissues and promote cancer, lifestyle-related diseases, and aging. There is a great need for a functional ingredient having an antioxidant activity for removing radicals such as oxygen and an agricultural product containing a large amount of amino acids and peptides which are also constituent units of living body proteins and function as various neurotransmitters. Therefore, attempts have been made to significantly increase the production of useful functional components in plants.
 植物に含まれる機能性成分の増収方法としては、特許文献1に紫外線を照射してイチゴの実に含まれるポリフェノールの量を増やす技術が開示されている。 As a method for increasing the yield of functional components contained in plants, Patent Document 1 discloses a technique of irradiating ultraviolet rays to increase the amount of polyphenol contained in strawberry berries.
国際公開第2012/133130号International Publication No. 2012/133130
 しかしながら、紫外線を植物に照射すると植物の生態組織を破壊する場合があり、照射時間には限度があった。また、紫外線は人体に対する害も懸念され、作業者の安全を十分に確保できないという問題があった。 照射 However, irradiation of plants with ultraviolet rays may destroy the biological tissues of the plants, and the irradiation time was limited. Further, there is a concern that ultraviolet rays may harm the human body, and there is a problem that worker safety cannot be sufficiently ensured.
 本発明は、前記問題点に鑑みてなされたもので、植物の生体組織に悪影響がなく、植物に適宜散布または灌注することで安全に植物に含まれる機能性成分の量の増加を図ることのできる植物の機能性成分増加剤を提供することを目的とする。 The present invention has been made in view of the above problems, and has no adverse effect on living tissues of plants and aims to increase the amount of functional components contained in plants safely by spraying or irrigating the plants as appropriate. An object of the present invention is to provide a plant functional ingredient increasing agent that can be used.
 本発明は、以下の式:
HOOC-(R1)-C=C-C(=O)-R2      (I)
(式中、
1:直鎖または分岐の、炭素数6~12のアルキル基であって、1つまたはそれ以上の二重結合を含んでいてもよく、
2:炭素数2~8のアルキル基であって、1つまたはそれ以上の分岐および/または二重結合を含んでいてもよい)
の構造式を有するオキソ脂肪酸誘導体またはその塩を有効成分として含むことを特徴とする植物の機能性成分増加剤に関する。
The present invention provides the following formula:
HOOC- (R 1 ) -C = CC (= O) -R 2 (I)
(Where
R 1 is a linear or branched alkyl group having 6 to 12 carbon atoms, which may contain one or more double bonds;
R 2 : an alkyl group having 2 to 8 carbon atoms, which may contain one or more branched and / or double bonds)
The present invention relates to an agent for increasing a functional component of a plant, comprising an oxo fatty acid derivative having the structural formula: or a salt thereof as an active ingredient.
 前記オキソ脂肪酸誘導体が、前記オキソ脂肪酸誘導体のR1のアルキル基の炭素数が8~10であり、R2のアルキル基の炭素数が4~6であるオキソ脂肪酸誘導体である植物の機能性成分増加剤が好ましい。 The functional component of a plant, wherein the oxo fatty acid derivative is an oxo fatty acid derivative in which the alkyl group of R 1 in the oxo fatty acid derivative has 8 to 10 carbon atoms and the alkyl group of R 2 has 4 to 6 carbon atoms. Enhancers are preferred.
 前記オキソ脂肪酸誘導体が、前記オキソ脂肪酸誘導体のR1が式(I)におけるカルボニル基のαおよびβ炭素の間の二重結合と共役二重結合を形成する二重結合を含むオキソ脂肪酸誘導体である植物の機能性成分増加剤が好ましい。 The oxo fatty acid derivative is an oxo fatty acid derivative in which R 1 of the oxo fatty acid derivative contains a double bond forming a conjugated double bond with a double bond between the α and β carbons of the carbonyl group in formula (I). Plant functional ingredient enhancers are preferred.
 前記オキソ脂肪酸誘導体が、前記オキソ脂肪酸誘導体のR1が、炭素数9のアルキル基であり、R2が、炭素数5のアルキル基であるオキソ脂肪酸誘導体である植物の機能性成分増加剤が好ましい。 The oxo fatty acid derivative is preferably an oxo fatty acid derivative in which R 1 of the oxo fatty acid derivative is an alkyl group having 9 carbon atoms and R 2 is an alkyl group having 5 carbon atoms. .
 前記オキソ脂肪酸誘導体が、13-オキソ-9,11-オクタデカジエン酸またはその塩である植物の機能性成分増加剤が好ましい。 剤 A plant functional ingredient enhancer wherein the oxo fatty acid derivative is 13-oxo-9,11-octadecadienoic acid or a salt thereof is preferred.
 前記植物の機能性成分増加剤が、植物の茎葉もしくは根に接触させる噴霧剤もしくは浸漬用薬剤、または、土壌灌注用薬剤として用いられる植物の機能性成分増加剤が好ましい。 (4) The agent for increasing the functional component of a plant is preferably a spraying agent or a dipping agent that is brought into contact with the foliage or roots of the plant, or an agent for increasing the functional component of a plant used as a soil irrigation agent.
前記植物の機能性成分が、抗酸化性機能性成分、アミノ酸類またはペプチド類である植物の機能性成分増加剤が好ましい。 The plant functional component enhancer wherein the plant functional component is an antioxidant functional component, amino acids or peptides is preferred.
前記植物の機能性成分が、ビタミン類、ポリフェノール類、カロテノイド類、アミノ酸類およびそれらの組み合わせからなる群より選択される植物の機能性成分増加剤が好ましい。 Preferably, the plant functional component enhancer is selected from the group consisting of vitamins, polyphenols, carotenoids, amino acids and combinations thereof.
前記植物の機能性成分が、ビタミンC、ポリフェノール、ルテイン、βカロテン、リコピン、GABAからなる群より選択される少なくとも1種である植物の機能性成分増加剤が好ましい。 The plant functional ingredient increasing agent is preferably a plant functional ingredient which is at least one selected from the group consisting of vitamin C, polyphenol, lutein, β-carotene, lycopene, and GABA.
 前記植物の機能性成分増加剤が、ナス科、バラ科、セリ科、シソ科またはヒユ科の植物に対して使用されることを特徴とする植物の機能性成分増加剤が好ましい。 植物 A plant functional ingredient enhancer characterized in that the plant functional ingredient enhancer is used for plants of the solanaceae, rose family, Umbelliferae, Labiatae or Amaranthaceae.
 なお、本発明でいう植物の機能性成分増加剤は、植物内で機能性成分の生成促進および/または分解の抑制を起こさせ、植物中の機能性成分を増加させるものである。 The agent for increasing a functional component of a plant according to the present invention increases the functional component in a plant by accelerating the production and / or suppressing the decomposition of the functional component in the plant.
 本発明の植物の機能性成分増加剤は、ストレス栽培や高含有品種を使用しなくとも、植物に適宜散布または灌注することで植物の機能性成分を増加させることができる。 植物 The plant functional component increasing agent of the present invention can increase the functional component of a plant by appropriately spraying or irrigating the plant without using stress cultivation or a high content variety.
植物の機能性成分増加剤
 本発明の植物の機能性成分増加剤は、
オキソ脂肪酸誘導体であって、以下の式:
HOOC-(R1)-C=C-C(=O)-R2      (I)
(式中、
1:直鎖または分岐の、炭素数6~12のアルキル基であって、1つまたはそれ以上の二重結合を含んでいてもよく、
2:炭素数2~8のアルキル基であって、1つまたはそれ以上の分岐および/または二重結合を含んでいてもよい)
の構造式を有するオキソ脂肪酸誘導体またはその塩を有効成分として含むことを特徴とする。本発明はまた、すべての幾何異性体および立体異性体を含む式(I)の化合物またはその塩を有効成分として含む植物の機能性成分増加剤に関する。
Plant functional component enhancer The plant functional component enhancer of the present invention,
An oxo fatty acid derivative having the formula:
HOOC- (R 1 ) -C = CC (= O) -R 2 (I)
(Where
R 1 is a linear or branched alkyl group having 6 to 12 carbon atoms, which may contain one or more double bonds;
R 2 : an alkyl group having 2 to 8 carbon atoms, which may contain one or more branched and / or double bonds)
Wherein the oxo fatty acid derivative having the structural formula or a salt thereof is contained as an active ingredient. The present invention also relates to a plant functional ingredient enhancer comprising as an active ingredient a compound of the formula (I) or a salt thereof, including all geometric isomers and stereoisomers.
 オキソ脂肪酸誘導体またはその塩を植物の茎葉または根の一部に接触させることで、植物中に含まれる機能性成分の量を増加させることができる。一般的に行われるストレス栽培において増加する成分と同じ成分の植物体内での増加が確認できることから、本発明のオキソ脂肪酸誘導体またはその塩は、植物体に吸収されることによって、本来植物体内で環境ストレスによりシグナルとして産生され作用する分子と同様の作用を植物体内で行う物質および/またはその前駆体を含んでいると考えられる。すなわち、本発明のオキソ脂肪酸誘導体またはその塩により、植物が本来有しているストレス耐性機能を強化することができる。その結果、植物体内での機能性成分の生成促進および/または分解の抑制が起き、植物体内での機能性成分が増加される。 By contacting the oxo fatty acid derivative or a salt thereof with a part of the foliage or root of the plant, the amount of the functional component contained in the plant can be increased. Since an increase in the same component as the component that increases in the stress cultivation generally performed can be confirmed in the plant, the oxo fatty acid derivative or the salt thereof of the present invention is originally absorbed in the plant, and therefore, the environment is naturally increased in the plant. It is thought to contain a substance and / or a precursor thereof that performs the same action in a plant as a molecule that is produced and acts as a signal by stress. That is, the oxo fatty acid derivative or a salt thereof of the present invention can enhance the stress tolerance function inherent in plants. As a result, promotion of production and / or suppression of decomposition of the functional component in the plant occurs, and the functional component in the plant increases.
 オキソ脂肪酸は、不飽和脂肪酸代謝の中間体として生成されることが知られているいわゆる希少脂肪酸である。これら希少脂肪酸は、特にその生理活性などの様々な産業利用への応用という点から注目を集めている物質である。本発明においてオキソ脂肪酸誘導体またはその塩の一例として用いられる13-オキソ-9,11-オクタデカジエン酸は、炭素数18の、カルボニル基と2つの共役二重結合とを分子内にもつ化合物であって、酵素反応やその他の手段によって不飽和脂肪酸であるリノール酸から生成されるオキソ脂肪酸であり、希少脂肪酸の一つである。13-オキソ-9,11-オクタデカジエン酸は、天然ではトマトなどの植物中に存在していることが知られている。13-オキソ-9,11-オクタデカジエン酸は、脂質代謝改善等の生活習慣病を改善する活性が見いだされたことから、顕著な脂肪燃焼効果を示す機能性成分として、内外で活発な研究が行われている。 Oxo fatty acids are so-called rare fatty acids that are known to be produced as intermediates in the metabolism of unsaturated fatty acids. These rare fatty acids are substances that have attracted attention particularly from the viewpoint of application to various industrial uses such as their physiological activities. In the present invention, 13-oxo-9,11-octadecadienoic acid used as an example of an oxo fatty acid derivative or a salt thereof is a compound having a carbon number of 18 and having a carbonyl group and two conjugated double bonds in the molecule. In addition, it is an oxo fatty acid produced from linoleic acid, which is an unsaturated fatty acid, by an enzymatic reaction or other means, and is one of the rare fatty acids. It is known that 13-oxo-9,11-octadecadienoic acid naturally exists in plants such as tomato. 13-oxo-9,11-octadecadienoic acid has been found active in improving lifestyle-related diseases such as lipid metabolism. Has been done.
 しかしながら、13-オキソ-9,11-オクタデカジエン酸などのオキソ脂肪酸誘導体またはその塩に、植物中に含まれる機能性成分の量を増加させる効果があることは知られていなかった。 However, it has not been known that an oxo fatty acid derivative such as 13-oxo-9,11-octadecadienoic acid or a salt thereof has an effect of increasing the amount of a functional component contained in a plant.
 本発明の植物の機能性成分増加剤には、オキソ脂肪酸誘導体またはその塩が含まれていればよく、それらの由来などは特に限定されるものではない。すなわち、オキソ脂肪酸誘導体またはその塩としては、市販品を用いてもよいし、トマトなど植物中に含まれているものをそのまま、または、抽出および/または精製して用いてもよい。あるいは、オキソ脂肪酸誘導体またはその塩は、上述のように、酵素、例えば微生物由来の酵素を不飽和脂肪酸などの基質に作用させて得られるものであってもよいし、また、例えば化学合成によって得られるものでもよく、さらに微生物を用いて製造されるものなどであってもよい。例えば、オキソ脂肪酸誘導体またはその塩は、原料としてリノール酸を用いて、リポキシゲナーゼ(LOX)および/または脱水素酵素(デヒドロゲナーゼ)、例えばアルコール脱水素酵素(ADH)などの作用により酵素的に変換することによって、または、金属触媒を用いた触媒反応を介して、製造され得る。このようにして得られたオキソ脂肪酸誘導体またはその塩は、必要に応じて、所望の濃度で、または、適度に希釈されて、植物中の機能性成分増加のために使用することができる。 植物 The plant functional ingredient increasing agent of the present invention only needs to contain an oxo fatty acid derivative or a salt thereof, and their origin is not particularly limited. That is, as the oxo fatty acid derivative or a salt thereof, a commercially available product may be used, or a product contained in a plant such as tomato may be used as it is or after being extracted and / or purified. Alternatively, the oxo fatty acid derivative or a salt thereof may be obtained by reacting an enzyme, for example, an enzyme derived from a microorganism with a substrate such as an unsaturated fatty acid, as described above, or obtained by, for example, chemical synthesis. And those produced using microorganisms. For example, an oxo fatty acid derivative or a salt thereof is enzymatically converted using linoleic acid as a raw material by the action of lipoxygenase (LOX) and / or dehydrogenase (dehydrogenase) such as alcohol dehydrogenase (ADH). Or through a catalytic reaction using a metal catalyst. The thus obtained oxo fatty acid derivative or a salt thereof can be used at a desired concentration or appropriately diluted, if necessary, for increasing the functional components in a plant.
 なお、オキソ脂肪酸には、上述のように、(E,E体)、(Z,E体)、(E,Z体)、(Z,Z体)などの異性体が存在することが知られているが、これら異性体の植物の機能性成分増加剤における効果は同様である。したがって、本発明において、例えばオキソ脂肪酸誘導体またはその塩の一例として用いられ得る13-オキソ-9,11-オクタデカジエン酸は、その異性体をすべて含むものとされる。すなわち、本発明の植物の機能性成分増加剤に含まれるオキソ脂肪酸は、どのような異性体として植物の機能性成分増加剤中に存在していても、植物の機能性成分増加剤として同様の効果を奏する。 It is known that oxo fatty acids have isomers such as (E, E-form), (Z, E-form), (E, Z-form), (Z, Z-form) as described above. However, the effects of these isomers on the functional ingredient enhancer for plants are the same. Therefore, in the present invention, 13-oxo-9,11-octadecadienoic acid, which can be used as an example of an oxo fatty acid derivative or a salt thereof, includes all its isomers. That is, the oxo fatty acid contained in the plant functional ingredient enhancer of the present invention, no matter what isomer is present in the plant functional ingredient enhancer, the same as the plant functional ingredient enhancer It works.
 また、本発明の植物の機能性成分増加剤には、所望の濃度のオキソ脂肪酸誘導体またはその塩が含まれていればよい。例えばオキソ脂肪酸誘導体またはその塩として、オキソ脂肪酸誘導体を含有する混合物が使用されてもよい。 The plant functional ingredient enhancer of the present invention may contain an oxo fatty acid derivative or a salt thereof at a desired concentration. For example, a mixture containing an oxo fatty acid derivative may be used as the oxo fatty acid derivative or a salt thereof.
 本発明の植物の機能性成分増加剤には、オキソ脂肪酸誘導体が塩の形で存在していてもよく、塩としては例えば、アンモニウム塩、金属塩などが挙げられる。金属塩としては1価の金属イオンを生成するものが望ましく、例えばこれらに限定される訳ではないが、ナトリウム塩およびカリウム塩が好適に用いられ得る。 に は In the plant functional ingredient increasing agent of the present invention, the oxo fatty acid derivative may be present in the form of a salt, and examples of the salt include an ammonium salt and a metal salt. It is desirable that the metal salt generates a monovalent metal ion. For example, sodium salts and potassium salts can be suitably used, although not limited thereto.
 本発明の植物の機能性成分増加剤は、天然物であるオキソ脂肪酸誘導体またはその塩を含むことを特徴とするため、土壌汚染や毒性に関わる問題を引き起こすことなく、植物中に含まれる機能性成分の量を増加させることがでる。すなわち、本発明の植物の機能性成分増加剤を用いることによって、安全かつ簡便に、植物中の機能性成分を増大させることができる。 The plant functional ingredient-enhancing agent of the present invention is characterized by containing a natural product of an oxo fatty acid derivative or a salt thereof. The amount of components can be increased. That is, by using the agent for increasing the functional component of a plant of the present invention, the functional component in the plant can be safely and simply increased.
 本発明の植物の機能性成分増加剤は、施用される植物において、PR1、PR2、PDF1.2などのストレス応答遺伝子の発現を誘導することができる。例えば、ナス科の植物であれば、PR1a、LOXD等のストレス応答遺伝子の発現を誘導することができる。この結果、植物の種類・品種や生育ステージ、また栽培環境や季節に依存して、クチクラの発達、トライコームの発達、毛根発生促進、抗酸化物質の生成量増加、水分蒸散防止機能の促進(プロリンなどの生産増加や葉を厚くする)、茎が太くなる、などが起こる。すなわち、本発明の植物の機能性成分増加剤は、植物が本来有しているストレス耐性機能を強化する。したがって、ストレス栽培を用いずとも、植物の機能性成分を増加させることができる。ストレス栽培や高含有品種を使用した場合に発生する収量の低下や病害虫に対する抵抗性の低下といった問題が生じない。本発明の植物の機能性成分増加剤によれば、従来の栽培方法を変えることなく簡便な処理によって植物のストレス耐性機能を向上させ、植物に含まれる機能性成分量を増加させることができる。 The plant functional ingredient increasing agent of the present invention can induce the expression of stress-responsive genes such as PR1, PR2, and PDF1.2 in plants to which it is applied. For example, a plant of the Solanaceae family can induce the expression of stress-responsive genes such as PR1a and LOXD. As a result, cuticle development, trichome development, promotion of hair root development, increase in the production of antioxidants, and promotion of the function of preventing water transpiration (depending on the type, variety and growth stage of the plant, as well as the cultivation environment and season) Increased production of proline and thicker leaves), thicker stems, etc. occur. That is, the agent for increasing a functional component of a plant of the present invention enhances the stress tolerance function that the plant originally has. Therefore, the functional components of the plant can be increased without using stress cultivation. Problems such as a decrease in yield and a decrease in resistance to pests, which occur when stress cultivation or a high content variety is used, do not occur. ADVANTAGE OF THE INVENTION According to the functional ingredient increasing agent of the plant of this invention, the stress tolerance function of a plant can be improved by simple processing, without changing the conventional cultivation method, and the amount of the functional component contained in a plant can be increased.
 本発明によって含量が増加する機能性成分としては、例えば、ビタミン類、ポリフェノール類、カロテノイド類、ペプチド類、アミノ酸類などを挙げることができる。ビタミン類としてはビタミンC、ポリフェノール類としては、例えば、クロロゲン酸、スコポレチン、シナピン酸、シナピルアルデヒドなどが挙げられる。カロテノイド類としてはβカロテンやルテイン、リコピンなどが挙げられる。ペプチド類、アミノ酸類としてはGABA、グルタミン酸やこれらが脱水縮合して結合したペプチドなどが挙げられる。本発明の植物の機能性成分増加剤によって、これらの機能性成分の少なくとも1つが増加され得る。 (4) Examples of the functional component whose content is increased by the present invention include vitamins, polyphenols, carotenoids, peptides, amino acids, and the like. Examples of vitamins include vitamin C, and examples of polyphenols include chlorogenic acid, scopoletin, sinapinic acid, and sinapiraldehyde. Examples of carotenoids include β-carotene, lutein, and lycopene. Examples of the peptides and amino acids include GABA, glutamic acid, and peptides to which these are bound by dehydration condensation. The plant functional ingredient enhancer of the present invention can increase at least one of these functional ingredients.
 本発明を適用することのできる植物は、特に限定されないが、例えば、ナス科、アブラナ科、キク科、マメ科、ユリ科、バラ科、セリ科、シソ科またはヒユ科の植物が挙げられる。例えば、レタス、ホウレンソウ、コマツナ、ミズナ、キャベツ、葉大根、白菜、シソなどの葉菜類、ロメインレタス、ビーツ、コマツナ、ホウレンソウ、ミズナ、ルッコラ、カラシナ、ケール、チコリーなどのベビーリーフ類、カンゾウ、マオウなどの薬草、トマト、ナス、キュウリ、ピーマン、パプリカ、オクラ、トウガラシ、カボチャ、イチゴ、ブルーベリーなどの果菜類、ダイズなどの豆類、ネギ、タマネギ、ニンジン、レンコン、ゴボウ、ダイコン、ジャガイモなどの根菜類などに施用することができる。 植物 Plants to which the present invention can be applied are not particularly limited, and include, for example, plants of the Solanaceae, Brassicaceae, Asteraceae, Leguminosae, Lily, Rosaceae, Aceraceae, Lamiaceae, and Amaranthaceae. For example, leaf vegetables such as lettuce, spinach, komatsuna, mizuna, cabbage, leaf radish, Chinese cabbage, perilla, baby leaves such as romaine lettuce, beetroot, komatsuna, spinach, mizuna, arugula, mustard, kale, chicory, etc., licorice, ephedra, etc. Herbs, tomatoes, eggplants, cucumber, peppers, paprika, okra, capsicum, pumpkin, strawberries, fruits and vegetables such as blueberries, beans such as soybeans, root vegetables such as onions, onions, carrots, lotus root, burdock, radishes, potatoes, etc. Can be applied.
 植物はどのように栽培されていてもよく、すなわち土壌に植え付けられていても、また水耕液に浸して栽培されていてもよい。本発明の植物の機能性成分増加剤は、任意の方法で施用することができ、例えば、植物の茎葉もしくは根に接触させる噴霧剤もしくは浸漬用薬剤、または、土壌灌注用薬剤として使用され得る。特殊な設備等を用意せずとも、本発明の植物の機能性成分増加剤を散布等するだけで植物の機能性成分を増加させることができるため、本発明は非常に有利である。 The plant may be cultivated in any manner, that is, planted in soil or immersed in a hydroponic solution. The agent for increasing a functional component of a plant of the present invention can be applied by any method, and for example, can be used as an agent for spraying or dipping to contact the foliage or roots of the plant, or as an agent for soil irrigation. The present invention is very advantageous because the functional components of the plant can be increased only by spraying the agent for increasing the functional components of the plant of the present invention without preparing special equipment and the like.
 本発明はまた、前述した栽培方法により栽培した機能性成分が増加した植物に関する。そのような植物は、食用として或いは化粧品や医薬品、サプリメントなどの原料として有用であると考えられる。 The present invention also relates to a plant cultivated by the cultivation method described above, wherein the functional component is increased. Such plants are considered to be useful as food or as raw materials for cosmetics, pharmaceuticals, supplements and the like.
 本発明を実施例に基づいて説明するが、本発明は実施例のみに限定されるものではない。 The present invention will be described based on examples, but the present invention is not limited to only examples.
試験用植物の機能性成分増加剤の調製
 原料として、純度80%のリノール酸(和光純薬工業株式会社製)2.8gを用い、これに炭酸カリウム(和光純薬工業株式会社製)7g、および、蒸留水300mlを加えて反応溶液を調製した。この時の反応溶液のpHは11であった。
Preparation of Functional Component Increasing Agent for Test Plant As a raw material, 2.8 g of linoleic acid having a purity of 80% (manufactured by Wako Pure Chemical Industries, Ltd.) was used, and 7 g of potassium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was used. And 300 ml of distilled water was added to prepare a reaction solution. At this time, the pH of the reaction solution was 11.
 反応溶液にリポキシゲナーゼ(シグマアルドリッチ社製、Glycine max由来)を0.2mg添加し、30℃で24時間反応させたのち、反応混合物を90℃の湯浴中に5分間置いて、酵素を失活させた。 0.2 mg of lipoxygenase (manufactured by Sigma-Aldrich, derived from Glycine max) was added to the reaction solution and reacted at 30 ° C. for 24 hours. The reaction mixture was placed in a 90 ° C. water bath for 5 minutes to inactivate the enzyme. I let it.
 酵素を失活させた反応溶液を室温に戻した後に、アルコール脱水素酵素(和光純薬工業株式会社製、Yeast由来)を0.2mg添加し、30℃にてさらに24時間反応させた。 (4) After returning the reaction solution in which the enzyme was deactivated to room temperature, 0.2 mg of alcohol dehydrogenase (manufactured by Wako Pure Chemical Industries, Ltd., derived from Yeast) was added, and the mixture was further reacted at 30 ° C. for 24 hours.
 反応終了後の反応溶液中の生成物を、ケイマンケミカル社製の13-オキソ-9,11-オクタデカジエン酸を標準物質としてMS2スペクトル解析を用いてLC-MSにて同定し、検出波長 UV 272nmで、絶対検量線法により定量を行った。 The product in the reaction solution after completion of the reaction was identified by LC-MS using MS 2 spectrum analysis using 13-oxo-9,11-octadecadienoic acid manufactured by Cayman Chemical as a standard substance. Quantitation was performed by UV 272 nm by absolute calibration method.
 (E,E体)、(E,Z体)などの異性体の合算収率として、3.5%の収率で13-オキソ-9,11-オクタデカジエン酸を得た。なお、収率(%)は以下の式に基づいて求めた。
 収率(%)=
  (生成した13-オキソ-9,11-オクタデカジエン酸のwt%)/  (使用した原料リノール酸の初期wt%)
13-oxo-9,11-octadecadienoic acid was obtained with a combined yield of isomers such as (E, E form) and (E, Z form) of 3.5%. The yield (%) was determined based on the following equation.
Yield (%) =
(Wt% of generated 13-oxo-9,11-octadecadienoic acid) / (initial wt% of raw linoleic acid used)
 製造された13-オキソ-9,11-オクタデカジエン酸およびその異性体を用いて約300ppmのカリウム塩水溶液を調製し、試験用植物の機能性成分増加剤とし、下記の評価を行った。 A potassium salt aqueous solution of about 300 ppm was prepared using the produced 13-oxo-9,11-octadecadienoic acid and its isomer, and used as an agent for increasing the functional component of a test plant, and the following evaluation was performed.
イチゴにおける機能性成分増加効果
・実施例1
 イチゴ(品種:紅ほっぺ)を土耕栽培、一般肥料溶液灌注により7~9株栽培した。開花結実が始まる直前に、上記試験用植物の機能性成分増加剤を水で4000倍希釈した希釈液を用いて、6日に一度の頻度で2回、1株あたり約100mlの割合で株元に灌注処理した。収穫は灌注処理直後に行い、収穫した果実から15個を無作為に選んで後の分析に供した。
・比較例1
 試験用植物の機能性成分増加剤の代わりに、灌注する溶液を水とした以外は、実施例1と同様に試験を行った。
Example 1 effect of increasing functional ingredients in strawberries
Strawberries (variety: Beni Hoppe) were cultivated in soil and 7 to 9 strains were cultivated by general fertilizer solution irrigation. Immediately before the onset of flowering and fruiting, using a diluent obtained by diluting the functional ingredient increasing agent of the test plant 4000 times with water, once every 6 days twice a day at a rate of about 100 ml per strain. Was irrigated. Harvesting was performed immediately after the irrigation treatment. Fifteen fruits were randomly selected from the harvested fruits for further analysis.
-Comparative example 1
The test was performed in the same manner as in Example 1 except that the solution to be irrigated was replaced with water instead of the functional component increasing agent of the test plant.
ホウレンソウにおける機能性成分増加効果
・実施例2
 ホウレンソウ(品種:弁天)をハウス土耕栽培により50株程度栽培した。本葉展開後に、上記試験用植物の機能性成分増加剤を水で4000倍希釈した希釈液を用い、1株あたり約20mlの割合で葉面に散布処理した。処理後15日間栽培し、収穫した。収穫した株から無作為に5株を選んで後の分析に供した。
・比較例2
 試験用植物の機能性成分増加剤の代わりに、灌注する溶液を水とした以外は、実施例2と同様に試験を行った。
Example 2 Effect of increasing functional components in spinach-Example 2
Spinach (variety: Benten) was cultivated by house soil cultivation in about 50 strains. After the development of the true leaves, the leaves were sprayed at a rate of about 20 ml per strain using a diluent obtained by diluting the functional ingredient enhancer of the test plant 4000 times with water. After the treatment, they were cultivated for 15 days and harvested. Five strains were randomly selected from the harvested strains and used for later analysis.
・ Comparative Example 2
The test was performed in the same manner as in Example 2 except that the solution to be irrigated was replaced with water instead of the agent for increasing the functional component of the test plant.
ニンジンにおける機能性成分増加効果
・実施例3
 ニンジン(品種:向陽2号)を土耕栽培により60株程度栽培した。本葉展開後に、上記試験用植物の機能性成分増加剤を水で4000倍希釈した希釈液を用いて、7日に一度の頻度で8回、1株あたり約50mlの割合で葉面に散布処理した。処理の開始から60日後に成長したニンジン根部を採取した。採取した株から無作為に6株を選んで後の分析に供した。
・比較例3
 試験用植物の機能性成分増加剤の代わりに、灌注する溶液を水とした以外は、実施例3と同様に試験を行った。
Example 3 Effect of increasing functional components in carrot
About 60 strains of carrot (cultivar: Koyo No. 2) were cultivated by soil cultivation. After the development of the true leaves, using a diluent obtained by diluting the functional ingredient enhancer of the test plant 4000 times with water, sprayed onto the leaves 8 times, once every 7 days, at a rate of about 50 ml per strain. Processed. Carrot roots that grew 60 days after the start of the treatment were collected. Six strains were randomly selected from the collected strains and used for later analysis.
-Comparative example 3
The test was performed in the same manner as in Example 3, except that the solution to be irrigated was replaced with water instead of the functional component increasing agent of the test plant.
シソにおける機能性成分増加効果
・実施例4
 シソ(大葉;品種:香り青大葉)を土耕栽培により20株程度栽培した。本葉展開後に、上記試験用植物の機能性成分増加剤を水で4000倍希釈した希釈液を用いて、7日に一度の頻度で4回、1株あたり約100mlの割合で葉面散布した。処理の開始から30日後に成長した葉部を採取し、採取した葉部から無作為に選んだ800g分を後の分析に供した。
・比較例4
 試験用植物の機能性成分増加剤の代わりに散布する溶液を水とした以外は、実施例4と同様とした。
Example 4 Effect of Increasing Functional Ingredients in Perilla
Perilla (large leaves; variety: fragrant green leaf) was cultivated by soil cultivation in about 20 strains. After the development of the true leaves, using a diluent obtained by diluting the functional ingredient increasing agent of the test plant 4000 times with water, the leaves were sprayed four times, once every seven days, at a rate of about 100 ml per strain. . Thirty days after the start of the treatment, the grown leaves were collected, and 800 g of randomly selected leaves from the collected leaves were subjected to subsequent analysis.
-Comparative example 4
Example 4 was carried out in the same manner as in Example 4 except that the solution to be sprayed was changed to water instead of the functional ingredient enhancer of the test plant.
ナスにおける機能性成分増加効果
・実施例5
 ナス(品種:千両2号)を土耕栽培により5株栽培した。本葉展開後に、上記試験用植物の機能性成分増加剤を水で4000倍希釈した希釈液を用いて、7日に一度の頻度で4回、1株あたり約100mlの割合で株元灌注した。処理の開始から30日後に成長した果実部を採取し、採取した果実部から無作為に選んだ2kg分を後の分析に供した。
・比較例5
 試験用植物の機能性成分増加剤の代わりに灌注する溶液を水とした以外は、実施例5と同様とした。
Effect of increasing functional ingredients in eggplant-Example 5
Five eggplants (variety: Senryo 2) were cultivated by soil cultivation. After the development of the true leaves, a diluent obtained by diluting the functional ingredient increasing agent of the test plant 4000 times with water was irrigated four times, once every seven days, at a rate of about 100 ml per strain. . Thirty days after the start of the treatment, the grown fruit part was collected, and a 2 kg portion randomly selected from the collected fruit part was subjected to subsequent analysis.
-Comparative example 5
Example 5 was the same as Example 5, except that the solution to be irrigated was changed to water instead of the functional component increasing agent of the test plant.
トマトにおける機能性成分増加効果
・実施例6
 ハウス内栽培のミニトマト2株を水耕栽培した。定植約2カ月後以降より上記試験用植物の機能性成分増加剤を1~2ml、7日に一度の頻度で株元に添加した。処理以降収穫されるミニトマトから無作為に選んだ3~5個を分析に供し、9週間分の値を平均し分析値とした。
・比較例6
 試験用植物の機能性成分増加剤の代わりに添加する溶液を水とした以外は、実施例6と同様とした。
Example 6 Effect of Increasing Functional Ingredients in Tomato
Two mini tomatoes cultivated in the house were hydroponically cultivated. From about two months after planting, 1-2 ml of the functional ingredient-enhancing agent of the test plant was added to the plant once every seven days. Three to five randomly selected mini tomatoes harvested after the treatment were subjected to analysis, and the values for nine weeks were averaged to obtain an analysis value.
Comparative Example 6
Example 6 was carried out in the same manner as in Example 6, except that the solution to be added instead of the functional component increasing agent of the test plant was water.
 実施例1~6および比較例1~6で得られた各野菜の可食部(すなわちイチゴは果実、ホウレンソウは地上部、ニンジンは根部、大葉は葉部、ナスとトマトは果実部)に含まれる機能性成分の量および機能性を評価した。具体的にはイチゴはミキサーですりつぶした試料1gをエタノール10mlにて抽出した。トマトはミキサーですりつぶした試料1gを水7mlにて抽出(GABAの分析用)、残った残渣をアセトン8mlで抽出(リコピンの分析用)した。残りの各野菜についてはデザイナーフーズ株式会社に野菜を送付し、分析委託を行った。 The edible portion of each vegetable obtained in Examples 1 to 6 and Comparative Examples 1 to 6 (that is, strawberry is a fruit, spinach is above the ground, carrot is a root, large leaves are leaves, eggplant and tomato are fruits) The amount and functionality of the functional components to be used were evaluated. Specifically, 1 g of a strawberry-milled sample was extracted with 10 ml of ethanol. For the tomato, 1 g of a sample ground with a mixer was extracted with 7 ml of water (for GABA analysis), and the remaining residue was extracted with 8 ml of acetone (for lycopene analysis). The remaining vegetables were sent to Designer Foods Co., Ltd. for analysis.
可食部中の機能性成分としては、各野菜に一般的に含まれることが知られている機能性成分を評価した。具体的には、イチゴではフォーリン・チオカルト法により総ポリフェノール量を測定し、また、ホウレンソウではルテインを、ニンジンではβカロテン、トマトではリコピン、GABAをHPLC法で、総アントシアニン量は紫外可視分光法で、ビタミンCはRQflex(登録商標)(メルク社製)リフレクトメーターを用いて測定した。得られた結果を表1に示す。 As the functional components in the edible portion, functional components generally known to be contained in each vegetable were evaluated. Specifically, the total polyphenol content is measured by the Folin-Ciocalteu method for strawberries, lutein for spinach, β-carotene for carrots, lycopene and GABA for tomatoes by HPLC, and total anthocyanin content by ultraviolet-visible spectroscopy. And Vitamin C were measured using an RQflex (registered trademark) (manufactured by Merck) reflectometer. Table 1 shows the obtained results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
可食部の機能性指標としては、各試料の抗酸化性を評価した。具体的には、各試料の抗酸化力として、代表的な活性酸素であるスーパーオキシドアニオン、ヒドロキシラジカルおよび一重項酸素に対する試料のスーパーオキシド消去能、ヒドロキシラジカル消去能および一重項酸素消去能を電子スピン共鳴装置(ESR)により、ならびに、試料のDPPH(1,1-ジフェニル-2-ピクリルヒドラジル)ラジカル消去能を吸光光度法により、測定して、各試料の抗酸化性を調べた(デザイナーフーズ株式会社に分析委託)。結果を表2に示す。なお、表中、ヒドロキシラジカル消去能は、DMSO相当量(μmolDMSO)であり、一重項酸素消去能は、His相当量(μmolHis)であり、DPPHラジカル消去能は、標準物質にTroloxを用いたTrolox相当量(mgTE)であり、スーパーオキシド消去能の値は、1gの試料が相当するスーパーオキシドジムスターゼ(SOD)のユニット数である。 As a functional index of the edible part, the antioxidant property of each sample was evaluated. Specifically, as the antioxidant power of each sample, the superoxide annihilation ability, hydroxy radical scavenging ability and singlet oxygen scavenging ability of the sample with respect to superoxide anion, hydroxyl radical and singlet oxygen, which are typical active oxygens, are measured by electron. The antioxidant properties of each sample were examined by measuring the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging ability of the sample by a spin resonance apparatus (ESR) and by absorptiometry. Analysis commissioned to Designer Foods Co., Ltd.). Table 2 shows the results. In the table, hydroxy radical scavenging ability is equivalent to DMSO (μmol DMSO), singlet oxygen scavenging ability is His equivalent (μmolHis), and DPPH radical scavenging ability is Trolox using Trolox as a standard substance. The amount of superoxide scavenging ability is the equivalent amount (mgTE) and the number of units of superoxide dismutase (SOD) corresponding to 1 g of the sample.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、試験用植物の機能性成分増加剤で処理された実施例の野菜に含有される機能性成分量は、比較例に比べて1.1倍~1.5倍に増加していた。またそれに伴い、表2に示されるように、実施例の野菜の抗酸化性も1.1倍~1.4倍程度上昇していた。なお、実施例4のシソについては、上記抗酸化指標の測定による抗酸化性の評価は行わなかった。これは、表1に示されるように実施例4のシソでは、抗酸化機能の評価においてポジティブコントロールとしても使用されるビタミンCの量が30%も上昇したという実験結果から、試験用植物の機能性成分増加剤で処理されたシソではビタミンCの増加によって抗酸化性が上昇していることは明らかであると推察されたためである。また、実施例6のトマトについても抗酸化性の評価は行っていない。これは表1に示されるようにリコピンの増加により抗酸化性の増加が自明であると考えられたからである。リコピンは一般的に知られている脂溶性の抗酸化成分であるビタミンEの抗酸化力をはるかにしのぎ、βカロテンやルテインなどの他のカロテノイド類のなかでも群を抜いた強力な抗酸化作用を持っていることが広く認知されている。また、表1にあるようにトマトにおいて増加したもう一つの機能性成分であるGABAはγ-アミノ酪酸とも呼ばれるアミノ酸類の一種で、抗酸化作用は弱いもののヒトの体内では抑制系の神経伝達物資として作用する機能性成分であることが分かっており、そのリラックス作用、抗ストレス作用で多くのサプリなど栄養強化食品に使用されている。これらの結果から、本発明の植物の機能性成分増加剤が植物に含まれる機能性成分量を増大させていること、さらに、抗酸化活性がある機能性成分量を増大させることによって抗酸化性などの機能性指標を明らかに向上させていることがわかる。 As shown in Table 1, the amount of the functional component contained in the vegetable of the example treated with the functional component increasing agent of the test plant was 1.1 to 1.5 times that of the comparative example. Was increasing. In addition, as shown in Table 2, the antioxidant properties of the vegetables of the examples were also increased by about 1.1 to 1.4 times. The perilla of Example 4 was not evaluated for antioxidant properties by measuring the above antioxidant index. This is because, as shown in Table 1, in the perilla of Example 4, the amount of vitamin C used as a positive control in the evaluation of the antioxidant function increased by as much as 30%. This is because it was presumed that in perilla treated with a sex component enhancer, the antioxidant property was clearly increased due to the increase in vitamin C. The antioxidant property of the tomato of Example 6 was not evaluated. This is because, as shown in Table 1, it was considered that the increase in lycopene was evident in the increase in antioxidant properties. Lycopene far exceeds the antioxidant power of vitamin E, a commonly known fat-soluble antioxidant, and is one of the strongest antioxidants among other carotenoids such as β-carotene and lutein. It is widely recognized that they have Further, as shown in Table 1, GABA, another functional component increased in tomato, is a kind of amino acids also called γ-aminobutyric acid, and has a weak antioxidant effect, but has a suppressive neurotransmitter substance in the human body. It has been found that it is a functional ingredient that acts as an antioxidant, and is used in many fortified foods such as supplements because of its relaxing action and anti-stress action. From these results, it can be seen that the plant functional ingredient enhancer of the present invention increases the amount of the functional component contained in the plant, and furthermore, increases the amount of the functional component having an antioxidant activity to thereby increase the antioxidant activity. It can be seen that the functional indices such as are clearly improved.
 上記の結果より、本発明の植物の機能性成分増加剤が、顕著な植物機能性成分生成促進および/または植物機能性成分分解抑制効果を有するものであり、植物体内の機能性成分の増加効果に優れた植物の機能性成分増加剤であることがわかる。 From the above results, the plant functional ingredient increasing agent of the present invention has a remarkable effect of promoting the production of the plant functional ingredient and / or inhibiting the decomposition of the plant functional ingredient, and the effect of increasing the functional ingredient in the plant. It can be seen that this is an excellent plant functional ingredient enhancer.

Claims (10)

  1. 以下の式:
    HOOC-(R1)-C=C-C(=O)-R2      (I)
    (式中、
    1:直鎖または分岐の、炭素数6~12のアルキル基であって、1つまたはそれ以上の二重結合を含んでいてもよく、
    2:炭素数2~8のアルキル基であって、1つまたはそれ以上の分岐および/または二重結合を含んでいてもよい)
    の構造式を有するオキソ脂肪酸誘導体またはその塩を有効成分として含むことを特徴とする植物の機能性成分増加剤。
    The following formula:
    HOOC- (R 1 ) -C = CC (= O) -R 2 (I)
    (Where
    R 1 is a linear or branched alkyl group having 6 to 12 carbon atoms, which may contain one or more double bonds;
    R 2 : an alkyl group having 2 to 8 carbon atoms, which may contain one or more branched and / or double bonds)
    An agent for increasing a functional component of a plant, comprising an oxo fatty acid derivative having the structural formula: or a salt thereof as an active ingredient.
  2. 請求項1記載の植物の機能性成分増加剤であって、前記オキソ脂肪酸誘導体の、
    1のアルキル基の炭素数が8~10であり、
    2のアルキル基の炭素数が4~6である。
    The plant functional ingredient enhancer according to claim 1, wherein the oxo fatty acid derivative is
    The alkyl group of R 1 has 8 to 10 carbon atoms,
    The alkyl group of R 2 has 4 to 6 carbon atoms.
  3. 請求項1または2記載の植物の機能性成分増加剤であって、前記オキソ脂肪酸誘導体の、
    1が、式(I)におけるカルボニル基のαおよびβ炭素の間の二重結合と共役二重結合を形成する二重結合を含む。
    The plant functional ingredient enhancer according to claim 1 or 2, wherein the oxo fatty acid derivative is
    R 1 contains a double bond that forms a conjugated double bond with the double bond between the α and β carbons of the carbonyl group in formula (I).
  4. 請求項3記載の植物の機能性成分増加剤であって、前記オキソ脂肪酸誘導体の、
    1が、炭素数9のアルキル基であり、
    2が、炭素数5のアルキル基である。
    The plant functional ingredient enhancer according to claim 3, wherein the oxo fatty acid derivative is
    R 1 is an alkyl group having 9 carbon atoms,
    R 2 is an alkyl group having 5 carbon atoms.
  5. 請求項4記載の植物の機能性成分増加剤であって、前記オキソ脂肪酸誘導体が、13-オキソ-9,11-オクタデカジエン酸またはその塩である。 5. The agent for increasing a functional component of a plant according to claim 4, wherein the oxo fatty acid derivative is 13-oxo-9,11-octadecadienoic acid or a salt thereof.
  6. 植物の茎葉もしくは根に接触させる噴霧剤もしくは浸漬用薬剤、または、土壌灌注用薬剤として用いられる請求項1~5のいずれか1項に記載の植物の機能性成分増加剤。 The agent for increasing a functional component of a plant according to any one of claims 1 to 5, which is used as a spraying agent or a dipping agent to be brought into contact with foliage or roots of a plant, or a soil irrigation agent.
  7. 前記植物の機能性成分が、抗酸化性機能性成分、アミノ酸類またはペプチド類である請求項1~6のいずれか1項に記載の植物の機能性成分増加剤。 The agent for increasing a functional component of a plant according to any one of claims 1 to 6, wherein the functional component of the plant is an antioxidant functional component, an amino acid or a peptide.
  8. 前記植物の機能性成分が、ビタミン類、ポリフェノール類、カロテノイド類、アミノ酸類およびそれらの組み合わせからなる群より選択される請求項1~7のいずれか1項に記載の植物の機能性成分増加剤。 The agent for increasing a functional component of a plant according to any one of claims 1 to 7, wherein the functional component of the plant is selected from the group consisting of vitamins, polyphenols, carotenoids, amino acids, and combinations thereof. .
  9. 前記植物の機能性成分が、ビタミンC、ポリフェノール、ルテイン、βカロテン、リコピン、GABAからなる群より選択される少なくとも1種である請求項1~7のいずれか1項に記載の植物の機能性成分増加剤。 The plant functionality according to any one of claims 1 to 7, wherein the plant functional component is at least one selected from the group consisting of vitamin C, polyphenol, lutein, β-carotene, lycopene, and GABA. Component enhancer.
  10. ナス科、バラ科、セリ科、シソ科またはヒユ科の植物に対して使用されることを特徴とする請求項1~8のいずれか1項に記載の植物の機能性成分増加剤。 The agent for increasing a functional component of a plant according to any one of claims 1 to 8, wherein the agent is used for a plant of the solanaceae, rose family, Umbelliferae, Labiatae or Amaranthaceae.
PCT/JP2019/035243 2018-09-10 2019-09-06 Functional ingredient-increasing agent for plants WO2020054630A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020526643A JP6786746B2 (en) 2018-09-10 2019-09-06 Plant functional ingredient enhancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018168758 2018-09-10
JP2018-168758 2018-09-10

Publications (1)

Publication Number Publication Date
WO2020054630A1 true WO2020054630A1 (en) 2020-03-19

Family

ID=69778036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035243 WO2020054630A1 (en) 2018-09-10 2019-09-06 Functional ingredient-increasing agent for plants

Country Status (2)

Country Link
JP (4) JP6786746B2 (en)
WO (1) WO2020054630A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255419A1 (en) * 2021-06-02 2022-12-08 イビデン株式会社 Powdery plant activator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167248A1 (en) * 2022-03-01 2023-09-07 国立研究開発法人産業技術総合研究所 New pest control method targeting respiratory organ forming mechanism of pests

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057446A1 (en) * 2004-11-25 2006-06-01 Shiseido Company, Ltd. α-KETOL UNSATURATED FATTY ACID DERIVATIVES AND PLANT GROWTH REGULATORS CONTAINING THE SAME
WO2011034027A1 (en) * 2009-09-16 2011-03-24 株式会社資生堂 Plant growth regulator
WO2013005695A1 (en) * 2011-07-01 2013-01-10 株式会社資生堂 Plant cell differentiation promoter
WO2014088002A1 (en) * 2012-12-03 2014-06-12 キッコーマン株式会社 Method for producing ketooctadecadienoic acid
WO2018168860A1 (en) * 2017-03-14 2018-09-20 イビデン株式会社 Plant activator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3510868A4 (en) * 2016-09-08 2020-04-08 Ibiden Co., Ltd. Plant activator and process for producing plant activator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057446A1 (en) * 2004-11-25 2006-06-01 Shiseido Company, Ltd. α-KETOL UNSATURATED FATTY ACID DERIVATIVES AND PLANT GROWTH REGULATORS CONTAINING THE SAME
WO2011034027A1 (en) * 2009-09-16 2011-03-24 株式会社資生堂 Plant growth regulator
WO2013005695A1 (en) * 2011-07-01 2013-01-10 株式会社資生堂 Plant cell differentiation promoter
WO2014088002A1 (en) * 2012-12-03 2014-06-12 キッコーマン株式会社 Method for producing ketooctadecadienoic acid
WO2018168860A1 (en) * 2017-03-14 2018-09-20 イビデン株式会社 Plant activator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ONO KATSUYA: "Approach to plant response such as inhibitory effect of plant disease by microbial fatty acid metabolite (BMFA) (1) - (4)", BIOTECHNOLOGY AND AGROCHEMISTRY, 5 March 2017 (2017-03-05) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255419A1 (en) * 2021-06-02 2022-12-08 イビデン株式会社 Powdery plant activator

Also Published As

Publication number Publication date
JP2023076680A (en) 2023-06-01
JP6786746B2 (en) 2020-11-18
JPWO2020054630A1 (en) 2020-10-22
JP7260515B2 (en) 2023-04-18
JP2024128067A (en) 2024-09-20
JP2020203928A (en) 2020-12-24

Similar Documents

Publication Publication Date Title
JP2023076680A (en) Plant functional component increasing agent
JP2022174053A (en) Agent for increasing plant functional component content and method of manufacturing agent for increasing plant functional component content
Aćimović et al. Dracocephalum moldovica: cultivation, chemical composition and biological activity
Złotek Effect of jasmonic acid and yeast extract elicitation on low-molecular antioxidants and antioxidant activity of marjoram (Origanum majorana L.)
JP6767444B2 (en) Strawberry fruit growth promoter and strawberry flower bud formation promoter
JP7354382B2 (en) Tomato fruit growth promoter and functional component content improver in tomato fruit, and method for producing tomato fruit growth promoter and functional component content improver in tomato fruit
KR20180070946A (en) Method of cultivation of buckwheat sprout with high content of rutin or caffeic acid
US20190069569A1 (en) Compositions and methods for treating produce
J. Wille et al. Bioactives derived from ripe corn tassels: A possible new natural skin whitener, 4-hydroxy-1-oxindole-3-acetic acid
Yadav et al. Quantitative analysis of Sinigrin in Brassica juncea
Supapvanich et al. Effect of preharvest chitosan application on bioactive compounds of and sunflower sprouts during storage.
Reilly On farm and fresh produce management
Osano et al. Exogenous pre-harvest treatment with methyl jasmonate and chitosan elicits lycopene biosynthesis in tomato plants
KR20090101565A (en) The plant cultivating method by expediting the pentose phosphate pathway of plant metabolism
Ippolito et al. Natural antimicrobials for preserving fresh fruit and vegetables
JP2014045664A (en) Method for improving efficiency of production of specific substance in plant body and promoting growth thereof
Arakaki et al. Changes in sugar content and antioxidant activity of Allium vegetables by salinity-stress
Awad INFLUENCE OF EXOGENOUS SPRAYING CHITOSAN, ARGININE, AND GALANGAL EXTRACT ON QUALITY OF HAYANI DATE PALM FRUITS
JP7366004B2 (en) Plant growth agent containing cystenylglycine
US20230000089A1 (en) Composition enriched in polyphenols and flavonoids for use as biostimulant and antimicrobial for agriculture applications
Elsayed et al. Influence of Using Some Antioxidant Oils and Natural Plant Extracts on Yield and Quality of Crimson Seedless Grapevines
Graziani et al. Biostimulants improve plant growth and bioactive compounds of young olive trees under abiotic stress conditions, Agriculture, 2022, vol. 12
Sigala Aguilar et al. Effect of elicitors and biostimulants on the content of bioactive compounds in raspberry fruits.
Rawat Effect of low temperature and ice treatments on the post-harvest quality of selected cultivars of cauliflower, cabbage and kohlrabi: an analysis of antioxidant activity, total phenol and L-ascorbic acid
Aishah et al. Application of jasmonic acid: Effects on growth and phenolic constituents’ production of roselle (Hibiscus sabdariffa var. UKM-2)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526643

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859955

Country of ref document: EP

Kind code of ref document: A1