WO2020054299A1 - Semiconductor device manufacturing method, substrate processing device, and recording medium - Google Patents

Semiconductor device manufacturing method, substrate processing device, and recording medium Download PDF

Info

Publication number
WO2020054299A1
WO2020054299A1 PCT/JP2019/031820 JP2019031820W WO2020054299A1 WO 2020054299 A1 WO2020054299 A1 WO 2020054299A1 JP 2019031820 W JP2019031820 W JP 2019031820W WO 2020054299 A1 WO2020054299 A1 WO 2020054299A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
containing gas
substrate
oxygen
supplying
Prior art date
Application number
PCT/JP2019/031820
Other languages
French (fr)
Japanese (ja)
Inventor
小川 有人
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to CN201980059712.1A priority Critical patent/CN112740364B/en
Priority to JP2020546780A priority patent/JP7047117B2/en
Publication of WO2020054299A1 publication Critical patent/WO2020054299A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels

Definitions

  • the present disclosure relates to a method for manufacturing a semiconductor device, a substrate processing apparatus, and a recording medium.
  • Patent Documents 1 and 2 In recent years, with the increase in the degree of integration and performance of semiconductor devices, various types of metal films have been used, and semiconductor devices having a three-dimensional structure have been manufactured (for example, see Patent Documents 1 and 2).
  • a tungsten film (W film) or the like is used for a control gate of a NAND flash memory which is an example of a semiconductor device having a three-dimensional structure.
  • the resistance of the W film has a large effect on device characteristics, and a film with good embedding, high quality, and low resistance is required.
  • a recess 5 such as a trench or a hole is formed on the surface as shown in FIG.
  • a gas is supplied to the wafer 200 thus formed.
  • Arrows in FIG. 1 indicate gas flows.
  • the recess 5 is provided so as to extend in a direction perpendicular to the surface of the wafer 200, and the lateral hole 6 has a direction different from the depth direction of the recess 5 from the side surface of the recess 5, that is, It is provided to extend in a direction parallel to the surface.
  • FIG. 1 shows the lateral hole 6 extending in the left-right direction, it is formed so as to extend also in the depth direction. Further, the lateral hole 6 may have a hole shape or a trench shape.
  • the recess 5 and the lateral hole 6 are also referred to as a first recess and a second recess, respectively.
  • the W film when the W film is formed in the lateral hole 6 formed in the lateral direction from the concave portion 5 of the wafer 200, the W film tends to become thick near the entrance of the lateral hole 6. For this reason, the vicinity of the entrance of the lateral hole 6 may be closed first, gas may not reach the inner side of the lateral hole 6, and a gap may be formed without the W film being embedded in the lateral hole 6. Since the amount of the W film buried is reduced by the gap, the resistance of the W film is increased as compared with the case where there is no gap.
  • a substrate having, on a surface thereof, a first concave portion and a second concave portion provided to extend from a side surface of the first concave portion in a direction different from a depth direction of the first concave portion, Supplying a metal-containing gas;
  • B supplying a reducing gas to the substrate;
  • C supplying a halogen-containing gas to the substrate;
  • D supplying an oxygen-containing gas to the substrate; Is provided.
  • FIG. 3 is a diagram for explaining a flow of a gas supplied to a substrate processed using the substrate processing apparatus. It is a longitudinal section showing an outline of a vertical processing furnace of a substrate processing device.
  • FIG. 3 is a schematic transverse sectional view taken along line AA in FIG. 2.
  • It is a schematic block diagram of the controller of a substrate processing apparatus, and is a figure which shows the control system of a controller with a block diagram. It is a flowchart which shows operation
  • FIG. 4 is a diagram illustrating a cross section of a substrate formed using a substrate processing apparatus according to a comparative example.
  • FIG. 4 is a diagram illustrating a cross section of a substrate formed using a substrate processing apparatus according to a comparative example.
  • FIG. 3 is a diagram illustrating a cross section of a substrate formed using the substrate processing apparatus. It is a figure which shows the modification of the timing of gas supply.
  • (A) is a diagram showing the cycle dependence of the film thickness and the etching film thickness of the W film
  • (B) is a diagram showing the film forming speed and the etching speed of the W film.
  • the substrate processing apparatus 10 is configured as an example of an apparatus used in a semiconductor device manufacturing process.
  • the substrate processing apparatus 10 includes a processing furnace 202 provided with a heater 207 as a heating unit (heating mechanism, heating system, heating unit).
  • the heater 207 has a cylindrical shape, and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • an outer tube 203 constituting a reaction vessel (processing vessel) concentrically with the heater 207 is provided.
  • the outer tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with an upper end closed and a lower end opened.
  • a manifold (inlet flange) 209 is disposed concentrically with the outer tube 203.
  • the manifold 209 is made of a metal such as stainless steel (SUS), for example, and is formed in a cylindrical shape having upper and lower ends opened.
  • An O-ring 220a as a sealing member is provided between the upper end of the manifold 209 and the outer tube 203.
  • an inner tube 204 constituting a reaction vessel is provided inside the outer tube 203.
  • the inner tube 204 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and has a cylindrical shape with an upper end closed and a lower end opened.
  • a processing container (reaction container) mainly includes the outer tube 203, the inner tube 204, and the manifold 209.
  • a processing chamber 201 is formed in the hollow portion of the processing container (inside the inner tube 204).
  • the inner tube 204 is included in the configuration of the processing container (reaction container) and the processing chamber 201, a configuration without the inner tube 204 may be employed.
  • the processing chamber 201 is configured to be able to store wafers 200 as substrates in a state where the wafers 200 are arranged in a horizontal posture and vertically in multiple stages by a boat 217 described later.
  • nozzles 410, 420, and 430 are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • Gas supply pipes 310, 320, and 330 as gas supply lines are connected to the nozzles 410, 420, and 430, respectively.
  • the substrate processing apparatus 10 is provided with the three nozzles 410, 420, and 430 and the three gas supply pipes 310, 320, and 330, and supplies a plurality of types of gases into the processing chamber 201. It is configured to be able to.
  • the processing furnace 202 of the present embodiment is not limited to the above-described embodiment.
  • the gas supply pipes 310, 320, and 330 are provided with mass flow controllers (MFCs) 312, 322, and 332, respectively, which are flow controllers (flow controllers) in order from the upstream side.
  • the gas supply pipes 310, 320, and 330 are provided with valves 314, 324, and 334, respectively, which are on-off valves.
  • Gas supply pipes 510, 520, and 530 for supplying inert gas are connected to the gas supply pipes 310, 320, and 330 downstream of the valves 314, 324, and 334, respectively.
  • the gas supply pipes 510, 520, and 530 are provided with MFCs 512, 522, and 532 and valves 514, 524, and 534, respectively, in order from the upstream side.
  • Nozzles 410, 420, and 430 are connected and connected to tips of the gas supply pipes 310, 320, and 330, respectively.
  • the nozzles 410, 420, and 430 are configured as L-shaped nozzles, and the horizontal portion is provided to penetrate the side wall of the manifold 209 and the inner tube 204.
  • the vertical portions of the nozzles 410, 420, and 430 are provided inside a channel-shaped (groove-shaped) preliminary chamber 201a that protrudes radially outward of the inner tube 204 and extends in the vertical direction. In the preliminary chamber 201 a, it is provided upward (upward in the arrangement direction of the wafers 200) along the inner wall of the inner tube 204.
  • the nozzles 410, 420, and 430 are provided so as to extend from a lower region of the processing chamber 201 to an upper region of the processing chamber 201, and a plurality of gas supply holes 410 a, 420 a, and 430 a are provided at positions facing the wafer 200. Is provided.
  • the processing gas is supplied to the wafer 200 from the gas supply holes 410a, 420a, and 430a of the nozzles 410, 420, and 430, respectively.
  • a plurality of the gas supply holes 410a, 420a, and 430a are provided from the lower portion to the upper portion of the inner tube 204, have the same opening area, and are provided at the same opening pitch.
  • the gas supply holes 410a, 420a, and 430a are not limited to the above-described embodiments.
  • the opening area may be gradually increased from the lower part to the upper part of the inner tube 204. Thereby, the flow rate of the gas supplied from the gas supply holes 410a, 420a, and 430a can be made more uniform.
  • a plurality of gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 are provided at a height from a lower portion to an upper portion of the boat 217 described later. Therefore, the processing gas supplied into the processing chamber 201 from the gas supply holes 410 a, 420 a, and 430 a of the nozzles 410, 420, and 430 is stored in the wafer 200 stored from the lower part to the upper part of the boat 217, that is, in the boat 217. The wafer 200 is supplied to the entire area of the wafer 200.
  • the nozzles 410, 420, and 430 may be provided so as to extend from the lower region to the upper region of the processing chamber 201, but are preferably provided to extend near the ceiling of the boat 217.
  • a gas containing a metal element (hereinafter, also referred to as “metal-containing gas”) is supplied into the processing chamber 201 through the MFC 312, the valve 314, and the nozzle 410 as a processing gas.
  • metal-containing gas for example, tungsten hexafluoride (WF 6 ) gas as a halogen-containing gas containing tungsten (W) as a metal element and containing fluorine (F) as a halogen element is used.
  • a reducing gas is supplied as a processing gas into the processing chamber 201 via the MFC 322, the valve 324, and the nozzle 420.
  • a hydrogen (H 2 ) gas which is a gas containing hydrogen (H) (hereinafter, also referred to as “hydrogen-containing gas”) can be used.
  • a gas containing oxygen (O) (hereinafter, also referred to as “oxygen-containing gas”) as a processing gas is supplied from the gas supply pipe 330 into the processing chamber 201 via the MFC 332, the valve 334, and the nozzle 430.
  • oxygen-containing gas for example, oxygen (O 2 ) gas can be used.
  • nitrogen (N 2 ) gas as an inert gas is supplied through the MFCs 512, 522, 532, the valves 514, 524, 534, and the nozzles 410, 420, and 430 to the processing chamber. 201.
  • N 2 gas is used as an inert gas.
  • the inert gas for example, an argon (Ar) gas, a helium (He) gas, and a neon (Ne) gas are used in addition to the N 2 gas.
  • a rare gas such as xenon (Xe) gas.
  • a processing gas supply system (processing gas supply unit) mainly includes the gas supply pipes 310, 320, 330, the MFCs 312, 322, 332, the valves 314, 324, 334, and the nozzles 410, 420, 430. , 420 and 430 may be considered as the processing gas supply system.
  • the processing gas supply system may be simply referred to as a gas supply system.
  • a metal-containing gas supply system (metal-containing gas supply unit) is mainly configured by the gas supply pipe 310, the MFC 312, and the valve 314. It may be included in the system. Further, the metal-containing gas supply system may be referred to as a halogen-containing gas supply system.
  • a reducing gas supply system (reducing gas supply unit) is mainly configured by the gas supply pipe 320, the MFC 322, and the valve 324.
  • the nozzle 420 is included in the reducing gas supply system. You may think.
  • the reducing gas supply system may be referred to as a hydrogen-containing gas supply system (hydrogen-containing gas supply unit).
  • an oxygen-containing gas supply system (oxygen-containing gas supply unit) is mainly configured by the gas supply pipe 330, the MFC 332, and the valve 334. It may be included in the system.
  • an inert gas supply system (an inert gas supply unit) is mainly configured by the gas supply pipes 510, 520, and 530, the MFCs 512, 522, and 532, and the valves 514, 524, and 534.
  • the inert gas supply system may be referred to as a purge gas supply system, a dilution gas supply system, or a carrier gas supply system.
  • the gas supply method according to the present embodiment is performed in the preparatory chamber 201 a in an annular vertically long space defined by the inner wall of the inner tube 204 and the ends of the plurality of wafers 200, that is, in the cylindrical space.
  • the gas is conveyed via the nozzles 410, 420, 430 arranged in the.
  • gas is ejected into the inner tube 204 from a plurality of gas supply holes 410a, 420a, 430a provided at positions of the nozzles 410, 420, 430 facing the wafer.
  • the source gas or the like is ejected in a direction parallel to the surface of the wafer 200, that is, in a horizontal direction by the gas supply hole 410a of the nozzle 410, the gas supply hole 420a of the nozzle 420, and the gas supply hole 430a of the nozzle 430. ing.
  • the exhaust hole (exhaust port) 204a is a through hole formed at a position facing the nozzles 410, 420, and 430 on the side wall of the inner tube 204, that is, at a position 180 degrees opposite to the preliminary chamber 201a. , Are slit-shaped through holes elongated in the vertical direction. Therefore, the gas supplied from the gas supply holes 410a, 420a, and 430a of the nozzles 410, 420, and 430 into the processing chamber 201 and flowing on the surface of the wafer 200, that is, the remaining gas (residual gas) is discharged to the exhaust hole 204a.
  • the exhaust hole 204a is provided at a position facing the plurality of wafers 200 (preferably, at a position facing the upper part to the lower part of the boat 217), and the gas supply holes 410a, 420a, and 430a are used to discharge the wafer 200 in the processing chamber 201.
  • the gas supplied to the vicinity flows in the horizontal direction, that is, in the direction parallel to the surface of the wafer 200, and then flows into the exhaust passage 206 through the exhaust hole 204a. That is, the gas remaining in the processing chamber 201 is exhausted in parallel with the main surface of the wafer 200 through the exhaust hole 204a.
  • the exhaust hole 204a is not limited to being configured as a slit-shaped through-hole, and may be configured with a plurality of holes.
  • the exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201 is provided in the manifold 209.
  • a pressure sensor 245 as a pressure detector (pressure detecting unit) for detecting a pressure in the processing chamber 201
  • an APC (Auto Pressure Controller) valve 243 and a vacuum pump as a vacuum exhaust device are sequentially provided from the upstream side. 246 are connected.
  • the APC valve 243 can open and close the valve while the vacuum pump 246 is operating, thereby performing evacuation of the processing chamber 201 and stopping the evacuation. Further, the APC valve 243 operates with the vacuum pump 246 operating.
  • the pressure in the processing chamber 201 can be adjusted by adjusting the opening degree.
  • An exhaust system that is, an exhaust line is mainly configured by the exhaust hole 204a, the exhaust path 206, the exhaust pipe 231, the APC valve 243, and the pressure sensor 245. Note that the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is provided as a furnace port lid capable of hermetically closing the lower end opening of the manifold 209.
  • the seal cap 219 is configured to contact the lower end of the manifold 209 from below in the vertical direction.
  • the seal cap 219 is made of a metal such as SUS, for example, and is formed in a disk shape.
  • an O-ring 220b is provided as a seal member that contacts the lower end of the manifold 209.
  • a rotation mechanism 267 for rotating a boat 217 that stores the wafer 200 is installed.
  • the rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the boat 217 to rotate the wafer 200.
  • the seal cap 219 is configured to be vertically moved up and down by a boat elevator 115 serving as a lifting / lowering mechanism installed vertically outside the outer tube 203.
  • the boat elevator 115 is configured to be able to carry the boat 217 in and out of the processing chamber 201 by moving the seal cap 219 up and down.
  • the boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217 and the wafers 200 stored in the boat 217 into and out of the processing chamber 201.
  • the boat 217 as a substrate support is configured to support a plurality of, for example, 25 to 200 wafers 200 in a horizontal posture and vertically aligned with their centers aligned with each other, that is, to support the wafers 200 in multiple stages. It is configured to be arranged at intervals.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC.
  • a heat insulating plate 218 made of a heat-resistant material such as quartz or SiC is supported in multiple stages (not shown) in a horizontal posture. This configuration makes it difficult for heat from the heater 207 to be transmitted to the seal cap 219 side.
  • the present embodiment is not limited to the above-described embodiment.
  • a heat insulating tube configured as a cylindrical member made of a heat resistant material such as quartz or SiC may be provided.
  • a temperature sensor 263 as a temperature detector is installed in the inner tube 204, and the amount of electricity supplied to the heater 207 is adjusted based on temperature information detected by the temperature sensor 263.
  • the inside of the processing chamber 201 is configured to have a desired temperature distribution.
  • the temperature sensor 263 is formed in an L shape similarly to the nozzles 410, 420, and 430, and is provided along the inner wall of the inner tube 204.
  • the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via an internal bus.
  • An input / output device 122 configured as, for example, a touch panel or the like is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, an HDD (Hard Disk Drive), and the like.
  • a control program for controlling the operation of the substrate processing apparatus, a process recipe describing a procedure and conditions of a semiconductor device manufacturing method described later, and the like are stored in a readable manner.
  • the process recipe is combined so that the controller 121 can execute each step (each step) in a semiconductor device manufacturing method described later and obtain a predetermined result, and functions as a program.
  • the process recipe, the control program, and the like are collectively referred to simply as a program.
  • program may include only a process recipe alone, may include only a control program, or may include a combination of a process recipe and a control program.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d is connected to the MFC 312, 322, 332, 512, 522, 532, the valve 314, 324, 334, 514, 524, 534, the pressure sensor 245, the APC valve 243, the vacuum pump 246, the heater 207, and the temperature. It is connected to the sensor 263, the rotation mechanism 267, the boat elevator 115, and the like.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c and read a recipe or the like from the storage device 121c in response to input of an operation command from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rates of various gases by the MFCs 312, 322, 332, 512, 522, and 532, opens and closes the valves 314, 324, 334, 514, 524, and 534, and operates the APC valve according to the contents of the read recipe.
  • the controller 121 is stored in an external storage device 123 (for example, a magnetic tape, a magnetic disk such as a flexible disk and a hard disk, an optical disk such as a CD and a DVD, a magneto-optical disk such as an MO, and a semiconductor memory such as a USB memory and a memory card).
  • the above-described program can be configured by installing the program in a computer.
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively simply referred to as a recording medium.
  • a recording medium may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
  • the provision of the program to the computer may be performed using communication means such as the Internet or a dedicated line without using the external storage device 123.
  • Substrate processing step As one step of the manufacturing process of the semiconductor device (device), a concave portion 5 such as a trench or a hole is formed on the surface as shown in FIG. An example of a process of forming a W layer as a metal layer on the wafer 200 in which the horizontal holes 6 are formed in the horizontal direction (lateral direction) will be described with reference to FIGS.
  • the present substrate processing step is performed using the processing furnace 202 of the substrate processing apparatus 10 described above. In the following description, the operation of each unit constituting the substrate processing apparatus 10 is controlled by the controller 121.
  • a concave portion as a first concave portion is formed on the surface, and a wafer 200 having a lateral hole as a second concave portion formed so as to extend from a side surface of the concave portion in a direction different from the depth direction of the concave portion.
  • supplying a WF 6 gas as a metal-containing gas (B) supplying H 2 gas as a reducing gas to the wafer 200; Performing a predetermined number of cycles including at least (a) and (b); (C) supplying a WF 6 gas as a halogen-containing gas to the wafer 200; (D) supplying O 2 gas and H 2 gas as oxygen-containing gas to the wafer 200; Performing a predetermined number of cycles including at least (c) and (d); Is performed to form a W layer which is a metal layer on the wafer 200.
  • the term “wafer” means “wafer itself” or “laminate (assembly) of a wafer and predetermined layers and films formed on the surface thereof”. (That is, a wafer including predetermined layers and films formed on the surface).
  • the term “surface of the wafer” is used to mean “the surface (exposed surface) of the wafer itself” or “the surface of a predetermined layer or film formed on the wafer. That is, it may mean "the outermost surface of the wafer as a laminate”. Note that the use of the word “substrate” in this specification is synonymous with the use of the word “wafer”.
  • the inside of the processing chamber 201 that is, the space where the wafer 200 exists, is evacuated by the vacuum pump 246 so as to have a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). Further, the inside of the processing chamber 201 is heated by the heater 207 so as to reach a desired temperature. At this time, the amount of power to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment). Further, the rotation of the wafer 200 by the rotation mechanism 267 is started. Evacuation of the processing chamber 201 and heating and rotation of the wafer 200 are continuously performed at least until the processing on the wafer 200 is completed.
  • W layer forming step Subsequently, a step of forming, for example, a W layer 4 as a metal layer on the wafer 200 is performed.
  • WF 6 gas supply step S10 The valve 314 is opened, and WF 6 gas, which is a metal-containing gas, flows into the gas supply pipe 310.
  • the flow rate of the WF 6 gas is adjusted by the MFC 312, supplied to the processing chamber 201 from the gas supply hole 410 a of the nozzle 410, and exhausted from the exhaust pipe 231.
  • the WF 6 gas is supplied to the wafer 200.
  • the valve 514 is opened at the same time, and an inert gas such as N 2 gas flows into the gas supply pipe 510.
  • the flow rate of the N 2 gas flowing in the gas supply pipe 510 is adjusted by the MFC 512, supplied to the processing chamber 201 together with the WF 6 gas, and exhausted from the exhaust pipe 231.
  • the valves 524 and 534 are opened, and the N 2 gas flows into the gas supply pipes 520 and 530.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 320 and 330 and the nozzles 420 and 430, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted to set the pressure in the processing chamber 201 to a pressure within a range of, for example, 0.1 to 6650 Pa.
  • the supply flow rate of the WF 6 gas controlled by the MFC 312 is, for example, a flow rate within a range of 0.01 to 10 slm.
  • the supply flow rate of the N 2 gas controlled by the MFCs 512, 522, and 532 is, for example, in the range of 0.1 to 30 slm.
  • the time for supplying the WF 6 gas to the wafer 200 is, for example, a time within a range of 0.01 to 30 seconds.
  • the temperature of the heater 207 is set to a temperature such that the temperature of the wafer 200 falls within a range of, for example, 250 to 550 ° C.
  • the gases flowing into the processing chamber 201 are only the WF 6 gas and the N 2 gas, and the supply of the WF 6 gas causes the wafer 200 (underlying film on the surface) to have, for example, less than one atomic layer to several atomic layers.
  • a W-containing layer as a metal-containing layer having a thickness is formed.
  • H 2 gas supply step S12 The valve 324 is opened, and H 2 gas, which is a reducing gas, flows into the gas supply pipe 320.
  • the flow rate of the H 2 gas is adjusted by the MFC 322, the H 2 gas is supplied into the processing chamber 201 from the gas supply hole 420 a of the nozzle 420, and is exhausted from the exhaust pipe 231.
  • H 2 gas is supplied to the wafer 200.
  • the valve 524 is opened at the same time, and an inert gas such as N 2 gas flows into the gas supply pipe 520.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 520 is adjusted by the MFC 522, supplied to the processing chamber 201 together with the H 2 gas, and exhausted from the exhaust pipe 231.
  • the valves 514 and 534 are opened, and N 2 gas flows through the gas supply pipes 510 and 530.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 310 and 330 and the nozzles 410 and 430, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted to set the pressure in the processing chamber 201 to a pressure within a range of, for example, 1 to 3990 Pa.
  • the supply flow rate of the H 2 gas controlled by the MFC 322 is, for example, a flow rate within a range of 0.1 to 50 slm.
  • the supply flow rate of the N 2 gas controlled by the MFCs 512, 522, and 532 is, for example, a flow rate within a range of 0.1 to 20 slm.
  • the time for supplying the H 2 gas to the wafer 200 is, for example, a time within a range of 0.1 to 20 seconds.
  • the temperature of the heater 207 is set to a temperature such that the temperature of the wafer 200 falls within a range of, for example, 200 to 600 ° C.
  • the gas flowing into the processing chamber 201 is only the H 2 gas and the N 2 gas, and the supply of the H 2 gas causes the wafer 200 (underlying film on the surface) to have, for example, less than one atomic layer to several atomic layers.
  • a W layer is formed as a metal layer having a thickness.
  • step S13 After the W layer is formed, the valve 324 is closed, and the supply of the H 2 gas is stopped. Then, the H 2 gas remaining in the processing chamber 201 and remaining unreacted or contributing to the formation of the W layer is removed from the processing chamber 201 by the same processing procedure as step S11.
  • a W layer having a predetermined thickness is formed on the wafer 200 by executing at least one cycle (a predetermined number of times (n times)) of sequentially performing the above-described steps S10 to S13.
  • the above-described cycle is preferably performed a plurality of times.
  • a W-containing layer as a metal-containing layer is formed on the W-layer surface of the wafer 200, and a part of the W-containing layer is modified (etched) into a WO-containing layer as a metal oxygen-containing layer.
  • Execute The WO-containing layer is formed, for example, on the surface side of the W-containing layer. That is, when several layers on the surface side of the W-containing layer are modified into WO-containing layers, the several layers are etched.
  • WF 6 gas supply step S20 The valve 314 is opened, and a WF 6 gas, which is a halogen-containing gas, flows into the gas supply pipe 310.
  • the flow rate of the WF 6 gas is adjusted by the MFC 312, supplied to the processing chamber 201 from the gas supply hole 410 a of the nozzle 410, and exhausted from the exhaust pipe 231.
  • the WF 6 gas is supplied to the wafer 200.
  • the valve 514 is opened at the same time, and an inert gas such as N 2 gas flows into the gas supply pipe 510.
  • the flow rate of the N 2 gas flowing in the gas supply pipe 510 is adjusted by the MFC 512, supplied to the processing chamber 201 together with the WF 6 gas, and exhausted from the exhaust pipe 231.
  • the valves 524 and 534 are opened, and the N 2 gas flows into the gas supply pipes 520 and 530.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 320 and 330 and the nozzles 420 and 430, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted to set the pressure in the processing chamber 201 to a pressure within a range of, for example, 0.1 to 6650 Pa.
  • the supply flow rate of the WF 6 gas controlled by the MFC 312 is, for example, a flow rate within a range of 0.01 to 10 slm.
  • the supply flow rate of the N 2 gas controlled by the MFCs 512, 522, and 532 is, for example, in the range of 0.1 to 30 slm.
  • the time for supplying the WF 6 gas to the wafer 200 is, for example, a time within a range of 0.01 to 30 seconds.
  • the temperature of the heater 207 is set to a temperature such that the temperature of the wafer 200 falls within a range of, for example, 250 to 550 ° C.
  • the gases flowing into the processing chamber 201 are only the WF 6 gas and the N 2 gas, and the supply of the WF 6 gas causes the wafer 200 (underlying film on the surface) to have, for example, less than one atomic layer to several atomic layers.
  • a W-containing layer as a metal-containing layer having a thickness is formed.
  • step S21 After the W-containing layer is formed, the valve 314 is closed, and the supply of the WF 6 gas is stopped. Then, the WF 6 gas remaining in the processing chamber 201 and remaining after it has contributed to the formation of the W-containing layer is removed from the processing chamber 201 by the same processing procedure as that in step S11.
  • H 2 gas, O 2 gas supply step S22 The valves 324 and 334 are opened, and H 2 gas as a hydrogen-containing gas and O 2 gas as an oxygen-containing gas flow into the gas supply pipes 320 and 330, respectively.
  • the flow rate of the H 2 gas is adjusted by the MFC 322, the H 2 gas is supplied into the processing chamber 201 from the gas supply hole 420 a of the nozzle 420, and is exhausted from the exhaust pipe 231.
  • the flow rate of the O 2 gas is adjusted by the MFC 332, the O 2 gas is supplied into the processing chamber 201 from the gas supply hole 430 a of the nozzle 430, and is exhausted from the exhaust pipe 231.
  • the H 2 gas and the O 2 gas are supplied to the wafer 200 at the same time.
  • the valves 524 and 534 are simultaneously opened, and an inert gas such as N 2 gas flows into the gas supply pipes 520 and 530, respectively.
  • the flow rate of the N 2 gas flowing through the gas supply pipes 520 and 530 is adjusted by the MFCs 522 and 532, supplied to the processing chamber 201 together with the H 2 gas and the O 2 gas, and exhausted from the exhaust pipe 231.
  • the valve 514 is opened and N 2 gas flows through the gas supply pipe 510.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 310 and the nozzle 410, and is exhausted from the exhaust pipe 231.
  • the supply amount of the O 2 gas supplied into the processing chamber 201 is made larger than the supply amount of the H 2 gas supplied into the processing chamber 201.
  • the supply ratio of the O 2 gas supplied into the processing chamber 201 is made larger than the supply ratio of the H 2 gas.
  • the supply amount is adjusted by one or both of the flow rate and the supply time.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 0.1 to 3990 Pa.
  • the supply flow rate of the H 2 gas controlled by the MFC 322 is, for example, a flow rate within a range of 0.1 to 50 slm.
  • the supply flow rate of the O 2 gas controlled by the MFC 332 is, for example, a flow rate within a range of 0.1 to 10 slm.
  • the supply flow rate of the N 2 gas controlled by the MFCs 512, 522, and 532 is, for example, a flow rate within a range of 0.1 to 20 slm.
  • the time for supplying the H 2 gas and the O 2 gas to the wafer 200 is, for example, a time within a range of 0.1 to 20 seconds.
  • the temperature of the heater 207 is set to a temperature such that the temperature of the wafer 200 falls within a range of, for example, 200 to 600 ° C.
  • the gases flowing into the processing chamber 201 are only the H 2 gas, the O 2 gas, and the N 2 gas, and the supply of the H 2 gas and the O 2 gas causes the wafer 200 (below the surface) to flow in steps S20 to S21.
  • a part of the W-containing layer formed on the (base film) is oxidized and reformed into a WO-containing layer as a metal oxygen-containing layer.
  • the WO-containing layer is formed on the surface of the W-containing layer.
  • the metal oxygen-containing layer is a layer containing at least a metal element and an oxygen element, and this layer may be referred to as a metal oxide layer.
  • tungsten oxide WOx is generated by oxidizing at least a part of the W-containing layer.
  • x is a natural number.
  • WOx can be sublimated under the above processing conditions. That is, the above-mentioned processing conditions are processing conditions that allow at least a part of the W-containing layer to be modified into a WO-containing layer and that the modified WO-containing layer be sublimated.
  • step S23 After the WO-containing layer is formed, the valves 324 and 334 are closed, and the supply of the H 2 gas and the O 2 gas is stopped. Then, the H 2 gas and the O 2 gas remaining in the processing chamber 201 and remaining unreacted or contributing to the formation of the WO-containing layer are removed from the processing chamber 201 by the same processing procedure as in step S11. In this step as well, the WO-containing layer formed in step S22 can be sublimated. If the WO-containing layer is not completely sublimated in step S22, the WO-containing layer remaining in this step is sublimated. It is possible to do.
  • the W-containing layer having a predetermined thickness on the wafer 200 is modified into a WO-containing layer, and the generated WO-containing layer is sublimated. That is, of the W-containing layers on the wafer 200, the W-containing layer having a predetermined thickness is oxidized and etched.
  • the W-containing layer is etched at a predetermined thickness for each cycle by performing at least one cycle (a predetermined number of times (m times)) of performing the steps S20 to S23 in order.
  • the above-described cycle is preferably performed a plurality of times until the W-containing layer is etched by a desired thickness.
  • n times After performing a predetermined number of cycles (n times) of sequentially performing steps S10 to S13 of the above-described W layer forming step, a predetermined number of times (m times) of performing a cycle of sequentially performing steps S20 to S23 of the W layer etching step are performed.
  • m times By performing the W layer forming step and the W layer etching step alternately a predetermined number of times (p times), a W layer having a predetermined thickness is formed on the wafer 200.
  • the above-described cycle is preferably performed a plurality of times. Note that n is an integer greater than m.
  • the ratio between n and m may be appropriately changed depending on the film formation rate in the W layer forming step and the etching rate in the W layer etching step. Further, the ratio of n and m may be changed between the initial stage and the later stage of the process of filling the lateral hole 6.
  • FIGS. 7A to 7E are views showing a cross section of the wafer 200 formed using the substrate processing step in the comparative example.
  • the comparative example only the above-described W layer forming step (steps S10 to S13) is performed a plurality of times, and the W layer etching step (steps S20 to S23) is not performed.
  • the W layer 4 is formed (embedded) in the lateral hole 6 of the wafer 200 in which the concave portion 5 is formed on the surface and the lateral hole 6 is formed in the lateral direction from the concave portion 5.
  • a titanium nitride layer (TiN layer) 3 which is a metal layer and serves as a barrier layer is formed on the surfaces of the concave portions 5 and the lateral holes 6 (FIG. 7B).
  • TiN layer titanium nitride layer
  • FIG. 7E shows a view in which the W layer 4 and the TiN layer 3 formed near the entrance of the recess 5 and the lateral hole 6 are etched back after FIG. 7D.
  • a titanium nitride layer (TiN layer) 3 which is a metal layer and serves as a barrier layer is formed on the surfaces of the concave portions 5 and the lateral holes 6 (FIG. 8B).
  • the W layer 4 which is a metal layer is embedded in the concave portion 5 and the lateral hole 6 by alternately performing the W layer forming step and the W layer etching step a plurality of times (FIGS. 8C to 8E). ).
  • the W layer forming step is performed to form the W layer 4 so as to fill the inside of the horizontal hole 6 (FIG. 8C), and the W layer etching step is performed before the vicinity of the entrance of the horizontal hole 6 is closed. Is performed to etch the W layer 4 to widen the frontage near the entrance of the lateral hole 6 (FIG. 8D).
  • the gas can enter in the depth direction of the lateral hole 6 and the gap that is not filled with the W layer 4 can be reduced.
  • the 200 horizontal holes 6 are filled with the W layer 4 (FIG. 8E).
  • the W layer 4 and the TiN layer 3 embedded near the entrance of the concave portion 5 and the lateral hole 6 are etched back (FIG. 8F).
  • the W-containing layer formed near the entrance of the lateral hole 6 of the wafer 200 is oxidized to WO It is modified into a containing layer.
  • the WO-containing layer formed near the entrance of the lateral hole 6 and modified into an oxide layer is etched. That is, the oxidized portion is etched, and the gas is allowed to enter the depth direction of the lateral hole 6, so that the W layer 4 can be embedded in the lateral hole 6 without generating a gap in the W layer 4.
  • lower resistance can be achieved as compared with the wafer 200 in which a gap has occurred.
  • the W layer 4 is formed without creating a gap in the lateral hole 6 ( Embedded). Further, by controlling the ratio of the number of cycles between the W layer forming step and the W layer etching step by controlling the ratio of the thickness (film formation rate) of the W layer formed in the W layer forming step, a gap is formed in the lateral hole 6.
  • the W layer 4 can be formed (buried) without causing it.
  • N 2 gas is supplied into the processing chamber 201 from each of the gas supply pipes 510, 520, and 530, and exhausted from the exhaust pipe 231.
  • the N 2 gas acts as a purge gas, whereby the inside of the processing chamber 201 is purged with an inert gas, and gases and by-products remaining in the processing chamber 201 are removed from the processing chamber 201 (after-purging). Thereafter, the atmosphere in the processing chamber 201 is replaced with an inert gas (replacement with an inert gas), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
  • the seal cap 219 is lowered by the boat elevator 115, and the lower end of the reaction tube 203 is opened. Then, the processed wafer 200 is unloaded (boat unloaded) from the lower end of the reaction tube 203 to the outside of the reaction tube 203 while being supported by the boat 217. Thereafter, the processed wafer 200 is taken out from the boat 217 (wafer discharging).
  • a concave portion is formed on the surface, and the W layer can be formed (buried) without creating a gap in a lateral hole formed in the lateral direction from the concave portion.
  • (D) By controlling the ratio of the number of cycles of the W layer forming process and the number of cycles of the W layer etching process by the ratio of the thickness (film formation rate) of the W layer formed in the W layer forming process, The W layer can be formed (buried) without generating a gap.
  • (E) When H 2 gas and O 2 gas are used as the oxygen-containing gas in the W layer etching step, the H 2 gas is in the range of 99% to 0%, and the O 2 gas is in the range of 1% to 100%.
  • the etching rate can be adjusted (controlled) by making the supply ratios of the H 2 gas and the O 2 gas different.
  • the same type of gas (WF 6 gas) is used in step S10 of the W layer forming process and step S20 of the W layer etching process has been described.
  • the halogen-containing gas in the W layer etching step contains only halogen that does not contain a metal element in the W layer forming step.
  • the halogen element is, for example, fluorine (F).
  • the present invention can be applied to a case where nitrogen trifluoride (NF 3 ) gas containing F, F 2 gas, or the like is used.
  • An F-based gas containing F is suitably used as an etching gas. This is because the F-based gas has a higher vapor pressure than a Cl-based gas containing chlorine (Cl) and generates a reaction product (WF x O y ) that is easily sublimated.
  • step S22 of the W layer etching process has been described with the case of supplying the H 2 gas and O 2 gas at the same time as an example, not limited to this, as shown in FIG. 9, the H 2 gas May be supplied into the processing chamber 201 before the O 2 gas, and the supply may be stopped first.
  • the supply of the O 2 gas may be supplied into the processing chamber 201 after the supply of the H 2 gas, and the supply may be stopped later.
  • the reactivity between WF x and O 2 gas can be improved.
  • the reaction product formed on the surface of the W layer is reduced, and it is possible to prevent the sublimability of the reaction product from being reduced.
  • the flow rate of the O 2 gas supplied into the processing chamber 201 is set to be larger than the flow rate of the H 2 gas supplied into the processing chamber 201 in step S22 of the W layer etching step.
  • the supply time of the O 2 gas supplied into the processing chamber 201 is set to be longer than the supply time of the H 2 gas supplied into the processing chamber 201. Is also good.
  • the present invention is not limited to this, and the O 2 gas, the nitrous oxide (N 2 O) ) Gas, nitric oxide (NO) gas, water (H 2 O) or the like is also applicable. Since the O 2 gas, the N 2 O gas, and the NO gas enter the W layer, they can be etched for each of a plurality of layers. Further, since H 2 O is adsorbed on the surface of the W layer, it can be etched for each surface layer.
  • the processing step may be configured such that a gas such as H 2 O is supplied to open the opening. Further, at the end of the processing step, a cycle of adjusting the film thickness by switching the gas to H 2 O may be performed.
  • the example in which the H 2 gas is used as the reducing gas supplied simultaneously with the O 2 gas in step S22 of the W layer etching process described above, but is not limited thereto, and the silane (SiH 4 ) gas can be applied to a case where a disilane (Si 2 H 6 ) gas, a dichlorosilane (SiH 2 Cl 2 , abbreviated DCS) gas, an ammonia (NH 3 ) gas, a diborane (B 2 H 6 ) gas, or the like is used. Since the SiH 4 gas and the Si 2 H 6 gas contribute to film formation, the etching rate can be adjusted.
  • the present invention is not limited to this, and the present invention can be applied to a conductive film that performs film formation and etch back.
  • the present invention is not limited to this, and the present invention can be applied to a case where an electrode for a word line of a MOSFET or a barrier film is formed.
  • FIG. 10A is a diagram showing the cycle dependence of the film thickness of the W layer and the etching film thickness in this embodiment.
  • FIG. 10B is a graph showing the relationship between the film forming rate and the etching rate of the W layer.
  • the W layer forming step (steps S10 to S13) in the above substrate processing step was performed using the above substrate processing apparatus 10.
  • the W layer etching step (steps S20 to S23) in the above substrate processing step was performed using the substrate processing apparatus 10 described above.
  • the temperature inside the processing chamber 201 was set at 380 ° C.
  • the W layer is formed in accordance with the number of cycles when a cycle of sequentially performing steps S10 to S13 is performed 100 times or more. It was confirmed that the W layer also became thicker. On the other hand, it was confirmed that the W layer was etched only several tens of times in the order of steps S20 to S23 in order to etch the W layer, and that the etching rate was higher than the film formation rate.
  • the etching rate is faster and the processing time is shorter when only O 2 gas is used as the oxygen-containing gas than when H 2 gas and O 2 gas are used. It was confirmed that it was possible. Further, it was confirmed that in the etching of the W layer, the etching rate (etching rate) can be finely adjusted when H 2 gas and O 2 gas are used, as compared with the case where only O 2 gas is used.
  • the etching rate can be selected by using only the O 2 gas or using the H 2 gas and the O 2 gas as the oxygen-containing gas in the etching step.
  • Substrate processing device 121 Controller 200 Wafer (substrate) 201 Processing room

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

Provided is a technology which makes it possible to form a film on a substrate while suppressing formation of a gap between one recess formed in a surface and another recess extending from a side surface of the one recess in a direction different from a depth direction of the one recess. This semiconductor device manufacturing method comprises: (a) a step of supplying a metal containing gas to a substrate having formed in a surface thereof a first recess and a second recess extending from a side surface of the first recess in a direction different from the depth direction of the first recess; (b) a step of supplying a reduction gas to the substrate; (c) a step of supplying a halogen-containing gas to the substrate; and (d) a step of supplying an oxygen containing gas to the substrate.

Description

半導体装置の製造方法、基板処理装置及び記録媒体Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
 本開示は、半導体装置の製造方法、基板処理装置及び記録媒体に関する。 The present disclosure relates to a method for manufacturing a semiconductor device, a substrate processing apparatus, and a recording medium.
 近年、半導体装置の高集積化及び高性能化に伴い、様々な種類の金属膜が用いられ、3次元構造の半導体装置の製造が行なわれている(例えば特許文献1及び特許文献2参照)。 In recent years, with the increase in the degree of integration and performance of semiconductor devices, various types of metal films have been used, and semiconductor devices having a three-dimensional structure have been manufactured (for example, see Patent Documents 1 and 2).
特開2017-69407号公報JP 2017-69407 A 特開2018-49898号公報JP 2018-49898 A
 3次元構造の半導体装置の一例であるNAND型フラッシュメモリのコントロールゲートにはタングステン膜(W膜)等が用いられている。このW膜の抵抗がデバイス特性に与える影響は大きく、埋め込み性がよく、かつ高品質、低抵抗な膜が要求される。 (4) A tungsten film (W film) or the like is used for a control gate of a NAND flash memory which is an example of a semiconductor device having a three-dimensional structure. The resistance of the W film has a large effect on device characteristics, and a film with good embedding, high quality, and low resistance is required.
 また、NAND型フラッシュメモリのコントロールゲートとして用いられるW膜は、図1に示すような表面にトレンチやホール等の凹部5が形成され、凹部5の側面から横方向すなわち水平方向に横穴6が形成されたウエハ200に対して、ガスが供給されて形成される。図1における矢印は、ガスの流れを示している。なお、凹部5は、ウエハ200の表面に対して垂直な方向に延びるように設けられており、横穴6は、凹部5の側面から凹部5の深さ方向とは異なる方向、すなわち、ウエハ200の表面に対して平行な方向に延びるように設けられている。なお、図1では、横穴6は、左右方向に延びる様子が示されているが、奥行き方向にも延びるように形成されている。また、横穴6は、ホール状であってもよく、トレンチ状であってもよい。凹部5、横穴6を、それぞれ、第1凹部、第2凹部とも称する。 In the W film used as the control gate of the NAND flash memory, a recess 5 such as a trench or a hole is formed on the surface as shown in FIG. A gas is supplied to the wafer 200 thus formed. Arrows in FIG. 1 indicate gas flows. Note that the recess 5 is provided so as to extend in a direction perpendicular to the surface of the wafer 200, and the lateral hole 6 has a direction different from the depth direction of the recess 5 from the side surface of the recess 5, that is, It is provided to extend in a direction parallel to the surface. Although FIG. 1 shows the lateral hole 6 extending in the left-right direction, it is formed so as to extend also in the depth direction. Further, the lateral hole 6 may have a hole shape or a trench shape. The recess 5 and the lateral hole 6 are also referred to as a first recess and a second recess, respectively.
 しかし、ウエハ200の凹部5から横方向に形成された横穴6にW膜を形成する際に、横穴6の入口付近でW膜が厚くなる傾向がある。このため、横穴6の入口付近が先に塞がってしまい、横穴6の奥側までガスが届かず、横穴6内にW膜が埋め込まれずに隙間が形成されてしまう場合がある。この隙間によりW膜が埋め込まれる量が少なくなるため、隙間が無い場合と比べてW膜の抵抗が高くなってしまう。 However, when the W film is formed in the lateral hole 6 formed in the lateral direction from the concave portion 5 of the wafer 200, the W film tends to become thick near the entrance of the lateral hole 6. For this reason, the vicinity of the entrance of the lateral hole 6 may be closed first, gas may not reach the inner side of the lateral hole 6, and a gap may be formed without the W film being embedded in the lateral hole 6. Since the amount of the W film buried is reduced by the gap, the resistance of the W film is increased as compared with the case where there is no gap.
 本開示の一態様によれば、
 (a)表面に、第1凹部と前記第1凹部の側面から前記第1凹部の深さ方向とは異なる方向に延びるように設けられた第2凹部と、が形成された基板に対して、金属含有ガスを供給する工程と、
 (b)前記基板に対して、還元ガスを供給する工程と、
 (c)前記基板に対して、ハロゲン含有ガスを供給する工程と、
 (d)前記基板に対して、酸素含有ガスを供給する工程と、
 を有する技術が提供される。
According to one aspect of the present disclosure,
(A) a substrate having, on a surface thereof, a first concave portion and a second concave portion provided to extend from a side surface of the first concave portion in a direction different from a depth direction of the first concave portion, Supplying a metal-containing gas;
(B) supplying a reducing gas to the substrate;
(C) supplying a halogen-containing gas to the substrate;
(D) supplying an oxygen-containing gas to the substrate;
Is provided.
 本開示によれば、表面に形成された凹部とこの凹部の側面から凹部の深さ方向とは異なる方向に延びるように設けられた別の凹部に隙間が形成されることを抑制して基板に膜を形成することができる。 According to the present disclosure, it is possible to suppress formation of a gap in a concave portion formed on the surface and another concave portion provided so as to extend from a side surface of the concave portion in a direction different from the depth direction of the concave portion to the substrate. A film can be formed.
基板処理装置を用いて処理される基板に対して供給されるガスの流れを説明するための図である。FIG. 3 is a diagram for explaining a flow of a gas supplied to a substrate processed using the substrate processing apparatus. 基板処理装置の縦型処理炉の概略を示す縦断面図である。It is a longitudinal section showing an outline of a vertical processing furnace of a substrate processing device. 図2におけるA-A線概略横断面図である。FIG. 3 is a schematic transverse sectional view taken along line AA in FIG. 2. 基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。It is a schematic block diagram of the controller of a substrate processing apparatus, and is a figure which shows the control system of a controller with a block diagram. 基板処理装置の動作を示すフロー図である。It is a flowchart which shows operation | movement of a substrate processing apparatus. ガス供給のタイミングを示す図である。It is a figure which shows the timing of gas supply. 比較例における基板処理装置を用いて形成される基板の断面を示す図である。FIG. 4 is a diagram illustrating a cross section of a substrate formed using a substrate processing apparatus according to a comparative example. 基板処理装置を用いて形成される基板の断面を示す図である。FIG. 3 is a diagram illustrating a cross section of a substrate formed using the substrate processing apparatus. ガス供給のタイミングの変形例を示す図である。It is a figure which shows the modification of the timing of gas supply. (A)は、W膜の成膜膜厚とエッチング膜厚のサイクル依存性を示す図であって、(B)は、W膜の成膜速度とエッチング速度を示す図である。(A) is a diagram showing the cycle dependence of the film thickness and the etching film thickness of the W film, and (B) is a diagram showing the film forming speed and the etching speed of the W film.
<本開示の一実施形態>
 以下、本開示の一実施形態について、図2~6を参照しながら説明する。基板処理装置10は半導体装置の製造工程において使用される装置の一例として構成されている。
<One embodiment of the present disclosure>
Hereinafter, an embodiment of the present disclosure will be described with reference to FIGS. The substrate processing apparatus 10 is configured as an example of an apparatus used in a semiconductor device manufacturing process.
(1)基板処理装置の構成
 基板処理装置10は、加熱手段(加熱機構、加熱系、加熱部)としてのヒータ207が設けられた処理炉202を備える。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
(1) Configuration of Substrate Processing Apparatus The substrate processing apparatus 10 includes a processing furnace 202 provided with a heater 207 as a heating unit (heating mechanism, heating system, heating unit). The heater 207 has a cylindrical shape, and is vertically installed by being supported by a heater base (not shown) as a holding plate.
 ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成するアウタチューブ203が配設されている。アウタチューブ203は、例えば石英(SiO2)、炭化シリコン(SiC)などの耐熱性材料で構成され、上端が閉塞し下端が開口した円筒形状に形成されている。アウタチューブ203の下方には、アウタチューブ203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)などの金属で構成され、上端及び下端が開口した円筒形状に形成されている。マニホールド209の上端部と、アウタチューブ203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、アウタチューブ203は垂直に据え付けられた状態となる。 Inside the heater 207, an outer tube 203 constituting a reaction vessel (processing vessel) concentrically with the heater 207 is provided. The outer tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with an upper end closed and a lower end opened. Below the outer tube 203, a manifold (inlet flange) 209 is disposed concentrically with the outer tube 203. The manifold 209 is made of a metal such as stainless steel (SUS), for example, and is formed in a cylindrical shape having upper and lower ends opened. An O-ring 220a as a sealing member is provided between the upper end of the manifold 209 and the outer tube 203. When the manifold 209 is supported by the heater base, the outer tube 203 is vertically installed.
 アウタチューブ203の内側には、反応容器を構成するインナチューブ204が配設されている。インナチューブ204は、例えば石英(SiO2)、炭化シリコン(SiC)などの耐熱性材料で構成され、上端が閉塞し下端が開口した円筒形状に形成されている。主に、アウタチューブ203と、インナチューブ204と、マニホールド209とにより処理容器(反応容器)が構成されている。処理容器の筒中空部(インナチューブ204の内側)には処理室201が形成されている。なお、ここでは、処理容器(反応容器)、処理室201の構成にインナチューブ204を含めたが、インナチューブ204が無い構成であっても良い。 Inside the outer tube 203, an inner tube 204 constituting a reaction vessel is provided. The inner tube 204 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and has a cylindrical shape with an upper end closed and a lower end opened. A processing container (reaction container) mainly includes the outer tube 203, the inner tube 204, and the manifold 209. A processing chamber 201 is formed in the hollow portion of the processing container (inside the inner tube 204). Here, although the inner tube 204 is included in the configuration of the processing container (reaction container) and the processing chamber 201, a configuration without the inner tube 204 may be employed.
 処理室201は、基板としてのウエハ200を後述するボート217によって水平姿勢で鉛直方向に多段に配列した状態で収容可能に構成されている。 (4) The processing chamber 201 is configured to be able to store wafers 200 as substrates in a state where the wafers 200 are arranged in a horizontal posture and vertically in multiple stages by a boat 217 described later.
 処理室201内には、ノズル410,420,430がマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410,420,430には、ガス供給ラインとしてのガス供給管310,320,330が、それぞれ接続されている。このように、基板処理装置10には3本のノズル410,420,430と、3本のガス供給管310,320,330とが設けられており、処理室201内へ複数種類のガスを供給することができるように構成されている。ただし、本実施形態の処理炉202は上述の形態に限定されない。 ノ ズ ル In the processing chamber 201, nozzles 410, 420, and 430 are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204. Gas supply pipes 310, 320, and 330 as gas supply lines are connected to the nozzles 410, 420, and 430, respectively. As described above, the substrate processing apparatus 10 is provided with the three nozzles 410, 420, and 430 and the three gas supply pipes 310, 320, and 330, and supplies a plurality of types of gases into the processing chamber 201. It is configured to be able to. However, the processing furnace 202 of the present embodiment is not limited to the above-described embodiment.
 ガス供給管310,320,330には上流側から順に流量制御器(流量制御部)であるマスフローコントローラ(MFC)312,322,332がそれぞれ設けられている。また、ガス供給管310,320,330には、開閉弁であるバルブ314,324,334がそれぞれ設けられている。ガス供給管310,320,330のバルブ314,324,334の下流側には、不活性ガスを供給するガス供給管510,520,530がそれぞれ接続されている。ガス供給管510,520,530には、上流側から順に、MFC512,522,532及びバルブ514,524,534がそれぞれ設けられている。 マ ス The gas supply pipes 310, 320, and 330 are provided with mass flow controllers (MFCs) 312, 322, and 332, respectively, which are flow controllers (flow controllers) in order from the upstream side. The gas supply pipes 310, 320, and 330 are provided with valves 314, 324, and 334, respectively, which are on-off valves. Gas supply pipes 510, 520, and 530 for supplying inert gas are connected to the gas supply pipes 310, 320, and 330 downstream of the valves 314, 324, and 334, respectively. The gas supply pipes 510, 520, and 530 are provided with MFCs 512, 522, and 532 and valves 514, 524, and 534, respectively, in order from the upstream side.
 ガス供給管310,320,330の先端部にはノズル410,420,430がそれぞれ連結接続されている。ノズル410,420,430は、L字型のノズルとして構成されており、その水平部はマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410,420,430の垂直部は、インナチューブ204の径方向外向きに突出し、かつ鉛直方向に延在するように形成されているチャンネル形状(溝形状)の予備室201aの内部に設けられており、予備室201a内にてインナチューブ204の内壁に沿って上方(ウエハ200の配列方向上方)に向かって設けられている。 Nozzles 410, 420, and 430 are connected and connected to tips of the gas supply pipes 310, 320, and 330, respectively. The nozzles 410, 420, and 430 are configured as L-shaped nozzles, and the horizontal portion is provided to penetrate the side wall of the manifold 209 and the inner tube 204. The vertical portions of the nozzles 410, 420, and 430 are provided inside a channel-shaped (groove-shaped) preliminary chamber 201a that protrudes radially outward of the inner tube 204 and extends in the vertical direction. In the preliminary chamber 201 a, it is provided upward (upward in the arrangement direction of the wafers 200) along the inner wall of the inner tube 204.
 ノズル410,420,430は、処理室201の下部領域から処理室201の上部領域まで延在するように設けられており、ウエハ200と対向する位置にそれぞれ複数のガス供給孔410a,420a,430aが設けられている。これにより、ノズル410,420,430のガス供給孔410a,420a,430aからそれぞれウエハ200に処理ガスを供給する。このガス供給孔410a,420a,430aは、インナチューブ204の下部から上部にわたって複数設けられ、それぞれ同一の開口面積を有し、さらに同一の開口ピッチで設けられている。ただし、ガス供給孔410a,420a,430aは上述の形態に限定されない。例えば、インナチューブ204の下部から上部に向かって開口面積を徐々に大きくしてもよい。これにより、ガス供給孔410a,420a,430aから供給されるガスの流量をより均一化することが可能となる。 The nozzles 410, 420, and 430 are provided so as to extend from a lower region of the processing chamber 201 to an upper region of the processing chamber 201, and a plurality of gas supply holes 410 a, 420 a, and 430 a are provided at positions facing the wafer 200. Is provided. Thus, the processing gas is supplied to the wafer 200 from the gas supply holes 410a, 420a, and 430a of the nozzles 410, 420, and 430, respectively. A plurality of the gas supply holes 410a, 420a, and 430a are provided from the lower portion to the upper portion of the inner tube 204, have the same opening area, and are provided at the same opening pitch. However, the gas supply holes 410a, 420a, and 430a are not limited to the above-described embodiments. For example, the opening area may be gradually increased from the lower part to the upper part of the inner tube 204. Thereby, the flow rate of the gas supplied from the gas supply holes 410a, 420a, and 430a can be made more uniform.
 ノズル410,420,430のガス供給孔410a,420a,430aは、後述するボート217の下部から上部までの高さの位置に複数設けられている。そのため、ノズル410,420,430のガス供給孔410a,420a,430aから処理室201内に供給された処理ガスは、ボート217の下部から上部までに収容されたウエハ200、すなわちボート217に収容されたウエハ200の全域に供給される。ノズル410,420,430は、処理室201の下部領域から上部領域まで延在するように設けられていればよいが、ボート217の天井付近まで延在するように設けられていることが好ましい。 複数 A plurality of gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 are provided at a height from a lower portion to an upper portion of the boat 217 described later. Therefore, the processing gas supplied into the processing chamber 201 from the gas supply holes 410 a, 420 a, and 430 a of the nozzles 410, 420, and 430 is stored in the wafer 200 stored from the lower part to the upper part of the boat 217, that is, in the boat 217. The wafer 200 is supplied to the entire area of the wafer 200. The nozzles 410, 420, and 430 may be provided so as to extend from the lower region to the upper region of the processing chamber 201, but are preferably provided to extend near the ceiling of the boat 217.
 ガス供給管310からは、処理ガスとして、金属元素を含むガス(以下、「金属含有ガス」とも呼ぶ)が、MFC312、バルブ314、ノズル410を介して処理室201内に供給される。金属含有ガスとしては、例えば金属元素としてのタングステン(W)を含み、ハロゲン元素としてのフッ素(F)を含むハロゲン含有ガスとしての六フッ化タングステン(WF6)ガスが用いられる。 From the gas supply pipe 310, a gas containing a metal element (hereinafter, also referred to as “metal-containing gas”) is supplied into the processing chamber 201 through the MFC 312, the valve 314, and the nozzle 410 as a processing gas. As the metal-containing gas, for example, tungsten hexafluoride (WF 6 ) gas as a halogen-containing gas containing tungsten (W) as a metal element and containing fluorine (F) as a halogen element is used.
 ガス供給管320からは、処理ガスとして、還元ガスが、MFC322、バルブ324、ノズル420を介して処理室201内に供給される。還元ガスとしては、例えば水素(H)を含むガス(以下、「水素含有ガス」とも呼ぶ)である水素(H2)ガスを用いることができる。 From the gas supply pipe 320, a reducing gas is supplied as a processing gas into the processing chamber 201 via the MFC 322, the valve 324, and the nozzle 420. As the reducing gas, for example, a hydrogen (H 2 ) gas which is a gas containing hydrogen (H) (hereinafter, also referred to as “hydrogen-containing gas”) can be used.
 ガス供給管330からは、処理ガスとして、酸素(O)を含むガス(以下、「酸素含有ガス」とも呼ぶ)が、MFC332、バルブ334、ノズル430を介して処理室201内に供給される。酸素含有ガスとしては、例えば酸素(O2)ガスを用いることができる。 A gas containing oxygen (O) (hereinafter, also referred to as “oxygen-containing gas”) as a processing gas is supplied from the gas supply pipe 330 into the processing chamber 201 via the MFC 332, the valve 334, and the nozzle 430. As the oxygen-containing gas, for example, oxygen (O 2 ) gas can be used.
 ガス供給管510,520,530からは、不活性ガスとして、例えば窒素(N2)ガスが、それぞれMFC512,522,532、バルブ514,524,534、ノズル410,420,430を介して処理室201内に供給される。なお、以下、不活性ガスとしてN2ガスを用いる例について説明するが、不活性ガスとしては、N2ガス以外に、例えば、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いてもよい。 From the gas supply pipes 510, 520, and 530, for example, nitrogen (N 2 ) gas as an inert gas is supplied through the MFCs 512, 522, 532, the valves 514, 524, 534, and the nozzles 410, 420, and 430 to the processing chamber. 201. Hereinafter, an example in which N 2 gas is used as an inert gas will be described. As the inert gas, for example, an argon (Ar) gas, a helium (He) gas, and a neon (Ne) gas are used in addition to the N 2 gas. And a rare gas such as xenon (Xe) gas.
 主に、ガス供給管310,320,330、MFC312,322,332、バルブ314,324,334、ノズル410,420,430により処理ガス供給系(処理ガス供給部)が構成されるが、ノズル410,420,430のみを処理ガス供給系と考えてもよい。処理ガス供給系を、単に、ガス供給系と称することもできる。ガス供給管310から金属含有ガスを流す場合、主に、ガス供給管310、MFC312、バルブ314により金属含有ガス供給系(金属含有ガス供給部)が構成されるが、ノズル410を金属含有ガス供給系に含めて考えてもよい。また、金属含有ガス供給系をハロゲン含有ガス供給系と称することもできる。ガス供給管320から還元ガスを流す場合、主に、ガス供給管320、MFC322、バルブ324により還元ガス供給系(還元ガス供給部)が構成されるが、ノズル420を還元ガス供給系に含めて考えてもよい。ガス供給管320から還元ガスとして水素含有ガスを供給する場合、還元ガス供給系を水素含有ガス供給系(水素含有ガス供給部)と称することもできる。ガス供給管330から酸素含有ガスを流す場合、主に、ガス供給管330、MFC332、バルブ334により酸素含有ガス供給系(酸素含有ガス供給部)が構成されるが、ノズル430を酸素含有ガス供給系に含めて考えてもよい。また、主に、ガス供給管510,520,530、MFC512,522,532、バルブ514,524,534により不活性ガス供給系(不活性ガス供給部)が構成される。不活性ガス供給系を、パージガス供給系、希釈ガス供給系、或いは、キャリアガス供給系と称することもできる。 A processing gas supply system (processing gas supply unit) mainly includes the gas supply pipes 310, 320, 330, the MFCs 312, 322, 332, the valves 314, 324, 334, and the nozzles 410, 420, 430. , 420 and 430 may be considered as the processing gas supply system. The processing gas supply system may be simply referred to as a gas supply system. When the metal-containing gas flows from the gas supply pipe 310, a metal-containing gas supply system (metal-containing gas supply unit) is mainly configured by the gas supply pipe 310, the MFC 312, and the valve 314. It may be included in the system. Further, the metal-containing gas supply system may be referred to as a halogen-containing gas supply system. When the reducing gas flows from the gas supply pipe 320, a reducing gas supply system (reducing gas supply unit) is mainly configured by the gas supply pipe 320, the MFC 322, and the valve 324. The nozzle 420 is included in the reducing gas supply system. You may think. When supplying a hydrogen-containing gas as a reducing gas from the gas supply pipe 320, the reducing gas supply system may be referred to as a hydrogen-containing gas supply system (hydrogen-containing gas supply unit). When the oxygen-containing gas flows from the gas supply pipe 330, an oxygen-containing gas supply system (oxygen-containing gas supply unit) is mainly configured by the gas supply pipe 330, the MFC 332, and the valve 334. It may be included in the system. In addition, an inert gas supply system (an inert gas supply unit) is mainly configured by the gas supply pipes 510, 520, and 530, the MFCs 512, 522, and 532, and the valves 514, 524, and 534. The inert gas supply system may be referred to as a purge gas supply system, a dilution gas supply system, or a carrier gas supply system.
 本実施形態におけるガス供給の方法は、インナチューブ204の内壁と、複数枚のウエハ200の端部とで定義される円環状の縦長の空間内、すなわち、円筒状の空間内の予備室201a内に配置したノズル410,420,430を経由してガスを搬送している。そして、ノズル410,420,430のウエハと対向する位置に設けられた複数のガス供給孔410a,420a,430aからインナチューブ204内にガスを噴出させている。より詳細には、ノズル410のガス供給孔410a、ノズル420のガス供給孔420a及びノズル430のガス供給孔430aにより、ウエハ200の表面と平行方向、すなわち水平方向に向かって原料ガス等を噴出させている。 The gas supply method according to the present embodiment is performed in the preparatory chamber 201 a in an annular vertically long space defined by the inner wall of the inner tube 204 and the ends of the plurality of wafers 200, that is, in the cylindrical space. The gas is conveyed via the nozzles 410, 420, 430 arranged in the. Then, gas is ejected into the inner tube 204 from a plurality of gas supply holes 410a, 420a, 430a provided at positions of the nozzles 410, 420, 430 facing the wafer. More specifically, the source gas or the like is ejected in a direction parallel to the surface of the wafer 200, that is, in a horizontal direction by the gas supply hole 410a of the nozzle 410, the gas supply hole 420a of the nozzle 420, and the gas supply hole 430a of the nozzle 430. ing.
 排気孔(排気口)204aは、インナチューブ204の側壁であってノズル410,420,430に対向した位置、すなわち予備室201aとは180度反対側の位置に形成された貫通孔であり、例えば、鉛直方向に細長く開設されたスリット状の貫通孔である。そのため、ノズル410,420,430のガス供給孔410a,420a,430aから処理室201内に供給され、ウエハ200の表面上を流れたガス、すなわち、残留するガス(残ガス)は、排気孔204aを介してインナチューブ204とアウタチューブ203との間に形成された隙間で構成される排気路206内に流れる。そして、排気路206内へと流れたガスは、排気管231内に流れ、処理炉202外へと排出される。 The exhaust hole (exhaust port) 204a is a through hole formed at a position facing the nozzles 410, 420, and 430 on the side wall of the inner tube 204, that is, at a position 180 degrees opposite to the preliminary chamber 201a. , Are slit-shaped through holes elongated in the vertical direction. Therefore, the gas supplied from the gas supply holes 410a, 420a, and 430a of the nozzles 410, 420, and 430 into the processing chamber 201 and flowing on the surface of the wafer 200, that is, the remaining gas (residual gas) is discharged to the exhaust hole 204a. Through the inner tube 204 and the outer tube 203 into the exhaust path 206 formed by a gap formed between the inner tube 204 and the outer tube 203. Then, the gas flowing into the exhaust path 206 flows into the exhaust pipe 231 and is discharged out of the processing furnace 202.
 排気孔204aは、複数のウエハ200と対向する位置(好ましくはボート217の上部から下部と対向する位置)に設けられており、ガス供給孔410a、420a、430aから処理室201内のウエハ200の近傍に供給されたガスは、水平方向、すなわちウエハ200の表面と平行方向に向かって流れた後、排気孔204aを介して排気路206内へと流れる。すなわち、処理室201に残留するガスは、排気孔204aを介してウエハ200の主面に対して平行に排気される。なお、排気孔204aはスリット状の貫通孔として構成される場合に限らず、複数個の孔により構成されていてもよい。 The exhaust hole 204a is provided at a position facing the plurality of wafers 200 (preferably, at a position facing the upper part to the lower part of the boat 217), and the gas supply holes 410a, 420a, and 430a are used to discharge the wafer 200 in the processing chamber 201. The gas supplied to the vicinity flows in the horizontal direction, that is, in the direction parallel to the surface of the wafer 200, and then flows into the exhaust passage 206 through the exhaust hole 204a. That is, the gas remaining in the processing chamber 201 is exhausted in parallel with the main surface of the wafer 200 through the exhaust hole 204a. In addition, the exhaust hole 204a is not limited to being configured as a slit-shaped through-hole, and may be configured with a plurality of holes.
 マニホールド209には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、上流側から順に、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245、APC(Auto Pressure Controller)バルブ243、真空排気装置としての真空ポンプ246が接続されている。APCバルブ243は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気及び真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で弁開度を調節することで、処理室201内の圧力を調整することができる。主に、排気孔204a,排気路206,排気管231,APCバルブ243及び圧力センサ245により、排気系すなわち排気ラインが構成される。なお、真空ポンプ246を排気系に含めて考えてもよい。 The exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201 is provided in the manifold 209. In the exhaust pipe 231, a pressure sensor 245 as a pressure detector (pressure detecting unit) for detecting a pressure in the processing chamber 201, an APC (Auto Pressure Controller) valve 243, and a vacuum pump as a vacuum exhaust device are sequentially provided from the upstream side. 246 are connected. The APC valve 243 can open and close the valve while the vacuum pump 246 is operating, thereby performing evacuation of the processing chamber 201 and stopping the evacuation. Further, the APC valve 243 operates with the vacuum pump 246 operating. The pressure in the processing chamber 201 can be adjusted by adjusting the opening degree. An exhaust system, that is, an exhaust line is mainly configured by the exhaust hole 204a, the exhaust path 206, the exhaust pipe 231, the APC valve 243, and the pressure sensor 245. Note that the vacuum pump 246 may be included in the exhaust system.
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に鉛直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属で構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219における処理室201の反対側には、ウエハ200を収容するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、アウタチューブ203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって鉛直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入及び搬出することが可能なように構成されている。ボートエレベータ115は、ボート217及びボート217に収容されたウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。 シ ー ル Below the manifold 209, a seal cap 219 is provided as a furnace port lid capable of hermetically closing the lower end opening of the manifold 209. The seal cap 219 is configured to contact the lower end of the manifold 209 from below in the vertical direction. The seal cap 219 is made of a metal such as SUS, for example, and is formed in a disk shape. On the upper surface of the seal cap 219, an O-ring 220b is provided as a seal member that contacts the lower end of the manifold 209. On the opposite side of the processing chamber 201 in the seal cap 219, a rotation mechanism 267 for rotating a boat 217 that stores the wafer 200 is installed. The rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217. The rotation mechanism 267 is configured to rotate the boat 217 to rotate the wafer 200. The seal cap 219 is configured to be vertically moved up and down by a boat elevator 115 serving as a lifting / lowering mechanism installed vertically outside the outer tube 203. The boat elevator 115 is configured to be able to carry the boat 217 in and out of the processing chamber 201 by moving the seal cap 219 up and down. The boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217 and the wafers 200 stored in the boat 217 into and out of the processing chamber 201.
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で鉛直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料で構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料で構成される断熱板218が水平姿勢で多段(図示せず)に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。ただし、本実施形態は上述の形態に限定されない。例えば、ボート217の下部に断熱板218を設けずに、石英やSiC等の耐熱性材料で構成される筒状の部材として構成された断熱筒を設けてもよい。 The boat 217 as a substrate support is configured to support a plurality of, for example, 25 to 200 wafers 200 in a horizontal posture and vertically aligned with their centers aligned with each other, that is, to support the wafers 200 in multiple stages. It is configured to be arranged at intervals. The boat 217 is made of a heat-resistant material such as quartz or SiC. Under the boat 217, a heat insulating plate 218 made of a heat-resistant material such as quartz or SiC is supported in multiple stages (not shown) in a horizontal posture. This configuration makes it difficult for heat from the heater 207 to be transmitted to the seal cap 219 side. However, the present embodiment is not limited to the above-described embodiment. For example, instead of providing the heat insulating plate 218 at the lower portion of the boat 217, a heat insulating tube configured as a cylindrical member made of a heat resistant material such as quartz or SiC may be provided.
 図3に示すように、インナチューブ204内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電量を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル410,420及び430と同様にL字型に構成されており、インナチューブ204の内壁に沿って設けられている。 As shown in FIG. 3, a temperature sensor 263 as a temperature detector is installed in the inner tube 204, and the amount of electricity supplied to the heater 207 is adjusted based on temperature information detected by the temperature sensor 263. The inside of the processing chamber 201 is configured to have a desired temperature distribution. The temperature sensor 263 is formed in an L shape similarly to the nozzles 410, 420, and 430, and is provided along the inner wall of the inner tube 204.
 図4に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バスを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。 As shown in FIG. 4, the controller 121, which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d. Have been. The RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via an internal bus. An input / output device 122 configured as, for example, a touch panel or the like is connected to the controller 121.
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラム、後述する半導体装置の製造方法の手順や条件などが記載されたプロセスレシピなどが、読み出し可能に格納されている。プロセスレシピは、後述する半導体装置の製造方法における各工程(各ステップ)をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピ、制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、プロセスレシピ及び制御プログラムの組み合わせを含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 121c includes, for example, a flash memory, an HDD (Hard Disk Drive), and the like. In the storage device 121c, a control program for controlling the operation of the substrate processing apparatus, a process recipe describing a procedure and conditions of a semiconductor device manufacturing method described later, and the like are stored in a readable manner. The process recipe is combined so that the controller 121 can execute each step (each step) in a semiconductor device manufacturing method described later and obtain a predetermined result, and functions as a program. Hereinafter, the process recipe, the control program, and the like are collectively referred to simply as a program. In this specification, the term “program” may include only a process recipe alone, may include only a control program, or may include a combination of a process recipe and a control program. The RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
 I/Oポート121dは、上述のMFC312,322,332,512,522,532、バルブ314,324,334,514,524,534、圧力センサ245、APCバルブ243、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。 The I / O port 121d is connected to the MFC 312, 322, 332, 512, 522, 532, the valve 314, 324, 334, 514, 524, 534, the pressure sensor 245, the APC valve 243, the vacuum pump 246, the heater 207, and the temperature. It is connected to the sensor 263, the rotation mechanism 267, the boat elevator 115, and the like.
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピ等を読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC312,322,332,512,522,532による各種ガスの流量調整動作、バルブ314,324,334,514,524,534の開閉動作、APCバルブ243の開閉動作及びAPCバルブ243による圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動及び停止、回転機構267によるボート217の回転及び回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、ボート217へのウエハ200の収容動作等を制御するように構成されている。 The CPU 121a is configured to read and execute a control program from the storage device 121c and read a recipe or the like from the storage device 121c in response to input of an operation command from the input / output device 122 or the like. The CPU 121a adjusts the flow rates of various gases by the MFCs 312, 322, 332, 512, 522, and 532, opens and closes the valves 314, 324, 334, 514, 524, and 534, and operates the APC valve according to the contents of the read recipe. 243 opening / closing operation, pressure adjustment operation based on the pressure sensor 245 by the APC valve 243, temperature adjustment operation of the heater 207 based on the temperature sensor 263, start and stop of the vacuum pump 246, rotation and rotation speed adjustment of the boat 217 by the rotation mechanism 267. The operation, the raising / lowering operation of the boat 217 by the boat elevator 115, the operation of storing the wafer 200 in the boat 217, and the like are controlled.
 コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。 The controller 121 is stored in an external storage device 123 (for example, a magnetic tape, a magnetic disk such as a flexible disk and a hard disk, an optical disk such as a CD and a DVD, a magneto-optical disk such as an MO, and a semiconductor memory such as a USB memory and a memory card). The above-described program can be configured by installing the program in a computer. The storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively simply referred to as a recording medium. In this specification, a recording medium may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them. The provision of the program to the computer may be performed using communication means such as the Internet or a dedicated line without using the external storage device 123.
(2)基板処理工程(成膜工程)
 半導体装置(デバイス)の製造工程の一工程として、図1に示されているような表面にトレンチやホール等の凹部5が形成され、この凹部5に連通し、凹部5からウエハ表面に対して水平方向(横方向)に横穴6が形成されたウエハ200に金属層としてのW層を成膜する工程の一例について、図5及び図6を用いて説明する。本基板処理工程は、上述した基板処理装置10の処理炉202を用いて実行される。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。
(2) Substrate processing step (film formation step)
As one step of the manufacturing process of the semiconductor device (device), a concave portion 5 such as a trench or a hole is formed on the surface as shown in FIG. An example of a process of forming a W layer as a metal layer on the wafer 200 in which the horizontal holes 6 are formed in the horizontal direction (lateral direction) will be described with reference to FIGS. The present substrate processing step is performed using the processing furnace 202 of the substrate processing apparatus 10 described above. In the following description, the operation of each unit constituting the substrate processing apparatus 10 is controlled by the controller 121.
 本実施形態による基板処理工程(半導体装置の製造工程)では、
 (a)表面に第1凹部としての凹部が形成され、この凹部の側面からこの凹部の深さ方向とは異なる方向に延びるように設けられた第2凹部としての横穴が形成されたウエハ200に対して、金属含有ガスとしてWF6ガスを供給する工程と、
 (b)ウエハ200に対して、還元ガスとしてH2ガスを供給する工程と、
を有し、(a)と(b)を少なくとも含むサイクルを所定回数実行する工程と、
 (c)ウエハ200に対して、ハロゲン含有ガスとしてWF6ガスを供給する工程と、
 (d)ウエハ200に対して、酸素含有ガスとしてO2ガスとH2ガスを供給する工程と、
を有し、(c)と(d)を少なくとも含むサイクルを所定回数実行する工程と、
 を行って、ウエハ200上に金属層であるW層を形成する。
In the substrate processing step (semiconductor device manufacturing step) according to the present embodiment,
(A) A concave portion as a first concave portion is formed on the surface, and a wafer 200 having a lateral hole as a second concave portion formed so as to extend from a side surface of the concave portion in a direction different from the depth direction of the concave portion. On the other hand, supplying a WF 6 gas as a metal-containing gas;
(B) supplying H 2 gas as a reducing gas to the wafer 200;
Performing a predetermined number of cycles including at least (a) and (b);
(C) supplying a WF 6 gas as a halogen-containing gas to the wafer 200;
(D) supplying O 2 gas and H 2 gas as oxygen-containing gas to the wafer 200;
Performing a predetermined number of cycles including at least (c) and (d);
Is performed to form a W layer which is a metal layer on the wafer 200.
 なお、本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合(すなわち、表面に形成された所定の層や膜等を含めてウエハと称する場合)がある。また、本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面(露出面)」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面、すなわち、積層体としてのウエハの最表面」を意味する場合がある。なお、本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。 In this specification, the term “wafer” means “wafer itself” or “laminate (assembly) of a wafer and predetermined layers and films formed on the surface thereof”. (That is, a wafer including predetermined layers and films formed on the surface). In this specification, the term “surface of the wafer” is used to mean “the surface (exposed surface) of the wafer itself” or “the surface of a predetermined layer or film formed on the wafer. That is, it may mean "the outermost surface of the wafer as a laminate". Note that the use of the word “substrate” in this specification is synonymous with the use of the word “wafer”.
(ウエハ搬入)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図2に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される。この状態で、シールキャップ219はOリング220bを介して反応管203の下端開口を閉塞した状態となる。
(Wafer loading)
When a plurality of wafers 200 are loaded (wafer charging) into the boat 217, as shown in FIG. 2, the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 to be processed in the processing chamber 201. (Boat loading). In this state, the seal cap 219 closes the lower end opening of the reaction tube 203 via the O-ring 220b.
(圧力調整および温度調整)
 処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。また、回転機構267によるウエハ200の回転を開始する。処理室201内の排気、ウエハ200の加熱および回転は、いずれも、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。
(Pressure adjustment and temperature adjustment)
The inside of the processing chamber 201, that is, the space where the wafer 200 exists, is evacuated by the vacuum pump 246 so as to have a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). Further, the inside of the processing chamber 201 is heated by the heater 207 so as to reach a desired temperature. At this time, the amount of power to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment). Further, the rotation of the wafer 200 by the rotation mechanism 267 is started. Evacuation of the processing chamber 201 and heating and rotation of the wafer 200 are continuously performed at least until the processing on the wafer 200 is completed.
[W層形成工程]
 続いて、ウエハ200上に、金属層として例えばW層4を形成するステップを実行する。
[W layer forming step]
Subsequently, a step of forming, for example, a W layer 4 as a metal layer on the wafer 200 is performed.
(WF6ガス供給 ステップS10)
 バルブ314を開き、ガス供給管310内に金属含有ガスであるWF6ガスを流す。WF6ガスは、MFC312により流量調整され、ノズル410のガス供給孔410aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してWF6ガスが供給されることとなる。このとき同時にバルブ514を開き、ガス供給管510内にN2ガス等の不活性ガスを流す。ガス供給管510内を流れたN2ガスは、MFC512により流量調整され、WF6ガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル420,430内へのWF6ガスの侵入を防止するために、バルブ524,534を開き、ガス供給管520,530内にN2ガスを流す。N2ガスは、ガス供給管320,330、ノズル420,430を介して処理室201内に供給され、排気管231から排気される。
(WF 6 gas supply step S10)
The valve 314 is opened, and WF 6 gas, which is a metal-containing gas, flows into the gas supply pipe 310. The flow rate of the WF 6 gas is adjusted by the MFC 312, supplied to the processing chamber 201 from the gas supply hole 410 a of the nozzle 410, and exhausted from the exhaust pipe 231. At this time, the WF 6 gas is supplied to the wafer 200. At this time, the valve 514 is opened at the same time, and an inert gas such as N 2 gas flows into the gas supply pipe 510. The flow rate of the N 2 gas flowing in the gas supply pipe 510 is adjusted by the MFC 512, supplied to the processing chamber 201 together with the WF 6 gas, and exhausted from the exhaust pipe 231. At this time, in order to prevent the WF 6 gas from entering the nozzles 420 and 430, the valves 524 and 534 are opened, and the N 2 gas flows into the gas supply pipes 520 and 530. The N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 320 and 330 and the nozzles 420 and 430, and is exhausted from the exhaust pipe 231.
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば0.1~6650Paの範囲内の圧力とする。MFC312で制御するWF6ガスの供給流量は、例えば0.01~10slmの範囲内の流量とする。MFC512,522,532で制御するN2ガスの供給流量は、それぞれ例えば0.1~30slmの範囲内の流量とする。WF6ガスをウエハ200に対して供給する時間は、例えば0.01~30秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば250~550℃の範囲内の温度となるような温度に設定する。処理室201内に流しているガスはWF6ガスとN2ガスのみであり、WF6ガスの供給により、ウエハ200(表面の下地膜)上に、例えば1原子層未満から数原子層程度の厚さの金属含有層としてのW含有層が形成される。 At this time, the APC valve 243 is adjusted to set the pressure in the processing chamber 201 to a pressure within a range of, for example, 0.1 to 6650 Pa. The supply flow rate of the WF 6 gas controlled by the MFC 312 is, for example, a flow rate within a range of 0.01 to 10 slm. The supply flow rate of the N 2 gas controlled by the MFCs 512, 522, and 532 is, for example, in the range of 0.1 to 30 slm. The time for supplying the WF 6 gas to the wafer 200 is, for example, a time within a range of 0.01 to 30 seconds. At this time, the temperature of the heater 207 is set to a temperature such that the temperature of the wafer 200 falls within a range of, for example, 250 to 550 ° C. The gases flowing into the processing chamber 201 are only the WF 6 gas and the N 2 gas, and the supply of the WF 6 gas causes the wafer 200 (underlying film on the surface) to have, for example, less than one atomic layer to several atomic layers. A W-containing layer as a metal-containing layer having a thickness is formed.
(残留ガス除去 ステップS11)
 W含有層が形成された後、バルブ314を閉じ、WF6ガスの供給を停止する。このとき、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはW含有層形成に寄与した後のWF6ガスを処理室201内から排除する。このときバルブ514,524,534は開いたままとして、N2ガスの処理室201内への供給を維持する。N2ガスはパージガスとして作用し、処理室201内に残留する未反応もしくはW含有層形成に寄与した後のWF6ガスを処理室201内から排除する効果を高めることができる。
(Residual gas removal step S11)
After the W-containing layer is formed, the valve 314 is closed, and the supply of the WF 6 gas is stopped. At this time, while the APC valve 243 of the exhaust pipe 231 is kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246 and WF 6 remaining in the processing chamber 201 remains unreacted or contributes to the formation of the W-containing layer. Gas is removed from the processing chamber 201. At this time, the valves 514, 524, and 534 are kept open, and the supply of the N 2 gas into the processing chamber 201 is maintained. The N 2 gas acts as a purge gas, and the effect of eliminating the WF 6 gas remaining in the processing chamber 201 and remaining after contributing to the formation of the W-containing layer from the processing chamber 201 can be enhanced.
(H2ガス供給 ステップS12)
 バルブ324を開き、ガス供給管320内に還元ガスであるH2ガスを流す。H2ガスは、MFC322により流量調整され、ノズル420のガス供給孔420aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してH2ガスが供給されることとなる。このとき同時にバルブ524を開き、ガス供給管520内にN2ガス等の不活性ガスを流す。ガス供給管520内を流れたN2ガスは、MFC522により流量調整され、H2ガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル410,430内へのH2ガスの侵入を防止するために、バルブ514,534を開き、ガス供給管510,530内にN2ガスを流す。N2ガスは、ガス供給管310,330、ノズル410,430を介して処理室201内に供給され、排気管231から排気される。
(H 2 gas supply step S12)
The valve 324 is opened, and H 2 gas, which is a reducing gas, flows into the gas supply pipe 320. The flow rate of the H 2 gas is adjusted by the MFC 322, the H 2 gas is supplied into the processing chamber 201 from the gas supply hole 420 a of the nozzle 420, and is exhausted from the exhaust pipe 231. At this time, H 2 gas is supplied to the wafer 200. At this time, the valve 524 is opened at the same time, and an inert gas such as N 2 gas flows into the gas supply pipe 520. The flow rate of the N 2 gas flowing through the gas supply pipe 520 is adjusted by the MFC 522, supplied to the processing chamber 201 together with the H 2 gas, and exhausted from the exhaust pipe 231. At this time, in order to prevent H 2 gas from entering the nozzles 410 and 430, the valves 514 and 534 are opened, and N 2 gas flows through the gas supply pipes 510 and 530. The N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 310 and 330 and the nozzles 410 and 430, and is exhausted from the exhaust pipe 231.
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば1~3990Paの範囲内の圧力とする。MFC322で制御するH2ガスの供給流量は、例えば0.1~50slmの範囲内の流量とする。MFC512,522,532で制御するN2ガスの供給流量は、それぞれ例えば0.1~20slmの範囲内の流量とする。H2ガスをウエハ200に対して供給する時間は、例えば0.1~20秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば200~600℃の範囲内の温度となるような温度に設定する。処理室201内に流しているガスはH2ガスとN2ガスのみであり、H2ガスの供給により、ウエハ200(表面の下地膜)上に、例えば1原子層未満から数原子層程度の厚さの金属層としてのW層が形成される。 At this time, the APC valve 243 is adjusted to set the pressure in the processing chamber 201 to a pressure within a range of, for example, 1 to 3990 Pa. The supply flow rate of the H 2 gas controlled by the MFC 322 is, for example, a flow rate within a range of 0.1 to 50 slm. The supply flow rate of the N 2 gas controlled by the MFCs 512, 522, and 532 is, for example, a flow rate within a range of 0.1 to 20 slm. The time for supplying the H 2 gas to the wafer 200 is, for example, a time within a range of 0.1 to 20 seconds. At this time, the temperature of the heater 207 is set to a temperature such that the temperature of the wafer 200 falls within a range of, for example, 200 to 600 ° C. The gas flowing into the processing chamber 201 is only the H 2 gas and the N 2 gas, and the supply of the H 2 gas causes the wafer 200 (underlying film on the surface) to have, for example, less than one atomic layer to several atomic layers. A W layer is formed as a metal layer having a thickness.
(残留ガス除去 ステップS13)
 W層が形成された後、バルブ324を閉じ、H2ガスの供給を停止する。そして、ステップS11と同様の処理手順により、処理室201内に残留する未反応もしくはW層形成に寄与した後のH2ガスを処理室201内から排除する。
(Residual gas removal step S13)
After the W layer is formed, the valve 324 is closed, and the supply of the H 2 gas is stopped. Then, the H 2 gas remaining in the processing chamber 201 and remaining unreacted or contributing to the formation of the W layer is removed from the processing chamber 201 by the same processing procedure as step S11.
(所定回数実施)
 上記したステップS10~ステップS13を順に行うサイクルを1回以上(所定回数(n回))実行することにより、ウエハ200上に、所定の厚さのW層を形成する。上述のサイクルは、複数回実行するのが好ましい。
(Conducted a predetermined number of times)
A W layer having a predetermined thickness is formed on the wafer 200 by executing at least one cycle (a predetermined number of times (n times)) of sequentially performing the above-described steps S10 to S13. The above-described cycle is preferably performed a plurality of times.
[W層エッチング工程]
 続いて、ウエハ200のW層表面上に、金属含有層としてのW含有層を形成し、このW含有層の一部を金属酸素含有層としてのWO含有層に改質する(エッチングする)ステップを実行する。WO含有層は、例えば、W含有層の表面側に形成される。即ち、W含有層の表面側の数層が、WO含有層に改質した場合は、その数層がエッチングされる。
[W layer etching step]
Subsequently, a W-containing layer as a metal-containing layer is formed on the W-layer surface of the wafer 200, and a part of the W-containing layer is modified (etched) into a WO-containing layer as a metal oxygen-containing layer. Execute The WO-containing layer is formed, for example, on the surface side of the W-containing layer. That is, when several layers on the surface side of the W-containing layer are modified into WO-containing layers, the several layers are etched.
(WF6ガス供給 ステップS20)
 バルブ314を開き、ガス供給管310内にハロゲン含有ガスであるWF6ガスを流す。WF6ガスは、MFC312により流量調整され、ノズル410のガス供給孔410aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してWF6ガスが供給されることとなる。このとき同時にバルブ514を開き、ガス供給管510内にN2ガス等の不活性ガスを流す。ガス供給管510内を流れたN2ガスは、MFC512により流量調整され、WF6ガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル420,430内へのWF6ガスの侵入を防止するために、バルブ524,534を開き、ガス供給管520,530内にN2ガスを流す。N2ガスは、ガス供給管320,330、ノズル420,430を介して処理室201内に供給され、排気管231から排気される。
(WF 6 gas supply step S20)
The valve 314 is opened, and a WF 6 gas, which is a halogen-containing gas, flows into the gas supply pipe 310. The flow rate of the WF 6 gas is adjusted by the MFC 312, supplied to the processing chamber 201 from the gas supply hole 410 a of the nozzle 410, and exhausted from the exhaust pipe 231. At this time, the WF 6 gas is supplied to the wafer 200. At this time, the valve 514 is opened at the same time, and an inert gas such as N 2 gas flows into the gas supply pipe 510. The flow rate of the N 2 gas flowing in the gas supply pipe 510 is adjusted by the MFC 512, supplied to the processing chamber 201 together with the WF 6 gas, and exhausted from the exhaust pipe 231. At this time, in order to prevent the WF 6 gas from entering the nozzles 420 and 430, the valves 524 and 534 are opened, and the N 2 gas flows into the gas supply pipes 520 and 530. The N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 320 and 330 and the nozzles 420 and 430, and is exhausted from the exhaust pipe 231.
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば0.1~6650Paの範囲内の圧力とする。MFC312で制御するWF6ガスの供給流量は、例えば0.01~10slmの範囲内の流量とする。MFC512,522,532で制御するN2ガスの供給流量は、それぞれ例えば0.1~30slmの範囲内の流量とする。WF6ガスをウエハ200に対して供給する時間は、例えば0.01~30秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば250~550℃の範囲内の温度となるような温度に設定する。処理室201内に流しているガスはWF6ガスとN2ガスのみであり、WF6ガスの供給により、ウエハ200(表面の下地膜)上に、例えば1原子層未満から数原子層程度の厚さの金属含有層としてのW含有層が形成される。 At this time, the APC valve 243 is adjusted to set the pressure in the processing chamber 201 to a pressure within a range of, for example, 0.1 to 6650 Pa. The supply flow rate of the WF 6 gas controlled by the MFC 312 is, for example, a flow rate within a range of 0.01 to 10 slm. The supply flow rate of the N 2 gas controlled by the MFCs 512, 522, and 532 is, for example, in the range of 0.1 to 30 slm. The time for supplying the WF 6 gas to the wafer 200 is, for example, a time within a range of 0.01 to 30 seconds. At this time, the temperature of the heater 207 is set to a temperature such that the temperature of the wafer 200 falls within a range of, for example, 250 to 550 ° C. The gases flowing into the processing chamber 201 are only the WF 6 gas and the N 2 gas, and the supply of the WF 6 gas causes the wafer 200 (underlying film on the surface) to have, for example, less than one atomic layer to several atomic layers. A W-containing layer as a metal-containing layer having a thickness is formed.
(残留ガス除去 ステップS21)
 W含有層が形成された後、バルブ314を閉じ、WF6ガスの供給を停止する。そして、ステップS11と同様の処理手順により、処理室201内に残留する未反応もしくはW含有層形成に寄与した後のWF6ガスを処理室201内から排除する。
(Residual gas removal step S21)
After the W-containing layer is formed, the valve 314 is closed, and the supply of the WF 6 gas is stopped. Then, the WF 6 gas remaining in the processing chamber 201 and remaining after it has contributed to the formation of the W-containing layer is removed from the processing chamber 201 by the same processing procedure as that in step S11.
(H2ガス、O2ガス供給 ステップS22)
 バルブ324,334を開き、ガス供給管320,330内にそれぞれ水素含有ガスであるH2ガスと酸素含有ガスであるO2ガスを流す。H2ガスは、MFC322により流量調整され、ノズル420のガス供給孔420aから処理室201内に供給され、排気管231から排気される。O2ガスは、MFC332により流量調整され、ノズル430のガス供給孔430aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してH2ガスとO2ガスが同時に供給されることとなる。またこのとき同時にバルブ524,534を開き、ガス供給管520,530内にそれぞれN2ガス等の不活性ガスを流す。ガス供給管520,530内を流れたN2ガスは、MFC522,532により流量調整され、H2ガス、O2ガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル410内へのH2ガス、O2ガスの侵入を防止するために、バルブ514を開き、ガス供給管510内にN2ガスを流す。N2ガスは、ガス供給管310、ノズル410を介して処理室201内に供給され、排気管231から排気される。
(H 2 gas, O 2 gas supply step S22)
The valves 324 and 334 are opened, and H 2 gas as a hydrogen-containing gas and O 2 gas as an oxygen-containing gas flow into the gas supply pipes 320 and 330, respectively. The flow rate of the H 2 gas is adjusted by the MFC 322, the H 2 gas is supplied into the processing chamber 201 from the gas supply hole 420 a of the nozzle 420, and is exhausted from the exhaust pipe 231. The flow rate of the O 2 gas is adjusted by the MFC 332, the O 2 gas is supplied into the processing chamber 201 from the gas supply hole 430 a of the nozzle 430, and is exhausted from the exhaust pipe 231. At this time, the H 2 gas and the O 2 gas are supplied to the wafer 200 at the same time. At this time, the valves 524 and 534 are simultaneously opened, and an inert gas such as N 2 gas flows into the gas supply pipes 520 and 530, respectively. The flow rate of the N 2 gas flowing through the gas supply pipes 520 and 530 is adjusted by the MFCs 522 and 532, supplied to the processing chamber 201 together with the H 2 gas and the O 2 gas, and exhausted from the exhaust pipe 231. At this time, in order to prevent H 2 gas and O 2 gas from entering the nozzle 410, the valve 514 is opened and N 2 gas flows through the gas supply pipe 510. The N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 310 and the nozzle 410, and is exhausted from the exhaust pipe 231.
 このとき処理室201内に供給されるO2ガスの供給量を、処理室201内に供給されるH2ガスの供給量に比べて多くする。言い換えれば、処理室201内に供給されるO2ガスの供給比率を、H2ガスの供給比率よりも大きくする。なお、供給量は、流量と供給時間のいずれか又は両方により調整される。この様に供給することで、WO含有層の酸素比率を増やすことが可能となる。WO含有層の酸素比率を増やすことで、昇華させやすくなる。 At this time, the supply amount of the O 2 gas supplied into the processing chamber 201 is made larger than the supply amount of the H 2 gas supplied into the processing chamber 201. In other words, the supply ratio of the O 2 gas supplied into the processing chamber 201 is made larger than the supply ratio of the H 2 gas. The supply amount is adjusted by one or both of the flow rate and the supply time. By supplying in this manner, the oxygen ratio of the WO-containing layer can be increased. By increasing the oxygen ratio of the WO-containing layer, sublimation becomes easier.
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば0.1~3990Paの範囲内の圧力とする。MFC322で制御するH2ガスの供給流量は、例えば0.1~50slmの範囲内の流量とする。MFC332で制御するO2ガスの供給流量は、例えば0.1~10slmの範囲内の流量とする。MFC512,522,532で制御するN2ガスの供給流量は、それぞれ例えば0.1~20slmの範囲内の流量とする。H2ガス、O2ガスをウエハ200に対して供給する時間は、例えば0.1~20秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば200~600℃の範囲内の温度となるような温度に設定する。このとき処理室201内に流しているガスはH2ガスとO2ガスとN2ガスのみであり、H2ガスとO2ガスの供給により、ステップS20~ステップS21においてウエハ200(表面の下地膜)上に形成されたW含有層の一部が酸化されて、金属酸素含有層としてのWO含有層に改質される。なお、WO含有層は、W含有層の表面側に形成される。金属酸素含有層は、少なくとも金属元素および酸素元素を含む層であり、この層を金属酸化層と称することもできる。本ステップにおいて、W含有層の少なくとも一部が酸化されることでタングステン酸化物WOxが生成される。ここでxは自然数である。WOxは、上述の処理条件下で、昇華させることが可能である。すなわち、上述の処理条件は、W含有層の少なくとも一部をWO含有層へ改質させると共に、改質されたWO含有層を昇華させることが可能な処理条件である。つまり、本ステップでは、W含有層の少なくとも一部をWO含有層へ改質させた後、このWO含有層が自身の蒸気圧により、昇華が開始される。なお、W含有層の内、酸化されなかった部分は、W含有層として残ることとなる。 At this time, the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 0.1 to 3990 Pa. The supply flow rate of the H 2 gas controlled by the MFC 322 is, for example, a flow rate within a range of 0.1 to 50 slm. The supply flow rate of the O 2 gas controlled by the MFC 332 is, for example, a flow rate within a range of 0.1 to 10 slm. The supply flow rate of the N 2 gas controlled by the MFCs 512, 522, and 532 is, for example, a flow rate within a range of 0.1 to 20 slm. The time for supplying the H 2 gas and the O 2 gas to the wafer 200 is, for example, a time within a range of 0.1 to 20 seconds. At this time, the temperature of the heater 207 is set to a temperature such that the temperature of the wafer 200 falls within a range of, for example, 200 to 600 ° C. At this time, the gases flowing into the processing chamber 201 are only the H 2 gas, the O 2 gas, and the N 2 gas, and the supply of the H 2 gas and the O 2 gas causes the wafer 200 (below the surface) to flow in steps S20 to S21. A part of the W-containing layer formed on the (base film) is oxidized and reformed into a WO-containing layer as a metal oxygen-containing layer. The WO-containing layer is formed on the surface of the W-containing layer. The metal oxygen-containing layer is a layer containing at least a metal element and an oxygen element, and this layer may be referred to as a metal oxide layer. In this step, tungsten oxide WOx is generated by oxidizing at least a part of the W-containing layer. Here, x is a natural number. WOx can be sublimated under the above processing conditions. That is, the above-mentioned processing conditions are processing conditions that allow at least a part of the W-containing layer to be modified into a WO-containing layer and that the modified WO-containing layer be sublimated. That is, in this step, after at least a part of the W-containing layer is modified into the WO-containing layer, sublimation of the WO-containing layer is started by its own vapor pressure. Note that, of the W-containing layer, a portion that has not been oxidized remains as a W-containing layer.
 なお、H2ガスとO2ガスとを供給することにより、O2のみを供給した場合と比較して、酸化力の強い活性種を生成することが可能となる。酸化力の強い活性種を生成することにより、W含有層の表面のWO含有層の均一性を向上させることが可能となる。 By supplying H 2 gas and O 2 gas, it becomes possible to generate active species having a strong oxidizing power as compared with the case where only O 2 is supplied. By generating active species having strong oxidizing power, it becomes possible to improve the uniformity of the WO-containing layer on the surface of the W-containing layer.
(残留ガス除去 ステップS23)
 WO含有層が形成された後、バルブ324,334を閉じ、H2ガスとO2ガスの供給を停止する。そして、ステップS11と同様の処理手順により、処理室201内に残留する未反応もしくはWO含有層形成に寄与した後のH2ガスとO2ガスを処理室201内から排除する。なお、本ステップにおいても、ステップS22で形成されたWO含有層を昇華させることが可能であり、ステップS22でWO含有層を昇華し切れなかった場合は、本ステップにおいて残留したWO含有層を昇華させることが可能である。
(Residual gas removal step S23)
After the WO-containing layer is formed, the valves 324 and 334 are closed, and the supply of the H 2 gas and the O 2 gas is stopped. Then, the H 2 gas and the O 2 gas remaining in the processing chamber 201 and remaining unreacted or contributing to the formation of the WO-containing layer are removed from the processing chamber 201 by the same processing procedure as in step S11. In this step as well, the WO-containing layer formed in step S22 can be sublimated. If the WO-containing layer is not completely sublimated in step S22, the WO-containing layer remaining in this step is sublimated. It is possible to do.
(所定回数実施)
 上記したステップS20~ステップS23を順に行うことにより、ウエハ200上の所定の厚さのW含有層がWO含有層に改質され、生成されたWO含有層は昇華される。すなわち、ウエハ200上のW含有層の内、所定厚さのW含有層が酸化されてエッチングされる。上記したステップS20~ステップS23を順に行うサイクルを1回以上(所定回数(m回))行うことにより、サイクル毎に、W含有層が所定の厚さ毎にエッチングされる。上述のサイクルは、W含有層が目的の厚さ分エッチングされるまで、複数回実行するのが好ましい。
(Conducted a predetermined number of times)
By sequentially performing the above-described steps S20 to S23, the W-containing layer having a predetermined thickness on the wafer 200 is modified into a WO-containing layer, and the generated WO-containing layer is sublimated. That is, of the W-containing layers on the wafer 200, the W-containing layer having a predetermined thickness is oxidized and etched. The W-containing layer is etched at a predetermined thickness for each cycle by performing at least one cycle (a predetermined number of times (m times)) of performing the steps S20 to S23 in order. The above-described cycle is preferably performed a plurality of times until the W-containing layer is etched by a desired thickness.
[所定回数実施]
 そして、上述したW層形成工程のステップS10~ステップS13を順に行うサイクルを所定回数(n回)行った後、W層エッチング工程のステップS20~ステップS23を順に行うサイクルを所定回数(m回)行って、このW層形成工程とW層エッチング工程を交互に所定回数(p回)行うことにより、ウエハ200上に、所定の厚さのW層を形成する。上述のサイクルは、複数回行うのが好ましい。なお、上記したnは、mより大きい整数である。また、nとmの比率は、W層形成工程の成膜レートや、W層エッチング工程のエッチングレートによって、適宜変更しても良い。また、横穴6を埋める工程の初期と後期とで、nとmの比率を変更する様に構成しても良い。
[Predetermined number of times]
After performing a predetermined number of cycles (n times) of sequentially performing steps S10 to S13 of the above-described W layer forming step, a predetermined number of times (m times) of performing a cycle of sequentially performing steps S20 to S23 of the W layer etching step are performed. By performing the W layer forming step and the W layer etching step alternately a predetermined number of times (p times), a W layer having a predetermined thickness is formed on the wafer 200. The above-described cycle is preferably performed a plurality of times. Note that n is an integer greater than m. Further, the ratio between n and m may be appropriately changed depending on the film formation rate in the W layer forming step and the etching rate in the W layer etching step. Further, the ratio of n and m may be changed between the initial stage and the later stage of the process of filling the lateral hole 6.
 ここで、図7(A)~図7(E)は、比較例における基板処理工程を用いて形成されるウエハ200の断面を示す図である。比較例では、上述したW層形成工程(ステップS10~S13)のみを複数回行って、W層エッチング工程(ステップS20~S23)を行わない。比較例では、図7(A)に示すように、表面に凹部5が形成され、凹部5から横方向に横穴6が形成されたウエハ200の横穴6にW層4を形成する(埋め込む)際に、先ず凹部5と横穴6の表面に、金属層でありバリア層としての窒化チタン層(TiN層)3を形成する(図7(B))。そして、上述したW層形成工程を複数回行うことにより、横穴6の入口付近でW層が厚くなり(図7(C))、横穴の入口付近が閉塞して横穴6の奥までW層4が埋め込まれずに隙間が形成されてしまう(図7(D))。図7(E)は、図7(D)の後に、凹部5と横穴6の入口付近に形成されたW層4とTiN層3をエッチバックした図を示している。 Here, FIGS. 7A to 7E are views showing a cross section of the wafer 200 formed using the substrate processing step in the comparative example. In the comparative example, only the above-described W layer forming step (steps S10 to S13) is performed a plurality of times, and the W layer etching step (steps S20 to S23) is not performed. In the comparative example, as shown in FIG. 7A, when the W layer 4 is formed (embedded) in the lateral hole 6 of the wafer 200 in which the concave portion 5 is formed on the surface and the lateral hole 6 is formed in the lateral direction from the concave portion 5. First, a titanium nitride layer (TiN layer) 3 which is a metal layer and serves as a barrier layer is formed on the surfaces of the concave portions 5 and the lateral holes 6 (FIG. 7B). By performing the above-described W layer forming process a plurality of times, the W layer becomes thick near the entrance of the lateral hole 6 (FIG. 7C), and the vicinity of the entrance of the lateral hole is closed, and the W layer 4 extends to the depth of the lateral hole 6. Is not embedded and a gap is formed (FIG. 7D). FIG. 7E shows a view in which the W layer 4 and the TiN layer 3 formed near the entrance of the recess 5 and the lateral hole 6 are etched back after FIG. 7D.
 本実施形態では、図8(A)に示すように、表面に凹部5が形成され、凹部5から横方向に横穴6が形成されたウエハ200の横穴6にW層4を形成する際に、先ず凹部5と横穴6の表面に、金属層でありバリア層としての窒化チタン層(TiN層)3を形成する(図8(B))。そして、上述したW層形成工程とW層エッチング工程を交互に複数回行うことにより、凹部5と横穴6内に金属層であるW層4を埋め込む(図8(C)~図8(E))。すなわち、上述のW層形成工程を行って、横穴6内を埋め込むように、W層4を形成し(図8(C))、横穴6の入口付近が塞がる前に、上述のW層エッチング工程を行って、W層4をエッチングして横穴6の入口付近の間口を広げる(図8(D))。このように、W層形成工程とW層エッチング工程とをそれぞれ複数回行うことにより、ガスを横穴6の奥方向へ進入させて、W層4で埋め込まれない隙間を少なくすることができ、ウエハ200の横穴6がW層4で埋め込まれる(図8(E))。そして、凹部5と横穴6の入口付近に埋め込まれたW層4とTiN層3に対して、エッチバックを行う(図8(F))。 In the present embodiment, as shown in FIG. 8A, when the W layer 4 is formed in the lateral hole 6 of the wafer 200 in which the concave portion 5 is formed on the surface and the lateral hole 6 is formed in the lateral direction from the concave portion 5, First, a titanium nitride layer (TiN layer) 3 which is a metal layer and serves as a barrier layer is formed on the surfaces of the concave portions 5 and the lateral holes 6 (FIG. 8B). Then, the W layer 4 which is a metal layer is embedded in the concave portion 5 and the lateral hole 6 by alternately performing the W layer forming step and the W layer etching step a plurality of times (FIGS. 8C to 8E). ). That is, the W layer forming step is performed to form the W layer 4 so as to fill the inside of the horizontal hole 6 (FIG. 8C), and the W layer etching step is performed before the vicinity of the entrance of the horizontal hole 6 is closed. Is performed to etch the W layer 4 to widen the frontage near the entrance of the lateral hole 6 (FIG. 8D). As described above, by performing the W layer forming step and the W layer etching step a plurality of times, respectively, the gas can enter in the depth direction of the lateral hole 6 and the gap that is not filled with the W layer 4 can be reduced. The 200 horizontal holes 6 are filled with the W layer 4 (FIG. 8E). Then, the W layer 4 and the TiN layer 3 embedded near the entrance of the concave portion 5 and the lateral hole 6 are etched back (FIG. 8F).
 つまり、W層エッチング工程としてW層形成工程後に酸素含有ガスであるO2ガスとH2ガスを供給することにより、ウエハ200の横穴6の入口付近に形成されたW含有層を酸化させてWO含有層に改質させる。これにより横穴6の入口付近に形成され、酸化層に改質されたWO含有層がエッチングされる。すなわち、酸化した部分がエッチングされ、ガスを横穴6の奥方向へ進入させて、W層4に隙間を生じさせずに横穴6内にW層4を埋め込むことができる。そして、隙間が生じてしまったウエハ200と比べて低抵抗化を達成できる。 That is, by supplying O 2 gas and H 2 gas, which are oxygen-containing gases, after the W-layer forming step as the W-layer etching step, the W-containing layer formed near the entrance of the lateral hole 6 of the wafer 200 is oxidized to WO It is modified into a containing layer. Thereby, the WO-containing layer formed near the entrance of the lateral hole 6 and modified into an oxide layer is etched. That is, the oxidized portion is etched, and the gas is allowed to enter the depth direction of the lateral hole 6, so that the W layer 4 can be embedded in the lateral hole 6 without generating a gap in the W layer 4. In addition, lower resistance can be achieved as compared with the wafer 200 in which a gap has occurred.
 なお、W層形成工程のサイクル数(n回)と、W層エッチング工程のサイクル数(m回)を比率制御することで、横穴6内に隙間を生じさせずにW層4を形成する(埋め込む)ことができる。また、W層形成工程において形成されるW層の膜厚(成膜レート)の割合によって、W層形成工程とW層エッチング工程のサイクル数の比率を制御することにより、横穴6内に隙間を生じさせずにW層4を形成する(埋め込む)ことができる。 By controlling the ratio of the number of cycles of the W layer forming step (n times) to the number of cycles of the W layer etching step (m times), the W layer 4 is formed without creating a gap in the lateral hole 6 ( Embedded). Further, by controlling the ratio of the number of cycles between the W layer forming step and the W layer etching step by controlling the ratio of the thickness (film formation rate) of the W layer formed in the W layer forming step, a gap is formed in the lateral hole 6. The W layer 4 can be formed (buried) without causing it.
(アフターパージおよび大気圧復帰)
 ガス供給管510,520,530のそれぞれからN2ガスを処理室201内へ供給し、排気管231から排気する。N2ガスはパージガスとして作用し、これにより処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(After purge and atmospheric pressure return)
An N 2 gas is supplied into the processing chamber 201 from each of the gas supply pipes 510, 520, and 530, and exhausted from the exhaust pipe 231. The N 2 gas acts as a purge gas, whereby the inside of the processing chamber 201 is purged with an inert gas, and gases and by-products remaining in the processing chamber 201 are removed from the processing chamber 201 (after-purging). Thereafter, the atmosphere in the processing chamber 201 is replaced with an inert gas (replacement with an inert gas), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
(ウエハ搬出)
 その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口される。そして、処理済ウエハ200がボート217に支持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。
(Wafer unloading)
Thereafter, the seal cap 219 is lowered by the boat elevator 115, and the lower end of the reaction tube 203 is opened. Then, the processed wafer 200 is unloaded (boat unloaded) from the lower end of the reaction tube 203 to the outside of the reaction tube 203 while being supported by the boat 217. Thereafter, the processed wafer 200 is taken out from the boat 217 (wafer discharging).
(3)本実施形態による効果
 本実施形態によれば、以下に示す1つまたは複数の効果を得ることができる。
(a)表面に凹部が形成され、凹部から横方向に形成された横穴に隙間を生じさせずにW層を形成する(埋め込む)ことができる。
(b)隙間が生じてしまったW層と比べて低抵抗化を達成できる。
(c)横穴の形状や大きさに応じて、W層形成工程のサイクル数と、W層エッチング工程のサイクル数を比率制御することで、横穴に隙間を生じさせずにW層を形成する(埋め込む)ことができる。
(d)W層形成工程において形成されるW層の膜厚(成膜レート)の割合によって、W層形成工程のサイクル数と、W層エッチング工程のサイクル数を比率制御することで、横穴に隙間を生じさせずにW層を形成する(埋め込む)ことができる。
(e)W層エッチング工程において酸素含有ガスとしてH2ガスとO2ガスを用いる際に、H2ガスを99%~0%の範囲内、O2ガスを1%~100%の範囲内で、H2ガスとO2ガスの供給比率を異なるようにすることにより、エッチングレートを調整(制御)することができる。
(3) Effects of this embodiment According to this embodiment, one or more effects described below can be obtained.
(A) A concave portion is formed on the surface, and the W layer can be formed (buried) without creating a gap in a lateral hole formed in the lateral direction from the concave portion.
(B) A lower resistance can be achieved as compared with the W layer in which a gap has occurred.
(C) By controlling the ratio of the number of cycles of the W layer forming step to the number of cycles of the W layer etching step in accordance with the shape and size of the side hole, the W layer is formed without generating a gap in the side hole ( Embedded).
(D) By controlling the ratio of the number of cycles of the W layer forming process and the number of cycles of the W layer etching process by the ratio of the thickness (film formation rate) of the W layer formed in the W layer forming process, The W layer can be formed (buried) without generating a gap.
(E) When H 2 gas and O 2 gas are used as the oxygen-containing gas in the W layer etching step, the H 2 gas is in the range of 99% to 0%, and the O 2 gas is in the range of 1% to 100%. The etching rate can be adjusted (controlled) by making the supply ratios of the H 2 gas and the O 2 gas different.
<他の実施形態>
 以上、本開示の実施形態を具体的に説明した。しかしながら、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other embodiments>
The embodiment of the present disclosure has been specifically described above. However, the present disclosure is not limited to the above-described embodiment, and can be variously modified without departing from the gist thereof.
 上記実施形態では、W層形成工程のステップS10とW層エッチング工程のステップS20において、同じ種類のガス(WF6ガス)を用いる例について説明したが、これに限らず、異なるガスを用いる場合にも適用できる。例えば、W層エッチング工程におけるハロゲン含有ガスとして、W層形成工程における金属元素を含まないハロゲンのみを含んでいればよい。ハロゲン元素は、例えば、フッ素(F)である。例えば、Fを含む3フッ化窒素(NF3)ガス、F2ガス等を用いる場合にも適用できる。Fを含むF系ガスは、エッチングガスとして好適に用いられる。F系ガスは、塩素(Cl)を含むCl系ガスに比べて蒸気圧が高く、昇華しやすい反応生成物(WFxy)が生成されるためである。 In the above-described embodiment, an example in which the same type of gas (WF 6 gas) is used in step S10 of the W layer forming process and step S20 of the W layer etching process has been described. Can also be applied. For example, it is sufficient that the halogen-containing gas in the W layer etching step contains only halogen that does not contain a metal element in the W layer forming step. The halogen element is, for example, fluorine (F). For example, the present invention can be applied to a case where nitrogen trifluoride (NF 3 ) gas containing F, F 2 gas, or the like is used. An F-based gas containing F is suitably used as an etching gas. This is because the F-based gas has a higher vapor pressure than a Cl-based gas containing chlorine (Cl) and generates a reaction product (WF x O y ) that is easily sublimated.
 また上記実施形態では、W層エッチング工程のステップS22において、H2ガスとO2ガスを同時に供給する場合を例にして説明したが、これに限らず、図9に示すように、H2ガスをO2ガスよりも先に処理室201内に供給し、先に供給を停止するようにしてもよい。言い換えれば、O2ガス供給をH2ガスよりも後に処理室201内に供給し、後に供給を停止するようにしてもよい。先に水素含有ガスを供給することで、ハロゲンガス分子中のハロゲン元素の一部を除去し、その後に供給される酸素含有ガスとウエハ200上のハロゲンとの反応性を高くすることができる。上述の例では、WFxとO2ガスとの反応性を向上させることができる。また、水素含有ガスを先に止めることにより、W層の表面に形成される反応生成物が還元され、反応生成物の昇華性が低下してしまうことを抑制することができる。 In the above embodiment, in step S22 of the W layer etching process has been described with the case of supplying the H 2 gas and O 2 gas at the same time as an example, not limited to this, as shown in FIG. 9, the H 2 gas May be supplied into the processing chamber 201 before the O 2 gas, and the supply may be stopped first. In other words, the supply of the O 2 gas may be supplied into the processing chamber 201 after the supply of the H 2 gas, and the supply may be stopped later. By supplying the hydrogen-containing gas first, a part of the halogen element in the halogen gas molecule can be removed, and the reactivity between the oxygen-containing gas supplied thereafter and the halogen on the wafer 200 can be increased. In the above example, the reactivity between WF x and O 2 gas can be improved. In addition, by stopping the hydrogen-containing gas first, the reaction product formed on the surface of the W layer is reduced, and it is possible to prevent the sublimability of the reaction product from being reduced.
 また上記実施形態では、W層エッチング工程のステップS22において、処理室201内に供給されるO2ガスの流量を、処理室201内に供給されるH2ガスの流量に比べて多くする場合を例にして説明したが、これに限らず、処理室201内に供給されるO2ガスの供給時間を、処理室201内に供給されるH2ガスの供給時間に比べて長くするようにしてもよい。 In the above embodiment, the flow rate of the O 2 gas supplied into the processing chamber 201 is set to be larger than the flow rate of the H 2 gas supplied into the processing chamber 201 in step S22 of the W layer etching step. Although described as an example, the present invention is not limited to this. The supply time of the O 2 gas supplied into the processing chamber 201 is set to be longer than the supply time of the H 2 gas supplied into the processing chamber 201. Is also good.
 また上記実施形態では、W層エッチング工程のステップS22において、酸素含有ガスとしてH2ガスとO2ガスを用いる例について説明したが、これに限らず、O2ガス、亜酸化窒素(N2O)ガス、一酸化窒素(NO)ガス、水(H2O)等を用いる場合にも適用できる。O2ガス、N2Oガス、NOガスは、W層内に入り込むため、複数層毎にエッチングすることが可能である。また、H2Oは、W層の表面に吸着するので、表面1層毎にエッチングすることが可能である。即ち、H2Oの様に、水素元素と酸素元素の両方を含むガス(酸素元素と水素元素の化合ガス)を供給した場合には、水素含有ガスと酸素含有ガスとを別々に供給した場合と比べて、エッチングレートを小さくすることが可能となる。即ち、膜厚のコントロール性が向上する。故に、隙間の形成が少ない場合には、H2Oの様なガスを供給して、開口を開ける様に処理工程を構成しても良い。また、処理工程の終盤で、ガスをH2Oに切り替えて、膜厚を調整するサイクルを行っても良い。 Further, in the above embodiment, the example in which the H 2 gas and the O 2 gas are used as the oxygen-containing gas in the step S22 of the W layer etching process has been described, but the present invention is not limited to this, and the O 2 gas, the nitrous oxide (N 2 O) ) Gas, nitric oxide (NO) gas, water (H 2 O) or the like is also applicable. Since the O 2 gas, the N 2 O gas, and the NO gas enter the W layer, they can be etched for each of a plurality of layers. Further, since H 2 O is adsorbed on the surface of the W layer, it can be etched for each surface layer. That is, when a gas containing both a hydrogen element and an oxygen element (a compound gas of an oxygen element and a hydrogen element) such as H 2 O is supplied, the hydrogen-containing gas and the oxygen-containing gas are supplied separately. It is possible to reduce the etching rate as compared with. That is, the controllability of the film thickness is improved. Therefore, when the formation of the gap is small, the processing step may be configured such that a gas such as H 2 O is supplied to open the opening. Further, at the end of the processing step, a cycle of adjusting the film thickness by switching the gas to H 2 O may be performed.
 また上記実施形態では、上述したW層エッチング工程のステップS22において、O2ガスと同時に供給する還元ガスとしてH2ガスを用いる例について説明したが、これに限らず、シラン(SiH4)ガス、ジシラン(Si26)ガス、ジクロロシラン(SiH2Cl2、略称DCS)ガス、アンモニア(NH3)ガス、ジボラン(B26)ガス等を用いる場合にも適用できる。SiH4ガス、Si26ガスは、成膜にも寄与するため、エッチングレートを調整することが可能である。 Further, in the above embodiment, the example in which the H 2 gas is used as the reducing gas supplied simultaneously with the O 2 gas in step S22 of the W layer etching process described above, but is not limited thereto, and the silane (SiH 4 ) gas, The present invention can be applied to a case where a disilane (Si 2 H 6 ) gas, a dichlorosilane (SiH 2 Cl 2 , abbreviated DCS) gas, an ammonia (NH 3 ) gas, a diborane (B 2 H 6 ) gas, or the like is used. Since the SiH 4 gas and the Si 2 H 6 gas contribute to film formation, the etching rate can be adjusted.
 また上記実施形態では、金属層としてW層を形成する例について説明したが、これに限らず、成膜とエッチバックを行う導電性の膜に適用できる。 In the above embodiment, the example in which the W layer is formed as the metal layer has been described. However, the present invention is not limited to this, and the present invention can be applied to a conductive film that performs film formation and etch back.
 また上記実施形態では、フラッシュメモリのコントロールゲートにW層を用いる例について説明したが、これに限らず、MOSFETのワードライン向け電極やバリア膜を形成する場合にも適用できる。 In the above embodiment, the example in which the W layer is used for the control gate of the flash memory has been described. However, the present invention is not limited to this, and the present invention can be applied to a case where an electrode for a word line of a MOSFET or a barrier film is formed.
 以下に実施例を説明するが、本開示はこれらの実施例により限定されるものではない。 実 施 Examples will be described below, but the present disclosure is not limited to these examples.
<実施例>
 図10(A)は、本実施例におけるW層の成膜膜厚とエッチング膜厚のサイクル依存性を示す図であって、図10(B)は、W層の成膜速度とエッチング速度を示す図である。
<Example>
FIG. 10A is a diagram showing the cycle dependence of the film thickness of the W layer and the etching film thickness in this embodiment. FIG. 10B is a graph showing the relationship between the film forming rate and the etching rate of the W layer. FIG.
 W層の成膜では、上述した基板処理装置10を用いて上述の基板処理工程におけるW層形成工程(ステップS10~S13)を用いた。また、W層のエッチングでは、上述した基板処理装置10を用いて上述の基板処理工程におけるW層エッチング工程(ステップS20~S23)を用いた。いずれの工程も処理室201内の温度を380℃で行った。 In the formation of the W layer, the W layer forming step (steps S10 to S13) in the above substrate processing step was performed using the above substrate processing apparatus 10. In the etching of the W layer, the W layer etching step (steps S20 to S23) in the above substrate processing step was performed using the substrate processing apparatus 10 described above. In each step, the temperature inside the processing chamber 201 was set at 380 ° C.
 図10(A)及び図10(B)に示されているように、W層の成膜は、ステップS10~ステップS13を順に行うサイクルを100回以上行うと、サイクル数に応じて形成されるW層も膜厚が厚くなることが確認された。一方で、W層のエッチングは、ステップS20~ステップS23を順に行うサイクルを数十回行うだけで、W層がエッチングされ、成膜速度に比べてエッチング速度が速いことが確認された。 As shown in FIGS. 10A and 10B, the W layer is formed in accordance with the number of cycles when a cycle of sequentially performing steps S10 to S13 is performed 100 times or more. It was confirmed that the W layer also became thicker. On the other hand, it was confirmed that the W layer was etched only several tens of times in the order of steps S20 to S23 in order to etch the W layer, and that the etching rate was higher than the film formation rate.
 また、W層のエッチングにおいて、酸素含有ガスとしてO2ガスのみを用いる場合の方が、H2ガスとO2ガスを用いる場合と比較して、エッチング速度が速く、処理時間を短くすることができることが確認された。また、W層のエッチングにおいて、H2ガスとO2ガスを用いる場合の方が、O2ガスのみを用いる場合と比較して、エッチング速度(エッチングレート)を微調整できることが確認された。 Also, in the etching of the W layer, the etching rate is faster and the processing time is shorter when only O 2 gas is used as the oxygen-containing gas than when H 2 gas and O 2 gas are used. It was confirmed that it was possible. Further, it was confirmed that in the etching of the W layer, the etching rate (etching rate) can be finely adjusted when H 2 gas and O 2 gas are used, as compared with the case where only O 2 gas is used.
 すなわち、エッチングの目的によって、エッチング工程における酸素含有ガスとして、O2ガスのみを用いたり、H2ガスとO2ガスを用いたりして使い分けることで、エッチングレートを選択することができることとなる。 That is, depending on the purpose of the etching, the etching rate can be selected by using only the O 2 gas or using the H 2 gas and the O 2 gas as the oxygen-containing gas in the etching step.
 以上、本開示の種々の典型的な実施形態及び実施例を説明してきたが、本開示はそれらの実施形態及び実施例に限定されず、適宜組み合わせて用いることもできる。 Although various exemplary embodiments and examples of the present disclosure have been described above, the present disclosure is not limited to these embodiments and examples, and may be used in appropriate combinations.
10 基板処理装置
121 コントローラ
200 ウエハ(基板)
201 処理室
10 Substrate processing device 121 Controller 200 Wafer (substrate)
201 Processing room

Claims (24)

  1.  (a)表面に、第1凹部と前記第1凹部の側面から前記第1凹部の深さ方向とは異なる方向に延びるように設けられた第2凹部と、が形成された基板に対して、金属含有ガスを供給する工程と、
     (b)前記基板に対して、還元ガスを供給する工程と、
     (c)前記基板に対して、ハロゲン含有ガスを供給する工程と、
     (d)前記基板に対して、酸素含有ガスを供給する工程と、
     を有する半導体装置の製造方法。
    (A) a substrate having, on a surface thereof, a first concave portion and a second concave portion provided to extend from a side surface of the first concave portion in a direction different from a depth direction of the first concave portion, Supplying a metal-containing gas;
    (B) supplying a reducing gas to the substrate;
    (C) supplying a halogen-containing gas to the substrate;
    (D) supplying an oxygen-containing gas to the substrate;
    A method for manufacturing a semiconductor device having:
  2.  (e)前記(a)と、前記(b)と、を少なくとも含むサイクルを所定回数実行する工程を有する請求項1記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, further comprising the step of: (e) executing a cycle including at least the steps (a) and (b) a predetermined number of times.
  3.  (f)前記(c)と、前記(d)と、を少なくとも含むサイクルを所定回数実行する工程を有する請求項1又は2記載の半導体装置の製造方法。 3. The method of manufacturing a semiconductor device according to claim 1, further comprising the step of: (f) executing a cycle including at least the steps (c) and (d) a predetermined number of times.
  4.  前記(d)において、前記酸素含有ガスに加えて、水素含有ガスを供給する請求項1から3のいずれか記載の半導体装置の製造方法。 4. The method of manufacturing a semiconductor device according to claim 1, wherein in step (d), a hydrogen-containing gas is supplied in addition to the oxygen-containing gas.
  5.  前記酸素含有ガスの供給量を前記水素含有ガスの供給量よりも多くする請求項4記載の半導体装置の製造方法。 5. The method of manufacturing a semiconductor device according to claim 4, wherein the supply amount of the oxygen-containing gas is larger than the supply amount of the hydrogen-containing gas.
  6.  前記酸素含有ガスの供給流量を前記水素含有ガスの供給流量よりも多くする請求項4又は5に記載の半導体装置の製造方法。 6. The method of manufacturing a semiconductor device according to claim 4, wherein the supply flow rate of the oxygen-containing gas is made larger than the supply flow rate of the hydrogen-containing gas. 7.
  7.  前記酸素含有ガスの供給時間を前記水素含有ガスの供給時間よりも長くする請求項4から6のいずれかに記載の半導体装置の製造方法。 7. The method of manufacturing a semiconductor device according to claim 4, wherein the supply time of the oxygen-containing gas is longer than the supply time of the hydrogen-containing gas.
  8.  前記(d)において、前記酸素含有ガスの供給は、前記水素含有ガスの供給を開始した後に開始する請求項4から7のいずれか記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 4, wherein in (d), the supply of the oxygen-containing gas is started after the supply of the hydrogen-containing gas is started.
  9.  前記(d)において、前記水素含有ガスの供給を停止した後に前記酸素含有ガスの供給を停止する請求項4から8のいずれか記載の半導体装置の製造方法。 9. The method of manufacturing a semiconductor device according to claim 4, wherein in (d), the supply of the oxygen-containing gas is stopped after the supply of the hydrogen-containing gas is stopped.
  10.  (g)前記(f)工程の後に、前記(c)工程と、前記基板に対して酸素と水素とを含むガスを供給する工程と、を少なくとも含むサイクルを所定回数実行する工程を有する請求項3から9のいずれか記載の半導体装置の製造方法。 (G) performing a predetermined number of cycles including at least the (c) step and a step of supplying a gas containing oxygen and hydrogen to the substrate after the (f) step. 10. The method for manufacturing a semiconductor device according to any one of items 3 to 9.
  11.  前記(d)において、前記酸素含有ガスは、水素を含む請求項1から3のいずれか記載の半導体装置の製造方法。 The method according to claim 1, wherein in (d), the oxygen-containing gas contains hydrogen.
  12.  前記ハロゲン含有ガスは、フッ素含有ガスである請求項1から11のいずれか記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 1, wherein the halogen-containing gas is a fluorine-containing gas.
  13.  前記(a)において金属含有層を形成し、
     前記(b)において金属層を形成し、
     前記(c)において金属含有層を形成し、
     前記(d)において前記(c)で形成した金属含有層を金属酸素含有層に改質する請求項1から12のいずれか記載の半導体装置の製造方法。
    Forming a metal-containing layer in the above (a),
    Forming a metal layer in the above (b),
    Forming a metal-containing layer in (c),
    13. The method of manufacturing a semiconductor device according to claim 1, wherein in (d), the metal-containing layer formed in (c) is modified into a metal oxygen-containing layer.
  14.  前記(a)と、前記(b)と、を少なくとも含むサイクルを複数回行った後に、前記(c)と、前記(d)と、を少なくとも含むサイクルを複数回行う工程を有する請求項1から13のいずれか記載の半導体装置の製造方法。 2. The method according to claim 1, further comprising: performing a cycle including at least the steps (c) and (d) a plurality of times after performing a cycle including at least the steps (a) and (b) a plurality of times. 14. The method for manufacturing a semiconductor device according to any one of the above items 13.
  15.  表面に、第1凹部と前記第1凹部の側面から前記第1凹部の深さ方向とは異なる方向に延びるように設けられた第2凹部と、が形成された基板に対して、金属含有ガスを供給する金属含有ガス供給系と、
     前記基板に対して、還元ガスを供給する還元ガス供給系と、
     前記基板に対して、ハロゲン含有ガスを供給するハロゲン含有ガス供給系と、
     前記基板に対して、酸素含有ガスを供給する酸素含有ガス供給系と、
     (a)前記基板に対して、前記金属含有ガスを供給する処理と、(b)前記基板に対して、前記還元ガスを供給する処理と、(c)前記基板に対して、前記ハロゲン含有ガスを供給する処理と、(d)前記基板に対して、前記酸素含有ガスを供給する処理と、を実行するように、前記金属含有ガス供給系、前記還元ガス供給系、前記ハロゲン含有ガス供給系及び前記酸素含有ガス供給系を制御することが可能なよう構成される制御部と、
     を有する基板処理装置。
    A metal-containing gas is applied to a substrate having a first recess formed on a surface thereof and a second recess provided to extend from a side surface of the first recess in a direction different from a depth direction of the first recess. A metal-containing gas supply system for supplying
    A reducing gas supply system for supplying a reducing gas to the substrate,
    For the substrate, a halogen-containing gas supply system for supplying a halogen-containing gas,
    An oxygen-containing gas supply system for supplying an oxygen-containing gas to the substrate,
    (A) a process of supplying the metal-containing gas to the substrate; (b) a process of supplying the reducing gas to the substrate; and (c) a halogen-containing gas to the substrate. The metal-containing gas supply system, the reducing gas supply system, and the halogen-containing gas supply system so as to perform a process of supplying the oxygen-containing gas to the substrate. And a control unit configured to be able to control the oxygen-containing gas supply system,
    A substrate processing apparatus having:
  16.  前記制御部は、(e)前記(a)と、前記(b)と、を少なくとも含むサイクルを所定回数実行するように制御することが可能なように構成される請求項15記載の基板処理装置。 16. The substrate processing apparatus according to claim 15, wherein the control unit is configured to be capable of performing control such that a cycle including at least (e) the steps (a) and (b) is executed a predetermined number of times. .
  17.  前記制御部は、(f)前記(c)と、前記(d)と、を少なくとも含むサイクルを所定回数実行するように制御することが可能なように構成される請求項15又は16に記載の基板処理装置。 17. The control unit according to claim 15, wherein the control unit is configured to be capable of performing control such that a cycle including at least (f) the steps (c) and (d) is executed a predetermined number of times. Substrate processing equipment.
  18.  前記基板に対して、前記酸素含有ガスに加えて、水素含有ガスを供給する水素含有ガス供給系をさらに有し、
     前記制御部は、前記(d)において、前記酸素含有ガスに加えて、前記水素含有ガスを供給するように制御することが可能なように構成される請求項15から17のいずれか記載の基板処理装置。
    For the substrate, in addition to the oxygen-containing gas, further includes a hydrogen-containing gas supply system that supplies a hydrogen-containing gas,
    The substrate according to any one of claims 15 to 17, wherein the control unit is configured to be capable of controlling the supply of the hydrogen-containing gas in addition to the oxygen-containing gas in the step (d). Processing equipment.
  19.  前記制御部は、前記酸素含有ガスの供給量を、前記水素含有ガスの供給量よりも多くするよう制御することが可能なように構成される請求項18に記載の基板処理装置。 19. The substrate processing apparatus according to claim 18, wherein the control unit is configured to be able to control the supply amount of the oxygen-containing gas to be greater than the supply amount of the hydrogen-containing gas.
  20.  (a)表面に、第1凹部と前記第1凹部の側面から前記第1凹部の深さ方向とは異なる方向に延びるように設けられた第2凹部と、が形成された基板に対して、金属含有ガスを供給する手順と、
     (b)前記基板に対して、還元ガスを供給する手順と、
     (c)前記基板に対して、ハロゲン含有ガスを供給する手順と、
     (d)前記基板に対して、酸素含有ガスを供給する手順と、
     をコンピュータによって基板処理装置に実行させるプログラムが記録されたコンピュータ読み取り可能な記録媒体。
    (A) a substrate having, on a surface thereof, a first concave portion and a second concave portion provided to extend from a side surface of the first concave portion in a direction different from a depth direction of the first concave portion, Supplying a metal-containing gas;
    (B) supplying a reducing gas to the substrate;
    (C) supplying a halogen-containing gas to the substrate;
    (D) supplying an oxygen-containing gas to the substrate;
    Computer-readable recording medium in which a program for causing a substrate processing apparatus to execute the program by a computer is recorded.
  21.  (e)前記(a)と、前記(b)と、を少なくとも含むサイクルを所定回数実行する手順をさらに有する請求項20記載の記録媒体。 21. The recording medium according to claim 20, further comprising: (e) executing a cycle including at least the steps (a) and (b) a predetermined number of times.
  22.  (f)前記(c)と、前記(d)と、を少なくとも含むサイクルを所定回数実行する手順をさらに有する請求項20又は21記載の記録媒体。 22. The recording medium according to claim 20, further comprising a step of executing a cycle including at least (f) the steps (c) and (d) a predetermined number of times.
  23.  前記(d)の手順において、前記酸素含有ガスに加えて、水素含有ガスを供給する請求項20から22のいずれか記載の記録媒体。 23. The recording medium according to claim 20, wherein in the step (d), a hydrogen-containing gas is supplied in addition to the oxygen-containing gas.
  24.  前記酸素含有ガスの供給量を、前記水素含有ガスの供給量よりも多くする請求項23に記載の記録媒体。 24. The recording medium according to claim 23, wherein the supply amount of the oxygen-containing gas is larger than the supply amount of the hydrogen-containing gas.
PCT/JP2019/031820 2018-09-14 2019-08-13 Semiconductor device manufacturing method, substrate processing device, and recording medium WO2020054299A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980059712.1A CN112740364B (en) 2018-09-14 2019-08-13 Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2020546780A JP7047117B2 (en) 2018-09-14 2019-08-13 Manufacturing method of semiconductor device, substrate processing device and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-172451 2018-09-14
JP2018172451 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020054299A1 true WO2020054299A1 (en) 2020-03-19

Family

ID=69777226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031820 WO2020054299A1 (en) 2018-09-14 2019-08-13 Semiconductor device manufacturing method, substrate processing device, and recording medium

Country Status (3)

Country Link
JP (1) JP7047117B2 (en)
CN (1) CN112740364B (en)
WO (1) WO2020054299A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220020601A1 (en) * 2020-07-20 2022-01-20 Tokyo Electron Limited Etching method and etching apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151052A (en) * 1986-12-16 1988-06-23 Toshiba Corp Formation of electrode wiring of semiconductor device
JPH09321006A (en) * 1996-05-27 1997-12-12 Sony Corp Manufacture of semiconductor device
JP2013032575A (en) * 2011-07-06 2013-02-14 Tokyo Electron Ltd Method for depositing tungsten film
JP2015190020A (en) * 2014-03-28 2015-11-02 東京エレクトロン株式会社 Method for forming tungsten film
JP2015232177A (en) * 2014-05-31 2015-12-24 ラム リサーチ コーポレーションLam Research Corporation Method of filling feature with high aspect ratio using non-fluorine containing tungsten
JP2017053024A (en) * 2015-08-07 2017-03-16 ラム リサーチ コーポレーションLam Research Corporation Tungsten atomic layer etching for enhancement of tungsten deposition charging

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6336866B2 (en) * 2013-10-23 2018-06-06 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
JP6282474B2 (en) * 2014-01-31 2018-02-21 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
CN107533978B (en) * 2015-06-04 2021-01-08 东芝存储器株式会社 Semiconductor memory device and method of manufacturing the same
JP6436887B2 (en) * 2015-09-30 2018-12-12 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing apparatus, gas supply system, and program
JP6548622B2 (en) * 2016-09-21 2019-07-24 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing apparatus and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151052A (en) * 1986-12-16 1988-06-23 Toshiba Corp Formation of electrode wiring of semiconductor device
JPH09321006A (en) * 1996-05-27 1997-12-12 Sony Corp Manufacture of semiconductor device
JP2013032575A (en) * 2011-07-06 2013-02-14 Tokyo Electron Ltd Method for depositing tungsten film
JP2015190020A (en) * 2014-03-28 2015-11-02 東京エレクトロン株式会社 Method for forming tungsten film
JP2015232177A (en) * 2014-05-31 2015-12-24 ラム リサーチ コーポレーションLam Research Corporation Method of filling feature with high aspect ratio using non-fluorine containing tungsten
JP2017053024A (en) * 2015-08-07 2017-03-16 ラム リサーチ コーポレーションLam Research Corporation Tungsten atomic layer etching for enhancement of tungsten deposition charging

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220020601A1 (en) * 2020-07-20 2022-01-20 Tokyo Electron Limited Etching method and etching apparatus
KR20220011081A (en) * 2020-07-20 2022-01-27 도쿄엘렉트론가부시키가이샤 Etching method and etching apparatus
US11764070B2 (en) * 2020-07-20 2023-09-19 Tokyo Electron Limited Etching method and etching apparatus
KR102639955B1 (en) * 2020-07-20 2024-02-27 도쿄엘렉트론가부시키가이샤 Etching method and etching apparatus
JP7496725B2 (en) 2020-07-20 2024-06-07 東京エレクトロン株式会社 Etching method and etching apparatus

Also Published As

Publication number Publication date
JP7047117B2 (en) 2022-04-04
JPWO2020054299A1 (en) 2021-08-30
CN112740364B (en) 2024-02-27
CN112740364A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
KR102582496B1 (en) Semiconductor device manufacturing method, substrate processing device, and recording medium
JP6647260B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
WO2020016914A1 (en) Method for manufacturing semiconductor device, substrate treatment device and program
US11621169B2 (en) Method of manufacturing semiconductor device, recording medium, and substrate processing apparatus
US20190304791A1 (en) Method of Manufacturing Semiconductor Device, Substrate Processing Apparatus and Non-transitory Computer-readable Recording Medium
KR102660213B1 (en) Method of manufacturing semiconductor device, program, substrate processing apparatus and substrate processing method
US20210388487A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20220157628A1 (en) Substrate processing apparatus, substrate suppport and method of manufacturing semiconductor device
US20240055259A1 (en) Method of manufacturing semiconductor device, non-transitory computer-readable recording medium and substrate processing apparatus
WO2020054299A1 (en) Semiconductor device manufacturing method, substrate processing device, and recording medium
US20230230845A1 (en) Substrate processing method, method of manufacturing semiconductor device, non-transitory computer-readable recording medium and substrate processing apparatus
JP6847202B2 (en) Semiconductor device manufacturing methods, substrate processing devices and programs
WO2022064549A1 (en) Semiconductor device manufacturing method, recording medium, and substrate processing device
JP6937332B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
JP6639691B2 (en) Semiconductor device manufacturing method, program, and substrate processing apparatus
JP2020147833A6 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
KR102654150B1 (en) Substrate processing method, program, substrate processing apparatus and method of manufacturing semiconductor device
JP7159446B2 (en) SUBSTRATE PROCESSING METHOD, SUBSTRATE PROCESSING APPARATUS, PROGRAM AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP6652652B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP2024047289A (en) SUBSTRATE PROCESSING METHOD, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, SUBSTRATE PROCESSING APPARATUS AND PROGRAM
CN117716062A (en) Method for manufacturing semiconductor device, substrate processing apparatus, program, and coating method
JP2022019778A (en) Method of manufacturing semiconductor device, substrate processing apparatus, program, and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546780

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860468

Country of ref document: EP

Kind code of ref document: A1