WO2020054135A1 - Surface protection film base material, surface protection film using surface protection film base material, and optical film having surface protection film - Google Patents

Surface protection film base material, surface protection film using surface protection film base material, and optical film having surface protection film Download PDF

Info

Publication number
WO2020054135A1
WO2020054135A1 PCT/JP2019/020711 JP2019020711W WO2020054135A1 WO 2020054135 A1 WO2020054135 A1 WO 2020054135A1 JP 2019020711 W JP2019020711 W JP 2019020711W WO 2020054135 A1 WO2020054135 A1 WO 2020054135A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface protective
protective film
substrate
film
surface protection
Prior art date
Application number
PCT/JP2019/020711
Other languages
French (fr)
Japanese (ja)
Inventor
清水 享
歩夢 中原
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201980059578.5A priority Critical patent/CN112673292A/en
Priority to JP2020546689A priority patent/JPWO2020054135A1/en
Priority to KR1020217002234A priority patent/KR102604387B1/en
Publication of WO2020054135A1 publication Critical patent/WO2020054135A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the present invention relates to a substrate for a surface protective film, a surface protective film using the substrate, and an optical film with a surface protective film.
  • An optical film for example, a polarizing plate or a laminate including a polarizing plate
  • An optical film includes the optical film (finally, the image display device) until the image display device to which the optical film is applied is actually used.
  • a surface protection film is releasably attached.
  • an optical display / surface protective film laminate is bonded to a display cell to produce an image display device, and the image display device is subjected to an optical test (for example, a lighting test) in a state where the laminate is bonded. ), And at an appropriate time thereafter, the surface protective film is peeled off.
  • the surface protective film typically has a resin film as a substrate and an adhesive layer.
  • the present invention has been made in order to solve the above conventional problems, and a main object of the present invention is to provide a surface protection film base material capable of favorably suppressing light leakage during optical inspection, coloring and rainbow unevenness. It is in.
  • the phase difference R0 (550) in the front direction and the phase difference R45 (550) in the polar angle of 45 ° and the azimuth angle of 45 ° satisfy the following relationship: R45 (550) -R0 (550) ⁇ 13 (nm).
  • the base material for a surface protective film has a front-side retardation R0 (550) of 20 nm or less.
  • the substrate for a surface protective film has a total light transmittance of 80% or more and a haze of 1.0% or less.
  • the substrate for a surface protection film contains at least one resin selected from polycarbonate, polyester, cycloolefin-based resin, acrylic resin, and cellulose resin. In one embodiment, the substrate for a surface protection film contains a resin having an alicyclic structure or an aromatic ring structure exhibiting negative intrinsic birefringence.
  • a surface protective film is provided. This surface protection film includes the above-mentioned substrate for a surface protection film and an adhesive layer.
  • an optical film with a surface protection film includes an optical film and the above-mentioned surface protective film releasably bonded to the optical film.
  • the optical inspection is performed by setting the difference between the phase difference R0 (550) in the front direction and the phase difference R45 (550) in the polar angle 45 ° and the azimuth angle 45 ° direction to a predetermined value or less. It is possible to realize a substrate for a surface protective film that can effectively suppress light leakage, coloring and rainbow unevenness at the time. In particular, in an optical inspection of a large-sized image display device, light leakage at an end can be significantly suppressed.
  • the substrate for surface protective film according to the embodiment of the present invention has a phase difference R0 (550) in the front direction and a phase difference R45 (550) in the polar angle of 45 ° and the azimuth angle of 45 ° as follows. Satisfy the relationship: R45 (550) -R0 (550) ⁇ 13 (nm). [R45 (550) -R0 (550)] is preferably at most 10 nm, more preferably at most 5 nm, further preferably at most 3 nm, particularly preferably at most 1 nm.
  • [R45 (550) -R0 (550)] is preferably -5 nm or more, more preferably -3 nm or more, and still more preferably -1 nm or more.
  • [R45 (550) -R0 (550)] is in such a range, a substrate for a surface protective film capable of favorably suppressing light leakage, coloring and rainbow unevenness during an optical inspection can be realized, In particular, in an optical inspection of a large-sized image display device, light leakage at an end can be significantly suppressed.
  • an image is taken by a camera (for example, a camera equipped with a polarizing filter) for each image display device while the image display device in which the optical film / surface protection film laminate is bonded to the display cell is transported in a roll.
  • a lighting defect of the image display device is inspected.
  • the angle of view of the camera becomes very large.
  • the angle of view in the long side direction of the image display device is 45 ° or more in one embodiment, 60 ° or more in another embodiment, and 70 ° or more in another embodiment. In another embodiment, it may be 82 ° or more.
  • the size of the image display device to which the substrate for a surface protection film (substantially, the surface protection film including the substrate) according to the embodiment of the present invention is applied is preferably 25 inches or more, more preferably 35 inches or more. Inches or more, more preferably 40 inches or more.
  • the higher the definition of the image display device the more noticeable the improvement of the inspection accuracy.
  • R0 ( ⁇ ) is a front-side phase difference measured with light having a wavelength of ⁇ nm at 23 ° C.
  • nx is the refractive index in the direction in which the in-plane refractive index is maximized (ie, the slow axis direction)
  • ny is the direction perpendicular to the slow axis in the plane (ie, fast phase). (Axial direction).
  • R45 ( ⁇ ) is a phase difference in a direction of a polar angle of 45 ° and an azimuth angle of 45 ° measured with light having a wavelength of ⁇ nm at 23 ° C.
  • the azimuth is a direction when the long side direction of the image display device is 0 °.
  • References to angles herein include both clockwise and counterclockwise directions with respect to a reference direction.
  • the front-side retardation R0 (550) of the surface protective film substrate is preferably 20 nm or less, more preferably 15 nm or less, further preferably 10 nm or less, and particularly preferably 5 nm or less.
  • the phase difference R0 (550) in the front direction is preferably as small as possible, and the lower limit is ideally 0 nm, for example, 0.3 nm.
  • Such a front-side phase difference R0 (550) can be realized by appropriately combining and setting the material forming the base material and the stretching conditions.
  • the phase difference R45 (550) in the polar angle 45 ° and the azimuth angle 45 ° direction of the surface protective film substrate is preferably 30 nm or less, more preferably 20 nm or less, further more preferably 12 nm or less, particularly Preferably it is 7 nm or less.
  • R45 (550) is in such a range, the desired [R45 (550) -R0 (550)] can be easily realized, and as a result, in the optical inspection of a large-sized image display device, the light at the end portion can be obtained. Leakage can be significantly suppressed. Similar to R0 (550), such R45 (550) can be realized by appropriately combining and setting the material forming the base material and the stretching conditions.
  • the thickness direction retardation Rth (550) of the surface protective film substrate is preferably -90 nm to +90 nm, more preferably -50 nm to +50 nm, and still more preferably -20 nm to +20 nm.
  • Rth ( ⁇ ) is a retardation in the thickness direction measured with light having a wavelength of ⁇ nm at 23 ° C.
  • nz is the refractive index in the thickness direction.
  • the substrate for a surface protective film may exhibit an inverse dispersion wavelength characteristic in which an in-plane retardation (a retardation in the front direction) increases according to the wavelength of the measurement light, and the in-plane retardation corresponds to the wavelength of the measurement light. It may show a positive wavelength dispersion characteristic that becomes smaller as a result, or may show a flat wavelength dispersion characteristic in which the in-plane phase difference hardly changes depending on the wavelength of the measurement light.
  • the total light transmittance of the substrate for a surface protective film is preferably 80% or more, more preferably 85% or more, further preferably 90% or more, and particularly preferably 95% or more.
  • the haze of the surface protective film substrate is preferably 1.0% or less, more preferably 0.7% or less, further preferably 0.5% or less, and particularly preferably 0.3% or less. % Or less. If the total light transmittance or haze is within such a range, when the surface protective film using the substrate for a surface protective film of the present invention is subjected to optical inspection of an image display device, excellent visibility is ensured. be able to. As a result, the accuracy of the optical inspection of the image display device can be significantly improved.
  • the base material for a surface protective film has a number of bending times to break in an MIT test of preferably 500 or more, more preferably 700 or more, still more preferably 900 or more, and particularly preferably 1100 or more. is there. That is, the substrate for a surface protective film can preferably have excellent flexibility or bending resistance. With such a configuration, it is possible to obtain a surface protective film which is excellent in operability at the time of laminating and peeling and in which cracking is suppressed. According to the embodiment of the present invention, it is possible to achieve both such excellent flexibility or bending resistance and the extremely small front-side phase difference R0 (550) as described above.
  • the MIT test can be performed in accordance with JIS P # 8115.
  • the substrate for a surface protective film has a water absorption of preferably 5% or less, more preferably 4% or less, and further preferably 2% or less.
  • the substrate for a surface protective film has a moisture permeability of preferably not more than 400 g / m 2 ⁇ 24 h, more preferably 160 g / m 2 ⁇ after being left for 24 hours in an environment of 40 ° C. and 92% RH. and at 24h or less, still more preferably not more than 130 g / m 2 ⁇ 24h, most preferably not more than 90g / m 2 ⁇ 24h. If the water absorption or the moisture permeability is in such a range, it is possible to suppress floating in a humid environment.
  • a water absorption can be measured based on JISK7209.
  • the water vapor transmission rate can be measured according to JIS Z 0208 (temperature and humidity conditions: 40 ° C., 90% RH).
  • the substrate for a surface protective film has a glass transition temperature (Tg) of preferably 145 ° C or higher, more preferably 160 ° C or higher.
  • Tg glass transition temperature
  • the pressure-sensitive adhesive layer can be formed by directly applying the pressure-sensitive adhesive layer to the surface protective film base when producing the surface protective film. In other words, there is no need to transfer the pressure-sensitive adhesive layer formed on the predetermined film to the substrate for the surface protection film. Therefore, a surface protection film can be produced with extremely excellent production efficiency.
  • the upper limit of the Tg of the substrate for a surface protective film may be, for example, 200 ° C.
  • the elastic modulus of the surface protective film substrate is preferably 50 MPa to 350 MPa at a tensile speed of 100 mm / min.
  • a surface protective film having excellent transportability and operability can be obtained.
  • the modulus of elasticity is measured according to JIS K7127: 1999.
  • the tensile elongation of the substrate for a surface protective film is preferably 70% to 200%.
  • the tensile elongation is measured according to JIS @ K # 6781.
  • the substrate for a surface protective film can be made of any appropriate material as long as it has the desired properties as described above.
  • the substrate for a surface protection film can be typically composed of a resin film.
  • the resin constituting the film include polyarylate, polyamide, polyimide, polyester, polyaryletherketone, polyamideimide, polyesterimide, polyvinyl alcohol, polyfumarate, polyethersulfone, polysulfone, and cycloolefin-based resins (for example, , A norbornene-based resin), polycarbonate, polyester carbonate, a cellulose resin (eg, triacetyl cellulose), an acrylic resin, and a polyurethane. These resins may be used alone or in combination.
  • the resin may have an alicyclic structure or an aromatic ring structure exhibiting negative intrinsic birefringence.
  • the alicyclic structure include a lactone ring structure, a glutaric anhydride structure, a glutarimide structure, an N-substituted maleimide structure, and a maleic anhydride structure.
  • the aromatic ring structure exhibiting negative intrinsic birefringence include a fluorene structure, a naphthalene structure, an anthracene structure, a carbazole structure, and a phthalimide structure. Resins having these structures have a small birefringence in the resulting film and can suppress a phase difference when formed into a film.
  • the substrate for the surface protective film may be, for example, a film using a film formed from the above resin as it is.
  • a method of forming a film from a resin any appropriate molding method can be adopted. Specific examples include a compression molding method, a transfer molding method, an injection molding method, an extrusion molding method, a blow molding method, a powder molding method, an FRP molding method, a cast coating method (for example, a casting method), a calendar molding method, and a hot press. And the like. Extrusion molding or cast coating is preferred. This is because the smoothness of the obtained film can be improved and good optical uniformity can be obtained.
  • the molding conditions can be set as appropriate according to the composition and type of the resin used, the characteristics desired for the substrate for the surface protective film, and the like.
  • the base material for a surface protective film may be a film obtained by subjecting a film formed from the above resin to a stretching treatment.
  • the stretching method of the film is typically biaxial stretching, and more specifically, sequential biaxial stretching or simultaneous biaxial stretching. This is because a substrate for a surface protective film having a small front-side retardation R0 (550) can be obtained.
  • the sequential biaxial stretching or simultaneous biaxial stretching is typically performed using a tenter stretching machine. Therefore, the stretching direction of the film is typically the length direction and the width direction of the film.
  • the stretching temperature can be changed according to R0 (550), R45 (550) and thickness desired for the surface protective film substrate, the type of resin used, the thickness of the film used, the stretching ratio, and the like.
  • the stretching temperature is preferably Tg + 5 ° C. to Tg + 50 ° C., more preferably Tg + 10 ° C. to Tg + 40 ° C., with respect to the glass transition temperature (Tg) of the film.
  • the stretching ratio can be changed according to R0 (550) and R45 (550) and the thickness desired for the surface protective film substrate, the type of resin used, the thickness of the film used, the stretching temperature, and the like.
  • biaxial stretching for example, sequential biaxial stretching or simultaneous biaxial stretching
  • stretching ratio in the first direction for example, length direction
  • stretching in the second direction for example, width direction
  • the magnification is preferably as small as possible, more preferably substantially equal.
  • the stretching ratio is determined in the first direction (for example, the length direction) and the second direction (for example, the width direction). For each, it can be, for example, from 1.1 times to 3.0 times.
  • the stretching speed is preferably 10% / sec or less, more preferably 7% / sec or less, further preferably 5% / sec or less, and particularly preferably 2.5% / sec or less.
  • the lower limit of the stretching speed can be, for example, 1.2% / sec. If the stretching speed is too low, the productivity may not be practical.
  • biaxial stretching for example, sequential biaxial stretching or simultaneous biaxial stretching
  • the stretching speed in the first direction (for example, the length direction) and the second direction (for example, the width direction) Is preferably as small as possible, and more preferably substantially equal. With such a configuration, R0 (550) and R45 (550) can be further reduced.
  • the substrate for a surface protective film may be a commercially available resin film as it is, or may be formed by subjecting a commercially available resin film to the above-described stretching treatment.
  • the thickness of the substrate for a surface protection film is typically from 10 ⁇ m to 100 ⁇ m, preferably from 20 ⁇ m to 70 ⁇ m.
  • the substrate for a surface protective film may have a slow axis.
  • the slow axis direction of the surface protection film substrate is relative to the long side direction of the image display device. It is preferably at most 30 °, more preferably at most 15 °, even more preferably at most 5 °, particularly preferably at most 2 °.
  • the slow axis is manifested when the front-side phase difference substantially exists. When the front-side phase difference approaches zero and substantially does not exist, the influence of the slow axis is small. Become.
  • the substrate for a surface protective film described in the above section A can be suitably used for a surface protective film. Therefore, embodiments of the present invention also include a surface protection film.
  • the surface protective film according to the embodiment of the present invention includes the surface protective film substrate described in the above section A and an adhesive layer.
  • any suitable pressure-sensitive adhesive can be adopted as the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer.
  • the base resin of the pressure-sensitive adhesive include an acrylic resin, a styrene resin, a silicone resin, a urethane resin, and a rubber resin. Such a base resin is described in, for example, JP-A-2015-120337 or JP-A-2011-201983. The descriptions in these publications are incorporated herein by reference. Acrylic resins are preferred from the viewpoints of chemical resistance, adhesion for preventing the intrusion of the treatment liquid during immersion, and the degree of freedom for the adherend.
  • the crosslinking agent that can be included in the pressure-sensitive adhesive include an isocyanate compound, an epoxy compound, and an aziridine compound.
  • the pressure-sensitive adhesive may include, for example, a silane coupling agent. The formulation of the pressure-sensitive adhesive can be appropriately set according to the purpose and desired properties.
  • the storage elastic modulus of the pressure-sensitive adhesive layer is preferably from 1.0 ⁇ 10 4 Pa to 1.0 ⁇ 10 7 Pa, and more preferably from 2.0 ⁇ 10 4 Pa to 5.0 ⁇ 10 6 Pa.
  • the storage elastic modulus can be determined, for example, from dynamic viscoelasticity measurement at a temperature of 23 ° C. and an angular velocity of 0.1 rad / s.
  • the thickness of the pressure-sensitive adhesive layer is preferably 1 ⁇ m to 60 ⁇ m, more preferably 3 ⁇ m to 30 ⁇ m. If the thickness is too small, the adhesiveness becomes insufficient, and air bubbles and the like may enter the adhesive interface. If the thickness is too large, problems such as sticking out of the pressure-sensitive adhesive tend to occur.
  • the separator is temporarily attached to the surface of the pressure-sensitive adhesive layer in a releasable manner until the surface protective film is actually used (that is, the surface protective film is bonded to an optical film or an image display device).
  • the separator include a plastic (eg, polyethylene terephthalate (PET), polyethylene, polypropylene) film, nonwoven fabric, or the like, which is surface-coated with a release agent such as a silicone release agent, a fluorine release agent, or a long-chain alkyl acrylate release agent. Paper and the like. Any appropriate thickness can be adopted for the thickness of the separator depending on the purpose.
  • the thickness of the separator is, for example, 10 ⁇ m to 100 ⁇ m.
  • the embodiment of the present invention also includes an optical film with a surface protection film.
  • An optical film with a surface protective film according to an embodiment of the present invention includes an optical film and the surface protective film according to the above item B, which is releasably attached to the optical film.
  • the optical film may be a single film or a laminate.
  • Specific examples of the optical film include a polarizer, a retardation film, a polarizing plate (typically, a laminate of a polarizer and a protective film), a conductive film for a touch panel, a surface-treated film, and for these purposes.
  • a laminate for example, an anti-reflection circular polarizer, a polarizer with a conductive layer for a touch panel, a polarizer with a retardation layer, and a prism sheet-integrated polarizer
  • appropriately laminated according to the requirements is given.
  • the angle between the absorption axis direction of the polarizer and the slow axis direction of the surface protective film substrate is preferably 0 ° ⁇ 30 ° or 90 ° ⁇ 30 °, Preferably it is 0 ° ⁇ 15 ° or 90 ° ⁇ 15 °, more preferably 0 ° ⁇ 5 ° or 90 ° ⁇ 5 °.
  • the angle is in such a range, light leakage, coloring, and rainbow unevenness during an optical inspection can be satisfactorily suppressed. Particularly, in an optical inspection of a large-sized image display device, light leakage at an end portion is remarkable. Can be suppressed.
  • R0 (550), thickness direction retardation Rth (550) and R45 (550) The base material for a surface protective film obtained in each of the examples and comparative examples was cut into a length of 4 cm and a width of 4 cm to obtain a measurement sample.
  • R0 (550), thickness direction retardation Rth (550), and R45 (550) of the measurement sample were measured using a product name "Axoscan" manufactured by Axometrics.
  • the measurement wavelength was 550 nm, and the measurement temperature was 23 ° C.
  • Nijimura The surface protective film substrates obtained in the examples and comparative examples were arranged between two polarizing plates in a crossed Nicols state.
  • the surface protection film substrate was disposed such that the length direction of the surface protection film substrate was parallel to the transmission axis direction of one of the polarizing plates.
  • light from a fluorescent lamp was irradiated from below the lower polarizing plate, and the presence or absence of rainbow unevenness was visually observed.
  • Evaluation was made according to the following criteria. :: No rainbow unevenness was observed. ⁇ : Slight rainbow unevenness was observed. X: Rainbow unevenness was significantly observed. (3) Brightness Commercially available liquid crystal television (manufactured by LG, 49 inches, product name “49SJ8000”)
  • the base material for a surface protective film obtained in each of Examples and Comparative Examples was bonded to the viewing-side polarizing plate of (2) via an adhesive.
  • the surface protective films including the substrate for a surface protective film obtained in Examples and Comparative Examples were bonded.
  • the entire input image was displayed in white and turned on.
  • the brightness of the lit liquid crystal television was measured using a product name “SR-UL2” manufactured by Topcon Technohouse Co., Ltd.
  • “REGQ1298DUHC3” manufactured by Nitto Denko Corporation was attached to the lens portion of SL-UL2 in an axial arrangement so as to be crossed with the viewing side polarizing plate, and the luminance was measured.
  • the directions of measurement were a total of three places: a front direction, a 45 ° azimuth azimuth 45 ° direction, and a 45 ° azimuth 135 ° azimuth direction.
  • Example 1 After vacuum drying a commercially available polycarbonate resin film (manufactured by Mitsubishi Chemical Corporation, trade name “DURABIO T7450A”) at 105 ° C. for 5 hours, a single screw extruder (manufactured by Toshiba Machine Co., cylinder temperature 230 ° C.), a T-die (width) A film having a thickness of 40 ⁇ m was prepared using a film forming apparatus equipped with a cast roll (temperature: 1700 mm, temperature: 230 ° C.), a cast roll (temperature: 120 ° C.) and a winder, and used as a substrate for a surface protective film. This film exhibited flat wavelength dispersion characteristics.
  • R0 (550) of the obtained base material for surface protective film was 5.6 nm
  • Rth (550) was 11.5 nm
  • R45 (550) was 6.02 nm
  • [R45 (550) -R0 (550)] was 0.42 nm.
  • the obtained substrate for a surface protective film was subjected to the above-mentioned evaluations (2) to (4). Table 1 shows the results.
  • Example 2 A substrate for a surface protective film (thickness: 15 ⁇ m) was obtained in the same manner as in Example 1 except that the extrusion amount of the extruder and the speed of the cast roll were adjusted.
  • R0 (550) of the obtained base material for surface protective film was 11.2 nm
  • Rth (550) was 17.8 nm
  • R45 (550) was 11.9 nm
  • [R45 (550) -R0 (550)] was 0.7 nm.
  • the obtained substrate for a surface protective film was subjected to the above-mentioned evaluations (2) to (4). Table 1 shows the results.
  • Example 3 Commercially available polycarbonate resin (trade name “Iupilon H-4000” manufactured by Mitsubishi Engineering-Plastics Corporation) was vacuum-dried at 120 ° C. for 5 hours, and then a single-screw extruder (manufactured by Toshiba Machine Co., cylinder temperature 255 ° C.), T Using a film forming apparatus equipped with a die (width 1700 mm, temperature 255 ° C.), cast roll (temperature 130 ° C.) and a winder, a film having a thickness of 40 ⁇ m was prepared and used as a substrate for a surface protective film.
  • a single-screw extruder manufactured by Toshiba Machine Co., cylinder temperature 255 ° C.
  • T Using a film forming apparatus equipped with a die (width 1700 mm, temperature 255 ° C.), cast roll (temperature 130 ° C.) and a winder, a film having a thickness of 40 ⁇ m was prepared and used as a substrate for
  • R0 (550) of the obtained base material for surface protective film was 2.6 nm
  • Rth (550) was 43.9 nm
  • R45 (550) was 15.1 nm
  • [R45 (550) ⁇ R0 ( 550)] was 12.5 nm
  • the obtained substrate for a surface protective film was subjected to the evaluations of the above (2) to (4), and the results are shown in Table 1.
  • Example 4 A polymer alloy film was prepared using the following raw materials.
  • R0 (550) of the obtained base material for surface protective film was 20 nm
  • Rth (550) was 85 nm
  • R45 (550) was 28.1 nm
  • [R45 (550) -R0 (550)]. was 8.1 nm.
  • the obtained substrate for a surface protective film was subjected to the above-mentioned evaluations (2) to (4). Table 1 shows the results.
  • Example 5 A commercially available triacetyl cellulose (TAC) film (manufactured by FUJIFILM Corporation, product name "TD80UL”) was used as it was to prepare a substrate for a surface protection film (thickness: 80 m).
  • R0 (550) of the substrate for a surface protective film is 4.9 nm
  • Rth (550) is 52.6 nm
  • R45 (550) is 8.7 nm
  • [R45 (550) -R0 (550). ] was 3.8 nm.
  • the substrate for a surface protective film was subjected to the evaluations (2) to (4) above. Table 1 shows the results.
  • Example 6 A substrate for a surface protection film (thickness: 40 ⁇ m) was obtained in the same manner as in Example 1 except that a commercially available cycloolefin-based resin film (manufactured by Zeon Corporation, product name “ZF14”) was used.
  • R0 (550) of the obtained base material for surface protective film was 2.0 nm
  • Rth (550) was 7.9 nm
  • R45 (550) was 2.7 nm
  • [R45 (550) -R0 (550)] was 0.7 nm.
  • the obtained substrate for a surface protective film was subjected to the above-mentioned evaluations (2) to (4). Table 1 shows the results.
  • Example 7 After vacuum drying a commercially available acrylic resin (trade name “CM-205”, manufactured by Kimei Industry Co., Ltd.) at 100 ° C. for 5 hours, a single screw extruder (manufactured by Toshiba Machine Co., cylinder temperature 230 ° C.), T-die (width) A film having a thickness of 160 ⁇ m was produced using a film forming apparatus equipped with a cast roll (temperature 1100 mm, temperature 230 ° C.), a cast roll (temperature 100 ° C.) and a winder. This film was simultaneously biaxially stretched twice in the length and width directions. The stretching temperature was 146 ° C., and the stretching speed was 7.1% / sec in both the length and width directions.
  • CM-205 commercially available acrylic resin
  • a single screw extruder manufactured by Toshiba Machine Co., cylinder temperature 230 ° C.
  • T-die width
  • a film having a thickness of 160 ⁇ m was produced using a film forming apparatus equipped with a cast roll
  • a substrate for a surface protective film (thickness: 40 ⁇ m) was obtained.
  • R0 (550) of the obtained substrate for surface protective film was 0.5 nm
  • Rth (550) was ⁇ 39 nm
  • R45 (550) was 10.1 nm
  • [R45 (550) ⁇ R0 ( 550)] was 9.6 nm.
  • the obtained substrate for a surface protective film was subjected to the above-mentioned evaluations (2) to (4). Table 1 shows the results.
  • a substrate for a surface protective film (40 ⁇ m in thickness) was obtained in the same manner as in Example 4 except that the stretching temperature was 167 ° C.
  • R0 (550) of the obtained base material for surface protective film is 32 nm
  • Rth (550) is 91 nm
  • R45 (550) is 45.1 nm
  • [R45 (550) -R0 (550)] was 13.1 nm.
  • the obtained substrate for a surface protective film was subjected to the above-mentioned evaluations (2) to (4). Table 1 shows the results.
  • a substrate for a surface protection film (thickness: 80 ⁇ m) was obtained in the same manner as in Example 3 except that the thickness was changed to 80 ⁇ m.
  • R0 (550) of the obtained base material for surface protective film is 5.6 nm
  • Rth (550) is 102.6 nm
  • R45 (550) is 19.4 nm
  • [R45 (550) -R0 (550)] was 13.8 nm.
  • the obtained substrate for a surface protective film was subjected to the above-mentioned evaluations (2) to (4). Table 1 shows the results.
  • ⁇ Comparative Example 3> A commercially available ultra-high retardation polyethylene terephthalate film (trade name “Diafoil MRF38CK” manufactured by Mitsubishi Chemical Corporation) was used as it was to prepare a substrate for a surface protection film (thickness: 38 ⁇ m).
  • R0 (550) of the substrate for surface protective film is 2950 nm
  • Rth (550) is 8899.4 nm
  • R45 (550) is 3445.5 nm
  • [R45 (550) -R0 (550)] is It was 495.5 nm.
  • the substrate for a surface protective film was subjected to the evaluations (2) to (4) above. Table 1 shows the results.
  • the substrate for a surface protective film of the example of the present invention prevents rainbow unevenness, has excellent total light transmittance, and suppresses light leakage at the end. . In addition, it was confirmed that the same result as that of rainbow unevenness and light leakage was obtained for coloring.
  • the substrate for a surface protective film of the present invention is suitably used for a surface protective film.
  • the surface protective film of the present invention is used to protect the optical film until the optical film (finally, the image display device) is actually used.

Abstract

Provided is a surface protection film base material that can favorably suppress light leakage, staining, and iridescent irregularity during optical inspections. The phase difference R0(550) of this surface protection film base material in the frontal direction and the phase difference R45(550) of the surface protection film base material in a 45°polar angle and a 45° azimuth angle direction satisfy the following expression: R45(550)- R0(550)≤13 (nm). In one embodiment, the phase difference R0(550) of the surface protection film base material in the frontal direction is 20 nm or lower.

Description

表面保護フィルム用基材、該基材を用いた表面保護フィルム、および表面保護フィルム付光学フィルムSubstrate for surface protective film, surface protective film using the substrate, and optical film with surface protective film
 本発明は、表面保護フィルム用基材、該基材を用いた表面保護フィルム、および表面保護フィルム付光学フィルムに関する。 The present invention relates to a substrate for a surface protective film, a surface protective film using the substrate, and an optical film with a surface protective film.
 光学フィルム(例えば、偏光板、偏光板を含む積層体)には、当該光学フィルムが適用される画像表示装置が実際に使用されるまでの間、当該光学フィルム(最終的には、画像表示装置)を保護するために表面保護フィルムが剥離可能に貼り合わせられている。実用的には、光学フィルム/表面保護フィルムの積層体が表示セルに貼り合わせられて画像表示装置が作製され、当該積層体が貼り合わせられた状態で画像表示装置が光学試験(例えば、点灯試験)に供され、その後の適切な時点で表面保護フィルムが剥離除去される。表面保護フィルムは、代表的には、基材としての樹脂フィルムと粘着剤層とを有する。従来の表面保護フィルムによれば、光学検査の際に光漏れ、着色、虹ムラ等が発生し、光学検査の精度低下の原因となる場合がある。その結果、画像表示装置自体には問題がないにもかかわらず出荷前の光学検査で不良と判断されてしまう場合があり、これにより、画像表示装置の製造から出荷までの効率が低下してしまうという問題がある。 An optical film (for example, a polarizing plate or a laminate including a polarizing plate) includes the optical film (finally, the image display device) until the image display device to which the optical film is applied is actually used. In order to protect the surface protection film, a surface protection film is releasably attached. Practically, an optical display / surface protective film laminate is bonded to a display cell to produce an image display device, and the image display device is subjected to an optical test (for example, a lighting test) in a state where the laminate is bonded. ), And at an appropriate time thereafter, the surface protective film is peeled off. The surface protective film typically has a resin film as a substrate and an adhesive layer. According to the conventional surface protection film, light leakage, coloring, rainbow unevenness, and the like occur during an optical inspection, which may cause a decrease in the accuracy of the optical inspection. As a result, there is a case where the image display device itself is determined to be defective by an optical inspection before shipment even though there is no problem in the image display device itself, thereby lowering the efficiency from manufacture to shipment of the image display device. There is a problem.
特開2017-190406号公報JP 2017-190406 A
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、光学検査時の光漏れ、着色および虹ムラを良好に抑制し得る表面保護フィルム用基材を提供することにある。 The present invention has been made in order to solve the above conventional problems, and a main object of the present invention is to provide a surface protection film base material capable of favorably suppressing light leakage during optical inspection, coloring and rainbow unevenness. It is in.
 本発明の実施形態による表面保護フィルム用基材は、正面方向の位相差R0(550)と極角45°および方位角45°方向の位相差R45(550)とが下記の関係を満足する:
   R45(550)-R0(550)≦13(nm)。
 1つの実施形態においては、上記表面保護フィルム用基材は、上記正面方向の位相差R0(550)が20nm以下である。
 1つの実施形態においては、上記表面保護フィルム用基材は、全光線透過率が80%以上であり、ヘイズが1.0%以下である。
 1つの実施形態においては、上記表面保護フィルム用基材は、ポリカーボネート、ポリエステル、シクロオレフィン系樹脂、アクリル系樹脂およびセルロース樹脂から選択される少なくとも1つの樹脂を含む。1つの実施形態においては、上記表面保護フィルム用基材は、脂環式構造または負の固有複屈折を示す芳香族環構造を有する樹脂を含む。
 本発明の別の局面によれば、表面保護フィルムが提供される。この表面保護フィルムは、上記表面保護フィルム用基材と粘着剤層とを含む。
 本発明のさらに別の局面によれば、表面保護フィルム付光学フィルムが提供される。この表面保護フィルム付光学フィルムは、光学フィルムと、該光学フィルムに剥離可能に貼り合わせられた上記表面保護フィルムと、を含む。
In the substrate for a surface protection film according to the embodiment of the present invention, the phase difference R0 (550) in the front direction and the phase difference R45 (550) in the polar angle of 45 ° and the azimuth angle of 45 ° satisfy the following relationship:
R45 (550) -R0 (550) ≤13 (nm).
In one embodiment, the base material for a surface protective film has a front-side retardation R0 (550) of 20 nm or less.
In one embodiment, the substrate for a surface protective film has a total light transmittance of 80% or more and a haze of 1.0% or less.
In one embodiment, the substrate for a surface protection film contains at least one resin selected from polycarbonate, polyester, cycloolefin-based resin, acrylic resin, and cellulose resin. In one embodiment, the substrate for a surface protection film contains a resin having an alicyclic structure or an aromatic ring structure exhibiting negative intrinsic birefringence.
According to another aspect of the present invention, a surface protective film is provided. This surface protection film includes the above-mentioned substrate for a surface protection film and an adhesive layer.
According to still another aspect of the present invention, there is provided an optical film with a surface protection film. This optical film with a surface protective film includes an optical film and the above-mentioned surface protective film releasably bonded to the optical film.
 本発明の実施形態によれば、正面方向の位相差R0(550)と極角45°および方位角45°方向の位相差R45(550)との差を所定値以下とすることにより、光学検査時の光漏れ、着色および虹ムラを良好に抑制し得る表面保護フィルム用基材を実現することができる。特に、大型の画像表示装置の光学検査において、端部の光漏れを顕著に抑制することができる。 According to the embodiment of the present invention, the optical inspection is performed by setting the difference between the phase difference R0 (550) in the front direction and the phase difference R45 (550) in the polar angle 45 ° and the azimuth angle 45 ° direction to a predetermined value or less. It is possible to realize a substrate for a surface protective film that can effectively suppress light leakage, coloring and rainbow unevenness at the time. In particular, in an optical inspection of a large-sized image display device, light leakage at an end can be significantly suppressed.
 以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
A.表面保護フィルム用基材
 本発明の実施形態による表面保護フィルム用基材は、正面方向の位相差R0(550)と極角45°および方位角45°方向の位相差R45(550)とが下記の関係を満足する:
   R45(550)-R0(550)≦13(nm)。
 [R45(550)-R0(550)]は、好ましくは10nm以下であり、より好ましくは5nm以下であり、さらに好ましくは3nm以下であり、特に好ましくは1nm以下である。一方、[R45(550)-R0(550)]は、好ましくは-5nm以上であり、より好ましくは-3nm以上であり、さらに好ましくは-1nm以上である。[R45(550)-R0(550)]の絶対値は、小さければ小さいほど好ましい。[R45(550)-R0(550)]がこのような範囲であれば、光学検査時の光漏れ、着色および虹ムラを良好に抑制し得る表面保護フィルム用基材を実現することができ、特に、大型の画像表示装置の光学検査において、端部の光漏れを顕著に抑制することができる。例えば、光学検査は、光学フィルム/表面保護フィルムの積層体が表示セルに貼り合わせられた画像表示装置をロール搬送しながら画像表示装置ごとにカメラ(例えば、偏光フィルターを取り付けたカメラ)で撮影することにより、画像表示装置の点灯欠点等を検査する。ここで、画像表示装置が大型である場合には、カメラの画角が非常に大きくなる。画像表示装置の長辺方向の画角は、1つの実施形態においては45°以上であり、別の実施形態においては60°以上であり、さらに別の実施形態においては70°以上であり、さらに別の実施形態においては82°以上であり得る。本発明の実施形態によれば、このように画角が非常に大きい場合であっても端部(または周縁部)の光漏れを顕著に抑制することができる。本発明の実施形態による表面保護フィルム用基材(実質的には、当該基材を含む表面保護フィルム)が適用される画像表示装置のサイズは、好ましくは25インチ以上であり、より好ましくは35インチ以上であり、さらに好ましくは40インチ以上である。画像表示装置が大型であるほど、本発明の効果(特に、端部の光漏れ防止)が顕著となる。さらに、本発明の実施形態によれば、画像表示装置が高精細であるほど、検査精度の向上が顕著となる。なお、本明細書において「R0(λ)」は、23℃における波長λnmの光で測定した正面方向の位相差である。R0(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re=(nx-ny)×dによって求められる。したがって、「R0(550)」は、23℃における波長550nmの光で測定した正面方向の位相差である。ここで、「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率である。また、「R45(λ)」は、23℃における波長λnmの光で測定した極角45°および方位角45°方向の位相差である。ここで、方位角は画像表示装置の長辺方向を0°としたときの方向である。本明細書において角度に言及するときは、基準方向に対して時計回りおよび反時計回りの両方の方向を包含する。
A. Substrate for Surface Protective Film The substrate for surface protective film according to the embodiment of the present invention has a phase difference R0 (550) in the front direction and a phase difference R45 (550) in the polar angle of 45 ° and the azimuth angle of 45 ° as follows. Satisfy the relationship:
R45 (550) -R0 (550) ≤13 (nm).
[R45 (550) -R0 (550)] is preferably at most 10 nm, more preferably at most 5 nm, further preferably at most 3 nm, particularly preferably at most 1 nm. On the other hand, [R45 (550) -R0 (550)] is preferably -5 nm or more, more preferably -3 nm or more, and still more preferably -1 nm or more. The smaller the absolute value of [R45 (550) -R0 (550)], the better. When [R45 (550) -R0 (550)] is in such a range, a substrate for a surface protective film capable of favorably suppressing light leakage, coloring and rainbow unevenness during an optical inspection can be realized, In particular, in an optical inspection of a large-sized image display device, light leakage at an end can be significantly suppressed. For example, in the optical inspection, an image is taken by a camera (for example, a camera equipped with a polarizing filter) for each image display device while the image display device in which the optical film / surface protection film laminate is bonded to the display cell is transported in a roll. Thus, a lighting defect of the image display device is inspected. Here, when the image display device is large, the angle of view of the camera becomes very large. The angle of view in the long side direction of the image display device is 45 ° or more in one embodiment, 60 ° or more in another embodiment, and 70 ° or more in another embodiment. In another embodiment, it may be 82 ° or more. According to the embodiment of the present invention, even when the angle of view is very large, light leakage at an end (or a peripheral edge) can be significantly suppressed. The size of the image display device to which the substrate for a surface protection film (substantially, the surface protection film including the substrate) according to the embodiment of the present invention is applied is preferably 25 inches or more, more preferably 35 inches or more. Inches or more, more preferably 40 inches or more. The larger the image display device is, the more remarkable the effect of the present invention (especially, prevention of light leakage at the end portion). Furthermore, according to the embodiment of the present invention, the higher the definition of the image display device, the more noticeable the improvement of the inspection accuracy. In the present specification, “R0 (λ)” is a front-side phase difference measured with light having a wavelength of λ nm at 23 ° C. R0 (λ) is determined by the formula: Re = (nx−ny) × d, where d (nm) is the thickness of the layer (film). Therefore, “R0 (550)” is the phase difference in the front direction measured with light having a wavelength of 550 nm at 23 ° C. Here, “nx” is the refractive index in the direction in which the in-plane refractive index is maximized (ie, the slow axis direction), and “ny” is the direction perpendicular to the slow axis in the plane (ie, fast phase). (Axial direction). “R45 (λ)” is a phase difference in a direction of a polar angle of 45 ° and an azimuth angle of 45 ° measured with light having a wavelength of λ nm at 23 ° C. Here, the azimuth is a direction when the long side direction of the image display device is 0 °. References to angles herein include both clockwise and counterclockwise directions with respect to a reference direction.
 表面保護フィルム用基材の正面方向の位相差R0(550)は、好ましくは20nm以下であり、より好ましくは15nm以下であり、さらに好ましくは10nm以下であり、特に好ましくは5nm以下である。正面方向の位相差R0(550)は小さいほど好ましく、その下限は理想的には0nmであり、例えば0.3nmであり得る。R0(550)がこのような範囲であれば、本発明の表面保護フィルム用基材を用いた表面保護フィルムを画像表示装置の光学検査に供した場合に、光漏れ、着色および虹ムラを良好に抑制することができる。その結果、画像表示装置の光学検査の精度を顕著に向上させることができ、画像表示装置の製造から出荷までの効率を向上させることができる。このような正面方向の位相差R0(550)は、基材を構成する材料と延伸条件とを適切に組み合わせて設定することにより実現され得る。 (4) The front-side retardation R0 (550) of the surface protective film substrate is preferably 20 nm or less, more preferably 15 nm or less, further preferably 10 nm or less, and particularly preferably 5 nm or less. The phase difference R0 (550) in the front direction is preferably as small as possible, and the lower limit is ideally 0 nm, for example, 0.3 nm. When R0 (550) is within such a range, when the surface protective film using the substrate for a surface protective film of the present invention is subjected to an optical inspection of an image display device, good light leakage, coloring, and uneven rainbow are obtained. Can be suppressed. As a result, the accuracy of the optical inspection of the image display device can be remarkably improved, and the efficiency of the image display device from manufacture to shipment can be improved. Such a front-side phase difference R0 (550) can be realized by appropriately combining and setting the material forming the base material and the stretching conditions.
 表面保護フィルム用基材の極角45°および方位角45°方向の位相差R45(550)は、好ましくは30nm以下であり、より好ましくは20nm以下であり、さらに好ましくは12nm以下であり、特に好ましくは7nm以下である。R45(550)がこのような範囲であれば、上記所望の[R45(550)-R0(550)]が実現しやすくなり、その結果、大型の画像表示装置の光学検査において、端部の光漏れを顕著に抑制することができる。このようなR45(550)は、R0(550)と同様に、基材を構成する材料と延伸条件とを適切に組み合わせて設定することにより実現され得る。 The phase difference R45 (550) in the polar angle 45 ° and the azimuth angle 45 ° direction of the surface protective film substrate is preferably 30 nm or less, more preferably 20 nm or less, further more preferably 12 nm or less, particularly Preferably it is 7 nm or less. When R45 (550) is in such a range, the desired [R45 (550) -R0 (550)] can be easily realized, and as a result, in the optical inspection of a large-sized image display device, the light at the end portion can be obtained. Leakage can be significantly suppressed. Similar to R0 (550), such R45 (550) can be realized by appropriately combining and setting the material forming the base material and the stretching conditions.
 表面保護フィルム用基材の厚み方向位相差Rth(550)は、好ましくは-90nm~+90nmであり、より好ましくは-50nm~+50nmであり、さらに好ましくは-20nm~+20nmである。「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth=(nx-nz)×dによって求められる。したがって、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。ここで、「nz」は厚み方向の屈折率である。 厚 み The thickness direction retardation Rth (550) of the surface protective film substrate is preferably -90 nm to +90 nm, more preferably -50 nm to +50 nm, and still more preferably -20 nm to +20 nm. “Rth (λ)” is a retardation in the thickness direction measured with light having a wavelength of λ nm at 23 ° C. Rth (λ) is determined by the formula: Rth = (nx−nz) × d, where d (nm) is the thickness of the layer (film). Therefore, “Rth (550)” is a retardation in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Here, “nz” is the refractive index in the thickness direction.
 表面保護フィルム用基材は、面内位相差(正面方向の位相差)が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、面内位相差が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、面内位相差が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。 The substrate for a surface protective film may exhibit an inverse dispersion wavelength characteristic in which an in-plane retardation (a retardation in the front direction) increases according to the wavelength of the measurement light, and the in-plane retardation corresponds to the wavelength of the measurement light. It may show a positive wavelength dispersion characteristic that becomes smaller as a result, or may show a flat wavelength dispersion characteristic in which the in-plane phase difference hardly changes depending on the wavelength of the measurement light.
 表面保護フィルム用基材の全光線透過率は、好ましくは80%以上であり、より好ましくは85%以上であり、さらに好ましくは90%以上であり、特に好ましくは95%以上である。さらに、表面保護フィルム用基材のヘイズは、好ましくは1.0%以下であり、より好ましくは0.7%以下であり、さらに好ましくは0.5%以下であり、特に好ましくは0.3%以下である。全光線透過率またはヘイズがこのような範囲であれば、本発明の表面保護フィルム用基材を用いた表面保護フィルムを画像表示装置の光学検査に供した場合に、優れた視認性を確保することができる。その結果、画像表示装置の光学検査の精度を顕著に向上させることができる。 全 The total light transmittance of the substrate for a surface protective film is preferably 80% or more, more preferably 85% or more, further preferably 90% or more, and particularly preferably 95% or more. Further, the haze of the surface protective film substrate is preferably 1.0% or less, more preferably 0.7% or less, further preferably 0.5% or less, and particularly preferably 0.3% or less. % Or less. If the total light transmittance or haze is within such a range, when the surface protective film using the substrate for a surface protective film of the present invention is subjected to optical inspection of an image display device, excellent visibility is ensured. be able to. As a result, the accuracy of the optical inspection of the image display device can be significantly improved.
 表面保護フィルム用基材は、MIT試験における破断までの折り曲げ回数が好ましくは500回以上であり、より好ましくは700回以上であり、さらに好ましくは900回以上であり、特に好ましくは1100回以上である。すなわち、表面保護フィルム用基材は、好ましくは優れた可撓性または耐折り曲げ性を有し得る。このような構成であれば、貼り合わせ時および剥離時の操作性に優れ、かつ、割れが抑制された表面保護フィルムを得ることができる。本発明の実施形態によれば、このような優れた可撓性または耐折り曲げ性と上記のような非常に小さい正面方向の位相差R0(550)とを両立することができる。なお、MIT試験は、JIS P 8115に準拠して行われ得る。 The base material for a surface protective film has a number of bending times to break in an MIT test of preferably 500 or more, more preferably 700 or more, still more preferably 900 or more, and particularly preferably 1100 or more. is there. That is, the substrate for a surface protective film can preferably have excellent flexibility or bending resistance. With such a configuration, it is possible to obtain a surface protective film which is excellent in operability at the time of laminating and peeling and in which cracking is suppressed. According to the embodiment of the present invention, it is possible to achieve both such excellent flexibility or bending resistance and the extremely small front-side phase difference R0 (550) as described above. The MIT test can be performed in accordance with JIS P # 8115.
 表面保護フィルム用基材は、吸水率が好ましくは5%以下であり、より好ましくは4%以下であり、さらに好ましくは2%以下である。また、表面保護フィルム用基材は、40℃および92%RHの環境下に24時間放置した後の透湿度が、好ましくは400g/m・24h以下であり、より好ましくは160g/m・24h以下であり、さらに好ましくは130g/m・24h以下であり、特に好ましくは90g/m・24h以下である。吸水率または透湿度がこのような範囲であれば、加湿環境下における浮きを抑制することができる。その結果、長距離輸送(例えば、輸出)時の品質安定性が確保され得る。なお、吸水率は、JIS K 7209に準拠して測定され得る。透湿度は、JIS Z 0208に準拠して測定され得る(温湿度条件:40℃、90%RH)。 The substrate for a surface protective film has a water absorption of preferably 5% or less, more preferably 4% or less, and further preferably 2% or less. In addition, the substrate for a surface protective film has a moisture permeability of preferably not more than 400 g / m 2 · 24 h, more preferably 160 g / m 2 ··· after being left for 24 hours in an environment of 40 ° C. and 92% RH. and at 24h or less, still more preferably not more than 130 g / m 2 · 24h, most preferably not more than 90g / m 2 · 24h. If the water absorption or the moisture permeability is in such a range, it is possible to suppress floating in a humid environment. As a result, quality stability during long-distance transportation (for example, export) can be ensured. In addition, a water absorption can be measured based on JISK7209. The water vapor transmission rate can be measured according to JIS Z 0208 (temperature and humidity conditions: 40 ° C., 90% RH).
 表面保護フィルム用基材は、ガラス転移温度(Tg)が好ましくは145℃以上であり、より好ましくは160℃以上である。Tgがこのような範囲であれば、表面保護フィルムを作製する際に粘着剤層を表面保護フィルム用基材に直接塗工することにより形成することができる。言い換えれば、所定のフィルム上に形成した粘着剤層を表面保護フィルム用基材に転写する必要がない。したがって、非常に優れた製造効率で表面保護フィルムを作製することができる。一方、表面保護フィルム用基材のTgの上限は、例えば200℃であり得る。 基材 The substrate for a surface protective film has a glass transition temperature (Tg) of preferably 145 ° C or higher, more preferably 160 ° C or higher. When the Tg is in such a range, the pressure-sensitive adhesive layer can be formed by directly applying the pressure-sensitive adhesive layer to the surface protective film base when producing the surface protective film. In other words, there is no need to transfer the pressure-sensitive adhesive layer formed on the predetermined film to the substrate for the surface protection film. Therefore, a surface protection film can be produced with extremely excellent production efficiency. On the other hand, the upper limit of the Tg of the substrate for a surface protective film may be, for example, 200 ° C.
 表面保護フィルム用基材の弾性率は、好ましくは、引張速度100mm/minにおいて50MPa~350MPaである。弾性率がこのような範囲であれば、搬送性および操作性に優れた表面保護フィルムを得ることができる。本発明の実施形態によれば、優れた弾性率(強さ)と上記のような優れた可撓性または耐折り曲げ性(柔らかさ)とを両立することができる。なお、弾性率は、JIS K 7127:1999に準拠して測定される。 (4) The elastic modulus of the surface protective film substrate is preferably 50 MPa to 350 MPa at a tensile speed of 100 mm / min. When the elastic modulus is in such a range, a surface protective film having excellent transportability and operability can be obtained. According to the embodiment of the present invention, it is possible to achieve both excellent elastic modulus (strength) and excellent flexibility or bending resistance (softness) as described above. The modulus of elasticity is measured according to JIS K7127: 1999.
 表面保護フィルム用基材の引張伸度は、好ましくは70%~200%である。引張伸度がこのような範囲であれば、搬送中に破断しにくいという利点を有する。なお、引張伸度は、JIS K 6781に準拠して測定される。 引 張 The tensile elongation of the substrate for a surface protective film is preferably 70% to 200%. When the tensile elongation is in such a range, there is an advantage that it is difficult to break during transportation. The tensile elongation is measured according to JIS @ K # 6781.
 表面保護フィルム用基材は、上記のような所望の特性を有し得る限り、任意の適切な材料で構成され得る。表面保護フィルム用基材は、代表的には樹脂フィルムで構成され得る。フィルムを構成する樹脂としては、例えば、ポリアリレート、ポリアミド、ポリイミド、ポリエステル、ポリアリールエーテルケトン、ポリアミドイミド、ポリエステルイミド、ポリビニルアルコール、ポリフマル酸エステル、ポリエーテルサルフォン、ポリサルフォン、シクロオレフィン系樹脂(例えば、ノルボルネン系樹脂)、ポリカーボネート、ポリエステルカーボネート、セルロース樹脂(例えば、トリアセチルセルロース)、アクリル系樹脂およびポリウレタンが挙げられる。これらの樹脂は、単独で用いてもよく組み合わせて用いてもよい。1つの実施形態においては、上記の樹脂は、脂環式構造または負の固有複屈折を示す芳香族環構造を有していてもよい。脂環式構造としては、例えば、ラクトン環構造、無水グルタル酸構造、グルタルイミド構造、N-置換マレイミド構造、無水マレイン酸構造が挙げられる。負の固有複屈折を示す芳香族環構造としては、例えば、フルオレン構造、ナフタレン構造、アントラセン構造、カルバゾール構造、フタルイミド構造が挙げられる。これらの構造を有する樹脂は、得られるフィルムの複屈折が小さく、フィルム化した際の位相差を抑制することができる。 (4) The substrate for a surface protective film can be made of any appropriate material as long as it has the desired properties as described above. The substrate for a surface protection film can be typically composed of a resin film. Examples of the resin constituting the film include polyarylate, polyamide, polyimide, polyester, polyaryletherketone, polyamideimide, polyesterimide, polyvinyl alcohol, polyfumarate, polyethersulfone, polysulfone, and cycloolefin-based resins (for example, , A norbornene-based resin), polycarbonate, polyester carbonate, a cellulose resin (eg, triacetyl cellulose), an acrylic resin, and a polyurethane. These resins may be used alone or in combination. In one embodiment, the resin may have an alicyclic structure or an aromatic ring structure exhibiting negative intrinsic birefringence. Examples of the alicyclic structure include a lactone ring structure, a glutaric anhydride structure, a glutarimide structure, an N-substituted maleimide structure, and a maleic anhydride structure. Examples of the aromatic ring structure exhibiting negative intrinsic birefringence include a fluorene structure, a naphthalene structure, an anthracene structure, a carbazole structure, and a phthalimide structure. Resins having these structures have a small birefringence in the resulting film and can suppress a phase difference when formed into a film.
 表面保護フィルム用基材は、例えば、上記樹脂から形成されたフィルムをそのまま用いたフィルムであり得る。樹脂からフィルムを形成する方法としては、任意の適切な成形加工法が採用され得る。具体例としては、圧縮成形法、トランスファー成形法、射出成形法、押出成形法、ブロー成形法、粉末成形法、FRP成形法、キャスト塗工法(例えば、流延法)、カレンダー成形法、熱プレス法等が挙げられる。押出成形法またはキャスト塗工法が好ましい。得られるフィルムの平滑性を高め、良好な光学的均一性を得ることができるからである。成形条件は、使用される樹脂の組成や種類、表面保護フィルム用基材に所望される特性等に応じて適宜設定され得る。 基材 The substrate for the surface protective film may be, for example, a film using a film formed from the above resin as it is. As a method of forming a film from a resin, any appropriate molding method can be adopted. Specific examples include a compression molding method, a transfer molding method, an injection molding method, an extrusion molding method, a blow molding method, a powder molding method, an FRP molding method, a cast coating method (for example, a casting method), a calendar molding method, and a hot press. And the like. Extrusion molding or cast coating is preferred. This is because the smoothness of the obtained film can be improved and good optical uniformity can be obtained. The molding conditions can be set as appropriate according to the composition and type of the resin used, the characteristics desired for the substrate for the surface protective film, and the like.
 また例えば、表面保護フィルム用基材は、上記樹脂から形成されたフィルムに延伸処理を施したフィルムであってもよい。フィルムの延伸方法は、代表的には二軸延伸であり、より詳細には逐次二軸延伸または同時二軸延伸である。正面方向の位相差R0(550)が小さい表面保護フィルム用基材が得られるからである。逐次二軸延伸または同時二軸延伸は、代表的にはテンター延伸機を用いて行われる。したがって、フィルムの延伸方向は、代表的にはフィルムの長さ方向および幅方向である。 For example, the base material for a surface protective film may be a film obtained by subjecting a film formed from the above resin to a stretching treatment. The stretching method of the film is typically biaxial stretching, and more specifically, sequential biaxial stretching or simultaneous biaxial stretching. This is because a substrate for a surface protective film having a small front-side retardation R0 (550) can be obtained. The sequential biaxial stretching or simultaneous biaxial stretching is typically performed using a tenter stretching machine. Therefore, the stretching direction of the film is typically the length direction and the width direction of the film.
 延伸温度は、表面保護フィルム用基材に所望されるR0(550)、R45(550)および厚み、使用される樹脂の種類、使用されるフィルムの厚み、延伸倍率等に応じて変化し得る。具体的には、延伸温度は、フィルムのガラス転移温度(Tg)に対し、好ましくはTg+5℃~Tg+50℃であり、より好ましくはTg+10℃~Tg+40℃である。このような温度で延伸することにより、本発明の実施形態において適切な特性を有する表面保護フィルム用基材が得られ得る。 The stretching temperature can be changed according to R0 (550), R45 (550) and thickness desired for the surface protective film substrate, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg + 5 ° C. to Tg + 50 ° C., more preferably Tg + 10 ° C. to Tg + 40 ° C., with respect to the glass transition temperature (Tg) of the film. By stretching at such a temperature, a substrate for a surface protective film having appropriate characteristics in the embodiment of the present invention can be obtained.
 延伸倍率は、表面保護フィルム用基材に所望されるR0(550)、R45(550)および厚み、使用される樹脂の種類、使用されるフィルムの厚み、延伸温度等に応じて変化し得る。二軸延伸(例えば、逐次二軸延伸または同時二軸延伸)を採用する場合には、第1の方向(例えば、長さ方向)の延伸倍率と第2の方向(例えば、幅方向)の延伸倍率とは、好ましくはその差ができる限り小さく、より好ましくは実質的に等しい。このような構成であれば、R0(550)、R45(550)が小さい表面保護フィルム用基材が得られ得る。二軸延伸(例えば、逐次二軸延伸または同時二軸延伸)を採用する場合には、延伸倍率は、第1の方向(例えば、長さ方向)および第2の方向(例えば、幅方向)のそれぞれについて、例えば1.1倍~3.0倍であり得る。 The stretching ratio can be changed according to R0 (550) and R45 (550) and the thickness desired for the surface protective film substrate, the type of resin used, the thickness of the film used, the stretching temperature, and the like. When employing biaxial stretching (for example, sequential biaxial stretching or simultaneous biaxial stretching), stretching ratio in the first direction (for example, length direction) and stretching in the second direction (for example, width direction) The magnification is preferably as small as possible, more preferably substantially equal. With such a configuration, a substrate for a surface protective film having a small R0 (550) and R45 (550) can be obtained. When biaxial stretching (for example, sequential biaxial stretching or simultaneous biaxial stretching) is employed, the stretching ratio is determined in the first direction (for example, the length direction) and the second direction (for example, the width direction). For each, it can be, for example, from 1.1 times to 3.0 times.
 延伸速度は、好ましくは10%/秒以下であり、より好ましくは7%/秒以下であり、さらに好ましくは5%/秒以下であり、特に好ましくは2.5%/秒以下である。このような小さい延伸速度で延伸することにより、R0(550)およびR45(550)が小さい表面保護フィルム用基材が得られ得る。延伸速度の下限は、例えば1.2%/秒であり得る。延伸速度が小さすぎると、生産性が実用的でなくなる場合がある。なお、二軸延伸(例えば、逐次二軸延伸または同時二軸延伸)を採用する場合には、第1の方向(例えば、長さ方向)の延伸速度と第2の方向(例えば、幅方向)の延伸速度とは、好ましくはその差ができる限り小さく、より好ましくは実質的に等しい。このような構成であれば、R0(550)およびR45(550)をより小さくすることができる。 The stretching speed is preferably 10% / sec or less, more preferably 7% / sec or less, further preferably 5% / sec or less, and particularly preferably 2.5% / sec or less. By stretching at such a low stretching speed, a substrate for a surface protective film having small R0 (550) and R45 (550) can be obtained. The lower limit of the stretching speed can be, for example, 1.2% / sec. If the stretching speed is too low, the productivity may not be practical. When biaxial stretching (for example, sequential biaxial stretching or simultaneous biaxial stretching) is employed, the stretching speed in the first direction (for example, the length direction) and the second direction (for example, the width direction) Is preferably as small as possible, and more preferably substantially equal. With such a configuration, R0 (550) and R45 (550) can be further reduced.
 表面保護フィルム用基材は、市販の樹脂フィルムをそのまま用いてもよく、市販の樹脂フィルムを上記のような延伸処理に供することにより形成されてもよい。 基材 The substrate for a surface protective film may be a commercially available resin film as it is, or may be formed by subjecting a commercially available resin film to the above-described stretching treatment.
 表面保護フィルム用基材の厚みは、代表的には10μm~100μmであり、好ましくは20μm~70μmである。 基材 The thickness of the substrate for a surface protection film is typically from 10 μm to 100 μm, preferably from 20 μm to 70 μm.
 表面保護フィルム用基材は、上記のとおり正面方向の位相差を有するので、遅相軸を有し得る。表面保護フィルム用基材(実質的には、表面保護フィルム)が画像表示装置に適用された場合、表面保護フィルム用基材の遅相軸方向は、画像表示装置の長辺方向に対して、好ましくは30°以下であり、より好ましくは15°以下であり、さらに好ましくは5°以下であり、特に好ましくは2°以下である。このような構成であれば、光学検査時の光漏れ、着色および虹ムラを良好に抑制することができ、特に、大型の画像表示装置の光学検査において、端部の光漏れを顕著に抑制することができる。なお、遅相軸は正面方向の位相差が実質的に存在する場合に発現するものであり、正面方向の位相差が0に近づき実質的に存在しない場合には、遅相軸の影響は小さくなる。 基材 Since the substrate for a surface protective film has a retardation in the front direction as described above, it may have a slow axis. When the surface protection film substrate (substantially, the surface protection film) is applied to the image display device, the slow axis direction of the surface protection film substrate is relative to the long side direction of the image display device. It is preferably at most 30 °, more preferably at most 15 °, even more preferably at most 5 °, particularly preferably at most 2 °. With such a configuration, light leakage, coloring, and rainbow unevenness during an optical inspection can be favorably suppressed, and particularly, in an optical inspection of a large-sized image display device, light leakage at an end portion is significantly suppressed. be able to. Note that the slow axis is manifested when the front-side phase difference substantially exists. When the front-side phase difference approaches zero and substantially does not exist, the influence of the slow axis is small. Become.
B.表面保護フィルム
 上記A項に記載の表面保護フィルム用基材は、表面保護フィルムに好適に用いられ得る。したがって、本発明の実施形態は、表面保護フィルムも包含する。本発明の実施形態による表面保護フィルムは、上記A項に記載の表面保護フィルム用基材と粘着剤層とを含む。
B. Surface protective film The substrate for a surface protective film described in the above section A can be suitably used for a surface protective film. Therefore, embodiments of the present invention also include a surface protection film. The surface protective film according to the embodiment of the present invention includes the surface protective film substrate described in the above section A and an adhesive layer.
 粘着剤層を形成する粘着剤としては、任意の適切な粘着剤が採用され得る。粘着剤のベース樹脂としては、例えば、アクリル系樹脂、スチレン系樹脂、シリコーン系樹脂、ウレタン系樹脂、ゴム系樹脂が挙げられる。このようなベース樹脂は、例えば、特開2015-120337号公報または特開2011-201983号公報に記載されている。これらの公報の記載は、本明細書に参考として援用される。耐薬品性、浸漬時における処理液の浸入を防止するための密着性、被着体への自由度等の観点から、アクリル系樹脂が好ましい。粘着剤に含まれ得る架橋剤としては、例えば、イソシアネート化合物、エポキシ化合物、アジリジン化合物が挙げられる。粘着剤は、例えばシランカップリング剤を含んでいてもよい。粘着剤の配合処方は、目的および所望の特性に応じて適切に設定され得る。 粘着 Any suitable pressure-sensitive adhesive can be adopted as the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer. Examples of the base resin of the pressure-sensitive adhesive include an acrylic resin, a styrene resin, a silicone resin, a urethane resin, and a rubber resin. Such a base resin is described in, for example, JP-A-2015-120337 or JP-A-2011-201983. The descriptions in these publications are incorporated herein by reference. Acrylic resins are preferred from the viewpoints of chemical resistance, adhesion for preventing the intrusion of the treatment liquid during immersion, and the degree of freedom for the adherend. Examples of the crosslinking agent that can be included in the pressure-sensitive adhesive include an isocyanate compound, an epoxy compound, and an aziridine compound. The pressure-sensitive adhesive may include, for example, a silane coupling agent. The formulation of the pressure-sensitive adhesive can be appropriately set according to the purpose and desired properties.
 粘着剤層の貯蔵弾性率は、好ましくは1.0×10Pa~1.0×10Paであり、より好ましくは2.0×10Pa~5.0×10Paである。粘着剤層の貯蔵弾性率がこのような範囲であれば、ロール形成時のブロッキングを抑制することができる。なお、貯蔵弾性率は、例えば、温度23℃および角速度0.1rad/sでの動的粘弾性測定から求めることができる。 The storage elastic modulus of the pressure-sensitive adhesive layer is preferably from 1.0 × 10 4 Pa to 1.0 × 10 7 Pa, and more preferably from 2.0 × 10 4 Pa to 5.0 × 10 6 Pa. When the storage elastic modulus of the pressure-sensitive adhesive layer is in such a range, blocking during roll formation can be suppressed. The storage elastic modulus can be determined, for example, from dynamic viscoelasticity measurement at a temperature of 23 ° C. and an angular velocity of 0.1 rad / s.
 粘着剤層の厚みは、好ましくは1μm~60μmであり、より好ましくは3μm~30μmである。厚みが薄すぎると、粘着性が不十分となり、粘着界面に気泡等が入り込む場合がある。厚みが厚すぎると、粘着剤がはみ出すなどの不具合が生じやすくなる。 The thickness of the pressure-sensitive adhesive layer is preferably 1 μm to 60 μm, more preferably 3 μm to 30 μm. If the thickness is too small, the adhesiveness becomes insufficient, and air bubbles and the like may enter the adhesive interface. If the thickness is too large, problems such as sticking out of the pressure-sensitive adhesive tend to occur.
 実用的には、表面保護フィルムが実際に使用される(すなわち、光学フィルムまたは画像表示装置に貼り合わせられる)までの間、粘着剤層表面にセパレーターが剥離可能に仮着されている。セパレーターを設けることにより、粘着剤層を保護するとともに、表面保護フィルムをロール状に巻き取ることが可能となる。セパレーターとしては、例えば、シリコーン系剥離剤、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤等の剥離剤により表面コートされたプラスチック(例えば、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン)フィルム、不織布または紙などが挙げられる。セパレーターの厚みは、目的に応じて任意の適切な厚みを採用することができる。セパレーターの厚みは、例えば10μm~100μmである。 Practically, the separator is temporarily attached to the surface of the pressure-sensitive adhesive layer in a releasable manner until the surface protective film is actually used (that is, the surface protective film is bonded to an optical film or an image display device). By providing the separator, the pressure-sensitive adhesive layer can be protected, and the surface protection film can be wound into a roll. Examples of the separator include a plastic (eg, polyethylene terephthalate (PET), polyethylene, polypropylene) film, nonwoven fabric, or the like, which is surface-coated with a release agent such as a silicone release agent, a fluorine release agent, or a long-chain alkyl acrylate release agent. Paper and the like. Any appropriate thickness can be adopted for the thickness of the separator depending on the purpose. The thickness of the separator is, for example, 10 μm to 100 μm.
C.表面保護フィルム付光学フィルム
 上記B項に記載の表面保護フィルムは、光学フィルム(最終的には、画像表示装置)が実際に使用されるまでの間、当該光学フィルムを保護するために用いられる。したがって、本発明の実施形態は、表面保護フィルム付光学フィルムも包含する。本発明の実施形態による表面保護フィルム付光学フィルムは、光学フィルムと、当該光学フィルムに剥離可能に貼り合わせられた上記B項に記載の表面保護フィルムとを含む。
C. Optical Film with Surface Protective Film The surface protective film described in the above section B is used for protecting the optical film until the optical film (finally, the image display device) is actually used. Therefore, the embodiment of the present invention also includes an optical film with a surface protection film. An optical film with a surface protective film according to an embodiment of the present invention includes an optical film and the surface protective film according to the above item B, which is releasably attached to the optical film.
 光学フィルムは、単一フィルムであってもよく積層体であってもよい。光学フィルムの具体例としては、偏光子、位相差フィルム、偏光板(代表的には、偏光子と保護フィルムとの積層体)、タッチパネル用導電性フィルム、表面処理フィルム、ならびに、これらを目的に応じて適切に積層した積層体(例えば、反射防止用円偏光板、タッチパネル用導電層付偏光板、位相差層付偏光板、プリズムシート一体型偏光板)が挙げられる。 The optical film may be a single film or a laminate. Specific examples of the optical film include a polarizer, a retardation film, a polarizing plate (typically, a laminate of a polarizer and a protective film), a conductive film for a touch panel, a surface-treated film, and for these purposes. A laminate (for example, an anti-reflection circular polarizer, a polarizer with a conductive layer for a touch panel, a polarizer with a retardation layer, and a prism sheet-integrated polarizer) appropriately laminated according to the requirements is given.
 光学フィルムが偏光子を含む場合、偏光子の吸収軸方向と表面保護フィルム用基材の遅相軸方向とのなす角度は、好ましくは0°±30°または90°±30°であり、より好ましくは0°±15°または90°±15°であり、さらに好ましくは0°±5°または90°±5°である。当該角度がこのような範囲であれば、光学検査時の光漏れ、着色および虹ムラを良好に抑制することができ、特に、大型の画像表示装置の光学検査において、端部の光漏れを顕著に抑制することができる。 When the optical film contains a polarizer, the angle between the absorption axis direction of the polarizer and the slow axis direction of the surface protective film substrate is preferably 0 ° ± 30 ° or 90 ° ± 30 °, Preferably it is 0 ° ± 15 ° or 90 ° ± 15 °, more preferably 0 ° ± 5 ° or 90 ° ± 5 °. When the angle is in such a range, light leakage, coloring, and rainbow unevenness during an optical inspection can be satisfactorily suppressed. Particularly, in an optical inspection of a large-sized image display device, light leakage at an end portion is remarkable. Can be suppressed.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。実施例における各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例における「部」および「%」は重量基準である。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. The measuring method of each characteristic in the example is as follows. Unless otherwise specified, “parts” and “%” in Examples are on a weight basis.
(1)R0(550)、厚み方向位相差Rth(550)およびR45(550)
 実施例および比較例で得られた表面保護フィルム用基材を長さ4cmおよび幅4cmに切り出し、測定試料とした。当該測定試料について、Axometrics社製、製品名「Axoscan」を用いてR0(550)、厚み方向位相差Rth(550)およびR45(550)を測定した。測定波長は550nm、測定温度は23℃であった。
(2)虹ムラ
 実施例および比較例で得られた表面保護フィルム用基材を、クロスニコル状態の2枚の偏光板の間に配置した。その際、表面保護フィルム用基材の長さ方向と一方の偏光板の透過軸方向とが平行となるように表面保護フィルム用基材を配置した。その状態で下側偏光板の下側から蛍光灯の光を照射し、虹ムラの有無を目視により観察した。以下の基準で評価した。
     ○:虹ムラは認められなかった
     △:虹ムラがわずかに認められた
     ×:虹ムラが顕著に認められた
(3)輝度
 市販の液晶テレビ(LG社製、49インチ、製品名「49SJ8000」)の視認側偏光板の上に、実施例および比較例で得られた表面保護フィルム用基材を、粘着剤を介して貼り合わせた。すなわち、実施例および比較例で得られた表面保護フィルム用基材を含む表面保護フィルムを貼り合わせた。その状態で、入力画像を全面白表示させて点灯させた。点灯させた液晶テレビの輝度を株式会社トプコンテクノハウス製 製品名「SR-UL2」を用いて測定した。また、SL-UL2のレンズ部に視認側偏光板とクロスニコルになるような軸配置で日東電工社製「REGQ1298DUHC3」を貼り付け、輝度を測定した。測定の方向は、正面方向、極角45°方位角45°方向、および、極角45°方位角135°方向の合計3か所であった。
(4)端部の光漏れ
 市販の液晶テレビ(LG社製、49インチ、製品名「49SJ8000」)の視認側偏光板の上に、実施例および比較例で得られた表面保護フィルム用基材を、粘着剤を介して貼り合わせた。すなわち、実施例および比較例で得られた表面保護フィルム用基材を含む表面保護フィルムを貼り合わせた。その状態で、入力画像を全面白表示させて点灯させた。点灯中の液晶テレビを偏光サングラス越しに観察し、端部の光漏れについて以下の基準で評価した。なお、サングラスに貼りわされている偏光板の吸収軸はメガネの上下方向であった。
     ○:光漏れは認められなかった
     △:光漏れがわずかに認められた
     ×:光漏れが顕著であった
(1) R0 (550), thickness direction retardation Rth (550) and R45 (550)
The base material for a surface protective film obtained in each of the examples and comparative examples was cut into a length of 4 cm and a width of 4 cm to obtain a measurement sample. R0 (550), thickness direction retardation Rth (550), and R45 (550) of the measurement sample were measured using a product name "Axoscan" manufactured by Axometrics. The measurement wavelength was 550 nm, and the measurement temperature was 23 ° C.
(2) Nijimura The surface protective film substrates obtained in the examples and comparative examples were arranged between two polarizing plates in a crossed Nicols state. At that time, the surface protection film substrate was disposed such that the length direction of the surface protection film substrate was parallel to the transmission axis direction of one of the polarizing plates. In this state, light from a fluorescent lamp was irradiated from below the lower polarizing plate, and the presence or absence of rainbow unevenness was visually observed. Evaluation was made according to the following criteria.
:: No rainbow unevenness was observed. Δ: Slight rainbow unevenness was observed. X: Rainbow unevenness was significantly observed. (3) Brightness Commercially available liquid crystal television (manufactured by LG, 49 inches, product name “49SJ8000”) The base material for a surface protective film obtained in each of Examples and Comparative Examples was bonded to the viewing-side polarizing plate of (2) via an adhesive. That is, the surface protective films including the substrate for a surface protective film obtained in Examples and Comparative Examples were bonded. In this state, the entire input image was displayed in white and turned on. The brightness of the lit liquid crystal television was measured using a product name “SR-UL2” manufactured by Topcon Technohouse Co., Ltd. Further, “REGQ1298DUHC3” manufactured by Nitto Denko Corporation was attached to the lens portion of SL-UL2 in an axial arrangement so as to be crossed with the viewing side polarizing plate, and the luminance was measured. The directions of measurement were a total of three places: a front direction, a 45 ° azimuth azimuth 45 ° direction, and a 45 ° azimuth 135 ° azimuth direction.
(4) Light Leakage at the End A surface protective film substrate obtained in Examples and Comparative Examples was placed on a viewing side polarizing plate of a commercially available liquid crystal television (manufactured by LG, 49 inches, product name "49SJ8000"). Were bonded via an adhesive. That is, the surface protective films including the substrate for a surface protective film obtained in Examples and Comparative Examples were bonded. In this state, the entire input image was displayed in white and turned on. The lit liquid crystal television was observed through polarized sunglasses, and light leakage at the end was evaluated according to the following criteria. The absorption axis of the polarizing plate attached to the sunglasses was in the vertical direction of the glasses.
:: no light leakage was observed Δ: slight light leakage was observed ×: light leakage was remarkable
<実施例1>
 市販のポリカーボネート樹脂フィルム(三菱ケミカル社製、商品名「DURABIO T7450A」)を105℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー温度230℃)、Tダイ(幅1700mm、温度230℃)、キャストロール(温度120℃)および巻取機を備えたフィルム製膜装置を用いて、厚み40μmのフィルムを作製し、表面保護フィルム用基材とした。このフィルムはフラットな波長分散特性を示した。得られた表面保護フィルム用基材のR0(550)は5.6nmであり、Rth(550)は11.5nmであり、R45(550)は6.02nmであり、[R45(550)-R0(550)]は0.42nmであった。得られた表面保護フィルム用基材を上記(2)~(4)の評価に供した。結果を表1に示す。
<Example 1>
After vacuum drying a commercially available polycarbonate resin film (manufactured by Mitsubishi Chemical Corporation, trade name “DURABIO T7450A”) at 105 ° C. for 5 hours, a single screw extruder (manufactured by Toshiba Machine Co., cylinder temperature 230 ° C.), a T-die (width) A film having a thickness of 40 μm was prepared using a film forming apparatus equipped with a cast roll (temperature: 1700 mm, temperature: 230 ° C.), a cast roll (temperature: 120 ° C.) and a winder, and used as a substrate for a surface protective film. This film exhibited flat wavelength dispersion characteristics. R0 (550) of the obtained base material for surface protective film was 5.6 nm, Rth (550) was 11.5 nm, R45 (550) was 6.02 nm, and [R45 (550) -R0 (550)] was 0.42 nm. The obtained substrate for a surface protective film was subjected to the above-mentioned evaluations (2) to (4). Table 1 shows the results.
<実施例2>
 押出機の押出量およびキャストロールの速度を調整したこと以外は実施例1と同様にして表面保護フィルム用基材(厚み15μm)を得た。得られた表面保護フィルム用基材のR0(550)は11.2nmであり、Rth(550)は17.8nmであり、R45(550)は11.9nmであり、[R45(550)-R0(550)]は0.7nmであった。得られた表面保護フィルム用基材を上記(2)~(4)の評価に供した。結果を表1に示す。
<Example 2>
A substrate for a surface protective film (thickness: 15 μm) was obtained in the same manner as in Example 1 except that the extrusion amount of the extruder and the speed of the cast roll were adjusted. R0 (550) of the obtained base material for surface protective film was 11.2 nm, Rth (550) was 17.8 nm, R45 (550) was 11.9 nm, and [R45 (550) -R0 (550)] was 0.7 nm. The obtained substrate for a surface protective film was subjected to the above-mentioned evaluations (2) to (4). Table 1 shows the results.
<実施例3>
 市販のポリカーボネート樹脂(三菱エンジニアリングプラスチックス(株)製 商品名「ユーピロンH-4000」を120℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー温度255℃)、Tダイ(幅1700mm、温度255℃)、キャストロール(温度130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み40μmのフィルムを作製し、表面保護フィルム用基材とした。得られた表面保護フィルム用基材のR0(550)は2.6nmであり、Rth(550)は43.9nmであり、R45(550)は15.1nmであり、[R45(550)-R0(550)]は12.5nmであった。得られた表面保護フィルム用基材を上記(2)~(4)の評価に供した。結果を表1に示す。
<Example 3>
Commercially available polycarbonate resin (trade name “Iupilon H-4000” manufactured by Mitsubishi Engineering-Plastics Corporation) was vacuum-dried at 120 ° C. for 5 hours, and then a single-screw extruder (manufactured by Toshiba Machine Co., cylinder temperature 255 ° C.), T Using a film forming apparatus equipped with a die (width 1700 mm, temperature 255 ° C.), cast roll (temperature 130 ° C.) and a winder, a film having a thickness of 40 μm was prepared and used as a substrate for a surface protective film. R0 (550) of the obtained base material for surface protective film was 2.6 nm, Rth (550) was 43.9 nm, R45 (550) was 15.1 nm, and [R45 (550) −R0 ( 550)] was 12.5 nm The obtained substrate for a surface protective film was subjected to the evaluations of the above (2) to (4), and the results are shown in Table 1.
<実施例4>
 下記の原料を用いてポリマーアロイフィルムを作製した。
使用原料
FDPM:9,9-ビス(2-メトキシカルボニルエチル)フルオレン[9,9-ビス(2-カルボキシエチル)フルオレン(またはフルオレン-9,9-ジプロピオン酸)のジメチルエステル]、特開2005-89422号公報の実施例1記載のアクリル酸t-ブチルをアクリル酸メチル[37.9g(0.44モル)]に変更したこと以外は同様にして合成したもの
BPEF:9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、大阪ガスケミカル(株)製
EG:エチレングリコール
PC:ビスフェノールA型ポリカ-ボネート樹脂、三菱エンジニアリングプラスチックス(株)製「ユーピロンH-4000」
<Example 4>
A polymer alloy film was prepared using the following raw materials.
Raw material used: FDPM: 9,9-bis (2-methoxycarbonylethyl) fluorene [dimethyl ester of 9,9-bis (2-carboxyethyl) fluorene (or fluorene-9,9-dipropionic acid)], JP-A-2005 BPEF: 9,9-bis [synthesized in the same manner except that t-butyl acrylate described in Example 1 of JP-A-89422 was changed to methyl acrylate [37.9 g (0.44 mol)]. 4- (2-hydroxyethoxy) phenyl] fluorene, EG manufactured by Osaka Gas Chemical Co., Ltd .: ethylene glycol PC: bisphenol A type polycarbonate resin, "Iupilon H-4000" manufactured by Mitsubishi Engineering-Plastics Corporation.
 FDPM 1.00モル、BPEF 0.80モル、EG 2.20モルに、エステル交換触媒として酢酸マンガン・4水和物2×10-4モルおよび酢酸カルシウム・1水和物8×10-4モルを加え、撹拌しながら徐々に加熱溶融した。230℃まで昇温した後、トリメチルホスフェート14×10-4モル、酸化ゲルマニウム20×10-4モルを加え、270℃、0.13kPa以下に到達するまで、徐々に昇温、減圧しながらEGを除去した。所定の撹拌トルクに到達後、内容物を反応器から取り出し、フルオレン環含有ポリエステルのペレットを調製した。得られたペレットをH-NMRにより分析したところ、フルオレン環含有ポリエステルに導入されたジカルボン酸成分の100モル%がFDPM由来であり、導入されたジオール成分の80モル%がBPEF由来、20モル%がEG由来であった。得られたフルオレン環含有ポリエステルのガラス転移温度Tgは126℃、重量平均分子量Mwは43600であった。得られたフルオレン環含有ポリエステルとPCとを20/80(重量比)で二軸混練機で混練し、ポリマーアロイのペレットを作製した。 To 1.00 mol of FDPM, 0.80 mol of BPEF, 2.20 mol of EG, 2 × 10 −4 mol of manganese acetate tetrahydrate and 8 × 10 −4 mol of calcium acetate monohydrate as transesterification catalysts Was added, and the mixture was gradually heated and melted with stirring. After the temperature was raised to 230 ° C., 14 × 10 −4 mol of trimethyl phosphate and 20 × 10 −4 mol of germanium oxide were added, and the EG was gradually heated and depressurized until the temperature reached 270 ° C. and 0.13 kPa or less. Removed. After reaching a predetermined stirring torque, the contents were taken out of the reactor, and fluorene ring-containing polyester pellets were prepared. When the obtained pellets were analyzed by 1 H-NMR, 100 mol% of the dicarboxylic acid component introduced into the fluorene ring-containing polyester was derived from FDPM, and 80 mol% of the introduced diol component was derived from BPEF, and 20 mol%. % Were from EG. The glass transition temperature Tg of the obtained fluorene ring-containing polyester was 126 ° C., and the weight average molecular weight Mw was 43,600. The obtained fluorene ring-containing polyester and PC were kneaded at 20/80 (weight ratio) with a biaxial kneader to prepare polymer alloy pellets.
 得られたポリマーアロイのペレットを80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製 シリンダー温度255℃)、Tダイ(幅1700mm、温度255℃)、キャストロール(温度125℃)および巻取機を備えたフィルム製膜装置を用いて、厚み160μmのポリマーアロイフィルムを作製した。このフィルムを、長さ方向および幅方向にそれぞれ2倍に同時二軸延伸した。延伸温度は170℃、延伸速度は長さ方向および幅方向ともに1.4%/秒であった。このようにして、表面保護フィルム用基材(厚み40μm)を得た。得られた表面保護フィルム用基材のR0(550)は20nmであり、Rth(550)は85nmであり、R45(550)は28.1nmであり、[R45(550)-R0(550)]は8.1nmであった。得られた表面保護フィルム用基材を上記(2)~(4)の評価に供した。結果を表1に示す。 After vacuum-drying the obtained polymer alloy pellets at 80 ° C. for 5 hours, a single screw extruder (cylinder temperature 255 ° C., manufactured by Toshiba Machine Co., Ltd.), a T-die (width 1700 mm, temperature 255 ° C.), cast roll (temperature 125 C) and a film forming apparatus equipped with a winder to produce a polymer alloy film having a thickness of 160 μm. This film was simultaneously biaxially stretched twice in the length and width directions. The stretching temperature was 170 ° C., and the stretching speed was 1.4% / sec in both the length and width directions. Thus, a substrate for a surface protective film (thickness: 40 μm) was obtained. R0 (550) of the obtained base material for surface protective film was 20 nm, Rth (550) was 85 nm, R45 (550) was 28.1 nm, and [R45 (550) -R0 (550)]. Was 8.1 nm. The obtained substrate for a surface protective film was subjected to the above-mentioned evaluations (2) to (4). Table 1 shows the results.
<実施例5>
 市販のトリアセチルセルロース(TAC)フィルム(富士フイルム社製、製品名「TD80UL」)をそのまま用いて表面保護フィルム用基材(厚み80μm)とした。表面保護フィルム用基材のR0(550)は4.9nmであり、Rth(550)は52.6nmであり、R45(550)は8.7nmであり、[R45(550)-R0(550)]は3.8nmであった。表面保護フィルム用基材を上記(2)~(4)の評価に供した。結果を表1に示す。
<Example 5>
A commercially available triacetyl cellulose (TAC) film (manufactured by FUJIFILM Corporation, product name "TD80UL") was used as it was to prepare a substrate for a surface protection film (thickness: 80 m). R0 (550) of the substrate for a surface protective film is 4.9 nm, Rth (550) is 52.6 nm, R45 (550) is 8.7 nm, and [R45 (550) -R0 (550). ] Was 3.8 nm. The substrate for a surface protective film was subjected to the evaluations (2) to (4) above. Table 1 shows the results.
<実施例6>
 市販のシクロオレフィン系樹脂フィルム(日本ゼオン社製、製品名「ZF14」)を用いたこと以外は実施例1と同様にして表面保護フィルム用基材(厚み40μm)を得た。得られた表面保護フィルム用基材のR0(550)は2.0nmであり、Rth(550)は7.9nmであり、R45(550)は2.7nmであり、[R45(550)-R0(550)]は0.7nmであった。得られた表面保護フィルム用基材を上記(2)~(4)の評価に供した。結果を表1に示す。
<Example 6>
A substrate for a surface protection film (thickness: 40 μm) was obtained in the same manner as in Example 1 except that a commercially available cycloolefin-based resin film (manufactured by Zeon Corporation, product name “ZF14”) was used. R0 (550) of the obtained base material for surface protective film was 2.0 nm, Rth (550) was 7.9 nm, R45 (550) was 2.7 nm, and [R45 (550) -R0 (550)] was 0.7 nm. The obtained substrate for a surface protective film was subjected to the above-mentioned evaluations (2) to (4). Table 1 shows the results.
<実施例7>
 市販のアクリル樹脂(奇美実業社製、商品名「CM-205」)を100℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー温度230℃)、Tダイ(幅1700mm、温度230℃)、キャストロール(温度100℃)および巻取機を備えたフィルム製膜装置を用いて、厚み160μmのフィルムを作製した。このフィルムを、長さ方向および幅方向にそれぞれ2倍に同時二軸延伸した。延伸温度は146℃、延伸速度は長さ方向および幅方向ともに7.1%/秒であった。このようにして、表面保護フィルム用基材(厚み40μm)を得た。得られた表面保護フィルム用基材のR0(550)は0.5nmであり、Rth(550)は-39nmであり、R45(550)は10.1nmであり、[R45(550)-R0(550)]は9.6nmであった。得られた表面保護フィルム用基材を上記(2)~(4)の評価に供した。結果を表1に示す。
<Example 7>
After vacuum drying a commercially available acrylic resin (trade name “CM-205”, manufactured by Kimei Industry Co., Ltd.) at 100 ° C. for 5 hours, a single screw extruder (manufactured by Toshiba Machine Co., cylinder temperature 230 ° C.), T-die (width) A film having a thickness of 160 μm was produced using a film forming apparatus equipped with a cast roll (temperature 1100 mm, temperature 230 ° C.), a cast roll (temperature 100 ° C.) and a winder. This film was simultaneously biaxially stretched twice in the length and width directions. The stretching temperature was 146 ° C., and the stretching speed was 7.1% / sec in both the length and width directions. Thus, a substrate for a surface protective film (thickness: 40 μm) was obtained. R0 (550) of the obtained substrate for surface protective film was 0.5 nm, Rth (550) was −39 nm, R45 (550) was 10.1 nm, and [R45 (550) −R0 ( 550)] was 9.6 nm. The obtained substrate for a surface protective film was subjected to the above-mentioned evaluations (2) to (4). Table 1 shows the results.
<比較例1>
 延伸温度を167℃としたこと以外は実施例4と同様にして表面保護フィルム用基材(厚み40μm)を得た。得られた表面保護フィルム用基材のR0(550)は32nmであり、Rth(550)は91nmであり、R45(550)は45.1nmであり、[R45(550)-R0(550)]は13.1nmであった。得られた表面保護フィルム用基材を上記(2)~(4)の評価に供した。結果を表1に示す。
<Comparative Example 1>
A substrate for a surface protective film (40 μm in thickness) was obtained in the same manner as in Example 4 except that the stretching temperature was 167 ° C. R0 (550) of the obtained base material for surface protective film is 32 nm, Rth (550) is 91 nm, R45 (550) is 45.1 nm, and [R45 (550) -R0 (550)]. Was 13.1 nm. The obtained substrate for a surface protective film was subjected to the above-mentioned evaluations (2) to (4). Table 1 shows the results.
<比較例2>
 厚みを80μmにしたこと以外は実施例3と同様にして表面保護フィルム用基材(厚み80μm)を得た。得られた表面保護フィルム用基材のR0(550)は5.6nmであり、Rth(550)は102.6nmであり、R45(550)は19.4nmであり、[R45(550)-R0(550)]は13.8nmであった。得られた表面保護フィルム用基材を上記(2)~(4)の評価に供した。結果を表1に示す。
<Comparative Example 2>
A substrate for a surface protection film (thickness: 80 μm) was obtained in the same manner as in Example 3 except that the thickness was changed to 80 μm. R0 (550) of the obtained base material for surface protective film is 5.6 nm, Rth (550) is 102.6 nm, R45 (550) is 19.4 nm, and [R45 (550) -R0 (550)] was 13.8 nm. The obtained substrate for a surface protective film was subjected to the above-mentioned evaluations (2) to (4). Table 1 shows the results.
<比較例3>
 市販の超高位相差ポリエチレンテレフタレートフィルム(三菱ケミカル社製、商品名「ダイアホイルMRF38CK」)をそのまま用いて表面保護フィルム用基材(厚み38μm)とした。表面保護フィルム用基材のR0(550)は2950nmであり、Rth(550)は8989.4nmであり、R45(550)は3445.5nmであり、[R45(550)-R0(550)]は495.5nmであった。表面保護フィルム用基材を上記(2)~(4)の評価に供した。結果を表1に示す。
<Comparative Example 3>
A commercially available ultra-high retardation polyethylene terephthalate film (trade name “Diafoil MRF38CK” manufactured by Mitsubishi Chemical Corporation) was used as it was to prepare a substrate for a surface protection film (thickness: 38 μm). R0 (550) of the substrate for surface protective film is 2950 nm, Rth (550) is 8899.4 nm, R45 (550) is 3445.5 nm, and [R45 (550) -R0 (550)] is It was 495.5 nm. The substrate for a surface protective film was subjected to the evaluations (2) to (4) above. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<評価>
 表1から明らかなように、本発明の実施例の表面保護フィルム用基材は、虹ムラが防止され、全光線透過率に優れ、かつ、端部の光漏れが抑制されていることがわかる。なお、着色についても虹ムラおよび光漏れと同様の結果が得られることを確認した。
<Evaluation>
As is clear from Table 1, it can be seen that the substrate for a surface protective film of the example of the present invention prevents rainbow unevenness, has excellent total light transmittance, and suppresses light leakage at the end. . In addition, it was confirmed that the same result as that of rainbow unevenness and light leakage was obtained for coloring.
 本発明の表面保護フィルム用基材は、表面保護フィルムに好適に用いられる。本発明の表面保護フィルムは、光学フィルム(最終的には、画像表示装置)が実際に使用されるまでの間、当該光学フィルムを保護するために用いられる。本発明の表面保護フィルム用基材および表面保護フィルムを用いることにより、画像表示装置の光学検査の精度を顕著に向上させることができる。
 
 
The substrate for a surface protective film of the present invention is suitably used for a surface protective film. The surface protective film of the present invention is used to protect the optical film until the optical film (finally, the image display device) is actually used. By using the surface protective film substrate and the surface protective film of the present invention, the precision of the optical inspection of the image display device can be significantly improved.

Claims (7)

  1.  正面方向の位相差R0(550)と極角45°および方位角45°方向の位相差R45(550)とが下記の関係を満足する、表面保護フィルム用基材:
       R45(550)-R0(550)≦13(nm)。
    A base material for a surface protective film, wherein the phase difference R0 (550) in the front direction and the phase difference R45 (550) in the polar angle of 45 ° and the azimuth angle of 45 ° satisfy the following relationship:
    R45 (550) -R0 (550) ≤13 (nm).
  2.  前記正面方向の位相差R0(550)が20nm以下である、請求項1に記載の表面保護フィルム用基材。 The base material for a surface protective film according to claim 1, wherein the retardation R0 (550) in the front direction is 20 nm or less.
  3.  全光線透過率が80%以上であり、ヘイズが1.0%以下である、請求項1または2に記載の表面保護フィルム用基材。 The substrate for a surface protective film according to claim 1 or 2, wherein the total light transmittance is 80% or more and the haze is 1.0% or less.
  4.  前記表面保護フィルム用基材が、ポリカーボネート、ポリエステル、シクロオレフィン系樹脂、アクリル系樹脂およびセルロース樹脂から選択される少なくとも1つの樹脂を含む、請求項1から3のいずれかに記載の表面保護フィルム用基材。 The surface protection film according to any one of claims 1 to 3, wherein the surface protection film substrate includes at least one resin selected from polycarbonate, polyester, cycloolefin-based resin, acrylic resin, and cellulose resin. Base material.
  5.  前記表面保護フィルム用基材が、脂環式構造または負の固有複屈折を示す芳香族環構造を有する樹脂を含む、請求項4に記載の表面保護フィルム用基材。 The substrate for a surface protective film according to claim 4, wherein the substrate for a surface protective film includes a resin having an alicyclic structure or an aromatic ring structure exhibiting negative intrinsic birefringence.
  6.  請求項1から5のいずれかに記載の表面保護フィルム用基材と粘着剤層とを含む、表面保護フィルム。 A surface protective film comprising the substrate for a surface protective film according to claim 1 and a pressure-sensitive adhesive layer.
  7.  光学フィルムと、該光学フィルムに剥離可能に貼り合わせられた請求項6に記載の表面保護フィルムと、を含む、表面保護フィルム付光学フィルム。
     
    An optical film with a surface protective film, comprising: an optical film; and the surface protective film according to claim 6, which is releasably attached to the optical film.
PCT/JP2019/020711 2018-09-11 2019-05-24 Surface protection film base material, surface protection film using surface protection film base material, and optical film having surface protection film WO2020054135A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980059578.5A CN112673292A (en) 2018-09-11 2019-05-24 Base material for surface protection film, surface protection film using the same, and optical film with surface protection film
JP2020546689A JPWO2020054135A1 (en) 2018-09-11 2019-05-24 A base material for a surface protective film, a surface protective film using the base material, and an optical film with a surface protective film.
KR1020217002234A KR102604387B1 (en) 2018-09-11 2019-05-24 A base material for a surface protection film, a surface protection film using the base material, and an optical film with a surface protection film.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-169431 2018-09-11
JP2018169431 2018-09-11

Publications (1)

Publication Number Publication Date
WO2020054135A1 true WO2020054135A1 (en) 2020-03-19

Family

ID=69777733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020711 WO2020054135A1 (en) 2018-09-11 2019-05-24 Surface protection film base material, surface protection film using surface protection film base material, and optical film having surface protection film

Country Status (4)

Country Link
JP (1) JPWO2020054135A1 (en)
KR (1) KR102604387B1 (en)
CN (1) CN112673292A (en)
WO (1) WO2020054135A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194532A (en) * 1999-10-27 2001-07-19 Kanegafuchi Chem Ind Co Ltd Optical film and its manufacturing method
WO2011034159A1 (en) * 2009-09-18 2011-03-24 積水化学工業株式会社 Separator and laminate
JP2012141595A (en) * 2010-12-15 2012-07-26 Asahi Kasei Chemicals Corp Laminate surface protective film for optical member

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302960A (en) * 1999-04-19 2000-10-31 Kanegafuchi Chem Ind Co Ltd Optical film
JP2001131400A (en) * 1999-11-05 2001-05-15 Kanegafuchi Chem Ind Co Ltd Resin composition and optical film
JP2001221915A (en) * 2000-02-07 2001-08-17 Kanegafuchi Chem Ind Co Ltd Optical film, polarizer protective film consisting of that film, and polarizing plate
JP4421737B2 (en) * 2000-05-10 2010-02-24 株式会社カネカ Optical film made of low-birefringence graft-modified norbornene resin
TW499573B (en) * 2000-10-24 2002-08-21 Fuji Photo Film Co Ltd Polarizing plate formed from polymer film and polarizing film
CN101311755A (en) * 2007-05-23 2008-11-26 富士胶片株式会社 Optical film, optical compensation film, polarizing plate, and liquid-crystal display device
JP6743806B2 (en) * 2015-03-20 2020-08-19 コニカミノルタ株式会社 Optical film and method of manufacturing optical film
US10642391B2 (en) * 2015-06-19 2020-05-05 Lg Electronics Inc. Touch panel and display device
JP2017190406A (en) 2016-04-14 2017-10-19 日東電工株式会社 Adhesive sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194532A (en) * 1999-10-27 2001-07-19 Kanegafuchi Chem Ind Co Ltd Optical film and its manufacturing method
WO2011034159A1 (en) * 2009-09-18 2011-03-24 積水化学工業株式会社 Separator and laminate
JP2012141595A (en) * 2010-12-15 2012-07-26 Asahi Kasei Chemicals Corp Laminate surface protective film for optical member

Also Published As

Publication number Publication date
KR20210057001A (en) 2021-05-20
CN112673292A (en) 2021-04-16
KR102604387B1 (en) 2023-11-21
JPWO2020054135A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP4938632B2 (en) Liquid crystal panel and liquid crystal display device
US7505099B2 (en) Optical resin film and polarizing plate and liquid crystal display using same
JP5157897B2 (en) Polarizing plate protective film, polarizing plate and liquid crystal display device
JP2008129465A (en) Retardation film
JP2013152430A (en) Optical film, laminated film, and manufacturing method of these
JP2013134336A (en) Layered film, polarizing plate, liquid crystal display device, and manufacturing method of optical film
WO2016190406A1 (en) Horizontally aligned liquid crystal display device
JP2013050482A (en) Optical laminated film, and polarizing plate and liquid crystal display device using the same
JP2013083953A (en) Laminated optical film, and polarizing plate and liquid crystal display device using the same
JPWO2008050603A1 (en) IPS type liquid crystal display device and method of manufacturing IPS type liquid crystal display device
TWI749694B (en) Polarizing plate and optical display apparatus comprising the same
JP2020033418A (en) Base material for surface protective film, production method of the base material, surface protective film using the base material, and optical film with surface productive film
WO2010119968A1 (en) Adhesive layer-attached retardation film, and elliptical polarizing plate and liquid crystal display device each utilizing same
JP2012047862A (en) Polarizer protective film, rolled polarizing plate, and liquid crystal display device
JP2010007036A (en) Norbornene-based polymer mixture and method for producing the same, and optical material using the norbornene-based polymer mixture
KR20100037033A (en) Liquid crystal display device
JP5463020B2 (en) Liquid crystal panel and liquid crystal display device
KR102642055B1 (en) Polarizing plate and optical display apparatus comprising the same
KR102604387B1 (en) A base material for a surface protection film, a surface protection film using the base material, and an optical film with a surface protection film.
JP5446862B2 (en) Horizontal electric field switching mode type liquid crystal display device
JP7317475B2 (en) Substrate for surface protective film, surface protective film using the substrate, and polarizing plate with surface protective film and retardation layer
TW202037942A (en) Polarizing plate and optical display apparatus comprising the same
JP2014098893A (en) Optical film and production method of the same, polarizing plate and liquid crystal display device
TWI823470B (en) Optical film, polarizing plate comprising the same, and optical display apparatus comprising the same
JP7389656B2 (en) Image display device and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546689

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860693

Country of ref document: EP

Kind code of ref document: A1