WO2020054037A1 - Surgical tool - Google Patents

Surgical tool Download PDF

Info

Publication number
WO2020054037A1
WO2020054037A1 PCT/JP2018/034032 JP2018034032W WO2020054037A1 WO 2020054037 A1 WO2020054037 A1 WO 2020054037A1 JP 2018034032 W JP2018034032 W JP 2018034032W WO 2020054037 A1 WO2020054037 A1 WO 2020054037A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal
sheet
back surface
thermal anisotropic
anisotropic
Prior art date
Application number
PCT/JP2018/034032
Other languages
French (fr)
Japanese (ja)
Inventor
岩崎 誠二
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2018/034032 priority Critical patent/WO2020054037A1/en
Publication of WO2020054037A1 publication Critical patent/WO2020054037A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current

Definitions

  • the present invention relates to a treatment tool.
  • Patent Literature 1 a treatment tool that treats a target portion of a living tissue by applying energy to the portion to be treated (hereinafter, referred to as a target portion) has been known (for example, see Patent Literature 1).
  • the treatment tool described in Patent Literature 1 includes a pair of grip members that grip a target site.
  • the gripping member includes a blade having a treatment surface that comes into contact with the target site when the target site is gripped by the pair of gripping members, and a heater that heats the blade. Then, in the treatment tool, heat from the heater is transmitted from the treatment surface to the target portion gripped by the pair of gripping members via the blade. Thereby, the target site is treated.
  • the present invention has been made in view of the above, and has as its object to provide a treatment tool capable of efficiently collecting heat of a heater toward a treatment surface.
  • a treatment tool has a treatment surface that comes into contact with a living tissue, a blade having a back surface that forms the front and back of the treatment surface, and a blade facing the back surface.
  • a first thermal anisotropy constituted by a heater for heating the blade by generating heat in accordance with the supplied electric power, and one first thermal anisotropic sheet having a first end face
  • the first thermal anisotropic sheet has a higher thermal conductivity in the in-plane direction of the sheet than in the thickness direction
  • the first thermal anisotropic body has a thermal conductivity in the longitudinal direction of the heater.
  • said first end surface is opposed to the rear.
  • the heat of the heater can be efficiently collected toward the treatment surface.
  • FIG. 1 is a diagram illustrating a treatment tool according to the first embodiment.
  • FIG. 2 is a sectional view taken along line II-II shown in FIG.
  • FIG. 3 is a diagram illustrating the shape of the first thermally anisotropic body.
  • FIG. 4 is a diagram illustrating the shape of the first thermal anisotropic body.
  • FIG. 5 is a diagram illustrating the shape of the first thermal anisotropic body.
  • FIG. 6 is a cross-sectional view illustrating a configuration of the distal end portion according to the second embodiment.
  • FIG. 7 is a view showing a treatment tool according to the third embodiment.
  • FIG. 8 is an enlarged view of the distal end portion of the treatment tool.
  • FIG. 9 is a cross-sectional view illustrating the configuration of the first gripping member.
  • FIG. 10 is a diagram illustrating the shape of the first thermal anisotropic body.
  • FIG. 11 is a diagram illustrating the shape of the first thermally anisotropic body.
  • FIG. 12 is a diagram illustrating the shape of the first thermally anisotropic body.
  • FIG. 13 is a diagram illustrating the shape of the second thermal anisotropic body.
  • FIG. 14 is a diagram illustrating the shape of the second thermal anisotropic body.
  • FIG. 15 is a cross-sectional view illustrating a configuration of a first gripping member according to the fourth embodiment.
  • FIG. 16 is a diagram illustrating the shape of the second thermally anisotropic body.
  • FIG. 17 is a diagram illustrating the shape of the second thermal anisotropic body.
  • FIG. 18 is a diagram illustrating the shape of the first thermally anisotropic body.
  • FIG. 19 is a diagram illustrating the shape of the second heat anisotropic body.
  • FIG. 20 is a diagram illustrating the shape of
  • FIG. 1 is a view showing a treatment tool 1 according to the first embodiment.
  • the treatment tool 1 treats a target part of a living tissue by applying thermal energy to the part to be treated (hereinafter, referred to as a target part).
  • the treatment means, for example, coagulation and incision of the target site.
  • the treatment tool 1 includes a shaft 2, an operation unit 3, and a grip unit 4.
  • the shaft 2 has a substantially cylindrical shape.
  • one end side along the center axis Ax of the shaft 2 is referred to as a distal end side Ar1 (FIG.
  • a grip 4 is attached to an end of the distal end Ar ⁇ b> 1 of the shaft 2.
  • an operation section 3 is attached to an end of the base end side Ar2 of the shaft 2.
  • a wire Wi (FIG. 1) for opening and closing the first and second gripping members 41 and 42 (FIG. 1) constituting the gripping section 4 in response to the operation of the operating section 3 by the operator. ) Is provided.
  • An electric cable C (see FIG. 4) connected to a control device (not shown) for controlling the operation of the treatment tool 1 is disposed inside the shaft 2 from the base end Ar2 to the distal end Ar1. ing.
  • the operation unit 3 is a part operated by the operator, and a part of the distal end side Ar1 is inserted into the inside of the shaft 2.
  • One end of a wire Wi is fixed to the operation unit 3. Then, the operation unit 3 advances and retreats along the central axis Ax according to the operation by the operator, and pulls out the wire Wi to the proximal end Ar2 or pushes the wire Wi back to the distal end Ar1.
  • the gripper 4 is a part that treats the target site while holding the target site.
  • the grip 4 includes first and second gripping members 41 and 42.
  • the first and second gripping members 41 and 42 are configured to be openable and closable in an arrow R1 (FIG. 1) direction according to an operation performed on the operation unit 3 by an operator.
  • the first and second gripping members 41 and 42 have a symmetrical configuration with respect to the central axis Ax. Therefore, hereinafter, the configuration of the first gripping member 41 will be mainly described, and the description of the second gripping member 42 will be given by assigning the same reference numerals to the same components as those of the first gripping member 41. Omitted.
  • the first gripping member 41 is disposed below the second gripping member 42 in FIG. As shown in FIG. 1, the first gripping member 41 is connected to the proximal end 5 located on the proximal end Ar2 and the distal end 6 located on the distal end Ar1 at a predetermined angle. It has a generally L-shape. As shown in FIG. 1, the base end portion 5 is rotatably supported by a rotation shaft Ra so as to be rotatable with respect to the end portion of the distal end side Ar1 of the shaft 2. The other end of the wire Wi is connected to the base end 5 at a position separated from the distal end 6 with respect to the rotation axis Ra.
  • the first gripping member 41 rotates clockwise in FIG. 1 around the rotation axis Ra. Rotate.
  • the second gripping member 42 rotates counterclockwise in FIG. 1 around the rotation axis Ra, contrary to the first gripping member 41.
  • the respective distal end portions 6 of the first and second gripping members 41 and 42 come close to each other (close), and can grip the target portion.
  • the direction in which the tip portions 6 face each other in a closed state is referred to as a direction A1 (FIG. 2).
  • the first gripping member 41 rotates counterclockwise in FIG. 1 around the rotation axis Ra.
  • the second gripping member 42 rotates clockwise in FIG. 1 around the rotation axis Ra, contrary to the first gripping member 41.
  • the distal ends 6 of the first and second gripping members 41 and 42 are separated from each other (open).
  • FIG. 2 is a cross-sectional view illustrating a configuration of the distal end portion 6 of the first gripping member 41. Specifically, FIG. 2 is a cross-sectional view of the distal end portion 6 cut by a plane orthogonal to the longitudinal direction of the distal end portion 6. Note that the longitudinal direction of the distal end portion 6 is substantially parallel to the central axis Ax in a state where the first and second gripping members 41 and 42 are closed.
  • the tip portion 6 includes a blade 7, a heater 8, and a first thermal anisotropic body 9, as shown in FIG.
  • the blade 7 is a long plate formed of copper, silver, aluminum, molybdenum, tungsten, graphite, or a composite material thereof having high thermal conductivity and extending along the longitudinal direction of the tip 6.
  • the blade 7 is arranged in a posture in which the thickness direction is orthogonal to the direction A1, that is, in a posture in which the two plate surfaces 71 and 72 are along the direction A1.
  • a side surface that intersects the two plate surfaces 71 and 72, and an upper side surface in FIGS. In a state of being held, it comes into contact with the target part. Then, the side surface transmits heat from the heater 8 to the target portion. That is, the side surface functions as the treatment surface 73 (FIGS. 1 and 2) according to the present invention that applies thermal energy to the target portion.
  • the treatment surface 73 is configured by a flat surface orthogonal to the direction A1. The corner between the treatment surface 73 and the left plate surface 71 in FIG.
  • the treatment surface 73 has a width dimension (length dimension in the left-right direction in FIG. 2) shorter than the separation dimension between the two plate faces 71, 72.
  • the treatment surface 73 is configured by a flat surface, but is not limited thereto, and may be configured by another shape such as a convex shape or a concave shape.
  • a recess 74 is formed in the right plate surface 72 in FIG. 2 among the two plate surfaces 71 and 72.
  • the recess 74 is located at the center of the plate surface 72 in the direction A ⁇ b> 1 and extends along the longitudinal direction of the distal end portion 6. Further, of the side walls forming the recess 74, the side wall on the base end side Ar2 is omitted.
  • the inner surface on the upper side in FIG. 2 among the inner surfaces of the concave portion 74 corresponds to the back surface 75 according to the present invention, which forms the front and back of the treatment surface 73.
  • the heater 8 generates heat according to electric power supplied from an external control device (not shown) via the electric cable C.
  • the heater 8 includes a heater main body 81 and a flexible substrate 82 (see FIG. 4).
  • the heater main body 81 is a portion that generates heat when energized, and is configured by a sheet heater such as a ceramic heater extending along the longitudinal direction of the distal end portion 6.
  • the heater main body 81 is accommodated in the concave portion 74 in a posture in which the thickness direction is orthogonal to the direction A1, that is, in a posture in which the two sheet surfaces 811 and 812 are along the direction A1.
  • each of the surfaces 811 to 814 is formed of a flat surface, but is not limited thereto, and may be formed of another shape such as a convex shape or a concave shape.
  • the flexible substrate 82 has one end fixed to the base side Ar2 of the left seat surface 811 in the heater main body 81 in FIG. 2 and the other end extending from the heater main body 81 toward the base end Ar2. (See FIG. 4). Then, the flexible board 82 relays a pair of lead wires C1 (see FIG. 4) constituting the electric cable C disposed inside the shaft 2 and the heater main body 81. That is, the electric power supplied from the external control device (not shown) via the electric cable C is supplied to the heater main body 81 after passing through the flexible substrate 82. Thereby, the heater main body 81 generates heat.
  • the heater 8 (the heater body 81) is not limited to the ceramic heater and may be another heater as long as it generates heat in accordance with the supplied power.
  • FIGS. 3 to 5 are diagrams illustrating the shape of the first thermal anisotropic body 9.
  • FIG. 3 is a diagram illustrating a state before the first thermal anisotropic body 9 is folded.
  • FIGS. 4 and 5 are perspective views showing a state after the first thermal anisotropic body 9 is folded.
  • a state before folding the first thermal anisotropic body 9 is referred to as a first thermal anisotropic sheet 90 (FIG. 3), and a state after folding is referred to as a first thermal anisotropic sheet 90.
  • the first thermal anisotropic body 9 has a higher thermal conductivity in the in-plane direction of the sheet (the direction along the paper surface of FIG. 3) than the thickness direction (the direction perpendicular to the paper surface of FIG. 3).
  • the first thermal anisotropic sheet 90 is a rectangular graphite sheet extending along the longitudinal direction of the distal end portion 6.
  • the first thermal anisotropic sheet 90 is not limited to a graphite sheet as long as the sheet has thermal anisotropy having a higher thermal conductivity in the in-plane direction of the sheet than in the thickness direction. You may adopt it.
  • a notch Cu is inserted from the end face of the base end side Ar2 toward the front end side Ar1 at the center position in the width direction (vertical direction in FIG. 3).
  • the end face constituting the outer edge of the first thermal anisotropic sheet 90 corresponds to the first end face EF1 (FIGS.
  • the position of the first end surface EF1 is represented by a dashed line.
  • the end face of the portion where the cut Cu is formed corresponds to the second end face EF2 (FIGS. 3 and 4) according to the present invention.
  • the position of the second end surface EF2 is represented by a two-dot chain line.
  • the first thermal anisotropic member 9 folds the first thermal anisotropic sheet 90 based on the folding line Ln indicated by the broken line in FIG.
  • the base side Ar2 is formed in the shape of an open container.
  • the second end face EF2 is located inside the container of the first thermal anisotropic body 9.
  • the heater 8 is housed inside the first thermal anisotropic body 9 with the first facing surface 813 facing upward in FIGS. 4 and 5.
  • the first thermal anisotropic body 9 has all surfaces (except for the first facing surface 813 and the base end surface 815 of the base end side Ar2 (FIG. 4)) among the outer surfaces constituting the heater main body 81.
  • the two sheet surfaces 811 and 812, the front end surface 816 of the front end side Ar1 (FIG. 4), and the first opposing back surface 814) are opposed to and cover all the surfaces.
  • the first thermal anisotropic body 9 in which the heater 8 is accommodated is accommodated in the concave portion 74 with the opening on the upper side facing the back surface 75 in FIGS. In this state, the first end surface EF1 faces the back surface 75.
  • the first end surface EF1 is located at a position substantially flush with the first opposing surface 813 as shown in FIG. Then, by filling the sealing member Se (FIG. 2) in the concave portion 74, the heater 8 and the first thermal anisotropic member 9 are fixed to the blade 7.
  • the treatment tool 1 described above operates as described below.
  • the surgeon holds the treatment tool 1 by hand.
  • the surgeon operates the operation unit 3 to open and close the first and second gripping members 41 and 42, thereby gripping the target site with each tip 6.
  • the surgeon presses a switch (not shown) electrically connected to an external control device (not shown).
  • the control device executes the following control according to the operation signal from the switch.
  • the control device supplies electric power to the heater main body 81 via the electric cable C. Thereby, the heater main body 81 generates heat.
  • the heat of the heater main body 81 is transferred to the treatment surface 73 by following a first heat transfer path from the first facing surface 813 to the back surface 75 to the blade 7 to the treatment surface 73.
  • the heat of the heater body 81 is generated by the two sheet surfaces 811, 812, the leading end surface 816, the first opposed back surface 814, the first thermal anisotropic body 9, the first end surface EF1, the back surface 75, and the blade 7.
  • the heat is transmitted to the treatment surface 73 by following the second heat transfer path leading to the treatment surface 73.
  • thermal energy is applied from the treatment surface 73 to the target portion gripped between the distal ends 6. Thereby, the target site is incised while coagulating.
  • the treatment tool 1 according to Embodiment 1 has a first heat anisotropy sheet 90 having a higher thermal conductivity in the in-plane direction of the sheet than in the thickness direction, and is formed by folding the first thermal anisotropic sheet 90.
  • An anisotropic body 9 is provided.
  • the first thermal anisotropic member 9 is provided on all the surfaces (the two sheet surfaces 811 and 812 and the front surface 816) of the outer surface of the heater main body 81 other than the first facing surface 813 and the base end surface 815. , And the first opposing back surface 814), and covers all the surfaces. Further, the first end surface EF1 faces the back surface 75.
  • the heat of the heater main body 81 is transferred to the first facing surface 813-the back surface 75-the blade 7-the treatment surface 73, as well as the two sheet surfaces 811 and 812, the leading end surface 816, and The heat is transmitted to the treatment surface 73 by following a second heat transfer path from the first opposing back surface 814 to the first thermal anisotropic body 9 to the first end surface EF1 to the back surface 75 to the blade 7 to the treatment surface 73.
  • the heat of the heater main body 81 can be efficiently collected toward the treatment surface 73. That is, even when the blade 7 is downsized, the blade 7 can be sufficiently heated, and the target portion can be continuously treated.
  • the first thermal anisotropic body 9 is configured by folding one first thermal anisotropic sheet 90 having a higher thermal conductivity in the in-plane direction of the sheet than in the thickness direction. Therefore, the heat transmitted to the first thermal anisotropic body 9 is easily radiated to the outside from the end face.
  • the end surface of the first thermal anisotropic body 9 is the same as the first thermal anisotropic body 9 in addition to the first end surface EF1 facing the back surface. And a second end face EF2 located inside the container. Therefore, the heat transmitted to the first thermal anisotropic body 9 is transmitted from the first end face EF1 to the treatment surface 73 by following the above-described second heat transfer path.
  • the heat transmitted to the first thermal anisotropic body 9 and radiated from the second end face EF2 is transmitted again to the first thermal anisotropic body 9, and then the second thermal anisotropic body 9 described above. It is transmitted to the treatment surface 73 along the transmission path. Therefore, the heat of the heater main body 81 is more efficiently collected toward the treatment surface 73 as compared with the configuration in which the second end face EF2 faces the outside of the container in the first thermal anisotropic body 9. Can be.
  • FIG. 6 is a cross-sectional view illustrating the configuration of the distal end portion 6A according to the second embodiment. Specifically, FIG. 6 is a cross-sectional view corresponding to FIG.
  • a blade 7A having a shape different from that of the blade 7 and the first thermal anisotropic body 9 is used instead of the tip 6 described in the first embodiment.
  • a tip portion 6A having a first thermal anisotropic body 9A is used instead of the tip 6 described in the first embodiment.
  • the corner between the treatment surface 73 and the plate surface 71 on the left side in FIG. 6 is largely chamfered with respect to the blade 7 described in the first embodiment. That is, the treatment surface 73 according to the second embodiment has a shorter width (length in the left-right direction in FIG. 6) than the treatment surface 73 described in the first embodiment.
  • the first thermal anisotropic body 9A has a U-shaped cross-section with both ends facing the back surface 75 rather than the first opposing surface 813 in a cross section orthogonal to the longitudinal direction of the tip portion 6A. Protruding. The distance between the two ends (the distance in the left-right direction in FIG.
  • the first thermal anisotropic member 9A is formed on all surfaces (the first opposing surface 813, the two sheet surfaces 811 and 812, and the distal end surface 816) of the outer surface of the heater main body 81 other than the base end surface 815. , And the first opposing back surface 814), and covers all the surfaces.
  • both ends of the U-shaped cross section face the back surface 75 rather than the first opposing surface 813. Protruding. For this reason, by reducing the width dimension of the treatment surface 73, even if the first opposing surface 813 cannot be arranged at a position close to the rear surface 75 due to design, the first end surface EF1 is moved to the rear surface. 75. That is, even when the width of the treatment surface 73 is reduced, the heat of the heater main body 81 can be efficiently collected toward the treatment surface 73 as in the first embodiment.
  • FIG. 7 is a view showing a treatment tool 1B according to the third embodiment.
  • a treatment tool 1B different from the treatment tool 1 described in the first embodiment is employed.
  • the treatment tool 1B includes a handle 10, a shaft 2B, and a grip 4B.
  • the handle 10 is a part that the operator holds by hand.
  • the handle 10 is provided with an operation knob 101, as shown in FIG.
  • the shaft 2B has a substantially cylindrical shape.
  • one end side along the central axis Ax (FIG. 7) of the shaft 2B is referred to as a distal end side Ar1 (FIG. 7), and the other end side is referred to as a proximal end side Ar2 (FIG. 7). I do.
  • the end of the shaft 2B on the base end side Ar2 is connected to the handle 10.
  • a grip 4B is attached to the end of the shaft 2B at the front end Ar1.
  • An opening / closing mechanism (not shown) for opening and closing the first and second gripping members 41B and 42B (FIG. 7) constituting the gripping portion 4B according to the operation of the operation knob 101 by the operator inside the shaft 2B. ) Is provided.
  • An electric cable C is disposed inside the shaft 2B from the proximal end Ar2 to the distal end Ar1 via the handle 10.
  • FIG. 8 is an enlarged view of the distal end portion of the treatment tool 1B.
  • the grip part 4B is a part that treats the target site while holding the target site.
  • the grip 4B includes first and second gripping members 41B and 42B.
  • the first and second gripping members 41B and 42B are configured to be openable and closable in the direction of arrow R1 (FIG. 8) in accordance with the operation of the operation knob 101 by the operator.
  • the first and second gripping members 41B and 42B have a symmetrical configuration with respect to the central axis Ax. Therefore, hereinafter, the configuration of the first gripping member 41B will be mainly described, and the description of the second gripping member 42B will be given by assigning the same reference numerals to the same components as those of the first gripping member 41B. Omitted.
  • FIG. 9 is a cross-sectional view illustrating the configuration of the first gripping member 41B.
  • FIG. 9 is a cross-sectional view of the first gripping member 41B cut along a plane orthogonal to the longitudinal direction of the first gripping member 41B.
  • the longitudinal direction of the first gripping member 41B is substantially parallel to the central axis Ax when the first and second gripping members 41B and 42B are closed.
  • the first holding member 41B is disposed below the second holding member 42B in FIG. 7 or 8.
  • the first holding member 41B includes a jaw 11, a heat generating structure 12, and a support member 13.
  • the jaw 11 is formed in a long shape extending along the longitudinal direction of the first gripping member 41B, and the end of the proximal end Ar2 is rotatable with respect to the end of the distal end Ar1 of the shaft 2B. It is pivoted.
  • the jaws 11 constituting the first and second gripping members 41B and 42B move closer to each other (close) or separate from each other (open) according to the operation of the operation knob 101 by the operator.
  • the jaw 11 supports the heat generating structure 12 and the support member 13 on the upper surface in FIG. 8 or 9.
  • a direction in which the first and second gripping members 41B and 42B face each other in a closed state will be referred to as a direction A1 (FIGS. 8 and 9).
  • a coating material 111 is provided on the outer surface of the jaw 11 except for the upper surface in FIG. 9. Examples of the coating material 111 include Teflon (registered trademark).
  • the heat generating structure 12 includes a blade 7B, a heater 8, a first thermal anisotropic body 9B, and a second thermal anisotropic body 14.
  • the blade 7B is a long plate made of the same material as the blade 7 described in the first embodiment, and extending along the longitudinal direction of the first gripping member 41B.
  • the blade 7B is arranged so that the thickness direction is along the direction A1, that is, the two plate surfaces 71B and 72B are orthogonal to the direction A1.
  • the upper plate surface 71B in FIG. 9 holds the target portion in a state where the target portion is gripped by the first and second gripping members 41B and 42B.
  • the plate surface 71B transmits heat from the heater 8 to the target portion. That is, the plate surface 71B functions as a treatment surface according to the present invention for applying thermal energy to the target portion.
  • the plate surface 71B is referred to as a treatment surface 71B for convenience of description.
  • the treatment surface 71B is configured by a flat surface orthogonal to the direction A1.
  • the treatment surface 71B is configured by a flat surface, but is not limited thereto, and may be configured by another shape such as a convex shape or a concave shape.
  • a recess 74B is formed in the lower plate surface 72B in FIG. 9 of the two plate surfaces 71B and 72B.
  • the concave portion 74B is located at the center in the width direction (the horizontal direction in FIG. 9) of the plate surface 72B, and extends along the longitudinal direction of the first holding member 41B. Further, among the side walls forming the recess 74B, the side wall on the base end side Ar2 is omitted.
  • the bottom surface of the concave portion 74B corresponds to the back surface 75B according to the present invention, which forms the front and back of the treatment surface 71B.
  • the heater 8 (the heater main body 81) is arranged so that the thickness direction is along the direction A1, that is, the two sheet surfaces 811 and 812 are orthogonal to the direction A1.
  • the upper seat surface 812 in FIG. 9 corresponds to a first facing surface according to the present invention facing the back surface 75B.
  • the sheet surface 812 is referred to as a first opposing surface 812 for convenience of description.
  • the lower sheet surface 811 corresponds to the first opposing back surface according to the present invention, which faces the first opposing surface 812.
  • the left and right side surfaces 813 and 814 in FIG. 9 connect the first opposing surface 812 and the first opposing back surface (sheet surface 811). 1 connection surface.
  • FIGS. 10 to 12 are diagrams illustrating the shape of the first thermal anisotropic body 9B.
  • FIG. 10 is a diagram illustrating a state before the first thermal anisotropic member 9B is folded.
  • FIGS. 11 and 12 are perspective views showing a state after the first thermal anisotropic body 9B is folded.
  • a state before folding the first thermal anisotropic body 9B is referred to as a first thermal anisotropic sheet 90B (FIG. 10), and a state after folding is referred to as a first thermal anisotropic sheet 90B. It is assumed to be an isotropic body 9B.
  • the first thermal anisotropic body 9B has a higher thermal conductivity in the in-plane direction of the sheet (the direction along the plane of FIG. 10) than in the thickness direction (the direction perpendicular to the plane of FIG. 10). Is formed by folding the thermally anisotropic sheet 90B.
  • the first thermal anisotropic sheet 90B is a rectangular graphite sheet extending along the longitudinal direction of the first holding member 41B.
  • the first thermal anisotropic sheet 90B is not limited to a graphite sheet as long as the sheet has thermal anisotropy in which the thermal conductivity in the in-plane direction of the sheet is higher than the thickness direction. You may adopt it.
  • the first thermal anisotropic sheet 90B of the four edges that are rectangular outer edges, two edges along the longitudinal direction of the first gripping member 41B and the edge of the front side Ar1 are formed.
  • the end face corresponds to the first end face EF1 (FIGS. 10 to 12) according to the present invention.
  • the position of the first end surface EF1 is represented by a dashed line.
  • the edge that constitutes the edge on the base end side Ar2 is the second edge EF2 (see FIG. 10 to FIG. 12).
  • the position of the second end surface EF2 is represented by a two-dot chain line.
  • the first thermal anisotropic member 9B folds the first thermal anisotropic sheet 90B with reference to the fold line Ln indicated by the broken line in FIG.
  • the base side Ar2 is formed in the shape of an open container. In this state, the second end face EF2 is located inside the container in the first thermal anisotropic body 9B.
  • FIG. 13 and FIG. 14 are diagrams illustrating the shape of the second thermal anisotropic body 14.
  • FIG. 13 is a diagram schematically illustrating a state before the second thermal anisotropic member 14 is folded.
  • FIG. 14 is a diagram schematically illustrating a state in which the second thermal anisotropic member 14 is folded.
  • the state before folding the second thermal anisotropic body 14 is referred to as a second thermal anisotropic sheet 140 (FIG. 13), and the state after folding is referred to as a second thermal anisotropic sheet.
  • the second thermal anisotropic body 14 has a higher thermal conductivity in the in-plane direction of the sheet (the direction along the plane of FIG. 13) than in the thickness direction (the direction perpendicular to the plane of FIG. 13).
  • the second heat anisotropic sheet 140 is a long and rectangular graphite sheet.
  • the second thermal anisotropic sheet 140 is not limited to a graphite sheet as long as the sheet has thermal anisotropy in which the thermal conductivity in the in-plane direction of the sheet is higher than the thickness direction. You may adopt it.
  • the second thermal anisotropic body 14 has a substantially rectangular parallelepiped shape by folding the second thermal anisotropic sheet 140 in a bellows shape with reference to the folding line Ln indicated by a broken line in FIG.
  • the left and right portions of each fold line Ln in FIG. 13 correspond to the thermally anisotropic layer 141 according to the present invention.
  • the second thermal anisotropic member 14 has a configuration in which a plurality of thermal anisotropic layers 141 are stacked by folding the thermal anisotropic member 14 in a bellows shape as described above.
  • both ends in the longitudinal direction are located between the thermal anisotropic layers 141 adjacent to each other by being folded on the basis of each folding line Ln1 (FIG. 13).
  • the upper surface in FIG. 9 that intersects each folding line Ln corresponds to the second facing surface 142 according to the present invention.
  • FIG. 9 corresponds to the second opposing back surface 143 according to the present invention, which faces the second opposing surface 142. Further, in the second thermal anisotropic body 14, the left and right surfaces in FIG. 9 are the second connection surface 144 according to the present invention for connecting the second opposing surface 142 and the second opposing back surface 143. Is equivalent to
  • the heater 8 is housed inside the first thermal anisotropic body 9B with the first facing surface 812 facing upward in FIGS. 11 and 12.
  • the second thermal anisotropic member 14 has a posture in which the second opposing surface 142 faces upward in FIGS. 11 and 12, that is, each fold line Ln has a vertical direction in FIGS. 11 and 12. It is arranged on the first facing surface 812 in a posture along.
  • the first thermal anisotropic member 9B includes all the surfaces (the sheet surface 811, the side surfaces 813 and 814, and the outer surface of the heater body 81) other than the first facing surface 812 and the base end surface 815. And the front surface 816), and covers all the surfaces.
  • the first thermal anisotropic body 9 ⁇ / b> B includes all the outer surfaces of the second thermal anisotropic body 14 other than the second facing surface 142 and the surface of the base end side Ar ⁇ b> 2 (not shown).
  • the surface (the surface (not shown) of the front end Ar1 (not shown), the second opposing back surface 143, and the pair of second connection surfaces 144) is opposed to and covers all the surfaces.
  • the first thermal anisotropic body 9B in which the heater 8 and the second thermal anisotropic body 14 are housed has a posture in which the upper opening portion faces the back surface 75B in FIGS. Is accommodated in the concave portion 74B. In this state, the first end surface EF1 faces the back surface 75B.
  • the first end surface EF1 is located at a position substantially flush with the second facing surface 142. Further, the first thermal anisotropic member 9B is in a state in which the portion where the heater 8 is disposed protrudes outside the concave portion 74B.
  • the support member 13 is located between the jaw 11 and the heat generating structure 12, and fixes the jaw 11 and the heat generating structure 12 in a state where the concave portion 74B is closed from below in FIG.
  • the support member 13 is made of, for example, a resin material having low thermal conductivity such as PEEK (polyetheretherketone). That is, by disposing the supporting member 13 having a low thermal conductivity on the side opposite to the blade 7B with respect to the heater 8, the heat generated by the heater 8 can be efficiently transmitted to the blade 7B.
  • the treatment tool 1B described above operates as described below.
  • the surgeon holds the treatment tool 1B by hand.
  • the operator operates the operation knob 101 to open and close the first and second gripping members 41B and 42B to grip the target site.
  • the surgeon presses a switch (not shown) electrically connected to an external control device (not shown).
  • the control device executes the following control according to the operation signal from the switch.
  • the control device supplies electric power to the heater main body 81 via the electric cable C.
  • the heater main body 81 generates heat.
  • the heat of the heater main body 81 is transferred to the first heat transfer path from the first facing surface 812 to the second thermal anisotropic body 14 to the second facing surface 142 to the back surface 75B to the blade 7B to the treatment surface 71B. Is transmitted to the treatment surface 71B. Further, the heat of the heater main body 81 reaches the sheet surface 811, the side surfaces 813, 814, and the front end surface 816 to the first thermal anisotropic body 9B to the first end surface EF1 to the back surface 75B to the blade 7B to the treatment surface 71B. Following the second heat transfer path, the heat is transferred to the treatment surface 71B. Then, heat energy is applied to the target portion gripped between the first and second gripping members 41B and 42B from the treatment surface 71B. Thereby, the target site is incised while coagulating.
  • the treatment tool 1B according to the third embodiment is configured by folding one second heat anisotropic sheet 140 having a higher heat conductivity in the in-plane direction of the sheet than in the thickness direction, and the second heat is formed by folding the second heat anisotropic sheet 140.
  • An anisotropic body 14 is further provided.
  • the second thermal anisotropic member 14 is arranged in such a manner that the folding line Ln of the second thermal anisotropic sheet 140 extends along the direction from the first facing surface 812 to the back surface 75B.
  • the heat of the first facing surface 812 of the heater main body 81 is transferred from the first facing surface 812 to the second thermal anisotropic material.
  • the heat can be transmitted to the treatment surface 71B by following a first heat transfer path from the sex body 14, the second facing surface 142, the back surface 75B, the blade 7B, and the treatment surface 71B.
  • the second thermal anisotropic body 14 is configured by folding one second thermal anisotropic sheet 140 having a higher thermal conductivity in the in-plane direction of the sheet than in the thickness direction. For this reason, the heat transmitted to the second thermal anisotropic body 14 is easily radiated to the outside from the end face.
  • a part of the end surface of the second thermal anisotropic body 14 (the second opposing surface 142 and the second opposing back surface 143) is connected to the back surface 75B and the first back surface 143. Oppose each other.
  • the second thermal anisotropic member 14 receives the heat of the first facing surface 812 of the heater main body 81 at the second facing back surface 143 and can transfer the heat from the second facing surface 142 to the back surface 75B. it can. Further, both ends in the longitudinal direction of the second heat anisotropic sheet 140 are folded so as to be located between the heat anisotropic layers 141 adjacent to each other. For this reason, the heat transmitted to the second thermal anisotropic body 14 and radiated from the both end faces in the longitudinal direction of the second thermal anisotropic sheet 140 is again applied to the second thermal anisotropic body 14. After that, it can be transmitted from the second facing surface 142 to the back surface 75B.
  • the heat of the heater main body 81 is treated by the treatment surface 71B. Can be collected more efficiently.
  • the first thermal anisotropic member 9B includes the second facing surface 142 and the base end of the outer surface of the second thermal anisotropic member 14. All the surfaces (the surface of the front end side Ar1 (not shown), the second opposing back surface 143, and the pair of second connection surfaces 144) are opposed to all the surfaces other than the surface Ar2 (not shown). Cover. For this reason, the heat transmitted to the second thermal anisotropic body 14 and radiated from the surface (not shown) of the front end side Ar1 and the pair of second connecting surfaces 144 is transferred to the first thermal anisotropic body 9B. By passing through, the light can be transmitted from the first end face EF1 to the back face 75B. Therefore, the heat of the heater main body 81 can be more efficiently collected toward the treatment surface 71B.
  • FIG. 15 is a cross-sectional view illustrating a configuration of a first gripping member 41C according to the fourth embodiment. Specifically, FIG. 15 is a cross-sectional view corresponding to FIG.
  • the blade 7B and the first and second heat transfer members are used instead of the first gripping member 41B (the heat generating structure 12) described in the third embodiment.
  • each corner between the treatment surface 71B and the pair of left and right side surfaces 73B and 76 in FIG. 9 is different from the blade 7B described in the third embodiment.
  • the part is chamfered. That is, the treatment surface 71B according to the fourth embodiment has a shorter width (length in the left-right direction in FIG. 15) than the treatment surface 71B described in the third embodiment.
  • a recess 74C (FIG. 15) having a cross-sectional shape different from that of the recess 74B described in the third embodiment is formed on the blade 7C. As shown in FIG.
  • the recess 74 ⁇ / b> C has a first recess 741 having a rectangular cross section, and a rectangular recess having a rectangular section recessed from the central portion in the width direction toward the treatment surface 71 ⁇ / b> B on the bottom surface of the first recess 741.
  • a second concave portion 742 In addition, the bottom surface of the second concave portion 742 corresponds to the back surface 75C according to the present invention, which faces the treatment surface 71B.
  • FIG. 16 and 17 are diagrams illustrating the shape of the second thermal anisotropic body 14C.
  • FIG. 16 is a diagram illustrating a state before the second thermal anisotropic body 14C is folded.
  • FIG. 17 is a diagram illustrating a state in which the second thermal anisotropic member 14C is folded.
  • the state before folding second thermal anisotropic body 14C is referred to as second thermal anisotropic sheet 140C (FIG. 16), and the state after folding is referred to as second thermal anisotropic sheet 140C. It is assumed to be an isotropic body 14C. As shown in FIG.
  • the second thermal anisotropic sheet 140C is a sheet obtained by adding a protrusion forming body 145 to the second thermal anisotropic sheet 140 described in the third embodiment. is there.
  • the second thermal anisotropic sheet 140C portions other than the protruding portion forming body 145, that is, the second thermal anisotropic sheet 140 described in the third embodiment described above, A portion having the same shape is referred to as a base forming body 146.
  • the protruding portion forming body 145 has a rectangular shape having a shorter longitudinal dimension than the base forming body 146.
  • the protruding portion forming body 145 is integrally formed so as to protrude upward from the central portion in the longitudinal direction of the upper outer edge of the base forming body 146 in FIG.
  • cuts Cu are inserted from both left and right sides in FIG.
  • the second thermally anisotropic member 14C is formed by folding the second thermally anisotropic sheet 140C in a bellows shape with reference to the folding line Ln indicated by the broken line in FIG. Specifically, the base forming body 146 is folded with the folding line Ln as a reference, thereby forming a rectangular base 147 (FIG. 15). Further, the projection-forming body 145 is folded on the basis of the folding line Ln, so that a rectangular parallelepiped projection 148 (FIG. 15) is formed.
  • the protruding portion 148 has a shorter width (length in the left-right direction in FIG.
  • the second thermal anisotropic body 14 ⁇ / b> C includes the base 147 and the protrusion 148.
  • the left and right sides of each fold line Ln in FIG. 16 correspond to the thermal anisotropic layer 141C according to the present invention.
  • the second thermal anisotropic body 14C has a configuration in which a plurality of thermal anisotropic layers 141C are stacked, similarly to the second thermal anisotropic body 14 described in the third embodiment. .
  • base forming body 146 both ends in the longitudinal direction are located between thermally anisotropic layers 141C adjacent to each other by being folded with reference to each folding line Ln1 (FIG. 16).
  • protruding portion forming body 145 both ends in the longitudinal direction are located between the thermally anisotropic layers 141C adjacent to each other by being folded on the basis of each folding line Ln1C (FIG. 16).
  • the second connection surface 144C is a stepped surface having a step St1 (FIG. 15).
  • FIGS. 18 to 20 are diagrams illustrating the shape of the first thermal anisotropic body 9C.
  • FIG. 18 is a diagram illustrating a state before the first thermal anisotropic body 9C is folded.
  • FIGS. 19 and 20 are perspective views showing a state after the first thermal anisotropic body 9C is folded.
  • first thermal anisotropic sheet 90C FIG. 18
  • first thermal anisotropic sheet 90C FIG. 18
  • first thermal anisotropic sheet 90C It is assumed to be an isotropic body 9C.
  • the first thermal anisotropic sheet 90C is partially cut away from the first thermal anisotropic sheet 90B described in the third embodiment above.
  • first thermal anisotropic sheet 90C two cuts Cu are formed from the end surface of the cut portion toward the base end side Ar2.
  • a part of the end face of the cut portion and the outer edge of the first thermally anisotropic sheet 90C are along the longitudinal direction of the first gripping member 41C.
  • the end faces forming the two edges correspond to the first end face EF1 (FIGS. 18 to 20) according to the present invention.
  • the position of the first end surface EF1 is represented by a dashed line.
  • the first thermal anisotropic sheet 90C the other portion of the cut-out portion, the end face of the outer edge of the first thermal anisotropic sheet 90C that constitutes the edge of the base end side Ar2,
  • the end face of the portion where the cut Cu is formed corresponds to the second end face EF2 (FIGS. 18 to 20) according to the present invention.
  • the position of the second end surface EF2 is represented by a two-dot chain line.
  • the first thermal anisotropic member 9C folds the first thermal anisotropic sheet 90C with reference to the fold line Ln indicated by the broken line in FIG.
  • the base side Ar2 is formed in the shape of an open container.
  • the second end face EF2 is located inside the container of the first thermal anisotropic body 9C.
  • the side wall portions on both sides in the width direction follow the pair of second connection surfaces 144C of the second thermal anisotropic body 14C. It is formed in a stepped shape having a step St2 (FIGS. 15, 19, and 20).
  • the heater 8 is disposed in the space below the step St2 with the first facing surface 812 facing upward in FIGS. 19 and 20 inside the first thermal anisotropic body 9C.
  • the second thermal anisotropic body 14C has a posture in which the second facing surface 142C faces upward in FIGS. 19 and 20, that is, each fold line Ln has a vertical direction in FIGS. 19 and 20. It is arranged on the first facing surface 812 in a posture along.
  • the first thermal anisotropic member 9C includes all surfaces (the sheet surface 811, the side surfaces 813 and 814, and the outer surface constituting the heater body 81) other than the first facing surface 812 and the base end surface 815. And the front surface 816), and covers all the surfaces.
  • the first thermal anisotropic body 9C includes all of the outer surfaces of the second thermal anisotropic body 14C other than the second facing surface 142C and the surface (not shown) of the base end side Ar2.
  • the surface (the surface of the front end Ar1 (not shown), the second opposing back surface 143C, and the pair of second connection surfaces 144C) are opposed to and cover all the surfaces.
  • the first thermal anisotropic body 9C in which the heater 8 and the second thermal anisotropic body 14C are housed has a posture in which the upper opening portion faces the back surface 75C in FIGS. Is accommodated in the concave portion 74C. In this state, the first end surface EF1 faces the back surface 75C.
  • the fourth embodiment as shown in FIG.
  • the first end surface EF1 is located at a position substantially flush with the second facing surface 142C.
  • the portion where the protrusion 148 is provided is located in the second recess 742, and the portion where the base 147 is provided is located in the first recess 741. Then, the portion where the heater 8 is disposed protrudes outside the concave portion 74C.
  • the heat of the heater main body 81 is transmitted to the treatment surface 71B by following the first and second heat transmission paths described below.
  • the first heat transfer path is a path from the first facing surface 812, the second thermal anisotropic body 14C, the second facing surface 142C, the back surface 75C, the blade 7C, and the treatment surface 71B.
  • the second heat transfer path is a path from the sheet surface 811, the side surfaces 813, 814, and the tip surface 816 to the first thermal anisotropic body 9C to the first end surface EF1 to the back surface 75C to the blade 7C to the treatment surface 71B. It is.
  • the first thermal anisotropic body 9 (9A to 9C) includes the first opposing back surface 814 (811) and the pair of first connection surfaces 811 and 812 (813 and 814). ), And may not be covered. Further, the first thermal anisotropic body 9 (9A to 9C) does not have to face the front end face 816.
  • the first thermal anisotropic body 9B (9C) is formed by a surface (not shown) of the tip side Ar1 in the second thermal anisotropic body 14 (14C) and a pair of The second connection surface 144 (144C) does not have to be opposed.
  • the thermally anisotropic layer 141 may be configured as independent layers. That is, the second thermal anisotropic member 14 (14C) does not have to have a configuration in which one second thermal anisotropic sheet 140 (140C) is folded.

Abstract

This surgical tool is provided with: a blade 7 that has a surgical surface 73 that comes into contact with a biological tissue, and a back surface 75 that is in a front-rear relationship with the surgical surface 73; a heater 8 that has a first facing surface 813 that faces the back surface 75, a first opposing rear surface 814 that is in a front-rear relationship with the first facing surface 813, and a pair of first connecting surfaces 811, 812 that connect the first facing surface 813 and the first opposing rear surface 814, the heater 8 heating the blade 7 by generating heat in accordance with supplied electrical power; and a first thermal anisotropic body 9 that is configured by one first thermal anisotropic sheet that has a first end surface EF1. The first thermal anisotropic sheet has a greater thermal conductivity in the in-plane direction of the sheet than in the thickness direction thereof. In a cross-section orthogonal to the longitudinal direction of the heater 8, the first thermal anisotropic body 9 faces the first opposing rear surface 814 and the pair of first connecting surfaces 811, 812, and the first end surface EF1 faces the back surface 75.

Description

処置具Treatment tool
 本発明は、処置具に関する。 The present invention relates to a treatment tool.
 従来、生体組織における処置の対象となる部位(以下、対象部位と記載)に対してエネルギを付与することによって当該対象部位を処置する処置具が知られている(例えば、特許文献1参照)。
 特許文献1に記載の処置具は、対象部位を把持する一対の把持部材を備える。当該把持部材には、一対の把持部材によって対象部位を把持した際に当該対象部位に接触する処置面を有するブレードと、当該ブレードを加熱するヒータとが設けられている。そして、当該処置具では、ブレードを経由することによって、一対の把持部材によって把持された対象部位に対してヒータからの熱を処置面から伝達させる。これによって、対象部位は、処置される。
BACKGROUND ART Conventionally, a treatment tool that treats a target portion of a living tissue by applying energy to the portion to be treated (hereinafter, referred to as a target portion) has been known (for example, see Patent Literature 1).
The treatment tool described in Patent Literature 1 includes a pair of grip members that grip a target site. The gripping member includes a blade having a treatment surface that comes into contact with the target site when the target site is gripped by the pair of gripping members, and a heater that heats the blade. Then, in the treatment tool, heat from the heater is transmitted from the treatment surface to the target portion gripped by the pair of gripping members via the blade. Thereby, the target site is treated.
特開2016-27843号公報JP 2016-27843 A
 ところで、近年では、処置具の適用範囲が広がっており、より精密、繊細な手技に用いる要望が高く、ブレードの大幅な小型化が求められている。
 特許文献1に記載の処置具において、ブレードを小型化した場合には、当該ブレードの熱容量が小さくなる。このため、ブレードが対象部位に接触した際に熱が奪われ、当該ブレードを十分に加熱することができず、連続的に対象部位を処置することが難しくなる。すなわち、ヒータの熱を処置面に向けて効率的に集める必要がある。
By the way, in recent years, the range of application of the treatment tool has been widened, and there is a high demand for use in more precise and delicate procedures, and there is a demand for a significantly smaller blade.
In the treatment tool described in Patent Literature 1, when the size of the blade is reduced, the heat capacity of the blade is reduced. Therefore, when the blade comes into contact with the target portion, heat is taken away, the blade cannot be sufficiently heated, and it becomes difficult to continuously treat the target portion. That is, it is necessary to efficiently collect the heat of the heater toward the treatment surface.
 本発明は、上記に鑑みてなされたものであって、ヒータの熱を処置面に向けて効率的に集めることができる処置具を提供することを目的とする。 The present invention has been made in view of the above, and has as its object to provide a treatment tool capable of efficiently collecting heat of a heater toward a treatment surface.
 上述した課題を解決し、目的を達成するために、本発明に係る処置具は、生体組織に接触する処置面と、前記処置面と表裏をなす背面とを有するブレードと、前記背面に対向する第1の対向面と、前記第1の対向面と表裏をなす第1の対向裏面と、前記第1の対向面と前記第1の対向裏面とを接続する一対の第1の接続面とを有し、供給された電力に応じて発熱することによって前記ブレードを加熱するヒータと、第1の端面を有する1枚の第1の熱異方性シートによって構成された第1の熱異方性体と、を備え、前記第1の熱異方性シートは、厚み方向よりもシートの面内方向の熱伝導率が高く、前記第1の熱異方性体は、前記ヒータの長手方向に直交する断面において、前記第1の対向裏面と、前記一対の第1の接続面とに対向するとともに、前記第1の端面が前記背面に対向する。 In order to solve the above-described problem and achieve the object, a treatment tool according to the present invention has a treatment surface that comes into contact with a living tissue, a blade having a back surface that forms the front and back of the treatment surface, and a blade facing the back surface. A first opposing surface, a first opposing back surface facing the first opposing surface, and a pair of first connecting surfaces connecting the first opposing surface and the first opposing back surface. A first thermal anisotropy constituted by a heater for heating the blade by generating heat in accordance with the supplied electric power, and one first thermal anisotropic sheet having a first end face The first thermal anisotropic sheet has a higher thermal conductivity in the in-plane direction of the sheet than in the thickness direction, and the first thermal anisotropic body has a thermal conductivity in the longitudinal direction of the heater. In a cross section orthogonal to the first opposing back surface and the pair of first connecting surfaces, Moni, said first end surface is opposed to the rear.
 本発明に係る処置具によれば、ヒータの熱を処置面に向けて効率的に集めることができる。 According to the treatment tool of the present invention, the heat of the heater can be efficiently collected toward the treatment surface.
図1は、実施の形態1に係る処置具を示す図である。FIG. 1 is a diagram illustrating a treatment tool according to the first embodiment. 図2は、図1に示したII-II線の断面図である。FIG. 2 is a sectional view taken along line II-II shown in FIG. 図3は、第1の熱異方性体の形状を説明する図である。FIG. 3 is a diagram illustrating the shape of the first thermally anisotropic body. 図4は、第1の熱異方性体の形状を説明する図である。FIG. 4 is a diagram illustrating the shape of the first thermal anisotropic body. 図5は、第1の熱異方性体の形状を説明する図である。FIG. 5 is a diagram illustrating the shape of the first thermal anisotropic body. 図6は、実施の形態2に係る先端部の構成を示す断面図である。FIG. 6 is a cross-sectional view illustrating a configuration of the distal end portion according to the second embodiment. 図7は、実施の形態3に係る処置具を示す図である。FIG. 7 is a view showing a treatment tool according to the third embodiment. 図8は、処置具の先端部分を拡大した図である。FIG. 8 is an enlarged view of the distal end portion of the treatment tool. 図9は、第1の把持部材の構成を示す断面図である。FIG. 9 is a cross-sectional view illustrating the configuration of the first gripping member. 図10は、第1の熱異方性体の形状を説明する図である。FIG. 10 is a diagram illustrating the shape of the first thermal anisotropic body. 図11は、第1の熱異方性体の形状を説明する図である。FIG. 11 is a diagram illustrating the shape of the first thermally anisotropic body. 図12は、第1の熱異方性体の形状を説明する図である。FIG. 12 is a diagram illustrating the shape of the first thermally anisotropic body. 図13は、第2の熱異方性体の形状を説明する図である。FIG. 13 is a diagram illustrating the shape of the second thermal anisotropic body. 図14は、第2の熱異方性体の形状を説明する図である。FIG. 14 is a diagram illustrating the shape of the second thermal anisotropic body. 図15は、実施の形態4に係る第1の把持部材の構成を示す断面図である。FIG. 15 is a cross-sectional view illustrating a configuration of a first gripping member according to the fourth embodiment. 図16は、第2の熱異方性体の形状を説明する図である。FIG. 16 is a diagram illustrating the shape of the second thermally anisotropic body. 図17は、第2の熱異方性体の形状を説明する図である。FIG. 17 is a diagram illustrating the shape of the second thermal anisotropic body. 図18は、第1の熱異方性体の形状を説明する図である。FIG. 18 is a diagram illustrating the shape of the first thermally anisotropic body. 図19は、第2の熱異方性体の形状を説明する図である。FIG. 19 is a diagram illustrating the shape of the second heat anisotropic body. 図20は、第2の熱異方性体の形状を説明する図である。FIG. 20 is a diagram illustrating the shape of the second heat anisotropic body.
 以下に、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。 Hereinafter, an embodiment (hereinafter, an embodiment) for carrying out the present invention will be described with reference to the drawings. The present invention is not limited by the embodiments described below. Further, in the description of the drawings, the same portions are denoted by the same reference numerals.
(実施の形態1)
 〔処置具の概略構成〕
 図1は、本実施の形態1に係る処置具1を示す図である。
 処置具1は、生体組織における処置の対象となる部位(以下、対象部位と記載)に対して熱エネルギを付与することによって、当該対象部位を処置する。ここで、当該処置とは、例えば、対象部位の凝固及び切開を意味する。この処置具1は、図1に示すように、シャフト2と、操作部3と、把持部4とを備える。
 シャフト2は、略円筒形状を有する。以下では、説明の便宜上、シャフト2の中心軸Axに沿う一端側を先端側Ar1(図1)とし、他端側を基端側Ar2(図1)とする。
 このシャフト2の先端側Ar1の端部には、図1に示すように、把持部4が取り付けられている。また、シャフト2の基端側Ar2の端部には、操作部3が取り付けられている。そして、シャフト2の内部には、術者による操作部3の操作に応じて、把持部4を構成する第1,第2の把持部材41,42(図1)を開閉させるワイヤWi(図1)が設けられている。また、シャフト2の内部には、処置具1の動作を制御する制御装置(図示略)に対して接続された電気ケーブルC(図4参照)が基端側Ar2から先端側Ar1まで配設されている。
(Embodiment 1)
[Schematic configuration of treatment tool]
FIG. 1 is a view showing a treatment tool 1 according to the first embodiment.
The treatment tool 1 treats a target part of a living tissue by applying thermal energy to the part to be treated (hereinafter, referred to as a target part). Here, the treatment means, for example, coagulation and incision of the target site. As shown in FIG. 1, the treatment tool 1 includes a shaft 2, an operation unit 3, and a grip unit 4.
The shaft 2 has a substantially cylindrical shape. Hereinafter, for convenience of explanation, one end side along the center axis Ax of the shaft 2 is referred to as a distal end side Ar1 (FIG. 1), and the other end side is referred to as a proximal end side Ar2 (FIG. 1).
As shown in FIG. 1, a grip 4 is attached to an end of the distal end Ar <b> 1 of the shaft 2. Further, an operation section 3 is attached to an end of the base end side Ar2 of the shaft 2. A wire Wi (FIG. 1) for opening and closing the first and second gripping members 41 and 42 (FIG. 1) constituting the gripping section 4 in response to the operation of the operating section 3 by the operator. ) Is provided. An electric cable C (see FIG. 4) connected to a control device (not shown) for controlling the operation of the treatment tool 1 is disposed inside the shaft 2 from the base end Ar2 to the distal end Ar1. ing.
 操作部3は、術者によって操作される部分であり、先端側Ar1の一部がシャフト2の内部に挿通されている。また、この操作部3には、ワイヤWiの一端が固定されている。そして、操作部3は、術者による操作に応じて中心軸Axに沿って進退し、ワイヤWiを基端側Ar2に引き出す、あるいは、ワイヤWiを先端側Ar1に押し戻す。 The operation unit 3 is a part operated by the operator, and a part of the distal end side Ar1 is inserted into the inside of the shaft 2. One end of a wire Wi is fixed to the operation unit 3. Then, the operation unit 3 advances and retreats along the central axis Ax according to the operation by the operator, and pulls out the wire Wi to the proximal end Ar2 or pushes the wire Wi back to the distal end Ar1.
 把持部4は、対象部位を把持した状態で当該対象部位を処置する部分である。この把持部4は、図1に示すように、第1,第2の把持部材41,42を備える。
 第1,第2の把持部材41,42は、術者による操作部3への操作に応じて、矢印R1(図1)方向に開閉可能に構成されている。
 なお、第1,第2の把持部材41,42は、中心軸Axを基準として、対称となる構成を有する。このため、以下では、第1の把持部材41の構成を主に説明し、第2の把持部材42については、第1の把持部材41と同様の構成に同一の符号を付すことによってその説明を省略する。
The gripper 4 is a part that treats the target site while holding the target site. As shown in FIG. 1, the grip 4 includes first and second gripping members 41 and 42.
The first and second gripping members 41 and 42 are configured to be openable and closable in an arrow R1 (FIG. 1) direction according to an operation performed on the operation unit 3 by an operator.
The first and second gripping members 41 and 42 have a symmetrical configuration with respect to the central axis Ax. Therefore, hereinafter, the configuration of the first gripping member 41 will be mainly described, and the description of the second gripping member 42 will be given by assigning the same reference numerals to the same components as those of the first gripping member 41. Omitted.
 〔第1の把持部材の構成〕
 第1の把持部材41は、第2の把持部材42に対して、図1中、下方側に配置されている。この第1の把持部材41は、図1に示すように、基端側Ar2に位置する基端部5と、先端側Ar1に位置する先端部6とが所定の角度を成して互いに接続された全体略L字形状を有する。
 基端部5は、図1に示すように、回動軸Raによってシャフト2の先端側Ar1の端部に対して回動可能に軸支される。また、基端部5において、回動軸Raよりも先端部6から離間した位置には、ワイヤWiの他端が接続されている。
[Configuration of First Holding Member]
The first gripping member 41 is disposed below the second gripping member 42 in FIG. As shown in FIG. 1, the first gripping member 41 is connected to the proximal end 5 located on the proximal end Ar2 and the distal end 6 located on the distal end Ar1 at a predetermined angle. It has a generally L-shape.
As shown in FIG. 1, the base end portion 5 is rotatably supported by a rotation shaft Ra so as to be rotatable with respect to the end portion of the distal end side Ar1 of the shaft 2. The other end of the wire Wi is connected to the base end 5 at a position separated from the distal end 6 with respect to the rotation axis Ra.
 そして、第1の把持部材41は、術者による操作部3への操作に応じてワイヤWiが基端側Ar2に引き出された際に、回動軸Raを中心として図1中、時計回りに回動する。なお、第2の把持部材42は、第1の把持部材41とは逆に、回動軸Raを中心として図1中、反時計回りに回動する。これにより、第1,第2の把持部材41,42における各先端部6同士は、互いに近接し(閉じ)、対象部位を把持可能となる。以下では、説明の便宜上、各先端部6同士が閉じた状態で互いに対向する方向を方向A1(図2)と記載する。一方、第1の把持部材41は、術者による操作部3への操作に応じてワイヤWiが先端側Ar1に押し戻された際に、回動軸Raを中心として図1中、反時計回りに回動する。なお、第2の把持部材42は、第1の把持部材41とは逆に、回動軸Raを中心として図1中、時計回りに回動する。これにより、第1,第2の把持部材41,42における各先端部6同士は互いに離間する(開く)。 When the wire Wi is pulled out to the proximal end Ar2 in response to the operation on the operation unit 3 by the operator, the first gripping member 41 rotates clockwise in FIG. 1 around the rotation axis Ra. Rotate. The second gripping member 42 rotates counterclockwise in FIG. 1 around the rotation axis Ra, contrary to the first gripping member 41. As a result, the respective distal end portions 6 of the first and second gripping members 41 and 42 come close to each other (close), and can grip the target portion. In the following, for convenience of description, the direction in which the tip portions 6 face each other in a closed state is referred to as a direction A1 (FIG. 2). On the other hand, when the wire Wi is pushed back to the distal end Ar1 in response to the operation on the operation unit 3 by the operator, the first gripping member 41 rotates counterclockwise in FIG. 1 around the rotation axis Ra. Rotate. The second gripping member 42 rotates clockwise in FIG. 1 around the rotation axis Ra, contrary to the first gripping member 41. As a result, the distal ends 6 of the first and second gripping members 41 and 42 are separated from each other (open).
 図2は、第1の把持部材41における先端部6の構成を示す断面図である。具体的に、図2は、先端部6の長手方向に直交する平面によって当該先端部6を切断した断面図である。なお、先端部6の長手方向は、第1,第2の把持部材41,42を閉じた状態で、中心軸Axに略平行となる。
 先端部6は、図2に示すように、ブレード7と、ヒータ8と、第1の熱異方性体9とを備える。
 ブレード7は、高熱伝導性の銅、銀、アルミニウム、モリブデン、タングステン、グラファイト、あるいはそれらの複合材料によって構成され、先端部6の長手方向に沿って延在する長尺状の板体である。
FIG. 2 is a cross-sectional view illustrating a configuration of the distal end portion 6 of the first gripping member 41. Specifically, FIG. 2 is a cross-sectional view of the distal end portion 6 cut by a plane orthogonal to the longitudinal direction of the distal end portion 6. Note that the longitudinal direction of the distal end portion 6 is substantially parallel to the central axis Ax in a state where the first and second gripping members 41 and 42 are closed.
The tip portion 6 includes a blade 7, a heater 8, and a first thermal anisotropic body 9, as shown in FIG.
The blade 7 is a long plate formed of copper, silver, aluminum, molybdenum, tungsten, graphite, or a composite material thereof having high thermal conductivity and extending along the longitudinal direction of the tip 6.
 このブレード7は、厚み方向が方向A1に直交する姿勢、すなわち、2つの板面71,72が方向A1に沿う姿勢で配置される。このブレード7において、2つの板面71,72に対して交差する側面であって、図1,図2中、上方側の側面は、第1,第2の把持部材41,42によって対象部位を把持した状態で、当該対象部位に接触する。そして、当該側面は、ヒータ8からの熱を対象部位に伝達する。すなわち、当該側面は、対象部位に対して熱エネルギを付与する本発明に係る処置面73(図1,図2)として機能する。本実施の形態1では、処置面73は、方向A1に対して直交する平坦面によって構成されている。また、処置面73と図2中、左側の板面71との間の角隅部分は、面取りされている。すなわち、処置面73は、2つの板面71,72間の離間寸法よりも短い幅寸法(図2中、左右方向の長さ寸法)を有する。
 なお、本実施の形態1では、処置面73は、平坦面によって構成されているが、これに限らず、凸形状、凹形状等の他の形状によって構成しても構わない。
The blade 7 is arranged in a posture in which the thickness direction is orthogonal to the direction A1, that is, in a posture in which the two plate surfaces 71 and 72 are along the direction A1. In the blade 7, a side surface that intersects the two plate surfaces 71 and 72, and an upper side surface in FIGS. In a state of being held, it comes into contact with the target part. Then, the side surface transmits heat from the heater 8 to the target portion. That is, the side surface functions as the treatment surface 73 (FIGS. 1 and 2) according to the present invention that applies thermal energy to the target portion. In the first embodiment, the treatment surface 73 is configured by a flat surface orthogonal to the direction A1. The corner between the treatment surface 73 and the left plate surface 71 in FIG. 2 is chamfered. That is, the treatment surface 73 has a width dimension (length dimension in the left-right direction in FIG. 2) shorter than the separation dimension between the two plate faces 71, 72.
In the first embodiment, the treatment surface 73 is configured by a flat surface, but is not limited thereto, and may be configured by another shape such as a convex shape or a concave shape.
 また、2つの板面71,72のうち、図2中、右側の板面72には、凹部74が形成されている。
 凹部74は、板面72の方向A1における中心に位置し、先端部6の長手方向に沿って延在する。また、凹部74を構成する側壁部のうち、基端側Ar2の側壁部は、省略されている。そして、凹部74の内面のうち、図2中、上方側の内面は、処置面73と表裏をなす本発明に係る背面75に相当する。
A recess 74 is formed in the right plate surface 72 in FIG. 2 among the two plate surfaces 71 and 72.
The recess 74 is located at the center of the plate surface 72 in the direction A <b> 1 and extends along the longitudinal direction of the distal end portion 6. Further, of the side walls forming the recess 74, the side wall on the base end side Ar2 is omitted. The inner surface on the upper side in FIG. 2 among the inner surfaces of the concave portion 74 corresponds to the back surface 75 according to the present invention, which forms the front and back of the treatment surface 73.
 ヒータ8は、外部の制御装置(図示略)から電気ケーブルCを経由することによって供給された電力に応じて発熱する。このヒータ8は、ヒータ本体81と、フレキシブル基板82(図4参照)とを備える。
 ヒータ本体81は、通電によって発熱する部分であり、先端部6の長手方向に沿って延在する例えばセラミックヒータ等のシートヒータで構成されている。
 このヒータ本体81は、厚み方向が方向A1に直交する姿勢、すなわち、2つのシート面811,812が方向A1に沿う姿勢で凹部74内に収容されている。このヒータ本体81において、2つのシート面811,812を接続する一対の側面のうち、図2中、上方側の側面は、背面75に対向する本発明に係る第1の対向面813に相当する。また、図2中、下方側の側面は、第1の対向面813と表裏をなす本発明に係る第1の対向裏面814に相当する。さらに、2つのシート面811,812は、第1の対向面813と第1の対向裏面814とを接続する本発明に係る一対の第1の接続面に相当する。
 なお、本実施の形態1では、各面811~814は、それぞれ平坦面によって構成されているが、これに限らず、凸形状、凹形状等の他の形状によって構成しても構わない。
The heater 8 generates heat according to electric power supplied from an external control device (not shown) via the electric cable C. The heater 8 includes a heater main body 81 and a flexible substrate 82 (see FIG. 4).
The heater main body 81 is a portion that generates heat when energized, and is configured by a sheet heater such as a ceramic heater extending along the longitudinal direction of the distal end portion 6.
The heater main body 81 is accommodated in the concave portion 74 in a posture in which the thickness direction is orthogonal to the direction A1, that is, in a posture in which the two sheet surfaces 811 and 812 are along the direction A1. In the heater body 81, of the pair of side surfaces connecting the two sheet surfaces 811 and 812, the upper side surface in FIG. 2 corresponds to the first facing surface 813 according to the present invention facing the back surface 75. . In FIG. 2, the lower side surface corresponds to the first opposing back surface 814 according to the present invention, which faces the first opposing surface 813. Further, the two sheet surfaces 811 and 812 correspond to a pair of first connection surfaces according to the present invention that connect the first opposing surface 813 and the first opposing back surface 814.
In the first embodiment, each of the surfaces 811 to 814 is formed of a flat surface, but is not limited thereto, and may be formed of another shape such as a convex shape or a concave shape.
 フレキシブル基板82は、一端側がヒータ本体81における図2中、左側のシート面811の基端側Ar2の部位に対して固定され、他端側がヒータ本体81から基端側Ar2に向けて延在するように配設される(図4参照)。そして、フレキシブル基板82は、シャフト2の内部に配設された電気ケーブルCを構成する一対のリード線C1(図4参照)とヒータ本体81とを中継する。すなわち、外部の制御装置(図示略)から電気ケーブルCを経由することによって供給された電力は、フレキシブル基板82を経由した後、ヒータ本体81に対して供給される。これにより、ヒータ本体81は、発熱する。
 なお、ヒータ8(ヒータ本体81)としては、供給された電力に応じて発熱する構成であれば、セラミックヒータに限らず、その他のヒータで構成しても構わない。
The flexible substrate 82 has one end fixed to the base side Ar2 of the left seat surface 811 in the heater main body 81 in FIG. 2 and the other end extending from the heater main body 81 toward the base end Ar2. (See FIG. 4). Then, the flexible board 82 relays a pair of lead wires C1 (see FIG. 4) constituting the electric cable C disposed inside the shaft 2 and the heater main body 81. That is, the electric power supplied from the external control device (not shown) via the electric cable C is supplied to the heater main body 81 after passing through the flexible substrate 82. Thereby, the heater main body 81 generates heat.
The heater 8 (the heater body 81) is not limited to the ceramic heater and may be another heater as long as it generates heat in accordance with the supplied power.
 図3ないし図5は、第1の熱異方性体9の形状を説明する図である。具体的に、図3は、第1の熱異方性体9を折り畳む前の状態を示す図である。図4及び図5は、第1の熱異方性体9を折り畳んだ後の状態を示す斜視図である。
 なお、以下では、説明の便宜上、第1の熱異方性体9を折り畳む前の状態を第1の熱異方性シート90(図3)とし、折り畳んだ後の状態を第1の熱異方性体9とする。
 第1の熱異方性体9は、厚み方向(図3の紙面に直交する方向)よりもシートの面内方向(図3の紙面に沿う方向)の熱伝導率が高い1枚の第1の熱異方性シート90を折り畳むことによって構成されている。
FIGS. 3 to 5 are diagrams illustrating the shape of the first thermal anisotropic body 9. Specifically, FIG. 3 is a diagram illustrating a state before the first thermal anisotropic body 9 is folded. FIGS. 4 and 5 are perspective views showing a state after the first thermal anisotropic body 9 is folded.
In the following, for convenience of explanation, a state before folding the first thermal anisotropic body 9 is referred to as a first thermal anisotropic sheet 90 (FIG. 3), and a state after folding is referred to as a first thermal anisotropic sheet 90. It is assumed to be an isotropic body 9.
The first thermal anisotropic body 9 has a higher thermal conductivity in the in-plane direction of the sheet (the direction along the paper surface of FIG. 3) than the thickness direction (the direction perpendicular to the paper surface of FIG. 3). Of the thermal anisotropic sheet 90 of FIG.
 具体的に、第1の熱異方性シート90は、先端部6の長手方向に沿って延在する矩形状のグラファイトシートである。なお、第1の熱異方性シート90としては、厚み方向よりもシートの面内方向の熱伝導率が高い熱異方性を有するシートであれば、グラファイトシートに限らず、その他のシートを採用しても構わない。この第1の熱異方性シート90において、幅方向(図3中、上下方向)の中心位置には、基端側Ar2の端面から先端側Ar1に向けて切れ込みCuが入れられている。また、第1の熱異方性シート90において、当該第1の熱異方性シート90の外縁を構成する端面は、本発明に係る第1の端面EF1(図3~図5)に相当する。なお、図3では、第1の端面EF1の位置を一点鎖線によって表現している。また、第1の熱異方性シート90において、切れ込みCuが入れられた部分の端面は、本発明に係る第2の端面EF2(図3,図4)に相当する。なお、図3では、第2の端面EF2の位置を二点鎖線によって表現している。 Specifically, the first thermal anisotropic sheet 90 is a rectangular graphite sheet extending along the longitudinal direction of the distal end portion 6. The first thermal anisotropic sheet 90 is not limited to a graphite sheet as long as the sheet has thermal anisotropy having a higher thermal conductivity in the in-plane direction of the sheet than in the thickness direction. You may adopt it. In the first thermally anisotropic sheet 90, a notch Cu is inserted from the end face of the base end side Ar2 toward the front end side Ar1 at the center position in the width direction (vertical direction in FIG. 3). Further, in the first thermal anisotropic sheet 90, the end face constituting the outer edge of the first thermal anisotropic sheet 90 corresponds to the first end face EF1 (FIGS. 3 to 5) according to the present invention. . In FIG. 3, the position of the first end surface EF1 is represented by a dashed line. Further, in the first thermally anisotropic sheet 90, the end face of the portion where the cut Cu is formed corresponds to the second end face EF2 (FIGS. 3 and 4) according to the present invention. In FIG. 3, the position of the second end surface EF2 is represented by a two-dot chain line.
 そして、第1の熱異方性体9は、図3に破線によって示した折り畳み線Lnを基準として第1の熱異方性シート90を折り畳むことによって、図4及び図5中、上方側及び基端側Ar2がそれぞれ開放した容器状に形成される。この状態では、第2の端面EF2は、第1の熱異方性体9における容器状の内部に位置する。そして、ヒータ8は、第1の対向面813が図4及び図5中、上方側に向く姿勢で第1の熱異方性体9の内部に収容される。この状態では、第1の熱異方性体9は、ヒータ本体81を構成する外面のうち、第1の対向面813及び基端側Ar2の基端面815(図4)以外の全ての面(2つのシート面811,812、先端側Ar1の先端面816(図4)、及び第1の対向裏面814)に対向するとともに、当該全ての面を覆う。また、ヒータ8が内部に収容された第1の熱異方性体9は、図4及び図5中、上方側の開口部分が背面75に対向する姿勢で凹部74内に収容される。この状態では、第1の端面EF1は、背面75に対向する。本実施の形態1では、第1の端面EF1は、図2に示すように、第1の対向面813と略面一となる位置に位置する。そして、凹部74内に封止部材Se(図2)を充填することによって、ヒータ8及び第1の熱異方性体9は、ブレード7に対して固着される。 Then, the first thermal anisotropic member 9 folds the first thermal anisotropic sheet 90 based on the folding line Ln indicated by the broken line in FIG. The base side Ar2 is formed in the shape of an open container. In this state, the second end face EF2 is located inside the container of the first thermal anisotropic body 9. The heater 8 is housed inside the first thermal anisotropic body 9 with the first facing surface 813 facing upward in FIGS. 4 and 5. In this state, the first thermal anisotropic body 9 has all surfaces (except for the first facing surface 813 and the base end surface 815 of the base end side Ar2 (FIG. 4)) among the outer surfaces constituting the heater main body 81. The two sheet surfaces 811 and 812, the front end surface 816 of the front end side Ar1 (FIG. 4), and the first opposing back surface 814) are opposed to and cover all the surfaces. In addition, the first thermal anisotropic body 9 in which the heater 8 is accommodated is accommodated in the concave portion 74 with the opening on the upper side facing the back surface 75 in FIGS. In this state, the first end surface EF1 faces the back surface 75. In the first embodiment, the first end surface EF1 is located at a position substantially flush with the first opposing surface 813 as shown in FIG. Then, by filling the sealing member Se (FIG. 2) in the concave portion 74, the heater 8 and the first thermal anisotropic member 9 are fixed to the blade 7.
 〔処置具の動作〕
 以上説明した処置具1は、以下に示すように動作する。
 術者は、処置具1を手で持つ。そして、術者は、操作部3を操作し、第1,第2の把持部材41,42を開閉することによって、各先端部6によって対象部位を把持する。この後、術者は、外部の制御装置(図示略)に対して電気的に接続されたスイッチ(図示略)を押下する。これによって、当該制御装置は、当該スイッチからの操作信号に応じて、以下に示す制御を実行する。
 当該制御装置は、電気ケーブルCを経由することによって、ヒータ本体81に対して電力を供給する。これによって、ヒータ本体81は、発熱する。そして、ヒータ本体81の熱は、第1の対向面813~背面75~ブレード7~処置面73に至る第1の熱伝達経路を辿ることによって、処置面73に伝達される。また、ヒータ本体81の熱は、2つのシート面811,812、先端面816、及び第1の対向裏面814~第1の熱異方性体9~第1の端面EF1~背面75~ブレード7~処置面73に至る第2の熱伝達経路を辿ることによって、処置面73に伝達される。そして、各先端部6の間に把持された対象部位には、処置面73から熱エネルギが付与される。これによって、当該対象部位は、凝固しつつ切開される。
[Operation of treatment tool]
The treatment tool 1 described above operates as described below.
The surgeon holds the treatment tool 1 by hand. Then, the surgeon operates the operation unit 3 to open and close the first and second gripping members 41 and 42, thereby gripping the target site with each tip 6. Thereafter, the surgeon presses a switch (not shown) electrically connected to an external control device (not shown). Thereby, the control device executes the following control according to the operation signal from the switch.
The control device supplies electric power to the heater main body 81 via the electric cable C. Thereby, the heater main body 81 generates heat. Then, the heat of the heater main body 81 is transferred to the treatment surface 73 by following a first heat transfer path from the first facing surface 813 to the back surface 75 to the blade 7 to the treatment surface 73. The heat of the heater body 81 is generated by the two sheet surfaces 811, 812, the leading end surface 816, the first opposed back surface 814, the first thermal anisotropic body 9, the first end surface EF1, the back surface 75, and the blade 7. The heat is transmitted to the treatment surface 73 by following the second heat transfer path leading to the treatment surface 73. Then, thermal energy is applied from the treatment surface 73 to the target portion gripped between the distal ends 6. Thereby, the target site is incised while coagulating.
 以上説明した本実施の形態1によれば、以下の効果を奏する。
 本実施の形態1に係る処置具1は、厚み方向よりもシートの面内方向の熱伝導率が高い1枚の第1の熱異方性シート90を折り畳むことによって構成された第1の熱異方性体9を備える。そして、第1の熱異方性体9は、ヒータ本体81を構成する外面のうち、第1の対向面813及び基端面815以外の全ての面(2つのシート面811,812、先端面816、及び第1の対向裏面814)に対向するとともに、当該全ての面を覆う。また、第1の端面EF1は、背面75に対向する。
 このため、ヒータ本体81の熱は、第1の対向面813~背面75~ブレード7~処置面73に至る第1の熱伝達経路の他、2つのシート面811,812、先端面816、及び第1の対向裏面814~第1の熱異方性体9~第1の端面EF1~背面75~ブレード7~処置面73に至る第2の熱伝達経路を辿って、処置面73に伝達される。
 したがって、本実施の形態1に係る処置具1によれば、ヒータ本体81の熱を処置面73に向けて効率的に集めることができる。すなわち、ブレード7を小型化した場合であっても、当該ブレード7を十分に加熱することができ、連続的に対象部位を処置することができる。
According to the first embodiment described above, the following effects can be obtained.
The treatment tool 1 according to Embodiment 1 has a first heat anisotropy sheet 90 having a higher thermal conductivity in the in-plane direction of the sheet than in the thickness direction, and is formed by folding the first thermal anisotropic sheet 90. An anisotropic body 9 is provided. The first thermal anisotropic member 9 is provided on all the surfaces (the two sheet surfaces 811 and 812 and the front surface 816) of the outer surface of the heater main body 81 other than the first facing surface 813 and the base end surface 815. , And the first opposing back surface 814), and covers all the surfaces. Further, the first end surface EF1 faces the back surface 75.
For this reason, the heat of the heater main body 81 is transferred to the first facing surface 813-the back surface 75-the blade 7-the treatment surface 73, as well as the two sheet surfaces 811 and 812, the leading end surface 816, and The heat is transmitted to the treatment surface 73 by following a second heat transfer path from the first opposing back surface 814 to the first thermal anisotropic body 9 to the first end surface EF1 to the back surface 75 to the blade 7 to the treatment surface 73. You.
Therefore, according to the treatment tool 1 according to the first embodiment, the heat of the heater main body 81 can be efficiently collected toward the treatment surface 73. That is, even when the blade 7 is downsized, the blade 7 can be sufficiently heated, and the target portion can be continuously treated.
 ところで、第1の熱異方性体9は、厚み方向よりもシートの面内方向の熱伝導率が高い1枚の第1の熱異方性シート90を折り畳むことによって構成されている。このため、第1の熱異方性体9に伝達された熱は、端面から外部に放熱され易いものである。
 そして、本実施の形態1に係る処置具1では、第1の熱異方性体9の端面は、背面に対向する第1の端面EF1の他、当該第1の熱異方性体9における容器状の内部に位置する第2の端面EF2とによって構成されている。
 このため、第1の熱異方性体9に伝達された熱は、第1の端面EF1から上述した第2の熱伝達経路を辿って処置面73に伝達される。また、第1の熱異方性体9に伝達され、第2の端面EF2から放熱された熱は、再度、第1の熱異方性体9に伝達された後、上述した第2の熱伝達経路を辿って処置面73に伝達される。
 したがって、第2の端面EF2が第1の熱異方性体9における容器状の外部を向いている構成と比較して、ヒータ本体81の熱を処置面73に向けてさらに効率的に集めることができる。
Incidentally, the first thermal anisotropic body 9 is configured by folding one first thermal anisotropic sheet 90 having a higher thermal conductivity in the in-plane direction of the sheet than in the thickness direction. Therefore, the heat transmitted to the first thermal anisotropic body 9 is easily radiated to the outside from the end face.
In the treatment tool 1 according to the first embodiment, the end surface of the first thermal anisotropic body 9 is the same as the first thermal anisotropic body 9 in addition to the first end surface EF1 facing the back surface. And a second end face EF2 located inside the container.
Therefore, the heat transmitted to the first thermal anisotropic body 9 is transmitted from the first end face EF1 to the treatment surface 73 by following the above-described second heat transfer path. Further, the heat transmitted to the first thermal anisotropic body 9 and radiated from the second end face EF2 is transmitted again to the first thermal anisotropic body 9, and then the second thermal anisotropic body 9 described above. It is transmitted to the treatment surface 73 along the transmission path.
Therefore, the heat of the heater main body 81 is more efficiently collected toward the treatment surface 73 as compared with the configuration in which the second end face EF2 faces the outside of the container in the first thermal anisotropic body 9. Can be.
(実施の形態2)
 次に、本実施の形態2について説明する。
 以下の説明では、上述した実施の形態1と同様の構成に同一の符号を付すことによって、その詳細な説明を省略または簡略化する。
 図6は、本実施の形態2に係る先端部6Aの構成を示す断面図である。具体的に、図6は、図2に対応した断面図である。
 本実施の形態2では、図6に示すように、上述した実施の形態1において説明した先端部6の代わりに、ブレード7及び第1の熱異方性体9とはそれぞれ異なる形状のブレード7A及び第1の熱異方性体9Aを有する先端部6Aを採用している。
(Embodiment 2)
Next, the second embodiment will be described.
In the following description, the same components as those in the above-described first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted or simplified.
FIG. 6 is a cross-sectional view illustrating the configuration of the distal end portion 6A according to the second embodiment. Specifically, FIG. 6 is a cross-sectional view corresponding to FIG.
In the second embodiment, as shown in FIG. 6, a blade 7A having a shape different from that of the blade 7 and the first thermal anisotropic body 9 is used instead of the tip 6 described in the first embodiment. And a tip portion 6A having a first thermal anisotropic body 9A.
 ブレード7Aでは、上述した実施の形態1において説明したブレード7に対して、処置面73と図6中、左側の板面71との間の角隅部分が大きく面取りされている。すなわち、本実施の形態2に係る処置面73は、上述した実施の形態1において説明した処置面73に対して短い幅寸法(図6中、左右方向の長さ寸法)を有する。
 第1の熱異方性体9Aは、図6に示すように、先端部6Aの長手方向に直交する断面において、断面U字状の両端部が第1の対向面813よりも背面75に向けて突出している。また、当該両端部同士の離間寸法(図6中、左右方向の離間寸法)は、ヒータ本体81の厚み寸法(図6中、左右方向の長さ寸法)よりも小さく設定されている。すなわち、第1の熱異方性体9Aは、ヒータ本体81を構成する外面のうち、基端面815以外の全ての面(第1の対向面813、2つのシート面811,812、先端面816、及び第1の対向裏面814)に対向するとともに、当該全ての面を覆う。
In the blade 7A, the corner between the treatment surface 73 and the plate surface 71 on the left side in FIG. 6 is largely chamfered with respect to the blade 7 described in the first embodiment. That is, the treatment surface 73 according to the second embodiment has a shorter width (length in the left-right direction in FIG. 6) than the treatment surface 73 described in the first embodiment.
As shown in FIG. 6, the first thermal anisotropic body 9A has a U-shaped cross-section with both ends facing the back surface 75 rather than the first opposing surface 813 in a cross section orthogonal to the longitudinal direction of the tip portion 6A. Protruding. The distance between the two ends (the distance in the left-right direction in FIG. 6) is set smaller than the thickness of the heater body 81 (the length in the left-right direction in FIG. 6). That is, the first thermal anisotropic member 9A is formed on all surfaces (the first opposing surface 813, the two sheet surfaces 811 and 812, and the distal end surface 816) of the outer surface of the heater main body 81 other than the base end surface 815. , And the first opposing back surface 814), and covers all the surfaces.
 以上説明した本実施の形態2によれば、上述した実施の形態1と同様の効果の他、以下の効果を奏する。
 本実施の形態2に係る第1の熱異方性体9Aは、先端部6Aの長手方向に直交する断面において、断面U字状の両端部が第1の対向面813よりも背面75に向けて突出している。
 このため、処置面73の幅寸法を小さくすることによって、設計上、第1の対向面813を背面75に近接した位置に配置することができない場合であっても、第1の端面EF1を背面75に近接した位置に配置することができる。すなわち、処置面73の幅寸法を小さくした場合であっても、上述した実施の形態1と同様に、ヒータ本体81の熱を処置面73に向けて効率的に集めることができる。
According to the second embodiment described above, the following effects are obtained in addition to the same effects as the first embodiment.
In the first thermal anisotropic body 9A according to the second embodiment, in a cross section orthogonal to the longitudinal direction of the distal end portion 6A, both ends of the U-shaped cross section face the back surface 75 rather than the first opposing surface 813. Protruding.
For this reason, by reducing the width dimension of the treatment surface 73, even if the first opposing surface 813 cannot be arranged at a position close to the rear surface 75 due to design, the first end surface EF1 is moved to the rear surface. 75. That is, even when the width of the treatment surface 73 is reduced, the heat of the heater main body 81 can be efficiently collected toward the treatment surface 73 as in the first embodiment.
(実施の形態3)
 次に、本実施の形態3について説明する。
 以下の説明では、上述した実施の形態1と同様の構成に同一の符号を付すことによって、その詳細な説明を省略または簡略化する。
 図7は、本実施の形態3に係る処置具1Bを示す図である。
 本実施の形態3では、図7に示すように、上述した実施の形態1において説明した処置具1とは異なる処置具1Bを採用している。
(Embodiment 3)
Next, the third embodiment will be described.
In the following description, the same components as those in the above-described first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted or simplified.
FIG. 7 is a view showing a treatment tool 1B according to the third embodiment.
In the third embodiment, as shown in FIG. 7, a treatment tool 1B different from the treatment tool 1 described in the first embodiment is employed.
 〔処置具の概略構成〕
 処置具1Bは、図7に示すように、ハンドル10と、シャフト2Bと、把持部4Bとを備える。
 ハンドル10は、術者が手で持つ部分である。そして、このハンドル10には、図7に示すように、操作ノブ101が設けられている。
 シャフト2Bは、略円筒形状を有する。以下では、上述した実施の形態1と同様に、シャフト2Bの中心軸Ax(図7)に沿う一端側を先端側Ar1(図7)とし、他端側を基端側Ar2(図7)とする。
 シャフト2Bは、基端側Ar2の端部がハンドル10に対して接続されている。また、シャフト2Bの先端側Ar1の端部には、把持部4Bが取り付けられている。そして、シャフト2Bの内部には、術者による操作ノブ101の操作に応じて、把持部4Bを構成する第1,第2の把持部材41B,42B(図7)を開閉させる開閉機構(図示略)が設けられている。また、シャフト2Bの内部には、電気ケーブルCがハンドル10を経由することによって基端側Ar2から先端側Ar1まで配設されている。
[Schematic configuration of treatment tool]
As shown in FIG. 7, the treatment tool 1B includes a handle 10, a shaft 2B, and a grip 4B.
The handle 10 is a part that the operator holds by hand. The handle 10 is provided with an operation knob 101, as shown in FIG.
The shaft 2B has a substantially cylindrical shape. Hereinafter, similarly to Embodiment 1 described above, one end side along the central axis Ax (FIG. 7) of the shaft 2B is referred to as a distal end side Ar1 (FIG. 7), and the other end side is referred to as a proximal end side Ar2 (FIG. 7). I do.
The end of the shaft 2B on the base end side Ar2 is connected to the handle 10. A grip 4B is attached to the end of the shaft 2B at the front end Ar1. An opening / closing mechanism (not shown) for opening and closing the first and second gripping members 41B and 42B (FIG. 7) constituting the gripping portion 4B according to the operation of the operation knob 101 by the operator inside the shaft 2B. ) Is provided. An electric cable C is disposed inside the shaft 2B from the proximal end Ar2 to the distal end Ar1 via the handle 10.
 図8は、処置具1Bの先端部分を拡大した図である。
 把持部4Bは、対象部位を把持した状態で当該対象部位を処置する部分である。この把持部4Bは、図7または図8に示すように、第1,第2の把持部材41B,42Bを備える。
 第1,第2の把持部材41B,42Bは、術者による操作ノブ101の操作に応じて、矢印R1(図8)方向に開閉可能に構成されている。
 なお、第1,第2の把持部材41B,42Bは、中心軸Axを基準として、対称となる構成を有する。このため、以下では、第1の把持部材41Bの構成を主に説明し、第2の把持部材42Bについては、第1の把持部材41Bと同様の構成に同一の符号を付すことによってその説明を省略する。
FIG. 8 is an enlarged view of the distal end portion of the treatment tool 1B.
The grip part 4B is a part that treats the target site while holding the target site. As shown in FIG. 7 or FIG. 8, the grip 4B includes first and second gripping members 41B and 42B.
The first and second gripping members 41B and 42B are configured to be openable and closable in the direction of arrow R1 (FIG. 8) in accordance with the operation of the operation knob 101 by the operator.
The first and second gripping members 41B and 42B have a symmetrical configuration with respect to the central axis Ax. Therefore, hereinafter, the configuration of the first gripping member 41B will be mainly described, and the description of the second gripping member 42B will be given by assigning the same reference numerals to the same components as those of the first gripping member 41B. Omitted.
 〔第1の把持部材の構成〕
 図9は、第1の把持部材41Bの構成を示す断面図である。具体的に、図9は、第1の把持部材41Bの長手方向に直交する平面によって当該第1の把持部材41Bを切断した断面図である。なお、第1の把持部材41Bの長手方向は、第1,第2の把持部材41B,42Bを閉じた状態で、中心軸Axに略平行となる。
 第1の把持部材41Bは、第2の把持部材42Bに対して、図7または図8中、下方側に配置されている。この第1の把持部材41Bは、図8に示すように、ジョー11と、発熱構造体12と、支持部材13とを備える。
[Configuration of First Holding Member]
FIG. 9 is a cross-sectional view illustrating the configuration of the first gripping member 41B. Specifically, FIG. 9 is a cross-sectional view of the first gripping member 41B cut along a plane orthogonal to the longitudinal direction of the first gripping member 41B. The longitudinal direction of the first gripping member 41B is substantially parallel to the central axis Ax when the first and second gripping members 41B and 42B are closed.
The first holding member 41B is disposed below the second holding member 42B in FIG. 7 or 8. As shown in FIG. 8, the first holding member 41B includes a jaw 11, a heat generating structure 12, and a support member 13.
 ジョー11は、第1の把持部材41Bの長手方向に沿って延在する長尺状に形成され、基端側Ar2の端部がシャフト2Bの先端側Ar1の端部に対して回動可能に軸支されている。そして、第1,第2の把持部材41B,42Bを構成する各ジョー11は、術者による操作ノブ101の操作に応じて、互いに近接する(閉じる)、または、互いに離間する(開く)。また、ジョー11は、図8または図9中、上方側の面にて発熱構造体12及び支持部材13を支持する。以下では、上述した実施の形態1と同様に、第1,第2の把持部材41B,42B同士が閉じた状態で互いに対向する方向を方向A1(図8,図9)と記載する。
 なお、ジョー11の外面において、図9中、上方側の面を除く他の面には、図9に示すように、コーティング材111が設けられている。当該コーティング材111としては、テフロン(登録商標)等を例示することができる。
The jaw 11 is formed in a long shape extending along the longitudinal direction of the first gripping member 41B, and the end of the proximal end Ar2 is rotatable with respect to the end of the distal end Ar1 of the shaft 2B. It is pivoted. The jaws 11 constituting the first and second gripping members 41B and 42B move closer to each other (close) or separate from each other (open) according to the operation of the operation knob 101 by the operator. The jaw 11 supports the heat generating structure 12 and the support member 13 on the upper surface in FIG. 8 or 9. Hereinafter, similarly to Embodiment 1 described above, a direction in which the first and second gripping members 41B and 42B face each other in a closed state will be referred to as a direction A1 (FIGS. 8 and 9).
As shown in FIG. 9, a coating material 111 is provided on the outer surface of the jaw 11 except for the upper surface in FIG. 9. Examples of the coating material 111 include Teflon (registered trademark).
 発熱構造体12は、図9に示すように、ブレード7Bと、ヒータ8と、第1の熱異方性体9Bと、第2の熱異方性体14とを備える。
 ブレード7Bは、上述した実施の形態1において説明したブレード7と同様の材料によって構成され、第1の把持部材41Bの長手方向に沿って延在する長尺状の板体である。
 このブレード7Bは、厚み方向が方向A1に沿う姿勢、すなわち、2つの板面71B,72Bが方向A1に対して直交する姿勢で配置される。このブレード7Bにおいて、2つの板面71B,72Bのうち、図9中、上方側の板面71Bは、第1,第2の把持部材41B,42Bによって対象部位を把持した状態で、当該対象部位に接触する。そして、当該板面71Bは、ヒータ8からの熱を対象部位に伝達する。すなわち、当該板面71Bは、対象部位に対して熱エネルギを付与する本発明に係る処置面として機能する。なお、以下では、説明の便宜上、板面71Bを処置面71Bと記載する。本実施の形態3では、処置面71Bは、方向A1に対して直交する平坦面によって構成されている。
 なお、本実施の形態3では、処置面71Bは、平坦面によって構成されているが、これに限らず、凸形状、凹形状等のその他の形状によって構成しても構わない。
As shown in FIG. 9, the heat generating structure 12 includes a blade 7B, a heater 8, a first thermal anisotropic body 9B, and a second thermal anisotropic body 14.
The blade 7B is a long plate made of the same material as the blade 7 described in the first embodiment, and extending along the longitudinal direction of the first gripping member 41B.
The blade 7B is arranged so that the thickness direction is along the direction A1, that is, the two plate surfaces 71B and 72B are orthogonal to the direction A1. In the blade 7B, of the two plate surfaces 71B and 72B, the upper plate surface 71B in FIG. 9 holds the target portion in a state where the target portion is gripped by the first and second gripping members 41B and 42B. Contact Then, the plate surface 71B transmits heat from the heater 8 to the target portion. That is, the plate surface 71B functions as a treatment surface according to the present invention for applying thermal energy to the target portion. In the following, the plate surface 71B is referred to as a treatment surface 71B for convenience of description. In the third embodiment, the treatment surface 71B is configured by a flat surface orthogonal to the direction A1.
In the third embodiment, the treatment surface 71B is configured by a flat surface, but is not limited thereto, and may be configured by another shape such as a convex shape or a concave shape.
 また、2つの板面71B,72Bのうち、図9中、下方側の板面72Bには、凹部74Bが形成されている。
 凹部74Bは、板面72Bの幅方向(図9中、左右方向)における中心に位置し、第1の把持部材41Bの長手方向に沿って延在する。また、凹部74Bを構成する側壁部のうち、基端側Ar2の側壁部は、省略されている。そして、凹部74Bの底面は、処置面71Bと表裏をなす本発明に係る背面75Bに相当する。
A recess 74B is formed in the lower plate surface 72B in FIG. 9 of the two plate surfaces 71B and 72B.
The concave portion 74B is located at the center in the width direction (the horizontal direction in FIG. 9) of the plate surface 72B, and extends along the longitudinal direction of the first holding member 41B. Further, among the side walls forming the recess 74B, the side wall on the base end side Ar2 is omitted. The bottom surface of the concave portion 74B corresponds to the back surface 75B according to the present invention, which forms the front and back of the treatment surface 71B.
 本実施の形態3では、ヒータ8(ヒータ本体81)は、厚み方向が方向A1に沿う姿勢、すなわち、2つのシート面811,812が方向A1に対して直交する姿勢で配置される。そして、2つのシート面811,812のうち、図9中、上方側のシート面812は、背面75Bに対向する本発明に係る第1の対向面に相当する。以下では、説明の便宜上、シート面812を第1の対向面812と記載する。また、図9中、下方側のシート面811は、第1の対向面812と表裏をなす本発明に係る第1の対向裏面に相当する。さらに、ヒータ本体81の外面において、図9中、左右両側の側面813,814は、第1の対向面812と第1の対向裏面(シート面811)とを接続する本発明に係る一対の第1の接続面に相当する。 In the third embodiment, the heater 8 (the heater main body 81) is arranged so that the thickness direction is along the direction A1, that is, the two sheet surfaces 811 and 812 are orthogonal to the direction A1. Of the two seat surfaces 811 and 812, the upper seat surface 812 in FIG. 9 corresponds to a first facing surface according to the present invention facing the back surface 75B. Hereinafter, the sheet surface 812 is referred to as a first opposing surface 812 for convenience of description. In FIG. 9, the lower sheet surface 811 corresponds to the first opposing back surface according to the present invention, which faces the first opposing surface 812. Further, on the outer surface of the heater body 81, the left and right side surfaces 813 and 814 in FIG. 9 connect the first opposing surface 812 and the first opposing back surface (sheet surface 811). 1 connection surface.
 図10ないし図12は、第1の熱異方性体9Bの形状を説明する図である。具体的に、図10は、第1の熱異方性体9Bを折り畳む前の状態を示す図である。図11及び図12は、第1の熱異方性体9Bを折り畳んだ後の状態を示す斜視図である。
 なお、以下では、説明の便宜上、第1の熱異方性体9Bを折り畳む前の状態を第1の熱異方性シート90B(図10)とし、折り畳んだ後の状態を第1の熱異方性体9Bとする。
 第1の熱異方性体9Bは、厚み方向(図10の紙面に直交する方向)よりもシートの面内方向(図10の紙面に沿う方向)の熱伝導率が高い1枚の第1の熱異方性シート90Bを折り畳むことによって構成されている。
10 to 12 are diagrams illustrating the shape of the first thermal anisotropic body 9B. Specifically, FIG. 10 is a diagram illustrating a state before the first thermal anisotropic member 9B is folded. FIGS. 11 and 12 are perspective views showing a state after the first thermal anisotropic body 9B is folded.
In the following, for convenience of explanation, a state before folding the first thermal anisotropic body 9B is referred to as a first thermal anisotropic sheet 90B (FIG. 10), and a state after folding is referred to as a first thermal anisotropic sheet 90B. It is assumed to be an isotropic body 9B.
The first thermal anisotropic body 9B has a higher thermal conductivity in the in-plane direction of the sheet (the direction along the plane of FIG. 10) than in the thickness direction (the direction perpendicular to the plane of FIG. 10). Is formed by folding the thermally anisotropic sheet 90B.
 具体的に、第1の熱異方性シート90Bは、第1の把持部材41Bの長手方向に沿って延在する矩形状のグラファイトシートである。なお、第1の熱異方性シート90Bとしては、厚み方向よりもシートの面内方向の熱伝導率が高い熱異方性を有するシートであれば、グラファイトシートに限らず、その他のシートを採用しても構わない。この第1の熱異方性シート90Bにおいて、矩形状の外縁である4つの辺縁のうち、先端側Ar1の辺縁及び第1の把持部材41Bの長手方向に沿う2つの辺縁を構成する端面は、本発明に係る第1の端面EF1(図10~図12)に相当する。なお、図10では、第1の端面EF1の位置を一点鎖線によって表現している。また、第1の熱異方性シート90Bにおいて、矩形状の外縁である4つの辺縁のうち、基端側Ar2の辺縁を構成する端面は、本発明に係る第2の端面EF2(図10~図12)に相当する。なお、図10では、第2の端面EF2の位置を二点鎖線によって表現している。 Specifically, the first thermal anisotropic sheet 90B is a rectangular graphite sheet extending along the longitudinal direction of the first holding member 41B. The first thermal anisotropic sheet 90B is not limited to a graphite sheet as long as the sheet has thermal anisotropy in which the thermal conductivity in the in-plane direction of the sheet is higher than the thickness direction. You may adopt it. In the first thermal anisotropic sheet 90B, of the four edges that are rectangular outer edges, two edges along the longitudinal direction of the first gripping member 41B and the edge of the front side Ar1 are formed. The end face corresponds to the first end face EF1 (FIGS. 10 to 12) according to the present invention. In FIG. 10, the position of the first end surface EF1 is represented by a dashed line. In the first thermal anisotropic sheet 90B, of the four edges that are rectangular outer edges, the edge that constitutes the edge on the base end side Ar2 is the second edge EF2 (see FIG. 10 to FIG. 12). In FIG. 10, the position of the second end surface EF2 is represented by a two-dot chain line.
 そして、第1の熱異方性体9Bは、図10に破線によって示した折り畳み線Lnを基準として第1の熱異方性シート90Bを折り畳むことによって、図11及び図12中、上方側及び基端側Ar2がそれぞれ開放した容器状に形成される。この状態では、第2の端面EF2は、第1の熱異方性体9Bにおける容器状の内部に位置する。 Then, the first thermal anisotropic member 9B folds the first thermal anisotropic sheet 90B with reference to the fold line Ln indicated by the broken line in FIG. The base side Ar2 is formed in the shape of an open container. In this state, the second end face EF2 is located inside the container in the first thermal anisotropic body 9B.
 図13及び図14は、第2の熱異方性体14の形状を説明する図である。具体的に、図13は、第2の熱異方性体14を折り畳む前の状態を模式的に示す図である。図14は、第2の熱異方性体14を折り畳む様子を模式的に示す図である。
 なお、以下では、説明の便宜上、第2の熱異方性体14を折り畳む前の状態を第2の熱異方性シート140(図13)とし、折り畳んだ後の状態を第2の熱異方性体14とする。
 第2の熱異方性体14は、厚み方向(図13の紙面に直交する方向)よりもシートの面内方向(図13の紙面に沿う方向)の熱伝導率が高い1枚の第2の熱異方性シート140を折り畳むことによって構成されている。
FIG. 13 and FIG. 14 are diagrams illustrating the shape of the second thermal anisotropic body 14. Specifically, FIG. 13 is a diagram schematically illustrating a state before the second thermal anisotropic member 14 is folded. FIG. 14 is a diagram schematically illustrating a state in which the second thermal anisotropic member 14 is folded.
In the following, for convenience of explanation, the state before folding the second thermal anisotropic body 14 is referred to as a second thermal anisotropic sheet 140 (FIG. 13), and the state after folding is referred to as a second thermal anisotropic sheet. It is assumed to be an isotropic body 14.
The second thermal anisotropic body 14 has a higher thermal conductivity in the in-plane direction of the sheet (the direction along the plane of FIG. 13) than in the thickness direction (the direction perpendicular to the plane of FIG. 13). Of the thermal anisotropic sheet 140 of FIG.
 具体的に、第2の熱異方性シート140は、長尺状で、かつ、矩形状のグラファイトシートである。なお、第2の熱異方性シート140としては、厚み方向よりもシートの面内方向の熱伝導率が高い熱異方性を有するシートであれば、グラファイトシートに限らず、その他のシートを採用しても構わない。
 そして、第2の熱異方性体14は、図13に破線によって示した折り畳み線Lnを基準として第2の熱異方性シート140を蛇腹状に折り畳むことによって全体略直方体形状を有する。そして、第2の熱異方性体14において、各折り畳み線Lnの図13中、左右両側の部位は、本発明に係る熱異方性層141に相当する。すなわち、第2の熱異方性体14は、上述したように蛇腹状に折り畳むことによって複数の熱異方性層141が積層された構成を有する。また、第2の熱異方性シート140において、長手方向の両端部は、各折り畳み線Ln1(図13)を基準として折り畳まれることによって互いに隣接する熱異方性層141の間に位置する。ここで、第2の熱異方性体14において、各折り畳み線Lnに交差する図9中、上方側の面は、本発明に係る第2の対向面142に相当する。また、第2の熱異方性体14において、図9中、下方側の面は、第2の対向面142と表裏をなす本発明に係る第2の対向裏面143に相当する。さらに、第2の熱異方性体14において、図9中、左右両側の面は、第2の対向面142と第2の対向裏面143とを接続する本発明に係る第2の接続面144に相当する。
Specifically, the second heat anisotropic sheet 140 is a long and rectangular graphite sheet. Note that the second thermal anisotropic sheet 140 is not limited to a graphite sheet as long as the sheet has thermal anisotropy in which the thermal conductivity in the in-plane direction of the sheet is higher than the thickness direction. You may adopt it.
The second thermal anisotropic body 14 has a substantially rectangular parallelepiped shape by folding the second thermal anisotropic sheet 140 in a bellows shape with reference to the folding line Ln indicated by a broken line in FIG. In the second thermally anisotropic member 14, the left and right portions of each fold line Ln in FIG. 13 correspond to the thermally anisotropic layer 141 according to the present invention. That is, the second thermal anisotropic member 14 has a configuration in which a plurality of thermal anisotropic layers 141 are stacked by folding the thermal anisotropic member 14 in a bellows shape as described above. In the second thermal anisotropic sheet 140, both ends in the longitudinal direction are located between the thermal anisotropic layers 141 adjacent to each other by being folded on the basis of each folding line Ln1 (FIG. 13). Here, in the second thermal anisotropic body 14, the upper surface in FIG. 9 that intersects each folding line Ln corresponds to the second facing surface 142 according to the present invention. In the second thermal anisotropic body 14, the lower surface in FIG. 9 corresponds to the second opposing back surface 143 according to the present invention, which faces the second opposing surface 142. Further, in the second thermal anisotropic body 14, the left and right surfaces in FIG. 9 are the second connection surface 144 according to the present invention for connecting the second opposing surface 142 and the second opposing back surface 143. Is equivalent to
 そして、ヒータ8は、第1の対向面812が図11及び図12中、上方側に向く姿勢で第1の熱異方性体9Bの内部に収容される。また、第2の熱異方性体14は、第2の対向面142が図11及び図12中、上方側に向く姿勢、すなわち、各折り畳み線Lnが図11及び図12中、上下方向に沿う姿勢で第1の対向面812上に配置される。この状態では、第1の熱異方性体9Bは、ヒータ本体81を構成する外面のうち、第1の対向面812及び基端面815以外の全ての面(シート面811、側面813,814、及び先端面816)に対向するとともに、当該全ての面を覆う。また、第1の熱異方性体9Bは、第2の熱異方性体14を構成する外面のうち、第2の対向面142及び基端側Ar2の面(図示略)以外の全ての面(先端側Ar1の面(図示略)、第2の対向裏面143、及び一対の第2の接続面144)に対向するとともに、当該全ての面を覆う。また、ヒータ8及び第2の熱異方性体14が内部に収容された第1の熱異方性体9Bは、図11及び図12中、上方側の開口部分が背面75Bに対向する姿勢で凹部74B内に収容される。この状態では、第1の端面EF1は、背面75Bに対向する。本実施の形態3では、図9に示すように、第1の端面EF1は、第2の対向面142と略面一となる位置に位置する。また、第1の熱異方性体9Bは、ヒータ8が配設された部分が凹部74Bの外部に突出した状態となる。 ヒ ー タ Then, the heater 8 is housed inside the first thermal anisotropic body 9B with the first facing surface 812 facing upward in FIGS. 11 and 12. Further, the second thermal anisotropic member 14 has a posture in which the second opposing surface 142 faces upward in FIGS. 11 and 12, that is, each fold line Ln has a vertical direction in FIGS. 11 and 12. It is arranged on the first facing surface 812 in a posture along. In this state, the first thermal anisotropic member 9B includes all the surfaces (the sheet surface 811, the side surfaces 813 and 814, and the outer surface of the heater body 81) other than the first facing surface 812 and the base end surface 815. And the front surface 816), and covers all the surfaces. In addition, the first thermal anisotropic body 9 </ b> B includes all the outer surfaces of the second thermal anisotropic body 14 other than the second facing surface 142 and the surface of the base end side Ar <b> 2 (not shown). The surface (the surface (not shown) of the front end Ar1 (not shown), the second opposing back surface 143, and the pair of second connection surfaces 144) is opposed to and covers all the surfaces. The first thermal anisotropic body 9B in which the heater 8 and the second thermal anisotropic body 14 are housed has a posture in which the upper opening portion faces the back surface 75B in FIGS. Is accommodated in the concave portion 74B. In this state, the first end surface EF1 faces the back surface 75B. In the third embodiment, as shown in FIG. 9, the first end surface EF1 is located at a position substantially flush with the second facing surface 142. Further, the first thermal anisotropic member 9B is in a state in which the portion where the heater 8 is disposed protrudes outside the concave portion 74B.
 支持部材13は、ジョー11と発熱構造体12との間に位置し、凹部74Bを図9中、下方側から閉塞する状態でジョー11と発熱構造体12とを固着する。この支持部材13は、例えば、PEEK(ポリエーテルエーテルケトン)等の低い熱伝導率を有する樹脂材料等で構成されている。すなわち、ヒータ8に対してブレード7Bとは反対側に熱伝導率の低い支持部材13を配設することによって、ヒータ8で生じた熱を効率よくブレード7Bに伝達することが可能となる。 The support member 13 is located between the jaw 11 and the heat generating structure 12, and fixes the jaw 11 and the heat generating structure 12 in a state where the concave portion 74B is closed from below in FIG. The support member 13 is made of, for example, a resin material having low thermal conductivity such as PEEK (polyetheretherketone). That is, by disposing the supporting member 13 having a low thermal conductivity on the side opposite to the blade 7B with respect to the heater 8, the heat generated by the heater 8 can be efficiently transmitted to the blade 7B.
 〔処置具の動作〕
 以上説明した処置具1Bは、以下に示すように動作する。
 術者は、処置具1Bを手で持つ。そして、術者は、操作ノブ101を操作し、第1,第2の把持部材41B,42Bを開閉することによって対象部位を把持する。この後、術者は、外部の制御装置(図示略)に対して電気的に接続されたスイッチ(図示略)を押下する。これによって、当該制御装置は、当該スイッチからの操作信号に応じて、以下に示す制御を実行する。
 当該制御装置は、電気ケーブルCを経由することによって、ヒータ本体81に対して電力を供給する。これによって、ヒータ本体81は、発熱する。そして、ヒータ本体81の熱は、第1の対向面812~第2の熱異方性体14~第2の対向面142~背面75B~ブレード7B~処置面71Bに至る第1の熱伝達経路を辿ることによって、処置面71Bに伝達される。また、ヒータ本体81の熱は、シート面811、側面813,814、及び先端面816~第1の熱異方性体9B~第1の端面EF1~背面75B~ブレード7B~処置面71Bに至る第2の熱伝達経路を辿ることによって、処置面71Bに伝達される。そして、第1,第2の把持部材41B,42Bの間に把持された対象部位には、処置面71Bから熱エネルギが付与される。これによって、当該対象部位は、凝固しつつ切開される。
[Operation of treatment tool]
The treatment tool 1B described above operates as described below.
The surgeon holds the treatment tool 1B by hand. Then, the operator operates the operation knob 101 to open and close the first and second gripping members 41B and 42B to grip the target site. Thereafter, the surgeon presses a switch (not shown) electrically connected to an external control device (not shown). Thereby, the control device executes the following control according to the operation signal from the switch.
The control device supplies electric power to the heater main body 81 via the electric cable C. Thereby, the heater main body 81 generates heat. The heat of the heater main body 81 is transferred to the first heat transfer path from the first facing surface 812 to the second thermal anisotropic body 14 to the second facing surface 142 to the back surface 75B to the blade 7B to the treatment surface 71B. Is transmitted to the treatment surface 71B. Further, the heat of the heater main body 81 reaches the sheet surface 811, the side surfaces 813, 814, and the front end surface 816 to the first thermal anisotropic body 9B to the first end surface EF1 to the back surface 75B to the blade 7B to the treatment surface 71B. Following the second heat transfer path, the heat is transferred to the treatment surface 71B. Then, heat energy is applied to the target portion gripped between the first and second gripping members 41B and 42B from the treatment surface 71B. Thereby, the target site is incised while coagulating.
 以上説明した本実施の形態3によれば、上述した実施の形態1と同様の効果の他、以下の効果を奏する。
 本実施の形態3に係る処置具1Bは、厚み方向よりもシートの面内方向の熱伝導率が高い1枚の第2の熱異方性シート140を折り畳むことによって構成された第2の熱異方性体14をさらに備える。また、第2の熱異方性体14は、第2の熱異方性シート140の折り畳み線Lnが第1の対向面812から背面75Bへの方向に沿う姿勢で配置される。
 このため、設計上、ヒータ8を凹部74Bの内部に位置付けることができない場合であっても、ヒータ本体81における第1の対向面812の熱を第1の対向面812~第2の熱異方性体14~第2の対向面142~背面75B~ブレード7B~処置面71Bに至る第1の熱伝達経路を辿ることによって処置面71Bに伝達させることができる。
According to the third embodiment described above, the following effects are obtained in addition to the same effects as those of the first embodiment.
The treatment tool 1B according to the third embodiment is configured by folding one second heat anisotropic sheet 140 having a higher heat conductivity in the in-plane direction of the sheet than in the thickness direction, and the second heat is formed by folding the second heat anisotropic sheet 140. An anisotropic body 14 is further provided. Further, the second thermal anisotropic member 14 is arranged in such a manner that the folding line Ln of the second thermal anisotropic sheet 140 extends along the direction from the first facing surface 812 to the back surface 75B.
For this reason, even if the heater 8 cannot be positioned inside the recess 74B due to the design, the heat of the first facing surface 812 of the heater main body 81 is transferred from the first facing surface 812 to the second thermal anisotropic material. The heat can be transmitted to the treatment surface 71B by following a first heat transfer path from the sex body 14, the second facing surface 142, the back surface 75B, the blade 7B, and the treatment surface 71B.
 ところで、第2の熱異方性体14は、厚み方向よりもシートの面内方向の熱伝導率が高い1枚の第2の熱異方性シート140を折り畳むことによって構成されている。このため、第2の熱異方性体14に伝達された熱は、端面から外部に放熱され易いものである。
 そして、本実施の形態3に係る処置具1Bでは、第2の熱異方性体14の端面の一部(第2の対向面142及び第2の対向裏面143)は、背面75B及び第1の対向面812にそれぞれ対向する。このため、第2の熱異方性体14は、ヒータ本体81における第1の対向面812の熱を第2の対向裏面143で受け、第2の対向面142から背面75Bに伝達させることができる。また、第2の熱異方性シート140の長手方向における両端部は、互いに隣接する熱異方性層141の間に位置する状態で折り畳まれている。このため、第2の熱異方性体14に伝達され、第2の熱異方性シート140の長手方向における両側の端面から放熱された熱は、再度、第2の熱異方性体14に伝達された後、第2の対向面142から背面75Bに伝達させることができる。
 したがって、第2の熱異方性シート140の長手方向における両側の端面が第2の熱異方性体14の外面に露出している構成と比較して、ヒータ本体81の熱を処置面71Bに向けてさらに効率的に集めることができる。
Incidentally, the second thermal anisotropic body 14 is configured by folding one second thermal anisotropic sheet 140 having a higher thermal conductivity in the in-plane direction of the sheet than in the thickness direction. For this reason, the heat transmitted to the second thermal anisotropic body 14 is easily radiated to the outside from the end face.
In the treatment tool 1B according to the third embodiment, a part of the end surface of the second thermal anisotropic body 14 (the second opposing surface 142 and the second opposing back surface 143) is connected to the back surface 75B and the first back surface 143. Oppose each other. For this reason, the second thermal anisotropic member 14 receives the heat of the first facing surface 812 of the heater main body 81 at the second facing back surface 143 and can transfer the heat from the second facing surface 142 to the back surface 75B. it can. Further, both ends in the longitudinal direction of the second heat anisotropic sheet 140 are folded so as to be located between the heat anisotropic layers 141 adjacent to each other. For this reason, the heat transmitted to the second thermal anisotropic body 14 and radiated from the both end faces in the longitudinal direction of the second thermal anisotropic sheet 140 is again applied to the second thermal anisotropic body 14. After that, it can be transmitted from the second facing surface 142 to the back surface 75B.
Therefore, compared to a configuration in which both end surfaces in the longitudinal direction of the second thermal anisotropic sheet 140 are exposed on the outer surface of the second thermal anisotropic member 14, the heat of the heater main body 81 is treated by the treatment surface 71B. Can be collected more efficiently.
 また、本実施の形態3に係る処置具1Bでは、第1の熱異方性体9Bは、第2の熱異方性体14を構成する外面のうち、第2の対向面142及び基端側Ar2の面(図示略)以外の全ての面(先端側Ar1の面(図示略)、第2の対向裏面143、及び一対の第2の接続面144)に対向するとともに、当該全ての面を覆う。
 このため、第2の熱異方性体14に伝達され、先端側Ar1の面(図示略)や一対の第2の接続面144から放熱された熱を第1の熱異方性体9Bを経由することによって、第1の端面EF1から背面75Bに伝達させることができる。したがって、ヒータ本体81の熱を処置面71Bに向けてさらに効率的に集めることができる。
In the treatment tool 1B according to the third embodiment, the first thermal anisotropic member 9B includes the second facing surface 142 and the base end of the outer surface of the second thermal anisotropic member 14. All the surfaces (the surface of the front end side Ar1 (not shown), the second opposing back surface 143, and the pair of second connection surfaces 144) are opposed to all the surfaces other than the surface Ar2 (not shown). Cover.
For this reason, the heat transmitted to the second thermal anisotropic body 14 and radiated from the surface (not shown) of the front end side Ar1 and the pair of second connecting surfaces 144 is transferred to the first thermal anisotropic body 9B. By passing through, the light can be transmitted from the first end face EF1 to the back face 75B. Therefore, the heat of the heater main body 81 can be more efficiently collected toward the treatment surface 71B.
(実施の形態4)
 次に、本実施の形態4について説明する。
 以下の説明では、上述した実施の形態3と同様の構成に同一の符号を付すことによって、その詳細な説明を省略または簡略化する。
 図15は、本実施の形態4に係る第1の把持部材41Cの構成を示す断面図である。具体的に、図15は、図9に対応した断面図である。
 本実施の形態4では、図15に示すように、上述した実施の形態3において説明した第1の把持部材41B(発熱構造体12)の代わりに、ブレード7B及び第1,第2の熱異方性体9B,14とはそれぞれ異なる形状のブレード7C及び第1,第2の熱異方性体9C,14Cを有する第1の把持部材41C(発熱構造体12C)を採用している。
(Embodiment 4)
Next, a fourth embodiment will be described.
In the following description, the same components as those in the above-described third embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted or simplified.
FIG. 15 is a cross-sectional view illustrating a configuration of a first gripping member 41C according to the fourth embodiment. Specifically, FIG. 15 is a cross-sectional view corresponding to FIG.
In the fourth embodiment, as shown in FIG. 15, instead of the first gripping member 41B (the heat generating structure 12) described in the third embodiment, the blade 7B and the first and second heat transfer members are used. A first gripping member 41C (heating structure 12C) having blades 7C having different shapes from the isotropic bodies 9B and 14 and first and second thermal anisotropic bodies 9C and 14C, respectively, is employed.
 ブレード7Cでは、図15に示すように、上述した実施の形態3において説明したブレード7Bに対して、処置面71Bと図9中、左右両側の一対の側面73B,76との間の各角隅部分が面取りされている。すなわち、本実施の形態4に係る処置面71Bは、上述した実施の形態3において説明した処置面71Bよりも短い幅寸法(図15中、左右方向の長さ寸法)を有する。
 また、ブレード7Cには、上述した実施の形態3において説明した凹部74Bとは異なる断面形状を有する凹部74C(図15)が形成されている。
 凹部74Cは、図15に示すように、断面矩形状の第1の凹部741と、当該第1の凹部741の底面において、幅方向の中央部分から処置面71Bに向けて窪む断面矩形状の第2の凹部742とで構成されている。そして、第2の凹部742の底面は、処置面71Bと表裏をなす本発明に係る背面75Cに相当する。
In the blade 7C, as shown in FIG. 15, each corner between the treatment surface 71B and the pair of left and right side surfaces 73B and 76 in FIG. 9 is different from the blade 7B described in the third embodiment. The part is chamfered. That is, the treatment surface 71B according to the fourth embodiment has a shorter width (length in the left-right direction in FIG. 15) than the treatment surface 71B described in the third embodiment.
Further, a recess 74C (FIG. 15) having a cross-sectional shape different from that of the recess 74B described in the third embodiment is formed on the blade 7C.
As shown in FIG. 15, the recess 74 </ b> C has a first recess 741 having a rectangular cross section, and a rectangular recess having a rectangular section recessed from the central portion in the width direction toward the treatment surface 71 </ b> B on the bottom surface of the first recess 741. And a second concave portion 742. In addition, the bottom surface of the second concave portion 742 corresponds to the back surface 75C according to the present invention, which faces the treatment surface 71B.
 図16及び図17は、第2の熱異方性体14Cの形状を説明する図である。具体的に、図16は、第2の熱異方性体14Cを折り畳む前の状態を示す図である。図17は、第2の熱異方性体14Cを折り畳む様子を示す図である。
 なお、以下では、説明の便宜上、第2の熱異方性体14Cを折り畳む前の状態を第2の熱異方性シート140C(図16)とし、折り畳んだ後の状態を第2の熱異方性体14Cとする。
 第2の熱異方性シート140Cは、図16に示すように、上述した実施の形態3において説明した第2の熱異方性シート140に対して、突出部形成体145を付加したシートである。なお、以下では、説明の便宜上、第2の熱異方性シート140Cにおいて、突出部形成体145以外の部位、すなわち、上述した実施の形態3において説明した第2の熱異方性シート140と同一の形状を有する部位を基部形成体146とする。
 具体的に、突出部形成体145は、基部形成体146よりも長手方向の長さ寸法が短い矩形形状を有する。そして、突出部形成体145は、基部形成体146の図16中、上方側の外縁における長手方向の中央部分から上方側に突出する状態で一体形成されている。また、基部形成体146と突出部形成体145との間には、図16中、左右両側から切れ込みCuがそれぞれ入れられている。
16 and 17 are diagrams illustrating the shape of the second thermal anisotropic body 14C. Specifically, FIG. 16 is a diagram illustrating a state before the second thermal anisotropic body 14C is folded. FIG. 17 is a diagram illustrating a state in which the second thermal anisotropic member 14C is folded.
In the following, for convenience of explanation, the state before folding second thermal anisotropic body 14C is referred to as second thermal anisotropic sheet 140C (FIG. 16), and the state after folding is referred to as second thermal anisotropic sheet 140C. It is assumed to be an isotropic body 14C.
As shown in FIG. 16, the second thermal anisotropic sheet 140C is a sheet obtained by adding a protrusion forming body 145 to the second thermal anisotropic sheet 140 described in the third embodiment. is there. In the following, for convenience of explanation, in the second thermal anisotropic sheet 140C, portions other than the protruding portion forming body 145, that is, the second thermal anisotropic sheet 140 described in the third embodiment described above, A portion having the same shape is referred to as a base forming body 146.
Specifically, the protruding portion forming body 145 has a rectangular shape having a shorter longitudinal dimension than the base forming body 146. The protruding portion forming body 145 is integrally formed so as to protrude upward from the central portion in the longitudinal direction of the upper outer edge of the base forming body 146 in FIG. In addition, between the base forming body 146 and the protrusion forming body 145, cuts Cu are inserted from both left and right sides in FIG.
 そして、第2の熱異方性体14Cは、図16に破線によって示した折り畳み線Lnを基準として第2の熱異方性シート140Cを蛇腹状に折り畳むことによって構成される。具体的に、基部形成体146が折り畳み線Lnを基準として折り畳まれることによって、直方体状の基部147(図15)が形成される。また、突出部形成体145が折り畳み線Lnを基準として折り畳まれることによって、直方体状の突出部148(図15)が形成される。当該突出部148は、上述した突出部形成体145及び基部形成体146の長さ関係及び位置関係により、基部147よりも幅寸法(図15中、左右方向の長さ寸法)が短く、当該基部147における図15中、左右方向の中央部分から上方側に向けて突出する。すなわち、第2の熱異方性体14Cは、基部147と、突出部148とを備える。そして、第2の熱異方性体14Cにおいて、各折り畳み線Lnの図16中、左右両側の部位は、本発明に係る熱異方性層141Cに相当する。すなわち、第2の熱異方性体14Cは、上述した実施の形態3において説明した第2の熱異方性体14と同様に、複数の熱異方性層141Cが積層された構成を有する。また、基部形成体146において、長手方向の両端部は、各折り畳み線Ln1(図16)を基準として折り畳まれることによって互いに隣接する熱異方性層141Cの間に位置する。同様に、突出部形成体145において、長手方向の両端部は、各折り畳み線Ln1C(図16)を基準として折り畳まれることによって互いに隣接する熱異方性層141Cの間に位置する。ここで、突出部148において、各折り畳み線Lnに交差する図15中、上方側の面は、本発明に係る第2の対向面142Cに相当する。また、基部147において、図15中、下方側の面は、第2の対向面142Cと表裏をなす本発明に係る第2の対向裏面143Cに相当する。さらに、第2の熱異方性体14Cにおいて、図15中、左右両側の面は、第2の対向面142Cと第2の対向裏面143Cとを接続する本発明に係る第2の接続面144Cに相当する。本実施の形態4では、第2の接続面144Cは、上述した実施の形態3において説明した第2の接続面144とは異なり、段差St1(図15)を有する段付き状の面である。 {Circle around (2)} The second thermally anisotropic member 14C is formed by folding the second thermally anisotropic sheet 140C in a bellows shape with reference to the folding line Ln indicated by the broken line in FIG. Specifically, the base forming body 146 is folded with the folding line Ln as a reference, thereby forming a rectangular base 147 (FIG. 15). Further, the projection-forming body 145 is folded on the basis of the folding line Ln, so that a rectangular parallelepiped projection 148 (FIG. 15) is formed. The protruding portion 148 has a shorter width (length in the left-right direction in FIG. 15) than the base 147 due to the length relationship and the positional relationship of the protruding portion forming body 145 and the base forming body 146 described above. In FIG. 15 at 147, it protrudes upward from the center in the left-right direction. That is, the second thermal anisotropic body 14 </ b> C includes the base 147 and the protrusion 148. In the second thermal anisotropic body 14C, the left and right sides of each fold line Ln in FIG. 16 correspond to the thermal anisotropic layer 141C according to the present invention. That is, the second thermal anisotropic body 14C has a configuration in which a plurality of thermal anisotropic layers 141C are stacked, similarly to the second thermal anisotropic body 14 described in the third embodiment. . Further, in base forming body 146, both ends in the longitudinal direction are located between thermally anisotropic layers 141C adjacent to each other by being folded with reference to each folding line Ln1 (FIG. 16). Similarly, in the protruding portion forming body 145, both ends in the longitudinal direction are located between the thermally anisotropic layers 141C adjacent to each other by being folded on the basis of each folding line Ln1C (FIG. 16). Here, the upper surface in FIG. 15 that intersects each folding line Ln in the protruding portion 148 corresponds to the second facing surface 142C according to the present invention. In the base 147, the lower surface in FIG. 15 corresponds to the second opposing back surface 143C according to the present invention, which is the front and back surfaces of the second opposing surface 142C. Further, in the second thermal anisotropic body 14C, the left and right sides in FIG. 15 are second connection surfaces 144C according to the present invention that connect the second opposing surface 142C and the second opposing back surface 143C. Is equivalent to In the fourth embodiment, unlike the second connection surface 144 described in the third embodiment, the second connection surface 144C is a stepped surface having a step St1 (FIG. 15).
 図18ないし図20は、第1の熱異方性体9Cの形状を説明する図である。具体的に、図18は、第1の熱異方性体9Cを折り畳む前の状態を示す図である。図19及び図20は、第1の熱異方性体9Cを折り畳んだ後の状態を示す斜視図である。
 なお、以下では、説明の便宜上、第1の熱異方性体9Cを折り畳む前の状態を第1の熱異方性シート90C(図18)とし、折り畳んだ後の状態を第1の熱異方性体9Cとする。
 第1の熱異方性シート90Cは、図18に示すように、上述した実施の形態3において説明した第1の熱異方性シート90Bに対して、先端側Ar1の端部が一部切り取られている。また、第1の熱異方性シート90Cには、当該切り取られた部分の端面から基端側Ar2に向けて2つの切れ込みCuが入れられている。この第1の熱異方性シート90Cにおいて、当該切り取られた部分の端面の一部、及び当該第1の熱異方性シート90Cの外縁のうち、第1の把持部材41Cの長手方向に沿う2つの辺縁を構成する端面は、本発明に係る第1の端面EF1(図18~図20)に相当する。なお、図18では、第1の端面EF1の位置を一点鎖線によって表現している。また、第1の熱異方性シート90Cにおいて、当該切り取られた部分の他の部分、当該第1の熱異方性シート90Cの外縁のうち、基端側Ar2の辺縁を構成する端面、及び、切れ込みCuが入れられた部分の端面は、本発明に係る第2の端面EF2(図18~図20)に相当する。なお、図18では、第2の端面EF2の位置を二点鎖線によって表現している。
18 to 20 are diagrams illustrating the shape of the first thermal anisotropic body 9C. Specifically, FIG. 18 is a diagram illustrating a state before the first thermal anisotropic body 9C is folded. FIGS. 19 and 20 are perspective views showing a state after the first thermal anisotropic body 9C is folded.
In the following, for convenience of description, the state before folding first thermal anisotropic body 9C is referred to as first thermal anisotropic sheet 90C (FIG. 18), and the state after folding is referred to as first thermal anisotropic sheet 90C. It is assumed to be an isotropic body 9C.
As shown in FIG. 18, the first thermal anisotropic sheet 90C is partially cut away from the first thermal anisotropic sheet 90B described in the third embodiment above. Have been. In the first thermal anisotropic sheet 90C, two cuts Cu are formed from the end surface of the cut portion toward the base end side Ar2. In the first thermally anisotropic sheet 90C, a part of the end face of the cut portion and the outer edge of the first thermally anisotropic sheet 90C are along the longitudinal direction of the first gripping member 41C. The end faces forming the two edges correspond to the first end face EF1 (FIGS. 18 to 20) according to the present invention. In FIG. 18, the position of the first end surface EF1 is represented by a dashed line. Further, in the first thermal anisotropic sheet 90C, the other portion of the cut-out portion, the end face of the outer edge of the first thermal anisotropic sheet 90C that constitutes the edge of the base end side Ar2, The end face of the portion where the cut Cu is formed corresponds to the second end face EF2 (FIGS. 18 to 20) according to the present invention. In FIG. 18, the position of the second end surface EF2 is represented by a two-dot chain line.
 そして、第1の熱異方性体9Cは、図18に破線によって示した折り畳み線Lnを基準として第1の熱異方性シート90Cを折り畳むことによって、図19及び図20中、上方側及び基端側Ar2がそれぞれ開放した容器状に形成される。この状態では、第2の端面EF2は、第1の熱異方性体9Cにおける容器状の内部に位置する。また、第1の熱異方性体9Cにおいて、幅方向両側(図15中、左右方向両側)の側壁部分は、第2の熱異方性体14Cにおける一対の第2の接続面144Cに倣う段差St2(図15,図19,図20)を有する段付き状に形成される。 Then, the first thermal anisotropic member 9C folds the first thermal anisotropic sheet 90C with reference to the fold line Ln indicated by the broken line in FIG. The base side Ar2 is formed in the shape of an open container. In this state, the second end face EF2 is located inside the container of the first thermal anisotropic body 9C. Further, in the first thermal anisotropic body 9C, the side wall portions on both sides in the width direction (both lateral directions in FIG. 15) follow the pair of second connection surfaces 144C of the second thermal anisotropic body 14C. It is formed in a stepped shape having a step St2 (FIGS. 15, 19, and 20).
 そして、ヒータ8は、第1の熱異方性体9Cの内部において、第1の対向面812が図19及び図20中、上方側に向く姿勢で段差St2よりも下方の空間に配置される。また、第2の熱異方性体14Cは、第2の対向面142Cが図19及び図20中、上方側に向く姿勢、すなわち、各折り畳み線Lnが図19及び図20中、上下方向に沿う姿勢で第1の対向面812上に配置される。この状態では、第1の熱異方性体9Cは、ヒータ本体81を構成する外面のうち、第1の対向面812及び基端面815以外の全ての面(シート面811、側面813,814、及び先端面816)に対向するとともに、当該全ての面を覆う。また、第1の熱異方性体9Cは、第2の熱異方性体14Cを構成する外面のうち、第2の対向面142C及び基端側Ar2の面(図示略)以外の全ての面(先端側Ar1の面(図示略)、第2の対向裏面143C、及び一対の第2の接続面144C)に対向するとともに、当該全ての面を覆う。また、ヒータ8及び第2の熱異方性体14Cが内部に収容された第1の熱異方性体9Cは、図19及び図20中、上方側の開口部分が背面75Cに対向する姿勢で凹部74C内に収容される。この状態では、第1の端面EF1は、背面75Cに対向する。本実施の形態4では、図15に示すように、第1の端面EF1は、第2の対向面142Cと略面一となる位置に位置する。また、第1の熱異方性体9Cは、突出部148が配設された部分が第2の凹部742内に位置し、基部147が配設された部分が第1の凹部741内に位置し、ヒータ8が配設された部分が凹部74Cの外部に突出した状態となる。 Then, the heater 8 is disposed in the space below the step St2 with the first facing surface 812 facing upward in FIGS. 19 and 20 inside the first thermal anisotropic body 9C. . The second thermal anisotropic body 14C has a posture in which the second facing surface 142C faces upward in FIGS. 19 and 20, that is, each fold line Ln has a vertical direction in FIGS. 19 and 20. It is arranged on the first facing surface 812 in a posture along. In this state, the first thermal anisotropic member 9C includes all surfaces (the sheet surface 811, the side surfaces 813 and 814, and the outer surface constituting the heater body 81) other than the first facing surface 812 and the base end surface 815. And the front surface 816), and covers all the surfaces. In addition, the first thermal anisotropic body 9C includes all of the outer surfaces of the second thermal anisotropic body 14C other than the second facing surface 142C and the surface (not shown) of the base end side Ar2. The surface (the surface of the front end Ar1 (not shown), the second opposing back surface 143C, and the pair of second connection surfaces 144C) are opposed to and cover all the surfaces. The first thermal anisotropic body 9C in which the heater 8 and the second thermal anisotropic body 14C are housed has a posture in which the upper opening portion faces the back surface 75C in FIGS. Is accommodated in the concave portion 74C. In this state, the first end surface EF1 faces the back surface 75C. In the fourth embodiment, as shown in FIG. 15, the first end surface EF1 is located at a position substantially flush with the second facing surface 142C. In the first thermal anisotropic body 9C, the portion where the protrusion 148 is provided is located in the second recess 742, and the portion where the base 147 is provided is located in the first recess 741. Then, the portion where the heater 8 is disposed protrudes outside the concave portion 74C.
 なお、ヒータ本体81の熱は、以下に示す第1,第2の熱伝達経路を辿ることによって、処置面71Bに伝達される。
 第1の熱伝達経路は、第1の対向面812~第2の熱異方性体14C~第2の対向面142C~背面75C~ブレード7C~処置面71Bに至る経路である。
 第2の熱伝達経路は、シート面811、側面813,814、及び先端面816~第1の熱異方性体9C~第1の端面EF1~背面75C~ブレード7C~処置面71Bに至る経路である。
The heat of the heater main body 81 is transmitted to the treatment surface 71B by following the first and second heat transmission paths described below.
The first heat transfer path is a path from the first facing surface 812, the second thermal anisotropic body 14C, the second facing surface 142C, the back surface 75C, the blade 7C, and the treatment surface 71B.
The second heat transfer path is a path from the sheet surface 811, the side surfaces 813, 814, and the tip surface 816 to the first thermal anisotropic body 9C to the first end surface EF1 to the back surface 75C to the blade 7C to the treatment surface 71B. It is.
 以上説明した本実施の形態4の構成を採用した場合には、上述した実施の形態2,3と同様の効果を奏する。 し た When the configuration of the fourth embodiment described above is adopted, the same effects as those of the second and third embodiments are provided.
(その他の実施形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1~4によってのみ限定されるべきものではない。
 上述した実施の形態1~4では、対象部位に対して第1の把持部材41(41B,41C)及び第2の把持部材42(42B)の双方から熱エネルギを付与していたが、これに限らず、いずれか一方からのみ熱エネルギを付与する構成を採用しても構わない。
 上述した実施の形態1~4において、対象部位に対して熱エネルギの他、高周波エネルギや超音波エネルギをさらに付与する構成としても構わない。なお、「対象部位に対して高周波エネルギを付与する」とは、対象部位に対して高周波電流を流すことを意味する。また、「対象部位に対して超音波エネルギを付与する」とは、対象部位に対して超音波振動を付与することを意味する。
(Other embodiments)
The embodiments for carrying out the present invention have been described so far, but the present invention should not be limited only to the first to fourth embodiments.
In the above-described first to fourth embodiments, heat energy is applied to the target portion from both the first holding member 41 (41B, 41C) and the second holding member 42 (42B). The present invention is not limited to this, and a configuration in which thermal energy is applied from only one of them may be adopted.
In the above-described first to fourth embodiments, a configuration may be adopted in which high-frequency energy or ultrasonic energy is further applied to a target portion in addition to heat energy. Note that “giving high frequency energy to a target portion” means flowing high frequency current to a target portion. “Applying ultrasonic energy to a target portion” means applying ultrasonic vibration to a target portion.
 上述した実施の形態1~4において、第1の熱異方性体9(9A~9C)は、第1の対向裏面814(811)及び一対の第1の接続面811,812(813,814)に対向していればよく、覆っていなくても構わない。また、第1の熱異方性体9(9A~9C)は、先端面816に対向していなくても構わない。
 上述した実施の形態3,4において、第1の熱異方性体9B(9C)は、第2の熱異方性体14(14C)における先端側Ar1の面(図示略)及び一対の第2の接続面144(144C)に対向していなくても構わない。
 上述した実施の形態3,4において、熱異方性層141(141C)は、互いに独立した層として構成しても構わない。すなわち、第2の熱異方性体14(14C)は、1枚の第2の熱異方性シート140(140C)を折り畳んだ構成としなくても構わない。
In the above-described first to fourth embodiments, the first thermal anisotropic body 9 (9A to 9C) includes the first opposing back surface 814 (811) and the pair of first connection surfaces 811 and 812 (813 and 814). ), And may not be covered. Further, the first thermal anisotropic body 9 (9A to 9C) does not have to face the front end face 816.
In Embodiments 3 and 4 described above, the first thermal anisotropic body 9B (9C) is formed by a surface (not shown) of the tip side Ar1 in the second thermal anisotropic body 14 (14C) and a pair of The second connection surface 144 (144C) does not have to be opposed.
In Embodiments 3 and 4 described above, the thermally anisotropic layer 141 (141C) may be configured as independent layers. That is, the second thermal anisotropic member 14 (14C) does not have to have a configuration in which one second thermal anisotropic sheet 140 (140C) is folded.
 1,1B 処置具
 2,2B シャフト
 3 操作部
 4,4B 把持部
 5 基端部
 6,6A 先端部
 7,7A~7C ブレード
 8 ヒータ
 9,9A~9C 第1の熱異方性体
 10 ハンドル
 11 ジョー
 12,12C 発熱構造体
 13 支持部材
 14,14C 第2の熱異方性体
 41,41B,41C 第1の把持部材
 42,42B 第2の把持部材
 71,71B,72,72B 板面
 71B,73 処置面
 73B,76 側面
 74,74B,74C 凹部
 75,75B,75C 背面
 81 ヒータ本体
 82 フレキシブル基板
 90,90B,90C 第1の熱異方性シート
 101 操作ノブ
 111 コーティング材
 140,140C 第2の熱異方性シート
 141,141C 熱異方性層
 142,142C 第2の対向面
 143,143C 第2の対向裏面
 144,144C 第2の接続面
 145 突出部形成体
 146 基部形成体
 147 基部
 148 突出部
 741 第1の凹部
 742 第2の凹部
 811,812 シート面
 812,813 第1の対向面
 813,814 側面
 814 第1の対向裏面
 815 基端面
 816 先端面
 A1 方向
 Ar1 先端側
 Ar2 基端側
 Ax 中心軸
 C 電気ケーブル
 C1 リード線
 Cu 切れ込み
 EF1 第1の端面
 EF2 第2の端面
 Ln,Ln1,Ln1C 折り畳み線
 R1 矢印
 Ra 回動軸
 Se 封止部材
 St1,St2 段差
 Wi ワイヤ
DESCRIPTION OF SYMBOLS 1, 1B Treatment tool 2, 2B shaft 3 Operation part 4, 4B Grip part 5 Base end part 6, 6A Tip part 7, 7A-7C Blade 8 Heater 9, 9A-9C First thermal anisotropic body 10 Handle 11 Jaw 12, 12C Heating structure 13 Support member 14, 14C Second thermal anisotropic body 41, 41B, 41C First gripping member 42, 42B Second gripping member 71, 71B, 72, 72B Plate surface 71B, 73 treatment surface 73B, 76 side surface 74, 74B, 74C concave portion 75, 75B, 75C back surface 81 heater body 82 flexible substrate 90, 90B, 90C first thermal anisotropic sheet 101 operation knob 111 coating material 140, 140C second Thermally anisotropic sheet 141, 141C Thermally anisotropic layer 142, 142C Second facing surface 143, 143C Second facing back surface 144, 44C Second connection surface 145 Protruding portion forming body 146 Base forming body 147 Base portion 148 Protruding portion 741 First concave portion 742 Second concave portion 811,812 Sheet surface 812,813 First opposing surface 813,814 Side surface 814 First Opposite back surface 815 Base end surface 816 Top end surface A1 direction Ar1 Front end side Ar2 Base end side Ax Central axis C Electric cable C1 Lead wire Cu cut EF1 First end surface EF2 Second end surface Ln, Ln1, Ln1C Folding line R1 Arrow Ra Active shaft Se Sealing member St1, St2 Step Wi wire

Claims (10)

  1.  生体組織に接触する処置面と、前記処置面と表裏をなす背面とを有するブレードと、
     前記背面に対向する第1の対向面と、前記第1の対向面と表裏をなす第1の対向裏面と、前記第1の対向面と前記第1の対向裏面とを接続する一対の第1の接続面とを有し、供給された電力に応じて発熱することによって前記ブレードを加熱するヒータと、
     第1の端面を有する1枚の第1の熱異方性シートによって構成された第1の熱異方性体と、を備え、
     前記第1の熱異方性シートは、
     厚み方向よりもシートの面内方向の熱伝導率が高く、
     前記第1の熱異方性体は、
     前記ヒータの長手方向に直交する断面において、前記第1の対向裏面と、前記一対の第1の接続面とに対向するとともに、前記第1の端面が前記背面に対向する処置具。
    A treatment surface that comes into contact with living tissue, and a blade having the treatment surface and a back surface that forms the front and back,
    A first opposing surface opposing the back surface, a first opposing back surface facing the first opposing surface, and a pair of first opposing surfaces connecting the first opposing surface and the first opposing back surface. A heater that heats the blade by generating heat according to the supplied power;
    A first thermal anisotropic body composed of one first thermal anisotropic sheet having a first end face;
    The first thermally anisotropic sheet,
    The thermal conductivity in the in-plane direction of the sheet is higher than the thickness direction,
    The first thermal anisotropic body is
    A treatment instrument in a cross section orthogonal to the longitudinal direction of the heater, wherein the treatment tool faces the first opposing back surface and the pair of first connection surfaces, and the first end surface faces the back surface.
  2.  前記第1の熱異方性体は、
     前記長手方向に直交する断面において、前記第1の対向裏面と前記一対の第1の接続面とを覆う請求項1に記載の処置具。
    The first thermal anisotropic body is
    The treatment tool according to claim 1, wherein the treatment tool covers the first opposing back surface and the pair of first connection surfaces in a cross section orthogonal to the longitudinal direction.
  3.  前記第1の熱異方性体は、
     前記ヒータの先端に対向する請求項1に記載の処置具。
    The first thermal anisotropic body is
    The treatment tool according to claim 1, which faces a tip of the heater.
  4.  前記第1の熱異方性体は、
     前記第1の熱異方性シートを折り畳むことによって容器状に形成され、
     前記第1の熱異方性シートの端面は、
     前記第1の端面と、
     前記第1の熱異方性体における容器状の内部に位置する第2の端面とによって構成されている請求項1に記載の処置具。
    The first thermal anisotropic body is
    The first heat anisotropic sheet is formed into a container shape by folding the sheet,
    The end face of the first thermal anisotropic sheet is
    Said first end face;
    The treatment tool according to claim 1, comprising a second end face located inside the container in the first thermal anisotropic body.
  5.  前記背面と前記第1の対向面との間に配置された第2の熱異方性体をさらに備え、
     前記第2の熱異方性体は、
     厚み方向よりも面内方向の熱伝導率が高い熱異方性層を複数、積層することによって構成され、前記面内方向が前記第1の対向面から前記背面への方向に沿う姿勢で配置されている請求項1に記載の処置具。
    Further comprising a second thermal anisotropic body disposed between the back surface and the first facing surface,
    The second thermal anisotropic body includes:
    It is configured by laminating a plurality of thermally anisotropic layers having a higher thermal conductivity in the in-plane direction than in the thickness direction, and is arranged in such a posture that the in-plane direction is along the direction from the first facing surface to the back surface. The treatment tool according to claim 1, wherein
  6.  複数の前記熱異方性層は、
     長尺状の1枚の第2の熱異方性シートの一部であり、
     前記第2の熱異方性体は、
     前記第2の熱異方性シートを折り畳むことによって構成され、前記第2の熱異方性シートの折り畳み線が前記第1の対向面から前記背面への方向に沿う姿勢で配置されている請求項5に記載の処置具。
    The plurality of thermal anisotropic layers,
    A part of one long second heat anisotropic sheet,
    The second thermal anisotropic body includes:
    The said 2nd heat anisotropic sheet is comprised by folding, The fold line of the said 2nd heat anisotropic sheet is arrange | positioned in the attitude | position along the direction from the said 1st opposing surface to the said back surface. Item 6. The treatment tool according to Item 5.
  7.  前記第2の熱異方性シートの長手方向における両端部は、
     互いに隣接する前記熱異方性層の間に位置する状態で折り畳まれている請求項6に記載の処置具。
    Both ends in the longitudinal direction of the second heat anisotropic sheet,
    The treatment tool according to claim 6, wherein the treatment tool is folded so as to be located between the adjacent heat anisotropic layers.
  8.  前記第2の熱異方性体の外面は、
     前記背面に対向する第2の対向面と、前記第2の対向面と表裏をなす第2の対向裏面と、前記第2の対向面と前記第2の対向裏面とを接続する一対の第2の接続面と、を備え、
     前記第1の熱異方性体は、
     前記長手方向に直交する断面において、前記一対の第2の接続面に対向する請求項5に記載の処置具。
    The outer surface of the second thermal anisotropic body,
    A second facing surface facing the back surface, a second facing back surface facing the second facing surface, and a pair of second facing surfaces connecting the second facing surface and the second facing back surface; And a connection surface of
    The first thermal anisotropic body is
    The treatment tool according to claim 5, wherein the treatment tool faces the pair of second connection surfaces in a cross section orthogonal to the longitudinal direction.
  9.  前記第2の熱異方性体は、
     基部と、前記基部から前記背面に向けて突出した突出部と、を備え、
     前記突出部は、
     前記長手方向に直交する断面において、前記第1の対向面から前記背面への方向に直交する幅方向の長さ寸法が前記基部よりも短い請求項5に記載の処置具。
    The second thermal anisotropic body includes:
    A base, and a protrusion protruding from the base toward the back surface,
    The protrusion is
    The treatment tool according to claim 5, wherein in a cross section orthogonal to the longitudinal direction, a length in a width direction orthogonal to a direction from the first opposing surface to the back surface is shorter than the base.
  10.  前記第1の熱異方性体は、
     前記ヒータの長手方向に直交する断面において、両端部が前記第1の対向面よりも前記背面に向けて突出している請求項1に記載の処置具。
    The first thermal anisotropic body is
    2. The treatment tool according to claim 1, wherein both ends of the treatment tool project from the first facing surface toward the rear surface in a cross section orthogonal to the longitudinal direction of the heater. 3.
PCT/JP2018/034032 2018-09-13 2018-09-13 Surgical tool WO2020054037A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/034032 WO2020054037A1 (en) 2018-09-13 2018-09-13 Surgical tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/034032 WO2020054037A1 (en) 2018-09-13 2018-09-13 Surgical tool

Publications (1)

Publication Number Publication Date
WO2020054037A1 true WO2020054037A1 (en) 2020-03-19

Family

ID=69776674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034032 WO2020054037A1 (en) 2018-09-13 2018-09-13 Surgical tool

Country Status (1)

Country Link
WO (1) WO2020054037A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027843A (en) * 2014-07-09 2016-02-25 オリンパス株式会社 Medical treatment apparatus
WO2016166817A1 (en) * 2015-04-14 2016-10-20 オリンパス株式会社 Therapeutic energy-imparting structure, and medical treatment device
WO2018150533A1 (en) * 2017-02-17 2018-08-23 オリンパス株式会社 Treatment tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027843A (en) * 2014-07-09 2016-02-25 オリンパス株式会社 Medical treatment apparatus
WO2016166817A1 (en) * 2015-04-14 2016-10-20 オリンパス株式会社 Therapeutic energy-imparting structure, and medical treatment device
WO2018150533A1 (en) * 2017-02-17 2018-08-23 オリンパス株式会社 Treatment tool

Similar Documents

Publication Publication Date Title
US20150327909A1 (en) Treatment apparatus
US10143511B2 (en) Therapeutic treatment device
US20170224405A1 (en) Grasping treatment unit and grasping treatment instrument
WO2017043120A1 (en) Medical device
US20170224406A1 (en) Grasping treatment unit
US10603097B2 (en) Treatment energy application structure and medical treatment device
WO2020054037A1 (en) Surgical tool
US20210128226A1 (en) Treatment instrument and treatment system
WO2018185815A1 (en) Heat treatment tool
WO2016063376A1 (en) Medical treatment device
WO2018055778A1 (en) Treatment instrument and treatment system
WO2019150496A1 (en) Method for manufacturing treatment tool, and treatment tool
BR112018073641B1 (en) APPLIANCE FOR OPERATING ON TISSUE
JP2003275220A (en) Medical machinery
WO2019186656A1 (en) Treatment instrument
WO2019207807A1 (en) Treatment tool and method of manufacturing treatment tool
WO2018016011A1 (en) Treatment tool
US20200275970A1 (en) Treatment device
WO2020044563A1 (en) Medical heater, treatment instrument, and production method for treatment instrument
WO2019092822A1 (en) Treatment tool
JP7201790B2 (en) Treatment tool
WO2019215852A1 (en) Treatment tool
US20190110831A1 (en) Treatment tool
US20210177487A1 (en) Medical heater, treatment tool, and treatment tool manufacturing method
WO2019167120A1 (en) Treatment instrument and method for using treatment instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP