WO2020054184A1 - Solid-state imaging element, imaging device, and solid-state imaging element control method - Google Patents

Solid-state imaging element, imaging device, and solid-state imaging element control method Download PDF

Info

Publication number
WO2020054184A1
WO2020054184A1 PCT/JP2019/026210 JP2019026210W WO2020054184A1 WO 2020054184 A1 WO2020054184 A1 WO 2020054184A1 JP 2019026210 W JP2019026210 W JP 2019026210W WO 2020054184 A1 WO2020054184 A1 WO 2020054184A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
reset
pixel data
unit
pixel
Prior art date
Application number
PCT/JP2019/026210
Other languages
French (fr)
Japanese (ja)
Inventor
拓 永瀬
亮太郎 高田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2020054184A1 publication Critical patent/WO2020054184A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array

Definitions

  • the present technology relates to a solid-state imaging device, an imaging device, and a method for controlling a solid-state imaging device. More specifically, the present invention relates to a solid-state imaging device that generates a pixel signal having a difference between a reset level and a signal level, an imaging device, and a method for controlling the solid-state imaging device.
  • a correlated double sampling (CDS) process has been performed in a solid-state imaging device for the purpose of reducing fixed pattern noise and the like.
  • a data processing unit that performs the CDS processing calculates a difference between a reset level at the time of initialization of a pixel and a signal level at the end of exposure of the pixel, and outputs the difference as a pixel signal with reduced fixed pattern noise.
  • an ADC Analog to Digital Converter
  • a reset level and a signal level from the ADC are transferred to a data processing unit to perform a CDS process (for example, Patent Reference 1).
  • the present technology has been developed in view of such a situation, and has an object to reduce the number of wirings in a circuit that performs CDS processing in a solid-state imaging device that performs CDS processing.
  • a first aspect of the present technology includes a data output unit that repeatedly and alternately outputs predetermined reset data and signal data corresponding to an exposure amount, A pair of reset data holding units for alternately holding the repeatedly output reset data; and a pair of the reset data held in one of the pair of reset data holding units and the signal data output after the reset data.
  • a pixel data generating unit that repeats a process of generating a difference as pixel data, a pair of pixel data holding units that alternately holds the repeatedly generated pixel data, and a pair of the pixel data holding units that are alternately selected.
  • a solid-state imaging device including an output-side selection unit that outputs the pixel data held in the selected pixel data holding unit, and control thereof It is the law. This brings about an effect that pixel data is repeatedly generated from the reset data and the signal data alternately held in the pair of reset data holding units.
  • the data output unit may start outputting the reset data while outputting the signal data. This brings about an effect that the reading speed of the image data is increased.
  • an input-side selection unit for alternately selecting the pair of reset data holding units and supplying the reset data held in the selected reset data holding unit to the pixel data generation unit. It may be further provided. This brings about an effect that pixel data is generated from reset data and signal data read from a selected one of the pair of reset data holding units.
  • the pixel data generation unit includes a pair of pixel data generation circuits, and one of the pair of pixel data generation circuits is held in one of the pair of reset data holding units.
  • the difference between the reset data and the signal data output after the reset data is output as the pixel data to one of the pair of pixel data holding units.
  • a difference between the reset data held in the other data holding unit and the signal data output after the reset data may be output to the other of the pair of pixel data holding units as the pixel data. This brings about an effect that the wiring distance between the reset data holding unit and the pixel data generation circuit is shortened.
  • a pixel for generating a predetermined reset level and a signal level corresponding to the exposure amount a process of converting the reset level into a digital signal and holding the digital signal as the reset data, To a digital signal and holding the signal data. This brings about an effect that the CDS processing is performed on the AD-converted data for each pixel.
  • the pixel is disposed on a predetermined light receiving substrate, and the analog-to-digital conversion unit, the data output unit, the pair of reset data holding units, the pixel data generation unit, and the pair of The pixel data holding unit and the output side selection unit may be arranged on a predetermined circuit board. This brings about an effect that the circuit scale per board is reduced as compared with the case where the circuit board is provided on a single board.
  • the pixel is disposed on a predetermined light receiving substrate, the analog-to-digital converter is disposed on a first circuit substrate, and the data output unit and the pair of reset data holding units are provided.
  • Part of the pixel data generation unit, the pair of pixel data holding units, and the output-side selection unit may be disposed on the first circuit board, and the rest may be disposed on a second circuit board.
  • a data output unit that alternately and repeatedly outputs predetermined reset data and signal data corresponding to an exposure amount, and a pair of resets that alternately hold the repeatedly output reset data.
  • a data holding unit, and a pixel data generation unit that repeats a process of generating a difference between the reset data held in one of the pair of reset data holding units and the signal data output after the reset data as pixel data as pixel data.
  • a pair of pixel data holding units for alternately holding the repeatedly generated pixel data, and alternately selecting the pair of pixel data holding units and outputting the pixel data held in the selected pixel data holding unit An image pickup apparatus comprising: an output-side selector that performs the above-described pixel data processing; and a signal processor that processes the pixel data. This brings about an effect that pixel data is repeatedly generated and processed from reset data and signal data alternately held in the pair of reset data holding units.
  • the data output unit, the pair of reset data holding units, the pixel data generation unit, the pair of pixel data holding units, and the output side selection unit are arranged in a solid-state imaging device. You may. This brings about an effect that the CDS processing is performed in the solid-state imaging device.
  • the data output unit, the pair of reset data holding units, and the pixel data generation unit are arranged in a solid-state imaging device, and the pair of pixel data holding units and the output side selection unit are arranged. May be disposed outside the solid-state imaging device. This brings about the effect that the circuit scale in the solid-state imaging device is reduced.
  • FIG. 1 is a block diagram illustrating a configuration example of an imaging device according to a first embodiment of the present technology.
  • FIG. 2 is a diagram illustrating an example of a stacked structure of the solid-state imaging device according to the first embodiment of the present technology.
  • FIG. 2 is a plan view illustrating a configuration example of a light receiving substrate according to the first embodiment of the present technology.
  • FIG. 2 is a block diagram illustrating a configuration example of a circuit board according to the first embodiment of the present technology.
  • FIG. 2 is a block diagram illustrating a configuration example of a cluster according to the first embodiment of the present technology.
  • FIG. 3 is a perspective view illustrating an example of a connection relationship between a pixel and a circuit in a cluster according to the first embodiment of the present technology.
  • FIG. 1 is a block diagram illustrating a configuration example of an imaging device according to a first embodiment of the present technology.
  • FIG. 2 is a diagram illustrating an example of a stacked structure of the solid-
  • FIG. 2 is a circuit diagram illustrating a configuration example of a P-phase transfer unit according to the first embodiment of the present technology.
  • FIG. 2 is a block diagram illustrating a configuration example of a data processing unit according to the first embodiment of the present technology.
  • 5 is a timing chart illustrating an example of an operation of the solid-state imaging device according to the first embodiment of the present technology.
  • FIG. 7 is a diagram for describing a circuit control method until a first CDS process is performed according to the first embodiment of the present technology.
  • FIG. 7 is a diagram for describing a circuit control method when performing the second and third CDS processes according to the first embodiment of the present technology.
  • FIG. 11 is a diagram for describing a control method in a comparative example having two frame memories according to the present technology.
  • FIG. 11 is a diagram for describing a control method in a comparative example having three frame memories of the present technology.
  • 5 is a flowchart illustrating an example of an operation of the solid-state imaging device according to the first embodiment of the present technology.
  • FIG. 13 is a block diagram illustrating a configuration example of a data processing unit according to a second embodiment of the present technology.
  • FIG. 11 is a diagram illustrating an example of a stacked structure of a solid-state imaging device according to a third embodiment of the present technology.
  • FIG. 13 is a block diagram illustrating a configuration example of a data processing unit according to a third embodiment of the present technology.
  • FIG. 21 is a block diagram illustrating a configuration example of a data processing unit according to a fourth embodiment of the present technology.
  • FIG. 21 is a block diagram illustrating a configuration example of a DSP (Digital Signal Processing) circuit according to a fourth embodiment of the present technology.
  • FIG. 2 is a block diagram illustrating a schematic configuration example of a vehicle control system.
  • FIG. 4 is an explanatory diagram illustrating an example of an installation position of an imaging unit.
  • First Embodiment an example in which data is alternately stored in a pair of frame memories
  • Second embodiment an example in which data is alternately held in a pair of frame memories and a pair of CDS processing units are arranged
  • Third embodiment an example in which data is alternately held in a pair of frame memories and a circuit for performing CDS processing is distributed and arranged on two substrates
  • Fourth embodiment an example in which data is alternately held in a pair of frame memories and a part of the circuit is arranged outside the solid-state imaging device.
  • FIG. 1 is a block diagram illustrating a configuration example of an imaging device 100 according to the first embodiment of the present technology.
  • the imaging apparatus 100 is an apparatus for imaging image data, and includes an optical unit 110, a solid-state imaging device 200, and a DSP circuit 120. Further, the imaging device 100 includes a display unit 130, an operation unit 140, a bus 150, a frame memory 160, a storage unit 170, and a power supply unit 180.
  • a digital camera such as a digital still camera, a smartphone, a personal computer, an in-vehicle camera, or the like having an imaging function is assumed.
  • the optical unit 110 collects light from a subject and guides the light to the solid-state imaging device 200.
  • the solid-state imaging device 200 generates image data by photoelectric conversion in synchronization with a vertical synchronization signal VSYNC.
  • the vertical synchronization signal VSYNC is a periodic signal of a predetermined frequency indicating the timing of imaging.
  • the solid-state imaging device 200 supplies the generated image data to the DSP circuit 120 via the signal line 209.
  • the DSP circuit 120 performs predetermined signal processing on image data from the solid-state imaging device 200.
  • the DSP circuit 120 outputs the processed image data to the frame memory 160 via the bus 150.
  • the DSP circuit 120 is an example of a signal processing unit described in the claims.
  • the display unit 130 displays image data.
  • a liquid crystal panel or an organic EL (Electro Luminescence) panel is assumed.
  • the operation unit 140 generates an operation signal according to a user operation.
  • the bus 150 is a common path through which the optical unit 110, the solid-state imaging device 200, the DSP circuit 120, the display unit 130, the operation unit 140, the frame memory 160, the storage unit 170, and the power supply unit 180 exchange data with each other.
  • the frame memory 160 stores image data.
  • the storage unit 170 stores various data such as image data.
  • the power supply unit 180 supplies power to the solid-state imaging device 200, the DSP circuit 120, the display unit 130, and the like.
  • FIG. 2 is a diagram illustrating an example of a stacked structure of the solid-state imaging device 200 according to the first embodiment of the present technology.
  • the solid-state imaging device 200 includes a circuit board 202 and a light receiving substrate 201 laminated on the circuit board 202. These substrates are electrically connected via connection parts such as vias. Note that, in addition to vias, connection can also be made by inductive coupling communication technology such as Cu—Cu bonding, bumps, and TCI (ThruChip Interface).
  • FIG. 3 is a plan view illustrating a configuration example of the light receiving substrate 201 according to the first embodiment of the present technology.
  • the pixel array unit 210 is provided on the light receiving substrate 201.
  • a plurality of pixel blocks 211 are arranged in a two-dimensional lattice.
  • a plurality of pixels 212 are arranged in each of the pixel blocks 211.
  • eight pixels 212 of 2 rows ⁇ 4 columns are arranged for each pixel block 211. Note that the number of pixels in the pixel block 211 is not limited to eight.
  • the pixel 212 generates an analog signal by photoelectric conversion.
  • the level of the analog signal generated when the pixel 212 is initialized is hereinafter referred to as a “reset level”, and the level of the analog signal according to the exposure amount generated at the end of the exposure of the pixel 212 is hereinafter referred to as “reset level”.
  • Signal level the level of the analog signal generated when the pixel 212 is initialized.
  • FIG. 4 is a block diagram illustrating a configuration example of the circuit board 202 according to the first embodiment of the present technology.
  • the circuit board 202 includes a DAC (Digital to Analog Converter) 220, a vertical drive circuit 230, a timing control circuit 240, a time code generator 250, an AD converter 260, and a data processor 270.
  • DAC Digital to Analog Converter
  • the DAC 220 generates an analog ramp signal RMP that changes in a slope shape by DA (Digital to Analog) conversion.
  • the DAC 220 supplies the generated ramp signal RMP to the AD converter 260.
  • the AD converter 260 converts, for each pixel, an analog signal from the pixel into a digital signal.
  • the clusters 300 are arranged in a two-dimensional lattice.
  • the cluster 300 is provided for each pixel block 211. If the number of pixel blocks 211 is N (N is an integer), N clusters 300 are also provided.
  • the pixel block 211 and the cluster 300 are connected one-to-one.
  • Each of the clusters 300 converts an analog signal from the corresponding pixel block 211 into a digital signal for each pixel and supplies the digital signal to the data processing unit 270.
  • a digital signal corresponding to the reset level of the analog signal is hereinafter referred to as “P-phase data”, and a digital signal corresponding to the signal level is hereinafter referred to as “D-phase data”.
  • the P-phase data is an example of reset data described in the claims
  • the D-phase data is an example of signal data described in the claims.
  • the vertical drive circuit 230 drives each of the clusters 300 under the control of the timing control circuit 240.
  • the timing control circuit 240 controls the DAC 220, the vertical drive circuit 230, and the data processing unit 270 in synchronization with the vertical synchronization signal VSYNC.
  • the time code generation unit 250 generates a time code. This time code indicates a time within a period during which the ramp signal changes in a slope shape.
  • the time code generation unit 250 counts a count value, for example, in synchronization with a clock signal having a constant frequency, and generates data indicating the count value as a time code.
  • the time code generation unit 250 supplies the generated time code to the AD conversion unit 260.
  • the data processing unit 270 executes a predetermined process including a CDS process on the P-phase data and the D-phase data from the AD conversion unit 260.
  • the data processing unit 270 supplies the DSP circuit 120 with image data including the processed data.
  • FIG. 5 is a block diagram illustrating a configuration example of the cluster 300 according to the first embodiment of the present technology.
  • the cluster 300 includes comparison circuits 311 to 318, data storage units 321 to 328, and data storage units 331 to 338.
  • a data transfer unit 261 is arranged for each column of the cluster 300.
  • M is an integer
  • M data transfer units 261 are also arranged.
  • L is an integer
  • those L clusters 300 share one data transfer unit 261 corresponding to the column.
  • the data transfer unit 261 transfers data from the time code generation unit 250 to the cluster 300, and transfers data from the cluster 300 to the data processing unit 270.
  • the data transfer unit 261 includes a P-phase transfer unit 262, a write data transfer unit 264, and a D-phase transfer unit 265.
  • $ P-phase transfer unit 262 transfers P-phase data from cluster 300 to data processing unit 270.
  • the write data transfer unit 264 transfers the time code from the time code generation unit 250 to the cluster 300.
  • the D-phase transfer unit 265 transfers the D-phase data from the cluster 300 to the data processing unit 270.
  • the comparison circuits 311 to 318 are connected one-to-one with the eight pixels 212 in the pixel block 211 corresponding to the cluster 300.
  • R Red
  • Gb Green
  • B Blue
  • Gr Green
  • R, Gb, B, and Gr pixels are also arranged in the right 2 rows ⁇ 2 columns.
  • the left Gb pixel is connected to the comparison circuit 311
  • the left B pixel is connected to the comparison circuit 312.
  • the left R pixel is connected to the comparison circuit 313, and the left Gr pixel is connected to the comparison circuit 314.
  • the right Gb pixel is connected to the comparison circuit 315, and the right B pixel is connected to the comparison circuit 316.
  • the right R pixel is connected to the comparison circuit 317, and the right Gr pixel is connected to the comparison circuit 318.
  • Comparison circuit 311 outputs the comparison result to data storage units 321 and 322, and comparison circuit 312 outputs the result to data storage units 323 and 324.
  • Comparison circuit 313 outputs the comparison result to data storage units 325 and 326, and comparison circuit 314 outputs the result to data storage units 327 and 328.
  • comparison circuit 315 outputs the comparison result to data storage units 331 and 332, and comparison circuit 316 outputs the result to data storage units 333 and 334.
  • Comparison circuit 317 outputs the comparison result to data storage units 335 and 336, and comparison circuit 318 outputs the result to data storage units 337 and 338.
  • the data storage unit 321 holds P-phase data.
  • the data storage unit 321 holds the time code from the write data transfer unit 264 as P-phase data at the timing when the comparison result is inverted after the output of the reset level. Then, the data storage unit 321 outputs the held P-phase data to the data processing unit 270 via the P-phase transfer unit 262.
  • the configuration of the data storage units 323, 325, 327, 331, 333, 335, and 337 is the same as that of the data storage unit 321.
  • the data storage unit 322 holds D-phase data.
  • the data storage unit 322 holds the time code from the write data transfer unit 264 as D-phase data at the timing when the comparison result is inverted after the output of the signal level. Then, the data storage unit 322 outputs the held D-phase data to the data processing unit 270 via the D-phase transfer unit 265.
  • the configuration of the data storage units 324, 326, 328, 332, 334, 336, and 338 is the same as that of the data storage unit 322.
  • the cluster 300 alternately converts the reset level and the signal level of each pixel from the pixel block 211 into digital signals.
  • This AD conversion is repeatedly executed in all pixels in synchronization with the vertical synchronization signal VSYNC.
  • the data transfer unit 261 repeatedly and alternately outputs the P-phase data and the D-phase data to the data processing unit 270 in synchronization with the vertical synchronization signal VSYNC.
  • the data transfer unit 261 is an example of a data output unit described in the claims.
  • the numbers of the comparison circuits and the data storage units in the cluster 300 are not limited to eight and sixteen, respectively.
  • the number of pixels in the pixel block 211 is K (K is an integer)
  • the number of comparison circuits in the cluster 300 is K
  • the number of data storage units is K ⁇ 2.
  • FIG. 6 is a perspective view illustrating an example of a connection relationship between the pixel 212 and a circuit in the cluster 300 according to the first embodiment of the present technology.
  • Gb, B, R, and Gr pixels are arranged at coordinates (0, 0), (0, 1), (1, 0), and (1, 1) on the left side. Further, Gb pixels, B pixels, R pixels, and Gr pixels are also arranged at the coordinates (0, 2), (0, 3), (1, 2), and (1, 3) on the right side.
  • Such an array is called a Bayer array. Note that the pixels can be arranged in an arrangement other than the Bayer arrangement. For example, R, G, B and W (White) pixels can be arranged.
  • the left Gb pixel is connected to the comparison circuit 311, and the left B pixel is connected to the comparison circuit 312.
  • the left R pixel is connected to the comparison circuit 313, and the left Gr pixel is connected to the comparison circuit 314.
  • the right Gb pixel is connected to the comparison circuit 315, and the right B pixel is connected to the comparison circuit 316.
  • the right R pixel is connected to the comparison circuit 317, and the right Gr pixel is connected to the comparison circuit 318.
  • data storage units 321 to 328 are arranged in the left memory 320 in FIG.
  • data storage units 331 to 338 are arranged in the right memory 330.
  • FIG. 7 is a circuit diagram illustrating a configuration example of the P-phase transfer unit 262 according to the first embodiment of the present technology.
  • the P-phase transfer unit 262 is provided with a shift register including a predetermined number of flip-flops 263. These flip-flops 263 are connected in series.
  • Each of the data storage units holding the P-phase data such as the left data storage units 321, 323, 325, and 327, is connected to input terminals of flip-flops 263 different from each other by wired-OR connection.
  • the shift register holds the P-phase data bit by bit in synchronization with the clock signal CLK and outputs the data to the data processing unit 270.
  • the configurations of the write data transfer unit 264 and the D-phase transfer unit 265 are the same as those of the P-phase transfer unit 262.
  • FIG. 8 is a block diagram illustrating a configuration example of the data processing unit 270 according to the first embodiment of the present technology.
  • the data processing unit 270 includes frame memories 271, 272, 275, and 276, selectors 273 and 277, and a CDS processing unit 274.
  • the AD converter 260 includes a clock supply unit 266 in addition to the cluster 300, the P-phase transfer unit 262, the write data transfer unit 264, and the D-phase transfer unit 265. Note that, in the figure, the cluster 300 is omitted.
  • the clock supply unit 266 supplies the clock signal CLK to each of the P-phase transfer unit 262, the write data transfer unit 264, and the D-phase transfer unit 265.
  • the frame memories 271 and 272 alternately hold P-phase data repeatedly output from the P-phase transfer unit 262.
  • the P-phase data from each of the M P-phase transfer units 262 is input to the frame memory 271 via the signal line 291.
  • P-phase data from each of the M P-phase transfer units 262 is input to the frame memory 272 via a signal line 292.
  • a control signal from the timing control circuit 240 is input to the frame memories 271 and 272.
  • This control signal is a signal for instructing writing or reading of data.
  • frame memories 271 and 272 fetch and hold P-phase data of all pixels.
  • Each of these frame memories has such a capacity that it can hold at least one frame of P-phase data.
  • frame memories 271 and 272 when reading is instructed, output the held P-phase data to selector 273 via signal lines 293 and 294.
  • the frame memories 271 and 272 are an example of a pair of reset data holding units described in the claims.
  • the selector 273 alternately selects the frame memories 271 and 272 in accordance with the timing control circuit 240 selection signal, and outputs the P-phase data from the selected memory to the CDS processing unit 274 via the signal line 296. Note that the selector 273 is an example of an input-side selection unit described in the claims.
  • the CDS processing unit 274 repeats the CDS process of generating the difference between the P-phase data from the selector 273 and the D-phase data from the M D-phase transfer units 265 as pixel data in synchronization with the vertical synchronization signal VSYNC. Is what you do.
  • the CDS processing unit 274 supplies the generated pixel data to the frame memories 275 and 276 via the signal lines 297 and 298.
  • the CDS processing unit 274 is an example of a pixel data generation unit described in the claims.
  • the frame memories 275 and 276 alternately hold pixel data repeatedly generated by the CDS processing unit 274.
  • the capacity of each of these frame memories is large enough to hold at least one frame of pixel data.
  • Control signals from the timing control circuit 240 are also input to the frame memories 275 and 276. When writing is instructed by the control signal, the frame memories 275 and 276 fetch and hold the pixel data of all the pixels.
  • frame memories 275 and 276 output the held pixel data to selector 277 via signal lines 299 and 299-1.
  • the frame memories 275 and 276 are examples of a pair of pixel data holding units described in the claims.
  • the frame memories 275 and 276 hold pixel data in the order of output in units of clusters 300.
  • pixel data is arranged in raster (row) order. Therefore, the timing control circuit 240 transmits a control signal to the frame memories 275 and 276 so that the reading order of the pixels is in the raster order. Thereby, the data processing unit 270 can rearrange and output the pixel data in the raster order.
  • the selector 277 alternately selects the frame memories 275 and 275 in accordance with a selection signal from the timing control circuit 240, and outputs pixel data from the selected memory to the DSP circuit 120. Note that the selector 277 is an example of an output-side selection unit described in the claims.
  • each of the signal lines 291 to 299-1 is represented by one line for convenience of description, but physically, not one, but a plurality of lines are wired.
  • a total of M signal lines are wired as signal lines 291, one from each of the M P-phase transfer units 262.
  • FIG. 9 is a timing chart illustrating an example of an operation of the solid-state imaging device 200 according to the first embodiment of the present technology.
  • the vertical synchronization signal VSYNC falls, and after timing T0, the DAC 220 decreases the ramp signal RMP in a slope shape.
  • the left memory 320 holds P-phase data based on the result of comparison between the ramp signal RMP and the reset level.
  • the P-phase transfer unit 262 transfers the P-phase data to the frame memory 271 for a certain period after the timing T1, and the frame memory 271 holds the P-phase data.
  • the DAC 220 starts supplying the ramp signal RMP immediately after the timing T1, and the left memory 320 retains the D-phase data based on the comparison result between the ramp signal RMP and the signal level.
  • the vertical synchronizing signal VSYNC falls, and after timing T2, the DAC 220 lowers the ramp signal RMP like a slope.
  • the left memory 320 holds the second P-phase data.
  • the D-phase transfer unit 265 starts the first transfer of the D-phase data.
  • the CDS processing unit 274 reads the first P-phase data from the frame memory 271 and obtains a CDS result (that is, pixel data) of a difference from the first D-phase data.
  • the frame memory 275 holds the CDS result.
  • the P-phase transfer unit 262 starts the second transfer of the P-phase data, and the frame memory 272 holds the P-phase data.
  • the DAC 220 starts supplying the ramp-shaped ramp signal RMP, and the left memory 320 holds the second D-phase data.
  • the vertical synchronization signal VSYNC falls, and after timing T4, the DAC 220 decreases the ramp signal RMP in a slope shape.
  • the left memory 320 holds the third P-phase data.
  • the D-phase transfer unit 265 starts the second transfer of the D-phase data.
  • the CDS processing unit 274 reads the second P-phase data from the frame memory 275 and obtains a CDS result (that is, pixel data) of a difference from the second D-phase data.
  • the frame memory 276 holds the CDS result.
  • the first CDS result is read from the frame memory 275 in raster order, and output from the selector 277.
  • the P-phase transfer unit 262 starts the third transfer of the P-phase data, and the frame memory 271 holds the P-phase data.
  • the DAC 220 starts supplying the ramp-shaped ramp signal RMP, and the left memory 320 holds the third D-phase data.
  • the same read control is repeatedly executed.
  • the cluster 300 including the left memory 320 alternately and repeatedly holds the time code as P-phase data and D-phase data in synchronization with the vertical synchronization signal VSYNC.
  • the P-phase transfer unit 262 repeatedly transfers P-phase data in synchronization with the vertical synchronization signal VSYNC, while the D-phase transfer unit 265 repeats the D-phase data in synchronization with the vertical synchronization signal VSYNC. Forward.
  • the time until the result of comparison with the reset level is inverted is relatively short, the time from the falling of the vertical synchronization signal VSYNC to the holding of the P-phase data is generally longer than the transfer period of the D-phase data. Is also shorter. Therefore, the P-phase data is held during the transfer of the D-phase data. For this reason, if the transfer of the P-phase data is started immediately after the P-phase data is held, a period occurs in which the P-phase data and the D-phase data are simultaneously transferred.
  • the frame memories 271 and 272 alternately hold the P-phase data output repeatedly.
  • the P-phase data is read from the other.
  • the CDS processing unit 274 generates a difference between the read P-phase data and the subsequently transferred D-phase data as pixel data.
  • the frame memories 275 and 276 alternately hold the repeatedly generated pixel data.
  • the selector 277 reads and outputs the pixel data from the other in raster order.
  • FIG. 10 is a diagram for describing a circuit control method until the first CDS process is performed in the first embodiment of the present technology.
  • a shows the state of the data processing unit 270 when holding the first P-phase data
  • b in the figure shows the state of the data processing unit 270 when performing the first CDS processing.
  • the timing control circuit 240 writes the data in the frame memory 271 by a control signal as illustrated in a in FIG.
  • the first D-phase data is transferred as illustrated in FIG.
  • the timing control circuit 240 writes the second P-phase data in the frame memory 272 by the control signal.
  • the selector 273 selects the frame memory 271, reads out the first P-phase data from the memory, and supplies the data to the CDS processing unit 274.
  • the CDS processing unit 274 generates the difference between the first P-phase data and the D-phase data as net pixel data.
  • the timing control circuit 240 writes the first pixel data into the frame memory 275 according to the control signal.
  • FIG. 11 is a diagram for describing a circuit control method when performing the second and third CDS processes according to the first embodiment of the present technology.
  • a shows the state of the data processing unit 270 when performing the second CDS processing
  • b in the figure shows the state of the data processing unit 270 when performing the third CDS processing.
  • the second D-phase data is transferred. It is assumed that the third transfer of P-phase data is started during the second transfer of D-phase data.
  • the timing control circuit 240 writes the third P-phase data in the frame memory 271 by the control signal.
  • the selector 273 selects the frame memory 272, reads the second P-phase data from the memory, and supplies it to the CDS processing unit 274.
  • the CDS processing unit 274 generates a difference between the second P-phase data and the D-phase data as pixel data.
  • the timing control circuit 240 writes the second pixel data to the frame memory 276 according to the control signal.
  • the selector 277 selects the frame memory 275, reads out the first pixel data from the memory in raster order, and outputs the pixel data to the DSP circuit 120.
  • the third D-phase data is transferred. It is assumed that the fourth transfer of P-phase data is started during the third transfer of D-phase data.
  • the timing control circuit 240 writes the fourth P-phase data in the frame memory 272 according to the control signal.
  • the selector 273 selects the frame memory 271, reads out the third P-phase data from the memory, and supplies it to the CDS processing unit 274.
  • the CDS processing unit 274 generates a difference between the third P-phase data and the D-phase data as pixel data.
  • the timing control circuit 240 writes the third pixel data in the frame memory 275 by the control signal.
  • the selector 277 selects the frame memory 276, reads out the second pixel data from the memory in raster order, and outputs it to the DSP circuit 120.
  • the timing control circuit 240 stores the next Can be written. Therefore, even when the transfer of the next P-phase data is started during the transfer of the D-phase data, the data processing unit 270 can generate the pixel data by the CDS processing. In this configuration, the transfer of the next P-phase data can be started during the transfer of the D-phase data, so that the reading speed (frame rate) of the image data (frame) can be increased.
  • Frame memories 271 and 272 are used only for writing P-phase data, and are used only for writing frame memories 275 and 276. With this configuration, an increase in the number of wirings in the data processing unit 270 can be suppressed.
  • FIG. 12 is a diagram for explaining a control method in a comparative example having two frame memories according to the present technology.
  • a shows the state of the comparative example when the first P-phase data is held
  • b in the figure shows the state of the comparative example when the first CDS processing is executed.
  • the selectors A, B, C, and D, the frame memories A and B, and the CDS processor are arranged in the data processor of this comparative example.
  • the selector A selects one of the P-phase data and the pixel data and outputs it to the frame memory A
  • the selector B selects one of the P-phase data and the pixel data and outputs it to the frame memory B.
  • the selector C selects one of the frame memories A and B, reads out pixel data from the memory, and outputs the pixel data to a subsequent circuit.
  • the selector D selects one of the frame memories A and B, reads pixel data from the memory, and outputs the pixel data to the CDS processing unit.
  • the selector A selects the P-phase data and supplies it to the frame memory A, as illustrated in FIG. P-phase data is written in the frame memory A.
  • the selector D reads the first P-phase data from the frame memory A as illustrated in FIG.
  • the difference between the P-phase data and the D-phase data is output as pixel data.
  • the selector B selects the pixel data and outputs it to the frame memory B. Pixel data is written to the frame memory B.
  • both the frame memories A and B are used during the first D-phase data transfer. For this reason, even if the second P-phase data is transferred during the first transfer of the D-phase data, there is no memory to write to, and the second and subsequent CDS processes cannot be executed. For this reason, in this comparative example, the period of the vertical synchronization signal VSYNC needs to be sufficiently long. Therefore, the reading speed (frame rate) of the image data is reduced as compared with the configuration of FIG.
  • FIG. 13 is a diagram for describing a control method in a comparative example having three frame memories of the present technology.
  • a shows the state of the comparative example when the first P-phase data is held
  • b in the figure shows the state of the comparative example when the first CDS processing is executed.
  • the selectors A, B, C, D, and E, the frame memories A, B, and C, and the CDS processor are arranged in the data processor of this comparative example.
  • the selector A selects one of the P-phase data and the pixel data and outputs it to the frame memory A
  • the selector B selects one of the P-phase data and the pixel data and outputs it to the frame memory B.
  • the selector C selects one of the P-phase data and the pixel data and outputs it to the frame memory C.
  • the selector D selects one of the frame memories A, B, and C, reads pixel data from the memory, and outputs the pixel data to a subsequent circuit.
  • the selector E selects one of the frame memories A, B, and C, reads pixel data from the memory, and outputs the pixel data to the CDS processing unit.
  • the selector A selects the P-phase data and supplies it to the frame memory A, as illustrated in FIG. P-phase data is written in the frame memory A.
  • the selector E reads the first P-phase data from the frame memory A as illustrated in FIG.
  • the difference between the P-phase data and the D-phase data is output as pixel data.
  • the selector C selects the pixel data and outputs it to the frame memory C. Pixel data is written in the frame memory C.
  • the selector B selects the P-phase data and outputs it to the frame memory B. The P-phase data is written into the frame memory B.
  • the number of wires in the data processing unit is increased as compared with the configuration of FIG. Since the number of wirings is proportional to the number of arrows indicating the data output destination, comparing the number of arrows, the number of the arrows is 11 in FIG. 11, but increases to 18 in the comparative example of FIG. ing.
  • the frame memory is not divided into a memory for writing only P-phase data and a memory for writing only pixel data.
  • the number of frame memories is two, it becomes difficult to improve the reading speed of image data.
  • the number of wirings increases.
  • the data processing unit 270 is provided with frame memories 271 and 272 for writing only P-phase data and frame memories 275 and 276 for writing only pixel data.
  • the data can be written to the empty one of the frame memories 271 and 272.
  • the read speed of the image data can be improved as compared with the comparative example having two frame memories.
  • the number of wirings can be reduced as compared with the comparative example having three frame memories. Further, the number of selectors can be reduced as compared with the comparative example. By reducing the number of wirings and the like, an increase in manufacturing cost can be suppressed.
  • FIG. 14 is a flowchart illustrating an example of an operation of the solid-state imaging device 200 according to the first embodiment of the present technology. This operation is started, for example, when a predetermined application for capturing image data is executed.
  • the cluster 300 in the solid-state imaging device 200 generates P-phase data, and the data transfer unit 261 transfers the data (Step S901).
  • the timing control circuit 240 writes P-phase data in one of the frame memories 271 and 272 (step S902).
  • the cluster 300 generates the D-phase data, and the data transfer unit 261 transfers the data (Step S903).
  • the CDS processing unit 274 generates pixel data by a CDS operation (Step S904).
  • the timing control circuit 240 writes the pixel data into one of the frame memories 275 and 276 (step S905), and the selector 277 reads out the pixel data from the other in raster order and outputs it (step S906).
  • the solid-state imaging device 200 repeatedly executes step S901 and subsequent steps in synchronization with the vertical synchronization signal VSYNC.
  • the frame memories 271 and 272 alternately hold the P-phase data
  • the frame memories 275 and 276 alternately hold the pixel data after the CDS processing. This eliminates the need to arrange a selector for selecting either the P-phase data or the pixel data for each frame memory, and reduces the number of wires as compared with a comparative example in which the selector is arranged for each frame memory. it can.
  • the selector 273 is arranged between the frame memories 271 and 272 and the CDS processing unit 274.
  • the wiring distance between the frame memories 271 and 272 and the CDS processing unit 274 is increased by the amount of the selector 273, and the propagation delay may be increased.
  • the data processing unit 270 according to the second embodiment differs from the first embodiment in that the selector 273 is omitted.
  • FIG. 15 is a block diagram illustrating a configuration example of the data processing unit 270 according to the second embodiment of the present technology.
  • the data processing unit 270 of the second embodiment differs from the first embodiment in that CDS processing units 278 and 279 are provided instead of the selector 273 and the CDS processing unit 274.
  • the D-phase data from the D-phase transfer unit 265 is input to both the CDS processing units 278 and 279.
  • the CDS processing unit 278 reads out the P-phase data stored in the frame memory 271 and generates a difference from the subsequently transferred D-phase data as pixel data.
  • the CDS processing unit 279 reads out the P-phase data held in the frame memory 272 and generates a difference from the subsequently transferred D-phase data as pixel data. Then, the CDS processing unit 278 outputs the pixel data to the frame memory 275, and the CDS processing unit 279 outputs the pixel data to the frame memory 276.
  • the CDS processing units 278 and 279 are an example of a pair of pixel data generation circuits described in the claims.
  • the CDS processing unit 278 reads the P-phase data from the frame memory 271 and the CDS processing unit 279 reads the pixel data from the frame memory 272. There is no need for a selector between the units. Thus, the wiring distance between the frame memory and the CDS processing unit can be reduced, and the propagation delay can be reduced.
  • the circuits in the solid-state imaging device 200 are distributed and arranged on the light receiving substrate 201 and the circuit substrate 202. However, in this configuration, as the number of pixels increases, the scale of a circuit disposed on each of the substrates may increase.
  • the solid-state imaging device 200 according to the third embodiment is different from the first embodiment in that circuits in the solid-state imaging device 200 are dispersed and arranged on three substrates.
  • FIG. 16 is a diagram illustrating an example of a stacked structure of the solid-state imaging device 200 according to the third embodiment of the present technology.
  • the solid-state imaging device 200 according to the third embodiment includes an upper circuit board 203 and a lower circuit board 204 instead of the circuit board 202.
  • the upper circuit board 203 is disposed between the light receiving board 201 and the lower circuit board 204.
  • the upper circuit board 203 is an example of a first circuit board described in the claims
  • the lower circuit board 204 is an example of a second circuit board described in the claims.
  • FIG. 17 is a block diagram illustrating a configuration example of the data processing unit 270 according to the third embodiment of the present technology.
  • a part of the circuit in the data processing unit 270 is disposed on the upper circuit board 203 as the upper data processing unit 281, and the rest is formed as the lower data processing unit 282. It is arranged on the side circuit board 204.
  • a circuit including the frame memories 271 and 272, the selector 273, and the CDS processing unit 274 is provided on the upper circuit board 203 as the upper data processing unit 281.
  • a circuit including the frame memories 275 and 276 and the selector 277 is provided on the lower circuit board 204 as the lower data processing unit 282.
  • the DAC 220, the vertical drive circuit 230, the AD converter 260, and the time code generator 250 are arranged on the upper circuit board 203 as in the first embodiment.
  • the frame memories 271 and 272, the selector 273, and the CDS processing unit 274 in the data processing unit 270 are arranged on the upper circuit board 203, and the rest are arranged on the lower circuit board 204.
  • the circuit to perform is not limited to this configuration.
  • the circuits in the solid-state imaging device 200 are dispersed and arranged on three substrates.
  • the circuit scale for each substrate can be reduced.
  • the circuit for CDS processing and the circuit for converting the reading order of the pixels into the raster order are arranged in the solid-state imaging device 200.
  • the circuit scale of the solid-state imaging device 200 may increase as the number increases.
  • the imaging apparatus 100 according to the fourth embodiment is different from the first embodiment in that a circuit for converting the reading order of pixels into a raster order is arranged outside the solid-state imaging device 200.
  • FIG. 18 is a block diagram illustrating a configuration example of the data processing unit 270 according to the fourth embodiment of the present technology.
  • the data processing unit 270 according to the fourth embodiment differs from the first embodiment in that the frame memories 275 and 256 and the selector 277 are not provided.
  • the CDS processing unit 274 according to the fourth embodiment outputs pixel data to the DSP circuit 120.
  • FIG. 19 is a block diagram illustrating a configuration example of a DSP circuit 120 according to the fourth embodiment of the present technology.
  • the DSP circuit 120 includes a timing control circuit 121, frame memories 122 and 123, a selector 124, and a post-processing unit 125.
  • the configurations of the timing control circuit 121, the frame memories 122 and 123, and the selector 124 are the same as those of the timing control circuit 240, the frame memories 275 and 276, and the selector 277 of the first embodiment.
  • the selector 124 supplies the selected pixel data to the post-processing unit 125.
  • the post-processing unit 125 executes various image processing such as demosaic processing and white balance correction processing. Note that the post-processing unit 125 is an example of a signal processing unit described in the claims.
  • a circuit for converting the reading order of the pixels into the raster order is arranged in the DSP circuit 120 outside the solid-state imaging device 200.
  • the circuit scale of the solid-state imaging device 200 can be reduced as compared with the case where the device is arranged in the device 200.
  • the technology (the present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on any type of moving object such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
  • FIG. 20 is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a moving object control system to which the technology according to the present disclosure can be applied.
  • Vehicle control system 12000 includes a plurality of electronic control units connected via communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an inside information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio / video output unit 12052, and a vehicle-mounted network I / F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 includes a drive force generation device for generating a drive force of the vehicle such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, and a steering angle of the vehicle. It functions as a control mechanism such as a steering mechanism for adjusting and a braking device for generating a braking force of the vehicle.
  • the body control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body-related control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a head lamp, a back lamp, a brake lamp, a blinker, and a fog lamp.
  • a radio wave or a signal of various switches transmitted from a portable device replacing the key can be input to the body control unit 12020.
  • the body control unit 12020 receives the input of these radio waves or signals and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
  • Out-of-vehicle information detection unit 12030 detects information external to the vehicle on which vehicle control system 12000 is mounted.
  • an imaging unit 12031 is connected to the outside-of-vehicle information detection unit 12030.
  • the out-of-vehicle information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle, and receives the captured image.
  • the out-of-vehicle information detection unit 12030 may perform an object detection process or a distance detection process of a person, a vehicle, an obstacle, a sign, a character on a road surface, or the like based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of received light.
  • the imaging unit 12031 can output an electric signal as an image or can output the information as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects information in the vehicle.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver status detection unit 12041 that detects the status of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 determines the degree of driver fatigue or concentration based on the detection information input from the driver state detection unit 12041. The calculation may be performed, or it may be determined whether the driver has fallen asleep.
  • the microcomputer 12051 calculates a control target value of the driving force generation device, the steering mechanism or the braking device based on the information on the inside and outside of the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040, and the drive system control unit A control command can be output to 12010.
  • the microcomputer 12051 implements functions of ADAS (Advanced Driver Assistance System) including a collision avoidance or a shock mitigation of a vehicle, a following operation based on a distance between vehicles, a vehicle speed maintaining operation, a vehicle collision warning, or a vehicle lane departure warning. Cooperative control for the purpose.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generation device, the steering mechanism, the braking device, and the like based on the information about the surroundings of the vehicle obtained by the outside information detection unit 12030 or the inside information detection unit 12040, so that the driver 120 It is possible to perform cooperative control for automatic driving or the like in which the vehicle travels autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on information on the outside of the vehicle acquired by the outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of preventing glare such as switching a high beam to a low beam. It can be carried out.
  • the sound image output unit 12052 transmits at least one of a sound signal and an image signal to an output device capable of visually or audibly notifying a passenger of the vehicle or the outside of the vehicle of information.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
  • FIG. 21 is a diagram illustrating an example of an installation position of the imaging unit 12031.
  • the image pickup unit 12031 includes image pickup units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door of the vehicle 12100, and an upper portion of a windshield in the vehicle interior.
  • the imaging unit 12101 provided on the front nose and the imaging unit 12105 provided above the windshield in the passenger compartment mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirror mainly acquire images of the side of the vehicle 12100.
  • the imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100.
  • the imaging unit 12105 provided above the windshield in the passenger compartment is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, and the like.
  • FIG. 21 shows an example of the imaging range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates 13 shows an imaging range of an imaging unit 12104 provided in a rear bumper or a back door.
  • a bird's-eye view image of the vehicle 12100 viewed from above is obtained by superimposing image data captured by the imaging units 12101 to 12104.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements or an imaging element having pixels for detecting a phase difference.
  • the microcomputer 12051 calculates a distance to each three-dimensional object in the imaging ranges 12111 to 12114 and a temporal change of the distance (relative speed with respect to the vehicle 12100). , It is possible to extract, as a preceding vehicle, a three-dimensional object that travels at a predetermined speed (for example, 0 km / h or more) in a direction substantially the same as that of the vehicle 12100, which is the closest three-dimensional object on the traveling path of the vehicle 12100 it can.
  • a predetermined speed for example, 0 km / h or more
  • microcomputer 12051 can set an inter-vehicle distance to be secured before the preceding vehicle and perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
  • the microcomputer 12051 converts the three-dimensional object data relating to the three-dimensional object into other three-dimensional objects such as a motorcycle, a normal vehicle, a large vehicle, a pedestrian, a telephone pole, and the like based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines a collision risk indicating a risk of collision with each obstacle, and when the collision risk is equal to or more than the set value and there is a possibility of collision, via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver through forced driving and avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
  • driving assistance for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared light.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian exists in the captured images of the imaging units 12101 to 12104. The recognition of such a pedestrian is performed by, for example, extracting a feature point in an image captured by the imaging units 12101 to 12104 as an infrared camera, and performing a pattern matching process on a series of feature points indicating the outline of the object to determine whether the object is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular outline to the recognized pedestrian for emphasis.
  • the display unit 12062 is controlled so that is superimposed. Further, the sound image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to, for example, the imaging unit 12031 in the configuration described above.
  • the imaging device 100 in FIG. 1 can be applied to the imaging unit 12031.
  • the present technology may have the following configurations.
  • a solid-state imaging device comprising: an output-side selection unit that alternately selects the pair of pixel data holding units and outputs the pixel data held in the selected pixel data holding unit.
  • the solid-state imaging device starts outputting the reset data while outputting the signal data.
  • the above-mentioned (1) further includes an input-side selection unit that alternately selects the pair of reset data holding units and supplies the reset data held in the selected reset data holding unit to the pixel data generation unit.
  • the pixel data generation unit includes a pair of pixel data generation circuits, One of the pair of pixel data generation circuits sets a difference between the reset data held in one of the pair of reset data holding units and the signal data output after the reset data as the pixel data.
  • the other of the pair of pixel data generation circuits sets a difference between the reset data held in the other of the pair of reset data holding units and the signal data output after the reset data as the pixel data.
  • the solid-state imaging device according to the above (1) or (2), which outputs the image data to the other of the pixel data holding units.
  • (5) a pixel that generates a predetermined reset level and a signal level according to the exposure amount;
  • the (1) further includes an analog-to-digital conversion unit that performs a process of converting the reset level to a digital signal and holding the reset data as the data, and a process of converting the signal level to a digital signal and holding the signal data as the data.
  • the solid-state imaging device according to any one of (1) to (4). (6)
  • the pixel is disposed on a predetermined light receiving substrate,
  • the analog-to-digital conversion unit, the data output unit, the pair of reset data holding units, the pixel data generation unit, the pair of pixel data holding units, and the output side selection unit are disposed on a predetermined circuit board.
  • the solid-state imaging device according to (5).
  • the pixel is disposed on a predetermined light receiving substrate,
  • the analog-to-digital converter is disposed on a first circuit board,
  • a part of the data output unit, the pair of reset data holding units, the pixel data generation unit, the pair of pixel data holding units, and the output side selection unit are disposed on the first circuit board, and the rest is
  • the solid-state imaging device according to (5) which is disposed on a second circuit board.
  • a data output unit for alternately and repeatedly outputting predetermined reset data and signal data corresponding to the exposure amount;
  • a pair of reset data holding units that alternately hold the repeatedly output reset data,
  • a pixel data generation unit that repeats a process of generating a difference between the reset data held in one of the pair of reset data holding units and the signal data output after the reset data as pixel data,
  • a pair of pixel data holding units that alternately hold the repeatedly generated pixel data,
  • An output-side selection unit that alternately selects the pair of pixel data holding units and outputs the pixel data held in the selected pixel data holding unit;
  • An image pickup apparatus comprising: a signal processing unit that processes the pixel data.
  • the device according to (8) wherein the data output unit, the pair of reset data holding units, the pixel data generation unit, the pair of pixel data holding units, and the output side selection unit are arranged in a solid-state imaging device. Imaging device. (10) The data output unit, the pair of reset data holding units, and the pixel data generation unit are arranged in a solid-state imaging device, The imaging device according to (8), wherein the pair of pixel data holding units and the output side selection unit are arranged outside the solid-state imaging device.
  • (11) a data output procedure for alternately and repeatedly outputting predetermined reset data and signal data corresponding to the exposure amount;
  • Pixel data generation procedure to be repeated An output-side selecting step of alternately selecting a pair of pixel data holding units for alternately holding the repeatedly generated pixel data and outputting the pixel data held in the selected pixel data holding unit.
  • Imaging device 110 optical unit 120
  • Power supply unit 200 Solid-state imaging device 201 Light receiving substrate 202 Circuit substrate 203 Upper circuit substrate 204 Lower circuit substrate 210 Pixel array unit 211 Pixel block 212 Pixel 220 DAC 230 Vertical drive circuit 240 Timing control circuit 250 Time code generation unit 260 AD conversion unit 261 Data transfer unit 262 P-phase transfer unit 263 Flip-flop 264 Write data transfer unit 265 D-phase transfer unit 266 Clock supply unit 270 Data processing unit 274, 278 279 CDS (Correlated Double Sampling) processing unit 281 Upper data processing unit 282 Lower data processing unit 300 Cluster 311 to 318 Comparison circuit 320 Left memory 321 to 328, 331 to 338 Data storage unit 330 Right memory 12031 Imaging unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

The purpose of the present invention is to reduce the number of wirings in a CDS processing circuit of a solid-state imaging element performing CDS processing. A data output unit alternately and repeatedly outputs predetermined reset data and signal data corresponding to an exposure amount. One pair of reset data holding units alternately hold the repeatedly output reset data. A pixel data generation unit repeatedly performs processing for generating pixel data corresponding to a difference between the reset data held in one of the one pair of reset data holding units and signal data output subsequent to the reset data. One pair of pixel data holding units alternately hold the repeatedly generated pixel data. An output-side selection unit alternately selects one of the one pair of pixel data holding units and outputs the pixel data held in the selected pixel data holding unit.

Description

固体撮像素子、撮像装置、および、固体撮像素子の制御方法Solid-state imaging device, imaging device, and method of controlling solid-state imaging device
 本技術は、固体撮像素子、撮像装置、および、固体撮像素子の制御方法に関する。詳しくは、リセットレベルと信号レベルとの差分の画素信号を生成する固体撮像素子、撮像装置、および、固体撮像素子の制御方法に関する。 技術 The present technology relates to a solid-state imaging device, an imaging device, and a method for controlling a solid-state imaging device. More specifically, the present invention relates to a solid-state imaging device that generates a pixel signal having a difference between a reset level and a signal level, an imaging device, and a method for controlling the solid-state imaging device.
 従来より、固定パターンノイズなどを低減する目的で、固体撮像素子において相関二重サンプリング(CDS:Correlated Double Sampling)処理が行われている。このCDS処理を行うデータ処理部は、画素の初期化時のリセットレベルと、その画素の露光終了時の信号レベルとの差分を演算し、その差分を、固定パターンノイズを低減した画素信号として出力する。例えば、画素毎にADC(Analog to Digital Converter)を配置し、それらのADCからのリセットレベルおよび信号レベルをデータ処理部に転送してCDS処理を行う固体撮像素子が提案されている(例えば、特許文献1参照。)。 Conventionally, a correlated double sampling (CDS) process has been performed in a solid-state imaging device for the purpose of reducing fixed pattern noise and the like. A data processing unit that performs the CDS processing calculates a difference between a reset level at the time of initialization of a pixel and a signal level at the end of exposure of the pixel, and outputs the difference as a pixel signal with reduced fixed pattern noise. I do. For example, there has been proposed a solid-state imaging device in which an ADC (Analog to Digital Converter) is arranged for each pixel, and a reset level and a signal level from the ADC are transferred to a data processing unit to perform a CDS process (for example, Patent Reference 1).
国際公開第2016/136448号公報International Publication No. WO 2016/136448
 上述の固体撮像素子では、画素毎にADCを配置したため、全画素で同時にAD(Analog to Digital)変換を行うことができる。このため、上述の固体撮像素子では、カラムごとにADCを配置してカラム単位でAD変換を行う場合と比較して、高速に画像信号を読み出すことができる。しかしながら、CDS処理を行うデータ処理部内において、画素数の増大に伴って、画素信号を伝送する信号線の配線数が増大するおそれがある。 In the above-described solid-state imaging device, since the ADC is arranged for each pixel, AD (Analog to Digital) conversion can be performed simultaneously for all pixels. For this reason, in the above-described solid-state imaging device, an image signal can be read at a higher speed than in a case where an ADC is arranged for each column and AD conversion is performed for each column. However, in the data processing unit that performs the CDS processing, the number of signal lines for transmitting pixel signals may increase as the number of pixels increases.
 本技術はこのような状況に鑑みて生み出されたものであり、CDS処理を行う固体撮像素子において、CDS処理を行う回路内の配線数を削減することを目的とする。 The present technology has been developed in view of such a situation, and has an object to reduce the number of wirings in a circuit that performs CDS processing in a solid-state imaging device that performs CDS processing.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、所定のリセットデータと露光量に応じた信号データとを交互に繰り返し出力するデータ出力部と、繰り返し出力された上記リセットデータを交互に保持する一対のリセットデータ保持部と、上記一対のリセットデータ保持部の一方に保持された上記リセットデータと当該リセットデータの後に出力された上記信号データとの差分を画素データとして生成する処理を繰り返す画素データ生成部と、繰り返し生成された上記画素データを交互に保持する一対の画素データ保持部と、上記一対の画素データ保持部を交互に選択して当該選択した画素データ保持部に保持された上記画素データを出力する出力側選択部とを具備する固体撮像素子、および、その制御方法である。これにより、一対のリセットデータ保持部に交互に保持されたリセットデータと信号データとから、画素データが繰り返し生成されるという作用をもたらす。 The present technology has been made to solve the above-described problems, and a first aspect of the present technology includes a data output unit that repeatedly and alternately outputs predetermined reset data and signal data corresponding to an exposure amount, A pair of reset data holding units for alternately holding the repeatedly output reset data; and a pair of the reset data held in one of the pair of reset data holding units and the signal data output after the reset data. A pixel data generating unit that repeats a process of generating a difference as pixel data, a pair of pixel data holding units that alternately holds the repeatedly generated pixel data, and a pair of the pixel data holding units that are alternately selected. A solid-state imaging device including an output-side selection unit that outputs the pixel data held in the selected pixel data holding unit, and control thereof It is the law. This brings about an effect that pixel data is repeatedly generated from the reset data and the signal data alternately held in the pair of reset data holding units.
 また、この第1の側面において、上記データ出力部は、上記信号データを出力している間に上記リセットデータの出力を開始してもよい。これにより、画像データの読出し速度が速くなるという作用をもたらす。 In the first aspect, the data output unit may start outputting the reset data while outputting the signal data. This brings about an effect that the reading speed of the image data is increased.
 また、この第1の側面において、上記一対のリセットデータ保持部を交互に選択して当該選択したリセットデータ保持部に保持された上記リセットデータを上記画素データ生成部に供給する入力側選択部をさらに具備してもよい。これにより、一対のリセットデータ保持部のうち選択された方から読み出されたリセットデータと信号データとから画素データが生成されるという作用をもたらす。 Further, in the first aspect, an input-side selection unit for alternately selecting the pair of reset data holding units and supplying the reset data held in the selected reset data holding unit to the pixel data generation unit is provided. It may be further provided. This brings about an effect that pixel data is generated from reset data and signal data read from a selected one of the pair of reset data holding units.
 また、この第1の側面において、上記画素データ生成部は、一対の画素データ生成回路を備え、上記一対の画素データ生成回路の一方は、上記一対のリセットデータ保持部の一方に保持された上記リセットデータと当該リセットデータの後に出力された上記信号データとの差分を上記画素データとして上記一対の画素データ保持部の一方へ出力し、上記一対の画素データ生成回路の他方は、上記一対のリセットデータ保持部の他方に保持された上記リセットデータと当該リセットデータの後に出力された上記信号データとの差分を上記画素データとして上記一対の画素データ保持部の他方へ出力してもよい。これにより、リセットデータ保持部と画素データ生成回路との間の配線距離が短くなるという作用をもたらす。 Further, in the first aspect, the pixel data generation unit includes a pair of pixel data generation circuits, and one of the pair of pixel data generation circuits is held in one of the pair of reset data holding units. The difference between the reset data and the signal data output after the reset data is output as the pixel data to one of the pair of pixel data holding units. A difference between the reset data held in the other data holding unit and the signal data output after the reset data may be output to the other of the pair of pixel data holding units as the pixel data. This brings about an effect that the wiring distance between the reset data holding unit and the pixel data generation circuit is shortened.
 また、この第1の側面において、所定のリセットレベルと上記露光量に応じた信号レベルとを生成する画素と、上記リセットレベルをデジタル信号に変換して上記リセットデータとして保持する処理と上記信号レベルをデジタル信号に変換して上記信号データとして保持する処理とを行うアナログデジタル変換部とをさらに具備してもよい。これにより、画素毎にAD変換されたデータに対してCDS処理が行われるという作用をもたらす。 Further, in the first aspect, a pixel for generating a predetermined reset level and a signal level corresponding to the exposure amount, a process of converting the reset level into a digital signal and holding the digital signal as the reset data, To a digital signal and holding the signal data. This brings about an effect that the CDS processing is performed on the AD-converted data for each pixel.
 また、この第1の側面において、上記画素は、所定の受光基板に配置され、上記アナログデジタル変換部と上記データ出力部と上記一対のリセットデータ保持部と、上記画素データ生成部と上記一対の画素データ保持部と上記出力側選択部とは所定の回路基板に配置されてもよい。これにより、単一基板に設ける場合と比較して基板当たりの回路規模が削減されるという作用をもたらす。 In the first aspect, the pixel is disposed on a predetermined light receiving substrate, and the analog-to-digital conversion unit, the data output unit, the pair of reset data holding units, the pixel data generation unit, and the pair of The pixel data holding unit and the output side selection unit may be arranged on a predetermined circuit board. This brings about an effect that the circuit scale per board is reduced as compared with the case where the circuit board is provided on a single board.
 また、この第1の側面において、上記画素は、所定の受光基板に配置され、上記アナログデジタル変換部は、第1の回路基板に配置され、上記データ出力部と上記一対のリセットデータ保持部と上記画素データ生成部と上記一対の画素データ保持部と上記出力側選択部との一部は、上記第1の回路基板に配置され、残りは第2の回路基板に配置されてもよい。これにより、2枚の基板に設ける場合と比較して基板当たりの回路規模が削減されるという作用をもたらす。 In the first aspect, the pixel is disposed on a predetermined light receiving substrate, the analog-to-digital converter is disposed on a first circuit substrate, and the data output unit and the pair of reset data holding units are provided. Part of the pixel data generation unit, the pair of pixel data holding units, and the output-side selection unit may be disposed on the first circuit board, and the rest may be disposed on a second circuit board. This brings about an effect that the circuit scale per board is reduced as compared with the case where the circuit board is provided on two boards.
 また、本技術の第2の側面は、所定のリセットデータと露光量に応じた信号データとを交互に繰り返し出力するデータ出力部と、繰り返し出力された上記リセットデータを交互に保持する一対のリセットデータ保持部と、上記一対のリセットデータ保持部の一方に保持された上記リセットデータと当該リセットデータの後に出力された上記信号データとの差分を画素データとして生成する処理を繰り返す画素データ生成部と、繰り返し生成された上記画素データを交互に保持する一対の画素データ保持部と、上記一対の画素データ保持部を交互に選択して当該選択した画素データ保持部に保持された上記画素データを出力する出力側選択部と、上記画素データを処理する信号処理部とを具備する撮像装置である。これにより、一対のリセットデータ保持部に交互に保持されたリセットデータと信号データとから、画素データが繰り返し生成されて処理されるという作用をもたらす。 According to a second aspect of the present technology, there is provided a data output unit that alternately and repeatedly outputs predetermined reset data and signal data corresponding to an exposure amount, and a pair of resets that alternately hold the repeatedly output reset data. A data holding unit, and a pixel data generation unit that repeats a process of generating a difference between the reset data held in one of the pair of reset data holding units and the signal data output after the reset data as pixel data as pixel data. A pair of pixel data holding units for alternately holding the repeatedly generated pixel data, and alternately selecting the pair of pixel data holding units and outputting the pixel data held in the selected pixel data holding unit An image pickup apparatus comprising: an output-side selector that performs the above-described pixel data processing; and a signal processor that processes the pixel data. This brings about an effect that pixel data is repeatedly generated and processed from reset data and signal data alternately held in the pair of reset data holding units.
 また、この第1の側面において、上記データ出力部と上記一対のリセットデータ保持部と上記画素データ生成部と上記一対の画素データ保持部と上記出力側選択部とは、固体撮像素子に配置されてもよい。これにより、固体撮像素子内でCDS処理が行われるという作用をもたらす。 In the first aspect, the data output unit, the pair of reset data holding units, the pixel data generation unit, the pair of pixel data holding units, and the output side selection unit are arranged in a solid-state imaging device. You may. This brings about an effect that the CDS processing is performed in the solid-state imaging device.
 また、この第1の側面において、上記データ出力部と上記一対のリセットデータ保持部と上記画素データ生成部とは、固体撮像素子に配置され、上記一対の画素データ保持部と上記出力側選択部とは、上記固体撮像素子の外部に配置されてもよい。これにより、固体撮像素子内の回路規模が削減されるという作用をもたらす。 In the first aspect, the data output unit, the pair of reset data holding units, and the pixel data generation unit are arranged in a solid-state imaging device, and the pair of pixel data holding units and the output side selection unit are arranged. May be disposed outside the solid-state imaging device. This brings about the effect that the circuit scale in the solid-state imaging device is reduced.
本技術の第1の実施の形態における撮像装置の一構成例を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration example of an imaging device according to a first embodiment of the present technology. 本技術の第1の実施の形態における固体撮像素子の積層構造の一例を示す図である。FIG. 2 is a diagram illustrating an example of a stacked structure of the solid-state imaging device according to the first embodiment of the present technology. 本技術の第1の実施の形態における受光基板の一構成例を示す平面図である。FIG. 2 is a plan view illustrating a configuration example of a light receiving substrate according to the first embodiment of the present technology. 本技術の第1の実施の形態における回路基板の一構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of a circuit board according to the first embodiment of the present technology. 本技術の第1の実施の形態におけるクラスタの一構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of a cluster according to the first embodiment of the present technology. 本技術の第1の実施の形態における画素とクラスタ内の回路との接続関係の一例を示す斜視図である。FIG. 3 is a perspective view illustrating an example of a connection relationship between a pixel and a circuit in a cluster according to the first embodiment of the present technology. 本技術の第1の実施の形態におけるP相転送部の一構成例を示す回路図である。FIG. 2 is a circuit diagram illustrating a configuration example of a P-phase transfer unit according to the first embodiment of the present technology. 本技術の第1の実施の形態におけるデータ処理部の一構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of a data processing unit according to the first embodiment of the present technology. 本技術の第1の実施の形態における固体撮像素子の動作の一例を示すタイミングチャートである。5 is a timing chart illustrating an example of an operation of the solid-state imaging device according to the first embodiment of the present technology. 本技術の第1の実施の形態における1回目のCDS処理を行うまでの回路の制御方法を説明するための図である。FIG. 7 is a diagram for describing a circuit control method until a first CDS process is performed according to the first embodiment of the present technology. 本技術の第1の実施の形態における2回目および3回目のCDS処理を行う際の回路の制御方法を説明するための図である。FIG. 7 is a diagram for describing a circuit control method when performing the second and third CDS processes according to the first embodiment of the present technology. 本技術のフレームメモリが2枚の比較例における制御方法を説明するための図である。FIG. 11 is a diagram for describing a control method in a comparative example having two frame memories according to the present technology. 本技術のフレームメモリが3枚の比較例における制御方法を説明するための図である。FIG. 11 is a diagram for describing a control method in a comparative example having three frame memories of the present technology. 本技術の第1の実施の形態における固体撮像素子の動作の一例を示すフローチャートである。5 is a flowchart illustrating an example of an operation of the solid-state imaging device according to the first embodiment of the present technology. 本技術の第2の実施の形態におけるデータ処理部の一構成例を示すブロック図である。FIG. 13 is a block diagram illustrating a configuration example of a data processing unit according to a second embodiment of the present technology. 本技術の第3の実施の形態における固体撮像素子の積層構造の一例を示す図である。FIG. 11 is a diagram illustrating an example of a stacked structure of a solid-state imaging device according to a third embodiment of the present technology. 本技術の第3の実施の形態におけるデータ処理部の一構成例を示すブロック図である。FIG. 13 is a block diagram illustrating a configuration example of a data processing unit according to a third embodiment of the present technology. 本技術の第4の実施の形態におけるデータ処理部の一構成例を示すブロック図である。FIG. 21 is a block diagram illustrating a configuration example of a data processing unit according to a fourth embodiment of the present technology. 本技術の第4の実施の形態におけるDSP(Digital Signal Processing)回路の一構成例を示すブロック図である。FIG. 21 is a block diagram illustrating a configuration example of a DSP (Digital Signal Processing) circuit according to a fourth embodiment of the present technology. 車両制御システムの概略的な構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a schematic configuration example of a vehicle control system. 撮像部の設置位置の一例を示す説明図である。FIG. 4 is an explanatory diagram illustrating an example of an installation position of an imaging unit.
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(一対のフレームメモリに交互にデータを保持する例)
 2.第2の実施の形態(一対のフレームメモリに交互にデータを保持し、一対のCDS処理部を配置する例)
 3.第3の実施の形態(一対のフレームメモリに交互にデータを保持し、CDS処理を行う回路を2枚の基板に分散して配置する例)
 4.第4の実施の形態(一対のフレームメモリに交互にデータを保持し、回路の一部を固体撮像素子の外部に配置する例)
 5.移動体への応用例
Hereinafter, a mode for implementing the present technology (hereinafter, referred to as an embodiment) will be described. The description will be made in the following order.
1. First Embodiment (an example in which data is alternately stored in a pair of frame memories)
2. 2. Second embodiment (an example in which data is alternately held in a pair of frame memories and a pair of CDS processing units are arranged)
3. 3. Third embodiment (an example in which data is alternately held in a pair of frame memories and a circuit for performing CDS processing is distributed and arranged on two substrates)
4. 4. Fourth embodiment (an example in which data is alternately held in a pair of frame memories and a part of the circuit is arranged outside the solid-state imaging device)
5. Example of application to moving objects
 <1.第1の実施の形態>
 [撮像装置の構成例]
 図1は、本技術の第1の実施の形態における撮像装置100の一構成例を示すブロック図である。この撮像装置100は、画像データを撮像するための装置であり、光学部110、固体撮像素子200およびDSP回路120を備える。さらに撮像装置100は、表示部130、操作部140、バス150、フレームメモリ160、記憶部170および電源部180を備える。撮像装置100としては、例えば、デジタルスチルカメラなどのデジタルカメラの他、撮像機能を持つスマートフォンやパーソナルコンピュータ、車載カメラ等が想定される。
<1. First Embodiment>
[Configuration Example of Imaging Device]
FIG. 1 is a block diagram illustrating a configuration example of an imaging device 100 according to the first embodiment of the present technology. The imaging apparatus 100 is an apparatus for imaging image data, and includes an optical unit 110, a solid-state imaging device 200, and a DSP circuit 120. Further, the imaging device 100 includes a display unit 130, an operation unit 140, a bus 150, a frame memory 160, a storage unit 170, and a power supply unit 180. As the imaging apparatus 100, for example, in addition to a digital camera such as a digital still camera, a smartphone, a personal computer, an in-vehicle camera, or the like having an imaging function is assumed.
 光学部110は、被写体からの光を集光して固体撮像素子200に導くものである。固体撮像素子200は、垂直同期信号VSYNCに同期して、光電変換により画像データを生成するものである。ここで、垂直同期信号VSYNCは、撮像のタイミングを示す所定周波数の周期信号である。固体撮像素子200は、生成した画像データをDSP回路120に信号線209を介して供給する。 The optical unit 110 collects light from a subject and guides the light to the solid-state imaging device 200. The solid-state imaging device 200 generates image data by photoelectric conversion in synchronization with a vertical synchronization signal VSYNC. Here, the vertical synchronization signal VSYNC is a periodic signal of a predetermined frequency indicating the timing of imaging. The solid-state imaging device 200 supplies the generated image data to the DSP circuit 120 via the signal line 209.
 DSP回路120は、固体撮像素子200からの画像データに対して所定の信号処理を実行するものである。このDSP回路120は、処理後の画像データをバス150を介してフレームメモリ160などに出力する。なお、DSP回路120は、特許請求の範囲に記載の信号処理部の一例である。 The DSP circuit 120 performs predetermined signal processing on image data from the solid-state imaging device 200. The DSP circuit 120 outputs the processed image data to the frame memory 160 via the bus 150. Note that the DSP circuit 120 is an example of a signal processing unit described in the claims.
 表示部130は、画像データを表示するものである。表示部130としては、例えば、液晶パネルや有機EL(Electro Luminescence)パネルが想定される。操作部140は、ユーザの操作に従って操作信号を生成するものである。 The display unit 130 displays image data. As the display unit 130, for example, a liquid crystal panel or an organic EL (Electro Luminescence) panel is assumed. The operation unit 140 generates an operation signal according to a user operation.
 バス150は、光学部110、固体撮像素子200、DSP回路120、表示部130、操作部140、フレームメモリ160、記憶部170および電源部180が互いにデータをやりとりするための共通の経路である。 The bus 150 is a common path through which the optical unit 110, the solid-state imaging device 200, the DSP circuit 120, the display unit 130, the operation unit 140, the frame memory 160, the storage unit 170, and the power supply unit 180 exchange data with each other.
 フレームメモリ160は、画像データを保持するものである。記憶部170は、画像データなどの様々なデータを記憶するものである。電源部180は、固体撮像素子200、DSP回路120や表示部130などに電源を供給するものである。 The frame memory 160 stores image data. The storage unit 170 stores various data such as image data. The power supply unit 180 supplies power to the solid-state imaging device 200, the DSP circuit 120, the display unit 130, and the like.
 [固体撮像素子の構成例]
 図2は、本技術の第1の実施の形態における固体撮像素子200の積層構造の一例を示す図である。この固体撮像素子200は、回路基板202と、その回路基板202に積層された受光基板201とを備える。これらの基板は、ビアなどの接続部を介して電気的に接続される。なお、ビアの他、Cu-Cu接合やバンプ、TCI(ThruChip Inteface)などの誘導結合通信技術により接続することもできる。
[Configuration example of solid-state imaging device]
FIG. 2 is a diagram illustrating an example of a stacked structure of the solid-state imaging device 200 according to the first embodiment of the present technology. The solid-state imaging device 200 includes a circuit board 202 and a light receiving substrate 201 laminated on the circuit board 202. These substrates are electrically connected via connection parts such as vias. Note that, in addition to vias, connection can also be made by inductive coupling communication technology such as Cu—Cu bonding, bumps, and TCI (ThruChip Interface).
 図3は、本技術の第1の実施の形態における受光基板201の一構成例を示す平面図である。受光基板201には、画素アレイ部210が設けられる。この画素アレイ部210には、二次元格子状に複数の画素ブロック211が配列される。画素ブロック211のそれぞれには、複数の画素212が配列される。例えば、2行×4列の8個の画素212が、画素ブロック211ごとに配列される。なお、画素ブロック211内の画素数は、8個に限定されない。 FIG. 3 is a plan view illustrating a configuration example of the light receiving substrate 201 according to the first embodiment of the present technology. The pixel array unit 210 is provided on the light receiving substrate 201. In the pixel array section 210, a plurality of pixel blocks 211 are arranged in a two-dimensional lattice. A plurality of pixels 212 are arranged in each of the pixel blocks 211. For example, eight pixels 212 of 2 rows × 4 columns are arranged for each pixel block 211. Note that the number of pixels in the pixel block 211 is not limited to eight.
 画素212は、光電変換により、アナログ信号を生成するものである。ここで、画素212を初期化した際に生成されるアナログ信号のレベルを以下、「リセットレベル」と称し、画素212の露光終了時に生成される露光量に応じたアナログ信号のレベルを以下、「信号レベル」と称する。 The pixel 212 generates an analog signal by photoelectric conversion. Here, the level of the analog signal generated when the pixel 212 is initialized is hereinafter referred to as a “reset level”, and the level of the analog signal according to the exposure amount generated at the end of the exposure of the pixel 212 is hereinafter referred to as “reset level”. Signal level.
 図4は、本技術の第1の実施の形態における回路基板202の一構成例を示すブロック図である。この回路基板202には、DAC(Digital to Analog Converter)220、垂直駆動回路230、タイミング制御回路240、時刻コード生成部250、AD変換部260およびデータ処理部270が設けられる。 FIG. 4 is a block diagram illustrating a configuration example of the circuit board 202 according to the first embodiment of the present technology. The circuit board 202 includes a DAC (Digital to Analog Converter) 220, a vertical drive circuit 230, a timing control circuit 240, a time code generator 250, an AD converter 260, and a data processor 270.
 DAC220は、DA(Digital to Analog)変換により、スロープ状に変化するアナログのランプ信号RMPを生成するものである。このDAC220は、生成したランプ信号RMPをAD変換部260に供給する。 The DAC 220 generates an analog ramp signal RMP that changes in a slope shape by DA (Digital to Analog) conversion. The DAC 220 supplies the generated ramp signal RMP to the AD converter 260.
 AD変換部260は、画素ごとに、その画素からのアナログ信号をデジタル信号に変換するものである。このAD変換部260には、二次元格子状にクラスタ300が配列される。クラスタ300は、画素ブロック211ごとに設けられ、画素ブロック211の個数をN(Nは、整数)個とすると、クラスタ300もN個設けられる。画素ブロック211とクラスタ300とは、1対1で接続される。 The AD converter 260 converts, for each pixel, an analog signal from the pixel into a digital signal. In the AD converter 260, the clusters 300 are arranged in a two-dimensional lattice. The cluster 300 is provided for each pixel block 211. If the number of pixel blocks 211 is N (N is an integer), N clusters 300 are also provided. The pixel block 211 and the cluster 300 are connected one-to-one.
 クラスタ300のそれぞれは、対応する画素ブロック211からのアナログ信号を画素毎にデジタル信号に変換してデータ処理部270に供給する。アナログ信号のリセットレベルに対応するデジタル信号を以下、「P相データ」と称し、信号レベルに対応するデジタル信号を以下、「D相データ」と称する。なお、P相データは、特許請求の範囲に記載のリセットデータの一例であり、D相データは、特許請求の範囲に記載の信号データの一例である。 Each of the clusters 300 converts an analog signal from the corresponding pixel block 211 into a digital signal for each pixel and supplies the digital signal to the data processing unit 270. A digital signal corresponding to the reset level of the analog signal is hereinafter referred to as “P-phase data”, and a digital signal corresponding to the signal level is hereinafter referred to as “D-phase data”. The P-phase data is an example of reset data described in the claims, and the D-phase data is an example of signal data described in the claims.
 垂直駆動回路230は、タイミング制御回路240の制御に従って、クラスタ300のそれぞれを駆動するものである。 The vertical drive circuit 230 drives each of the clusters 300 under the control of the timing control circuit 240.
 タイミング制御回路240は、垂直同期信号VSYNCに同期して、DAC220、垂直駆動回路230およびデータ処理部270を制御するものである。 (4) The timing control circuit 240 controls the DAC 220, the vertical drive circuit 230, and the data processing unit 270 in synchronization with the vertical synchronization signal VSYNC.
 時刻コード生成部250は、時刻コードを発生するものである。この時刻コードは、ランプ信号がスロープ状に変化する期間内の時刻を示す。時刻コード生成部250は、例えば、一定周波数のクロック信号に同期して計数値を計数し、その計数値を示すデータを時刻コードとして生成する。時刻コード生成部250は、生成した時刻コードをAD変換部260に供給する。 (4) The time code generation unit 250 generates a time code. This time code indicates a time within a period during which the ramp signal changes in a slope shape. The time code generation unit 250 counts a count value, for example, in synchronization with a clock signal having a constant frequency, and generates data indicating the count value as a time code. The time code generation unit 250 supplies the generated time code to the AD conversion unit 260.
 データ処理部270は、AD変換部260からのP相データおよびD相データに対して、CDS処理を含む所定の処理を実行するものである。このデータ処理部270は、処理後のデータからなる画像データをDSP回路120に供給する。 The data processing unit 270 executes a predetermined process including a CDS process on the P-phase data and the D-phase data from the AD conversion unit 260. The data processing unit 270 supplies the DSP circuit 120 with image data including the processed data.
 [クラスタの構成例]
 図5は、本技術の第1の実施の形態におけるクラスタ300の一構成例を示すブロック図である。このクラスタ300は、比較回路311乃至318と、データ記憶部321乃至328と、データ記憶部331乃至338とを備える。また、AD変換部260において、クラスタ300の列ごとに、データ転送部261が配置される。クラスタ300の列数がM(Mは、整数)である場合、データ転送部261もM個配置される。ある列のクラスタ300の個数をL(Lは、整数)個とすると、それらのL個のクラスタ300は、その列に対応する1つのデータ転送部261を共有する。
[Example of cluster configuration]
FIG. 5 is a block diagram illustrating a configuration example of the cluster 300 according to the first embodiment of the present technology. The cluster 300 includes comparison circuits 311 to 318, data storage units 321 to 328, and data storage units 331 to 338. In the AD converter 260, a data transfer unit 261 is arranged for each column of the cluster 300. When the number of columns of the cluster 300 is M (M is an integer), M data transfer units 261 are also arranged. When the number of clusters 300 in a certain column is L (L is an integer), those L clusters 300 share one data transfer unit 261 corresponding to the column.
 データ転送部261は、時刻コード生成部250からクラスタ300へデータを転送し、クラスタ300からデータ処理部270にデータを転送するものである。このデータ転送部261は、P相転送部262、書込みデータ転送部264およびD相転送部265を備える。 The data transfer unit 261 transfers data from the time code generation unit 250 to the cluster 300, and transfers data from the cluster 300 to the data processing unit 270. The data transfer unit 261 includes a P-phase transfer unit 262, a write data transfer unit 264, and a D-phase transfer unit 265.
 P相転送部262は、クラスタ300からデータ処理部270にP相データを転送するものである。書込みデータ転送部264は、時刻コード生成部250からクラスタ300へ時刻コードを転送するものである。D相転送部265は、クラスタ300からデータ処理部270にD相データを転送するものである。 $ P-phase transfer unit 262 transfers P-phase data from cluster 300 to data processing unit 270. The write data transfer unit 264 transfers the time code from the time code generation unit 250 to the cluster 300. The D-phase transfer unit 265 transfers the D-phase data from the cluster 300 to the data processing unit 270.
 比較回路311乃至318は、クラスタ300に対応する画素ブロック211内の8個の画素212と1対1に接続される。例えば、画素212がベイヤー配列で配列される場合、画素ブロック211内の2行×4列のうち、左側の2行×2列にR(Red)、Gb(Green)、B(Blue)およびGr(Green)の画素が配列される。また、右側の2行×2列にも同様に
R、Gb、BおよびGr画素が配列される。この配列において、左側のGb画素は、比較回路311に接続され、左側のB画素は、比較回路312に接続される。また、左側のR画素は、比較回路313に接続され、左側のGr画素は、比較回路314に接続される。一方、右側のGb画素は、比較回路315に接続され、右側のB画素は、比較回路316に接続される。また、右側のR画素は、比較回路317に接続され、右側のGr画素は、比較回路318に接続される。
The comparison circuits 311 to 318 are connected one-to-one with the eight pixels 212 in the pixel block 211 corresponding to the cluster 300. For example, when the pixels 212 are arranged in a Bayer array, R (Red), Gb (Green), B (Blue), and Gr are placed on the left 2 rows x 2 columns of the 2 rows x 4 columns in the pixel block 211. (Green) pixels are arranged. Similarly, R, Gb, B, and Gr pixels are also arranged in the right 2 rows × 2 columns. In this arrangement, the left Gb pixel is connected to the comparison circuit 311, and the left B pixel is connected to the comparison circuit 312. The left R pixel is connected to the comparison circuit 313, and the left Gr pixel is connected to the comparison circuit 314. On the other hand, the right Gb pixel is connected to the comparison circuit 315, and the right B pixel is connected to the comparison circuit 316. The right R pixel is connected to the comparison circuit 317, and the right Gr pixel is connected to the comparison circuit 318.
 また、比較回路311乃至318には、DAC220からのランプ信号が入力される。そして、比較回路311乃至318は、接続された画素212からのアナログ信号とランプ信号とを比較する。比較回路311は、比較結果をデータ記憶部321および322に出力し、比較回路312は、データ記憶部323および324に出力する。比較回路313は、比較結果をデータ記憶部325および326に出力し、比較回路314は、データ記憶部327および328に出力する。一方、比較回路315は、比較結果をデータ記憶部331および332に出力し、比較回路316は、データ記憶部333および334に出力する。比較回路317は、比較結果をデータ記憶部335および336に出力し、比較回路318は、データ記憶部337および338に出力する。 {Circle around (4)} The ramp signals from the DAC 220 are input to the comparison circuits 311 to 318. Then, the comparison circuits 311 to 318 compare the analog signal from the connected pixel 212 with the ramp signal. Comparison circuit 311 outputs the comparison result to data storage units 321 and 322, and comparison circuit 312 outputs the result to data storage units 323 and 324. Comparison circuit 313 outputs the comparison result to data storage units 325 and 326, and comparison circuit 314 outputs the result to data storage units 327 and 328. On the other hand, comparison circuit 315 outputs the comparison result to data storage units 331 and 332, and comparison circuit 316 outputs the result to data storage units 333 and 334. Comparison circuit 317 outputs the comparison result to data storage units 335 and 336, and comparison circuit 318 outputs the result to data storage units 337 and 338.
 データ記憶部321は、P相データを保持するものである。このデータ記憶部321は、リセットレベルの出力後に比較結果が反転したタイミングにおいて、書込みデータ転送部264からの時刻コードをP相データとして保持する。そして、データ記憶部321は、保持したP相データをP相転送部262を介してデータ処理部270に出力する。データ記憶部323、325、327、331、333、335および337の構成は、データ記憶部321と同様である。 The data storage unit 321 holds P-phase data. The data storage unit 321 holds the time code from the write data transfer unit 264 as P-phase data at the timing when the comparison result is inverted after the output of the reset level. Then, the data storage unit 321 outputs the held P-phase data to the data processing unit 270 via the P-phase transfer unit 262. The configuration of the data storage units 323, 325, 327, 331, 333, 335, and 337 is the same as that of the data storage unit 321.
 データ記憶部322は、D相データを保持するものである。このデータ記憶部322は、信号レベルの出力後に比較結果が反転したタイミングにおいて、書込みデータ転送部264からの時刻コードをD相データとして保持する。そして、データ記憶部322は、保持したD相データをD相転送部265を介してデータ処理部270に出力する。データ記憶部324、326、328、332、334、336および338の構成は、データ記憶部322と同様である。 The data storage unit 322 holds D-phase data. The data storage unit 322 holds the time code from the write data transfer unit 264 as D-phase data at the timing when the comparison result is inverted after the output of the signal level. Then, the data storage unit 322 outputs the held D-phase data to the data processing unit 270 via the D-phase transfer unit 265. The configuration of the data storage units 324, 326, 328, 332, 334, 336, and 338 is the same as that of the data storage unit 322.
 上述の構成により、クラスタ300は、画素ブロック211からの画素毎のリセットレベルおよび信号レベルを交互にデジタル信号に変換する。このAD変換は、全画素において垂直同期信号VSYNCに同期して繰り返し実行される。そして、データ転送部261は、垂直同期信号VSYNCに同期して、P相データおよびD相データを交互に繰り返しデータ処理部270へ出力する。なお、データ転送部261は、特許請求の範囲に記載のデータ出力部の一例である。 With the above configuration, the cluster 300 alternately converts the reset level and the signal level of each pixel from the pixel block 211 into digital signals. This AD conversion is repeatedly executed in all pixels in synchronization with the vertical synchronization signal VSYNC. Then, the data transfer unit 261 repeatedly and alternately outputs the P-phase data and the D-phase data to the data processing unit 270 in synchronization with the vertical synchronization signal VSYNC. The data transfer unit 261 is an example of a data output unit described in the claims.
 なお、クラスタ300内の比較回路およびデータ記憶部のそれぞれの個数は、8個および16個に限定されない。例えば、画素ブロック211内の画素数がK(Kは、整数)個である場合、クラスタ300内に比較回路の個数は、K個であり、データ記憶部の個数はK×2個となる。 The numbers of the comparison circuits and the data storage units in the cluster 300 are not limited to eight and sixteen, respectively. For example, when the number of pixels in the pixel block 211 is K (K is an integer), the number of comparison circuits in the cluster 300 is K, and the number of data storage units is K × 2.
 図6は、本技術の第1の実施の形態における画素212とクラスタ300内の回路との接続関係の一例を示す斜視図である。 FIG. 6 is a perspective view illustrating an example of a connection relationship between the pixel 212 and a circuit in the cluster 300 according to the first embodiment of the present technology.
 画素ブロック211内のi行、j列の画素212の座標を(i、j)とする。左側の座標(0、0)、(0、1)、(1、0)および(1、1)にGb画素、B画素、R画素およびGr画素が配置される。また、右側の座標(0、2)、(0、3)、(1、2)および(1、3)にもGb画素、B画素、R画素およびGr画素が配置される。このような配列は、ベイヤー配列と呼ばれる。なお、ベイヤー配列以外の配列により画素を配列することもできる。例えば、R、G、BおよびW(White)画素を配列することもできる。 座標 Let the coordinates of the pixel 212 in the i-th row and j-th column in the pixel block 211 be (i, j). Gb, B, R, and Gr pixels are arranged at coordinates (0, 0), (0, 1), (1, 0), and (1, 1) on the left side. Further, Gb pixels, B pixels, R pixels, and Gr pixels are also arranged at the coordinates (0, 2), (0, 3), (1, 2), and (1, 3) on the right side. Such an array is called a Bayer array. Note that the pixels can be arranged in an arrangement other than the Bayer arrangement. For example, R, G, B and W (White) pixels can be arranged.
 左側のGb画素は比較回路311に接続され、左側のB画素は比較回路312に接続される。また、左側のR画素は比較回路313に接続され、左側のGr画素は比較回路314に接続される。一方、右側のGb画素は比較回路315に接続され、右側のB画素は比較回路316に接続される。また、右側のR画素は比較回路317に接続され、右側のGr画素は比較回路318に接続される。 G The left Gb pixel is connected to the comparison circuit 311, and the left B pixel is connected to the comparison circuit 312. The left R pixel is connected to the comparison circuit 313, and the left Gr pixel is connected to the comparison circuit 314. On the other hand, the right Gb pixel is connected to the comparison circuit 315, and the right B pixel is connected to the comparison circuit 316. The right R pixel is connected to the comparison circuit 317, and the right Gr pixel is connected to the comparison circuit 318.
 また、同図における左側メモリ320には、データ記憶部321乃至328が配置される。右側メモリ330には、データ記憶部331乃至338が配置される。 デ ー タ Also, data storage units 321 to 328 are arranged in the left memory 320 in FIG. In the right memory 330, data storage units 331 to 338 are arranged.
 [P相転送部の構成例]
 図7は、本技術の第1の実施の形態におけるP相転送部262の一構成例を示す回路図である。P相転送部262には、所定数のフリップフロップ263からなるシフトレジスタが設けられる。これらのフリップフロップ263は、直列に接続される。左側のデータ記憶部321、323、325および327などの、P相データを保持するデータ記憶部のそれぞれは、互いに異なるフリップフロップ263の入力端子にワイヤードオア接続により結線される。シフトレジスタは、クロック信号CLKに同期して、P相データを1ビットずつ保持し、データ処理部270に出力する。
[Configuration Example of P-Phase Transfer Unit]
FIG. 7 is a circuit diagram illustrating a configuration example of the P-phase transfer unit 262 according to the first embodiment of the present technology. The P-phase transfer unit 262 is provided with a shift register including a predetermined number of flip-flops 263. These flip-flops 263 are connected in series. Each of the data storage units holding the P-phase data, such as the left data storage units 321, 323, 325, and 327, is connected to input terminals of flip-flops 263 different from each other by wired-OR connection. The shift register holds the P-phase data bit by bit in synchronization with the clock signal CLK and outputs the data to the data processing unit 270.
 なお、書込みデータ転送部264およびD相転送部265の構成は、P相転送部262と同様である。 The configurations of the write data transfer unit 264 and the D-phase transfer unit 265 are the same as those of the P-phase transfer unit 262.
 [データ処理部の構成例]
 図8は、本技術の第1の実施の形態におけるデータ処理部270の一構成例を示すブロック図である。このデータ処理部270は、フレームメモリ271、272、275および276と、セレクタ273および277と、CDS処理部274とを備える。また、AD変換部260には、クラスタ300、P相転送部262、書込みデータ転送部264およびD相転送部265に加えて、クロック供給部266が設けられる。なお、同図において、クラスタ300は、省略されている。
[Configuration example of data processing unit]
FIG. 8 is a block diagram illustrating a configuration example of the data processing unit 270 according to the first embodiment of the present technology. The data processing unit 270 includes frame memories 271, 272, 275, and 276, selectors 273 and 277, and a CDS processing unit 274. The AD converter 260 includes a clock supply unit 266 in addition to the cluster 300, the P-phase transfer unit 262, the write data transfer unit 264, and the D-phase transfer unit 265. Note that, in the figure, the cluster 300 is omitted.
 クロック供給部266は、クロック信号CLKをP相転送部262、書込みデータ転送部264およびD相転送部265のそれぞれに供給するものである。 The clock supply unit 266 supplies the clock signal CLK to each of the P-phase transfer unit 262, the write data transfer unit 264, and the D-phase transfer unit 265.
 フレームメモリ271および272は、P相転送部262から繰り返し出力されたP相データを交互に保持するものである。フレームメモリ271には、信号線291を介してM個のP相転送部262のそれぞれからのP相データが入力される。フレームメモリ272には、信号線292を介してM個のP相転送部262のそれぞれからのP相データが入力される。 The frame memories 271 and 272 alternately hold P-phase data repeatedly output from the P-phase transfer unit 262. The P-phase data from each of the M P-phase transfer units 262 is input to the frame memory 271 via the signal line 291. P-phase data from each of the M P-phase transfer units 262 is input to the frame memory 272 via a signal line 292.
 また、フレームメモリ271および272には、タイミング制御回路240からの制御信号が入力される。この制御信号は、データの書込み、または、読出しを指示する信号である。書込みが指示されるとフレームメモリ271および272は、全画素のP相データを取り込んで保持する。これらのフレームメモリのそれぞれの容量は、少なくとも1フレーム分のP相データを保持することができる程度のものである。 (4) A control signal from the timing control circuit 240 is input to the frame memories 271 and 272. This control signal is a signal for instructing writing or reading of data. When writing is instructed, frame memories 271 and 272 fetch and hold P-phase data of all pixels. Each of these frame memories has such a capacity that it can hold at least one frame of P-phase data.
 一方、読出しが指示されるとフレームメモリ271および272は、保持したP相データを信号線293および294を介してセレクタ273に出力する。なお、フレームメモリ271および272は、特許請求の範囲に記載の一対のリセットデータ保持部の一例である。 On the other hand, when reading is instructed, frame memories 271 and 272 output the held P-phase data to selector 273 via signal lines 293 and 294. The frame memories 271 and 272 are an example of a pair of reset data holding units described in the claims.
 セレクタ273は、タイミング制御回路240選択信号に従って、フレームメモリ271および272を交互に選択し、選択したメモリからのP相データをCDS処理部274に信号線296を介して出力するものである。なお、セレクタ273は、特許請求の範囲に記載の入力側選択部の一例である。 The selector 273 alternately selects the frame memories 271 and 272 in accordance with the timing control circuit 240 selection signal, and outputs the P-phase data from the selected memory to the CDS processing unit 274 via the signal line 296. Note that the selector 273 is an example of an input-side selection unit described in the claims.
 CDS処理部274は、セレクタ273からのP相データと、M個のD相転送部265からのD相データとの差分を画素データとして生成するCDS処理を、垂直同期信号VSYNCに同期して繰り返し行うものである。このCDS処理部274は、生成した画素データを信号線297および298を介してフレームメモリ275および276に供給する。なお、CDS処理部274は、特許請求の範囲に記載の画素データ生成部の一例である。 The CDS processing unit 274 repeats the CDS process of generating the difference between the P-phase data from the selector 273 and the D-phase data from the M D-phase transfer units 265 as pixel data in synchronization with the vertical synchronization signal VSYNC. Is what you do. The CDS processing unit 274 supplies the generated pixel data to the frame memories 275 and 276 via the signal lines 297 and 298. The CDS processing unit 274 is an example of a pixel data generation unit described in the claims.
 フレームメモリ275および276は、CDS処理部274により繰り返し生成された画素データを、交互に保持するものである。これらのフレームメモリのそれぞれの容量は、少なくとも1フレーム分の画素データを保持することができる程度のものである。フレームメモリ275および276にも、タイミング制御回路240からの制御信号が入力される。制御信号により書込みが指示されるとフレームメモリ275および276は、全画素の画素データを取り込んで保持する。 The frame memories 275 and 276 alternately hold pixel data repeatedly generated by the CDS processing unit 274. The capacity of each of these frame memories is large enough to hold at least one frame of pixel data. Control signals from the timing control circuit 240 are also input to the frame memories 275 and 276. When writing is instructed by the control signal, the frame memories 275 and 276 fetch and hold the pixel data of all the pixels.
 一方、読出しが指示されるとフレームメモリ275および276は、保持した画素データを信号線299および299-1を介してセレクタ277に出力する。なお、フレームメモリ275および276は、特許請求の範囲に記載の一対の画素データ保持部の一例である。 On the other hand, when reading is instructed, frame memories 275 and 276 output the held pixel data to selector 277 via signal lines 299 and 299-1. The frame memories 275 and 276 are examples of a pair of pixel data holding units described in the claims.
 ここで、P相転送部262およびD相転送部265からは、クラスタ300の単位でデータが出力される。このため、フレームメモリ275および276には、クラスタ300の単位で、その出力順に画素データが保持される。しかし、一般的な画像データにおいて、画素データは、ラスタ(行)順に配列される。そこで、タイミング制御回路240は、画素の読出しの順序がラスタ順となるようにフレームメモリ275および276に制御信号を送信する。これにより、データ処理部270は、画素データをラスタ順に並べ替えて出力することができる。 Here, data is output from the P-phase transfer unit 262 and the D-phase transfer unit 265 in cluster 300 units. For this reason, the frame memories 275 and 276 hold pixel data in the order of output in units of clusters 300. However, in general image data, pixel data is arranged in raster (row) order. Therefore, the timing control circuit 240 transmits a control signal to the frame memories 275 and 276 so that the reading order of the pixels is in the raster order. Thereby, the data processing unit 270 can rearrange and output the pixel data in the raster order.
 セレクタ277は、タイミング制御回路240からの選択信号に従って、フレームメモリ275および275を交互に選択し、選択したメモリからの画素データをDSP回路120に出力するものである。なお、セレクタ277は、特許請求の範囲に記載の出力側選択部の一例である。 The selector 277 alternately selects the frame memories 275 and 275 in accordance with a selection signal from the timing control circuit 240, and outputs pixel data from the selected memory to the DSP circuit 120. Note that the selector 277 is an example of an output-side selection unit described in the claims.
 なお、同図において信号線291乃至299-1のそれぞれは、記載の便宜上、1本の線で表記されているが、物理的には1本でなく、複数本が配線される。例えば、M個のP相転送部262のそれぞれから1本ずつ、合計でM本の信号線が信号線291として配線される。 Note that, in the figure, each of the signal lines 291 to 299-1 is represented by one line for convenience of description, but physically, not one, but a plurality of lines are wired. For example, a total of M signal lines are wired as signal lines 291, one from each of the M P-phase transfer units 262.
 図9は、本技術の第1の実施の形態における固体撮像素子200の動作の一例を示すタイミングチャートである。タイミングT0において垂直同期信号VSYNCが立下り、タイミングT0以降においてDAC220は、ランプ信号RMPをスロープ状に低下させる。一方、左側メモリ320は、ランプ信号RMPとリセットレベルとの比較結果に基づいてP相データを保持する。 FIG. 9 is a timing chart illustrating an example of an operation of the solid-state imaging device 200 according to the first embodiment of the present technology. At timing T0, the vertical synchronization signal VSYNC falls, and after timing T0, the DAC 220 decreases the ramp signal RMP in a slope shape. On the other hand, the left memory 320 holds P-phase data based on the result of comparison between the ramp signal RMP and the reset level.
 タイミングT1以降の一定の期間に亘ってP相転送部262は、P相データをフレームメモリ271に転送し、フレームメモリ271は、そのP相データを保持する。一方、タイミングT1の直後からDAC220は、スロープ状のランプ信号RMPの供給を開始し、そのランプ信号RMPと信号レベルとの比較結果に基づいて左側メモリ320は、D相データを保持する。 (4) The P-phase transfer unit 262 transfers the P-phase data to the frame memory 271 for a certain period after the timing T1, and the frame memory 271 holds the P-phase data. On the other hand, the DAC 220 starts supplying the ramp signal RMP immediately after the timing T1, and the left memory 320 retains the D-phase data based on the comparison result between the ramp signal RMP and the signal level.
 そして、タイミングT2において垂直同期信号VSYNCが立下り、タイミングT2以降においてDAC220は、ランプ信号RMPをスロープ状に低下させる。左側メモリ320は、2回目のP相データを保持する。一方、タイミングT2の直後において、D相転送部265は、1回目のD相データの転送を開始する。また、CDS処理部274は、フレームメモリ271から1回目のP相データを読み出し、1回目のD相データとの差分のCDS結果(すなわち、画素データ)を求める。フレームメモリ275は、そのCDS結果を保持する。 Then, at timing T2, the vertical synchronizing signal VSYNC falls, and after timing T2, the DAC 220 lowers the ramp signal RMP like a slope. The left memory 320 holds the second P-phase data. On the other hand, immediately after the timing T2, the D-phase transfer unit 265 starts the first transfer of the D-phase data. The CDS processing unit 274 reads the first P-phase data from the frame memory 271 and obtains a CDS result (that is, pixel data) of a difference from the first D-phase data. The frame memory 275 holds the CDS result.
 D相データの転送中のタイミングT3において、P相転送部262は、2回目のP相データの転送を開始し、フレームメモリ272は、そのP相データを保持する。一方、タイミングT3の直後からDAC220は、スロープ状のランプ信号RMPの供給を開始し、左側メモリ320は、2回目のD相データを保持する。 At the timing T3 during the transfer of the D-phase data, the P-phase transfer unit 262 starts the second transfer of the P-phase data, and the frame memory 272 holds the P-phase data. On the other hand, immediately after the timing T3, the DAC 220 starts supplying the ramp-shaped ramp signal RMP, and the left memory 320 holds the second D-phase data.
 続いてタイミングT4において垂直同期信号VSYNCが立下り、タイミングT4以降においてDAC220は、ランプ信号RMPをスロープ状に低下させる。左側メモリ320は、3回目のP相データを保持する。一方、タイミングT4の直後において、D相転送部265は、2回目のD相データの転送を開始する。また、CDS処理部274は、フレームメモリ275から2回目のP相データを読み出し、2回目のD相データとの差分のCDS結果(すなわち、画素データ)を求める。フレームメモリ276は、そのCDS結果を保持する。また、1回目のCDS結果は、フレームメモリ275からラスタ順で読み出され、セレクタ277から出力される。 (4) Subsequently, at timing T4, the vertical synchronization signal VSYNC falls, and after timing T4, the DAC 220 decreases the ramp signal RMP in a slope shape. The left memory 320 holds the third P-phase data. On the other hand, immediately after the timing T4, the D-phase transfer unit 265 starts the second transfer of the D-phase data. Further, the CDS processing unit 274 reads the second P-phase data from the frame memory 275 and obtains a CDS result (that is, pixel data) of a difference from the second D-phase data. The frame memory 276 holds the CDS result. The first CDS result is read from the frame memory 275 in raster order, and output from the selector 277.
 2回目のD相データの転送中のタイミングT5において、P相転送部262は、3回目のP相データの転送を開始し、フレームメモリ271は、そのP相データを保持する。一方、タイミングT5の直後からDAC220は、スロープ状のランプ信号RMPの供給を開始し、左側メモリ320は、3回目のD相データを保持する。以下、同様の読出し制御が繰り返し実行される。 At the timing T5 during the second transfer of the D-phase data, the P-phase transfer unit 262 starts the third transfer of the P-phase data, and the frame memory 271 holds the P-phase data. On the other hand, immediately after the timing T5, the DAC 220 starts supplying the ramp-shaped ramp signal RMP, and the left memory 320 holds the third D-phase data. Hereinafter, the same read control is repeatedly executed.
 上述したように、左側メモリ320を含むクラスタ300は、垂直同期信号VSYNCに同期して時刻コードをP相データおよびD相データとして交互に繰り返し保持する。また、P相転送部262は垂直同期信号VSYNCに同期してP相データを繰り返し転送する一方で、D相転送部265は、D相データを垂直同期信号VSYNCに同期してD相データを繰り返し転送する。 As described above, the cluster 300 including the left memory 320 alternately and repeatedly holds the time code as P-phase data and D-phase data in synchronization with the vertical synchronization signal VSYNC. Also, the P-phase transfer unit 262 repeatedly transfers P-phase data in synchronization with the vertical synchronization signal VSYNC, while the D-phase transfer unit 265 repeats the D-phase data in synchronization with the vertical synchronization signal VSYNC. Forward.
 ここで、全画素分のD相データを転送するには、一定の時間を要する。これに対し、リセットレベルとの比較結果が反転するまでの時間が比較的短いため、垂直同期信号VSYNCの立下りからP相データが保持されるまでの時間は、一般にD相データの転送期間よりも短くなる。したがって、D相データの転送中に、P相データが保持される。このため、P相データが保持された直後に、そのデータの転送を開始するものとすると、P相データおよびD相データが同時に転送される期間が生じることとなる。 Here, it takes a certain time to transfer the D-phase data for all pixels. On the other hand, since the time until the result of comparison with the reset level is inverted is relatively short, the time from the falling of the vertical synchronization signal VSYNC to the holding of the P-phase data is generally longer than the transfer period of the D-phase data. Is also shorter. Therefore, the P-phase data is held during the transfer of the D-phase data. For this reason, if the transfer of the P-phase data is started immediately after the P-phase data is held, a period occurs in which the P-phase data and the D-phase data are simultaneously transferred.
 また、フレームメモリ271および272は、繰り返し出力されたP相データを交互に保持する。2回目以降のP相データをフレームメモリ271および272の一方が保持する際に、他方からはP相データが読み出される。CDS処理部274は、読み出したP相データと、その後に転送されたD相データとの差分を画素データとして生成する。 (4) The frame memories 271 and 272 alternately hold the P-phase data output repeatedly. When one of the frame memories 271 and 272 holds the second and subsequent P-phase data, the P-phase data is read from the other. The CDS processing unit 274 generates a difference between the read P-phase data and the subsequently transferred D-phase data as pixel data.
 そして、フレームメモリ275および276は、繰り返し生成された画素データを交互に保持する。2回目以降の画素データをフレームメモリ275および276の一方が保持する際に、セレクタ277は、他方から画素データをラスタ順に読み出して出力する。 {Then, the frame memories 275 and 276 alternately hold the repeatedly generated pixel data. When one of the frame memories 275 and 276 holds the second and subsequent pixel data, the selector 277 reads and outputs the pixel data from the other in raster order.
 図10は、本技術の第1の実施の形態における1回目のCDS処理を行うまでの回路の制御方法を説明するための図である。同図におけるaは、1回目のP相データを保持する際のデータ処理部270の状態を示し、同図におけるbは、1回目のCDS処理を行う際のデータ処理部270の状態を示す。 FIG. 10 is a diagram for describing a circuit control method until the first CDS process is performed in the first embodiment of the present technology. In the figure, a shows the state of the data processing unit 270 when holding the first P-phase data, and b in the figure shows the state of the data processing unit 270 when performing the first CDS processing.
 1回目のP相データが転送されると、同図におけるaに例示するようにタイミング制御回路240は、制御信号によりフレームメモリ271に、そのデータを書き込む。次に同図におけるbに例示するように、1回目のD相データが転送される。ここで、1回目のD相データの転送中に、2回目のP相データの転送が開始されるものとする。 When the first P-phase data is transferred, the timing control circuit 240 writes the data in the frame memory 271 by a control signal as illustrated in a in FIG. Next, the first D-phase data is transferred as illustrated in FIG. Here, it is assumed that the second transfer of P-phase data is started during the first transfer of D-phase data.
 この際にタイミング制御回路240は、制御信号によりフレームメモリ272に2回目のP相データを書き込む。また、セレクタ273は、フレームメモリ271を選択して、そのメモリから1回目のP相データを読み出してCDS処理部274に供給する。CDS処理部274は、1回目のP相データおよびD相データの差分を正味の画素データとして生成する。タイミング制御回路240は、制御信号によりフレームメモリ275に1回目の画素データを書き込む。 At this time, the timing control circuit 240 writes the second P-phase data in the frame memory 272 by the control signal. The selector 273 selects the frame memory 271, reads out the first P-phase data from the memory, and supplies the data to the CDS processing unit 274. The CDS processing unit 274 generates the difference between the first P-phase data and the D-phase data as net pixel data. The timing control circuit 240 writes the first pixel data into the frame memory 275 according to the control signal.
 図11は、本技術の第1の実施の形態における2回目および3回目のCDS処理を行う際の回路の制御方法を説明するための図である。同図におけるaは、2回目のCDS処理を行う際のデータ処理部270の状態を示し、同図におけるbは、3回目のCDS処理を行う際のデータ処理部270の状態を示す。 FIG. 11 is a diagram for describing a circuit control method when performing the second and third CDS processes according to the first embodiment of the present technology. In the figure, a shows the state of the data processing unit 270 when performing the second CDS processing, and b in the figure shows the state of the data processing unit 270 when performing the third CDS processing.
 同図におけるaに例示するように、2回目のD相データが転送される。この2回目のD相データの転送中に、3回目のP相データの転送が開始されるものとする。タイミング制御回路240は、制御信号によりフレームメモリ271に3回目のP相データを書き込む。また、セレクタ273は、フレームメモリ272を選択して、そのメモリから2回目のP相データを読み出してCDS処理部274に供給する。CDS処理部274は、2回目のP相データおよびD相データの差分を画素データとして生成する。 (4) As illustrated in FIG. 3A, the second D-phase data is transferred. It is assumed that the third transfer of P-phase data is started during the second transfer of D-phase data. The timing control circuit 240 writes the third P-phase data in the frame memory 271 by the control signal. Further, the selector 273 selects the frame memory 272, reads the second P-phase data from the memory, and supplies it to the CDS processing unit 274. The CDS processing unit 274 generates a difference between the second P-phase data and the D-phase data as pixel data.
 タイミング制御回路240は、制御信号によりフレームメモリ276に2回目の画素データを書き込む。一方、セレクタ277は、フレームメモリ275を選択して、そのメモリから1回目の画素データをラスタ順に読み出してDSP回路120に出力する。 (4) The timing control circuit 240 writes the second pixel data to the frame memory 276 according to the control signal. On the other hand, the selector 277 selects the frame memory 275, reads out the first pixel data from the memory in raster order, and outputs the pixel data to the DSP circuit 120.
 次に同図におけるbに例示するように、3回目のD相データが転送される。この3回目のD相データの転送中に、4回目のP相データの転送が開始されるものとする。タイミング制御回路240は、制御信号によりフレームメモリ272に4回目のP相データを書き込む。また、セレクタ273は、フレームメモリ271を選択して、そのメモリから3回目のP相データを読み出してCDS処理部274に供給する。CDS処理部274は、3回目のP相データおよびD相データの差分を画素データとして生成する。 (4) Next, as exemplified by b in the figure, the third D-phase data is transferred. It is assumed that the fourth transfer of P-phase data is started during the third transfer of D-phase data. The timing control circuit 240 writes the fourth P-phase data in the frame memory 272 according to the control signal. Further, the selector 273 selects the frame memory 271, reads out the third P-phase data from the memory, and supplies it to the CDS processing unit 274. The CDS processing unit 274 generates a difference between the third P-phase data and the D-phase data as pixel data.
 タイミング制御回路240は、制御信号によりフレームメモリ275に3回目の画素データを書き込む。一方、セレクタ277は、フレームメモリ276を選択して、そのメモリから2回目の画素データをラスタ順に読み出してDSP回路120に出力する。 (4) The timing control circuit 240 writes the third pixel data in the frame memory 275 by the control signal. On the other hand, the selector 277 selects the frame memory 276, reads out the second pixel data from the memory in raster order, and outputs it to the DSP circuit 120.
 図10および図11に例示したように、フレームメモリ271および272の一方からP相データを読み出してCDS処理を実行している間に、タイミング制御回路240は、それらのフレームメモリの他方に、次のP相データを書き込むことができる。したがって、D相データの転送中に、次のP相データの転送が開始された場合であっても、データ処理部270は、CDS処理により画素データを生成することができる。この構成では、D相データの転送中に、次のP相データの転送を開始することができるため、画像データ(フレーム)の読出し速度(フレームレート)を高速にすることができる。 As illustrated in FIGS. 10 and 11, while reading the P-phase data from one of the frame memories 271 and 272 and performing the CDS processing, the timing control circuit 240 stores the next Can be written. Therefore, even when the transfer of the next P-phase data is started during the transfer of the D-phase data, the data processing unit 270 can generate the pixel data by the CDS processing. In this configuration, the transfer of the next P-phase data can be started during the transfer of the D-phase data, so that the reading speed (frame rate) of the image data (frame) can be increased.
 また、フレームメモリ271および272は、P相データの書込みにのみ用いられ、フレームメモリ275および276の書込みにのみ用いられる。この構成により、データ処理部270内の配線数の増大を抑制することができる。 {Circle around (2)} Frame memories 271 and 272 are used only for writing P-phase data, and are used only for writing frame memories 275 and 276. With this configuration, an increase in the number of wirings in the data processing unit 270 can be suppressed.
 これらの読出し速度の高速化と、配線数の抑制との効果を検証するために、フレームメモリが2枚の比較例と、3枚の比較例とを想定する。 (4) In order to verify the effects of increasing the reading speed and suppressing the number of wires, a comparative example having two frame memories and a comparative example having three frame memories are assumed.
 図12は、本技術のフレームメモリが2枚の比較例における制御方法を説明するための図である。同図におけるaは、1回目のP相データを保持する際の比較例の状態を示し、同図におけるbは、1回目のCDS処理を実行する際の比較例の状態を示す。 FIG. 12 is a diagram for explaining a control method in a comparative example having two frame memories according to the present technology. In the figure, a shows the state of the comparative example when the first P-phase data is held, and b in the figure shows the state of the comparative example when the first CDS processing is executed.
 この比較例のデータ処理部には、セレクタA、B、CおよびDと、フレームメモリAおよびBと、CDS処理部とが配置される。セレクタAは、P相データと画素データとのいずれかを選択してフレームメモリAに出力し、セレクタBは、P相データと画素データとのいずれかを選択してフレームメモリBに出力する。また、セレクタCは、フレームメモリAおよびBのいずれかを選択し、そのメモリから画素データを読み出して後段の回路に出力する。セレクタDは、フレームメモリAおよびBのいずれかを選択し、そのメモリから画素データを読み出してCDS処理部に出力する。 The selectors A, B, C, and D, the frame memories A and B, and the CDS processor are arranged in the data processor of this comparative example. The selector A selects one of the P-phase data and the pixel data and outputs it to the frame memory A, and the selector B selects one of the P-phase data and the pixel data and outputs it to the frame memory B. The selector C selects one of the frame memories A and B, reads out pixel data from the memory, and outputs the pixel data to a subsequent circuit. The selector D selects one of the frame memories A and B, reads pixel data from the memory, and outputs the pixel data to the CDS processing unit.
 この比較例において1回目のP相データが転送されると、同図におけるaに例示するように、セレクタAは、そのP相データを選択してフレームメモリAに供給する。フレームメモリAには、P相データが書き込まれる。 (4) When the first P-phase data is transferred in this comparative example, the selector A selects the P-phase data and supplies it to the frame memory A, as illustrated in FIG. P-phase data is written in the frame memory A.
 次に、1回目のD相データが転送されると、同図におけるbに例示するように、セレクタDは、フレームメモリAから1回目のP相データを読み出し、CDS処理部は、1回目のP相データおよびD相データの差分を画素データとして出力する。セレクタBは、その画素データを選択してフレームメモリBに出力する。フレームメモリBには、画素データが書き込まれる。 Next, when the first D-phase data is transferred, the selector D reads the first P-phase data from the frame memory A as illustrated in FIG. The difference between the P-phase data and the D-phase data is output as pixel data. The selector B selects the pixel data and outputs it to the frame memory B. Pixel data is written to the frame memory B.
 この比較例では、同図におけるbに例示するように、1回目のD相データの転送中において、フレームメモリAおよびBの両方が使用されている。このため、仮に1回目のD相データの転送中に、2回目のP相データが転送されても書き込むメモリが存在せず、2回目以降のCDS処理を実行することができない。このため、この比較例では、垂直同期信号VSYNCの周期を十分に長くする必要がある。したがって、画像データの読出し速度(フレームレート)は、図11の構成と比較して低下してしまう。 比較 In this comparative example, as illustrated in FIG. 13B, both the frame memories A and B are used during the first D-phase data transfer. For this reason, even if the second P-phase data is transferred during the first transfer of the D-phase data, there is no memory to write to, and the second and subsequent CDS processes cannot be executed. For this reason, in this comparative example, the period of the vertical synchronization signal VSYNC needs to be sufficiently long. Therefore, the reading speed (frame rate) of the image data is reduced as compared with the configuration of FIG.
 図13は、本技術のフレームメモリが3枚の比較例における制御方法を説明するための図である。同図におけるaは、1回目のP相データを保持する際の比較例の状態を示し、同図におけるbは、1回目のCDS処理を実行する際の比較例の状態を示す。 FIG. 13 is a diagram for describing a control method in a comparative example having three frame memories of the present technology. In the figure, a shows the state of the comparative example when the first P-phase data is held, and b in the figure shows the state of the comparative example when the first CDS processing is executed.
 この比較例のデータ処理部には、セレクタA、B、C、DおよびEと、フレームメモリA、BおよびCと、CDS処理部とが配置される。セレクタAは、P相データと画素データとのいずれかを選択してフレームメモリAに出力し、セレクタBは、P相データと画素データとのいずれかを選択してフレームメモリBに出力する。セレクタCは、P相データと画素データとのいずれかを選択してフレームメモリCに出力する。また、セレクタDは、フレームメモリA、BおよびCのいずれかを選択し、そのメモリから画素データを読み出して後段の回路に出力する。セレクタEは、フレームメモリA、BおよびCのいずれかを選択し、そのメモリから画素データを読み出してCDS処理部に出力する。 The selectors A, B, C, D, and E, the frame memories A, B, and C, and the CDS processor are arranged in the data processor of this comparative example. The selector A selects one of the P-phase data and the pixel data and outputs it to the frame memory A, and the selector B selects one of the P-phase data and the pixel data and outputs it to the frame memory B. The selector C selects one of the P-phase data and the pixel data and outputs it to the frame memory C. The selector D selects one of the frame memories A, B, and C, reads pixel data from the memory, and outputs the pixel data to a subsequent circuit. The selector E selects one of the frame memories A, B, and C, reads pixel data from the memory, and outputs the pixel data to the CDS processing unit.
 この比較例において1回目のP相データが転送されると、同図におけるaに例示するように、セレクタAは、そのP相データを選択してフレームメモリAに供給する。フレームメモリAには、P相データが書き込まれる。 (4) When the first P-phase data is transferred in this comparative example, the selector A selects the P-phase data and supplies it to the frame memory A, as illustrated in FIG. P-phase data is written in the frame memory A.
 次に、1回目のD相データが転送されると、同図におけるbに例示するように、セレクタEは、フレームメモリAから1回目のP相データを読み出し、CDS処理部は、1回目のP相データおよびD相データの差分を画素データとして出力する。セレクタCは、その画素データを選択してフレームメモリCに出力する。フレームメモリCには、画素データが書き込まれる。ここで、1回目のD相データの転送中に、2回目のP相データの転送が開始されると、セレクタBは、P相データを選択してフレームメモリBに出力する。フレームメモリBには、そのP相データが書き込まれる。 Next, when the first D-phase data is transferred, the selector E reads the first P-phase data from the frame memory A as illustrated in FIG. The difference between the P-phase data and the D-phase data is output as pixel data. The selector C selects the pixel data and outputs it to the frame memory C. Pixel data is written in the frame memory C. Here, when the transfer of the second P-phase data is started during the transfer of the first D-phase data, the selector B selects the P-phase data and outputs it to the frame memory B. The P-phase data is written into the frame memory B.
 この比較例では、同図におけるbに例示するように、1回目のD相データの転送中に2回目のP相データの転送が開始されても、フレームメモリBが空いているため、そのメモリにP相データを書き込むことができる。したがって、画像データの読出し速度は、図11の構成と同等である。 In this comparative example, as illustrated by b in the same figure, even if the transfer of the second P-phase data is started during the transfer of the first D-phase data, the frame memory B is empty. Can be written with P-phase data. Therefore, the reading speed of the image data is equivalent to the configuration of FIG.
 しかしながら、この比較例では、図11の構成と比較してデータ処理部内の配線数が増大してしまう。配線数は、データの出力先を示す矢印の個数に比例するため、矢印の個数を比較すると、図11では矢印が11個であるのに対し、図13の比較例では、18個に増大している。 However, in this comparative example, the number of wires in the data processing unit is increased as compared with the configuration of FIG. Since the number of wirings is proportional to the number of arrows indicating the data output destination, comparing the number of arrows, the number of the arrows is 11 in FIG. 11, but increases to 18 in the comparative example of FIG. ing.
 上述したように図12および図13の比較例では、P相データのみを書き込むためのメモリと、画素データのみを書き込むためのメモリとにフレームメモリを分けていない。この構成では、フレームメモリが2枚だと、画像データの読出し速度を向上させることが困難になる。また、フレームメモリが3枚では、配線数が増大してしまう。 As described above, in the comparative examples of FIGS. 12 and 13, the frame memory is not divided into a memory for writing only P-phase data and a memory for writing only pixel data. With this configuration, if the number of frame memories is two, it becomes difficult to improve the reading speed of image data. In addition, when three frame memories are used, the number of wirings increases.
 これに対して、図11に例示するようにデータ処理部270では、P相データのみを書き込むためのフレームメモリ271および272と、画素データのみを書き込むためのフレームメモリ275および276を設けている。この構成によれば、1回目のD相データの転送中に2回目のP相データの転送が開始されても、フレームメモリ271および272のうち空いている方に書き込むことができる。このため、フレームメモリが2枚の比較例と比較して画像データの読出し速度を向上させることができる。また、フレームメモリごとに、その前段にセレクタを配置しなくてよいため、フレームメモリが3枚の比較例と比較して配線数を削減することができる。さらにセレクタの個数を比較例と比較して削減することができる。配線等の削減により、製造コストの増大を抑制することができる。 In contrast, as illustrated in FIG. 11, the data processing unit 270 is provided with frame memories 271 and 272 for writing only P-phase data and frame memories 275 and 276 for writing only pixel data. According to this configuration, even if the transfer of the second P-phase data is started during the transfer of the first D-phase data, the data can be written to the empty one of the frame memories 271 and 272. For this reason, the read speed of the image data can be improved as compared with the comparative example having two frame memories. In addition, since it is not necessary to arrange a selector at the preceding stage for each frame memory, the number of wirings can be reduced as compared with the comparative example having three frame memories. Further, the number of selectors can be reduced as compared with the comparative example. By reducing the number of wirings and the like, an increase in manufacturing cost can be suppressed.
 [固体撮像素子の動作例]
 図14は、本技術の第1の実施の形態における固体撮像素子200の動作の一例を示すフローチャートである。この動作は、例えば、画像データを撮像するための所定のアプリケーションが実行されたときに開始される。
[Operation example of solid-state imaging device]
FIG. 14 is a flowchart illustrating an example of an operation of the solid-state imaging device 200 according to the first embodiment of the present technology. This operation is started, for example, when a predetermined application for capturing image data is executed.
 固体撮像素子200内のクラスタ300がP相データを生成するとともにデータ転送部261が、そのデータを転送する(ステップS901)。タイミング制御回路240は、フレームメモリ271および272の一方に、P相データを書き込む(ステップS902)。次に、クラスタ300がD相データを生成するとともにデータ転送部261が、そのデータを転送する(ステップS903)。CDS処理部274は、CDS演算により、画素データを生成する(ステップS904)。タイミング制御回路240は、画素データをフレームメモリ275および276の一方に書き込み(ステップS905)、セレクタ277は、他方から画素データをラスタ順に読み出して出力する(ステップS906)。ステップS906の後に、固体撮像素子200は、ステップS901以降を垂直同期信号VSYNCに同期して繰り返し実行する。 (4) The cluster 300 in the solid-state imaging device 200 generates P-phase data, and the data transfer unit 261 transfers the data (Step S901). The timing control circuit 240 writes P-phase data in one of the frame memories 271 and 272 (step S902). Next, the cluster 300 generates the D-phase data, and the data transfer unit 261 transfers the data (Step S903). The CDS processing unit 274 generates pixel data by a CDS operation (Step S904). The timing control circuit 240 writes the pixel data into one of the frame memories 275 and 276 (step S905), and the selector 277 reads out the pixel data from the other in raster order and outputs it (step S906). After step S906, the solid-state imaging device 200 repeatedly executes step S901 and subsequent steps in synchronization with the vertical synchronization signal VSYNC.
 このように、本技術の第1の実施の形態では、フレームメモリ271および272がP相データを交互に保持し、フレームメモリ275および276がCDS処理後の画素データを交互に保持する。これにより、P相データおよび画素データのいずれかを選択するセレクタをフレームメモリごとに配置する必要が無くなり、そのセレクタをフレームメモリ毎に配置する比較例と比較して、配線数を削減することができる。 As described above, in the first embodiment of the present technology, the frame memories 271 and 272 alternately hold the P-phase data, and the frame memories 275 and 276 alternately hold the pixel data after the CDS processing. This eliminates the need to arrange a selector for selecting either the P-phase data or the pixel data for each frame memory, and reduces the number of wires as compared with a comparative example in which the selector is arranged for each frame memory. it can.
 <2.第2の実施の形態>
 上述の第1の実施の形態では、フレームメモリ271および272とCDS処理部274との間にセレクタ273を配置していた。しかし、この構成では、セレクタ273の分、フレームメモリ271および272とCDS処理部274との間の配線距離が長くなり、伝搬遅延が大きくなるおそれがある。この第2の実施の形態のデータ処理部270は、セレクタ273を削減した点において第1の実施の形態と異なる。
<2. Second Embodiment>
In the above-described first embodiment, the selector 273 is arranged between the frame memories 271 and 272 and the CDS processing unit 274. However, in this configuration, the wiring distance between the frame memories 271 and 272 and the CDS processing unit 274 is increased by the amount of the selector 273, and the propagation delay may be increased. The data processing unit 270 according to the second embodiment differs from the first embodiment in that the selector 273 is omitted.
 図15は、本技術の第2の実施の形態におけるデータ処理部270の一構成例を示すブロック図である。この第2の実施の形態のデータ処理部270は、セレクタ273およびCDS処理部274の代わりに、CDS処理部278および279を備える点において第1の実施の形態と異なる。 FIG. 15 is a block diagram illustrating a configuration example of the data processing unit 270 according to the second embodiment of the present technology. The data processing unit 270 of the second embodiment differs from the first embodiment in that CDS processing units 278 and 279 are provided instead of the selector 273 and the CDS processing unit 274.
 CDS処理部278および279の両方には、D相転送部265からのD相データが入力される。CDS処理部278は、フレームメモリ271に保持されたP相データを読み出し、その後に転送されたD相データとの差分を画素データとして生成するものである。一方、CDS処理部279は、フレームメモリ272に保持されたP相データを読み出し、その後に転送されたD相データとの差分を画素データとして生成するものである。そして、CDS処理部278は、画素データをフレームメモリ275に出力し、CDS処理部279は、画素データをフレームメモリ276に出力する。 The D-phase data from the D-phase transfer unit 265 is input to both the CDS processing units 278 and 279. The CDS processing unit 278 reads out the P-phase data stored in the frame memory 271 and generates a difference from the subsequently transferred D-phase data as pixel data. On the other hand, the CDS processing unit 279 reads out the P-phase data held in the frame memory 272 and generates a difference from the subsequently transferred D-phase data as pixel data. Then, the CDS processing unit 278 outputs the pixel data to the frame memory 275, and the CDS processing unit 279 outputs the pixel data to the frame memory 276.
 なお、CDS処理部278および279は、特許請求の範囲に記載の一対の画素データ生成回路の一例である。 The CDS processing units 278 and 279 are an example of a pair of pixel data generation circuits described in the claims.
 このように、本技術の第2の実施の形態では、CDS処理部278がフレームメモリ271からP相データを読み出し、CDS処理部279がフレームメモリ272から画素データを読み出すため、フレームメモリとCDS処理部との間のセレクタが不要となる。これにより、フレームメモリとCDS処理部との間の配線の配線距離を短くし、伝搬遅延を小さくすることができる。 As described above, in the second embodiment of the present technology, the CDS processing unit 278 reads the P-phase data from the frame memory 271 and the CDS processing unit 279 reads the pixel data from the frame memory 272. There is no need for a selector between the units. Thus, the wiring distance between the frame memory and the CDS processing unit can be reduced, and the propagation delay can be reduced.
 <3.第3の実施の形態>
 上述の第1の実施の形態では、受光基板201および回路基板202の2枚に、固体撮像素子200内の回路を分散して配置していた。しかし、この構成では、画素数の増大に伴って、基板のそれぞれに配置する回路の規模が増大するおそれがある。この第3の実施の形態の固体撮像素子200は、固体撮像素子200内の回路を3枚の基板に分散して配置する点において第1の実施の形態と異なる。
<3. Third Embodiment>
In the above-described first embodiment, the circuits in the solid-state imaging device 200 are distributed and arranged on the light receiving substrate 201 and the circuit substrate 202. However, in this configuration, as the number of pixels increases, the scale of a circuit disposed on each of the substrates may increase. The solid-state imaging device 200 according to the third embodiment is different from the first embodiment in that circuits in the solid-state imaging device 200 are dispersed and arranged on three substrates.
 図16は、本技術の第3の実施の形態における固体撮像素子200の積層構造の一例を示す図である。この第3の実施の形態の固体撮像素子200は、回路基板202の代わりに上側回路基板203および下側回路基板204を備える。上側回路基板203は、受光基板201と下側回路基板204との間に配置される。なお、上側回路基板203は、特許請求の範囲に記載の第1の回路基板の一例であり、下側回路基板204は、特許請求の範囲に記載の第2の回路基板の一例である。 FIG. 16 is a diagram illustrating an example of a stacked structure of the solid-state imaging device 200 according to the third embodiment of the present technology. The solid-state imaging device 200 according to the third embodiment includes an upper circuit board 203 and a lower circuit board 204 instead of the circuit board 202. The upper circuit board 203 is disposed between the light receiving board 201 and the lower circuit board 204. The upper circuit board 203 is an example of a first circuit board described in the claims, and the lower circuit board 204 is an example of a second circuit board described in the claims.
 図17は、本技術の第3の実施の形態におけるデータ処理部270の一構成例を示すブロック図である。この第3の実施の形態の固体撮像素子200には、データ処理部270内の回路の一部は上側データ処理部281として上側回路基板203に配置され、残りは下側データ処理部282として下側回路基板204に配置される。 FIG. 17 is a block diagram illustrating a configuration example of the data processing unit 270 according to the third embodiment of the present technology. In the solid-state imaging device 200 according to the third embodiment, a part of the circuit in the data processing unit 270 is disposed on the upper circuit board 203 as the upper data processing unit 281, and the rest is formed as the lower data processing unit 282. It is arranged on the side circuit board 204.
 例えば、フレームメモリ271および272と、セレクタ273と、CDS処理部274とからなる回路が上側データ処理部281として上側回路基板203に設けられる。一方、フレームメモリ275および276とセレクタ277とからなる回路が下側データ処理部282として下側回路基板204に設けられる。 For example, a circuit including the frame memories 271 and 272, the selector 273, and the CDS processing unit 274 is provided on the upper circuit board 203 as the upper data processing unit 281. On the other hand, a circuit including the frame memories 275 and 276 and the selector 277 is provided on the lower circuit board 204 as the lower data processing unit 282.
 また、第2の実施の形態においてDAC220、垂直駆動回路230、AD変換部260および時刻コード生成部250は、第1の実施の形態と同様に上側回路基板203に配置される。 {Circle around (2)} In the second embodiment, the DAC 220, the vertical drive circuit 230, the AD converter 260, and the time code generator 250 are arranged on the upper circuit board 203 as in the first embodiment.
 なお、データ処理部270内のフレームメモリ271および272と、セレクタ273と、CDS処理部274とを上側回路基板203に、残りを下側回路基板204に配置しているが、それぞれの基板に配置する回路は、この構成に限定されない。 The frame memories 271 and 272, the selector 273, and the CDS processing unit 274 in the data processing unit 270 are arranged on the upper circuit board 203, and the rest are arranged on the lower circuit board 204. The circuit to perform is not limited to this configuration.
 このように、本技術の第3の実施の形態の固体撮像素子200では、固体撮像素子200内の回路を3枚の基板に分散して配置したため、2枚の基板に配置する場合と比較して、基板ごとの回路規模を削減することができる。 As described above, in the solid-state imaging device 200 according to the third embodiment of the present technology, the circuits in the solid-state imaging device 200 are dispersed and arranged on three substrates. Thus, the circuit scale for each substrate can be reduced.
 <4.第4の実施の形態>
 上述の第1の実施の形態では、CDS処理のための回路と、画素の読出しの順序をラスタ順に変換するための回路とを固体撮像素子200内に配置していたが、この構成では、画素数が多くなるほど固体撮像素子200の回路規模が増大するおそれがある。この第4の実施の形態の撮像装置100は、画素の読出しの順序をラスタ順に変換するための回路を固体撮像素子200の外部に配置した点において第1の実施の形態と異なる。
<4. Fourth Embodiment>
In the above-described first embodiment, the circuit for CDS processing and the circuit for converting the reading order of the pixels into the raster order are arranged in the solid-state imaging device 200. The circuit scale of the solid-state imaging device 200 may increase as the number increases. The imaging apparatus 100 according to the fourth embodiment is different from the first embodiment in that a circuit for converting the reading order of pixels into a raster order is arranged outside the solid-state imaging device 200.
 図18は、本技術の第4の実施の形態におけるデータ処理部270の一構成例を示すブロック図である。この第4の実施の形態のデータ処理部270は、フレームメモリ275および256とセレクタ277とが設けられていない点において第1の実施の形態と異なる。第4の実施の形態のCDS処理部274は、画素データをDSP回路120に出力する。 FIG. 18 is a block diagram illustrating a configuration example of the data processing unit 270 according to the fourth embodiment of the present technology. The data processing unit 270 according to the fourth embodiment differs from the first embodiment in that the frame memories 275 and 256 and the selector 277 are not provided. The CDS processing unit 274 according to the fourth embodiment outputs pixel data to the DSP circuit 120.
 図19は、本技術の第4の実施の形態におけるDSP回路120の一構成例を示すブロック図である。このDSP回路120は、タイミング制御回路121と、フレームメモリ122および123と、セレクタ124と、後段処理部125とを備える。 FIG. 19 is a block diagram illustrating a configuration example of a DSP circuit 120 according to the fourth embodiment of the present technology. The DSP circuit 120 includes a timing control circuit 121, frame memories 122 and 123, a selector 124, and a post-processing unit 125.
 タイミング制御回路121と、フレームメモリ122および123と、セレクタ124とのそれぞれの構成は、第1の実施の形態のタイミング制御回路240と、フレームメモリ275および276と、セレクタ277と同様である。 The configurations of the timing control circuit 121, the frame memories 122 and 123, and the selector 124 are the same as those of the timing control circuit 240, the frame memories 275 and 276, and the selector 277 of the first embodiment.
 セレクタ124は、選択した画素データを後段処理部125に供給する。後段処理部125は、デモザイク処理やホワイトバランス補正処理などの様々な画像処理を実行するものである。なお、後段処理部125は、特許請求の範囲に記載の信号処理部の一例である。 The selector 124 supplies the selected pixel data to the post-processing unit 125. The post-processing unit 125 executes various image processing such as demosaic processing and white balance correction processing. Note that the post-processing unit 125 is an example of a signal processing unit described in the claims.
 このように、本技術の第4の実施の形態によれば、画素の読出しの順序をラスタ順に変換するための回路を固体撮像素子200の外部のDSP回路120に配置したため、その回路を固体撮像素子200内に配置する場合と比較して固体撮像素子200の回路規模を削減することができる。 As described above, according to the fourth embodiment of the present technology, a circuit for converting the reading order of the pixels into the raster order is arranged in the DSP circuit 120 outside the solid-state imaging device 200. The circuit scale of the solid-state imaging device 200 can be reduced as compared with the case where the device is arranged in the device 200.
 <5.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<5. Example of application to moving objects>
The technology (the present technology) according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure is realized as a device mounted on any type of moving object such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
 図20は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 20 is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a moving object control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図20に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 Vehicle control system 12000 includes a plurality of electronic control units connected via communication network 12001. In the example shown in FIG. 20, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an inside information detection unit 12040, and an integrated control unit 12050. As a functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio / video output unit 12052, and a vehicle-mounted network I / F (interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 includes a drive force generation device for generating a drive force of the vehicle such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, and a steering angle of the vehicle. It functions as a control mechanism such as a steering mechanism for adjusting and a braking device for generating a braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body-related control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a head lamp, a back lamp, a brake lamp, a blinker, and a fog lamp. In this case, a radio wave or a signal of various switches transmitted from a portable device replacing the key can be input to the body control unit 12020. The body control unit 12020 receives the input of these radio waves or signals and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 外 Out-of-vehicle information detection unit 12030 detects information external to the vehicle on which vehicle control system 12000 is mounted. For example, an imaging unit 12031 is connected to the outside-of-vehicle information detection unit 12030. The out-of-vehicle information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle, and receives the captured image. The out-of-vehicle information detection unit 12030 may perform an object detection process or a distance detection process of a person, a vehicle, an obstacle, a sign, a character on a road surface, or the like based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of received light. The imaging unit 12031 can output an electric signal as an image or can output the information as distance measurement information. The light received by the imaging unit 12031 may be visible light or non-visible light such as infrared light.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects information in the vehicle. The in-vehicle information detection unit 12040 is connected to, for example, a driver status detection unit 12041 that detects the status of the driver. The driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 determines the degree of driver fatigue or concentration based on the detection information input from the driver state detection unit 12041. The calculation may be performed, or it may be determined whether the driver has fallen asleep.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates a control target value of the driving force generation device, the steering mechanism or the braking device based on the information on the inside and outside of the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040, and the drive system control unit A control command can be output to 12010. For example, the microcomputer 12051 implements functions of ADAS (Advanced Driver Assistance System) including a collision avoidance or a shock mitigation of a vehicle, a following operation based on a distance between vehicles, a vehicle speed maintaining operation, a vehicle collision warning, or a vehicle lane departure warning. Cooperative control for the purpose.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 controls the driving force generation device, the steering mechanism, the braking device, and the like based on the information about the surroundings of the vehicle obtained by the outside information detection unit 12030 or the inside information detection unit 12040, so that the driver 120 It is possible to perform cooperative control for automatic driving or the like in which the vehicle travels autonomously without depending on the operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 マ イ ク ロ Also, the microcomputer 12051 can output a control command to the body system control unit 12020 based on information on the outside of the vehicle acquired by the outside information detection unit 12030. For example, the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of preventing glare such as switching a high beam to a low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図20の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The sound image output unit 12052 transmits at least one of a sound signal and an image signal to an output device capable of visually or audibly notifying a passenger of the vehicle or the outside of the vehicle of information. In the example of FIG. 20, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
 図21は、撮像部12031の設置位置の例を示す図である。 FIG. 21 is a diagram illustrating an example of an installation position of the imaging unit 12031.
 図21では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 で は In FIG. 21, the image pickup unit 12031 includes image pickup units 12101, 12102, 12103, 12104, and 12105.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door of the vehicle 12100, and an upper portion of a windshield in the vehicle interior. The imaging unit 12101 provided on the front nose and the imaging unit 12105 provided above the windshield in the passenger compartment mainly acquire an image in front of the vehicle 12100. The imaging units 12102 and 12103 provided in the side mirror mainly acquire images of the side of the vehicle 12100. The imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100. The imaging unit 12105 provided above the windshield in the passenger compartment is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, and the like.
 なお、図21には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 FIG. 21 shows an example of the imaging range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and the imaging range 12114 indicates 13 shows an imaging range of an imaging unit 12104 provided in a rear bumper or a back door. For example, a bird's-eye view image of the vehicle 12100 viewed from above is obtained by superimposing image data captured by the imaging units 12101 to 12104.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements or an imaging element having pixels for detecting a phase difference.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 calculates a distance to each three-dimensional object in the imaging ranges 12111 to 12114 and a temporal change of the distance (relative speed with respect to the vehicle 12100). , It is possible to extract, as a preceding vehicle, a three-dimensional object that travels at a predetermined speed (for example, 0 km / h or more) in a direction substantially the same as that of the vehicle 12100, which is the closest three-dimensional object on the traveling path of the vehicle 12100 it can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured before the preceding vehicle and perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 converts the three-dimensional object data relating to the three-dimensional object into other three-dimensional objects such as a motorcycle, a normal vehicle, a large vehicle, a pedestrian, a telephone pole, and the like based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines a collision risk indicating a risk of collision with each obstacle, and when the collision risk is equal to or more than the set value and there is a possibility of collision, via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver through forced driving and avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared light. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian exists in the captured images of the imaging units 12101 to 12104. The recognition of such a pedestrian is performed by, for example, extracting a feature point in an image captured by the imaging units 12101 to 12104 as an infrared camera, and performing a pattern matching process on a series of feature points indicating the outline of the object to determine whether the object is a pedestrian. Is performed by a procedure for determining When the microcomputer 12051 determines that a pedestrian is present in the images captured by the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a rectangular outline to the recognized pedestrian for emphasis. The display unit 12062 is controlled so that is superimposed. Further, the sound image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用され得る。具体的には、図1の撮像装置100は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、配線数を削減して製造コストの増大を抑制することができる。 As described above, an example of the vehicle control system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to, for example, the imaging unit 12031 in the configuration described above. Specifically, the imaging device 100 in FIG. 1 can be applied to the imaging unit 12031. By applying the technology according to the present disclosure to the imaging unit 12031, it is possible to reduce the number of wirings and suppress an increase in manufacturing cost.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 The above-described embodiment is an example for embodying the present technology, and matters in the embodiment and matters specifying the invention in the claims have a corresponding relationship. Similarly, the matters specifying the invention in the claims and the matters in the embodiments of the present technology with the same names have a correspondence relationship. However, the present technology is not limited to the embodiments, and can be embodied by variously modifying the embodiments without departing from the gist thereof.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 効果 Note that the effects described in this specification are merely examples, are not limited, and may have other effects.
 なお、本技術は以下のような構成もとることができる。
(1)所定のリセットデータと露光量に応じた信号データとを交互に繰り返し出力するデータ出力部と、
 繰り返し出力された前記リセットデータを交互に保持する一対のリセットデータ保持部と、
 前記一対のリセットデータ保持部の一方に保持された前記リセットデータと当該リセットデータの後に出力された前記信号データとの差分を画素データとして生成する処理を繰り返す画素データ生成部と、
 繰り返し生成された前記画素データを交互に保持する一対の画素データ保持部と、
 前記一対の画素データ保持部を交互に選択して当該選択した画素データ保持部に保持された前記画素データを出力する出力側選択部と
を具備する固体撮像素子。
(2)前記データ出力部は、前記信号データを出力している間に前記リセットデータの出力を開始する
前記(1)記載の固体撮像素子。
(3)前記一対のリセットデータ保持部を交互に選択して当該選択したリセットデータ保持部に保持された前記リセットデータを前記画素データ生成部に供給する入力側選択部をさらに具備する
前記(1)または(2)に記載の固体撮像素子。
(4)前記画素データ生成部は、一対の画素データ生成回路を備え、
 前記一対の画素データ生成回路の一方は、前記一対のリセットデータ保持部の一方に保持された前記リセットデータと当該リセットデータの後に出力された前記信号データとの差分を前記画素データとして前記一対の画素データ保持部の一方へ出力し、
 前記一対の画素データ生成回路の他方は、前記一対のリセットデータ保持部の他方に保持された前記リセットデータと当該リセットデータの後に出力された前記信号データとの差分を前記画素データとして前記一対の画素データ保持部の他方へ出力する
前記(1)または(2)に記載の固体撮像素子。
(5)所定のリセットレベルと前記露光量に応じた信号レベルとを生成する画素と、
 前記リセットレベルをデジタル信号に変換して前記リセットデータとして保持する処理と前記信号レベルをデジタル信号に変換して前記信号データとして保持する処理とを行うアナログデジタル変換部と
をさらに具備する前記(1)から(4)のいずれかに記載の固体撮像素子。
(6)前記画素は、所定の受光基板に配置され、
 前記アナログデジタル変換部と前記データ出力部と前記一対のリセットデータ保持部と、前記画素データ生成部と前記一対の画素データ保持部と前記出力側選択部とは所定の回路基板に配置される
前記(5)記載の固体撮像素子。
(7)前記画素は、所定の受光基板に配置され、
 前記アナログデジタル変換部は、第1の回路基板に配置され、
 前記データ出力部と前記一対のリセットデータ保持部と前記画素データ生成部と前記一対の画素データ保持部と前記出力側選択部との一部は、前記第1の回路基板に配置され、残りは第2の回路基板に配置される
前記(5)記載の固体撮像素子。
(8)所定のリセットデータと露光量に応じた信号データとを交互に繰り返し出力するデータ出力部と、
 繰り返し出力された前記リセットデータを交互に保持する一対のリセットデータ保持部と、
 前記一対のリセットデータ保持部の一方に保持された前記リセットデータと当該リセットデータの後に出力された前記信号データとの差分を画素データとして生成する処理を繰り返す画素データ生成部と、
 繰り返し生成された前記画素データを交互に保持する一対の画素データ保持部と、
 前記一対の画素データ保持部を交互に選択して当該選択した画素データ保持部に保持された前記画素データを出力する出力側選択部と、
 前記画素データを処理する信号処理部と
を具備する撮像装置。
(9)前記データ出力部と前記一対のリセットデータ保持部と前記画素データ生成部と前記一対の画素データ保持部と前記出力側選択部とは、固体撮像素子に配置される
前記(8)記載の撮像装置。
(10)前記データ出力部と前記一対のリセットデータ保持部と前記画素データ生成部とは、固体撮像素子に配置され、
 前記一対の画素データ保持部と前記出力側選択部とは、前記固体撮像素子の外部に配置される
前記(8)記載の撮像装置。
(11)所定のリセットデータと露光量に応じた信号データとを交互に繰り返し出力するデータ出力手順と、
 繰り返し出力された前記リセットデータを交互に保持する一対のリセットデータ保持部の一方に保持された前記リセットデータと当該リセットデータの後に出力された前記信号データとの差分を画素データとして生成する処理を繰り返す画素データ生成手順と、
 繰り返し生成された前記画素データを交互に保持する一対の画素データ保持部を交互に選択して当該選択した画素データ保持部に保持された前記画素データを出力する出力側選択手順と
を具備する固体撮像素子の制御方法。
Note that the present technology may have the following configurations.
(1) a data output unit for alternately and repeatedly outputting predetermined reset data and signal data corresponding to an exposure amount;
A pair of reset data holding units that alternately hold the repeatedly output reset data,
A pixel data generation unit that repeats a process of generating a difference between the reset data held in one of the pair of reset data holding units and the signal data output after the reset data as pixel data,
A pair of pixel data holding units that alternately hold the repeatedly generated pixel data,
A solid-state imaging device comprising: an output-side selection unit that alternately selects the pair of pixel data holding units and outputs the pixel data held in the selected pixel data holding unit.
(2) The solid-state imaging device according to (1), wherein the data output unit starts outputting the reset data while outputting the signal data.
(3) The above-mentioned (1) further includes an input-side selection unit that alternately selects the pair of reset data holding units and supplies the reset data held in the selected reset data holding unit to the pixel data generation unit. ) Or (2).
(4) The pixel data generation unit includes a pair of pixel data generation circuits,
One of the pair of pixel data generation circuits sets a difference between the reset data held in one of the pair of reset data holding units and the signal data output after the reset data as the pixel data. Output to one of the pixel data holding units,
The other of the pair of pixel data generation circuits sets a difference between the reset data held in the other of the pair of reset data holding units and the signal data output after the reset data as the pixel data. The solid-state imaging device according to the above (1) or (2), which outputs the image data to the other of the pixel data holding units.
(5) a pixel that generates a predetermined reset level and a signal level according to the exposure amount;
The (1) further includes an analog-to-digital conversion unit that performs a process of converting the reset level to a digital signal and holding the reset data as the data, and a process of converting the signal level to a digital signal and holding the signal data as the data. The solid-state imaging device according to any one of (1) to (4).
(6) The pixel is disposed on a predetermined light receiving substrate,
The analog-to-digital conversion unit, the data output unit, the pair of reset data holding units, the pixel data generation unit, the pair of pixel data holding units, and the output side selection unit are disposed on a predetermined circuit board. The solid-state imaging device according to (5).
(7) The pixel is disposed on a predetermined light receiving substrate,
The analog-to-digital converter is disposed on a first circuit board,
A part of the data output unit, the pair of reset data holding units, the pixel data generation unit, the pair of pixel data holding units, and the output side selection unit are disposed on the first circuit board, and the rest is The solid-state imaging device according to (5), which is disposed on a second circuit board.
(8) a data output unit for alternately and repeatedly outputting predetermined reset data and signal data corresponding to the exposure amount;
A pair of reset data holding units that alternately hold the repeatedly output reset data,
A pixel data generation unit that repeats a process of generating a difference between the reset data held in one of the pair of reset data holding units and the signal data output after the reset data as pixel data,
A pair of pixel data holding units that alternately hold the repeatedly generated pixel data,
An output-side selection unit that alternately selects the pair of pixel data holding units and outputs the pixel data held in the selected pixel data holding unit;
An image pickup apparatus comprising: a signal processing unit that processes the pixel data.
(9) The device according to (8), wherein the data output unit, the pair of reset data holding units, the pixel data generation unit, the pair of pixel data holding units, and the output side selection unit are arranged in a solid-state imaging device. Imaging device.
(10) The data output unit, the pair of reset data holding units, and the pixel data generation unit are arranged in a solid-state imaging device,
The imaging device according to (8), wherein the pair of pixel data holding units and the output side selection unit are arranged outside the solid-state imaging device.
(11) a data output procedure for alternately and repeatedly outputting predetermined reset data and signal data corresponding to the exposure amount;
A process of generating, as pixel data, a difference between the reset data held in one of a pair of reset data holding units that alternately holds the repeatedly output reset data and the signal data output after the reset data. Pixel data generation procedure to be repeated,
An output-side selecting step of alternately selecting a pair of pixel data holding units for alternately holding the repeatedly generated pixel data and outputting the pixel data held in the selected pixel data holding unit. A method for controlling an image sensor.
 100 撮像装置
 110 光学部
 120 DSP回路
 121 タイミング制御回路
 122、123、160、271、272、275、276 フレームメモリ
 124、273、277 セレクタ
 125 後段処理部
 130 表示部
 140 操作部
 150 バス
 170 記憶部
 180 電源部
 200 固体撮像素子
 201 受光基板
 202 回路基板
 203 上側回路基板
 204 下側回路基板
 210 画素アレイ部
 211 画素ブロック
 212 画素
 220 DAC
 230 垂直駆動回路
 240 タイミング制御回路
 250 時刻コード生成部
 260 AD変換部
 261 データ転送部
 262 P相転送部
 263 フリップフロップ
 264 書込みデータ転送部
 265 D相転送部
 266 クロック供給部
 270 データ処理部
 274、278、279 CDS(Correlated Double Sampling)処理部
 281 上側データ処理部
 282 下側データ処理部
 300 クラスタ
 311~318 比較回路
 320 左側メモリ
 321~328、331~338 データ記憶部
 330 右側メモリ
 12031 撮像部
REFERENCE SIGNS LIST 100 imaging device 110 optical unit 120 DSP circuit 121 timing control circuit 122, 123, 160, 271, 272, 275, 276 frame memory 124, 273, 277 selector 125 post-processing unit 130 display unit 140 operation unit 150 bus 170 storage unit 180 Power supply unit 200 Solid-state imaging device 201 Light receiving substrate 202 Circuit substrate 203 Upper circuit substrate 204 Lower circuit substrate 210 Pixel array unit 211 Pixel block 212 Pixel 220 DAC
230 Vertical drive circuit 240 Timing control circuit 250 Time code generation unit 260 AD conversion unit 261 Data transfer unit 262 P-phase transfer unit 263 Flip-flop 264 Write data transfer unit 265 D-phase transfer unit 266 Clock supply unit 270 Data processing unit 274, 278 279 CDS (Correlated Double Sampling) processing unit 281 Upper data processing unit 282 Lower data processing unit 300 Cluster 311 to 318 Comparison circuit 320 Left memory 321 to 328, 331 to 338 Data storage unit 330 Right memory 12031 Imaging unit

Claims (11)

  1.  所定のリセットデータと露光量に応じた信号データとを交互に繰り返し出力するデータ出力部と、
     繰り返し出力された前記リセットデータを交互に保持する一対のリセットデータ保持部と、
     前記一対のリセットデータ保持部の一方に保持された前記リセットデータと当該リセットデータの後に出力された前記信号データとの差分を画素データとして生成する処理を繰り返す画素データ生成部と、
     繰り返し生成された前記画素データを交互に保持する一対の画素データ保持部と、
     前記一対の画素データ保持部を交互に選択して当該選択した画素データ保持部に保持された前記画素データを出力する出力側選択部と
    を具備する固体撮像素子。
    A data output unit for alternately and repeatedly outputting predetermined reset data and signal data corresponding to the exposure amount,
    A pair of reset data holding units that alternately hold the repeatedly output reset data,
    A pixel data generation unit that repeats a process of generating a difference between the reset data held in one of the pair of reset data holding units and the signal data output after the reset data as pixel data,
    A pair of pixel data holding units that alternately hold the repeatedly generated pixel data,
    A solid-state imaging device comprising: an output-side selection unit that alternately selects the pair of pixel data holding units and outputs the pixel data held in the selected pixel data holding unit.
  2.  前記データ出力部は、前記信号データを出力している間に前記リセットデータの出力を開始する
    請求項1記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein the data output unit starts outputting the reset data while outputting the signal data.
  3.  前記一対のリセットデータ保持部を交互に選択して当該選択したリセットデータ保持部に保持された前記リセットデータを前記画素データ生成部に供給する入力側選択部をさらに具備する
    請求項1記載の固体撮像素子。
    2. The solid according to claim 1, further comprising: an input side selection unit that alternately selects the pair of reset data holding units and supplies the reset data held in the selected reset data holding unit to the pixel data generation unit. Imaging device.
  4.  前記画素データ生成部は、一対の画素データ生成回路を備え、
     前記一対の画素データ生成回路の一方は、前記一対のリセットデータ保持部の一方に保持された前記リセットデータと当該リセットデータの後に出力された前記信号データとの差分を前記画素データとして前記一対の画素データ保持部の一方へ出力し、
     前記一対の画素データ生成回路の他方は、前記一対のリセットデータ保持部の他方に保持された前記リセットデータと当該リセットデータの後に出力された前記信号データとの差分を前記画素データとして前記一対の画素データ保持部の他方へ出力する
    請求項1記載の固体撮像素子。
    The pixel data generation unit includes a pair of pixel data generation circuits,
    One of the pair of pixel data generation circuits sets a difference between the reset data held in one of the pair of reset data holding units and the signal data output after the reset data as the pixel data. Output to one of the pixel data holding units,
    The other of the pair of pixel data generation circuits sets a difference between the reset data held in the other of the pair of reset data holding units and the signal data output after the reset data as the pixel data. 2. The solid-state imaging device according to claim 1, wherein the image data is output to the other of the pixel data holding units.
  5.  所定のリセットレベルと前記露光量に応じた信号レベルとを生成する画素と、
     前記リセットレベルをデジタル信号に変換して前記リセットデータとして保持する処理と前記信号レベルをデジタル信号に変換して前記信号データとして保持する処理とを行うアナログデジタル変換部と
    をさらに具備する請求項1記載の固体撮像素子。
    A pixel that generates a predetermined reset level and a signal level according to the exposure amount,
    2. An analog-to-digital converter for converting the reset level to a digital signal and holding the reset data as the reset data, and converting the signal level to a digital signal and holding the signal data as the analog data. The solid-state imaging device according to any one of the preceding claims.
  6.  前記画素は、所定の受光基板に配置され、
     前記アナログデジタル変換部と前記データ出力部と前記一対のリセットデータ保持部と、前記画素データ生成部と前記一対の画素データ保持部と前記出力側選択部とは所定の回路基板に配置される
    請求項5記載の固体撮像素子。
    The pixel is disposed on a predetermined light receiving substrate,
    The analog-to-digital conversion unit, the data output unit, the pair of reset data holding units, the pixel data generation unit, the pair of pixel data holding units, and the output side selection unit are arranged on a predetermined circuit board. Item 6. A solid-state imaging device according to Item 5.
  7.  前記画素は、所定の受光基板に配置され、
     前記アナログデジタル変換部は、第1の回路基板に配置され、
     前記データ出力部と前記一対のリセットデータ保持部と前記画素データ生成部と前記一対の画素データ保持部と前記出力側選択部との一部は、前記第1の回路基板に配置され、残りは第2の回路基板に配置される
    請求項5記載の固体撮像素子。
    The pixel is disposed on a predetermined light receiving substrate,
    The analog-to-digital converter is disposed on a first circuit board,
    A part of the data output unit, the pair of reset data holding units, the pixel data generation unit, the pair of pixel data holding units, and the output side selection unit are disposed on the first circuit board, and the rest is The solid-state imaging device according to claim 5, which is arranged on a second circuit board.
  8.  所定のリセットデータと露光量に応じた信号データとを交互に繰り返し出力するデータ出力部と、
     繰り返し出力された前記リセットデータを交互に保持する一対のリセットデータ保持部と、
     前記一対のリセットデータ保持部の一方に保持された前記リセットデータと当該リセットデータの後に出力された前記信号データとの差分を画素データとして生成する処理を繰り返す画素データ生成部と、
     繰り返し生成された前記画素データを交互に保持する一対の画素データ保持部と、
     前記一対の画素データ保持部を交互に選択して当該選択した画素データ保持部に保持された前記画素データを出力する出力側選択部と、
     前記画素データを処理する信号処理部と
    を具備する撮像装置。
    A data output unit for alternately and repeatedly outputting predetermined reset data and signal data corresponding to the exposure amount,
    A pair of reset data holding units that alternately hold the repeatedly output reset data,
    A pixel data generation unit that repeats a process of generating a difference between the reset data held in one of the pair of reset data holding units and the signal data output after the reset data as pixel data,
    A pair of pixel data holding units that alternately hold the repeatedly generated pixel data,
    An output-side selection unit that alternately selects the pair of pixel data holding units and outputs the pixel data held in the selected pixel data holding unit;
    An image pickup apparatus comprising: a signal processing unit that processes the pixel data.
  9.  前記データ出力部と前記一対のリセットデータ保持部と前記画素データ生成部と前記一対の画素データ保持部と前記出力側選択部とは、固体撮像素子に配置される
    請求項8記載の撮像装置。
    9. The imaging device according to claim 8, wherein the data output unit, the pair of reset data holding units, the pixel data generation unit, the pair of pixel data holding units, and the output side selection unit are arranged in a solid-state imaging device.
  10.  前記データ出力部と前記一対のリセットデータ保持部と前記画素データ生成部とは、固体撮像素子に配置され、
     前記一対の画素データ保持部と前記出力側選択部とは、前記固体撮像素子の外部に配置される
    請求項8記載の撮像装置。
    The data output unit, the pair of reset data holding units and the pixel data generation unit are arranged in a solid-state imaging device,
    The imaging device according to claim 8, wherein the pair of pixel data holding units and the output-side selection unit are arranged outside the solid-state imaging device.
  11.  所定のリセットデータと露光量に応じた信号データとを交互に繰り返し出力するデータ出力手順と、
     繰り返し出力された前記リセットデータを交互に保持する一対のリセットデータ保持部の一方に保持された前記リセットデータと当該リセットデータの後に出力された前記信号データとの差分を画素データとして生成する処理を繰り返す画素データ生成手順と、
     繰り返し生成された前記画素データを交互に保持する一対の画素データ保持部を交互に選択して当該選択した画素データ保持部に保持された前記画素データを出力する出力側選択手順と
    を具備する固体撮像素子の制御方法。
    A data output procedure for alternately and repeatedly outputting predetermined reset data and signal data corresponding to the exposure amount,
    A process of generating, as pixel data, a difference between the reset data held in one of a pair of reset data holding units that alternately holds the repeatedly output reset data and the signal data output after the reset data. A pixel data generation procedure to be repeated,
    An output-side selecting step of alternately selecting a pair of pixel data holding units for alternately holding the repeatedly generated pixel data and outputting the pixel data held in the selected pixel data holding unit. A method for controlling an image sensor.
PCT/JP2019/026210 2018-09-12 2019-07-02 Solid-state imaging element, imaging device, and solid-state imaging element control method WO2020054184A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-170395 2018-09-12
JP2018170395A JP2020043504A (en) 2018-09-12 2018-09-12 Solid-state imaging device, imaging device, and method of controlling solid-state imaging device

Publications (1)

Publication Number Publication Date
WO2020054184A1 true WO2020054184A1 (en) 2020-03-19

Family

ID=69777107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026210 WO2020054184A1 (en) 2018-09-12 2019-07-02 Solid-state imaging element, imaging device, and solid-state imaging element control method

Country Status (2)

Country Link
JP (1) JP2020043504A (en)
WO (1) WO2020054184A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141610A (en) * 2006-12-04 2008-06-19 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus, and imaging system
JP2010232804A (en) * 2009-03-26 2010-10-14 Victor Co Of Japan Ltd Solid-state image pickup element and solid-state image pickup device using the same
WO2018096813A1 (en) * 2016-11-24 2018-05-31 ソニーセミコンダクタソリューションズ株式会社 Solid-state image capturing element, solid-state image capturing device, and solid-state image capturing element control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141610A (en) * 2006-12-04 2008-06-19 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus, and imaging system
JP2010232804A (en) * 2009-03-26 2010-10-14 Victor Co Of Japan Ltd Solid-state image pickup element and solid-state image pickup device using the same
WO2018096813A1 (en) * 2016-11-24 2018-05-31 ソニーセミコンダクタソリューションズ株式会社 Solid-state image capturing element, solid-state image capturing device, and solid-state image capturing element control method

Also Published As

Publication number Publication date
JP2020043504A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2020110537A1 (en) Solid-state imaging element and imaging device
JP2020088480A (en) Solid-state imaging element and imaging device
WO2020066245A1 (en) Solid-state imaging element and imaging device
TW202101959A (en) Image recognition device and image recognition method
CN114270798B (en) Image pickup apparatus
WO2021181734A1 (en) Solid-state image capturing element and electronic device
US11743449B2 (en) Imaging device and electronic apparatus
WO2020137198A1 (en) Solid-state image capturing element and image capturing device
WO2020054184A1 (en) Solid-state imaging element, imaging device, and solid-state imaging element control method
WO2020255496A1 (en) Solid-state image sensor, imaging device, and method for controlling solid-state image sensor
JP2019193171A (en) Array antenna, solid-state imaging apparatus and electronic apparatus
TWI742636B (en) Camera device and camera method
WO2018211985A1 (en) Imaging element, method for controlling imaging element, imaging device, and electronic apparatus
WO2019208204A1 (en) Imaging device
WO2020090459A1 (en) Solid-state imaging device and electronic equipment
JP2020017552A (en) Solid-state imaging device, imaging device, and method of controlling solid-state imaging device
WO2022113528A1 (en) Solid-state imaging element, method for controlling solid-state imaging element, and imaging device
WO2023286297A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
CN218888598U (en) Image processing apparatus and in-vehicle system
TWI842952B (en) Camera
WO2022209368A1 (en) Solid-state imaging element and solid-state imaging device
WO2020166284A1 (en) Image capturing device
WO2020166160A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
JP2024000625A (en) Solid-state imaging apparatus and electronic equipment
TW202416721A (en) Solid-state imaging device and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859403

Country of ref document: EP

Kind code of ref document: A1