WO2020054011A1 - Steam-pipe temperature measurement device, steam-pipe temperature measurement method - Google Patents

Steam-pipe temperature measurement device, steam-pipe temperature measurement method Download PDF

Info

Publication number
WO2020054011A1
WO2020054011A1 PCT/JP2018/033921 JP2018033921W WO2020054011A1 WO 2020054011 A1 WO2020054011 A1 WO 2020054011A1 JP 2018033921 W JP2018033921 W JP 2018033921W WO 2020054011 A1 WO2020054011 A1 WO 2020054011A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam pipe
cover
optical fiber
pipe
steam
Prior art date
Application number
PCT/JP2018/033921
Other languages
French (fr)
Japanese (ja)
Inventor
西田 秀高
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to PCT/JP2018/033921 priority Critical patent/WO2020054011A1/en
Publication of WO2020054011A1 publication Critical patent/WO2020054011A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/38Determining or indicating operating conditions in steam boilers, e.g. monitoring direction or rate of water flow through water tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres

Definitions

  • the present invention relates to a steam pipe temperature measuring device and a steam pipe temperature measuring method.
  • a steam pipe for example, a superheater or a reheater for circulating steam obtained by heat-exchanging water supplied from a condenser with combustion gas is installed.
  • the steam pipe is composed of a boiler tube containing heat-resistant steel (for example, low alloy steel) as a component.
  • heat-resistant steel for example, low alloy steel
  • the outer circumferential surface of the steam pipe will increase with the progress of creep damage.
  • the steam pipe or the thickness of the steam pipe may be reduced. Therefore, inspections are being conducted to prevent the accident caused by the deterioration of the steam pipe by grasping the combustion state of the boiler and the remaining life of the steam pipe from the measurement result of the surface temperature of the steam pipe (for example, Patent Reference 1).
  • thermocouple may be used as a means for measuring the surface temperature of a steam pipe.
  • a thermocouple when a thermocouple is used, only the surface temperature in a narrow range of the steam pipe can be measured, so that it is difficult to obtain the temperature distribution of the surface temperature of the steam pipe.
  • an object of the present invention is to provide a temperature measuring device capable of reliably measuring the surface temperature of a steam pipe over a wide range.
  • the main invention for solving the above-mentioned problems is an optical fiber for measuring a surface temperature of a steam pipe in which steam obtained by heat-exchanging water supplied to a boiler with a combustion gas circulates, and the steam pipe.
  • the optical fiber At a first position where the surface temperature is measured, the optical fiber is attached so as to surround the steam pipe with the optical fiber interposed therebetween so that the optical fiber is in close contact with the steam pipe along the longitudinal direction of the steam pipe.
  • a second pipe is mounted so as to surround the optical fiber and the heat pipe so as to surround the optical fiber along a longitudinal direction of the steam pipe. It includes a bar, a.
  • FIG. 1 It is a figure showing an example of the whole composition of the thermal power plant in which the temperature measuring device of the steam pipe concerning this embodiment is used. It is a perspective view showing a situation before attaching the 1st cover used for the temperature measuring device concerning this embodiment to a straight pipe part of a steam pipe. It is a perspective view showing signs that a 1st cover used for a temperature measuring device concerning this embodiment has been attached to a straight pipe part of a steam pipe. It is sectional drawing which shows the mode after attaching the 1st cover used for the temperature measuring apparatus which concerns on this embodiment to the straight pipe part of a steam pipe. It is a perspective view showing a situation before attaching the 1st cover used for the temperature measuring device concerning this embodiment to the curved pipe part of a steam pipe.
  • FIG. 1 It is a perspective view showing signs that a 1st cover used for a temperature measuring device concerning this embodiment is attached to a curved pipe part of a steam pipe. It is sectional drawing which shows the mode after attaching the 1st cover used for the temperature measuring apparatus which concerns on this embodiment to the curved pipe part of a steam pipe. It is a perspective view showing a situation before attaching the 2nd cover used for the temperature measuring device concerning this embodiment to a straight pipe part of a steam pipe. It is a perspective view showing signs that a 2nd cover used for a temperature measuring device concerning this embodiment has been attached to a straight pipe part of a steam pipe.
  • FIG. 1 is a diagram illustrating an example of an overall configuration of a thermal power plant in which the steam pipe temperature measuring device according to the present embodiment is used.
  • the thermal power plant 1 includes a boiler 2, a steam generator 3, a water cooling wall 4, a steam valve 5, a high-pressure turbine 6, a medium-pressure turbine 7, a low-pressure turbine 8, a reheater 9, a condenser 10, a feedwater pump 11, and a power generator.
  • Machine 12 The thermal power plant 1 includes a boiler 2, a steam generator 3, a water cooling wall 4, a steam valve 5, a high-pressure turbine 6, a medium-pressure turbine 7, a low-pressure turbine 8, a reheater 9, a condenser 10, a feedwater pump 11, and a power generator. Machine 12.
  • the boiler 2 is a heat exchange device that mixes fuel (for example, pulverized coal) supplied from the outside with air and generates combustion gas, and uses the heat of the combustion gas to convert water into steam.
  • the boiler 2 houses a steam generator 3, a water cooling wall 4, and a reheater 9.
  • the steam generator 3 includes a economizer (not shown) that preheats water supplied from the condenser 10 and a superheater (not shown) that further heats saturated steam supplied from the water cooling wall 4 to superheated steam. ).
  • the water cooling wall 4 forms the housing of the boiler 2 and supplies the superheated water to the superheater as saturated steam.
  • the steam valve 5 is a regulating valve that controls the flow rate of superheated steam generated by the steam generator 3.
  • the rotating shafts 13 of the high-pressure turbine 6, the medium-pressure turbine 7, and the low-pressure turbine 8 are the same, and are connected to the rotating shaft 14 of the generator 12.
  • Superheated steam (first steam) generated by the steam generator 3 is supplied to the high-pressure turbine 6 via the steam valve 5.
  • the high-pressure turbine 6 expands the first steam and supplies the expanded steam (second steam) to the reheater 9 in the boiler 2.
  • the reheater 9 reheats the second steam and supplies it to the medium-pressure turbine 7 as reheated steam (third steam).
  • the medium-pressure turbine 7 expands the third steam and supplies the expanded steam (fourth steam) to the low-pressure turbine 8.
  • the low-pressure turbine 8 expands the fourth steam.
  • the condenser 10 condenses the exhaust gas after the low-pressure turbine 8 expands the fourth steam and converts the exhaust gas into condensate water.
  • the feedwater pump 11 pressurizes the condensed water generated by the condenser 10 and returns the condensed water to the steam generator 3 in the boiler 2 as feedwater.
  • the generator 12 is driven by power generated when the fourth steam expands so that electric power is generated.
  • the surface temperature of a superheater tube (steam tube) constituting the superheater included in the steam generator 3 and a reheater tube (steam tube) constituting the reheater 9 are measured by the temperature measuring device according to the present embodiment. The details will be described later. For convenience of explanation, in the following description, the superheater tube and the reheater tube will be referred to as a steam tube 15.
  • FIG. 2 is a perspective view showing a state before the first cover used in the temperature measuring device according to the present embodiment is attached to the straight pipe portion of the steam pipe.
  • FIG. 3 is a perspective view showing a state after the first cover used in the temperature measuring device according to the present embodiment is attached to the straight pipe portion of the steam pipe.
  • FIG. 4 is a cross-sectional view showing a state after the first cover used in the temperature measuring device according to the present embodiment is attached to the straight pipe portion of the steam pipe. 2 to 4 show an example of the first cover. That is, the first cover may have any shape as long as it can be attached to the straight pipe portion of the steam pipe including the features of the present invention.
  • the first cover 100 is mounted on the straight pipe portion of the steam pipe 15 via the optical fiber 110 such that the optical fiber 110 is in close contact with the surface of the straight pipe portion of the steam pipe 15.
  • the first cover 100 is formed using an alloy steel (for example, stainless steel (SUS304 or SUS316)).
  • the optical fiber 110 is attached by the first cover 100 so as to be in close contact with the surface of the steam pipe 15 along the longitudinal direction of the steam pipe 15 in order to measure the surface temperature of the steam pipe 15.
  • the pulse light travels while slightly scattering in the optical fiber 110.
  • the Raman scattered light Stokes light and anti-Stokes light
  • the temperature of the object can be measured by detecting the Raman scattered light. That is, the surface temperature of the steam pipe 15 can be measured by bringing the optical fiber 110 into close contact with the surface of the steam pipe 15.
  • the diameter of the optical fiber 110 is, for example, about 0.2 mm. Since a temperature measuring method using the temperature dependency of Raman scattered light is well known, its description is omitted.
  • the first cover 100 includes a cover body 1001 and flanges 1002A and 1002B.
  • the thickness of the first cover 100 is, for example, about 2 to 3 mm.
  • the cover body 1001 has a cylindrical shape having a diameter slightly larger than the diameter of the steam pipe 15.
  • the optical fiber 110 is accommodated along the longitudinal direction of the steam pipe 15 in order to adhere the optical fiber 110 to the surface of the steam pipe 15 along the longitudinal direction of the steam pipe 15.
  • Groove 1001C is formed.
  • the groove 1001C is formed on the cover body 1001, for example, on the opposite side of the flanges 1002A and 1002B.
  • the first cover 100 is installed so as to face the opposite side.
  • the groove 1001C has such a depression that the optical fiber 110 is in close contact with the surface of the steam pipe 15.
  • the cover main body 1001 has end faces 1001A and 1001B along the longitudinal direction of the steam pipe 15 so that one gap is formed along the longitudinal direction of the steam pipe 15.
  • the flanges 1002A and 1002B are formed to extend from the end faces 1001A and 1001B so as to be away from the steam pipe 15, respectively.
  • the flanges 1002A and 1002B have a plurality of holes 1003A and 1003B, respectively, along the longitudinal direction of the steam pipe 15.
  • the plurality of holes 1003A and 1003B communicate with each other such that the bolt 1004 is screwed with the nut 1005.
  • the bolt 1004 is inserted into the plurality of holes 1003A and 1003B, and the bolt 1004 is inserted.
  • the nut 1005 is tightened, the gap between the flanges 1002A and 1002B disappears, and the cover main body 1001 is attached in close contact with the steam pipe 15.
  • the temperature of the combustion gas is, for example, about 1200 ° C.
  • the temperature of the steam circulating in the steam pipe 15 is, for example, about 600 ° C. .
  • the optical fiber 110 does not directly contact the combustion gas with the first cover 100, the temperature of the optical fiber 110 is affected only by the surface temperature of the steam pipe 15. Therefore, the temperature of the optical fiber 110 is suppressed to less than 700 ° C., and the surface temperature of the steam pipe 15 can be reliably obtained.
  • Information on the surface temperature of the steam pipe 15 is taken into an external monitoring device (not shown) via a network, and a temperature distribution is obtained. Furthermore, since the first cover 100 surrounds the steam pipe 15, the creep strength of the steam pipe 15 can be improved.
  • FIG. 5 is a perspective view showing a state before the first cover used in the temperature measuring device according to the present embodiment is attached to the curved pipe portion of the steam pipe.
  • FIG. 6 is a perspective view showing a state after the first cover used in the temperature measuring device according to the present embodiment is attached to the curved pipe portion of the steam pipe.
  • FIG. 7 is a cross-sectional view illustrating a state after the first cover used in the temperature measuring device according to the present embodiment is attached to the curved pipe portion of the steam pipe. 5 to 7 show an example of the first cover. That is, the first cover may have any shape as long as it can be attached to the curved pipe portion of the steam pipe including the features of the present invention.
  • the first cover 200 is mounted on the curved portion of the steam pipe 15 via the optical fiber 110 such that the optical fiber 110 is in close contact with the surface of the steam pipe 15.
  • the first cover 200 is formed using an alloy steel (for example, stainless steel (SUS304 or SUS316)).
  • the optical fiber 110 is attached by the first cover 200 so as to be in close contact with the surface of the steam pipe 15 along the longitudinal direction (the shape of the curved pipe portion) of the steam pipe 15 in order to measure the surface temperature of the steam pipe 15. .
  • the first cover 200 includes the cover main body 2001 and the flanges 2002A and 2002B.
  • the thickness of the cover 200 is, for example, about 2 to 3 mm.
  • the cover body 2001 has a diameter slightly larger than the diameter of the steam pipe 15 and has a cylindrical shape according to the curvature of the steam pipe 15.
  • the optical fiber 110 is accommodated along the longitudinal direction of the steam pipe 15 in order to make the optical fiber 110 adhere to the surface of the steam pipe 15 along the longitudinal direction of the steam pipe 15. Is formed.
  • the groove 2001C is formed, for example, on the opposite side of the cover body 2001 from the flanges 2002A and 2002B.
  • the first cover 200 is installed so as to face the opposite side.
  • the flanges 2002A and 2002B have various shapes such that they always face the downstream side of the combustion gas. Is prepared in advance.
  • the groove 2001C has such a depression that the optical fiber 110 is in close contact with the surface of the steam pipe 15.
  • the cover main body 2001 has end faces 2001A and 2001B along the longitudinal direction of the steam pipe 15 so that one gap is formed along the longitudinal direction of the steam pipe 15.
  • the flanges 2002A and 2002B are formed to extend from the end faces 2001A and 2001B so as to be away from the steam pipe 15, respectively.
  • the flanges 2002A, 2002B have a plurality of holes 2003A, 2003B, respectively, along the longitudinal direction of the steam pipe 15.
  • the plurality of holes 2003A and 2003B communicate with each other so that the bolt 2004 is screwed with the nut 2005.
  • the bolts 2004 are inserted into the plurality of holes 2003A and 2003B.
  • the gap between the flanges 2002A and 2002B disappears, and the cover main body 2001 is attached to the curved pipe portion of the steam pipe 15 in close contact.
  • the temperature of the optical fiber 110 is affected only by the surface temperature of the steam pipe 15. Therefore, the temperature of the optical fiber 110 is suppressed to less than 700 ° C., and the surface temperature of the curved portion of the steam pipe 15 can be reliably obtained. Information on the surface temperature of the steam pipe 15 is taken into an external monitoring device (not shown) via a network, and a temperature distribution is obtained. Furthermore, since the first cover 200 surrounds the steam pipe 15, the creep strength of the steam pipe 15 can be improved.
  • the steam pipe 15 has a shape in which a straight pipe portion and a curved pipe portion are continuous. Therefore, when measuring the surface temperature of the straight pipe portion and the curved pipe portion of the steam pipe 15, the first cover 100 is attached to the straight pipe portion of the steam pipe 15, and the first cover 200 is attached to the curved pipe portion of the steam pipe 15. You only have to attach it. Further, the cover 220 may be double mounted on the curved pipe portion of the steam pipe 15 to reinforce the curved pipe section of the steam pipe 15.
  • FIG. 8 is a perspective view showing a state before the second cover used in the temperature measuring device according to the present embodiment is attached to the straight pipe portion of the steam pipe.
  • FIG. 9 is a perspective view showing a state after the second cover used in the temperature measuring device according to the present embodiment is attached to the straight pipe portion of the steam pipe.
  • FIG. 10 is a cross-sectional view showing a state after the second cover used in the temperature measuring device according to the present embodiment is attached to the straight pipe portion of the steam pipe. 8 to 10 show an example of the second cover. That is, the second cover may have any shape as long as it can be attached to the straight pipe portion of the steam pipe, including the features of the present invention.
  • FIG. 8 shows a self-excited heat pipe in which thin tubes are connected in a ring shape.
  • the temperature of the optical fiber 110 is reduced to about 600 ° C. by the close contact of the optical fiber 110 with the steam pipe 15.
  • the measurable distance of the optical fiber 110 to the steam pipe 15 is limited to about 10 m. Therefore, when it is desired to extend the measurable distance of the optical fiber 110 with respect to the steam pipe 15 to 10 m or more, the optical fiber 110 is cooled and the temperature of the optical fiber 110 is reduced at a position adjacent to the position where the surface temperature of the steam pipe 15 is measured. It is necessary to provide a lowering device.
  • the second cover 300 prevents the optical fiber 110 from being exposed in the boiler 2 at a position adjacent to the position where the first cover 100 (200) is attached to the steam pipe 15 (the optical fiber 110 is not exposed to combustion gas).
  • the optical fiber 110 is attached to the straight pipe portion of the steam pipe 15 via the optical fiber 110 and the heat pipe 500 so that the optical fiber 110 is cooled while maintaining the state of being bonded to the first cover 100 (200).
  • the second cover 300 is formed using an alloy steel (for example, stainless steel (SUS304 or SUS316)).
  • the heat pipe 500 is a heat exchanger that cools the optical fiber 110 by exchanging heat with the optical fiber 110.
  • the heat pipe 500 is a device that performs heat exchange by repeatedly circulating a refrigerant that is sealed in a long tube (having a diameter of about 0.5 mm) that condenses and evaporates.
  • the method of circulating the refrigerant may be either self-excited or separately-excited, but any method is well-known (for example, Japanese Patent Application Laid-Open No. 2011-144900), and the detailed description thereof will be omitted. Omitted.
  • the optical fiber 110 is separated from the surface of the steam pipe 15 by a small distance along the longitudinal direction of the steam pipe 15 so as to be adjacent to the steam pipe 15.
  • the heat pipe 500 is disposed so as to surround the optical fiber 110 at a small distance from the surface of the steam pipe 15 along the longitudinal direction of the steam pipe 15. For example, the heat pipe 500 is folded back so as to surround the optical fiber 110 within a range covered by the second cover 300.
  • the second cover 300 includes a cover main body 3001 and flanges 3002A and 3002B.
  • the thickness of the second cover 300 is, for example, about 1 mm.
  • the cover body 3001 has a cylindrical shape having a diameter slightly larger than the diameter of the steam pipe 15.
  • the cover main body 3001 has end faces 3001A and 3001B along the longitudinal direction of the steam pipe 15 so that one small gap is formed along the longitudinal direction of the steam pipe 15.
  • the flanges 3002A and 3002B are formed to extend from the end faces 3001A and 3001B so as to be away from the steam pipe 15, respectively.
  • the flanges 3002A and 3002B have a plurality of holes 3003A and 3003B, respectively, along the longitudinal direction of the steam pipe 15.
  • the plurality of holes 3003A and 3003B communicate with each other such that the bolt 3004 is screwed with the nut 3005.
  • the bolt 3004 is inserted into the plurality of holes 3003A and 3003B to insert the bolt 3004.
  • the gap between the flanges 3002A and 3002B disappears, and the cover main body 3001 is attached to the steam pipe 15 in close contact.
  • the flanges 3002A and 3002B are in close contact with each other, and the combined thickness of the flanges 3002A and 3002B is greater than the thickness of the cover main body 3001.
  • the space 3001C is a space having a cylindrical shape formed along the longitudinal direction of the steam pipe 15 inside the flanges 3002A and 3002B.
  • the flange 3002A has a semi-cylindrical groove 3001D on the surface in close contact with the flange 3002B, and the flange 3002B has a semi-cylindrical groove 3001E on the surface in close contact with the flange 3002A.
  • the space 3001C is formed by overlapping the grooves 3001D and 3001E when the flanges 3002A and 3002B are brought into close contact.
  • the optical fiber 110 is arranged near the center along the longitudinal direction of the steam pipe 15, and the heat pipe 500 is arranged around the optical fiber 110 along the longitudinal direction of the steam pipe 15.
  • the heat pipe 500 includes a pair of heat pipes, one of which is folded back to surround the optical fiber 110, and the other of which surrounds the optical fiber 110 in a direction orthogonal to the one of the heat pipes. So that it is folded back.
  • the optical fiber 110 is surrounded by the heat pipe 500 without contacting the surface of the steam pipe 15, so that the optical fiber 110 is effectively cooled. Further, since the second cover 300 surrounds the steam pipe 15, the creep strength of the steam pipe 15 can be improved.
  • FIG. 11 is a perspective view showing a state before the second cover used in the temperature measuring device according to the present embodiment is mounted on the curved pipe portion of the steam pipe.
  • FIG. 12 is a perspective view showing a state after the second cover used for the temperature measuring device according to the present embodiment is attached to the curved pipe portion of the steam pipe.
  • FIG. 13 is a cross-sectional view showing a state after the second cover used in the temperature measuring device according to the present embodiment is attached to the curved pipe portion of the steam pipe.
  • FIGS. 11 to 13 show examples of the second cover. That is, the second cover may have any shape as long as it can be attached to the curved portion of the steam pipe, including the features of the present invention.
  • FIG. 11 shows a self-excited heat pipe in which thin tubes are connected in a ring shape.
  • the second cover 400 prevents the optical fiber 110 from being exposed in the boiler 2 at a position adjacent to the position where the first cover 100 (200) is attached to the steam pipe 15 (the optical fiber 110 is not exposed to combustion gas).
  • the optical fiber 110 is attached to the curved portion of the steam pipe 15 via the optical fiber 110 and the heat pipe 500 so as to cool the optical fiber 110 while maintaining the state of being bonded to the first cover 100 (200).
  • the second cover 400 is formed using an alloy steel (for example, stainless steel (SUS304 or SUS316)).
  • the optical fiber 110 is separated from the surface of the steam pipe 15 by a small distance along the longitudinal direction of the steam pipe 15 so as to be adjacent to the steam pipe 15.
  • the heat pipe 500 is disposed so as to surround the optical fiber 110 at a small distance from the surface of the steam pipe 15 along the longitudinal direction of the steam pipe 15.
  • the heat pipe 500 is folded and disposed so as to surround the optical fiber 110 within a range covered by the second cover 400.
  • the second cover 400 includes a cover body 4001 and flanges 4002A and 4002B.
  • the thickness of the second cover 400 is, for example, about 1 mm.
  • the second cover 400 is installed in the boiler 2, the flow of the combustion gas is disturbed when the combustion gas hits the flanges 4002A and 4002B. Is opposite to the second cover 400.
  • the flanges 4002A and 4002B have various shapes such that they always face the downstream side of the combustion gas. Is prepared in advance.
  • the cover main body 4001 has a diameter slightly larger than the diameter of the steam pipe 15 and has a cylindrical shape corresponding to the curvature of the steam pipe 15.
  • the cover main body 4001 has end faces 4001A and 4001B along the longitudinal direction of the steam pipe 15 so that one small gap is formed along the longitudinal direction of the steam pipe 15.
  • the flanges 4002A and 4002B are formed to extend from the end faces 4001A and 4001B so as to be away from the steam pipe 15, respectively.
  • the flanges 4002A and 4002B have a plurality of holes 4003A and 4003B, respectively, along the longitudinal direction of the steam pipe 15.
  • the plurality of holes 4003A and 4003B communicate with each other so that the bolt 4004 is screwed with the nut 4005.
  • the bolt 4004 is inserted into the plurality of holes 4003A and 4003B, and the bolt 4004 is inserted.
  • the gap between the flanges 4002A and 4002B disappears, and the cover main body 4001 is attached to the steam pipe 15 in close contact.
  • the flanges 4002A and 4002B are in close contact with each other, and the combined thickness of the flanges 4002A and 4002B is greater than the thickness of the cover body 4001.
  • the space 4001C is a space having a columnar shape formed along the longitudinal direction of the steam pipe 15 inside the flanges 4002A and 4002B.
  • the flange 4002A has a semi-cylindrical groove 4001D on the surface in close contact with the flange 4002B, and the flange 4002B has a semi-cylindrical groove 4001E on the surface in close contact with the flange 4002A.
  • the space 4001C is formed by overlapping the grooves 4001D and 4001E when the flanges 4002A and 4002B are brought into close contact.
  • the optical fiber 110 is arranged near the center along the longitudinal direction of the steam pipe 15, and the heat pipe 500 is arranged around the optical fiber 110 along the longitudinal direction of the steam pipe 15.
  • the heat pipe 500 includes a pair of heat pipes, one of which is folded back to surround the optical fiber 110, and the other of which surrounds the optical fiber 110 in a direction orthogonal to the one of the heat pipes. So that it is folded back.
  • the optical fiber 110 is surrounded by the heat pipe 500 without contacting the surface of the steam pipe 15, so that the optical fiber 110 is effectively cooled.
  • the second cover 400 surrounds the steam pipe 15, the creep strength of the steam pipe 15 can be improved.
  • the steam pipe 15 has a shape in which a straight pipe portion and a curved pipe portion are continuous. Therefore, when cooling the optical fiber 110 in the straight pipe portion and the bent pipe portion of the steam pipe 15, the second cover 300 is attached to the straight pipe portion of the steam pipe 15, and the second cover 400 is attached to the bent pipe portion of the steam pipe 15. It should just be attached to. Further, the cover 220 may be double mounted on the curved pipe portion of the steam pipe 15 to reinforce the curved pipe section of the steam pipe 15.
  • FIG. 14 is a schematic diagram illustrating an example of a steam pipe installed in a boiler.
  • FIG. 15 is a schematic diagram illustrating an example of a case where the temperature measuring device according to the present embodiment is installed in a boiler.
  • a steam pipe 15 such as a superheater pipe or a reheater pipe installed in the boiler 2 is schematically illustrated as a pipe in which a straight pipe portion (open portion) and a curved pipe portion (hatched portion) are continuous. Will be shown.
  • the optical fiber 110 is disposed along the longitudinal direction of the steam pipe 15, and both ends of the optical fiber 110 are connected to a measuring device (not (Shown). At this time, at least one of the first covers 100 and 200 and at least one of the second covers 300 and 400 are continuously connected to all the steam pipes 15 in the boiler 2 so that the optical fiber 110 is not exposed to the combustion gas. Attached to.
  • straight pipe portions A, C, E, G, I and curved pipe portions B, D, F, H in the steam pipe 15 are alternately and continuously installed so that steam passes therethrough. It has been done. Then, an example of installation of the temperature measuring device when measuring the surface temperatures of the curved pipe portions B and D and the straight pipe portions C and G will be described.
  • the first cover 100 having a shape that can be mounted on the straight pipe portions C and G, and the straight pipe portion A , E, and I
  • a second cover 300 having a shape capable of being attached to the curved tube portions B and D, and a shape capable of being attached to the curved tube portions F and H. Is prepared in advance.
  • the straight pipe part A is a part that cools the optical fiber 110 using the heat pipe 500. Therefore, the second cover 300 having the same length as the straight pipe portion A is prepared so that the optical fiber 110 is not exposed. Then, the optical fiber 110 and the heat pump 500 are accommodated in the space 3001C so that the heat pipe 500 surrounds the optical fiber 110 while the second cover 300 is attached so as to cover the entire straight pipe portion A.
  • the straight pipe portion A is a portion communicating with the outside of the boiler 2, one end of the optical fiber 110 is taken out of the boiler 2. Further, the heat pipe 500 is connected so that the refrigerant is forcibly circulated through a pump 600 provided outside the boiler 2. Thereby, it is possible to secure a distance for cooling the optical fiber 110.
  • the curved tube portion B is a portion for measuring the surface temperature of the steam pipe 15 using the optical fiber 110. Therefore, the first cover 200 having the same length as the curved tube portion B is prepared so that the optical fiber 110 is not exposed.
  • the optical fiber 110 extending from the straight pipe portion A is attached while the first cover 200 is mounted so as to cover the entire curved pipe portion B while being joined to the second cover 300 mounted on the straight pipe portion A.
  • the optical fiber 110 is housed in the groove 2001C so as to be in close contact with the surface of the steam pipe 15.
  • the straight pipe part C is a part for measuring the surface temperature of the steam pipe 15 using the optical fiber 110. Therefore, the first cover 100 having the same length as the straight pipe portion C is prepared so that the optical fiber 110 is not exposed.
  • the optical fiber 110 extending from the curved tube portion B is attached while the first cover 100 is attached so as to cover the entire straight tube portion C while being joined to the first cover 200 attached to the curved tube portion B.
  • the optical fiber 110 is housed in the groove 1001C so as to be in close contact with the surface of the steam pipe 15.
  • the curved tube portion D is a portion for measuring the surface temperature of the steam pipe 15 using the optical fiber 110. Therefore, the first cover 200 having the same length as the curved tube portion D is prepared so that the optical fiber 110 is not exposed.
  • the optical fiber 110 extending from the straight pipe portion C is attached while the first cover 200 is mounted so as to cover the entire curved pipe portion D while being joined to the first cover 100 mounted on the straight pipe portion C.
  • the optical fiber 110 is housed in the groove 2001C so as to be in close contact with the surface of the steam pipe 15.
  • the straight pipe part E is a part that cools the optical fiber 110 using the heat pipe 500. Therefore, the second cover 300 having the same length as the straight pipe portion E is prepared so that the optical fiber 110 is not exposed. Then, the heat pipe 500 extends from the curved pipe portion D while attaching the second cover 300 so as to cover the entire straight pipe portion E while being joined to the first cover 200 attached to the curved pipe portion D.
  • the optical fiber 110 and the heat pump 500 are housed in the space 3001C so as to surround the optical fiber 110. Since the straight tube portion E is sandwiched between the curved tube portions D and F, a pump installed outside the boiler 2 cannot be connected to the thin tube of the heat pipe 500. Therefore, the heat pipe 500 is annularly connected in the second cover 300 so as to generate self-excited pressure oscillation for circulating the refrigerant by repeatedly condensing and evaporating the refrigerant.
  • the curved pipe portion F is a portion that cools the optical fiber 110 using the heat pipe 500. Therefore, a second cover 400 having the same length as the curved tube portion F is prepared so that the optical fiber 110 is not exposed. Then, the heat pipe 500 extends from the straight pipe portion E while attaching the second cover 400 so as to cover the entire curved pipe portion F while being joined to the second cover 300 mounted on the straight pipe portion E.
  • the optical fiber 110 and the heat pump 500 are housed in the space 4001C so as to surround the optical fiber 110. Since the curved pipe portion F is sandwiched between the straight pipe portions E and G, a pump installed outside the boiler 2 cannot be connected to the thin pipe of the heat pipe 500. Therefore, the heat pipe 500 is annularly connected in the second cover 400 so as to generate self-excited pressure oscillation for circulating the refrigerant by repeatedly condensing and evaporating the refrigerant.
  • the straight pipe part G is a part for measuring the surface temperature of the steam pipe 15 using the optical fiber 110. Therefore, the first cover 100 having the same length as the straight pipe portion G is prepared so that the optical fiber 110 is not exposed.
  • the optical fiber 110 extending from the curved tube portion F is attached while the first cover 100 is attached so as to cover the entire straight tube portion G while being joined to the second cover 400 attached to the curved tube portion F.
  • the optical fiber 110 is housed in the groove 1001C so as to be in close contact with the surface of the steam pipe 15.
  • the curved pipe portion H is a portion that cools the optical fiber 110 using the heat pipe 500. Therefore, the second cover 400 having the same length as the curved tube portion H is prepared so that the optical fiber 110 is not exposed. Then, the heat pipe 500 extends from the straight pipe portion G while attaching the second cover 400 so as to cover the entire curved pipe portion H while being joined to the first cover 100 mounted on the straight pipe portion G.
  • the optical fiber 110 and the heat pump 500 are housed in the space 4001C so as to surround the optical fiber 110. Since the curved tube portion H is sandwiched between the straight tube portions G and I, a pump installed outside the boiler 2 cannot be connected to the thin tube of the heat pipe 500. Therefore, the heat pipe 500 is annularly connected in the second cover 400 so as to generate self-excited pressure oscillation for circulating the refrigerant by repeatedly condensing and evaporating the refrigerant.
  • the straight pipe part I is a part that cools the optical fiber 110 using the heat pipe 500. Therefore, the second cover 300 having the same length as the straight pipe portion I is prepared so that the optical fiber 110 is not exposed.
  • a space 3001C is attached so that the heat pipe 500 surrounds the optical fiber 110 while the second cover 300 is attached so as to cover the entire straight pipe portion I while being joined to the second cover 400 attached to the curved pipe portion H.
  • the straight pipe portion I is a portion communicating with the outside of the boiler 2, one end of the optical fiber 110 is taken out of the boiler 2. Further, the heat pipe 500 is connected so that the refrigerant is forcibly circulated through a pump 600 installed outside the boiler 2. Thereby, it is possible to secure a distance for cooling the optical fiber 110.
  • the optical fibers 110 are located at portions (straight tube portions A, E, I and curved tube portions F, H) adjacent to the portions for measuring the surface temperature of the steam pipe 15 (curved tube portions B, D and straight tube portions C, G). Is cooled, the temperature of the optical fiber 110 which is in close contact with the portion for measuring the surface temperature of the steam pipe 15 decreases to, for example, about 300 ° C. Therefore, even when the entire length of the steam pipe 15 reaches several tens of meters, the surface temperature of the steam pipe 15 can be reliably obtained.
  • the optical fiber 110 extends from the straight pipe portion A to the straight pipe portion I in a longitudinal direction of the steam pipe 15.
  • the grooves 1001C of the first cover 100, the grooves 2001C of the first cover 200, the spaces 3001C of the second cover 300, and the second cover 400 are positioned at the positions of the groove 1001C (2001C) and the space 3001C (4001C) according to the shape of the steam pipe 15 so that the space 4001C communicates with the space 4001C. Needs to be appropriately changed.
  • the temperature measuring device is configured such that the steam obtained by heat-exchanging the water supplied to the boiler 2 with the combustion gas circulates through the steam pipe 15 (superheater tube or reheater).
  • a heat pipe 500 for cooling the optical fiber 110 and a position for measuring the surface temperature of the steam pipe 15 (curved pipe portions B, D and At positions (straight tube portions A, E, I and curved tube portions F, H) adjacent to the straight tube portions C, E), the optical fiber 110 is adjacent to the steam tube 15 along the longitudinal direction of the steam tube 15.
  • the cover 300 (400) is attached so as to surround the optical fiber 110 along the longitudinal direction of the steam pipe 15 so that the heat pipe 500 surrounds the steam pipe 15 with the optical fiber 110 and the heat pipe 500 interposed therebetween. And, equipped with a.
  • the temperature measuring device includes a steam pipe 15 (superheater tube or reheater tube) in which steam obtained by heat-exchanging water supplied to the boiler 2 with combustion gas circulates.
  • a steam pipe 15 superheater tube or reheater tube
  • the optical fiber 110 is elongated along the length of the steam pipe 15.
  • a first cover 100 mounted to surround the steam pipe 15 with the optical fiber 110 interposed therebetween so as to be in close contact with the steam pipe 15 along the direction, and a heat pipe 500 for cooling the optical fiber 110.
  • the optical fiber 110 is adjacent to the steam pipe 15 along the longitudinal direction of the steam pipe 15 and is heated.
  • Pipe 500 So as to surround the optical fiber 110 in the longitudinal direction of the steam pipe 15 provided with a second cover 300 mounted to surround the steam pipe 15 across the optical fiber 110 and the heat pipe 500 (400), the.
  • the temperature measuring device of the present embodiment even when the entire length of the steam pipe 15 reaches several tens of meters, it is possible to reliably acquire the surface temperature of the steam pipe 15, It is possible to improve the creep strength.
  • the first cover 100 (200) has a groove 1001C (2001C) recessed along the longitudinal direction of the steam pipe 15 so that the optical fiber 110 is accommodated when the first cover 100 (200C) is attached to the steam pipe 15. ).
  • the second cover 300 (400) is formed along the longitudinal direction of the steam pipe 15 so that the optical fiber 110 and the heat pipe 500 are accommodated when the second cover 300 (400) is mounted on the steam pipe 15.
  • Space 3001C (4001C).
  • the first cover 100 (200) has a gap along the longitudinal direction of the steam pipe 15 and has a cylindrical cover body 1001 (2001) surrounding the steam pipe 15, and a cover body 1001 (200). 2001) and flanges 1002A (2002A) and 1002B (2002B) that are tightened by bolts so that the cover body 1001 (2001) is in close contact with the steam pipe 15.
  • the second cover 300 (400) has a gap along the longitudinal direction of the steam pipe 15 and has a cylindrical cover body 3001 (4001) surrounding the steam pipe 15 and both ends of the cover body 3001 (4001). And a flange 3002A (4002A) and 3002B (4002B) that are tightened by bolts so that the cover main body 3001 (4001) is in close contact with the steam pipe 15.
  • first cover 100 (200) and the second cover 300 (400) are formed from alloy steel.
  • first cover 100 (200) and the second cover 300 (400) are desirably formed from stainless steel.
  • the steam pipe 15 is a superheater pipe or a reheater pipe.

Abstract

A steam-pipe temperature measurement device according to the present invention includes: an optical fiber for measuring the temperature of the surface of a steam pipe inside which steam obtained through heat exchange between water to be supplied to a boiler and a combustion gas circulates; a first cover that is mounted so as to surround the steam pipe, with the optical fiber sandwiched between the first cover and the steam pipe, such that the optical fiber is brought into close contact with the steam pipe along the longitudinal direction of the steam pipe, at a first position where the temperature of the surface of the steam pipe is measured; a heat pipe for cooling the optical fiber; and a second cover that is mounted so as to surround the steam pipe, with the optical fiber and the heat pipe sandwiched between the second cover and the steam pipe, such that, at a second position adjacent to the first position, the optical fiber is adjacent to the steam pipe along the longitudinal direction of the steam pipe, and the heat pipe surrounds the optical fiber along the longitudinal direction of the steam pipe.

Description

蒸気管の温度測定装置、蒸気管の温度測定方法Steam pipe temperature measuring device, steam pipe temperature measuring method
 本発明は、蒸気管の温度測定装置、蒸気管の温度測定方法に関する。 The present invention relates to a steam pipe temperature measuring device and a steam pipe temperature measuring method.
 例えば、火力発電所における発電用のボイラ内には、復水器から供給される水を燃焼ガスと熱交換することによって得られる蒸気を循環させる蒸気管(例えば過熱器や再熱器)が設置されている。蒸気管は耐熱鋼(例えば低合金鋼)を成分とするボイラチューブで構成されているが、設計基準を超えた高温状態で使用され続けると、クリープ損傷の進行に伴って、蒸気管の外周面が膨張するか或いは蒸気管の肉厚が減肉する等の変形を生じる虞がある。そこで、蒸気管の表面温度の測定結果から、ボイラの燃焼状態や蒸気管の余寿命を把握することによって、蒸気管の劣化に起因する事故を未然に防止する点検が行われている(例えば特許文献1を参照)。 For example, in a boiler for power generation in a thermal power plant, a steam pipe (for example, a superheater or a reheater) for circulating steam obtained by heat-exchanging water supplied from a condenser with combustion gas is installed. Have been. The steam pipe is composed of a boiler tube containing heat-resistant steel (for example, low alloy steel) as a component. However, if the steam pipe is continuously used at a high temperature exceeding the design standards, the outer circumferential surface of the steam pipe will increase with the progress of creep damage. Of the steam pipe or the thickness of the steam pipe may be reduced. Therefore, inspections are being conducted to prevent the accident caused by the deterioration of the steam pipe by grasping the combustion state of the boiler and the remaining life of the steam pipe from the measurement result of the surface temperature of the steam pipe (for example, Patent Reference 1).
特開2013-190229号公報JP 2013-190229 A
 ボイラの燃焼状態や蒸気管の余寿命を把握する場合、蒸気管の表面温度を広範囲に亘って測定し、蒸気管の表面温度の温度分布を求める必要がある。 場合 When grasping the boiler combustion state and the remaining life of the steam pipe, it is necessary to measure the surface temperature of the steam pipe over a wide range and obtain the temperature distribution of the surface temperature of the steam pipe.
 例えば、蒸気管の表面温度を測定する手段として熱電対を用いる場合がある。しかし、熱電対を用いた場合、蒸気管における狭い範囲の表面温度しか測定できないため、蒸気管の表面温度の温度分布を求めることは困難である。 For example, a thermocouple may be used as a means for measuring the surface temperature of a steam pipe. However, when a thermocouple is used, only the surface temperature in a narrow range of the steam pipe can be measured, so that it is difficult to obtain the temperature distribution of the surface temperature of the steam pipe.
 そこで、本発明は、蒸気管の表面温度を広範囲に亘って確実に測定することが可能な温度測定装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a temperature measuring device capable of reliably measuring the surface temperature of a steam pipe over a wide range.
 前述した課題を解決する主たる本発明は、ボイラに供給される水を燃焼ガスと熱交換して得られる蒸気が内部を循環する蒸気管の表面温度を測定するための光ファイバと、前記蒸気管の表面温度を測定する第1位置において、前記光ファイバが前記蒸気管の長手方向に沿って前記蒸気管に密着するように、前記光ファイバを挟んで前記蒸気管を取り囲むように装着される第1カバーと、前記光ファイバを冷却するためのヒートパイプと、前記第1位置に隣り合う第2位置において、前記光ファイバが前記蒸気管の長手方向に沿って前記蒸気管に隣り合うとともに前記ヒートパイプが前記蒸気管の長手方向に沿って前記光ファイバを取り囲むように、前記光ファイバ及び前記ヒートパイプを挟んで前記蒸気管を取り囲むように装着される第2カバーと、を備える。 The main invention for solving the above-mentioned problems is an optical fiber for measuring a surface temperature of a steam pipe in which steam obtained by heat-exchanging water supplied to a boiler with a combustion gas circulates, and the steam pipe. At a first position where the surface temperature is measured, the optical fiber is attached so as to surround the steam pipe with the optical fiber interposed therebetween so that the optical fiber is in close contact with the steam pipe along the longitudinal direction of the steam pipe. 1 cover, a heat pipe for cooling the optical fiber, and a second position adjacent to the first position, wherein the optical fiber is adjacent to the steam pipe along a longitudinal direction of the steam pipe and the heat pipe A second pipe is mounted so as to surround the optical fiber and the heat pipe so as to surround the optical fiber along a longitudinal direction of the steam pipe. It includes a bar, a.
 本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。 の 他 Other features of the present invention will be apparent from the accompanying drawings and the description of this specification.
 本発明によれば、蒸気管の表面温度を広範囲に亘って確実に測定することが可能となる。 According to the present invention, it is possible to reliably measure the surface temperature of the steam pipe over a wide range.
本実施形態に係る蒸気管の温度測定装置が用いられる火力発電所の全体構成の一例を示す図である。It is a figure showing an example of the whole composition of the thermal power plant in which the temperature measuring device of the steam pipe concerning this embodiment is used. 本実施形態に係る温度測定装置に用いられる第1カバーを蒸気管の直管部分に装着する前の様子を示す斜視図である。It is a perspective view showing a situation before attaching the 1st cover used for the temperature measuring device concerning this embodiment to a straight pipe part of a steam pipe. 本実施形態に係る温度測定装置に用いられる第1カバーを蒸気管の直管部分に装着した後の様子を示す斜視図である。It is a perspective view showing signs that a 1st cover used for a temperature measuring device concerning this embodiment has been attached to a straight pipe part of a steam pipe. 本実施形態に係る温度測定装置に用いられる第1カバーを蒸気管の直管部分に装着した後の様子を示す断面図である。It is sectional drawing which shows the mode after attaching the 1st cover used for the temperature measuring apparatus which concerns on this embodiment to the straight pipe part of a steam pipe. 本実施形態に係る温度測定装置に用いられる第1カバーを蒸気管の曲管部分に装着する前の様子を示す斜視図である。It is a perspective view showing a situation before attaching the 1st cover used for the temperature measuring device concerning this embodiment to the curved pipe part of a steam pipe. 本実施形態に係る温度測定装置に用いられる第1カバーを蒸気管の曲管部分に装着した後の様子を示す斜視図である。It is a perspective view showing signs that a 1st cover used for a temperature measuring device concerning this embodiment is attached to a curved pipe part of a steam pipe. 本実施形態に係る温度測定装置に用いられる第1カバーを蒸気管の曲管部分に装着した後の様子を示す断面図である。It is sectional drawing which shows the mode after attaching the 1st cover used for the temperature measuring apparatus which concerns on this embodiment to the curved pipe part of a steam pipe. 本実施形態に係る温度測定装置に用いられる第2カバーを蒸気管の直管部分に装着する前の様子を示す斜視図である。It is a perspective view showing a situation before attaching the 2nd cover used for the temperature measuring device concerning this embodiment to a straight pipe part of a steam pipe. 本実施形態に係る温度測定装置に用いられる第2カバーを蒸気管の直管部分に装着した後の様子を示す斜視図である。It is a perspective view showing signs that a 2nd cover used for a temperature measuring device concerning this embodiment has been attached to a straight pipe part of a steam pipe. 本実施形態に係る温度測定装置に用いられる第2カバーを蒸気管の直管部分に装着した後の様子を示す断面図である。It is sectional drawing which shows the mode after attaching the 2nd cover used for the temperature measuring device which concerns on this embodiment to the straight pipe part of a steam pipe. 本実施形態に係る温度測定装置に用いられる第2カバーを蒸気管の曲管部分に装着する前の様子を示す斜視図である。It is a perspective view showing the situation before attaching the 2nd cover used for the temperature measuring device concerning this embodiment to the curved pipe part of a steam pipe. 本実施形態に係る温度測定装置に用いられる第2カバーを蒸気管の曲管部分に装着した後の様子を示す斜視図である。It is a perspective view showing signs that a 2nd cover used for a temperature measuring device concerning this embodiment is attached to a curved pipe part of a steam pipe. 本実施形態に係る温度測定装置に用いられる第2カバーを蒸気管の曲管部分に装着した後の様子を示す断面図である。It is sectional drawing which shows the mode after attaching the 2nd cover used for the temperature measuring device which concerns on this embodiment to the curved pipe part of a steam pipe. ボイラ内に設置される蒸気管の一例を示す模式図である。It is a schematic diagram which shows an example of the steam pipe installed in a boiler. 本実施形態に係る温度測定装置をボイラ内に設置した場合の一例を示す模式図である。It is a schematic diagram which shows an example when the temperature measuring device which concerns on this embodiment is installed in a boiler.
 本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。 、 At least the following matters will be made clear by the description in this specification and the accompanying drawings.
===火力発電所の全体構成の一例===
 図1は、本実施形態に係る蒸気管の温度測定装置が用いられる火力発電所の全体構成の一例を示す図である。
=== Example of Overall Configuration of Thermal Power Plant ===
FIG. 1 is a diagram illustrating an example of an overall configuration of a thermal power plant in which the steam pipe temperature measuring device according to the present embodiment is used.
 火力発電所1は、ボイラ2、蒸気発生器3、水冷壁4、蒸気弁5、高圧タービン6、中圧タービン7、低圧タービン8、再熱器9、復水器10、給水ポンプ11、発電機12を含んで構成されている。 The thermal power plant 1 includes a boiler 2, a steam generator 3, a water cooling wall 4, a steam valve 5, a high-pressure turbine 6, a medium-pressure turbine 7, a low-pressure turbine 8, a reheater 9, a condenser 10, a feedwater pump 11, and a power generator. Machine 12.
 ボイラ2は、外部から供給される燃料(例えば微粉炭の状態の石炭)と空気を混合して燃焼ガスを生成し、燃焼ガスの熱を用いて水を水蒸気に換える熱交換装置である。ボイラ2には、蒸気発生器3、水冷壁4、再熱器9が収容されている。蒸気発生器3は、復水器10から供給される水を予熱する節炭器(不図示)と、水冷壁4から供給される飽和蒸気を更に加熱して過熱蒸気にする過熱器(不図示)と、を含んで構成されている。水冷壁4は、ボイラ2のハウジングを形成し、余熱された水を飽和蒸気にして過熱器に供給する。蒸気弁5は、蒸気発生器3で生成される過熱蒸気の流量を制御する調整弁である。 The boiler 2 is a heat exchange device that mixes fuel (for example, pulverized coal) supplied from the outside with air and generates combustion gas, and uses the heat of the combustion gas to convert water into steam. The boiler 2 houses a steam generator 3, a water cooling wall 4, and a reheater 9. The steam generator 3 includes a economizer (not shown) that preheats water supplied from the condenser 10 and a superheater (not shown) that further heats saturated steam supplied from the water cooling wall 4 to superheated steam. ). The water cooling wall 4 forms the housing of the boiler 2 and supplies the superheated water to the superheater as saturated steam. The steam valve 5 is a regulating valve that controls the flow rate of superheated steam generated by the steam generator 3.
 高圧タービン6、中圧タービン7、低圧タービン8の回転軸13は同一であって、発電機12の回転軸14と結合されている。高圧タービン6には、蒸気発生器3で生成される過熱蒸気(第1蒸気)が蒸気弁5を介して供給される。高圧タービン6は、第1蒸気を膨張させ、膨張後の蒸気(第2蒸気)をボイラ2内の再熱器9に供給する。再熱器9は、第2蒸気を再熱し、再熱蒸気(第3蒸気)として中圧タービン7に供給する。中圧タービン7は、第3蒸気を膨張させ、膨張後の蒸気(第4蒸気)を低圧タービン8に供給する。低圧タービン8は、第4蒸気を膨張させる。 The rotating shafts 13 of the high-pressure turbine 6, the medium-pressure turbine 7, and the low-pressure turbine 8 are the same, and are connected to the rotating shaft 14 of the generator 12. Superheated steam (first steam) generated by the steam generator 3 is supplied to the high-pressure turbine 6 via the steam valve 5. The high-pressure turbine 6 expands the first steam and supplies the expanded steam (second steam) to the reheater 9 in the boiler 2. The reheater 9 reheats the second steam and supplies it to the medium-pressure turbine 7 as reheated steam (third steam). The medium-pressure turbine 7 expands the third steam and supplies the expanded steam (fourth steam) to the low-pressure turbine 8. The low-pressure turbine 8 expands the fourth steam.
 復水器10は、低圧タービン8が第4蒸気を膨張させた後の排気を凝縮して復水に換える。給水ポンプ11は、復水器10で生成される復水を昇圧して給水としてボイラ2内の蒸気発生器3に戻している。 (4) The condenser 10 condenses the exhaust gas after the low-pressure turbine 8 expands the fourth steam and converts the exhaust gas into condensate water. The feedwater pump 11 pressurizes the condensed water generated by the condenser 10 and returns the condensed water to the steam generator 3 in the boiler 2 as feedwater.
 そして、発電機12は、電力が発電されるように、第4蒸気が膨張した際に発生する動力で駆動される。 The generator 12 is driven by power generated when the fourth steam expands so that electric power is generated.
 本実施形態に係る温度測定装置によって、蒸気発生器3に含まれる過熱器を構成する過熱器管(蒸気管)や再熱器9を構成する再熱器管(蒸気管)の表面温度を測定することとなるが、詳細については後述する。尚、説明の便宜上、以下の説明において、過熱器管や再熱器管を蒸気管15と称することとする。 The surface temperature of a superheater tube (steam tube) constituting the superheater included in the steam generator 3 and a reheater tube (steam tube) constituting the reheater 9 are measured by the temperature measuring device according to the present embodiment. The details will be described later. For convenience of explanation, in the following description, the superheater tube and the reheater tube will be referred to as a steam tube 15.
===温度測定装置===
 <第1カバー>
 図2は、本実施形態に係る温度測定装置に用いられる第1カバーを蒸気管の直管部分に装着する前の様子を示す斜視図である。図3は、本実施形態に係る温度測定装置に用いられる第1カバーを蒸気管の直管部分に装着した後の様子を示す斜視図である。図4は、本実施形態に係る温度測定装置に用いられる第1カバーを蒸気管の直管部分に装着した後の様子を示す断面図である。尚、図2~図4は第1カバーの一例を示している。つまり、第1カバーは、本発明の特徴を含んで蒸気管の直管部分に装着可能な形状であれば如何なる形状であってもよい。
=== Temperature measuring device ===
<First cover>
FIG. 2 is a perspective view showing a state before the first cover used in the temperature measuring device according to the present embodiment is attached to the straight pipe portion of the steam pipe. FIG. 3 is a perspective view showing a state after the first cover used in the temperature measuring device according to the present embodiment is attached to the straight pipe portion of the steam pipe. FIG. 4 is a cross-sectional view showing a state after the first cover used in the temperature measuring device according to the present embodiment is attached to the straight pipe portion of the steam pipe. 2 to 4 show an example of the first cover. That is, the first cover may have any shape as long as it can be attached to the straight pipe portion of the steam pipe including the features of the present invention.
 第1カバー100は、光ファイバ110が蒸気管15の直管部分の表面に密着するように、光ファイバ110を介して蒸気管15の直管部分に装着される。第1カバー100は、合金鋼(例えばステンレス鋼(SUS304やSUS316))を用いて形成されている。 The first cover 100 is mounted on the straight pipe portion of the steam pipe 15 via the optical fiber 110 such that the optical fiber 110 is in close contact with the surface of the straight pipe portion of the steam pipe 15. The first cover 100 is formed using an alloy steel (for example, stainless steel (SUS304 or SUS316)).
 光ファイバ110は、蒸気管15の表面温度を測定するために、蒸気管15の長手方向に沿って蒸気管15の表面に密着するように第1カバー100によって取り付けられる。光ファイバ110にパルス光を入射すると、パルス光は光ファイバ110の中で僅かに散乱を起こしながら進行する。その散乱光の1つであるラマン散乱光(ストークス光とアンチストークス光)は温度依存性を有するため、ラマン散乱光を検知することによって被測定物の温度を測定することが可能である。つまり、光ファイバ110を蒸気管15の表面に密着させることによって、蒸気管15の表面温度を測定することが可能である。光ファイバ110の径は、例えば0.2mm程度である。尚、ラマン散乱光の温度依存性を利用する温度測定方法は周知であるため、その説明を省略する。 The optical fiber 110 is attached by the first cover 100 so as to be in close contact with the surface of the steam pipe 15 along the longitudinal direction of the steam pipe 15 in order to measure the surface temperature of the steam pipe 15. When pulse light is incident on the optical fiber 110, the pulse light travels while slightly scattering in the optical fiber 110. Since the Raman scattered light (Stokes light and anti-Stokes light), which is one of the scattered lights, has a temperature dependency, the temperature of the object can be measured by detecting the Raman scattered light. That is, the surface temperature of the steam pipe 15 can be measured by bringing the optical fiber 110 into close contact with the surface of the steam pipe 15. The diameter of the optical fiber 110 is, for example, about 0.2 mm. Since a temperature measuring method using the temperature dependency of Raman scattered light is well known, its description is omitted.
 第1カバー100は、カバー本体1001とフランジ1002A,1002Bを含んで構成されている。第1カバー100の厚みは、例えば2~3mm程度である。 The first cover 100 includes a cover body 1001 and flanges 1002A and 1002B. The thickness of the first cover 100 is, for example, about 2 to 3 mm.
 カバー本体1001は、蒸気管15の径よりも僅かに大きい径を有する円筒形状を呈している。カバー本体1001の内周面には、光ファイバ110を蒸気管15の長手方向に沿って蒸気管15の表面に密着させるために、蒸気管15の長手方向に沿って光ファイバ110を収容するための溝1001Cが形成されている。溝1001Cは、例えばカバー本体1001におけるフランジ1002A,1002Bの反対側に形成されている。第1カバー100をボイラ2内に設置する場合、燃焼ガスがフランジ1002A,1002Bに当たると、燃焼ガスの流れが乱れてしまうため、フランジ1002A,1002Bが燃焼ガスの下流側(燃焼ガスが当たる側とは反対側)を向くように、第1カバー100は設置される。溝1001Cは、光ファイバ110が蒸気管15の表面に密着する程度の窪みを有している。カバー本体1001は、蒸気管15の長手方向に沿って1本の隙間が形成されるように、蒸気管15の長手方向に沿う端面1001A,1001Bを有している。フランジ1002A,1002Bは、それぞれ、蒸気管15から遠ざかるように端面1001A,1001Bから延在して形成されている。フランジ1002A,1002Bは、それぞれ、蒸気管15の長手方向に沿って複数の孔1003A,1003Bを有している。複数の孔1003A,1003Bは、それぞれ、ボルト1004がナット1005と螺合するように連通している。 The cover body 1001 has a cylindrical shape having a diameter slightly larger than the diameter of the steam pipe 15. On the inner peripheral surface of the cover body 1001, the optical fiber 110 is accommodated along the longitudinal direction of the steam pipe 15 in order to adhere the optical fiber 110 to the surface of the steam pipe 15 along the longitudinal direction of the steam pipe 15. Groove 1001C is formed. The groove 1001C is formed on the cover body 1001, for example, on the opposite side of the flanges 1002A and 1002B. When the first cover 100 is installed in the boiler 2, when the combustion gas hits the flanges 1002A and 1002B, the flow of the combustion gas is disturbed. Therefore, the flanges 1002A and 1002B are located downstream of the combustion gas (the side where the combustion gas hits). The first cover 100 is installed so as to face the opposite side. The groove 1001C has such a depression that the optical fiber 110 is in close contact with the surface of the steam pipe 15. The cover main body 1001 has end faces 1001A and 1001B along the longitudinal direction of the steam pipe 15 so that one gap is formed along the longitudinal direction of the steam pipe 15. The flanges 1002A and 1002B are formed to extend from the end faces 1001A and 1001B so as to be away from the steam pipe 15, respectively. The flanges 1002A and 1002B have a plurality of holes 1003A and 1003B, respectively, along the longitudinal direction of the steam pipe 15. The plurality of holes 1003A and 1003B communicate with each other such that the bolt 1004 is screwed with the nut 1005.
そして、第1カバー100の剛性に抗してフランジ1002A,1002Bの間の隙間を広げながらカバー本体1001を蒸気管15に被せた後、ボルト1004を複数の孔1003A,1003Bに挿入してボルト1004とナット1005を締め付けると、フランジ1002A,1002Bの間の隙間がなくなって、カバー本体1001は蒸気管15に密着して装着される。 Then, after covering the cover main body 1001 on the steam pipe 15 while widening the gap between the flanges 1002A and 1002B against the rigidity of the first cover 100, the bolt 1004 is inserted into the plurality of holes 1003A and 1003B, and the bolt 1004 is inserted. When the nut 1005 is tightened, the gap between the flanges 1002A and 1002B disappears, and the cover main body 1001 is attached in close contact with the steam pipe 15.
 ボイラ2において、復水器10から供給される水を燃焼ガスと熱交換するとき、燃焼ガスの温度は例えば1200℃程度であり、蒸気管15を循環する蒸気の温度は例えば600℃程度である。光ファイバ110は第1カバー100によって燃焼ガスには直接触れないため、光ファイバ110の温度は蒸気管15の表面温度の影響のみを受ける。従って、光ファイバ110の温度は700℃未満に抑えられ、蒸気管15の表面温度を確実に取得することが可能となる。蒸気管15の表面温度の情報は、ネットワークを介して監視用の外部機器(不図示)に取り込まれて温度分布が求められる。更に、第1カバー100は蒸気管15を取り囲むため、蒸気管15のクリープ強度を向上させることが可能となる。 When the water supplied from the condenser 10 is heat-exchanged with the combustion gas in the boiler 2, the temperature of the combustion gas is, for example, about 1200 ° C., and the temperature of the steam circulating in the steam pipe 15 is, for example, about 600 ° C. . Since the optical fiber 110 does not directly contact the combustion gas with the first cover 100, the temperature of the optical fiber 110 is affected only by the surface temperature of the steam pipe 15. Therefore, the temperature of the optical fiber 110 is suppressed to less than 700 ° C., and the surface temperature of the steam pipe 15 can be reliably obtained. Information on the surface temperature of the steam pipe 15 is taken into an external monitoring device (not shown) via a network, and a temperature distribution is obtained. Furthermore, since the first cover 100 surrounds the steam pipe 15, the creep strength of the steam pipe 15 can be improved.
 図5は、本実施形態に係る温度測定装置に用いられる第1カバーを蒸気管の曲管部分に装着する前の様子を示す斜視図である。図6は、本実施形態に係る温度測定装置に用いられる第1カバーを蒸気管の曲管部分に装着した後の様子を示す斜視図である。図7は、本実施形態に係る温度測定装置に用いられる第1カバーを蒸気管の曲管部分に装着した後の様子を示す断面図である。尚、図5~図7は第1カバーの一例を示している。つまり、第1カバーは、本発明の特徴を含んで蒸気管の曲管部分に装着可能な形状であれば如何なる形状であってもよい。 FIG. 5 is a perspective view showing a state before the first cover used in the temperature measuring device according to the present embodiment is attached to the curved pipe portion of the steam pipe. FIG. 6 is a perspective view showing a state after the first cover used in the temperature measuring device according to the present embodiment is attached to the curved pipe portion of the steam pipe. FIG. 7 is a cross-sectional view illustrating a state after the first cover used in the temperature measuring device according to the present embodiment is attached to the curved pipe portion of the steam pipe. 5 to 7 show an example of the first cover. That is, the first cover may have any shape as long as it can be attached to the curved pipe portion of the steam pipe including the features of the present invention.
 第1カバー200は、光ファイバ110が蒸気管15の表面に密着するように、光ファイバ110を介して蒸気管15の曲管部分に装着される。第1カバー200は、合金鋼(例えばステンレス鋼(SUS304やSUS316))を用いて形成されている。 The first cover 200 is mounted on the curved portion of the steam pipe 15 via the optical fiber 110 such that the optical fiber 110 is in close contact with the surface of the steam pipe 15. The first cover 200 is formed using an alloy steel (for example, stainless steel (SUS304 or SUS316)).
 光ファイバ110は、蒸気管15の表面温度を測定するために、蒸気管15の長手方向(曲管部分の形状)に沿って蒸気管15の表面に密着するように第1カバー200によって取り付けられる。 The optical fiber 110 is attached by the first cover 200 so as to be in close contact with the surface of the steam pipe 15 along the longitudinal direction (the shape of the curved pipe portion) of the steam pipe 15 in order to measure the surface temperature of the steam pipe 15. .
 第1カバー200は、カバー本体2001とフランジ2002A,2002Bを含んで構成されている。カバー200の厚みは、例えば2~3mm程度である。 The first cover 200 includes the cover main body 2001 and the flanges 2002A and 2002B. The thickness of the cover 200 is, for example, about 2 to 3 mm.
 カバー本体2001は、蒸気管15の径よりも僅かに大きい径を有し、蒸気管15の曲率に応じた円筒形状を呈している。カバー本体2001の内周面には、光ファイバ110を蒸気管15の長手方向に沿って蒸気管15の表面に密着させるために、蒸気管15の長手方向に沿って光ファイバ110を収容するための溝2001Cが形成されている。溝2001Cは、例えばカバー本体2001におけるフランジ2002A,2002Bの反対側に形成されている。第1カバー200をボイラ2内に設置する場合、燃焼ガスがフランジ2002A,2002Bに当たると、燃焼ガスの流れが乱れてしまうため、フランジ2002A,2002Bが燃焼ガスの下流側(燃焼ガスが当たる側とは反対側)を向くように、第1カバー200は設置される。又、第1カバー200として、ボイラ2内に配置されている蒸気管15の曲管部分に装着した際に、フランジ2002A,2002Bが常に燃焼ガスの下流側を向くような様々な形状を呈するバリエーションが予め用意されていることとする。溝2001Cは、光ファイバ110が蒸気管15の表面に密着する程度の窪みを有している。カバー本体2001は、蒸気管15の長手方向に沿って1本の隙間が形成されるように、蒸気管15の長手方向に沿う端面2001A,2001Bを有している。フランジ2002A,2002Bは、それぞれ、蒸気管15から遠ざかるように端面2001A,2001Bから延在して形成されている。フランジ2002A,2002Bは、それぞれ、蒸気管15の長手方向に沿って複数の孔2003A,2003Bを有している。複数の孔2003A,2003Bは、それぞれ、ボルト2004がナット2005と螺合するように連通している。そして、第1カバー200の剛性に抗してフランジ2002A,2002Bの間の隙間を広げながらカバー本体2001を蒸気管15の曲管部分に被せた後、ボルト2004を複数の孔2003A,2003Bに挿入してボルト2004とナット2005を締め付けると、フランジ2002A,2002Bの間の隙間がなくなって、カバー本体2001は蒸気管15の曲管部分に密着して装着される。 The cover body 2001 has a diameter slightly larger than the diameter of the steam pipe 15 and has a cylindrical shape according to the curvature of the steam pipe 15. On the inner peripheral surface of the cover body 2001, the optical fiber 110 is accommodated along the longitudinal direction of the steam pipe 15 in order to make the optical fiber 110 adhere to the surface of the steam pipe 15 along the longitudinal direction of the steam pipe 15. Is formed. The groove 2001C is formed, for example, on the opposite side of the cover body 2001 from the flanges 2002A and 2002B. When the first cover 200 is installed in the boiler 2, if the combustion gas hits the flanges 2002A and 2002B, the flow of the combustion gas is disturbed. Therefore, the flanges 2002A and 2002B are positioned downstream of the combustion gas (the side where the combustion gas hits). The first cover 200 is installed so as to face the opposite side. In addition, when the first cover 200 is mounted on a curved portion of the steam pipe 15 disposed in the boiler 2, the flanges 2002A and 2002B have various shapes such that they always face the downstream side of the combustion gas. Is prepared in advance. The groove 2001C has such a depression that the optical fiber 110 is in close contact with the surface of the steam pipe 15. The cover main body 2001 has end faces 2001A and 2001B along the longitudinal direction of the steam pipe 15 so that one gap is formed along the longitudinal direction of the steam pipe 15. The flanges 2002A and 2002B are formed to extend from the end faces 2001A and 2001B so as to be away from the steam pipe 15, respectively. The flanges 2002A, 2002B have a plurality of holes 2003A, 2003B, respectively, along the longitudinal direction of the steam pipe 15. The plurality of holes 2003A and 2003B communicate with each other so that the bolt 2004 is screwed with the nut 2005. Then, after covering the cover main body 2001 on the curved pipe portion of the steam pipe 15 while widening the gap between the flanges 2002A and 2002B against the rigidity of the first cover 200, the bolts 2004 are inserted into the plurality of holes 2003A and 2003B. Then, when the bolt 2004 and the nut 2005 are tightened, the gap between the flanges 2002A and 2002B disappears, and the cover main body 2001 is attached to the curved pipe portion of the steam pipe 15 in close contact.
 光ファイバ110は第1カバー200によって燃焼ガスには直接触れないため、光ファイバ110の温度は蒸気管15の表面温度の影響のみを受ける。従って、光ファイバ110の温度は700℃未満に抑えられ、蒸気管15の曲管部分の表面温度を確実に取得することが可能となる。蒸気管15の表面温度の情報は、ネットワークを介して監視用の外部機器(不図示)に取り込まれて温度分布が求められる。更に、第1カバー200は蒸気管15を取り囲むため、蒸気管15のクリープ強度を向上させることが可能となる。 (4) Since the optical fiber 110 does not directly contact the combustion gas with the first cover 200, the temperature of the optical fiber 110 is affected only by the surface temperature of the steam pipe 15. Therefore, the temperature of the optical fiber 110 is suppressed to less than 700 ° C., and the surface temperature of the curved portion of the steam pipe 15 can be reliably obtained. Information on the surface temperature of the steam pipe 15 is taken into an external monitoring device (not shown) via a network, and a temperature distribution is obtained. Furthermore, since the first cover 200 surrounds the steam pipe 15, the creep strength of the steam pipe 15 can be improved.
 蒸気管15は、直管部分と曲管部分が連続する形状を呈している。そこで、蒸気管15における直管部分と曲管部分の表面温度を測定する場合、第1カバー100を蒸気管15の直管部分に装着し、第1カバー200を蒸気管15の曲管部分に装着すればよい。又、カバー220を蒸気管15の曲管部分に二重に装着し、蒸気管15の曲管部分を補強してもよい。 The steam pipe 15 has a shape in which a straight pipe portion and a curved pipe portion are continuous. Therefore, when measuring the surface temperature of the straight pipe portion and the curved pipe portion of the steam pipe 15, the first cover 100 is attached to the straight pipe portion of the steam pipe 15, and the first cover 200 is attached to the curved pipe portion of the steam pipe 15. You only have to attach it. Further, the cover 220 may be double mounted on the curved pipe portion of the steam pipe 15 to reinforce the curved pipe section of the steam pipe 15.
 <第2カバー>
 図8は、本実施形態に係る温度測定装置に用いられる第2カバーを蒸気管の直管部分に装着する前の様子を示す斜視図である。図9は、本実施形態に係る温度測定装置に用いられる第2カバーを蒸気管の直管部分に装着した後の様子を示す斜視図である。図10は、本実施形態に係る温度測定装置に用いられる第2カバーを蒸気管の直管部分に装着した後の様子を示す断面図である。尚、図8~図10は、第2カバーの一例を示している。つまり、第2カバーは、本発明の特徴を含んで蒸気管の直管部分に装着可能な形状であれば如何なる形状であってもよい。又、説明の便宜上、図8には、細管が環状に接続された自励型のヒートパイプを示すこととする。
<Second cover>
FIG. 8 is a perspective view showing a state before the second cover used in the temperature measuring device according to the present embodiment is attached to the straight pipe portion of the steam pipe. FIG. 9 is a perspective view showing a state after the second cover used in the temperature measuring device according to the present embodiment is attached to the straight pipe portion of the steam pipe. FIG. 10 is a cross-sectional view showing a state after the second cover used in the temperature measuring device according to the present embodiment is attached to the straight pipe portion of the steam pipe. 8 to 10 show an example of the second cover. That is, the second cover may have any shape as long as it can be attached to the straight pipe portion of the steam pipe, including the features of the present invention. For convenience of explanation, FIG. 8 shows a self-excited heat pipe in which thin tubes are connected in a ring shape.
 図1~図7に示すように、光ファイバ110を用いて蒸気管15の表面温度を測定する場合、光ファイバ110が蒸気管15に密着することによって、光ファイバ110の温度が600℃程度まで上昇するため、蒸気管15に対する光ファイバ110の測定可能距離は10m程度に制限されてしまう。そのため、蒸気管15に対する光ファイバ110の測定可能距離を10m以上に延ばしたい場合、蒸気管15の表面温度を測定する位置に隣り合う位置において、光ファイバ110を冷却して光ファイバ110の温度を下げる装置を設ける必要がある。 As shown in FIGS. 1 to 7, when measuring the surface temperature of the steam pipe 15 using the optical fiber 110, the temperature of the optical fiber 110 is reduced to about 600 ° C. by the close contact of the optical fiber 110 with the steam pipe 15. As a result, the measurable distance of the optical fiber 110 to the steam pipe 15 is limited to about 10 m. Therefore, when it is desired to extend the measurable distance of the optical fiber 110 with respect to the steam pipe 15 to 10 m or more, the optical fiber 110 is cooled and the temperature of the optical fiber 110 is reduced at a position adjacent to the position where the surface temperature of the steam pipe 15 is measured. It is necessary to provide a lowering device.
 第2カバー300は、第1カバー100(200)が蒸気管15に装着される位置に隣り合う位置において、光ファイバ110がボイラ2内で露出しないように(光ファイバ110が燃焼ガスに曝されないように)第1カバー100(200)に接合した状態を維持しつつ、光ファイバ110が冷却されるように光ファイバ110及びヒートパイプ500を介して蒸気管15の直管部分に装着される。第2カバー300は、合金鋼(例えばステンレス鋼(SUS304やSUS316))を用いて形成されている。 The second cover 300 prevents the optical fiber 110 from being exposed in the boiler 2 at a position adjacent to the position where the first cover 100 (200) is attached to the steam pipe 15 (the optical fiber 110 is not exposed to combustion gas). The optical fiber 110 is attached to the straight pipe portion of the steam pipe 15 via the optical fiber 110 and the heat pipe 500 so that the optical fiber 110 is cooled while maintaining the state of being bonded to the first cover 100 (200). The second cover 300 is formed using an alloy steel (for example, stainless steel (SUS304 or SUS316)).
 ヒートパイプ500は、光ファイバ110との間で熱交換を行うことによって光ファイバ110を冷却する熱交換器である。ヒートパイプ500は、長尺形状を呈する細管(径が0.5mm程度)内に封入されている冷媒が凝縮と蒸発を繰り返して循環することによって熱交換を実行する装置である。尚、ヒートパイプ500において、冷媒を循環させる方法は自励又は他励の何れであってもよいが、何れの方法も周知(例えば特開2011-144900号公報)であるためその詳細な説明は省略する。 The heat pipe 500 is a heat exchanger that cools the optical fiber 110 by exchanging heat with the optical fiber 110. The heat pipe 500 is a device that performs heat exchange by repeatedly circulating a refrigerant that is sealed in a long tube (having a diameter of about 0.5 mm) that condenses and evaporates. In the heat pipe 500, the method of circulating the refrigerant may be either self-excited or separately-excited, but any method is well-known (for example, Japanese Patent Application Laid-Open No. 2011-144900), and the detailed description thereof will be omitted. Omitted.
 第2カバー300を蒸気管15の直管部分に装着する際、光ファイバ110は蒸気管15の長手方向に沿って蒸気管15の表面から僅かな距離だけ離れて蒸気管15に隣り合うように配置され、ヒートパイプ500は蒸気管15の長手方向に沿って蒸気管15の表面から僅かな距離だけ離れて光ファイバ110を取り囲むように配置される。例えば、ヒートパイプ500は、第2カバー300で覆われる範囲内において、光ファイバ110を取り囲むように折り返して配置される。 When the second cover 300 is attached to the straight pipe portion of the steam pipe 15, the optical fiber 110 is separated from the surface of the steam pipe 15 by a small distance along the longitudinal direction of the steam pipe 15 so as to be adjacent to the steam pipe 15. The heat pipe 500 is disposed so as to surround the optical fiber 110 at a small distance from the surface of the steam pipe 15 along the longitudinal direction of the steam pipe 15. For example, the heat pipe 500 is folded back so as to surround the optical fiber 110 within a range covered by the second cover 300.
 第2カバー300は、カバー本体3001とフランジ3002A,3002Bを含んで構成されている。第2カバー300の厚みは、例えば1mm程度である。第2カバー300をボイラ2内に設置する場合、燃焼ガスがフランジ3002A,3002Bに当たると、燃焼ガスの流れが乱れてしまうため、フランジ3002A,3002Bが燃焼ガスの下流側(燃焼ガスが当たる側とは反対側)を向くように、第2カバー300は設置される。 The second cover 300 includes a cover main body 3001 and flanges 3002A and 3002B. The thickness of the second cover 300 is, for example, about 1 mm. When the second cover 300 is installed in the boiler 2, when the combustion gas hits the flanges 3002A and 3002B, the flow of the combustion gas is disturbed. Therefore, the flanges 3002A and 3002B are positioned downstream of the combustion gas (the side where the combustion gas hits). The second cover 300 is installed so as to face the opposite side.
 カバー本体3001は、蒸気管15の径よりも僅かに大きい径を有する円筒形状を呈している。カバー本体3001は、蒸気管15の長手方向に沿って1本の僅かな隙間が形成されるように、蒸気管15の長手方向に沿う端面3001A,3001Bを有している。フランジ3002A,3002Bは、それぞれ、蒸気管15から遠ざかるように端面3001A,3001Bから延在して形成されている。フランジ3002A,3002Bは、それぞれ、蒸気管15の長手方向に沿って複数の孔3003A,3003Bを有している。複数の孔3003A,3003Bは、それぞれ、ボルト3004がナット3005と螺合するように連通している。そして、第2カバー300の剛性に抗してフランジ3002A,3002Bの間の隙間を広げながらカバー本体3001を蒸気管15に被せた後、ボルト3004を複数の孔3003A,3003Bに挿入してボルト3004とナット3005を締め付けると、フランジ3002A,3002Bの間の隙間がなくなって、カバー本体3001は蒸気管15に密着して装着される。このとき、フランジ3002A,3002Bは互いに密着し、フランジ3002A,3002Bを合わせた厚みはカバー本体3001の厚みよりも厚くなる。従って、フランジ3002A,3002Bの内部に光ファイバ110及びヒートパイプ500を収容するための空間3001Cを確保することが可能となる。空間3001Cは、フランジ3002A,3002Bの内部において、蒸気管15の長手方向に沿って形成される円柱形状を呈する空間である。フランジ3002Aは、フランジ3002Bと密着する側の面に半円柱形状を呈する溝3001Dを有し、フランジ3002Bは、フランジ3002Aと密着する側の面に半円柱形状を呈する溝3001Eを有している。空間3001Cは、フランジ3002A,3002Bを密着させたときに溝3001D,3001Eが重なり合って形成される。 The cover body 3001 has a cylindrical shape having a diameter slightly larger than the diameter of the steam pipe 15. The cover main body 3001 has end faces 3001A and 3001B along the longitudinal direction of the steam pipe 15 so that one small gap is formed along the longitudinal direction of the steam pipe 15. The flanges 3002A and 3002B are formed to extend from the end faces 3001A and 3001B so as to be away from the steam pipe 15, respectively. The flanges 3002A and 3002B have a plurality of holes 3003A and 3003B, respectively, along the longitudinal direction of the steam pipe 15. The plurality of holes 3003A and 3003B communicate with each other such that the bolt 3004 is screwed with the nut 3005. Then, after covering the cover main body 3001 over the steam pipe 15 while widening the gap between the flanges 3002A and 3002B against the rigidity of the second cover 300, the bolt 3004 is inserted into the plurality of holes 3003A and 3003B to insert the bolt 3004. When the nut 3005 is tightened, the gap between the flanges 3002A and 3002B disappears, and the cover main body 3001 is attached to the steam pipe 15 in close contact. At this time, the flanges 3002A and 3002B are in close contact with each other, and the combined thickness of the flanges 3002A and 3002B is greater than the thickness of the cover main body 3001. Therefore, it is possible to secure a space 3001C for housing the optical fiber 110 and the heat pipe 500 inside the flanges 3002A and 3002B. The space 3001C is a space having a cylindrical shape formed along the longitudinal direction of the steam pipe 15 inside the flanges 3002A and 3002B. The flange 3002A has a semi-cylindrical groove 3001D on the surface in close contact with the flange 3002B, and the flange 3002B has a semi-cylindrical groove 3001E on the surface in close contact with the flange 3002A. The space 3001C is formed by overlapping the grooves 3001D and 3001E when the flanges 3002A and 3002B are brought into close contact.
 空間3001C内において、光ファイバ110は蒸気管15の長手方向に沿って中心付近に配置され、ヒートパイプ500は、蒸気管15の長手方向に沿って光ファイバ110の周囲に配置される。例えば、ヒートパイプ500は一対のヒートパイプを含み、一方のヒートパイプは光ファイバ110を取り囲むように折り返して配置され、他方のヒートパイプは一方のヒートパイプとは直交する方向において光ファイバ110を取り囲むように折り返して配置される。このように、光ファイバ110は、蒸気管15の表面に接触せずにヒートパイプ500に取り囲まれるため、効果的に冷却される。更に、第2カバー300は蒸気管15を取り囲むため、蒸気管15のクリープ強度を向上させることが可能となる。 In the space 3001C, the optical fiber 110 is arranged near the center along the longitudinal direction of the steam pipe 15, and the heat pipe 500 is arranged around the optical fiber 110 along the longitudinal direction of the steam pipe 15. For example, the heat pipe 500 includes a pair of heat pipes, one of which is folded back to surround the optical fiber 110, and the other of which surrounds the optical fiber 110 in a direction orthogonal to the one of the heat pipes. So that it is folded back. As described above, the optical fiber 110 is surrounded by the heat pipe 500 without contacting the surface of the steam pipe 15, so that the optical fiber 110 is effectively cooled. Further, since the second cover 300 surrounds the steam pipe 15, the creep strength of the steam pipe 15 can be improved.
 図11は、本実施形態に係る温度測定装置に用いられる第2カバーを蒸気管の曲管部分に装着する前の様子を示す斜視図である。図12は、本実施形態に係る温度測定装置に用いられる第2カバーを蒸気管の曲管部分に装着した後の様子を示す斜視図である。図13は、本実施形態に係る温度測定装置に用いられる第2カバーを蒸気管の曲管部分に装着した後の様子を示す断面図である。尚、図11~図13は、第2カバーの一例を示している。つまり、第2カバーは、本発明の特徴を含んで蒸気管の曲管部分に装着可能な形状であれば如何なる形状であってもよい。又、説明の便宜上、図11には、細管が環状に接続された自励型のヒートパイプを示すこととする。 FIG. 11 is a perspective view showing a state before the second cover used in the temperature measuring device according to the present embodiment is mounted on the curved pipe portion of the steam pipe. FIG. 12 is a perspective view showing a state after the second cover used for the temperature measuring device according to the present embodiment is attached to the curved pipe portion of the steam pipe. FIG. 13 is a cross-sectional view showing a state after the second cover used in the temperature measuring device according to the present embodiment is attached to the curved pipe portion of the steam pipe. FIGS. 11 to 13 show examples of the second cover. That is, the second cover may have any shape as long as it can be attached to the curved portion of the steam pipe, including the features of the present invention. For convenience of explanation, FIG. 11 shows a self-excited heat pipe in which thin tubes are connected in a ring shape.
 第2カバー400は、第1カバー100(200)が蒸気管15に装着される位置に隣り合う位置において、光ファイバ110がボイラ2内で露出しないように(光ファイバ110が燃焼ガスに曝されないように)第1カバー100(200)に接合した状態を維持しつつ、光ファイバ110が冷却されるように光ファイバ110及びヒートパイプ500を介して蒸気管15の曲管部分に装着される。第2カバー400は、合金鋼(例えばステンレス鋼(SUS304やSUS316))を用いて形成されている。 The second cover 400 prevents the optical fiber 110 from being exposed in the boiler 2 at a position adjacent to the position where the first cover 100 (200) is attached to the steam pipe 15 (the optical fiber 110 is not exposed to combustion gas). The optical fiber 110 is attached to the curved portion of the steam pipe 15 via the optical fiber 110 and the heat pipe 500 so as to cool the optical fiber 110 while maintaining the state of being bonded to the first cover 100 (200). The second cover 400 is formed using an alloy steel (for example, stainless steel (SUS304 or SUS316)).
 第2カバー400を蒸気管15の曲管部分に装着する際、光ファイバ110は蒸気管15の長手方向に沿って蒸気管15の表面から僅かな距離だけ離れて蒸気管15に隣り合うように配置され、ヒートパイプ500は蒸気管15の長手方向に沿って蒸気管15の表面から僅かな距離だけ離れて光ファイバ110を取り囲むように配置される。例えば、ヒートパイプ500は、第2カバー400で覆われる範囲内において、光ファイバ110を取り囲むように折り返して配置される。 When the second cover 400 is attached to the bent portion of the steam pipe 15, the optical fiber 110 is separated from the surface of the steam pipe 15 by a small distance along the longitudinal direction of the steam pipe 15 so as to be adjacent to the steam pipe 15. The heat pipe 500 is disposed so as to surround the optical fiber 110 at a small distance from the surface of the steam pipe 15 along the longitudinal direction of the steam pipe 15. For example, the heat pipe 500 is folded and disposed so as to surround the optical fiber 110 within a range covered by the second cover 400.
 第2カバー400は、カバー本体4001とフランジ4002A,4002Bを含んで構成されている。第2カバー400の厚みは、例えば1mm程度である。第2カバー400をボイラ2内に設置する場合、燃焼ガスがフランジ4002A,4002Bに当たると、燃焼ガスの流れが乱れてしまうため、フランジ4002A,4002Bが燃焼ガスの下流側(燃焼ガスが当たる側とは反対側)を向くように、第2カバー400は設置される。又、第2カバー400として、ボイラ2内に配置されている蒸気管15の曲管部分に装着した際に、フランジ4002A,4002Bが常に燃焼ガスの下流側を向くような様々な形状を呈するバリエーションが予め用意されていることとする。 The second cover 400 includes a cover body 4001 and flanges 4002A and 4002B. The thickness of the second cover 400 is, for example, about 1 mm. When the second cover 400 is installed in the boiler 2, the flow of the combustion gas is disturbed when the combustion gas hits the flanges 4002A and 4002B. Is opposite to the second cover 400. Also, when the second cover 400 is attached to a curved portion of the steam pipe 15 arranged in the boiler 2, the flanges 4002A and 4002B have various shapes such that they always face the downstream side of the combustion gas. Is prepared in advance.
 カバー本体4001は、蒸気管15の径よりも僅かに大きい径を有し、蒸気管15の曲率に応じた円筒形状を呈している。カバー本体4001は、蒸気管15の長手方向に沿って1本の僅かな隙間が形成されるように、蒸気管15の長手方向に沿う端面4001A,4001Bを有している。フランジ4002A,4002Bは、それぞれ、蒸気管15から遠ざかるように端面4001A,4001Bから延在して形成されている。フランジ4002A,4002Bは、それぞれ、蒸気管15の長手方向に沿って複数の孔4003A,4003Bを有している。複数の孔4003A,4003Bは、それぞれ、ボルト4004がナット4005と螺合するように連通している。そして、第2カバー400の剛性に抗してフランジ4002A,4002Bの間の隙間を広げながらカバー本体4001を蒸気管15に被せた後、ボルト4004を複数の孔4003A,4003Bに挿入してボルト4004とナット4005を締め付けると、フランジ4002A,4002Bの間の隙間がなくなって、カバー本体4001は蒸気管15に密着して装着される。このとき、フランジ4002A,4002Bは互いに密着し、フランジ4002A,4002Bを合わせた厚みはカバー本体4001の厚みよりも厚くなる。従って、フランジ4002A,4002Bの内部に光ファイバ110及びヒートパイプ500を収容するための空間4001Cを確保することが可能となる。空間4001Cは、フランジ4002A,4002Bの内部において、蒸気管15の長手方向に沿って形成される円柱形状を呈する空間である。フランジ4002Aは、フランジ4002Bと密着する側の面に半円柱形状を呈する溝4001Dを有し、フランジ4002Bは、フランジ4002Aと密着する側の面に半円柱形状を呈する溝4001Eを有している。空間4001Cは、フランジ4002A,4002Bを密着させたときに溝4001D,4001Eが重なり合って形成される。 The cover main body 4001 has a diameter slightly larger than the diameter of the steam pipe 15 and has a cylindrical shape corresponding to the curvature of the steam pipe 15. The cover main body 4001 has end faces 4001A and 4001B along the longitudinal direction of the steam pipe 15 so that one small gap is formed along the longitudinal direction of the steam pipe 15. The flanges 4002A and 4002B are formed to extend from the end faces 4001A and 4001B so as to be away from the steam pipe 15, respectively. The flanges 4002A and 4002B have a plurality of holes 4003A and 4003B, respectively, along the longitudinal direction of the steam pipe 15. The plurality of holes 4003A and 4003B communicate with each other so that the bolt 4004 is screwed with the nut 4005. Then, after covering the cover main body 4001 on the steam pipe 15 while widening the gap between the flanges 4002A and 4002B against the rigidity of the second cover 400, the bolt 4004 is inserted into the plurality of holes 4003A and 4003B, and the bolt 4004 is inserted. When the nut 4005 and the nut 4005 are tightened, the gap between the flanges 4002A and 4002B disappears, and the cover main body 4001 is attached to the steam pipe 15 in close contact. At this time, the flanges 4002A and 4002B are in close contact with each other, and the combined thickness of the flanges 4002A and 4002B is greater than the thickness of the cover body 4001. Therefore, it is possible to secure a space 4001C for housing the optical fiber 110 and the heat pipe 500 inside the flanges 4002A and 4002B. The space 4001C is a space having a columnar shape formed along the longitudinal direction of the steam pipe 15 inside the flanges 4002A and 4002B. The flange 4002A has a semi-cylindrical groove 4001D on the surface in close contact with the flange 4002B, and the flange 4002B has a semi-cylindrical groove 4001E on the surface in close contact with the flange 4002A. The space 4001C is formed by overlapping the grooves 4001D and 4001E when the flanges 4002A and 4002B are brought into close contact.
 空間4001C内において、光ファイバ110は蒸気管15の長手方向に沿って中心付近に配置され、ヒートパイプ500は、蒸気管15の長手方向に沿って光ファイバ110の周囲に配置される。例えば、ヒートパイプ500は一対のヒートパイプを含み、一方のヒートパイプは光ファイバ110を取り囲むように折り返して配置され、他方のヒートパイプは一方のヒートパイプとは直交する方向において光ファイバ110を取り囲むように折り返して配置される。このように、光ファイバ110は、蒸気管15の表面に接触せずにヒートパイプ500に取り囲まれるため、効果的に冷却される。更に、第2カバー400は蒸気管15を取り囲むため、蒸気管15のクリープ強度を向上させることが可能となる。 In the space 4001C, the optical fiber 110 is arranged near the center along the longitudinal direction of the steam pipe 15, and the heat pipe 500 is arranged around the optical fiber 110 along the longitudinal direction of the steam pipe 15. For example, the heat pipe 500 includes a pair of heat pipes, one of which is folded back to surround the optical fiber 110, and the other of which surrounds the optical fiber 110 in a direction orthogonal to the one of the heat pipes. So that it is folded back. As described above, the optical fiber 110 is surrounded by the heat pipe 500 without contacting the surface of the steam pipe 15, so that the optical fiber 110 is effectively cooled. Furthermore, since the second cover 400 surrounds the steam pipe 15, the creep strength of the steam pipe 15 can be improved.
 蒸気管15は、直管部分と曲管部分が連続する形状を呈している。そこで、蒸気管15の直管部分と曲管部分において光ファイバ110を冷却する場合、第2カバー300を蒸気管15の直管部分に装着し、第2カバー400を蒸気管15の曲管部分に装着すればよい。又、カバー220を蒸気管15の曲管部分に二重に装着し、蒸気管15の曲管部分を補強してもよい。 The steam pipe 15 has a shape in which a straight pipe portion and a curved pipe portion are continuous. Therefore, when cooling the optical fiber 110 in the straight pipe portion and the bent pipe portion of the steam pipe 15, the second cover 300 is attached to the straight pipe portion of the steam pipe 15, and the second cover 400 is attached to the bent pipe portion of the steam pipe 15. It should just be attached to. Further, the cover 220 may be double mounted on the curved pipe portion of the steam pipe 15 to reinforce the curved pipe section of the steam pipe 15.
===温度測定装置の設置例===
 図14は、ボイラ内に設置される蒸気管の一例を示す模式図である。図15は、本実施形態に係る温度測定装置をボイラ内に設置した場合の一例を示す模式図である。尚、説明の便宜上、ボイラ2内に設置される過熱器管や再熱器管等の蒸気管15を、直管部分(白抜き部分)と曲管部分(斜線部分)が連続する配管として模式的に示すこととする。
=== Example of installation of temperature measurement device ===
FIG. 14 is a schematic diagram illustrating an example of a steam pipe installed in a boiler. FIG. 15 is a schematic diagram illustrating an example of a case where the temperature measuring device according to the present embodiment is installed in a boiler. For convenience of explanation, a steam pipe 15 such as a superheater pipe or a reheater pipe installed in the boiler 2 is schematically illustrated as a pipe in which a straight pipe portion (open portion) and a curved pipe portion (hatched portion) are continuous. Will be shown.
 光ファイバ110によって測定された蒸気管15の表面温度の情報を得るために、光ファイバ110は蒸気管15の長手方向に沿って配置され、光ファイバ110の両端はボイラ2外の測定機器(不図示)へと取り出される。このとき、光ファイバ110が燃焼ガスに曝されないように、ボイラ2内における全ての蒸気管15には、第1カバー100,200の少なくとも一方と第2カバー300,400の少なくとも一方とが連続的に装着される。 In order to obtain information on the surface temperature of the steam pipe 15 measured by the optical fiber 110, the optical fiber 110 is disposed along the longitudinal direction of the steam pipe 15, and both ends of the optical fiber 110 are connected to a measuring device (not (Shown). At this time, at least one of the first covers 100 and 200 and at least one of the second covers 300 and 400 are continuously connected to all the steam pipes 15 in the boiler 2 so that the optical fiber 110 is not exposed to the combustion gas. Attached to.
 例えば、ボイラ2内には、蒸気管15における直管部分A,C,E,G,I及び曲管部分B,D,F,Hが、蒸気が通過するように、交互に連続して設置されていることとする。そして、曲管部分B,D及び直管部分C,Gの表面温度を測定する場合における温度測定装置の設置例について説明する。尚、本設置例の場合、既設の蒸気管15に温度測定装置を装着することを考慮して、直管部分C,Gに装着できるような形状を呈する第1カバー100と、直管部分A,E,Iに装着できるような形状を呈する第2カバー300と、曲管部分B,Dに装着できるような形状を呈する第1カバー200と、曲管部分F,Hに装着できるような形状を呈する第2カバー400と、を予め準備することとする。 For example, in the boiler 2, straight pipe portions A, C, E, G, I and curved pipe portions B, D, F, H in the steam pipe 15 are alternately and continuously installed so that steam passes therethrough. It has been done. Then, an example of installation of the temperature measuring device when measuring the surface temperatures of the curved pipe portions B and D and the straight pipe portions C and G will be described. In the case of this installation example, in consideration of mounting the temperature measuring device on the existing steam pipe 15, the first cover 100 having a shape that can be mounted on the straight pipe portions C and G, and the straight pipe portion A , E, and I, a second cover 300 having a shape capable of being attached to the curved tube portions B and D, and a shape capable of being attached to the curved tube portions F and H. Is prepared in advance.
 <直管部分A>
 直管部分Aは、ヒートパイプ500を用いて光ファイバ110を冷却する部分である。そのため、光ファイバ110が露出しないように、直管部分Aと同じ長さを有する第2カバー300を準備する。そして、直管部分A全体を覆うように第2カバー300を装着しつつ、ヒートパイプ500が光ファイバ110を取り囲むように空間3001Cに光ファイバ110及びヒートポンプ500を収容する。ここで、直管部分Aはボイラ2の外側と連通する部分であるため、光ファイバ110の一端はボイラ2の外側へ取り出される。又、ヒートパイプ500は、ボイラ2の外側に設置されるポンプ600を通して冷媒が強制的に循環するように接続される。これによって、光ファイバ110を冷却する距離を確保することが可能となる。
<Straight pipe part A>
The straight pipe part A is a part that cools the optical fiber 110 using the heat pipe 500. Therefore, the second cover 300 having the same length as the straight pipe portion A is prepared so that the optical fiber 110 is not exposed. Then, the optical fiber 110 and the heat pump 500 are accommodated in the space 3001C so that the heat pipe 500 surrounds the optical fiber 110 while the second cover 300 is attached so as to cover the entire straight pipe portion A. Here, since the straight pipe portion A is a portion communicating with the outside of the boiler 2, one end of the optical fiber 110 is taken out of the boiler 2. Further, the heat pipe 500 is connected so that the refrigerant is forcibly circulated through a pump 600 provided outside the boiler 2. Thereby, it is possible to secure a distance for cooling the optical fiber 110.
 <曲管部分B>
 曲管部分Bは、光ファイバ110を用いて蒸気管15の表面温度を測定する部分である。そのため、光ファイバ110が露出しないように、曲管部分Bと同じ長さを有する第1カバー200を準備する。そして、直管部分Aに装着されている第2カバー300に接合しながら曲管部分B全体を覆うように第1カバー200を装着しつつ、直管部分Aから延長されてくる光ファイバ110が蒸気管15の表面に密着するように溝2001Cに光ファイバ110を収容する。
<Bent tube part B>
The curved tube portion B is a portion for measuring the surface temperature of the steam pipe 15 using the optical fiber 110. Therefore, the first cover 200 having the same length as the curved tube portion B is prepared so that the optical fiber 110 is not exposed. The optical fiber 110 extending from the straight pipe portion A is attached while the first cover 200 is mounted so as to cover the entire curved pipe portion B while being joined to the second cover 300 mounted on the straight pipe portion A. The optical fiber 110 is housed in the groove 2001C so as to be in close contact with the surface of the steam pipe 15.
 <直管部分C>
 直管部分Cは、光ファイバ110を用いて蒸気管15の表面温度を測定する部分である。そのため、光ファイバ110が露出しないように、直管部分Cと同じ長さを有する第1カバー100を準備する。そして、曲管部分Bに装着されている第1カバー200に接合しながら直管部分C全体を覆うように第1カバー100を装着しつつ、曲管部分Bから延長されてくる光ファイバ110が蒸気管15の表面に密着するように溝1001Cに光ファイバ110を収容する。
<Straight pipe part C>
The straight pipe part C is a part for measuring the surface temperature of the steam pipe 15 using the optical fiber 110. Therefore, the first cover 100 having the same length as the straight pipe portion C is prepared so that the optical fiber 110 is not exposed. The optical fiber 110 extending from the curved tube portion B is attached while the first cover 100 is attached so as to cover the entire straight tube portion C while being joined to the first cover 200 attached to the curved tube portion B. The optical fiber 110 is housed in the groove 1001C so as to be in close contact with the surface of the steam pipe 15.
 <曲管部分D>
 曲管部分Dは、光ファイバ110を用いて蒸気管15の表面温度を測定する部分である。そのため、光ファイバ110が露出しないように、曲管部分Dと同じ長さを有する第1カバー200を準備する。そして、直管部分Cに装着されている第1カバー100に接合しながら曲管部分D全体を覆うように第1カバー200を装着しつつ、直管部分Cから延長されてくる光ファイバ110が蒸気管15の表面に密着するように溝2001Cに光ファイバ110を収容する。
<Bent tube part D>
The curved tube portion D is a portion for measuring the surface temperature of the steam pipe 15 using the optical fiber 110. Therefore, the first cover 200 having the same length as the curved tube portion D is prepared so that the optical fiber 110 is not exposed. The optical fiber 110 extending from the straight pipe portion C is attached while the first cover 200 is mounted so as to cover the entire curved pipe portion D while being joined to the first cover 100 mounted on the straight pipe portion C. The optical fiber 110 is housed in the groove 2001C so as to be in close contact with the surface of the steam pipe 15.
 <直管部分E>
 直管部分Eは、ヒートパイプ500を用いて光ファイバ110を冷却する部分である。そのため、光ファイバ110が露出しないように、直管部分Eと同じ長さを有する第2カバー300を準備する。そして、曲管部分Dに装着されている第1カバー200に接合しながら直管部分E全体を覆うように第2カバー300を装着しつつ、ヒートパイプ500が曲管部分Dから延長されてくる光ファイバ110を取り囲むように空間3001Cに光ファイバ110及びヒートポンプ500を収容する。直管部分Eは曲管部分D,Fに挟まれているため、ヒートパイプ500の細管に対してボイラ2の外側に設置されるポンプを接続することはできない。そこで、ヒートパイプ500は、冷媒が凝縮及び蒸発を繰り返すことによって冷媒を循環させるための自励的な圧力振動を発生するように、第2カバー300内で環状に接続される。
<Straight pipe part E>
The straight pipe part E is a part that cools the optical fiber 110 using the heat pipe 500. Therefore, the second cover 300 having the same length as the straight pipe portion E is prepared so that the optical fiber 110 is not exposed. Then, the heat pipe 500 extends from the curved pipe portion D while attaching the second cover 300 so as to cover the entire straight pipe portion E while being joined to the first cover 200 attached to the curved pipe portion D. The optical fiber 110 and the heat pump 500 are housed in the space 3001C so as to surround the optical fiber 110. Since the straight tube portion E is sandwiched between the curved tube portions D and F, a pump installed outside the boiler 2 cannot be connected to the thin tube of the heat pipe 500. Therefore, the heat pipe 500 is annularly connected in the second cover 300 so as to generate self-excited pressure oscillation for circulating the refrigerant by repeatedly condensing and evaporating the refrigerant.
 <曲管部分F>
 曲管部分Fは、ヒートパイプ500を用いて光ファイバ110を冷却する部分である。そのため、光ファイバ110が露出しないように、曲管部分Fと同じ長さを有する第2カバー400を準備する。そして、直管部分Eに装着されている第2カバー300に接合しながら曲管部分F全体を覆うように第2カバー400を装着しつつ、ヒートパイプ500が直管部分Eから延長されてくる光ファイバ110を取り囲むように空間4001Cに光ファイバ110及びヒートポンプ500を収容する。曲管部分Fは直管部分E,Gに挟まれているため、ヒートパイプ500の細管に対してボイラ2の外側に設置されるポンプを接続することはできない。そこで、ヒートパイプ500は、冷媒が凝縮及び蒸発を繰り返すことによって冷媒を循環させるための自励的な圧力振動を発生するように、第2カバー400内で環状に接続される。
<Bent tube part F>
The curved pipe portion F is a portion that cools the optical fiber 110 using the heat pipe 500. Therefore, a second cover 400 having the same length as the curved tube portion F is prepared so that the optical fiber 110 is not exposed. Then, the heat pipe 500 extends from the straight pipe portion E while attaching the second cover 400 so as to cover the entire curved pipe portion F while being joined to the second cover 300 mounted on the straight pipe portion E. The optical fiber 110 and the heat pump 500 are housed in the space 4001C so as to surround the optical fiber 110. Since the curved pipe portion F is sandwiched between the straight pipe portions E and G, a pump installed outside the boiler 2 cannot be connected to the thin pipe of the heat pipe 500. Therefore, the heat pipe 500 is annularly connected in the second cover 400 so as to generate self-excited pressure oscillation for circulating the refrigerant by repeatedly condensing and evaporating the refrigerant.
 <直管部分G>
 直管部分Gは、光ファイバ110を用いて蒸気管15の表面温度を測定する部分である。そのため、光ファイバ110が露出しないように、直管部分Gと同じ長さを有する第1カバー100を準備する。そして、曲管部分Fに装着されている第2カバー400に接合しながら直管部分G全体を覆うように第1カバー100を装着しつつ、曲管部分Fから延長されてくる光ファイバ110が蒸気管15の表面に密着するように溝1001Cに光ファイバ110を収容する。
<Straight pipe part G>
The straight pipe part G is a part for measuring the surface temperature of the steam pipe 15 using the optical fiber 110. Therefore, the first cover 100 having the same length as the straight pipe portion G is prepared so that the optical fiber 110 is not exposed. The optical fiber 110 extending from the curved tube portion F is attached while the first cover 100 is attached so as to cover the entire straight tube portion G while being joined to the second cover 400 attached to the curved tube portion F. The optical fiber 110 is housed in the groove 1001C so as to be in close contact with the surface of the steam pipe 15.
 <曲管部分H>
 曲管部分Hは、ヒートパイプ500を用いて光ファイバ110を冷却する部分である。そのため、光ファイバ110が露出しないように、曲管部分Hと同じ長さを有する第2カバー400を準備する。そして、直管部分Gに装着されている第1カバー100に接合しながら曲管部分H全体を覆うように第2カバー400を装着しつつ、ヒートパイプ500が直管部分Gから延長されてくる光ファイバ110を取り囲むように空間4001Cに光ファイバ110及びヒートポンプ500を収容する。曲管部分Hは直管部分G,Iに挟まれているため、ヒートパイプ500の細管に対してボイラ2の外側に設置されるポンプを接続することはできない。そこで、ヒートパイプ500は、冷媒が凝縮及び蒸発を繰り返すことによって冷媒を循環させるための自励的な圧力振動を発生するように、第2カバー400内で環状に接続される。
<Bent tube part H>
The curved pipe portion H is a portion that cools the optical fiber 110 using the heat pipe 500. Therefore, the second cover 400 having the same length as the curved tube portion H is prepared so that the optical fiber 110 is not exposed. Then, the heat pipe 500 extends from the straight pipe portion G while attaching the second cover 400 so as to cover the entire curved pipe portion H while being joined to the first cover 100 mounted on the straight pipe portion G. The optical fiber 110 and the heat pump 500 are housed in the space 4001C so as to surround the optical fiber 110. Since the curved tube portion H is sandwiched between the straight tube portions G and I, a pump installed outside the boiler 2 cannot be connected to the thin tube of the heat pipe 500. Therefore, the heat pipe 500 is annularly connected in the second cover 400 so as to generate self-excited pressure oscillation for circulating the refrigerant by repeatedly condensing and evaporating the refrigerant.
 <直管部分I>
 直管部分Iは、ヒートパイプ500を用いて光ファイバ110を冷却する部分である。そのため、光ファイバ110が露出しないように、直管部分Iと同じ長さを有する第2カバー300を準備する。そして、曲管部分Hに装着されている第2カバー400に接合しながら直管部分I全体を覆うように第2カバー300を装着しつつ、ヒートパイプ500が光ファイバ110を取り囲むように空間3001Cに光ファイバ110及びヒートポンプ500を収容する。ここで、直管部分Iはボイラ2の外側と連通する部分であるため、光ファイバ110の一端はボイラ2の外側へ取り出される。又、ヒートパイプ500は、ボイラ2の外側に設置されるポンプ600を通して冷媒が強制的に循環するように接続される。これによって、光ファイバ110を冷却する距離を確保することが可能となる。
<Straight pipe part I>
The straight pipe part I is a part that cools the optical fiber 110 using the heat pipe 500. Therefore, the second cover 300 having the same length as the straight pipe portion I is prepared so that the optical fiber 110 is not exposed. A space 3001C is attached so that the heat pipe 500 surrounds the optical fiber 110 while the second cover 300 is attached so as to cover the entire straight pipe portion I while being joined to the second cover 400 attached to the curved pipe portion H. Accommodates the optical fiber 110 and the heat pump 500. Here, since the straight pipe portion I is a portion communicating with the outside of the boiler 2, one end of the optical fiber 110 is taken out of the boiler 2. Further, the heat pipe 500 is connected so that the refrigerant is forcibly circulated through a pump 600 installed outside the boiler 2. Thereby, it is possible to secure a distance for cooling the optical fiber 110.
 <温度測定部分における光ファイバの温度>
 蒸気管15の表面温度を測定する部分(曲管部分B,D及び直管部分C,G)に隣り合う部分(直管部分A,E,I及び曲管部分F,H)において光ファイバ110を冷却するため、蒸気管15の表面温度を測定する部分に密着している光ファイバ110の温度は例えば300℃程度まで低下する。従って、蒸気管15の全長が数十メートルに及ぶ場合であっても、蒸気管15の表面温度を確実に取得することが可能となる。
<Temperature of optical fiber at temperature measurement part>
The optical fibers 110 are located at portions (straight tube portions A, E, I and curved tube portions F, H) adjacent to the portions for measuring the surface temperature of the steam pipe 15 (curved tube portions B, D and straight tube portions C, G). Is cooled, the temperature of the optical fiber 110 which is in close contact with the portion for measuring the surface temperature of the steam pipe 15 decreases to, for example, about 300 ° C. Therefore, even when the entire length of the steam pipe 15 reaches several tens of meters, the surface temperature of the steam pipe 15 can be reliably obtained.
 尚、蒸気管15に第1カバー100(200)及び第2カバー300(400)を連続的に装着する場合、光ファイバ110が直管部分Aから直管部分Iに至るまで蒸気管15の長手方向に沿って燃焼ガスに曝されることなく覆われるように、つまり、第1カバー100の溝1001Cと、第1カバー200の溝2001Cと、第2カバー300の空間3001Cと、第2カバー400の空間4001Cとが、それぞれ連通するように、第1カバー100(200)及び第2カバー300(400)は、蒸気管15の形状に応じて溝1001C(2001C)及び空間3001C(4001C)の位置を適宜変更した形状を呈する必要がある。 When the first cover 100 (200) and the second cover 300 (400) are continuously attached to the steam pipe 15, the optical fiber 110 extends from the straight pipe portion A to the straight pipe portion I in a longitudinal direction of the steam pipe 15. The grooves 1001C of the first cover 100, the grooves 2001C of the first cover 200, the spaces 3001C of the second cover 300, and the second cover 400 The first cover 100 (200) and the second cover 300 (400) are positioned at the positions of the groove 1001C (2001C) and the space 3001C (4001C) according to the shape of the steam pipe 15 so that the space 4001C communicates with the space 4001C. Needs to be appropriately changed.
===まとめ===
 以上説明したように、本実施形態に係る温度測定装置は、ボイラ2に供給される水を燃焼ガスと熱交換して得られる蒸気が内部を循環する蒸気管15(過熱器菅や再熱器菅)の表面温度を光ファイバ110によって測定するための装置であって、光ファイバ110を冷却するためのヒートパイプ500と、蒸気管15の表面温度を測定する位置(曲管部分B,D及び直管部分C,E)に隣り合う位置(直管部分A,E,I及び曲管部分F,H)において、光ファイバ110が蒸気管15の長手方向に沿って蒸気管15に隣り合うとともにヒートパイプ500が蒸気管15の長手方向に沿って光ファイバ110を取り囲むように、光ファイバ110及びヒートパイプ500を挟んで蒸気管15を取り囲むように装着されるカバー300(400)と、を備える。
=== Summary ===
As described above, the temperature measuring device according to the present embodiment is configured such that the steam obtained by heat-exchanging the water supplied to the boiler 2 with the combustion gas circulates through the steam pipe 15 (superheater tube or reheater). A heat pipe 500 for cooling the optical fiber 110 and a position for measuring the surface temperature of the steam pipe 15 (curved pipe portions B, D and At positions (straight tube portions A, E, I and curved tube portions F, H) adjacent to the straight tube portions C, E), the optical fiber 110 is adjacent to the steam tube 15 along the longitudinal direction of the steam tube 15. The cover 300 (400) is attached so as to surround the optical fiber 110 along the longitudinal direction of the steam pipe 15 so that the heat pipe 500 surrounds the steam pipe 15 with the optical fiber 110 and the heat pipe 500 interposed therebetween. And, equipped with a.
 換言すると、本実施形態に係る温度測定装置は、ボイラ2に供給される水を燃焼ガスと熱交換して得られる蒸気が内部を循環する蒸気管15(過熱器菅や再熱器菅)の表面温度を測定するための光ファイバ110と、蒸気管15の表面温度を測定する第1位置(曲管部分B,D及び直管部分C,E)において、光ファイバ110が蒸気管15の長手方向に沿って蒸気管15に密着するように、光ファイバ110を挟んで蒸気管15を取り囲むように装着される第1カバー100(200)と、光ファイバ110を冷却するためのヒートパイプ500と、第1位置に隣り合う第2位置(直管部分A,E,I及び曲管部分F,H)において、光ファイバ110が蒸気管15の長手方向に沿って蒸気管15に隣り合うとともにヒートパイプ500が蒸気管15の長手方向に沿って光ファイバ110を取り囲むように、光ファイバ110及びヒートパイプ500を挟んで蒸気管15を取り囲むように装着される第2カバー300(400)と、を備える。 In other words, the temperature measuring device according to the present embodiment includes a steam pipe 15 (superheater tube or reheater tube) in which steam obtained by heat-exchanging water supplied to the boiler 2 with combustion gas circulates. At an optical fiber 110 for measuring the surface temperature and at a first position (curved pipe portions B and D and straight pipe portions C and E) where the surface temperature of the steam pipe 15 is measured, the optical fiber 110 is elongated along the length of the steam pipe 15. A first cover 100 (200) mounted to surround the steam pipe 15 with the optical fiber 110 interposed therebetween so as to be in close contact with the steam pipe 15 along the direction, and a heat pipe 500 for cooling the optical fiber 110. At a second position (straight tube portions A, E, I and curved tube portions F, H) adjacent to the first position, the optical fiber 110 is adjacent to the steam pipe 15 along the longitudinal direction of the steam pipe 15 and is heated. Pipe 500 So as to surround the optical fiber 110 in the longitudinal direction of the steam pipe 15 provided with a second cover 300 mounted to surround the steam pipe 15 across the optical fiber 110 and the heat pipe 500 (400), the.
 そして、本実施形態の温度測定装置によれば、蒸気管15の全長が数十メートルに及ぶ場合であっても、蒸気管15の表面温度を確実に取得することが可能となり、蒸気管15のクリープ強度を向上させることが可能となる。 According to the temperature measuring device of the present embodiment, even when the entire length of the steam pipe 15 reaches several tens of meters, it is possible to reliably acquire the surface temperature of the steam pipe 15, It is possible to improve the creep strength.
 又、本実施形態において、第1カバー100(200)は、蒸気管15に装着された際に光ファイバ110が収容されるように、蒸気管15の長手方向に沿って窪む溝1001C(2001C)を有する。 In the present embodiment, the first cover 100 (200) has a groove 1001C (2001C) recessed along the longitudinal direction of the steam pipe 15 so that the optical fiber 110 is accommodated when the first cover 100 (200C) is attached to the steam pipe 15. ).
 又、本実施形態において、第2カバー300(400)は、蒸気管15に装着された際に光ファイバ110及びヒートパイプ500が収容されるように、蒸気管15の長手方向に沿って形成される空間3001C(4001C)を有する。 In the present embodiment, the second cover 300 (400) is formed along the longitudinal direction of the steam pipe 15 so that the optical fiber 110 and the heat pipe 500 are accommodated when the second cover 300 (400) is mounted on the steam pipe 15. Space 3001C (4001C).
 又、本実施形態において、第1カバー100(200)は、蒸気管15の長手方向に沿う隙間を有し、蒸気管15を取り囲む円筒形状を呈するカバー本体1001(2001)と、カバー本体1001(2001)の両端に形成され、カバー本体1001(2001)が蒸気管15に密着するようにボルトによって締め付けられるフランジ1002A(2002A),1002B(2002B)と、を有する。同様に、第2カバー300(400)は、蒸気管15の長手方向に沿う隙間を有し、蒸気管15を取り囲む円筒形状を呈するカバー本体3001(4001)と、カバー本体3001(4001)の両端に形成され、カバー本体3001(4001)が蒸気管15に密着するようにボルトによって締め付けられるフランジ3002A(4002A),3002B(4002B)と、を有する。 In the present embodiment, the first cover 100 (200) has a gap along the longitudinal direction of the steam pipe 15 and has a cylindrical cover body 1001 (2001) surrounding the steam pipe 15, and a cover body 1001 (200). 2001) and flanges 1002A (2002A) and 1002B (2002B) that are tightened by bolts so that the cover body 1001 (2001) is in close contact with the steam pipe 15. Similarly, the second cover 300 (400) has a gap along the longitudinal direction of the steam pipe 15 and has a cylindrical cover body 3001 (4001) surrounding the steam pipe 15 and both ends of the cover body 3001 (4001). And a flange 3002A (4002A) and 3002B (4002B) that are tightened by bolts so that the cover main body 3001 (4001) is in close contact with the steam pipe 15.
 又、本実施形態において、第1カバー100(200)及び第2カバー300(400)は、合金鋼から形成される。特に、第1カバー100(200)及び第2カバー300(400)は、ステンレス鋼から形成されることが望ましい。 Also, in the present embodiment, the first cover 100 (200) and the second cover 300 (400) are formed from alloy steel. In particular, the first cover 100 (200) and the second cover 300 (400) are desirably formed from stainless steel.
 又、本実施形態において、蒸気管15は、過熱器管又は再熱器管である。 In the present embodiment, the steam pipe 15 is a superheater pipe or a reheater pipe.
 尚、上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物も含まれる。 Note that the above-described embodiment is for the purpose of facilitating the understanding of the present invention, and is not for limiting and interpreting the present invention. The present invention can be modified and improved without departing from the spirit thereof, and the present invention also includes equivalents thereof.
1 火力発電所
2 ボイラ
3 蒸気発生器
6 高圧タービン
7 中圧タービン
8 低圧タービン
9 再熱器
10 復水器
12 発電機
15 蒸気管
100,200 第1カバー
110 光ファイバ
300,400 第2カバー
500 ヒートパイプ
1001,2001,3001,4001 カバー本体
1001A,1001B,2001A,2001B,3001A,3001B,4001A,4001B 端面
1001C,2001C 溝
1002A,1002B,2002A,2002B,3002A,3002B,4002A,4002B フランジ
1003A,1003B,2003A,2003B,3003A,3003B,4003A,4003B 複数の孔
1004,2004,3004,4004 ボルト
1005,2005,3005,4005 ナット
3001C,4001C 空間
 
DESCRIPTION OF SYMBOLS 1 Thermal power plant 2 Boiler 3 Steam generator 6 High-pressure turbine 7 Medium-pressure turbine 8 Low-pressure turbine 9 Reheater 10 Condenser 12 Generator 15 Steam pipe 100, 200 First cover 110 Optical fiber 300, 400 Second cover 500 Heat pipes 1001, 2001, 3001, 4001 Cover bodies 1001A, 1001B, 2001A, 2001B, 3001A, 3001B, 4001A, 4001B End faces 1001C, 2001C Grooves 1002A, 1002B, 2002A, 2002B, 3002A, 3002B, 4002A, 4002B Flanges 1003A, 1003B , 2003A, 2003B, 3003A, 3003B, 4003A, 4003B Multiple holes 1004, 2004, 3004, 4004 Bolts 1005, 2005, 3005, 4005 Door 3001C, 4001C space

Claims (11)

  1.  ボイラに供給される水を燃焼ガスと熱交換して得られる蒸気が内部を循環する蒸気管の表面温度を光ファイバによって測定する蒸気管の温度測定装置であって、
     前記光ファイバを冷却するためのヒートパイプと、
     前記蒸気管の表面温度を測定する位置に隣り合う位置において、前記光ファイバが前記蒸気管の長手方向に沿って前記蒸気管に隣り合うとともに前記ヒートパイプが前記蒸気管の長手方向に沿って前記光ファイバを取り囲むように、前記光ファイバ及び前記ヒートパイプを挟んで前記蒸気管を取り囲むように装着されるカバーと、
     を備えたことを特徴とする蒸気管の温度測定装置。
    A steam pipe temperature measuring device for measuring the surface temperature of a steam pipe in which steam obtained by heat-exchanging water supplied to a boiler with a combustion gas circulates through an optical fiber,
    A heat pipe for cooling the optical fiber,
    At a position adjacent to a position where the surface temperature of the steam pipe is measured, the optical fiber is adjacent to the steam pipe along a longitudinal direction of the steam pipe, and the heat pipe is located along a longitudinal direction of the steam pipe. A cover attached to surround the optical fiber and the steam pipe with the optical fiber and the heat pipe interposed therebetween,
    A steam pipe temperature measuring device comprising:
  2.  ボイラに供給される水を燃焼ガスと熱交換して得られる蒸気が内部を循環する蒸気管の表面温度を測定するための光ファイバと、
     前記蒸気管の表面温度を測定する第1位置において、前記光ファイバが前記蒸気管の長手方向に沿って前記蒸気管に密着するように、前記光ファイバを挟んで前記蒸気管を取り囲むように装着される第1カバーと、
     前記光ファイバを冷却するためのヒートパイプと、
     前記第1位置に隣り合う第2位置において、前記光ファイバが前記蒸気管の長手方向に沿って前記蒸気管に隣り合うとともに前記ヒートパイプが前記蒸気管の長手方向に沿って前記光ファイバを取り囲むように、前記光ファイバ及び前記ヒートパイプを挟んで前記蒸気管を取り囲むように装着される第2カバーと、
     を備えたことを特徴とする蒸気管の温度測定装置。
    An optical fiber for measuring the surface temperature of a steam pipe in which steam obtained by heat-exchanging water supplied to the boiler with combustion gas circulates,
    At the first position where the surface temperature of the steam pipe is measured, the optical fiber is attached so as to surround the steam pipe with the optical fiber interposed therebetween so that the optical fiber is in close contact with the steam pipe along the longitudinal direction of the steam pipe. A first cover to be
    A heat pipe for cooling the optical fiber,
    At a second position adjacent to the first position, the optical fiber is adjacent to the steam pipe along a longitudinal direction of the steam pipe, and the heat pipe surrounds the optical fiber along a longitudinal direction of the steam pipe. A second cover attached to surround the steam pipe with the optical fiber and the heat pipe interposed therebetween;
    A steam pipe temperature measuring device comprising:
  3.  前記第1カバーは、前記蒸気管に装着された際に前記光ファイバが収容されるように、前記蒸気管の長手方向に沿って窪む溝を有する
     ことを特徴とする請求項2に記載の蒸気管の温度測定装置。
    The said 1st cover has the groove | channel recessed along the longitudinal direction of the said steam pipe so that the said optical fiber may be accommodated when it is attached to the said steam pipe. Steam pipe temperature measurement device.
  4.  前記第2カバーは、前記蒸気管に装着された際に前記光ファイバ及び前記ヒートパイプが収容されるように、前記蒸気管の長手方向に沿って形成される空間を有する
     ことを特徴とする請求項2又は請求項3に記載の蒸気管の温度測定装置。
    The second cover has a space formed along a longitudinal direction of the steam pipe so that the optical fiber and the heat pipe are accommodated when the second cover is mounted on the steam pipe. The steam pipe temperature measuring device according to claim 2 or 3.
  5.  前記第1カバー又は前記第2カバーは、
      前記蒸気管の長手方向に沿う隙間を有し、前記蒸気管が挿通される円筒形状を呈するカバー本体と、
      前記カバー本体の両端に形成され、前記カバー本体が前記蒸気管に密着するようにボルトによって締め付けられるフランジと、を有する
     ことを特徴とする請求項2~請求項4の何れか一項に記載の蒸気管の温度測定装置。
    The first cover or the second cover includes:
    A cover body having a gap along the longitudinal direction of the steam pipe and having a cylindrical shape through which the steam pipe is inserted;
    The flange according to any one of claims 2 to 4, further comprising: flanges formed at both ends of the cover main body, the flanges being tightened by bolts so that the cover main body is in close contact with the steam pipe. Steam pipe temperature measurement device.
  6.  前記第1カバー及び前記第2カバーは、合金鋼から形成される
     ことを特徴とする請求項2~請求項7の何れか一項に記載の蒸気管の温度測定装置。
    The steam pipe temperature measuring device according to any one of claims 2 to 7, wherein the first cover and the second cover are formed of an alloy steel.
  7.  前記第1カバー及び前記第2カバーは、ステンレス鋼から形成される
     ことを特徴とする請求項6に記載の蒸気管の温度測定装置。
    The steam pipe temperature measuring device according to claim 6, wherein the first cover and the second cover are formed of stainless steel.
  8.  前記蒸気管は、過熱器管又は再熱器管である
     ことを特徴とする請求項2~請求項7の何れか一項に記載の蒸気管の温度測定装置。
    The steam pipe temperature measuring device according to any one of claims 2 to 7, wherein the steam pipe is a superheater pipe or a reheater pipe.
  9.  ボイラに供給される水を燃焼ガスと熱交換して得られる蒸気が内部を循環する蒸気管の表面温度を測定する第1位置において、前記蒸気管の表面温度を測定するための光ファイバが前記蒸気管の長手方向に沿って前記蒸気管に密着するように、前記光ファイバを挟んで前記蒸気管を取り囲む第1カバーを装着し、
     前記第1位置に隣り合う第2位置において、前記光ファイバが前記蒸気管の長手方向に沿って前記蒸気管に隣り合うとともに、前記光ファイバを冷却するためのヒートパイプが前記蒸気管の長手方向に沿って前記光ファイバを取り囲むように、前記光ファイバ及び前記ヒートパイプを挟んで前記蒸気管を取り囲む第2カバーを装着する
     ことを特徴とする蒸気管の温度測定方法。
    At a first position for measuring the surface temperature of a steam pipe in which steam obtained by heat-exchanging water supplied to the boiler with combustion gas circulates, an optical fiber for measuring the surface temperature of the steam pipe is provided. A first cover surrounding the steam pipe with the optical fiber interposed therebetween is attached so as to be in close contact with the steam pipe along the longitudinal direction of the steam pipe,
    In a second position adjacent to the first position, the optical fiber is adjacent to the steam pipe along a longitudinal direction of the steam pipe, and a heat pipe for cooling the optical fiber is provided in a longitudinal direction of the steam pipe. Mounting a second cover that surrounds the steam pipe with the optical fiber and the heat pipe interposed therebetween so as to surround the optical fiber along the line.
  10.  前記第1カバー及び前記第2カバーは、合金鋼から形成される
     ことを特徴とする請求項9に記載の蒸気管の温度測定方法。
    The method for measuring the temperature of a steam pipe according to claim 9, wherein the first cover and the second cover are formed of an alloy steel.
  11.  前記第1カバー及び前記第2カバーは、ステンレス鋼から形成される
     ことを特徴とする請求項10に記載の蒸気管の温度測定方法。
     
     
    The method according to claim 10, wherein the first cover and the second cover are formed of stainless steel.

PCT/JP2018/033921 2018-09-13 2018-09-13 Steam-pipe temperature measurement device, steam-pipe temperature measurement method WO2020054011A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033921 WO2020054011A1 (en) 2018-09-13 2018-09-13 Steam-pipe temperature measurement device, steam-pipe temperature measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033921 WO2020054011A1 (en) 2018-09-13 2018-09-13 Steam-pipe temperature measurement device, steam-pipe temperature measurement method

Publications (1)

Publication Number Publication Date
WO2020054011A1 true WO2020054011A1 (en) 2020-03-19

Family

ID=69777019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033921 WO2020054011A1 (en) 2018-09-13 2018-09-13 Steam-pipe temperature measurement device, steam-pipe temperature measurement method

Country Status (1)

Country Link
WO (1) WO2020054011A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200400511A1 (en) * 2018-03-14 2020-12-24 Fujitsu Limited Detection device, temperature distribution measurement apparatus, and method of manufacturing detection device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109551A (en) * 1992-09-29 1994-04-19 Chino Corp Cooling unit for temperature measurement
JPH06137509A (en) * 1992-10-29 1994-05-17 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for detecting temperatures of parts of boiler
JPH0854289A (en) * 1994-08-11 1996-02-27 Sokuon Kogyo:Kk Sensor mounting structure
JPH11108765A (en) * 1997-09-30 1999-04-23 Matsushita Electric Works Ltd Structure for fixing temperature detecting sensor
JP2013503339A (en) * 2009-08-27 2013-01-31 ゼネラル・エレクトリック・カンパニイ Optical fiber current sensing system with temperature compensation
CN103727521A (en) * 2014-01-20 2014-04-16 河南华润电力首阳山有限公司 Temperature-measuring element fixing device and boiler
CA2799824A1 (en) * 2012-12-20 2014-06-20 General Electric Company System and method for monitoring steam generator tube operating conditions
US20150268078A1 (en) * 2013-03-28 2015-09-24 Exxonmobil Research And Engineering Company Method and system for detecting coking growth and maldistribution in refinery equipment
JP2016042005A (en) * 2014-08-19 2016-03-31 三菱日立パワーシステムズ株式会社 Boiler
WO2016181540A1 (en) * 2015-05-13 2016-11-17 富士通株式会社 Temperature measurement device, temperature measurement method, and temperature measurement program

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109551A (en) * 1992-09-29 1994-04-19 Chino Corp Cooling unit for temperature measurement
JPH06137509A (en) * 1992-10-29 1994-05-17 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for detecting temperatures of parts of boiler
JPH0854289A (en) * 1994-08-11 1996-02-27 Sokuon Kogyo:Kk Sensor mounting structure
JPH11108765A (en) * 1997-09-30 1999-04-23 Matsushita Electric Works Ltd Structure for fixing temperature detecting sensor
JP2013503339A (en) * 2009-08-27 2013-01-31 ゼネラル・エレクトリック・カンパニイ Optical fiber current sensing system with temperature compensation
CA2799824A1 (en) * 2012-12-20 2014-06-20 General Electric Company System and method for monitoring steam generator tube operating conditions
US20150268078A1 (en) * 2013-03-28 2015-09-24 Exxonmobil Research And Engineering Company Method and system for detecting coking growth and maldistribution in refinery equipment
CN103727521A (en) * 2014-01-20 2014-04-16 河南华润电力首阳山有限公司 Temperature-measuring element fixing device and boiler
JP2016042005A (en) * 2014-08-19 2016-03-31 三菱日立パワーシステムズ株式会社 Boiler
WO2016181540A1 (en) * 2015-05-13 2016-11-17 富士通株式会社 Temperature measurement device, temperature measurement method, and temperature measurement program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200400511A1 (en) * 2018-03-14 2020-12-24 Fujitsu Limited Detection device, temperature distribution measurement apparatus, and method of manufacturing detection device

Similar Documents

Publication Publication Date Title
JP4808006B2 (en) Drive system
ITCO20100026A1 (en) TURBOESPANSORE FOR POWER GENERATION SYSTEMS
US20100074572A1 (en) Fiber optic sensing device and method
WO2020054011A1 (en) Steam-pipe temperature measurement device, steam-pipe temperature measurement method
US9404393B2 (en) Combined cycle power plant
JP5108488B2 (en) Rankine cycle equipment using capillary force
JP2008255822A (en) Combined cycle power generation plant and heat exchanger
JP6551621B1 (en) Steam pipe temperature measuring device, steam pipe temperature measuring method
US20180058267A1 (en) Boiler, steam-generating plant provided with same, and method for operating boiler
WO2010038288A1 (en) Combined cycle electric power generation plant and heat exchanger
US11352910B2 (en) Steam turbine and method for operating same
US20160215623A1 (en) Steam turbine
EP4006416B1 (en) Heat transfer pipe and method for manufacturing heat transfer pipe
JP6651722B2 (en) Piping fatigue test method
JP2018536108A (en) A device that insulates a turbine in which a wheel is rotated by a high-temperature fluid and a generator having a rotor connected to the wheel, in particular, a turbine generator.
JP5985634B2 (en) Turbine system with push rod mechanism between two housings
US20130094947A1 (en) Rotor support thermal control system
ITMI20092315A1 (en) COMBINED CYCLE PLANT FOR THE PRODUCTION OF ELECTRICAL ENERGY AND THERMAL ENERGY AND FUNCTIONING METHOD OF SUCH SYSTEM
JP2021124452A (en) Thermometer protection cylinder, temperature measurement tool, steam piping structure, and installation method of thermometer protection cylinder
KR102257551B1 (en) A heat source supply device for evaluation heat exchanger performance in the nuclear power plants and a heat exchanger performance evaluation method using the same.
US11686535B2 (en) Heat exchanger
WO2021157163A1 (en) Plug, steam pipe structure, and method for installing plug
BR112021008477A2 (en) steam turbine and method for operating it
Gumen et al. Justification of duct shape between two welded films of a film economizer for deep heat utilization
KR20200074010A (en) Tube with conductive fins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP