WO2020054078A1 - Construction machine - Google Patents

Construction machine Download PDF

Info

Publication number
WO2020054078A1
WO2020054078A1 PCT/JP2018/034309 JP2018034309W WO2020054078A1 WO 2020054078 A1 WO2020054078 A1 WO 2020054078A1 JP 2018034309 W JP2018034309 W JP 2018034309W WO 2020054078 A1 WO2020054078 A1 WO 2020054078A1
Authority
WO
WIPO (PCT)
Prior art keywords
turning
revolving
controller
automatically
construction machine
Prior art date
Application number
PCT/JP2018/034309
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 除村
智之 齋藤
坂本 博史
秀一 森木
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to PCT/JP2018/034309 priority Critical patent/WO2020054078A1/en
Priority to JP2020527972A priority patent/JP6991331B2/en
Publication of WO2020054078A1 publication Critical patent/WO2020054078A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives

Definitions

  • the present invention relates to a swing type construction machine.
  • a work machine controller updates a design surface indicating a target shape to be excavated and automatically adjusts the position of a blade edge of a bucket with respect to the updated design surface, thereby automatically setting a front surface.
  • An excavation control system of a hydraulic shovel that directly faces a work machine to a design surface is disclosed.
  • an object of the present invention is to provide a construction machine capable of accurately facing a revolving superstructure to a target position regardless of the skill or inertia of an operator.
  • the present invention provides a traveling body, a revolving body pivotally mounted above the traveling body, a front working machine attached to a front portion of the revolving body, An operating device for turning the body, a turning motor for driving the turning body, a directional control valve for controlling a flow of hydraulic oil supplied to the turning motor, and a pilot pressure applied to the directional control valve.
  • the revolving superstructure can accurately face the target position regardless of the skill or inertia of the operator. Problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.
  • FIG. 1 is an external perspective view illustrating a configuration example of a hydraulic shovel according to an embodiment of the present invention. It is a figure which shows the structure of the hydraulic circuit and electric circuit which concern on the turning operation
  • FIG. 3 is a functional block diagram illustrating a configuration of functions of a controller. 6 is a flowchart illustrating a flow of a process executed in the controller.
  • the hydraulic excavator 1 includes a traveling body 101 for traveling on a road surface, a revolving body 102 that is rotatably mounted above the traveling body 101 via a revolving device (not shown), and A front work machine 103 movably mounted to perform work such as excavation.
  • the swing body 102 swings with respect to the traveling body 101 by the driving force of a swing motor 24 (see FIG. 2) provided in the swing device.
  • An operation lever 211 (see FIG. 2) as an operation device for turning the revolving unit 102 is provided in the cab 21. The specific turning operation of the turning body 102 will be described later.
  • the front working machine 103 has a base end rotatably attached to the revolving unit 102, and a boom 31 that rotates up and down (upward) with respect to the revolving unit 102, and is rotatable at the distal end of the boom 31.
  • Arm 32 that is attached to the boom 31 and pivots back and forth with respect to the boom 31; and a bucket 33 that is rotatably attached to the tip of the arm 32 and pivots back and forth with respect to the arm 32 I have.
  • the boom cylinder 310 rotates the boom 31 with respect to the revolving unit 102 when the rod expands and contracts.
  • the arm cylinder 320 rotates the arm 32 with respect to the boom 31 as the rod expands and contracts.
  • the bucket cylinder 330 rotates the bucket 33 with respect to the arm 32 when the rod expands and contracts.
  • the hydraulic excavator 1 further includes a GNSS antenna 41, a vehicle body IMU 42, a boom IMU 43A, an arm IMU 43B, and a bucket IMU 43C.
  • the vehicle body IMU 42 is an inertial measurement unit (IMU) that detects a three-dimensional angular velocity and acceleration of the vehicle body, and is attached to, for example, a front portion of the cab 21.
  • the vehicle body IMU 42 is an embodiment of an angular velocity sensor for detecting the turning angular velocity ⁇ of the revolving unit 102 and also an embodiment of an inclination angle sensor for detecting an inclination angle (posture) of the vehicle body.
  • the boom IMU 43A is an inertial measurement device that detects a three-dimensional angular velocity and acceleration of the boom 31, and is attached to a side of the boom 31.
  • the arm IMU 43B is an inertial measurement device that detects a three-dimensional angular velocity and acceleration of the arm 32, and is attached to a side of the arm 32.
  • the bucket IMU 43C is an inertial measurement device that detects a three-dimensional angular velocity and acceleration of the bucket 33, and is attached to a tip end of the bucket cylinder 330 on the rod side.
  • the boom IMU 43A, the arm IMU 43B, and the bucket IMU 43C are one mode of a posture sensor that detects the posture of the front work machine 103.
  • the “boom IMU 43A, the arm IMU 43B, and the bucket IMU 43C” are collectively referred to as “front IMUs 43A, 43B, 43C”.
  • FIG. 2 is a diagram showing the configuration of a hydraulic circuit and an electric circuit related to the turning operation of the turning body 102 in the excavator 1.
  • the hydraulic circuit related to the swing operation of the swing body 102 includes a main pump 232 and a pilot pump 233 driven by the engine 231, a hydraulic oil tank 234 that stores hydraulic oil, a swing motor 24 that drives the swing body 102, and a swing.
  • the pilot pump 233 is a fixed-displacement type hydraulic pump that sucks hydraulic oil from a hydraulic oil tank 234 and supplies it to the pair of pressure receiving chambers 241X and 241Y of the direction control valve 241.
  • a relief valve 235 is provided on the discharge side of the pilot pump 233, and when the discharge pressure of the pilot pump 233 exceeds a predetermined set pressure, excess pressure is relieved to the hydraulic oil tank 234.
  • the direction control valve 241 is a tandem center type spool valve provided between the main pump 232 and the swing motor 24, and operates with the first switching position 241A for rotating the swing motor 24 in one direction and the main pump 232. It has a neutral position 241N for returning the hydraulic oil discharged from the main pump 232 to the hydraulic oil tank 234 by communicating with the oil tank 234, and a second switching position 241B for rotating the turning motor 24 in the other direction. .
  • the first switching position 241A, the neutral position 241N, and the second switching position 241B are switched by the stroke of the internal spool according to the magnitude of the pilot pressure acting on each of the pair of pressure receiving chambers 241X, 241Y. Thereby, the flow of the hydraulic oil supplied from the main pump 232 to the turning motor 24 is controlled.
  • Each of the pair of pilot valves 242A and 242B is an electromagnetic proportional valve, and includes a closed position 242X that allows the pressure receiving chambers 241X and 241Y of the direction control valve 241 to communicate with the hydraulic oil tank 234, a pilot pump 233 and the direction control valve 241. And an open position 242Y for communicating the pressure receiving chambers 241X and 241Y.
  • an operation signal that is an electric signal based on the operation direction and the operation amount is output to the pair of pilot valves 242A and 242B via the controller 5.
  • Each of the pair of pilot valves 242A and 242B opens at an opening proportional to the current value output from the controller 5, that is, switches from the closed position 242X to the open position 242Y, and a pilot pressure having a magnitude corresponding to the opening. Is generated and acts on each of the pair of pressure receiving chambers 241X and 241Y of the direction control valve 241.
  • the generated pilot pressures are respectively detected by pressure sensors 44A and 44B provided between each pair of pilot valves 242A and 242B and each of the pressure receiving chambers 241X and 241Y.
  • the pilot pressure generated by one pilot valve 242A and applied to one pressure receiving chamber 241X of the directional control valve 241 is generated by the other pilot valve 242B and applied to the other pressure receiving chamber 241Y of the directional control valve 241.
  • the direction control valve 241 switches to the first switching position 241A, and the turning motor 24 rotates in one direction. Thereby, the revolving superstructure 102 revolves in one direction.
  • the pilot pressure generated by the other pilot valve 242B and applied to the other pressure receiving chamber 241Y of the directional control valve 241 is generated by the one pilot valve 242A to the one pressure receiving chamber 241X of the directional control valve 241. If it is higher than the applied pilot pressure, the direction control valve 241 switches to the second switching position 241B, and the swing motor 24 rotates in the other direction. Thereby, the revolving superstructure 102 revolves in the other direction.
  • the direction control valve 241 switches to the neutral position 241N, and the hydraulic oil from the main pump 232 is turned by the turning motor 24. Is not supplied to the motor, so that the turning motor 24 stops. Thus, the swing body 102 stops the swing operation.
  • the revolving revolving structure 102 when the revolving revolving structure 102 is directly opposed to the work target (excavation target), the revolving revolving structure 102 is output after the controller 5 outputs a command signal for stopping the revolving operation. Also keeps turning for a while due to inertia. Therefore, the controller 5 needs to output a command signal for stopping the turning operation in consideration of the turning angle ⁇ (hereinafter, referred to as “swirl flow angle ⁇ ”) generated by the inertia of the turning body 102.
  • the turning angle ⁇ hereinafter, referred to as “swirl flow angle ⁇ ”
  • the controller 5 calculates the turning flow angle ⁇ based on the detection data from the vehicle body IMU 42, and outputs a deceleration start timing (a command signal for stopping the turning operation) for stopping accurately at the target stop position. Timing).
  • the “target stop position” is a position of a target work surface of the work object of the hydraulic shovel 1 that faces the revolving unit 102, and is simply referred to as a “target position” below.
  • the swirling flow angle ⁇ is calculated by the following calculation method.
  • the turning angular velocity of the pivoting body 102 and ⁇ [deg / s], the moment of inertia and J [kg ⁇ m 2], the kinetic energy of the swing structure 102 is represented by J ⁇ 2/2 [J].
  • the torque received by the revolving unit 102 from the revolving motor 24 is Tq [N ⁇ m]
  • the work performed by the swing motor 24 is represented by Tq ⁇ ⁇ [J].
  • the moment of inertia J of the revolving superstructure 102 varies depending on the posture of the front work machine 103, but by predetermining the posture of the representative basic front work machine 103, the moment of inertia J in Equation (3) is determined. In this case, the moment of inertia Jc (constant value) in the posture of the front work machine 103 can be used. Thereby, the calculation formula of the swirling flow angle ⁇ is simplified as represented by the following formula (4).
  • the controller 5 calculates the target turning angle ⁇ (hereinafter, simply referred to as “target turning angle ⁇ ”) from the position information measured by the GNSS antenna 41 to the target position, based on the turning flow angle calculated by Expression (4).
  • a control signal (a control signal for stopping the turning operation) is output to each of the pair of pilot valves 242A and 242B so that the pilot pressure becomes 0 MPa.
  • the moment of inertia J in Equation (3) may be changed according to the attitude of the front work machine 103.
  • the value of the proportionality constant C in Equation (4) is detected by the front IMUs 43A, 43B, and 43C. It changes according to the attitude of the front working machine 103 performed.
  • the swirling flow angle ⁇ in consideration of the actual posture of the front work machine 103 can be calculated, and the revolving superstructure 102 can be more accurately opposed to the target position.
  • FIG. 3 is a functional block diagram showing the configuration of the functions of the controller 5.
  • FIG. 4 is a flowchart illustrating a flow of processing executed in the controller 5.
  • the controller 5 is configured such that a CPU, a RAM, a ROM, an input I / F, and an output I / F are connected to each other via a bus, and controls the pair of pilot valves 242A and 242B to control the revolving unit 102 ( 1) is automatically started and stopped.
  • various sensors such as a GNSS antenna 41, a vehicle body IMU 42, and front IMUs 43A, 43B, and 43C are connected to an input I / F, and an operation lever 211 and a pair of pilot valves 242A and 242B are output I / Fs. It is connected to the.
  • the CPU reads out a control program (software) stored in a recording medium such as a ROM or an optical disk, expands the control program on the RAM, and executes the expanded control program.
  • a control program software stored in a recording medium such as a ROM or an optical disk
  • expands the control program on the RAM and executes the expanded control program.
  • the functions of the controller 5 are realized in cooperation with the hardware.
  • the controller 5 is described as a computer configured by a combination of software and hardware.
  • the present invention is not limited to this.
  • An integrated circuit that realizes the function of the control program to be performed may be used.
  • the controller 5 includes a data acquisition unit 51, a storage unit 52, a calculation unit 53, a determination unit 54, and a control unit 55.
  • the data acquisition unit 51 includes the position information of the hydraulic excavator 1 (the swing body 102) measured by the GNSS antenna 41, the swing angular velocity ⁇ and the body inclination angle ⁇ of the swing body 102 detected by the body IMU 42, the front IMUs 43A, 43B, Data on the attitude of the front work machine 103 detected by 43C, the pressure values detected by the pressure sensors 44A and 44B, and the temperature detected by the temperature sensor 45 are obtained.
  • the operation lever 211 has a switch 211A that invalidates the operation of the operation lever 211 and automatically starts and stops the turning operation of the turning body 102 by the controller 5, and the data acquisition unit 51 An operation signal from the switch 211A is obtained. Since the switch 211A is provided on the operation lever 211, the switching operation from the manual turning operation by the operator to the automatic turning control by the controller 5 is facilitated.
  • the excavator 1 includes a pressure sensor 44 that detects a pilot pressure generated by the pair of pilot valves 242A and 242B, and a temperature sensor 45 that detects the temperature of hydraulic oil supplied to the swing motor 24.
  • the data acquisition unit 51 acquires the pressure value detected by the pressure sensor 44 and the data related to the temperature detected by the temperature sensor 45.
  • the storage unit 52 includes a target position storage unit 52A and a threshold storage unit 52B.
  • the target position storage unit 52A stores a target position preset by the operator.
  • a monitor 212 is provided in the operator's cab 21, and the monitor 212 displays design surface information (such as map information) indicating the shape of the work target of the excavator 1.
  • the operator selects a construction design surface to be a target shape from the design surfaces displayed on the monitor 212.
  • the target position is set and stored in the target position storage unit 52A.
  • the threshold storage unit 52B includes a first threshold ⁇ th that is a turning angle at which the turning operation of the revolving unit 102 is automatically started under the control of the controller 5, and a tilt of the vehicle body that automatically starts the turning operation of the revolving unit 102 under the control of the controller 5.
  • the second threshold value ⁇ th which is an angle
  • the third threshold value Tth which is the temperature of hydraulic oil for automatically starting the turning operation of the turning body 102 under the control of the controller 5, are stored.
  • the calculation unit 53 calculates the target turning angle ⁇ based on the position information of the turning body 102 measured by the GNSS antenna 41 and the target position stored in the target position storage unit 52A.
  • the calculation unit 53 calculates the turning flow angle ⁇ based on the angular velocity ⁇ of the turning body 102 detected by the vehicle body IMU 42.
  • the determination unit 54 includes a deceleration start position determination unit 54A and a condition determination unit 54B.
  • the condition determination unit 54B determines whether or not each of the first, second, and third conditions is satisfied.
  • the “first condition” is a condition ( ⁇ ⁇ ⁇ th) in which the target turning angle ⁇ calculated by the calculation unit 53 is equal to or larger than the first threshold ⁇ th stored in the threshold storage unit 52B.
  • the “second condition” is a condition ( ⁇ ⁇ ⁇ th) that the inclination angle ⁇ of the vehicle body detected by the vehicle body IMU 42 is equal to or smaller than the second threshold value ⁇ th stored in the threshold value storage unit 52B.
  • the “third condition” is a condition (T ⁇ Tth) in which the temperature T detected by the temperature sensor 45 is equal to or higher than the third threshold Tth stored in the threshold storage unit 52B.
  • the control unit 55 includes a lever control unit 55A, a pilot pressure control unit 55B, and a display control unit 55C.
  • the lever control unit 55A outputs an input amount from the operation lever 211 to a pilot pressure control unit 55B described later.
  • the lever control unit 55A sends a control signal for invalidating the operation of the operation lever 211 to a pilot pressure control unit 55B described later. And the input amount from the operation lever 211 is invalidated.
  • the pilot pressure control unit 55B sends a pair of control signals for controlling the pilot pressure required for the turning operation to a pair. It outputs to each of pilot valves 242A and 242B. Accordingly, the swing body 102 starts a swing operation based on the control signal output from the pilot pressure control unit 55B.
  • the pilot pressure control unit 55B transmits a pair of control signals for controlling the pilot pressure to 0 MPa. Is output to each of the pilot valves 242A and 242B. As a result, the revolving superstructure 102 starts to decelerate based on the control signal output from the pilot pressure control unit 55B, and stops after revolving due to inertia.
  • the display control unit 55C When the position information measured by the GNSS antenna 41 is determined to be the target position, the display control unit 55C outputs a signal to the monitor 212 to display that the revolving unit 102 has stopped at the target position. I do.
  • the display control unit 55C determines that the switch 211A is enabled (ON state) and that at least one of the first, second, and third conditions is not satisfied by the condition determination unit 54B. In this case, a signal for displaying that the turning operation of the turning body 102 is not automatically performed is output to the monitor 212.
  • the display control unit 55C automatically performs the revolving operation of the revolving unit 102.
  • a signal for displaying that the operation is being performed is output to the monitor 212.
  • the monitor 212 indicates that the revolving unit 102 has stopped at the target position, that the revolving unit 102 will not automatically perform the revolving operation, and that the revolving unit 102 will not revolve. It is an aspect of a notifying device for notifying that the operation is automatically performed.
  • the method of notifying the operator does not necessarily need to be displayed on the monitor 212, and may be, for example, an alarm.
  • the controller 5 first determines whether the switch 211A is in the ON state, that is, whether the switch 211A is enabled (step S501).
  • step S501 determines whether the switch 211A is turned on in step S501 (step S501 / YES), that is, when the data acquisition unit 51 acquires an operation signal from the switch 211A, the lever control unit 55A reduces the input amount from the operation lever 211. It is invalidated (step S502).
  • step S501 if the switch 211A has not been turned on in step S501 (step S501 / NO), that is, the switch 211A remains off (invalid), and the data acquisition unit 51 acquires an operation signal from the switch 211A. If not, the process ends without performing control related to automatic turning of the revolving body 102 by the controller 5.
  • the data acquisition unit 51 acquires the current state of the vehicle body, that is, the initial state of the vehicle body before starting the automatic turning of the revolving unit 102 under the control of the controller 5. (Step S503). Specifically, in step S503, the data acquisition unit 51 determines the initial position information of the excavator 1 (hereinafter, referred to as “initial position information”) measured by the GNSS antenna 41, and the entire vehicle body detected by the vehicle body IMU. , And the temperature T of the hydraulic oil supplied to the turning motor 24 detected by the temperature sensor 45.
  • initial position information the initial position information of the excavator 1
  • the calculation unit 53 calculates the initial target turning angle ⁇ 0 based on the initial position information acquired in step S503 and the target position stored in the target position storage unit 52A (step S504). Then, the condition determination unit 54B determines whether the initial target turning angle ⁇ 0 calculated in step S504 satisfies a first condition that is equal to or greater than a first threshold ⁇ th (step S505).
  • step S505 When it is determined in step S505 that the first condition is satisfied ( ⁇ 0 ⁇ ⁇ th) (step S505 / YES), the condition determination unit 54B determines that the inclination angle ⁇ of the entire vehicle body acquired in step S503 is equal to or smaller than the second threshold ⁇ th. It is determined whether a certain second condition is satisfied (step S506).
  • step S506 When it is determined in step S506 that the second condition is satisfied ( ⁇ ⁇ ⁇ th) (step S506 / YES), the condition determining unit 54B determines that the temperature T of the hydraulic oil acquired in step S503 is equal to or higher than the third threshold value Tth. It is determined whether the third condition is satisfied (step S507).
  • the deceleration start position determining unit 54A determines that the initial position information is the deceleration start position of the revolving body 102. It is determined whether or not there is (step S509).
  • the position (initial position) of the excavator 1 does not naturally become the deceleration start position of the revolving unit 102, and thus it is determined in step S509 that it is not the deceleration start position (step S509 / NO), the data acquisition unit 51 acquires the pilot pressure detected by the pressure sensors 44A, 44B (Step S510).
  • the pilot pressure control unit 55B controls the pair of pilot valves 242A and 242B based on the pilot pressure acquired in step S510 to automatically start the turning operation of the revolving unit 102 (step S511). Thereby, the swing body 102 automatically swings toward the target position.
  • the data acquisition unit 51 acquires the current state of the vehicle body (step S513).
  • the data acquisition unit 51 only needs to acquire at least the current position information of the excavator 1 measured by the GNSS antenna 41.
  • step S509 If it is determined in step S509 that the position information of the excavator 1 is the deceleration start position (step S509 / YES), the pilot pressure control unit 55B controls the pair of pilot valves 242A and 242B to reduce the pilot pressure to 0 MPa. (Step S515).
  • the display control unit 55C controls the monitor 212 to display that the revolving unit 102 has stopped at the target position (step S516), and ends the processing in the controller 5.
  • step S507 when the first condition is not satisfied ( ⁇ 0 ⁇ th) in step S505 (step S505 / NO), when the second condition is not satisfied ( ⁇ > ⁇ th) in step S506 (step S505 / NO), and step S507 If the third condition is not satisfied (T ⁇ Tth) in step S507 (NO in step S507), the display control unit 55C controls the monitor 212 to turn the revolving unit 102 even if the switch 211A is ON in step S501. A message indicating that the operation is not to be performed automatically is displayed (step S517), and the processing in the controller 5 ends.
  • the controller 5 determines that the revolving unit 102 has stopped at the target position, that the controller 5 does not automatically rotate the revolving unit 102 even when the switch 211A is enabled, and that the revolving unit 102 is automatically rotating.
  • the operator can grasp the turning state of the turning body 102 at any time.
  • condition determination unit 54B determines all three conditions of the first condition, the second condition, and the third condition.
  • the present invention is not limited to this, and the condition determination unit 54B determines any one condition. Alternatively, any two conditions may be determined.
  • the direction and the position of the revolving structure 102 are detected using the GNSS antenna 41.
  • the GNSS antenna 41 is not necessarily used, and other detection devices and detection methods may be used. Is also good.
  • the target position is set based on the target design surface information (map information) displayed on the monitor 212.
  • the present invention is not limited to this, and the target position may be set by another method. Good.

Abstract

Provided is a construction machine that is capable of causing a swinging body to precisely face a target position head-on independent of operator skill or inertia. Provided is a hydraulic shovel 1 comprising a traveling body 101, a swinging body 102, a front work machine 103, an operating lever 211, a swing motor 24, a direction control valve 241, and a pair of pilot valves 242A, 242B. The shovel also comprises a GNSS antenna 41, a vehicle body IMU 42, and a controller 5. The controller 5 stores a target position; calculates a target swing angle, to the target position, from positional information and calculates a swing flow angle based on rotational speed; assesses, on the basis of the target swing angle and swing flow angle, whether the positional information is for a begin deceleration position of the swinging body 102; and controls the pair of pilot valves 242A, 242B to automatically begin swinging if the positional information is not for the begin deceleration position of the swinging body 102, and controls the pair of pilot valves 242A, 242B to automatically stop rotation if the positional information is for the begin deceleration position of the swinging body 102.

Description

建設機械Construction machinery
 本発明は、旋回式の建設機械に関する。 The present invention relates to a swing type construction machine.
 油圧ショベル等の建設機械では、掘削対象の目標面までの旋回操作や、目標面に対するフロント作業機の操作を自動制御することにより、掘削作業の効率化を図っている。例えば、特許文献1には、作業機コントローラにて、掘削対象の目標形状を示す設計面を更新し、更新された設計面に対してバケットの刃先の位置を自動調整することで、自動でフロント作業機を設計面に正対させる油圧ショベルの掘削制御システムが開示されている。 建設 In construction machines such as hydraulic excavators, the efficiency of excavation work is improved by automatically controlling the turning operation to the target surface to be excavated and the operation of the front work machine to the target surface. For example, in Patent Document 1, a work machine controller updates a design surface indicating a target shape to be excavated and automatically adjusts the position of a blade edge of a bucket with respect to the updated design surface, thereby automatically setting a front surface. An excavation control system of a hydraulic shovel that directly faces a work machine to a design surface is disclosed.
 一方、特許文献1の技術では、設計面を含む掘削領域までの旋回操作はオペレータが行うため、オペレータの熟練度が作業効率に影響してしまう。そこで、特許文献2に開示された制御システムでは、車体の位置情報とオペレータが指示した位置とに基づいて演算された車体の移動方向及び移動量に従って旋回操作を制御し、オペレータの熟練度にかかわらず精密な掘削作業を容易に行うことを可能としている。 On the other hand, in the technique of Patent Document 1, since the turning operation to the excavation area including the design surface is performed by the operator, the skill of the operator affects the work efficiency. Therefore, in the control system disclosed in Patent Document 2, the turning operation is controlled in accordance with the moving direction and the moving amount of the vehicle body calculated based on the position information of the vehicle body and the position specified by the operator, and the turning operation is controlled regardless of the skill level of the operator. It enables easy and precise excavation work.
特開2013-217137号公報JP 2013-217137 A 特開2014-55407号公報JP 2014-55407 A
 しかしながら、旋回動作中の旋回体は、コントローラから旋回停止の指令信号が出力された後も慣性によりしばらく旋回し続けるため、特許文献2に記載の技術のように、車体の移動量を演算し、演算された移動量に基づいて旋回停止位置の位置合わせをしたのでは旋回体は目標位置からずれた位置で停止することとなる。目標位置に対して旋回体の位置合わせを正確に行うためには、複数回に亘り位置合わせを行って少しずつ目標位置に近づけたり、位置合わせ中における旋回速度を遅くして慣性の影響を小さくしたりといった対策を講じる必要があるが、このような対策では作業効率が低下してしまう。 However, the revolving body during the revolving operation continues to revolve for a while due to inertia even after the command to stop revolving is output from the controller. Therefore, as in the technique described in Patent Document 2, the amount of movement of the vehicle body is calculated. If the position of the turning stop position is adjusted based on the calculated movement amount, the revolving unit stops at a position deviated from the target position. In order to accurately align the revolving superstructure with the target position, it is necessary to perform the alignment several times to gradually approach the target position, or to reduce the influence of inertia by slowing the swing speed during the alignment. It is necessary to take countermeasures such as taking action, but such measures will reduce work efficiency.
 そこで、本発明の目的は、オペレータの熟練度や慣性の影響に依らず、旋回体を精度よく目標位置に正対させることが可能な建設機械を提供することにある。 Therefore, an object of the present invention is to provide a construction machine capable of accurately facing a revolving superstructure to a target position regardless of the skill or inertia of an operator.
 上記の目的を達成するために、本発明は、走行体と、前記走行体の上方に旋回可能に取り付けられた旋回体と、前記旋回体の前部に取り付けられたフロント作業機と、前記旋回体を旋回させるための操作装置と、前記旋回体を駆動する旋回モータと、前記旋回モータに供給される作動油の流れを制御する方向制御弁と、前記方向制御弁に作用されるパイロット圧を生成するパイロット弁と、を備えた建設機械において、前記旋回体の向いている方向及び位置を含む位置情報を測定するためのアンテナと、前記旋回体の旋回角速度を検出する角速度センサと、前記パイロット弁を制御して前記旋回体の旋回動作を自動で開始及び停止させるコントローラと、を有し、前記コントローラは、作業対象のうち前記旋回体を正対させる目標作業面の位置である目標位置を記憶し、前記位置情報から前記目標位置までの目標旋回角度を演算すると共に、前記角速度センサで検出された角速度に基づいて前記旋回体の慣性によって生じる旋回流れ角度を演算し、前記目標旋回角度及び前記旋回流れ角度に基づいて、前記位置情報が前記旋回体の減速開始位置であるか否かを判定し、前記位置情報が前記旋回体の減速開始位置でないと判定された場合に前記パイロット弁を制御して前記旋回体の旋回動作を自動で開始させると共に、前記位置情報が前記旋回体の減速開始位置であると判定された場合に前記パイロット弁を制御して前記旋回体の旋回動作を自動で停止させることを特徴とする。 In order to achieve the above object, the present invention provides a traveling body, a revolving body pivotally mounted above the traveling body, a front working machine attached to a front portion of the revolving body, An operating device for turning the body, a turning motor for driving the turning body, a directional control valve for controlling a flow of hydraulic oil supplied to the turning motor, and a pilot pressure applied to the directional control valve. A pilot valve for generating, in a construction machine comprising: an antenna for measuring position information including a direction and a position of the revolving body, an angular velocity sensor for detecting a revolving angular velocity of the revolving body, and the pilot A controller that controls a valve to automatically start and stop the swing operation of the swing body, wherein the controller includes a target work surface for directly facing the swing body among the work objects. And a target turning angle from the position information to the target position is calculated, and a turning flow angle caused by inertia of the turning body is calculated based on the angular velocity detected by the angular velocity sensor. Determining whether the position information is the deceleration start position of the revolving structure based on the target turning angle and the revolving flow angle, and determining that the position information is not the deceleration start position of the revolving structure. And controlling the pilot valve to automatically start the revolving operation of the revolving body, and controlling the pilot valve when the position information is determined to be the deceleration start position of the revolving body. It is characterized in that the body turning operation is automatically stopped.
 本発明によれば、オペレータの熟練度や慣性の影響に依らず、旋回体を精度よく目標位置に正対させることができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, the revolving superstructure can accurately face the target position regardless of the skill or inertia of the operator. Problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.
本発明の実施形態に係る油圧ショベルの一構成例を示す外観斜視図である。FIG. 1 is an external perspective view illustrating a configuration example of a hydraulic shovel according to an embodiment of the present invention. 油圧ショベルにおける旋回体の旋回動作に係る油圧回路及び電気回路の構成を示す図である。It is a figure which shows the structure of the hydraulic circuit and electric circuit which concern on the turning operation | movement of the turning body in a hydraulic shovel. コントローラが有する機能の構成を示す機能ブロック図である。FIG. 3 is a functional block diagram illustrating a configuration of functions of a controller. コントローラ内で実行される処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of a process executed in the controller.
 以下、本発明の実施形態に係る建設機械の一態様として、油圧ショベルについて説明する。 Hereinafter, a hydraulic excavator will be described as one aspect of a construction machine according to an embodiment of the present invention.
(油圧ショベル1の構成)
 まず、油圧ショベル1の構成について、図1を参照して説明する。
(Configuration of hydraulic excavator 1)
First, the configuration of the excavator 1 will be described with reference to FIG.
 図1は、本発明の実施形態に係る油圧ショベル1の一構成例を示す外観斜視図である。 FIG. 1 is an external perspective view showing one configuration example of a hydraulic shovel 1 according to an embodiment of the present invention.
 油圧ショベル1は、路面を走行するための走行体101と、走行体101の上方に旋回装置(不図示)を介して旋回可能に取り付けられた旋回体102と、旋回体102の前部に俯仰動可能に取り付けられて掘削等の作業を行うフロント作業機103と、を備えている。 The hydraulic excavator 1 includes a traveling body 101 for traveling on a road surface, a revolving body 102 that is rotatably mounted above the traveling body 101 via a revolving device (not shown), and A front work machine 103 movably mounted to perform work such as excavation.
 走行体101は、その左右方向の両端部にクローラ11がそれぞれ配置されている。左右一対のクローラ11はそれぞれ、走行体101の左右それぞれに設けられた走行モータ(不図示)の駆動力によって独立して回転駆動する。これにより、油圧ショベル1は、左右それぞれのクローラ11を地面に接触させた状態で前後方向に走行する。 The traveling body 101 has crawlers 11 at both ends in the left-right direction. Each of the pair of right and left crawlers 11 is independently rotated by a driving force of a traveling motor (not shown) provided on each of the left and right sides of the traveling body 101. Accordingly, the excavator 1 travels in the front-rear direction with the left and right crawlers 11 in contact with the ground.
 旋回体102は、オペレータが搭乗する運転室21と、フロント作業機103とのバランスを保つためのカウンタウェイト22と、エンジン231や油圧ポンプ232,233等(図2参照)の機器類を内部に収容する機械室23と、を備えている。旋回体102において、運転室21は前部に、カウンタウェイト22は後部に、機械室23は運転室21とカウンタウェイト22との間に、それぞれ配置されている。 The revolving superstructure 102 includes a driver's cab 21 on which an operator rides, a counterweight 22 for maintaining a balance with the front work machine 103, and devices such as an engine 231 and hydraulic pumps 232, 233 (see FIG. 2). And a machine room 23 for housing. In the revolving superstructure 102, the operator's cab 21 is arranged at the front, the counterweight 22 is arranged at the rear, and the machine room 23 is arranged between the operator's cab 21 and the counterweight 22.
 旋回体102は、旋回装置内に設けられた旋回モータ24(図2参照)の駆動力によって走行体101に対して旋回する。運転室21内には、旋回体102を旋回させるための操作装置としての操作レバー211(図2参照)が設けられている。なお、旋回体102の具体的な旋回動作については後述する。 The swing body 102 swings with respect to the traveling body 101 by the driving force of a swing motor 24 (see FIG. 2) provided in the swing device. An operation lever 211 (see FIG. 2) as an operation device for turning the revolving unit 102 is provided in the cab 21. The specific turning operation of the turning body 102 will be described later.
 フロント作業機103は、基端部が旋回体102に回動可能に取り付けられて、旋回体102に対して上下方向に回動(俯仰)するブーム31と、ブーム31の先端部に回動可能に取り付けられてブーム31に対して前後方向に回動するアーム32と、アーム32の先端部に回動可能に取り付けられてアーム32に対して前後方向に回動するバケット33と、を備えている。 The front working machine 103 has a base end rotatably attached to the revolving unit 102, and a boom 31 that rotates up and down (upward) with respect to the revolving unit 102, and is rotatable at the distal end of the boom 31. Arm 32 that is attached to the boom 31 and pivots back and forth with respect to the boom 31; and a bucket 33 that is rotatably attached to the tip of the arm 32 and pivots back and forth with respect to the arm 32 I have.
 バケット33は、例えば土砂等を掘削したり、均したり、あるいは地面を締め固めたりするものである。このバケット33は、例えば、木材や岩石、廃棄物等を掴むグラップルや、岩盤を掘削するブレーカ等のアタッチメントに変更することが可能である。これにより、油圧ショベル1は、作業内容に適したアタッチメントを用いて、掘削や破砕等を含む様々な作業を行うことができる。 The bucket 33 excavates or leveles earth and sand, for example, or compacts the ground. The bucket 33 can be changed to, for example, an attachment such as a grapple for gripping wood, rock, waste, or the like, or a breaker for excavating rock. Accordingly, the hydraulic excavator 1 can perform various operations including excavation and crushing using an attachment suitable for the operation content.
 また、フロント作業機103は、旋回体102とブーム31とを連結するブームシリンダ310と、ブーム31とアーム32とを連結するアームシリンダ320と、アーム32とバケット33とを連結するバケットシリンダ330と、これらの各油圧シリンダ310,320,330へ作動油を導くための複数の配管(不図示)と、を有している。 The front work machine 103 includes a boom cylinder 310 that connects the revolving unit 102 and the boom 31, an arm cylinder 320 that connects the boom 31 and the arm 32, and a bucket cylinder 330 that connects the arm 32 and the bucket 33. And a plurality of pipes (not shown) for guiding hydraulic oil to each of the hydraulic cylinders 310, 320, 330.
 ブームシリンダ310は、ロッドが伸縮することによってブーム31を旋回体102に対して回動させる。アームシリンダ320は、ロッドが伸縮することによってアーム32をブーム31に対して回動させる。バケットシリンダ330は、ロッドが伸縮することによってバケット33をアーム32に対して回動させる。 The boom cylinder 310 rotates the boom 31 with respect to the revolving unit 102 when the rod expands and contracts. The arm cylinder 320 rotates the arm 32 with respect to the boom 31 as the rod expands and contracts. The bucket cylinder 330 rotates the bucket 33 with respect to the arm 32 when the rod expands and contracts.
 また、油圧ショベル1は、GNSSアンテナ41と、車体IMU42と、ブームIMU43Aと、アームIMU43Bと、バケットIMU43Cと、を備えている。 The hydraulic excavator 1 further includes a GNSS antenna 41, a vehicle body IMU 42, a boom IMU 43A, an arm IMU 43B, and a bucket IMU 43C.
 GNSSアンテナ41は、複数個の測位衛星から送信される信号に基づいて油圧ショベル1の3次元位置(緯度、経度、及び高度)を測定する全地球航法衛星システム(Global Navigation Satellite System;GNSS)を採用したアンテナであり、旋回体102の上部に対をなして立設されている。このGNSSアンテナ41は、旋回体102の向いている方向及び位置を含む位置情報を測定するためのアンテナである。 The GNSS antenna 41 is a Global Navigation Satellite System (GNSS) that measures the three-dimensional position (latitude, longitude, and altitude) of the excavator 1 based on signals transmitted from a plurality of positioning satellites. This is an adopted antenna, and is erected in a pair above the revolving superstructure 102. The GNSS antenna 41 is an antenna for measuring position information including a direction and a position of the swing body 102.
 車体IMU42は、車体の3次元の角速度及び加速度を検出する慣性計測装置(Inertial Measurement Unit;IMU)であり、例えば運転室21の前部に取り付けられている。この車体IMU42は、旋回体102の旋回角速度ωを検出する角速度センサの一態様であると共に、車体の傾斜角度(姿勢)を検出する傾斜角センサの一態様でもある。 The vehicle body IMU 42 is an inertial measurement unit (IMU) that detects a three-dimensional angular velocity and acceleration of the vehicle body, and is attached to, for example, a front portion of the cab 21. The vehicle body IMU 42 is an embodiment of an angular velocity sensor for detecting the turning angular velocity ω of the revolving unit 102 and also an embodiment of an inclination angle sensor for detecting an inclination angle (posture) of the vehicle body.
 ブームIMU43Aは、ブーム31の3次元の角速度及び加速度を検出する慣性計測装置であり、ブーム31の側部に取り付けられている。アームIMU43Bは、アーム32の3次元の角速度及び加速度を検出する慣性計測装置であり、アーム32の側部に取り付けられている。バケットIMU43Cは、バケット33の3次元の角速度及び加速度を検出する慣性計測装置であり、バケットシリンダ330のロッド側の先端部に取り付けられている。 The boom IMU 43A is an inertial measurement device that detects a three-dimensional angular velocity and acceleration of the boom 31, and is attached to a side of the boom 31. The arm IMU 43B is an inertial measurement device that detects a three-dimensional angular velocity and acceleration of the arm 32, and is attached to a side of the arm 32. The bucket IMU 43C is an inertial measurement device that detects a three-dimensional angular velocity and acceleration of the bucket 33, and is attached to a tip end of the bucket cylinder 330 on the rod side.
 これらブームIMU43A、アームIMU43B、及びバケットIMU43Cは、フロント作業機103の姿勢を検出する姿勢センサの一態様である。なお、以下の説明において、「ブームIMU43A、アームIMU43B、及びバケットIMU43C」をまとめて「フロントIMU43A,43B,43C」とする。 The boom IMU 43A, the arm IMU 43B, and the bucket IMU 43C are one mode of a posture sensor that detects the posture of the front work machine 103. In the following description, the “boom IMU 43A, the arm IMU 43B, and the bucket IMU 43C” are collectively referred to as “ front IMUs 43A, 43B, 43C”.
(旋回体102の旋回動作について)
 次に、旋回体102の旋回動作について、図2を参照して説明する。
(About the turning operation of the turning body 102)
Next, the turning operation of the turning body 102 will be described with reference to FIG.
 図2は、油圧ショベル1における旋回体102の旋回動作に係る油圧回路及び電気回路の構成を示す図である。 FIG. 2 is a diagram showing the configuration of a hydraulic circuit and an electric circuit related to the turning operation of the turning body 102 in the excavator 1.
 旋回体102の旋回動作に係る油圧回路は、エンジン231により駆動されるメインポンプ232及びパイロットポンプ233と、作動油を貯蔵する作動油タンク234と、旋回体102を駆動する旋回モータ24と、旋回モータ24に供給される作動油の流れ(方向及び流量)を制御する方向制御弁241と、方向制御弁241に作用されるパイロット圧を生成する一対のパイロット弁242A,242Bと、を含んで構成されている。 The hydraulic circuit related to the swing operation of the swing body 102 includes a main pump 232 and a pilot pump 233 driven by the engine 231, a hydraulic oil tank 234 that stores hydraulic oil, a swing motor 24 that drives the swing body 102, and a swing. A configuration including a directional control valve 241 for controlling the flow (direction and flow rate) of hydraulic oil supplied to the motor 24, and a pair of pilot valves 242A and 242B for generating pilot pressure applied to the directional control valve 241 Have been.
 メインポンプ232は、可変容量型の油圧ポンプであり、作動油タンク234から作動油を吸入して旋回モータ24に供給する。本実施形態では、旋回モータ24に供給される作動油の温度を検出する温度センサ45が、メインポンプ232の吐出側に設けられており、温度センサ45で検出された検出値がコントローラ5に入力される。 The main pump 232 is a variable displacement hydraulic pump, which sucks hydraulic oil from a hydraulic oil tank 234 and supplies it to the turning motor 24. In the present embodiment, a temperature sensor 45 for detecting the temperature of the hydraulic oil supplied to the swing motor 24 is provided on the discharge side of the main pump 232, and a detection value detected by the temperature sensor 45 is input to the controller 5. Is done.
 パイロットポンプ233は、固定容量型の油圧ポンプであり、作動油タンク234から作動油を吸入して方向制御弁241の一対の受圧室241X,241Yにそれぞれ供給する。本実施形態では、パイロットポンプ233の吐出側にリリーフ弁235が設けられており、パイロットポンプ233の吐出圧が所定の設定圧を超えた場合に過剰圧を作動油タンク234にリリーフさせている。 The pilot pump 233 is a fixed-displacement type hydraulic pump that sucks hydraulic oil from a hydraulic oil tank 234 and supplies it to the pair of pressure receiving chambers 241X and 241Y of the direction control valve 241. In the present embodiment, a relief valve 235 is provided on the discharge side of the pilot pump 233, and when the discharge pressure of the pilot pump 233 exceeds a predetermined set pressure, excess pressure is relieved to the hydraulic oil tank 234.
 方向制御弁241は、メインポンプ232と旋回モータ24との間に設けられたタンデムセンタ型のスプール弁であり、旋回モータ24を一方向に回転させる第1切換位置241Aと、メインポンプ232と作動油タンク234とを連通させてメインポンプ232から吐出された作動油を作動油タンク234へ戻す中立位置241Nと、旋回モータ24を他方向に回転させる第2切換位置241Bと、を有している。 The direction control valve 241 is a tandem center type spool valve provided between the main pump 232 and the swing motor 24, and operates with the first switching position 241A for rotating the swing motor 24 in one direction and the main pump 232. It has a neutral position 241N for returning the hydraulic oil discharged from the main pump 232 to the hydraulic oil tank 234 by communicating with the oil tank 234, and a second switching position 241B for rotating the turning motor 24 in the other direction. .
 第1切換位置241Aと、中立位置241Nと、第2切換位置241Bとは、一対の受圧室241X,241Yのそれぞれに作用するパイロット圧の大きさに応じて内部スプールがストロークすることにより切り換わる。これにより、メインポンプ232から旋回モータ24へ供給される作動油の流れが制御される。 The first switching position 241A, the neutral position 241N, and the second switching position 241B are switched by the stroke of the internal spool according to the magnitude of the pilot pressure acting on each of the pair of pressure receiving chambers 241X, 241Y. Thereby, the flow of the hydraulic oil supplied from the main pump 232 to the turning motor 24 is controlled.
 一対のパイロット弁242A,242Bはいずれも、電磁比例弁であり、方向制御弁241の各受圧室241X,241Yと作動油タンク234とを連通させる閉位置242Xと、パイロットポンプ233と方向制御弁241の各受圧室241X,241Yとを連通させる開位置242Yと、を有している。 Each of the pair of pilot valves 242A and 242B is an electromagnetic proportional valve, and includes a closed position 242X that allows the pressure receiving chambers 241X and 241Y of the direction control valve 241 to communicate with the hydraulic oil tank 234, a pilot pump 233 and the direction control valve 241. And an open position 242Y for communicating the pressure receiving chambers 241X and 241Y.
 オペレータが操作レバー211を操作すると、その操作方向及び操作量に基づいた電気信号である操作信号がコントローラ5を介して一対のパイロット弁242A,242Bに対してそれぞれ出力される。一対のパイロット弁242A,242Bはそれぞれ、コントローラ5から出力された電流値に比例した開度で開弁、すなわち閉位置242Xから開位置242Yへ切り換わり、当該開度に応じた大きさのパイロット圧が生成されて方向制御弁241の一対の受圧室241X,241Yのそれぞれに作用される。生成されたパイロット圧はそれぞれ、各一対のパイロット弁242A,242Bと各受圧室241X,241Yとの間に設けられた圧力センサ44A,44Bで検出される。 When the operator operates the operation lever 211, an operation signal that is an electric signal based on the operation direction and the operation amount is output to the pair of pilot valves 242A and 242B via the controller 5. Each of the pair of pilot valves 242A and 242B opens at an opening proportional to the current value output from the controller 5, that is, switches from the closed position 242X to the open position 242Y, and a pilot pressure having a magnitude corresponding to the opening. Is generated and acts on each of the pair of pressure receiving chambers 241X and 241Y of the direction control valve 241. The generated pilot pressures are respectively detected by pressure sensors 44A and 44B provided between each pair of pilot valves 242A and 242B and each of the pressure receiving chambers 241X and 241Y.
 一方のパイロット弁242Aで生成されて方向制御弁241の一方の受圧室241Xに作用されたパイロット圧が、他方のパイロット弁242Bで生成されて方向制御弁241の他方の受圧室241Yに作用されたパイロット圧よりも大きい場合には、方向制御弁241は第1切換位置241Aに切り換わり、旋回モータ24は一方向に回転する。これにより、旋回体102は一方向に旋回する。 The pilot pressure generated by one pilot valve 242A and applied to one pressure receiving chamber 241X of the directional control valve 241 is generated by the other pilot valve 242B and applied to the other pressure receiving chamber 241Y of the directional control valve 241. When the pressure is higher than the pilot pressure, the direction control valve 241 switches to the first switching position 241A, and the turning motor 24 rotates in one direction. Thereby, the revolving superstructure 102 revolves in one direction.
 反対に、他方のパイロット弁242Bで生成されて方向制御弁241の他方の受圧室241Yに作用されたパイロット圧が、一方のパイロット弁242Aで生成されて方向制御弁241の一方の受圧室241Xに作用されたパイロット圧よりも大きい場合には、方向制御弁241は第2切換位置241Bに切り換わり、旋回モータ24は他方向に回転する。これにより、旋回体102は他方向に旋回する。 Conversely, the pilot pressure generated by the other pilot valve 242B and applied to the other pressure receiving chamber 241Y of the directional control valve 241 is generated by the one pilot valve 242A to the one pressure receiving chamber 241X of the directional control valve 241. If it is higher than the applied pilot pressure, the direction control valve 241 switches to the second switching position 241B, and the swing motor 24 rotates in the other direction. Thereby, the revolving superstructure 102 revolves in the other direction.
 また、一対のパイロット弁242A,242Bで生成されるパイロット圧が、いずれも0MPaとなった場合には、方向制御弁241は中立位置241Nに切り換わり、メインポンプ232からの作動油が旋回モータ24へ供給されなくなるため、旋回モータ24は停止する。これにより、旋回体102は旋回動作を停止する。 When the pilot pressure generated by the pair of pilot valves 242A and 242B both becomes 0 MPa, the direction control valve 241 switches to the neutral position 241N, and the hydraulic oil from the main pump 232 is turned by the turning motor 24. Is not supplied to the motor, so that the turning motor 24 stops. Thus, the swing body 102 stops the swing operation.
 ここで、油圧ショベル1において、旋回している旋回体102を作業対象(掘削対象)に正対させる場合、旋回体102は、コントローラ5から旋回動作を停止させるための指令信号が出力された後も慣性によりしばらく旋回し続ける。したがって、コントローラ5は、旋回体102の慣性によって生じる旋回角度θ(以下、「旋回流れ角度θ」とする)を加味した上で、旋回動作を停止させるための指令信号を出力する必要がある。 Here, in the hydraulic excavator 1, when the revolving revolving structure 102 is directly opposed to the work target (excavation target), the revolving revolving structure 102 is output after the controller 5 outputs a command signal for stopping the revolving operation. Also keeps turning for a while due to inertia. Therefore, the controller 5 needs to output a command signal for stopping the turning operation in consideration of the turning angle θ (hereinafter, referred to as “swirl flow angle θ”) generated by the inertia of the turning body 102.
 そこで、コントローラ5は、車体IMU42からの検出データに基づいて旋回流れ角度θを演算し、目標とする停止位置に精度よく停止するための減速開始タイミング(旋回動作を停止させるための指令信号を出力するタイミング)を推定している。なお、「目標とする停止位置」とは、油圧ショベル1の作業対象のうち旋回体102を正対させる目標作業面の位置であり、以下では単に「目標位置」とする。旋回流れ角度θは、次の演算方法により演算される。 Then, the controller 5 calculates the turning flow angle θ based on the detection data from the vehicle body IMU 42, and outputs a deceleration start timing (a command signal for stopping the turning operation) for stopping accurately at the target stop position. Timing). Note that the “target stop position” is a position of a target work surface of the work object of the hydraulic shovel 1 that faces the revolving unit 102, and is simply referred to as a “target position” below. The swirling flow angle θ is calculated by the following calculation method.
 旋回体102の旋回角速度をω[deg/s]とし、慣性モーメントをJ[kg・m]とすると、旋回体102の運動エネルギーはJω/2[J]で表される。一方、旋回体102が旋回モータ24から受けるトルクをTq[N・m]とし、トルクTq[N・m]を受けて旋回体102が完全に停止するまでに旋回した旋回量、すなわち旋回流れ量をθ[deg]とすると、旋回モータ24が行った仕事はTq・θ[J]で表される。 The turning angular velocity of the pivoting body 102 and ω [deg / s], the moment of inertia and J [kg · m 2], the kinetic energy of the swing structure 102 is represented by Jω 2/2 [J]. On the other hand, the torque received by the revolving unit 102 from the revolving motor 24 is Tq [N · m], and the amount of revolving that the revolving unit 102 has turned until the revolving unit 102 is completely stopped by receiving the torque Tq [N · m], ie, the amount of swirling flow Is θ [deg], the work performed by the swing motor 24 is represented by Tq · θ [J].
 ここで、旋回体102の減速中において、旋回体102の運動エネルギーが熱等のエネルギーに変換される量が無視できるほど微小であると仮定すると、旋回体102の運動エネルギーは旋回モータ24が行った仕事と等しくなり、以下の数式(1)が得られる。
Figure JPOXMLDOC01-appb-M000001
Here, assuming that the amount of the kinetic energy of the revolving unit 102 converted into energy such as heat during the deceleration of the revolving unit 102 is negligibly small, the kinetic energy of the revolving unit 102 is controlled by the revolving motor 24. And the following formula (1) is obtained.
Figure JPOXMLDOC01-appb-M000001
 なお、旋回モータ24の吐出圧をΔP(=吐出側の圧力P2-吸込側の圧力P1)[MPa]とし、旋回モータ24の容量をQSW[cm/rev]とすると、旋回モータ24からのトルクTq[N・m]は、以下の数式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
Assuming that the discharge pressure of the swing motor 24 is ΔP (= pressure P1 on the discharge side−pressure P1 on the suction side) [MPa] and the capacity of the swing motor 24 is Q SW [cm 3 / rev], the swing motor 24 Is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
 旋回体102を停止させる場合には、旋回モータ24の吸込側の圧力P1が0となって吐出側の圧力P2が高くなるため、旋回モータ24の吐出圧ΔPをリリーフ圧(一定値)として仮定することができる。したがって、数式(2)に示す旋回モータ24からのトルクTqは一定値Tcとなり、旋回流れ角度θは、以下の数式(3)で表されるように、旋回角速度ωの2乗に比例し、かつ旋回体102の慣性モーメントJに比例する。
Figure JPOXMLDOC01-appb-M000003
When the revolving unit 102 is stopped, the pressure P1 on the suction side of the revolving motor 24 becomes 0 and the pressure P2 on the discharge side increases, so the discharge pressure ΔP of the revolving motor 24 is assumed to be a relief pressure (a constant value). can do. Therefore, the torque Tq from the turning motor 24 shown in Expression (2) becomes a constant value Tc, and the turning flow angle θ is proportional to the square of the turning angular velocity ω as expressed by the following Expression (3). And it is proportional to the moment of inertia J of the revolving superstructure 102.
Figure JPOXMLDOC01-appb-M000003
 また、旋回体102の慣性モーメントJは、フロント作業機103の姿勢によって変動するが、代表とする基本的なフロント作業機103の姿勢を予め定めることにより、数式(3)における慣性モーメントJに所定のフロント作業機103の姿勢における慣性モーメントJc(一定値)を用いることができる。これにより、旋回流れ角度θの演算式は、以下の数式(4)で表されるように単純化される。
Figure JPOXMLDOC01-appb-M000004
In addition, the moment of inertia J of the revolving superstructure 102 varies depending on the posture of the front work machine 103, but by predetermining the posture of the representative basic front work machine 103, the moment of inertia J in Equation (3) is determined. In this case, the moment of inertia Jc (constant value) in the posture of the front work machine 103 can be used. Thereby, the calculation formula of the swirling flow angle θ is simplified as represented by the following formula (4).
Figure JPOXMLDOC01-appb-M000004
 そして、コントローラ5は、GNSSアンテナ41で測定された位置情報から目標位置までの目標旋回角度α(以下、単に「目標旋回角度α」とする)が、数式(4)により演算された旋回流れ角度θとなった場合に、パイロット圧が0MPaとなるように一対のパイロット弁242A,242Bに対してそれぞれ制御信号(旋回動作を停止させるための制御信号)を出力する。これにより、油圧ショベル1では、オペレータの熟練度や慣性の影響に依らず、旋回体102を精度よく目標位置に正対させることが可能となっている。 Then, the controller 5 calculates the target turning angle α (hereinafter, simply referred to as “target turning angle α”) from the position information measured by the GNSS antenna 41 to the target position, based on the turning flow angle calculated by Expression (4). When θ, a control signal (a control signal for stopping the turning operation) is output to each of the pair of pilot valves 242A and 242B so that the pilot pressure becomes 0 MPa. Thereby, in the excavator 1, it is possible to accurately face the revolving superstructure 102 to the target position regardless of the skill or inertia of the operator.
 なお、数式(3)における慣性モーメントJをフロント作業機103の姿勢に応じて変化させてもよく、この場合には、数式(4)における比例定数Cの値がフロントIMU43A,43B,43Cで検出されたフロント作業機103の姿勢に応じて変化する。これにより、実際のフロント作業機103の姿勢を考慮した旋回流れ角度θを演算することができ、旋回体102をより精度よく目標位置に正対させることができる。 In addition, the moment of inertia J in Equation (3) may be changed according to the attitude of the front work machine 103. In this case, the value of the proportionality constant C in Equation (4) is detected by the front IMUs 43A, 43B, and 43C. It changes according to the attitude of the front working machine 103 performed. Thereby, the swirling flow angle θ in consideration of the actual posture of the front work machine 103 can be calculated, and the revolving superstructure 102 can be more accurately opposed to the target position.
(コントローラ5の構成)
 次に、コントローラ5の構成について、図3及び図4を参照して説明する。
(Configuration of controller 5)
Next, the configuration of the controller 5 will be described with reference to FIGS.
 図3は、コントローラ5が有する機能の構成を示す機能ブロック図である。図4は、コントローラ5内で実行される処理の流れを示すフローチャートである。 FIG. 3 is a functional block diagram showing the configuration of the functions of the controller 5. FIG. 4 is a flowchart illustrating a flow of processing executed in the controller 5.
 コントローラ5は、CPU、RAM、ROM、入力I/F、及び出力I/Fがバスを介して互いに接続されて構成されており、一対のパイロット弁242A,242Bをそれぞれ制御して旋回体102(図1参照)の旋回動作を自動で開始及び停止させる。図3に示すように、GNSSアンテナ41や車体IMU42及びフロントIMU43A,43B,43Cといった各種センサ等が入力I/Fに接続され、操作レバー211や一対のパイロット弁242A,242B等が出力I/Fに接続されている。 The controller 5 is configured such that a CPU, a RAM, a ROM, an input I / F, and an output I / F are connected to each other via a bus, and controls the pair of pilot valves 242A and 242B to control the revolving unit 102 ( 1) is automatically started and stopped. As shown in FIG. 3, various sensors such as a GNSS antenna 41, a vehicle body IMU 42, and front IMUs 43A, 43B, and 43C are connected to an input I / F, and an operation lever 211 and a pair of pilot valves 242A and 242B are output I / Fs. It is connected to the.
 このようなハードウェア構成において、ROMや光学ディスク等の記録媒体に格納された制御プログラム(ソフトウェア)をCPUが読み出してRAM上に展開し、展開された制御プログラムを実行することにより、制御プログラムとハードウェアとが協働して、コントローラ5の機能を実現する。 In such a hardware configuration, the CPU reads out a control program (software) stored in a recording medium such as a ROM or an optical disk, expands the control program on the RAM, and executes the expanded control program. The functions of the controller 5 are realized in cooperation with the hardware.
 なお、本実施形態では、コントローラ5をソフトウェアとハードウェアとの組み合わせによって構成されるコンピュータとして説明しているが、これに限らず、他のコンピュータの構成の一例として、油圧ショベル1の側で実行される制御プログラムの機能を実現する集積回路を用いてもよい。 In the present embodiment, the controller 5 is described as a computer configured by a combination of software and hardware. However, the present invention is not limited to this. An integrated circuit that realizes the function of the control program to be performed may be used.
 コントローラ5は、データ取得部51と、記憶部52と、演算部53と、判定部54と、制御部55と、を含む。 The controller 5 includes a data acquisition unit 51, a storage unit 52, a calculation unit 53, a determination unit 54, and a control unit 55.
 データ取得部51は、GNSSアンテナ41により測定された油圧ショベル1(旋回体102)の位置情報、車体IMU42で検出された旋回体102の旋回角速度ω及び車体の傾斜角度β、フロントIMU43A,43B,43Cで検出されたフロント作業機103の姿勢、圧力センサ44A,44Bで検出された圧力値、ならびに温度センサ45で検出された温度に関するデータをそれぞれ取得する。 The data acquisition unit 51 includes the position information of the hydraulic excavator 1 (the swing body 102) measured by the GNSS antenna 41, the swing angular velocity ω and the body inclination angle β of the swing body 102 detected by the body IMU 42, the front IMUs 43A, 43B, Data on the attitude of the front work machine 103 detected by 43C, the pressure values detected by the pressure sensors 44A and 44B, and the temperature detected by the temperature sensor 45 are obtained.
 本実施形態では、操作レバー211は、操作レバー211による操作を無効とし、コントローラ5による旋回体102の旋回動作を自動で開始及び停止させるスイッチ211Aを有しており、データ取得部51は、このスイッチ211Aからの操作信号を取得する。スイッチ211Aが操作レバー211に設けられていることにより、オペレータによる手動での旋回操作からコントローラ5による自動旋回制御への切換作業がしやすくなっている。 In the present embodiment, the operation lever 211 has a switch 211A that invalidates the operation of the operation lever 211 and automatically starts and stops the turning operation of the turning body 102 by the controller 5, and the data acquisition unit 51 An operation signal from the switch 211A is obtained. Since the switch 211A is provided on the operation lever 211, the switching operation from the manual turning operation by the operator to the automatic turning control by the controller 5 is facilitated.
 また、本実施形態では、油圧ショベル1は、一対のパイロット弁242A,242Bで生成されるパイロット圧を検出する圧力センサ44と、旋回モータ24に供給される作動油の温度を検出する温度センサ45と、を有しており、データ取得部51は、圧力センサ44で検出された圧力値、及び温度センサ45で検出された温度に関するデータを取得する。 In the present embodiment, the excavator 1 includes a pressure sensor 44 that detects a pilot pressure generated by the pair of pilot valves 242A and 242B, and a temperature sensor 45 that detects the temperature of hydraulic oil supplied to the swing motor 24. The data acquisition unit 51 acquires the pressure value detected by the pressure sensor 44 and the data related to the temperature detected by the temperature sensor 45.
 記憶部52は、目標位置記憶部52Aと、閾値記憶部52Bと、を含む。目標位置記憶部52Aは、オペレータにより予め設定された目標位置を記憶する。例えば、運転室21内にはモニタ212が設けられており、そのモニタ212には油圧ショベル1の作業対象の形状を示す設計面の情報(地図情報等)が表示される。オペレータは、モニタ212に表示された設計面の中から目標形状とする施工設計面を選択する。これにより、目標位置が設定されて目標位置記憶部52Aに記憶される。 The storage unit 52 includes a target position storage unit 52A and a threshold storage unit 52B. The target position storage unit 52A stores a target position preset by the operator. For example, a monitor 212 is provided in the operator's cab 21, and the monitor 212 displays design surface information (such as map information) indicating the shape of the work target of the excavator 1. The operator selects a construction design surface to be a target shape from the design surfaces displayed on the monitor 212. As a result, the target position is set and stored in the target position storage unit 52A.
 閾値記憶部52Bは、コントローラ5の制御により旋回体102の旋回動作を自動で開始させる旋回角度である第1閾値αth、コントローラ5の制御により旋回体102の旋回動作を自動で開始させる車体の傾斜角度である第2閾値βth、及びコントローラ5の制御により旋回体102の旋回動作を自動で開始させる作動油の温度である第3閾値Tthのそれぞれを記憶する。 The threshold storage unit 52B includes a first threshold αth that is a turning angle at which the turning operation of the revolving unit 102 is automatically started under the control of the controller 5, and a tilt of the vehicle body that automatically starts the turning operation of the revolving unit 102 under the control of the controller 5. The second threshold value βth, which is an angle, and the third threshold value Tth, which is the temperature of hydraulic oil for automatically starting the turning operation of the turning body 102 under the control of the controller 5, are stored.
 演算部53は、GNSSアンテナ41により測定された旋回体102の位置情報及び目標位置記憶部52Aに記憶された目標位置に基づいて目標旋回角度αを演算する。また、演算部53は、車体IMU42で検出された旋回体102の角速度ωに基づいて旋回流れ角度θを演算する。 The calculation unit 53 calculates the target turning angle α based on the position information of the turning body 102 measured by the GNSS antenna 41 and the target position stored in the target position storage unit 52A. The calculation unit 53 calculates the turning flow angle θ based on the angular velocity ω of the turning body 102 detected by the vehicle body IMU 42.
 判定部54は、減速開始位置判定部54Aと、条件判定部54Bと、を含む。減速開始位置判定部54Aは、演算部53で演算された目標旋回角度α及び旋回流れ角度θに基づいて、位置情報が旋回体102の減速開始位置であるか否かを判定する。具体的には、減速開始位置判定部54Aは、目標旋回角度α-旋回流れ角度θ=0であるか否かを判定する。なお、コントローラ5の制御プログラム上の誤差を考慮すると、実際には、減速開始位置判定部54Aは、目標旋回角度α-旋回流れ角度θ≦0であるか否かを判定すればよい。 The determination unit 54 includes a deceleration start position determination unit 54A and a condition determination unit 54B. The deceleration start position determination unit 54A determines whether the position information is the deceleration start position of the revolving unit 102 based on the target turning angle α and the turning flow angle θ calculated by the calculation unit 53. Specifically, the deceleration start position determining unit 54A determines whether or not target turning angle α−turning flow angle θ = 0. In consideration of an error in the control program of the controller 5, the deceleration start position determining unit 54A may actually determine whether or not the target turning angle α−the turning flow angle θ ≦ 0.
 条件判定部54Bは、予め定められた第1条件、第2条件、及び第3条件のそれぞれを満たすか否かを判定する。ここで、「第1条件」とは、演算部53で演算された目標旋回角度αが、閾値記憶部52Bに記憶された第1閾値αth以上となる条件(α≧αth)である。「第2条件」とは、車体IMU42で検出された車体の傾斜角度βが、閾値記憶部52Bに記憶された第2閾値βth以下となる条件(β≦βth)である。「第3条件」とは、温度センサ45で検出された温度Tが、閾値記憶部52Bに記憶された第3閾値Tth以上となる条件(T≧Tth)である。 The condition determination unit 54B determines whether or not each of the first, second, and third conditions is satisfied. Here, the “first condition” is a condition (α ≧ αth) in which the target turning angle α calculated by the calculation unit 53 is equal to or larger than the first threshold αth stored in the threshold storage unit 52B. The “second condition” is a condition (β ≦ βth) that the inclination angle β of the vehicle body detected by the vehicle body IMU 42 is equal to or smaller than the second threshold value βth stored in the threshold value storage unit 52B. The “third condition” is a condition (T ≧ Tth) in which the temperature T detected by the temperature sensor 45 is equal to or higher than the third threshold Tth stored in the threshold storage unit 52B.
 制御部55は、レバー制御部55Aと、パイロット圧制御部55Bと、表示制御部55Cと、を含む。レバー制御部55Aは、操作レバー211からの入力量を後述するパイロット圧制御部55Bに出力する。また、レバー制御部55Aは、データ取得部51にてスイッチ211Aからの操作信号(ON信号)を取得した場合、操作レバー211の操作を無効とするための制御信号を後述するパイロット圧制御部55Bに対して出力し、操作レバー211からの入力量を無効とする。 The control unit 55 includes a lever control unit 55A, a pilot pressure control unit 55B, and a display control unit 55C. The lever control unit 55A outputs an input amount from the operation lever 211 to a pilot pressure control unit 55B described later. When the data acquisition unit 51 acquires an operation signal (ON signal) from the switch 211A, the lever control unit 55A sends a control signal for invalidating the operation of the operation lever 211 to a pilot pressure control unit 55B described later. And the input amount from the operation lever 211 is invalidated.
 パイロット圧制御部55Bは、減速開始位置判定部54Aにて位置情報が旋回体102の減速開始位置でないと判定された場合に、旋回動作に必要なパイロット圧に制御するための制御信号を一対のパイロット弁242A,242Bのそれぞれに対して出力する。これにより、旋回体102は、パイロット圧制御部55Bから出力された制御信号に基づいた旋回動作を開始する。 When the deceleration start position determination unit 54A determines that the position information is not the deceleration start position of the revolving unit 102, the pilot pressure control unit 55B sends a pair of control signals for controlling the pilot pressure required for the turning operation to a pair. It outputs to each of pilot valves 242A and 242B. Accordingly, the swing body 102 starts a swing operation based on the control signal output from the pilot pressure control unit 55B.
 一方、減速開始位置判定部54Aにて位置情報が旋回体102の減速開始位置であると判定された場合には、パイロット圧制御部55Bは、パイロット圧を0MPaに制御するための制御信号を一対のパイロット弁242A,242Bのそれぞれに対して出力する。これにより、旋回体102は、パイロット圧制御部55Bから出力された制御信号に基づいて減速し始め、慣性による旋回後に停止する。 On the other hand, when the position information is determined by the deceleration start position determination unit 54A to be the deceleration start position of the revolving unit 102, the pilot pressure control unit 55B transmits a pair of control signals for controlling the pilot pressure to 0 MPa. Is output to each of the pilot valves 242A and 242B. As a result, the revolving superstructure 102 starts to decelerate based on the control signal output from the pilot pressure control unit 55B, and stops after revolving due to inertia.
 表示制御部55Cは、GNSSアンテナ41により測定された位置情報が目標位置であると判定された場合に、旋回体102が目標位置で停止した旨を表示させるための信号をモニタ212に対して出力する。 When the position information measured by the GNSS antenna 41 is determined to be the target position, the display control unit 55C outputs a signal to the monitor 212 to display that the revolving unit 102 has stopped at the target position. I do.
 また、表示制御部55Cは、条件判定部54Bにて、スイッチ211Aが有効(ON状態)であって、かつ少なくとも第1条件、第2条件、及び第3条件のうちいずれかを満たさないと判定された場合に、旋回体102の旋回動作を自動で行わない旨を表示させるための信号をモニタ212に対して出力する。 Further, the display control unit 55C determines that the switch 211A is enabled (ON state) and that at least one of the first, second, and third conditions is not satisfied by the condition determination unit 54B. In this case, a signal for displaying that the turning operation of the turning body 102 is not automatically performed is output to the monitor 212.
 また、表示制御部55Cは、パイロット圧制御部55Bが一対のパイロット弁242A,242Bをそれぞれ制御して旋回体102の旋回動作を自動で開始させた場合に、旋回体102の旋回動作が自動で行われている旨を表示させるための信号をモニタ212に対して出力する。 When the pilot pressure control unit 55B controls the pair of pilot valves 242A and 242B to automatically start the revolving operation of the revolving unit 102, the display control unit 55C automatically performs the revolving operation of the revolving unit 102. A signal for displaying that the operation is being performed is output to the monitor 212.
 すなわち、モニタ212は、コントローラ5(表示制御部55C)の制御によって、旋回体102が目標位置で停止した旨、旋回体102の旋回動作を自動で行わない旨、及び旋回体102の旋回動作が自動で行われている旨をそれぞれ報知する報知装置の一態様である。なお、オペレータへの報知方法は、必ずしもモニタ212における表示である必要はなく、例えばアラーム等であってもよい。 That is, under the control of the controller 5 (the display control unit 55C), the monitor 212 indicates that the revolving unit 102 has stopped at the target position, that the revolving unit 102 will not automatically perform the revolving operation, and that the revolving unit 102 will not revolve. It is an aspect of a notifying device for notifying that the operation is automatically performed. The method of notifying the operator does not necessarily need to be displayed on the monitor 212, and may be, for example, an alarm.
 図4に示すように、コントローラ5は、まず、スイッチ211AがON状態、すなわち有効になったか否かを判定する(ステップS501)。ステップS501においてスイッチ211AがON状態になった場合(ステップS501/YES)、すなわち、データ取得部51がスイッチ211Aから操作信号を取得した場合、レバー制御部55Aは、操作レバー211からの入力量を無効とする(ステップS502)。 4. As shown in FIG. 4, the controller 5 first determines whether the switch 211A is in the ON state, that is, whether the switch 211A is enabled (step S501). When the switch 211A is turned on in step S501 (step S501 / YES), that is, when the data acquisition unit 51 acquires an operation signal from the switch 211A, the lever control unit 55A reduces the input amount from the operation lever 211. It is invalidated (step S502).
 一方、ステップS501においてスイッチ211AがON状態にならなかった場合(ステップS501/NO)、すなわちスイッチ211AがOFF状態(無効)のままであり、データ取得部51がスイッチ211Aからの操作信号を取得していない場合、コントローラ5による旋回体102の自動旋回に係る制御は行われずに処理が終了する。 On the other hand, if the switch 211A has not been turned on in step S501 (step S501 / NO), that is, the switch 211A remains off (invalid), and the data acquisition unit 51 acquires an operation signal from the switch 211A. If not, the process ends without performing control related to automatic turning of the revolving body 102 by the controller 5.
 ステップS502にて操作レバー211の操作が無効になると、データ取得部51は、車体の現在の状態、すなわちコントローラ5の制御による旋回体102の自動旋回を開始する前の車体の初期状態を取得する(ステップS503)。具体的には、ステップS503において、データ取得部51は、GNSSアンテナ41により測定された初期の油圧ショベル1の位置情報(以下、「初期位置情報」とする)、車体IMU42で検出された車体全体の傾斜角度β及び旋回角速度ω、ならびに温度センサ45で検出された旋回モータ24に供給される作動油の温度Tを、それぞれ取得する。 When the operation of the operation lever 211 is invalidated in step S502, the data acquisition unit 51 acquires the current state of the vehicle body, that is, the initial state of the vehicle body before starting the automatic turning of the revolving unit 102 under the control of the controller 5. (Step S503). Specifically, in step S503, the data acquisition unit 51 determines the initial position information of the excavator 1 (hereinafter, referred to as “initial position information”) measured by the GNSS antenna 41, and the entire vehicle body detected by the vehicle body IMU. , And the temperature T of the hydraulic oil supplied to the turning motor 24 detected by the temperature sensor 45.
 次に、演算部53は、ステップS503において取得された初期位置情報、及び目標位置記憶部52Aに記憶された目標位置に基づいて、初期目標旋回角度α0を演算する(ステップS504)。そして、条件判定部54Bは、ステップS504において演算された初期目標旋回角度α0が第1閾値αth以上である第1条件を満たすか否かを判定する(ステップS505)。 Next, the calculation unit 53 calculates the initial target turning angle α0 based on the initial position information acquired in step S503 and the target position stored in the target position storage unit 52A (step S504). Then, the condition determination unit 54B determines whether the initial target turning angle α0 calculated in step S504 satisfies a first condition that is equal to or greater than a first threshold αth (step S505).
 ステップS505において第1条件を満たす(α0≧αth)と判定された場合(ステップS505/YES)、条件判定部54Bは、ステップS503において取得された車体全体の傾斜角度βが第2閾値βth以下である第2条件を満たすか否かを判定する(ステップS506)。 When it is determined in step S505 that the first condition is satisfied (α0 ≧ αth) (step S505 / YES), the condition determination unit 54B determines that the inclination angle β of the entire vehicle body acquired in step S503 is equal to or smaller than the second threshold βth. It is determined whether a certain second condition is satisfied (step S506).
 ステップS506において第2条件を満たす(β≦βth)と判定された場合(ステップS506/YES)、条件判定部54Bは、ステップS503において取得された作動油の温度Tが第3閾値Tth以上である第3条件を満たすか否かを判定する(ステップS507)。 When it is determined in step S506 that the second condition is satisfied (β ≦ βth) (step S506 / YES), the condition determining unit 54B determines that the temperature T of the hydraulic oil acquired in step S503 is equal to or higher than the third threshold value Tth. It is determined whether the third condition is satisfied (step S507).
 ステップS507において第3条件を満たす(T≧Tth)と判定された場合(ステップS507/YES)、演算部53は、ステップS503において取得された旋回角速度ωに基づいて旋回流れ角度θ(=Cω)を演算する(ステップS508)。 When it is determined in step S507 that the third condition is satisfied (T ≧ Tth) (step S507 / YES), the calculation unit 53 determines the turning flow angle θ (= Cω 2) based on the turning angular velocity ω acquired in step S503. ) Is calculated (step S508).
 次に、減速開始位置判定部54Aは、ステップS504において演算された初期目標旋回角度α0、及びステップS508において演算された旋回流れ角度θに基づいて、初期位置情報が旋回体102の減速開始位置であるか否かを判定する(ステップS509)。 Next, based on the initial target turning angle α0 calculated in step S504 and the turning flow angle θ calculated in step S508, the deceleration start position determining unit 54A determines that the initial position information is the deceleration start position of the revolving body 102. It is determined whether or not there is (step S509).
 ここで、油圧ショベル1の初期状態では、油圧ショベル1の位置(初期位置)は当然に旋回体102の減速開始位置とはならないため、ステップS509において減速開始位置ではないと判定され(ステップS509/NO)、データ取得部51が、圧力センサ44A,44Bで検出されたパイロット圧を取得する(ステップS510)。 Here, in the initial state of the excavator 1, the position (initial position) of the excavator 1 does not naturally become the deceleration start position of the revolving unit 102, and thus it is determined in step S509 that it is not the deceleration start position (step S509 / NO), the data acquisition unit 51 acquires the pilot pressure detected by the pressure sensors 44A, 44B (Step S510).
 次に、パイロット圧制御部55Bは、ステップS510で取得されたパイロット圧に基づいて、一対のパイロット弁242A,242Bをそれぞれ制御して旋回体102の旋回動作を自動で開始させる(ステップS511)。これにより、旋回体102は、目標位置に向けて自動で旋回する。 Next, the pilot pressure control unit 55B controls the pair of pilot valves 242A and 242B based on the pilot pressure acquired in step S510 to automatically start the turning operation of the revolving unit 102 (step S511). Thereby, the swing body 102 automatically swings toward the target position.
 本実施形態では、パイロット圧制御部55Bが一対のパイロット弁242A,242Bをそれぞれ制御して旋回体102の旋回動作を自動で開始させると、表示制御部55Cは、モニタ212を制御して旋回体102の旋回動作が自動で行われている旨を表示させる(ステップS512)。 In the present embodiment, when the pilot pressure control unit 55B controls the pair of pilot valves 242A and 242B to automatically start the swing operation of the swing body 102, the display control unit 55C controls the monitor 212 to control the monitor 212. It is displayed that the turning operation of 102 is being performed automatically (step S512).
 次に、データ取得部51は、車体の現在の状態を取得する(ステップS513)。なお、ステップS513では、データ取得部51は、少なくともGNSSアンテナ41により測定された油圧ショベル1の現在の位置情報を取得すればよい。 Next, the data acquisition unit 51 acquires the current state of the vehicle body (step S513). In step S513, the data acquisition unit 51 only needs to acquire at least the current position information of the excavator 1 measured by the GNSS antenna 41.
 次に、演算部53は、ステップS514において取得された車体の現在の状態に基づいて、現在目標旋回角度α1を演算し(ステップS514)、ステップS508へ進む。このように、コントローラ5は、ステップS509において油圧ショベル1の位置情報が減速開始位置であると判定される(ステップS509/YES)まで、旋回体102を自動で旋回させる。 Next, the calculation unit 53 calculates the current target turning angle α1 based on the current state of the vehicle body acquired in step S514 (step S514), and proceeds to step S508. As described above, the controller 5 automatically turns the revolving unit 102 until the position information of the excavator 1 is determined to be the deceleration start position in step S509 (step S509 / YES).
 ステップS509において油圧ショベル1の位置情報が減速開始位置であると判定された場合(ステップS509/YES)、パイロット圧制御部55Bは、一対のパイロット弁242A,242Bをそれぞれ制御してパイロット圧を0MPaにさせる(ステップS515)。 If it is determined in step S509 that the position information of the excavator 1 is the deceleration start position (step S509 / YES), the pilot pressure control unit 55B controls the pair of pilot valves 242A and 242B to reduce the pilot pressure to 0 MPa. (Step S515).
 そして、表示制御部55Cは、モニタ212を制御して旋回体102が目標位置で停止した旨を表示させて(ステップS516)、コントローラ5における処理を終了する。 Then, the display control unit 55C controls the monitor 212 to display that the revolving unit 102 has stopped at the target position (step S516), and ends the processing in the controller 5.
 このように、コントローラ5では、旋回流れ角度θを演算し、演算された旋回流れ角度θを加味した位置(旋回角度)で旋回体102の減速を開始させる制御を行っているため、オペレータの熟練度や慣性の影響に依らず、旋回体102を精度よく目標位置に正対させることができる。 As described above, the controller 5 calculates the swirl flow angle θ and performs control to start deceleration of the revolving unit 102 at a position (swirl angle) that takes into account the calculated swirl flow angle θ. The revolving superstructure 102 can accurately face the target position regardless of the influence of the degree or inertia.
 ここで、ステップS505において第1条件を満たさない(α0<αth)場合(ステップS505/NO)、ステップS506において第2条件を満たさない(β>βth)場合(ステップS505/NO)、及びステップS507において第3条件を満たさない(T<Tth)場合(ステップS507/NO)、表示制御部55Cは、ステップS501においてスイッチ211AがON状態であっても、モニタ212を制御して旋回体102の旋回動作を自動で行わない旨を表示させて(ステップS517)、コントローラ5における処理を終了する。 Here, when the first condition is not satisfied (α0 <αth) in step S505 (step S505 / NO), when the second condition is not satisfied (β> βth) in step S506 (step S505 / NO), and step S507 If the third condition is not satisfied (T <Tth) in step S507 (NO in step S507), the display control unit 55C controls the monitor 212 to turn the revolving unit 102 even if the switch 211A is ON in step S501. A message indicating that the operation is not to be performed automatically is displayed (step S517), and the processing in the controller 5 ends.
 このように、油圧ショベル1の初期状態において、コントローラ5の制御による旋回体102の旋回動作が自動で行われる前の初期位置が目標位置に近い場合、車体の傾きが大きい場合、及び旋回モータ24に供給される作動油の温度が低温である場合のうち少なくともいずれかに該当した場合、スイッチ211Aが有効であっても、コントローラ5の制御により旋回体102の旋回動作が自動で行われないことにより、コントローラ5による旋回体102の自動旋回を必要最低限で実行することができ、作業の効率化が図れる。 As described above, in the initial state of the excavator 1, when the initial position before the turning operation of the turning body 102 under the control of the controller 5 is automatically performed is close to the target position, when the inclination of the vehicle body is large, and when the turning motor 24 When the temperature of the hydraulic oil supplied to the controller corresponds to at least one of the cases where the temperature is low, the turning operation of the turning body 102 is not automatically performed under the control of the controller 5 even if the switch 211A is enabled. Thereby, the automatic turning of the revolving superstructure 102 by the controller 5 can be executed at the minimum necessary, and the work efficiency can be improved.
 本実施形態では、旋回体102が目標位置で停止した旨、スイッチ211Aが有効であってもコントローラ5による旋回体102の自動旋回を実行しない旨、及び旋回体102が自動旋回中である旨をそれぞれモニタ212に表示させることにより、オペレータは随時、旋回体102の旋回状況を把握することができる。 In the present embodiment, it is determined that the revolving unit 102 has stopped at the target position, that the controller 5 does not automatically rotate the revolving unit 102 even when the switch 211A is enabled, and that the revolving unit 102 is automatically rotating. By displaying each on the monitor 212, the operator can grasp the turning state of the turning body 102 at any time.
 以上、本発明の実施形態について説明した。なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、本実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、本実施形態の構成に他の実施形態の構成を加えることも可能である。またさらに、本実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The embodiments of the present invention have been described above. Note that the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above. Further, a part of the configuration of this embodiment can be replaced with the configuration of another embodiment, and the configuration of this embodiment can be added to the configuration of this embodiment. Furthermore, for a part of the configuration of the present embodiment, it is possible to add, delete, or replace another configuration.
 例えば、上記実施形態では、条件判定部54Bは、第1条件、第2条件、及び第3条件の3つの条件全てについて判定しているが、これに限らず、いずれか1つの条件を判定してもよいし、いずれか2つの条件を判定してもよい。 For example, in the above embodiment, the condition determination unit 54B determines all three conditions of the first condition, the second condition, and the third condition. However, the present invention is not limited to this, and the condition determination unit 54B determines any one condition. Alternatively, any two conditions may be determined.
 また、上記実施形態では、GNSSアンテナ41を用いて旋回体102の向いている方向及び位置を検出していたが、必ずしもGNSSアンテナ41を用いる必要はなく、他の検出機器や検出方法を用いてもよい。 In the above-described embodiment, the direction and the position of the revolving structure 102 are detected using the GNSS antenna 41. However, the GNSS antenna 41 is not necessarily used, and other detection devices and detection methods may be used. Is also good.
 また、上記実施形態では、IMU(車体IMU42及びフロントIMU43A,43B,43C)を用いて油圧ショベル1の角速度や傾き(姿勢)を検出していたが、必ずしもIMUを用いる必要はなく、他の検出機器や検出方法を用いてもよい。 Further, in the above embodiment, the angular velocity and the inclination (posture) of the excavator 1 are detected using the IMU (the vehicle body IMU 42 and the front IMUs 43A, 43B, 43C). However, it is not always necessary to use the IMU. Devices and detection methods may be used.
 また、上記実施形態では、モニタ212に表示された目標設計面の情報(地図情報)に基づいて目標位置を設定していたが、これに限らず、他の方法により目標位置を設定してもよい。 In the above embodiment, the target position is set based on the target design surface information (map information) displayed on the monitor 212. However, the present invention is not limited to this, and the target position may be set by another method. Good.
1:油圧ショベル(建設機械)
5:コントローラ
24:旋回モータ
41:GNSSアンテナ(アンテナ)
42:車体IMU(角速度センサ、傾斜角センサ)
43A,43B,43C:フロントIMU(姿勢センサ)
45:温度センサ
101:走行体
102:旋回体
103:フロント作業機
211:操作レバー(操作装置)
211A:スイッチ
212:モニタ(報知装置)
241:パイロット弁
242:方向制御弁
αth:第1閾値
βth:第2閾値
Tth:第3閾値
1: Hydraulic excavator (construction equipment)
5: Controller 24: Swing motor 41: GNSS antenna (antenna)
42: Body IMU (angular velocity sensor, tilt angle sensor)
43A, 43B, 43C: Front IMU (posture sensor)
45: Temperature sensor 101: Traveling structure 102: Revolving structure 103: Front work machine 211: Operation lever (operation device)
211A: switch 212: monitor (notification device)
241, pilot valve 242: direction control valve αth: first threshold βth: second threshold Tth: third threshold

Claims (7)

  1.  走行体と、前記走行体の上方に旋回可能に取り付けられた旋回体と、前記旋回体の前部に取り付けられたフロント作業機と、前記旋回体を旋回させるための操作装置と、前記旋回体を駆動する旋回モータと、前記旋回モータに供給される作動油の流れを制御する方向制御弁と、前記方向制御弁に作用されるパイロット圧を生成するパイロット弁と、を備えた建設機械において、
     前記旋回体の向いている方向及び位置を含む位置情報を測定するためのアンテナと、
     前記旋回体の旋回角速度を検出する角速度センサと、
     前記パイロット弁を制御して前記旋回体の旋回動作を自動で開始及び停止させるコントローラと、を有し、
     前記コントローラは、
     作業対象のうち前記旋回体を正対させる目標作業面の位置である目標位置を記憶し、
     前記位置情報から前記目標位置までの目標旋回角度を演算すると共に、前記角速度センサで検出された角速度に基づいて前記旋回体の慣性によって生じる旋回流れ角度を演算し、
     前記目標旋回角度及び前記旋回流れ角度に基づいて、前記位置情報が前記旋回体の減速開始位置であるか否かを判定し、
     前記位置情報が前記旋回体の減速開始位置でないと判定された場合に前記パイロット弁を制御して前記旋回体の旋回動作を自動で開始させると共に、前記位置情報が前記旋回体の減速開始位置であると判定された場合に前記パイロット弁を制御して前記旋回体の旋回動作を自動で停止させる
    ことを特徴とする建設機械。
    A traveling unit, a revolving unit pivotally mounted above the traveling unit, a front work machine attached to a front part of the revolving unit, an operation device for revolving the revolving unit, and the revolving unit A slewing motor that drives the slewing motor, a directional control valve that controls the flow of hydraulic oil supplied to the slewing motor, and a pilot valve that generates a pilot pressure applied to the directional control valve.
    An antenna for measuring position information including the direction and position of the revolving superstructure,
    An angular velocity sensor for detecting a rotational angular velocity of the revolving superstructure,
    A controller that controls the pilot valve to automatically start and stop the swing operation of the swing body,
    The controller is
    A target position, which is a position of a target work surface facing the revolving superstructure among the work objects, is stored,
    Calculating a target turning angle from the position information to the target position, and calculating a turning flow angle caused by inertia of the turning body based on the angular velocity detected by the angular velocity sensor,
    Based on the target turning angle and the turning flow angle, determine whether the position information is a deceleration start position of the turning body,
    If it is determined that the position information is not the deceleration start position of the revolving structure, the pilot valve is controlled to automatically start the revolving operation of the revolving structure, and the position information is the deceleration start position of the revolving structure. A construction machine characterized in that when it is determined that there is, the pilot valve is controlled to automatically stop the turning operation of the turning body.
  2.  請求項1に記載の建設機械において、
     前記操作装置は、前記操作装置による操作を無効とし、前記コントローラによる前記旋回体の旋回動作を自動で開始及び停止させるスイッチを有する
    ことを特徴とする建設機械。
    The construction machine according to claim 1,
    The construction machine, wherein the operating device has a switch for invalidating an operation by the operating device and automatically starting and stopping a turning operation of the turning body by the controller.
  3.  請求項1に記載の建設機械において、
     前記コントローラの制御により前記旋回体が前記目標位置で停止した旨を報知する報知装置を有し、
     前記コントローラは、前記位置情報が前記目標位置であると判定された場合に、前記旋回体が前記目標位置で停止した旨を報知させるための信号を前記報知装置に対して出力する
    ことを特徴とする建設機械。
    The construction machine according to claim 1,
    An informing device that informs that the revolving superstructure has stopped at the target position under the control of the controller,
    The controller outputs a signal for notifying that the revolving unit has stopped at the target position to the notifying device when the position information is determined to be the target position. Construction machinery.
  4.  請求項1に記載の建設機械において、
     車体の傾斜角度を検出する傾斜角センサと、
     前記旋回モータに供給される作動油の温度を検出する温度センサと、を有し、
     前記コントローラは、
     前記コントローラの制御により前記旋回体の旋回動作を自動で開始させる旋回角度である第1閾値、前記コントローラの制御により前記旋回体の旋回動作を自動で開始させる前記車体の傾斜角度である第2閾値、及び前記コントローラの制御により前記旋回体の旋回動作を自動で開始させる作動油の温度である第3閾値のそれぞれを記憶し、
     前記目標旋回角度が前記第1閾値以上である第1条件、前記傾斜角センサで検出された傾斜角度が前記第2閾値以下である第2条件、及び前記温度センサで検出された温度が前記第3閾値以上である第3条件のそれぞれを満たすか否かを判定し、
     前記第1条件、前記第2条件、及び前記第3条件の全てを満たすと判定された場合に、前記旋回体の旋回動作を自動で開始及び停止させる
    ことを特徴とする建設機械。
    The construction machine according to claim 1,
    An inclination angle sensor for detecting an inclination angle of the vehicle body,
    A temperature sensor for detecting the temperature of the hydraulic oil supplied to the swing motor,
    The controller is
    A first threshold value that is a turning angle at which the turning operation of the revolving structure is automatically started under the control of the controller, and a second threshold value that is an inclination angle of the vehicle body at which the turning operation of the revolving object is automatically started under the control of the controller. And a third threshold value that is a temperature of the hydraulic oil that automatically starts the turning operation of the turning body under the control of the controller, and
    A first condition in which the target turning angle is equal to or greater than the first threshold, a second condition in which an inclination angle detected by the inclination angle sensor is equal to or less than the second threshold, and a temperature detected by the temperature sensor in the second condition. It is determined whether each of the third conditions that are equal to or greater than three thresholds is satisfied,
    A construction machine, wherein, when it is determined that all of the first condition, the second condition, and the third condition are satisfied, the turning operation of the turning body is automatically started and stopped.
  5.  請求項4に記載の建設機械において、
     前記旋回体の旋回動作を自動で行わない旨を報知する報知装置を有し、
     前記操作装置は、前記操作装置による操作を無効とし、前記コントローラによる前記旋回体の旋回動作を自動で開始及び停止させるスイッチを有し、
     前記コントローラは、前記スイッチが有効であって、かつ少なくとも前記第1条件、前記第2条件、及び前記第3条件のうちのいずれかを満たさないと判定された場合に、前記旋回体の旋回動作を自動で行わない旨を報知させるための信号を前記報知装置に対して出力する
    ことを特徴とする建設機械。
    The construction machine according to claim 4,
    Having a notification device for notifying that the turning operation of the turning body is not automatically performed,
    The operation device has a switch for invalidating an operation by the operation device and automatically starting and stopping a turning operation of the revolving body by the controller,
    The controller is configured to determine that the switch is valid and that at least one of the first condition, the second condition, and the third condition is not satisfied. The construction machine outputs a signal for notifying that automatic execution is not performed to the notifying device.
  6.  請求項1に記載の建設機械において、
     前記コントローラの制御により前記旋回体の旋回動作が自動で行われている旨を報知する報知装置を有し、
     前記コントローラは、前記パイロット弁を制御して前記旋回体の旋回動作を自動で開始させた場合に、前記旋回体の旋回動作が自動で行われている旨を報知させるための信号を前記報知装置に対して出力する
    ことを特徴とする建設機械。
    The construction machine according to claim 1,
    An informing device that informs that the turning operation of the revolving body is being performed automatically by control of the controller,
    When the controller controls the pilot valve to automatically start the turning operation of the revolving body, the controller sends a signal for notifying that the turning operation of the revolving body is being performed automatically. A construction machine characterized by outputting to a construction machine.
  7.  請求項1に記載の建設機械において、
     前記フロント作業機の姿勢を検出する姿勢センサを有し、
     前記コントローラは、前記姿勢センサで検出された前記フロント作業機の姿勢に応じて変化する比例定数を用いて、前記旋回流れ角度を演算する
    ことを特徴とする建設機械。
    The construction machine according to claim 1,
    Having a posture sensor for detecting the posture of the front working machine,
    The construction machine, wherein the controller calculates the swirling flow angle using a proportional constant that changes according to the posture of the front work machine detected by the posture sensor.
PCT/JP2018/034309 2018-09-14 2018-09-14 Construction machine WO2020054078A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/034309 WO2020054078A1 (en) 2018-09-14 2018-09-14 Construction machine
JP2020527972A JP6991331B2 (en) 2018-09-14 2018-09-14 Construction machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/034309 WO2020054078A1 (en) 2018-09-14 2018-09-14 Construction machine

Publications (1)

Publication Number Publication Date
WO2020054078A1 true WO2020054078A1 (en) 2020-03-19

Family

ID=69777742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034309 WO2020054078A1 (en) 2018-09-14 2018-09-14 Construction machine

Country Status (2)

Country Link
JP (1) JP6991331B2 (en)
WO (1) WO2020054078A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021251463A1 (en) * 2020-06-11 2021-12-16

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490327A (en) * 1987-10-01 1989-04-06 Kensetsusho Kyushu Chiho Kense Controller for stop position of slewing
JPH11139770A (en) * 1997-11-07 1999-05-25 Komatsu Ltd Revolving deceleration control device of crane and controlling method thereof
JP2004076351A (en) * 2002-08-14 2004-03-11 Hitachi Constr Mach Co Ltd Alarm device for construction machine
JP2011052383A (en) * 2009-08-31 2011-03-17 Caterpillar Sarl Swing control unit of working machine
JP2011063407A (en) * 2009-09-18 2011-03-31 Kobe Steel Ltd Turning stop control device and method for turning type working machine
JP2012021290A (en) * 2010-07-13 2012-02-02 Sumitomo Heavy Ind Ltd Turning work machine and control method of the same
JP2013087577A (en) * 2011-10-21 2013-05-13 Hitachi Constr Mach Co Ltd Display unit of work machine
JP2017096006A (en) * 2015-11-25 2017-06-01 日立建機株式会社 Construction machine control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302754A (en) * 1995-05-10 1996-11-19 Hitachi Constr Mach Co Ltd Boom-speed controller for working machine
JP2006038133A (en) * 2004-07-28 2006-02-09 Hitachi Constr Mach Co Ltd Warning control device of construction machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490327A (en) * 1987-10-01 1989-04-06 Kensetsusho Kyushu Chiho Kense Controller for stop position of slewing
JPH11139770A (en) * 1997-11-07 1999-05-25 Komatsu Ltd Revolving deceleration control device of crane and controlling method thereof
JP2004076351A (en) * 2002-08-14 2004-03-11 Hitachi Constr Mach Co Ltd Alarm device for construction machine
JP2011052383A (en) * 2009-08-31 2011-03-17 Caterpillar Sarl Swing control unit of working machine
JP2011063407A (en) * 2009-09-18 2011-03-31 Kobe Steel Ltd Turning stop control device and method for turning type working machine
JP2012021290A (en) * 2010-07-13 2012-02-02 Sumitomo Heavy Ind Ltd Turning work machine and control method of the same
JP2013087577A (en) * 2011-10-21 2013-05-13 Hitachi Constr Mach Co Ltd Display unit of work machine
JP2017096006A (en) * 2015-11-25 2017-06-01 日立建機株式会社 Construction machine control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021251463A1 (en) * 2020-06-11 2021-12-16
JP2022180525A (en) * 2020-06-11 2022-12-06 日本精機株式会社 Work support system, work support method
JP7207575B2 (en) 2020-06-11 2023-01-18 日本精機株式会社 Work support system, work support method

Also Published As

Publication number Publication date
JP6991331B2 (en) 2022-01-12
JPWO2020054078A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP5840298B1 (en) Work machine control system, work machine, hydraulic excavator control system, and work machine control method
US10443214B2 (en) Control system for work vehicle, control method, and work vehicle
US10145088B2 (en) Control system of work machine and work machine
KR101821470B1 (en) Excavating machinery control system and excavating machinery
JP6271771B2 (en) Construction machine control device and construction machine control method
WO2017221904A1 (en) Work vehicle, work management system, and work vehicle control method
JP6259170B2 (en) Work machine control device and work machine
KR20160004297A (en) Work machine control system, work machine, and work machine control method
JP7342205B2 (en) Loading machine control device and control method
JP7354312B2 (en) How to update information on excavators and shovels
WO2019043898A1 (en) Control system for work machinery and control method for work machinery
JP2020165259A (en) Shovel
CN112411662B (en) Excavator
WO2020054421A1 (en) Work machine, control device, and control method
WO2020054078A1 (en) Construction machine
JP7204330B2 (en) Loading machine control device and control method
CN112334618B (en) Hydraulic excavator
JP7197342B2 (en) WORKING MACHINE, SYSTEM INCLUDING WORKING MACHINE, AND CONTROL METHOD FOR WORKING MACHINE
WO2018123470A1 (en) Construction machinery control device and construction machinery control method
CN112384660A (en) Working machine
KR20230154991A (en) Control device and control method of adding machine
JP2021156078A (en) Shovel
JP2021156081A (en) Work machine
KR20230158593A (en) Control system and control method of adding machine
KR20230158600A (en) Control system and control method of adding machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933026

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933026

Country of ref document: EP

Kind code of ref document: A1