WO2020053462A1 - Battery having self-managed dynamic internal connections - Google Patents

Battery having self-managed dynamic internal connections Download PDF

Info

Publication number
WO2020053462A1
WO2020053462A1 PCT/ES2019/070595 ES2019070595W WO2020053462A1 WO 2020053462 A1 WO2020053462 A1 WO 2020053462A1 ES 2019070595 W ES2019070595 W ES 2019070595W WO 2020053462 A1 WO2020053462 A1 WO 2020053462A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
sub
batteries
switch
state
Prior art date
Application number
PCT/ES2019/070595
Other languages
Spanish (es)
French (fr)
Inventor
Félix PRADO PUEO
Original Assignee
Prado Pueo Felix
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prado Pueo Felix filed Critical Prado Pueo Felix
Publication of WO2020053462A1 publication Critical patent/WO2020053462A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention refers to a self-managed dynamic internal connection battery, made up of a large number of sub-batteries that change transiently and alternatively their state without affecting the service or state in which the battery is operating (charge, discharge or disconnection ); This is achieved through a dynamic internal switch connection network integrated into the battery itself. Obtaining as a result a substantial improvement both in the capacity of the battery and in the duration of its useful life.
  • the present invention has application in the electrochemical accumulator manufacturing industry.
  • Each battery model features a Voltage / Current V1 / I1 characteristic for a given charge / discharge state. Those values are equal to or smaller than those normally required by the receiving device to supply VR / IR Receiver Voltage / Receiver Current.
  • the solution consists in the construction of a battery made up of several batteries, or hundreds or even thousands of batteries depending on the VR / IR magnitude that from now on we will call sub-batteries.
  • the sub-battery pack that forms the conventional composite battery has a pair of poles or general terminals, said sub-batteries are connected directly or indirectly through other sub-batteries in the package to said poles.
  • All the sub-batteries that make up the battery will add their energy that will be transmitted to / from the outside of the package through the battery terminals.
  • a model of battery gives 3 V and 200 mA of accepted discharge, and we must feed a portable music equipment at 9V and 1 Ampere: 3 layers will be placed in series with 5 batteries in parallel in each layer, we will say that a provision has been made 5P-3S.
  • Charging by applying a voltage across the battery terminals higher than the voltage generated by the battery itself through a generator or external source, a charge or storage of energy is produced in the battery.
  • Discharge if we apply an external passive element between the battery terminals with a certain electrical conductivity and an opposite voltage lower than that generated by the battery, the energy stored in the battery is transferred to the external device.
  • the state of operation of the battery can be detected by the value of the current entering the battery through one of its poles:
  • the battery If there is an appreciable current entering the battery through the positive terminal, the battery is in a state of charge.
  • the “C” value or normalized capacity of a battery model represents the amp hours that a new battery is capable of supplying after a normal charge during a discharge with a normalized discharge current. This capacity decreases with time and the use of the battery until it is discarded due to the low real value "Cr". If the charge and / or discharge occurs with a current higher than the normalized this value may be lower, for example 0.9C, 90% of the value that would have been obtained if the discharge current were the normalized.
  • Battery life is the time that elapses between the first charge of the battery until its repeated use reduces its normalized discharge to a value less than or equal to 0.7xC. Battery life is defined by the manufacturer for operating conditions of standard loading and unloading. Increasing these currents or voltages will cause a substantial reduction in battery life.
  • the amplitude of the discharge current to which we subject a battery during its discharge is also expressed in relation to the ⁇ ’value that we have defined; a discharge with a current whose value is equal to the 'C' value will last just one hour, if the discharge of a car battery lasts 2.5 hours we will say that we have discharged the battery at an average current value of 0.4C.
  • the effectiveness or value of a battery will be expressed by the accumulated total of the ampere hours of all the discharges that have occurred throughout its life. When the charging and discharging conditions are more violent or extreme than the normalized ones, this effectiveness or value of the battery will be substantially reduced. Although these conditions far from the normalized ones are not recommended, nevertheless for many applications they are desirable or even inevitable. For example we need a very fast recharge to continue using the battery as it happens if we stop to refuel with a car and we need to follow the route. In the same example of the electric car, in overtaking, we may require a very intense discharge, or if we are climbing a steep long slope, the discharge rate will also be higher.
  • the patent RU2284076 uses the inversion of the charging current in a battery according to certain guidelines in five steps, so that in addition to avoiding the formation of electrolyte gases, the life of the battery is lengthened, as well as the duration of the process. load is significantly reduced, energy saving during the process, properties at startups are increased.
  • the application of this patent is intended for lead-acid batteries and at the time of charging, that is, external means are used for their charging that, connected to the poles, proceed to charge them according to certain steps, which is why it is limited as for a specific type of battery and requires external means and technique for its implementation, which complicates and makes the procedure more expensive.
  • all the embodiments of the battery can be equipped with at least one unit for measuring the connected cell voltage or that can be connected with the battery cells, which is configured to determine a cell voltage from the battery cells and to transmit it to the controller.
  • the controller is configured in this case to choose a battery cell with a maximum cell voltage and to transfer a charge from the chosen battery cell to another battery cell by means of an adequate emission of first and second control signals (or possibly third ) control signals. That is, it consists of equalizing voltages between adjacent cells, but without reaching a transient inversion of the current that would take advantage of the advantages described.
  • the present self-managed dynamic connection battery is advocated, in which as we have said it starts from a multiplicity of sub -batteries, connected in series and / or parallel, but instead of establishing a fixed or static connection as in a conventional battery, we place at least one switch in series with each of the sub-batteries.
  • This switch will have a terminal connected to one pole of the sub-battery and the other to the conductive plate with which the aforementioned pole of the sub-battery would be connected or welded to a conventional battery, thus, according to its state, the switch may interrupt or not the sub-battery connection.
  • a CP (i) layer of sub-batteries in parallel where ⁇ takes values between y's', by definition of parallel connection, is created by electrically connecting or bridging all the positive poles of the sub-batteries by means of a conductive cable or conductive board PC (i-1) (from now on we will say conductive board), and connecting or electrically bridging with another conductive board PC (i) all negative poles.
  • the CP (i) layer of sub-batteries is formed by ⁇ SB (i, j) / where'j 'takes values between y p' and delimited by the conductive plates PC (i-1) and PC (i).
  • the conductive plate of the positive poles of the CP layer (1) will be the PC (0) which is the positive pole of the battery.
  • the conductive plate of the negative poles of the last CP layer (s) will be the PC (s) that will be the negative pole of the battery.
  • the battery is treated as an electrical device or circuit, for this reason although the assembly of the sub-batteries is done in clusters instead of being done in a matrix as presented in our model, we obtain the same equivalent circuit by bending conductors and displacing the electrical knots on the conductive plates and therefore we can equally apply our matrix model and explanations to any assembly in clusters of sub-batteries.
  • the battery composed of sub-batteries as we have indicated has a pair of poles or terminals whose voltage / current will define their status as: charge, discharge or disconnection.
  • Each sub-battery has a pair of poles or terminals whose voltage / current will define its status as: charge, discharge or disconnection.
  • the state of the composite battery will match the state of its component sub-batteries.
  • a particular sub-battery may adopt a different state from that of the battery without appreciably affecting it.
  • the internal dynamic connection network defined in this document follows strategies for connecting / disconnecting the sub-batteries that improve the fundamental characteristics of the sub-batteries and consequently improve the capacity characteristics and duration of the battery life.
  • This network is made up of the conductive cables or plates, the on / off switches and the sub-batteries themselves.
  • the effect sought with the dynamic connection of the sub-batteries is to temporarily change the state in which each of the sub-batteries is operating in a group, repeating this action cyclically we will have acted in due course with each of the sub -batteries with the benefit that each transitory alteration reports to each sub-battery status, and as a consequence improving the capacity characteristics and duration of the battery life without affecting or interrupting its operations.
  • the amount of ampere-hours associated with the transient changes in state is configured in a range that goes from 0% (deactivated) to 10% of the value "C" or normalized capacity of the sub-battery defined above, with times of cycle less than 15 minutes.
  • the extraction / contribution of ampere hours during the short transient reversed period is between 0% and 10% of the amperes hour of the 'C' value of the sub-battery.
  • the extraction / contribution of ampere hours during the short transient reversed period is between 0% and 10% of the ampere hour of the 'C' value of the sub-battery.
  • the non-supply / extraction of ampere hours per disconnection during the short transitory reversed period is between 0% and 10% of the amp hours from the 'C' value of the sub-battery.
  • Each sub-battery may be an elementary battery in the sense that it is not made up of other sub-batteries, or on the contrary be constituted in turn by a sub-battery pack of composition s 'p'.
  • This design adjustment one battery per secondary switch or several with a single secondary switch
  • each sub-battery has at least one switch in series. As a general implementation it is understood that,
  • the switch that allows the state of a particular sub-battery to be altered can be connected to its negative or positive pole (on one side or the other).
  • the switch that allows the state of a particular sub-battery to be altered can be connected to its negative or positive pole (on one side or the other).
  • disconnection to the negative pole is not appropriate, and in the first layer that connects directly to the positive pole of the battery, disconnection of the pole is not appropriate. positive of the sub-batteries that form it. It is for this reason that from here we will refer to the general layer ⁇ with disconnection of negatives and in the general layer ‘k ’with disconnection of positive poles.
  • each SB sub-battery (i, j) will have an ISX series switch (i, j) so that when the switch is closed, the sub-battery will be connected and act as in a conventional battery operating in the same state as the battery. to which it belongs, while the ISX switch (i, j) is open, the sub battery SB (i, j) will be disconnected.
  • This disconnection is performed cyclically and alternatively, -not with all the switches open at the same time but with a uniform distribution in time-, running through the SB (i, j) sub-batteries in each cycle, so that the temporary cyclical disconnection transiently changes the state of each of the SB (i, j) sub-batteries to a disconnected state without altering the service or state of the battery. That is, by performing this disconnection when the battery is active (charge or discharge), we can say that the state of each of the sub-batteries has been changed temporarily (for a moment) to a state of discharge acting on its negative pole. .
  • a new associated local discharge switch ISD (i, j) is incorporated with a terminal connected to the same pole of the SB sub-battery (i, j) to which ISX is connected ( i, j) and the other terminal is connected to the other pole of the same SB sub-battery (ij)) to which ISX (i, j) is connected and the other terminal:
  • the other ISD terminal (i, j) will be connected to the positive pole of the same SB (ij) sub-battery (PC board (i -1)) or any previous sub-battery SB ((i-1, j), SB (i-2, j) ... (Decks PC (i-2), PC (i-3) ... ).
  • a local charge ISC switch (ij) associated with it is incorporated with a terminal connected to the same pole of the SB sub-battery (i, j) to which it is connected ISX (i, j) and the other terminal is connected to:
  • the other ISC terminal (i, j) is connected to the negative pole of a sub-battery of the next layer, that is to say to the plate PC (i + 1) or later PC (i + 2), PC (i + 3) ...
  • the other ISC terminal (i, j) is connected to the positive pole of a sub-battery of the preceding layer, that is to say to the plate PC (i-2) or earlier PC (i-3), PC (i-4).
  • ISX (i, j) closed and ISC (i, j) closed at the same time is a prohibited state of short circuit that the control will never adopt. That is, the MCU that governs the battery connection does not allow the ISX (i, j) and ISD (i, j) switch to be closed at the same time.
  • CP (k) layer of sub-batteries that is not the first or CP (1):
  • each SB sub-battery (kj) will have an ISX series switch (k, j) which, when closed, the sub-battery will be connected and will act as in a conventional battery operating in the same state as the compound battery to which belongs, while open ISX switch (k, j), the SB sub-battery (kj) will be disconnected.
  • This transient disconnection will act alternately (not with all at once) on all the SB (k, j) sub-batteries. Making this disconnection when the battery is active (charge or discharge) we can say that the state of each of the sub-batteries has been changed temporarily (for a moment) acting on its positive pole.
  • ISX (k, j) closed and ISD (k, j) closed at the same time is a prohibited state of short circuit that the control will never adopt.
  • ISX (k, j) closed and ISC (k, j) closed at the same time is a prohibited short circuit state that the MCU control will never adopt.
  • ISC (kJ) closed and ISD (k, j) closed at the same time is a prohibited state of short circuit that the MCU control will never adopt.
  • the self-managed internal dynamic connection battery acts this transient charge and alternatively with a more or less uniform distribution in time on all the SB (i, j) sub-batteries, performing this charge when the battery not in charge we will have changed temporarily (for a moment) the state of each of the sub-batteries to state of charge in each cycle.
  • the control of the switches is carried out by at least one micro-controller unit (from now on -MCU) or equivalent logic that will have digital output channels for their activation / deactivation following the explained strategy.
  • the MCU or equivalent logic detects the state of the battery by means of a current sensor through which it recognizes the state of charge; positive current at the positive terminal means battery in charge, negative current at positive terminal means battery in discharge, null current at positive terminal means battery disconnected.
  • the MCU or equivalent logic has software that executes the explained control actions of the switches with configurable control parameters: cycle time, time and type of transient to be applied to the sub-batteries for each state of the battery.
  • the MCU or equivalent logic includes analog input channels, through which it captures through which it captures the currents in the sub-batteries, either from a local shunt or from the switch itself, and the terminal voltages of the switches, since these Voltages will be a function of temperature and the current that passes through them, also having a temperature sensor and knowing the characteristic function of the switch model used, the MCU or equivalent logic will evaluate the current that is flowing through each and every time one of the sub-batteries.
  • this preferred option to be cheaper and simpler than the alternative option of incorporating current sensors or shunts, which would be another more precise option but more costly in constructive and economic terms.
  • the MCU or equivalent logic will include a configurable software or algorithm for disconnection or isolation of sub-batteries that due to their poor condition or risk status may have a negative impact or electrical contamination on the life and capacity of the battery.
  • connection / disconnection circuit An analysis of the connection / disconnection circuit has been carried out, with electrical switches, which facilitates the analysis through direct visual interpretation.
  • electrical switches are preferably They will be made using high performance, high reliability, low volume and low cost MOS-FET transistors to optimize the results of feasibility, safety and performance.
  • microcontroller units MCU microcontroller units
  • these MCUs as usual will include wired or wireless network connections.
  • the switch element has a certain internal resistance characteristic as a function of current and temperature, with this information measuring the switch voltage, the MCU microcontroller or equivalent logic will have an estimate of the current.
  • the MCU microcontroller or equivalent logic will have an estimate of the current.
  • a failure of a sub-battery in many cases causes collateral damage of interference and sometimes degenerative, with the available data the failure will be detected and isolated by means of the switch corresponding to the failed battery.
  • Our system will thus be fault tolerant. This capacity will add to the temporary reversal of states to once again extend the life and efficiency of our battery.
  • the computer performs the explained control, with the following parameters.
  • TCICLO every TCICLO seconds the state of the component battery is reversed.
  • IDB battery discharge / charge current in amps
  • EBATTERY volts generated by the battery in Volts.
  • VI N VERSA voltage to reverse the state in Volts.
  • PULSE duration of the reverse current pulse in seconds.
  • TPCQID percentage of inverse current compared to direct.
  • TPCQID / 100 * IDB * TCICLO (VINVERSA-EBATERIAj / RINTERNA * PULSO
  • the self-managed internal dynamic connection battery that is presented, provides multiple advantages over current batteries, such as:
  • Figure -1- shows a battery made up of a sub-battery pack with 'p' batteries in parallel per layer and a total of's' layers with a usual fixed connection according to the state of the art, in which represented two generic layers CP (i) and CP (k) and their respective neighbors CP (i + 1) and CP (k-1).
  • Figure -2- shows the battery with a general implementation object of the present invention
  • Figure -3 shows the battery with a simple specific implementation of laboratory, for the evaluation of the results or benefits achieved by the present invention.
  • Figure -4- shows a graph of a record of the discharge capacity of a battery object of the present invention in relation to a battery according to the state of the art as well as one, according to results obtained in the laboratory by implementing the figure -3
  • the evaluation prototype for a simpler and more direct execution has been assembled by direct wiring of electro-mechanical relays, thus avoiding the need for printed circuits.
  • the CP (i) sub-battery layer represents the reversal of transient states by altering the connections of the negative poles of the sub-batteries and is applicable to any layer other than the last one.
  • the CP (k) sub-battery layer represents reversal of transient states by changing the connection of the positive poles of the sub-batteries and is applicable to any layer other than the first layer.
  • the computer activated contacts (20) place the batteries in charge from the source (22) configured at 4.2V maximum voltage and 8.84 amps maximum current.
  • the contacts (21) activated by computer place the batteries in discharge through the resistance (23) that causes a discharge at an average current of 1.31C.
  • the computer-activated 2-position contact (24) places the treated battery (11) in transient charge when the contact (21) is activated through the power supply (25) configured at 7.2 V maximum voltage and 40 amps of maximum current, and in transient short-circuit discharge when the contact (20) is activated.
  • the 2-position contact (26) is never activated, so the battery (12) is not treated with the state reversal at any time.
  • the shunts (27, 28, 29 and 30) supply the computer with the measurement of the current in the treated battery (11), current in the untreated battery (12), charging current and discharge current respectively.

Abstract

The invention relates to a battery having self-managed dynamic internal connections, which is formed from a group of sub-batteries {SB(1,1), SB(1,2), ..., SB(1,p), SB(2,1), SB(2,2), ..., SB(2,p), ..., SB(s,p)}, layer CP(i) being {SB(i,1), SB(i,2), ..., SB(i,p)}, wherein 'i' has values between T and 's', layer CP(i) being delimited or established on the side of the positive poles of the sub-batteries by a conductor or conductive plate PC(i-1) and on the side of the negative poles by conductive plate PC(i). The battery incorporates at least one switch ISX(i,j) connected in series to each of the sub-batteries SB(ij), such that, with the switch in the open position, the series sub-battery SB(i,j) passes to a disconnected state, and when the switch is in the closed position, the series sub-battery SB(i,j) occupies the same state as the battery to which it belongs, this disconnection being carried out cyclically and alternately on all the sub-batteries SB(ij) in each cycle, and also by means of the incorporation of switches ISD(ij) and ISC(i,j), the transitory disconnected state can be converted into a discharge or transitory charge. The battery also comprises a micro-controller unit (MCU) or equivalent logic.

Description

Batería de conexionado interno dinámico auto-gestionado Self-managed dynamic internal piping battery
DESCRIPCIÓN Objeto de la invención DESCRIPTION Object of the invention
La presente invención se refiere a una batería de conexionado interno dinámico auto- gestionado, constituida por un gran número de sub-baterías que cambian transitoria y alternativamente su estado sin afectar al servicio o estado en que la batería está operando (carga, descarga o desconexión); esto se consigue mediante una red de conexionado de interruptores internos dinámico integrada en la propia batería. Obteniendo como resultado una mejora sustancial tanto en la capacidad de la batería como en la duración de su vida útil.  The present invention refers to a self-managed dynamic internal connection battery, made up of a large number of sub-batteries that change transiently and alternatively their state without affecting the service or state in which the battery is operating (charge, discharge or disconnection ); This is achieved through a dynamic internal switch connection network integrated into the battery itself. Obtaining as a result a substantial improvement both in the capacity of the battery and in the duration of its useful life.
La presente invención tiene aplicación en la industria de la fabricación de acumuladores electroquímicos.  The present invention has application in the electrochemical accumulator manufacturing industry.
Antecedentes de la invención  Background of the Invention
Cada modelo de batería presenta una característica Voltaje/Corriente V1/I1 para un estado de carga/descarga determinado. Esos valores son iguales o más pequeños que los normalmente requeridos por el dispositivo receptor a alimentar Voltaje Receptor/ Corriente Receptor VR/IR. La solución consiste en la construcción de una batería compuesta por varias baterías, o centenares o incluso millares de baterías dependiendo de la magnitud VR/IR que a partir de ahora llamaremos sub-baterías. El paquete de sub-baterías que forma la batería convencional compuesta dispone de un par de polos o bornes generales, dichas sub-baterías se conectan directa o indirectamente a través de otras sub-baterías del paquete a dichos polos.  Each battery model features a Voltage / Current V1 / I1 characteristic for a given charge / discharge state. Those values are equal to or smaller than those normally required by the receiving device to supply VR / IR Receiver Voltage / Receiver Current. The solution consists in the construction of a battery made up of several batteries, or hundreds or even thousands of batteries depending on the VR / IR magnitude that from now on we will call sub-batteries. The sub-battery pack that forms the conventional composite battery has a pair of poles or general terminals, said sub-batteries are connected directly or indirectly through other sub-batteries in the package to said poles.
Todas las sub-baterías que componen la batería sumarán su energía que se transmitirá al/desde el exterior del paquete a través de los bornes de la batería. La corriente entre estos bornes que se envía al receptor será IR = p x 11 siendo‘p’ el número de sub-baterías en paralelo, y el voltaje aplicado al receptor VR = V1 x s siendo‘s’ el número de capas de baterías en paralelo colocadas en serie entre sí. Sub-baterías las cuales se establecen con un conexionado fijo estático.  All the sub-batteries that make up the battery will add their energy that will be transmitted to / from the outside of the package through the battery terminals. The current between these terminals that is sent to the receiver will be IR = px 11 where 'p' is the number of parallel batteries, and the voltage applied to the receiver VR = V1 xs where 'is the number of layers of batteries in parallel placed in series with each other. Sub-batteries which are established with a static fixed connection.
Subrayamos con el fin de enmarcar la invención que en las baterías convencionales, las conexiones entre los polos de las sub-baterías, las pletinas conductoras o conductores y los bornes generales se establecen durante el ensamblado de esta y permanecen fijas durante toda su vida, es en este sentido en el que decimos que las baterías actuales utilizan una red de conexionado fijo o estático.  In order to frame the invention, we emphasize that in conventional batteries, the connections between the poles of the sub-batteries, the conductive or conductor plates and the general terminals are established during the assembly of the latter and remain fixed throughout their life. in this sense in which we say that current batteries use a fixed or static connection network.
Otros ejemplos: Un modelo de batería da 3 V y 200 mA de descarga aceptada, y debemos alimentar un equipo portátil de música a 9V y 1 Amperio: se colocarán 3 capas en serie con 5 baterías en paralelo en cada capa, diremos que se ha realizado una disposición 5P-3S. Other examples: A model of battery gives 3 V and 200 mA of accepted discharge, and we must feed a portable music equipment at 9V and 1 Ampere: 3 layers will be placed in series with 5 batteries in parallel in each layer, we will say that a provision has been made 5P-3S.
Con un modelo de batería de 3.6V y 2.6 A de descarga aceptada, debemos alimentar un motor eléctrico de un automóvil a 317 voltios y una corriente de 260 amperios. La solución consistirá en ensamblar una batería que podemos llamar macro-batería de 8800 unidades en capas de 100 sub-baterías en paralelo y un total de 88 capas en serie, tendremos una disposición 100P-88S.  With a 3.6V and 2.6A battery model of accepted discharge, we must power a car's electric motor at 317 volts and a current of 260 amps. The solution will be to assemble a battery that we can call 8800 units macro-battery in layers of 100 sub-batteries in parallel and a total of 88 layers in series, we will have a 100P-88S arrangement.
Las baterías pueden estar sometidas a 3 estados diferentes:  Batteries can be subjected to 3 different states:
Carga: aplicando un voltaje en bornes de la batería superior al voltaje que genera la propia batería mediante un generador o fuente exterior, se produce una carga o almacenamiento de energía en la batería.  Charging: by applying a voltage across the battery terminals higher than the voltage generated by the battery itself through a generator or external source, a charge or storage of energy is produced in the battery.
Descarga: si entre los bornes de la batería aplicamos un elemento pasivo exterior con una cierta conductividad eléctrica y una tensión opuesta inferior a la generada por la batería, se produce la cesión de la energía almacenada en la batería al dispositivo exterior.  Discharge: if we apply an external passive element between the battery terminals with a certain electrical conductivity and an opposite voltage lower than that generated by the battery, the energy stored in the battery is transferred to the external device.
Desconexión: Standby, los bornes están aislados por lo que no hay trasvase de energía con el exterior, solo se observan unas muy pequeñas corrientes internas de fuga y algunos reequilibrados entre las sub-baterías componentes.  Disconnection: Standby, the terminals are isolated so there is no transfer of energy to the outside, only very small internal leakage currents are observed and some rebalanced between the component sub-batteries.
El estado de operación de la batería se puede detectar mediante el valor de la corriente que entra a la batería por uno de sus polos:  The state of operation of the battery can be detected by the value of the current entering the battery through one of its poles:
Si hay una corriente apreciable entrando a la batería por el borne positivo, la batería está en estado de carga.  If there is an appreciable current entering the battery through the positive terminal, the battery is in a state of charge.
Si la corriente es de salida en el borne positivo, la batería está en descarga.  If the current is output at the positive terminal, the battery is discharged.
Si la corriente es despreciable la batería está en estado de desconexión.  If the current is negligible, the battery is in the disconnected state.
Por otro lado, las características fundamentales de una batería son:  On the other hand, the fundamental characteristics of a battery are:
El valor “C” o capacidad normalizada de un modelo de batería representa los amperios hora que es capaz de suministrar una batería nueva después de una carga normalizada durante una descarga con una corriente también normalizada de descarga. Esta capacidad se reduce con el tiempo y el uso de la batería hasta que se desecha por bajo valor real“Cr”. Si la carga y/o la descarga se produce con una corriente superior a la normalizada este valor podrá ser inferior por ejemplo 0.9C, un 90% del valor que se habría obtenido si la corriente de descarga fuera la normalizada.  The “C” value or normalized capacity of a battery model represents the amp hours that a new battery is capable of supplying after a normal charge during a discharge with a normalized discharge current. This capacity decreases with time and the use of the battery until it is discarded due to the low real value "Cr". If the charge and / or discharge occurs with a current higher than the normalized this value may be lower, for example 0.9C, 90% of the value that would have been obtained if the discharge current were the normalized.
Vida de la batería, es el tiempo que transcurre entre la primera carga de la batería hasta que por su uso reiterado reduce su descarga normalizada a un valor menor o igual a 0.7xC. La vida de la batería se define por el fabricante para unas condiciones operativas de carga y descarga normalizadas. El aumento de estas corrientes o voltajes ocasionará una reducción sustancial en la vida (duración) de la batería. Battery life is the time that elapses between the first charge of the battery until its repeated use reduces its normalized discharge to a value less than or equal to 0.7xC. Battery life is defined by the manufacturer for operating conditions of standard loading and unloading. Increasing these currents or voltages will cause a substantial reduction in battery life.
La amplitud de la corriente de descarga a la que sometemos una batería durante su descarga también se expresa en relación al valor Ό’ que hemos definido; una descarga con una corriente cuyo valor sea igual al valor‘C’ durará justo una hora, si la descarga de la batería de un coche dura 2.5 horas diremos que hemos descargado la batería a un valor de corriente media de 0.4C.  The amplitude of the discharge current to which we subject a battery during its discharge is also expressed in relation to the Ό ’value that we have defined; a discharge with a current whose value is equal to the 'C' value will last just one hour, if the discharge of a car battery lasts 2.5 hours we will say that we have discharged the battery at an average current value of 0.4C.
La efectividad o valor de una batería quedará expresada por el total acumulado de los amperios hora de todas las descargas acontecidas a lo largo de su vida. Cuando las condiciones de carga y descarga sean más violentas o extremas que las normalizadas esta efectividad o valor de la batería se verá reducido sustancialmente. Aunque estas condiciones alejadas de las normalizadas no son recomendables, sin embargo para muchas aplicaciones resultan deseables o incluso inevitables. Por ejemplo necesitamos una recarga muy rápida para seguir usando la batería como sucede si paramos a repostar con un coche y necesitamos seguir ruta. En el mismo ejemplo del coche eléctrico, en un adelantamiento, podemos requerir una descarga muy intensa, o si estamos subiendo una pendiente larga pronunciada, el régimen de descarga será también más alto.  The effectiveness or value of a battery will be expressed by the accumulated total of the ampere hours of all the discharges that have occurred throughout its life. When the charging and discharging conditions are more violent or extreme than the normalized ones, this effectiveness or value of the battery will be substantially reduced. Although these conditions far from the normalized ones are not recommended, nevertheless for many applications they are desirable or even inevitable. For example we need a very fast recharge to continue using the battery as it happens if we stop to refuel with a car and we need to follow the route. In the same example of the electric car, in overtaking, we may require a very intense discharge, or if we are climbing a steep long slope, the discharge rate will also be higher.
Los estados extremos de la batería de batería cargada al máximo o batería muy descargada tienen efectos nocivos sobre la batería. Por esta razón un fabricante puede recomendar o acotar las cargas y descargas sin alcanzar el límite‘C’ normalizado en aras a su mejor conservación pero pagando el precio de una menor efectividad.  The extreme states of the fully charged battery or heavily discharged battery have harmful effects on the battery. For this reason, a manufacturer can recommend or limit the loads and discharges without reaching the standard ‘C ’limit for its better conservation but paying the price of less effectiveness.
Existen estudios que indican que si en lugar de mantener el estado de carga o descarga de una batería durante el periodo requerido hasta ser completado, se cambia de forma cíclica y transitoria dicho estado durante una pequeña fracción de tiempo, el implacable deterioro de las baterías con su uso puede mitigarse sustancialmente, estos estudios también resaltan que este beneficio es más notable en cargas/descargas más intensas, muchos ensayos de laboratorio así lo demuestran. Sin embargo, en la utilización real de las baterías interrumpir la carga requiere de cargadores especiales costosos y complejos por lo que no resultan prácticos. Por otro lado, cuando se está en descarga es aún más complicado, ya que cargar cada poco tiempo e interrumpir así justamente el servicio real de descarga que estamos demandando de la batería resulta prácticamente inaceptable.  There are studies that indicate that if instead of maintaining the state of charge or discharge of a battery for the period required until it is completed, this state is changed cyclically and temporarily for a small fraction of time, the relentless deterioration of batteries with its use can be substantially mitigated, these studies also highlight that this benefit is more noticeable in more intense loads / discharges, many laboratory tests demonstrate this. However, in the real use of batteries, interrupting the charge requires expensive and complex special chargers, so they are not practical. On the other hand, when it is in discharge it is even more complicated, since charging every so often and thus just interrupting the real discharge service that we are demanding from the battery is practically unacceptable.
En estos momentos se está librando una batalla en la que la tecnología eléctrica limpia reemplaza los combustibles clásicos, sin embargo las limitadas capacidades energéticas y/o la duración de la vida de las baterías tal como se fabrican en la actualidad supone un hándicap para esta deseada renovación. Valga como ejemplo la utilización y promoción de los coches eléctricos y/o híbridos, donde cualquier mejora que se pueda aplicar a las baterías eléctricas puede resultar crítica en este mercado altamente competitivo. At the moment a battle is being fought in which clean electrical technology replaces classic fuels, however the limited energy capacities and / or the life span of batteries as they are manufactured today is a handicap for this desired renewal. Take as an example the use and promotion of electric and / or hybrid cars, where any improvement that can be applied to electric batteries can be critical in this highly competitive market.
En este aspecto la patente RU2284076 utiliza la inversión de la corriente de carga en una batería según unas pautas determinadas en cinco pasos, de manera que además de evitar la formación de gases del electrolito, se alarga la vida de la batería, la duración del proceso de carga se reduce sensiblemente, ahorro de energía durante el proceso, se incrementa las propiedades en los arranques. Sin embargo, la aplicación de esta patente es destinada a baterías de plomo y en su momento de carga, es decir, se emplean medios externos para su carga que conectados a los polos proceden a su carga según unos pasos determinados, por lo que se limita en cuanto a un tipo de batería concreto y precisa de medios y técnica exteriores para su implementación, lo que complica y encarece el procedimiento.  In this aspect, the patent RU2284076 uses the inversion of the charging current in a battery according to certain guidelines in five steps, so that in addition to avoiding the formation of electrolyte gases, the life of the battery is lengthened, as well as the duration of the process. load is significantly reduced, energy saving during the process, properties at startups are increased. However, the application of this patent is intended for lead-acid batteries and at the time of charging, that is, external means are used for their charging that, connected to the poles, proceed to charge them according to certain steps, which is why it is limited as for a specific type of battery and requires external means and technique for its implementation, which complicates and makes the procedure more expensive.
Por otro lado, en la patente ES-2586508_T3 todas las formas de realización de la batería pueden estar equipadas con al menos una unidad de medición de la tensión de celda conectada o que puede conectarse con las celdas de batería, la cual está configurada para determinar una tensión de celda de las celdas de batería y para transmitirla al controlador. El controlador está configurado en este caso para elegir una celda de batería con una tensión de celda máxima y para traspasar una carga de la celda de batería elegida a otra celda de batería mediante una emisión adecuada de primeras y segundas señales de control (o eventualmente terceras) señales de control. Es decir, consiste en igualar tensiones entre celdas adyacentes, pero sin llegar a una inversión transitoria de la corriente que aprovechase las ventajas descritas.  On the other hand, in patent ES-2586508_T3, all the embodiments of the battery can be equipped with at least one unit for measuring the connected cell voltage or that can be connected with the battery cells, which is configured to determine a cell voltage from the battery cells and to transmit it to the controller. The controller is configured in this case to choose a battery cell with a maximum cell voltage and to transfer a charge from the chosen battery cell to another battery cell by means of an adequate emission of first and second control signals (or possibly third ) control signals. That is, it consists of equalizing voltages between adjacent cells, but without reaching a transient inversion of the current that would take advantage of the advantages described.
Descripción de la invención  Description of the Invention
Con la finalidad de aportar una solución que prolongue la vida y la capacidad de las baterías electroquímicas constituidas por múltiples sub-baterías, se propugna la presente batería de conexionado dinámico auto-gestionado, en la que como hemos dicho se parte de una multiplicidad de sub-baterías, conectadas en serie y/o paralelo, pero en lugar de establecer un conexionado fijo o estático como en una batería convencional, colocamos al menos un interruptor en serie con cada una de las sub-baterías. Este interruptor tendrá un borne conectado a un polo de la sub-batería y el otro a la pletina conductora con la que el mencionado polo de la sub-batería estaría conectado o soldado en una batería convencional, pudiendo así dicho interruptor según su estado interrumpir o no la conexión de la sub-batería.  In order to provide a solution that prolongs the life and capacity of electrochemical batteries made up of multiple sub-batteries, the present self-managed dynamic connection battery is advocated, in which as we have said it starts from a multiplicity of sub -batteries, connected in series and / or parallel, but instead of establishing a fixed or static connection as in a conventional battery, we place at least one switch in series with each of the sub-batteries. This switch will have a terminal connected to one pole of the sub-battery and the other to the conductive plate with which the aforementioned pole of the sub-battery would be connected or welded to a conventional battery, thus, according to its state, the switch may interrupt or not the sub-battery connection.
Representaremos una batería que compuesta de‘s’ capas de‘p’, tomando‘s’ y‘p’ valores enteros positivos, sub-baterías (SB) en paralelo entre sí como {SB(i,j) / donde Ϊ toma valores entre 1 y‘s’ y‘j’ toma valores entre 1 y‘p’ siendo SB(i,j) la sub-batería‘j’ de la capa Ϊ. Una capa CP(i) de sub-baterías en paralelo, donde Ϊ toma valores entre y‘s’, por definición de conexión paralelo, se crea conectando o puenteando eléctricamente todos los polos positivos de las sub-baterías mediante un cable conductor o pletina conductora PC(i-1) (a partir de ahora diremos pletina conductora), y conectando o puenteando eléctricamente con otra pletina conductora PC(i) todos los polos negativos. La capa CP(i) de sub-baterías está formada por {SB(i,j) / donde‘j’ toma valores entre y p’ y delimitada por las pletinas conductoras PC(i-1) y PC(i). We will represent a battery that consists of's 'layers of'p', taking's 'and' p 'positive integer values, sub-batteries (SB) in parallel with each other as {SB (i, j) / where Ϊ takes values between 1 and's'y'j'takes values between 1 and' p 'where SB (i, j) is the sub-battery' j 'of layer Ϊ. A CP (i) layer of sub-batteries in parallel, where Ϊ takes values between y's', by definition of parallel connection, is created by electrically connecting or bridging all the positive poles of the sub-batteries by means of a conductive cable or conductive board PC (i-1) (from now on we will say conductive board), and connecting or electrically bridging with another conductive board PC (i) all negative poles. The CP (i) layer of sub-batteries is formed by {SB (i, j) / where'j 'takes values between y p' and delimited by the conductive plates PC (i-1) and PC (i).
Si colocamos en serie la capas CP(i) y CP(i+1), por la definición de conexión serie, podemos conectar el negativo de la capa CP(i) con el positivo de la capa CP(i+1), es decir la pletina conductora PC(i) está entre ambas capas y conecta los polos negativos de CP(i) y a la vez los positivos de la capa CP(i+1).  If we place the CP (i) and CP (i + 1) layers in series, by the definition of serial connection, we can connect the negative of the CP (i) layer with the positive of the CP (i + 1) layer, it is say the conductive plate PC (i) is between both layers and connects the negative poles of CP (i) and at the same time the positive poles of the CP layer (i + 1).
La pletina conductora de los polos positivos de la capa CP(1) será la PC(0) que es el polo positivo de la batería. La pletina conductora de los polos negativos de la última capa CP(s) será la PC(s) que será el polo negativo de la batería.  The conductive plate of the positive poles of the CP layer (1) will be the PC (0) which is the positive pole of the battery. The conductive plate of the negative poles of the last CP layer (s) will be the PC (s) that will be the negative pole of the battery.
La batería se trata como un dispositivo o circuito eléctrico, por esta razón aunque el ensamblado de las sub-baterías se haga en racimos en lugar de hacerse de forma matricial como se presenta en nuestro modelo, obtenemos el mismo circuito equivalente doblando conductores y desplazando los nudos eléctricos sobre los pletinas conductoras y por lo tanto podemos igualmente aplicar nuestro modelo matricial y explicaciones a cualquier ensamblado en racimos de sub-baterías.  The battery is treated as an electrical device or circuit, for this reason although the assembly of the sub-batteries is done in clusters instead of being done in a matrix as presented in our model, we obtain the same equivalent circuit by bending conductors and displacing the electrical knots on the conductive plates and therefore we can equally apply our matrix model and explanations to any assembly in clusters of sub-batteries.
La batería compuesta de sub-baterías tal como hemos indicado presenta un par de polos o bornes cuyo voltaje/corriente definirán su estado como de: carga, descarga o desconexión. Cada sub-batería presenta un par de polos o bornes cuyo voltaje/corriente definirán su estado como de: carga, descarga o desconexión.  The battery composed of sub-batteries as we have indicated has a pair of poles or terminals whose voltage / current will define their status as: charge, discharge or disconnection. Each sub-battery has a pair of poles or terminals whose voltage / current will define its status as: charge, discharge or disconnection.
En condiciones estables el estado de la batería compuesta coincidirá con el estado de sus sub-baterías componentes. Sin embargo con un número elevado de sub-baterías una sub batería en particular podrá adoptar un estado diferente al de la batería sin afectar de forma apreciable a esta.  Under stable conditions the state of the composite battery will match the state of its component sub-batteries. However, with a high number of sub-batteries, a particular sub-battery may adopt a different state from that of the battery without appreciably affecting it.
La red de conexionado dinámico interno definida en este documento sigue unas estrategias de conexión/desconexión de las sub-baterías que mejoran las características fundamentales de las sub-baterías y como consecuencia se mejoran las características de capacidad y duración de la vida de la batería. Dicha red queda constituida mediante los cables o pletinas conductoras, los interruptores conexión/desconexión y las propias sub-baterías.  The internal dynamic connection network defined in this document follows strategies for connecting / disconnecting the sub-batteries that improve the fundamental characteristics of the sub-batteries and consequently improve the capacity characteristics and duration of the battery life. This network is made up of the conductive cables or plates, the on / off switches and the sub-batteries themselves.
El efecto buscado con el conexionado dinámico de las sub-baterías es cambiar de forma transitoria el estado en el que se encuentra cada una de las sub-baterías operando en grupo, repitiendo esta acción cíclicamente habremos actuado en su momento con cada una de las sub-baterías con el beneficio que reporta a cada sub-batería su alteración transitoria de estado, y como consecuencia mejorando las características de capacidad y duración de la vida de la batería sin afectar o interrumpir sus operaciones. The effect sought with the dynamic connection of the sub-batteries is to temporarily change the state in which each of the sub-batteries is operating in a group, repeating this action cyclically we will have acted in due course with each of the sub -batteries with the benefit that each transitory alteration reports to each sub-battery status, and as a consequence improving the capacity characteristics and duration of the battery life without affecting or interrupting its operations.
La cantidad de amperios-hora asociados a las alteraciones transitorias de estado, se configura en un rango que va desde el 0% (desactivado) al 10% del valor“C” o capacidad normalizada de la sub-batería definido anteriormente, con tiempos de ciclo inferiores a los 15 minutos.  The amount of ampere-hours associated with the transient changes in state is configured in a range that goes from 0% (deactivated) to 10% of the value "C" or normalized capacity of the sub-battery defined above, with times of cycle less than 15 minutes.
Es decir, el ajuste de estos tiempos y ciclos se hace libremente, cumpliéndose en una realización preferencial:  That is to say, the adjustment of these times and cycles is done freely, fulfilling in a preferential embodiment:
Si el estado de la batería es carga o descarga y el estado transitorio de la sub-batería es de descarga o carga, la extracción/ aportación de amperios hora durante el corto periodo revertido transitorio está entre el 0% y el 10% de los amperios hora del valor‘C’ de la sub- batería.  If the battery state is charge or discharge and the transient state of the sub-battery is discharge or charge, the extraction / contribution of ampere hours during the short transient reversed period is between 0% and 10% of the amperes hour of the 'C' value of the sub-battery.
Si el estado de la batería es desconexión y el estado transitorio de la sub-batería es de carga o descarga, la extracción/ aportación de amperios hora durante el corto periodo revertido transitorio está entre el 0% y el 10% de los amperios hora del valor‘C’ de la sub- batería.  If the battery state is disconnection and the transient state of the sub-battery is charging or discharging, the extraction / contribution of ampere hours during the short transient reversed period is between 0% and 10% of the ampere hour of the 'C' value of the sub-battery.
Si el estado de la batería es carga o descarga y el estado transitorio de la sub-batería es de desconexión, la no aportación/ extracción de amperios hora por desconexión durante el corto periodo revertido transitorio está entre el 0% y el 10% de los amperios hora del valor ‘C’ de la sub-batería.  If the state of the battery is charging or discharging and the transitory state of the sub-battery is disconnection, the non-supply / extraction of ampere hours per disconnection during the short transitory reversed period is between 0% and 10% of the amp hours from the 'C' value of the sub-battery.
Procurando en cualquier caso que el momento de reversión transitoria de estado de todas las sub-baterías de una capa no coincida en un mismo instante, sino que por el contrario se distribuya con cierta homogeneidad en el tiempo del ciclo.  Trying in any case that the moment of transient reversal of state of all the sub-batteries of a layer does not coincide at the same instant, but on the contrary it is distributed with a certain homogeneity in the cycle time.
La introducción de un lapso de tiempo durante el que una batería revierte su estado, aun siendo bien conocido su potencial beneficio, sin embargo su realización no ha sido resuelta de forma práctica y eficaz, y menos aun de forma intrínseca desde el diseño de la propia batería como lo hace el objeto de la invención. En la presente invención, la batería por sí sola consigue a nivel de sub-batería aplicar de forma eficaz dicho beneficio, beneficio o mejora que intrínsecamente obtendrá la batería sin alterar su funcionamiento ni requerir ningún dispositivo externo.  The introduction of a period of time during which a battery reverts its state, although its potential benefit is well known, however its implementation has not been solved in a practical and effective way, and even less intrinsically since the design of the battery itself. battery as does the object of the invention. In the present invention, the battery alone achieves at the sub-battery level to effectively apply said benefit, benefit or improvement that intrinsically will obtain the battery without altering its operation or requiring any external device.
Las pruebas realizadas en un banco de pruebas con una batería dotada de las características de la invención que se propugna, arrojan resultados claros y definitivos de mejora en todos los parámetros observados durante las mismas.  The tests carried out in a test bench with a battery equipped with the characteristics of the invention being proposed, show clear and definitive results of improvement in all the parameters observed during them.
Cada sub-batería puede ser una batería elemental en el sentido de que no está compuesta por otras sub-baterías, o por el contrario estar constituida a su vez por un paquete de sub baterías de composición s’ p’. Lógicamente siendo s’<s y p’<p, más en concreto desde s’<=s/2 y p’<=p/2 hasta s’=1 y p’=1. Este ajuste de diseño (una batería por interruptor secundario o varias con un solo interruptor secundario) permitirá modular distintos costes y calidades de la batería. Donde cada sub-batería dispone de al menos un interruptor en serie. Como implementación general se entiende que, Each sub-battery may be an elementary battery in the sense that it is not made up of other sub-batteries, or on the contrary be constituted in turn by a sub-battery pack of composition s 'p'. Logically being s '<s and p'<p, more specifically since s '<= s / 2 and p'<= p / 2 up to s '= 1 and p' = 1. This design adjustment (one battery per secondary switch or several with a single secondary switch) will allow modulating different costs and qualities of the battery. Where each sub-battery has at least one switch in series. As a general implementation it is understood that,
el interruptor que permite alterar el estado de una sub-batería en particular puede conectarse al polo negativo o al polo positivo de esta (a un lado o al otro). Con la única limitación de que en la última capa que conecta con el polo negativo de la batería no es apropiada la desconexión al polo negativo, y en la primera capa que conecta directamente con el polo positivo de la batería no es apropiada la desconexión del polo positivo de las sub-baterías que la forman. Es por esta razón que a partir de aquí nos referiremos en la capa general Ϊ con desconexión de negativos y en la capa general‘k’ con desconexión de polos positivos.  the switch that allows the state of a particular sub-battery to be altered can be connected to its negative or positive pole (on one side or the other). With the only limitation that in the last layer that connects to the negative pole of the battery, disconnection to the negative pole is not appropriate, and in the first layer that connects directly to the positive pole of the battery, disconnection of the pole is not appropriate. positive of the sub-batteries that form it. It is for this reason that from here we will refer to the general layer Ϊ with disconnection of negatives and in the general layer ‘k ’with disconnection of positive poles.
En cualquier capa CP(i) de sub-baterías que no sea la última o sea la CP(s):  In any CP (i) layer of sub-batteries that is not the last or the CP (s):
Los negativos de las sub-baterías se pueden conectar a la pletina conductora PC(i), no directamente sino a través de un interruptor. En particular cada sub-batería SB(i,j) tendrá un interruptor en serie ISX(i,j) de manera que a interruptor cerrado la sub-batería estará conectada y actuará como en una batería convencional operando en el mismo estado que la batería compuesta a la que pertenece, mientras que a interruptor ISX(i,j) abierto, la sub- batería SB (i,j) quedará desconectada. Esta desconexión se realiza cíclica y alternativamente, -no con todos los interruptores abiertos a la vez sino con un reparto uniforme en el tiempo-, recorriendo las sub-baterías SB(i,j) en cada ciclo, de manera que la desconexión cíclica temporal cambia de forma transitoria el estado de cada una de las sub- baterías SB(i,j) a estado de desconexión sin alterar el servicio o estado de la batería. Es decir, realizando esta desconexión cuando la batería esté activa (carga o descarga), podemos decir que se ha cambiado de forma transitoria (durante un momento) el estado de cada una de las sub-baterías a estado de descarga actuando sobre su polo negativo.  The negatives of the sub-batteries can be connected to the conductive board PC (i), not directly but through a switch. In particular, each SB sub-battery (i, j) will have an ISX series switch (i, j) so that when the switch is closed, the sub-battery will be connected and act as in a conventional battery operating in the same state as the battery. to which it belongs, while the ISX switch (i, j) is open, the sub battery SB (i, j) will be disconnected. This disconnection is performed cyclically and alternatively, -not with all the switches open at the same time but with a uniform distribution in time-, running through the SB (i, j) sub-batteries in each cycle, so that the temporary cyclical disconnection transiently changes the state of each of the SB (i, j) sub-batteries to a disconnected state without altering the service or state of the battery. That is, by performing this disconnection when the battery is active (charge or discharge), we can say that the state of each of the sub-batteries has been changed temporarily (for a moment) to a state of discharge acting on its negative pole. .
En general para cada interruptor ISX(i,j) se incorpora un nuevo interruptor de descarga local asociado ISD(i,j) con un borne conectado al mismo polo de la sub-batería SB(i,j) al que está conectado ISX(i,j) y el otro borne está conectado al otro polo de la misma sub-batería SB(ij) ) al que está conectado ISX(i,j) y el otro borne:  In general, for each ISX switch (i, j) a new associated local discharge switch ISD (i, j) is incorporated with a terminal connected to the same pole of the SB sub-battery (i, j) to which ISX is connected ( i, j) and the other terminal is connected to the other pole of the same SB sub-battery (ij)) to which ISX (i, j) is connected and the other terminal:
- si el polo de la sub-batería SB(i,j) mencionado es el negativo, el otro borne de ISD(i,j) lo conectaremos al polo positivo de la misma sub-batería SB(ij) (pletina PC(i-1 )) o de cualquier sub-batería anterior SB((i-1 ,j), SB(i-2,j)... (Pletinas PC(i-2), PC(i-3)...).  - if the pole of the SB (i, j) sub-battery is negative, the other ISD terminal (i, j) will be connected to the positive pole of the same SB (ij) sub-battery (PC board (i -1)) or any previous sub-battery SB ((i-1, j), SB (i-2, j) ... (Decks PC (i-2), PC (i-3) ... ).
- si el polo de la sub-batería SB(i,j) mencionado es el positivo, el otro borne de ISD(i,j) lo conectaremos al polo negativo de la misma sub-batería SB(i,j) (pletina PC(i)) o de cualquier sub-batería posterior SB((i+1 ,j), SB(i+2,j)... (Pletinas PC(i+1), PC(i+2)...). - if the pole of the SB sub-battery (i, j) mentioned is positive, the other ISD terminal (i, j) we will connect to the negative pole of the same SB sub-battery (i, j) (PC board (i)) or of any subsequent sub-battery SB ((i + 1, j), SB (i + 2, j) ... (Plates PC (i + 1), PC (i + 2) ...).
En particular al mismo polo negativo de la sub-batería SB(i,j), se conectará el borne de otro interruptor de descarga local ISD(i,j) y su otro borne lo conectaremos al polo positivo de la misma sub-batería es decir a PC(i-1). La apertura del interruptor ISX(i,j) y el cierre del interruptor ISD(i,j) pondrá a la sub-batería SB (i J) en estado de descarga, realizando esta desconexión/conexión cuando la batería no esté en descarga, podemos decir que hemos cambiado de forma transitoria (durante un momento) el estado de cada una de las sub baterías actuando sobre su polo negativo. Si en lugar de conectar el otro borne de ISD(i,j) al polo positivo de la misma sub-batería, se conecta al polo positivo de una sub-batería de la capa anterior CP(i-1) es decir a PC(i-2) obtendremos el mismo resultado a doble voltaje/corriente y así sucesivamente.  In particular, to the same negative pole of the sub-battery SB (i, j), the terminal of another local discharge switch ISD (i, j) will be connected and its other terminal will be connected to the positive pole of the same sub-battery is tell PC (i-1). Opening the ISX switch (i, j) and closing the ISD switch (i, j) will put the SB sub-battery (i J) in a discharge state, performing this disconnection / connection when the battery is not discharged, We can say that we have temporarily changed (for a moment) the state of each of the sub batteries acting on its negative pole. If instead of connecting the other ISD terminal (i, j) to the positive pole of the same sub-battery, it connects to the positive pole of a sub-battery of the previous layer CP (i-1), that is to PC ( i-2) we will get the same result at double voltage / current and so on.
Por otro lado, para cada interruptor ISX(i,j), se incorpora un interruptor ISC(ij) de carga local asociado a este con un borne conectado al mismo polo de la sub-batería SB(i,j) al que está conectado ISX(i,j) y el otro borne está conectado a:  On the other hand, for each ISX switch (i, j), a local charge ISC switch (ij) associated with it is incorporated with a terminal connected to the same pole of the SB sub-battery (i, j) to which it is connected ISX (i, j) and the other terminal is connected to:
- si el polo de la sub-batería SB(i,j) mencionado es el negativo, el otro borne de ISC(i,j) se conecta al polo negativo de una sub-batería de la capa siguiente, es decir a la pletina PC(i+1) o posterior PC(i+2), PC(i+3)...  - if the pole of the SB sub-battery (i, j) mentioned is negative, the other ISC terminal (i, j) is connected to the negative pole of a sub-battery of the next layer, that is to say to the plate PC (i + 1) or later PC (i + 2), PC (i + 3) ...
- si el polo de la sub-batería SB(i,j) mencionado es el positivo, el otro borne de ISC(i,j) se conecta al polo positivo de una sub-batería de la capa precedente, es decir a la pletina PC(i- 2) o anterior PC(i-3), PC(i-4).  - if the pole of the SB sub-battery (i, j) mentioned is positive, the other ISC terminal (i, j) is connected to the positive pole of a sub-battery of the preceding layer, that is to say to the plate PC (i-2) or earlier PC (i-3), PC (i-4).
Es decir, al mismo polo negativo de la sub-batería SB(i,j), se conecta el borne de otro interruptor de carga local ISC(i,j) y su otro borne lo conectaremos al polo negativo de una sub-batería de la capa siguiente es decir a PC(i+1). La apertura del interruptor ISX(i,j) y el cierre del interruptor ISC(i,j) pondrá a la sub-batería SB(i,j) en estado de carga, realizando esta desconexión/conexión cuando la batería no esté en carga, podemos decir que hemos cambiado de forma transitoria (durante un momento) el estado de cada una de las sub baterías actuando sobre su polo negativo. Si en lugar de conectar el otro borne de ISC(i,j) al polo negativo de una sub-batería de la capa siguiente es decir a PC(i+1), lo conectamos al polo negativo de una sub-batería de la capa siguiente de la anterior es decir a PC(i+2) obtendremos el mismo resultado a doble voltaje/corriente y así sucesivamente.  That is, to the same negative pole of the sub-battery SB (i, j), the terminal of another local charge switch ISC (i, j) is connected and its other terminal we will connect to the negative pole of a sub-battery of the next layer is PC (i + 1). Opening the ISX switch (i, j) and closing the ISC switch (i, j) will put the SB sub-battery (i, j) in charge state, performing this disconnection / connection when the battery is not charging We can say that we have temporarily changed (for a moment) the state of each of the sub batteries acting on its negative pole. If instead of connecting the other ISC terminal (i, j) to the negative pole of a sub-battery in the next layer, that is to PC (i + 1), we connect it to the negative pole of a sub-battery in the layer next of the previous one is to say to PC (i + 2) we will obtain the same result at double voltage / current and so on.
En cualquier caso ISX(i,j) cerrado y ISC(i,j) cerrado a la vez es un estado prohibido de cortocircuito que el control nunca adoptará. Es decir, la MCU que gobierna el conexionado de la batería no permite que el interruptor ISX(i,j) y ISD(i,j) en posición de cerrados al mismo tiempo En cualquier capa CP(k) de sub-baterías que no sea la primera o sea la CP(1):In any case ISX (i, j) closed and ISC (i, j) closed at the same time is a prohibited state of short circuit that the control will never adopt. That is, the MCU that governs the battery connection does not allow the ISX (i, j) and ISD (i, j) switch to be closed at the same time. In any CP (k) layer of sub-batteries that is not the first or CP (1):
Los positivos de las sub-baterías se pueden conectar a la pletina conductora PC(k-1) no directamente sino a través de un interruptor. En particular cada sub-batería SB(kj) tendrá un interruptor en serie ISX(k,j) que a interruptor cerrado la sub-batería estará conectada y actuará como en una batería convencional operando en el mismo estado que la batería compuesta a la que pertenece, mientras que a interruptor ISX(k,j) abierto, la sub-batería SB(kj) quedará desconectada. Esta desconexión transitoria actuará alternativamente (no con todos a la vez) sobre todas las sub-baterías SB(k,j). Realizando esta desconexión cuando la batería esté activa (carga o descarga) podremos decir que se ha cambiado de forma transitoria (durante un momento) el estado de cada una de las sub-baterías actuando sobre su polo positivo. The positives of the sub-batteries can be connected to the PC conductive board (k-1) not directly but through a switch. In particular, each SB sub-battery (kj) will have an ISX series switch (k, j) which, when closed, the sub-battery will be connected and will act as in a conventional battery operating in the same state as the compound battery to which belongs, while open ISX switch (k, j), the SB sub-battery (kj) will be disconnected. This transient disconnection will act alternately (not with all at once) on all the SB (k, j) sub-batteries. Making this disconnection when the battery is active (charge or discharge) we can say that the state of each of the sub-batteries has been changed temporarily (for a moment) acting on its positive pole.
Al mismo polo positivo de la sub-batería SB(k,j), conectaremos el borne de otro interruptor ISD(k,j) y su otro borne lo conectaremos al polo negativo de la misma sub-batería es decir a PC(k). La apertura del interruptor ISX(k,j) y el cierre del interruptor ISD(k,j) pondrá a la sub- batería SB(kj) en estado de descarga, realizando esta desconexión/conexión cuando la batería no esté en descarga, podemos decir que hemos cambiado de forma transitoria (durante un momento) el estado de cada una de las sub-baterías actuando sobre su polo positivo. Si en lugar de conectar el otro borne de ISD(k,j) al polo negativo de la misma sub- batería es decir a PC(k), lo conectamos al polo negativo de una batería de la capa más abajo CP(k+1) es decir a PC(k+1) obtendremos el mismo resultado a doble voltaje/corriente y así sucesivamente.  To the same positive pole of the SB sub-battery (k, j), we will connect the terminal of another ISD switch (k, j) and its other terminal we will connect to the negative pole of the same sub-battery, that is to PC (k) . Opening the ISX switch (k, j) and closing the ISD switch (k, j) will put the SB sub-battery (kj) in a discharge state, performing this disconnection / connection when the battery is not discharging, we can say that we have temporarily changed (for a moment) the state of each of the sub-batteries acting on its positive pole. If instead of connecting the other ISD terminal (k, j) to the negative pole of the same sub-battery, that is to PC (k), we connect it to the negative pole of a battery in the lower layer CP (k + 1 ) ie PC (k + 1) we will get the same result at double voltage / current and so on.
En cualquier caso ISX(k,j) cerrado y ISD(k,j) cerrado a la vez es un estado prohibido de cortocircuito que el control nunca adoptará.  In either case ISX (k, j) closed and ISD (k, j) closed at the same time is a prohibited state of short circuit that the control will never adopt.
Al mismo polo positivo de la sub-batería SB(k,j), conectaremos el borne de otro interruptor ISC(k,j) y su otro borne lo conectaremos al polo positivo de una sub-batería de la capa anterior es decir a PC(k-2). La apertura del interruptor ISX(k,j) y el cierre del interruptor ISC(k,j) pondrá a la sub-batería SB(kj) en estado de carga, realizando esta desconexión/conexión cuando la batería no esté en carga, podemos decir que hemos cambiado de forma transitoria (durante un momento) el estado de cada una de las sub- baterías actuando sobre su polo positivo. Si en lugar de conectar el otro borne de ISC(k,j) al polo positivo de una sub-batería de la capa anterior es decir a PC(k-2), lo conectamos al polo positivo de una batería de la capa más arriba es decir a PC(k-3) obtendremos el mismo resultado a doble voltaje/corriente y así sucesivamente.  To the same positive pole of the SB sub-battery (k, j), we will connect the terminal of another ISC switch (k, j) and its other terminal we will connect to the positive pole of a sub-battery of the previous layer, that is, to PC (k-2). Opening the ISX switch (k, j) and closing the ISC switch (k, j) will put the SB sub-battery (kj) in a charging state, performing this disconnection / connection when the battery is not charging, we can To say that we have temporarily changed (for a moment) the state of each of the sub-batteries acting on its positive pole. If instead of connecting the other ISC terminal (k, j) to the positive pole of a sub-battery of the previous layer, that is to PC (k-2), we connect it to the positive pole of a battery of the upper layer that is to say, to PC (k-3) we will obtain the same result at double voltage / current and so on.
En cualquier caso ISX(k,j) cerrado y ISC(k,j) cerrado a la vez es un estado prohibido de cortocircuito que el control de la MCU nunca adoptará. En cualquier caso ISC(kJ) cerrado y ISD(k,j) cerrado a la vez es un estado prohibido de cortocircuito que el control de la MCU nunca adoptará. In either case ISX (k, j) closed and ISC (k, j) closed at the same time is a prohibited short circuit state that the MCU control will never adopt. In either case ISC (kJ) closed and ISD (k, j) closed at the same time is a prohibited state of short circuit that the MCU control will never adopt.
La batería de conexionado dinámico interno auto-gestionado, objeto de la presente invención actúa esta carga transitoria y alternativamente con un reparto más o menos uniforme en el tiempo sobre todas las sub-baterías SB(i,j), realizando esta carga cuando la batería no esté en carga habremos cambiado de forma transitoria (durante un momento) el estado de cada una de las sub-baterías a estado de carga en cada ciclo.  The self-managed internal dynamic connection battery, object of the present invention, acts this transient charge and alternatively with a more or less uniform distribution in time on all the SB (i, j) sub-batteries, performing this charge when the battery not in charge we will have changed temporarily (for a moment) the state of each of the sub-batteries to state of charge in each cycle.
El control de los interruptores se realiza por al menos una unidad micro-controladora (a partir de ahora -MCU) o lógica equivalente que dispondrá de canales de salida digital para su activación/desactivación siguiendo la estrategia explicada. El MCU o lógica equivalente detecta el estado de la batería mediante un sensor de corriente mediante el que reconoce el estado de carga; corriente positiva en el borne positivo significa batería en carga, corriente negativa en borne positivo significa batería en descarga, corriente nula en borne positivo significa batería desconectada.  The control of the switches is carried out by at least one micro-controller unit (from now on -MCU) or equivalent logic that will have digital output channels for their activation / deactivation following the explained strategy. The MCU or equivalent logic detects the state of the battery by means of a current sensor through which it recognizes the state of charge; positive current at the positive terminal means battery in charge, negative current at positive terminal means battery in discharge, null current at positive terminal means battery disconnected.
La MCU o lógica equivalente dispone de un software que ejecuta las acciones explicadas de control de los interruptores con unos parámetros de control configurables: tiempo de ciclo, tiempo y tipo de transitorio a aplicar a las sub-baterías para cada estado de la batería.  The MCU or equivalent logic has software that executes the explained control actions of the switches with configurable control parameters: cycle time, time and type of transient to be applied to the sub-batteries for each state of the battery.
La MCU o lógica equivalente incluye canales de entrada analógica, por los que capta por los que capta las corrientes en las sub-baterías bien sea desde un shunt local o desde el propio interruptor y, los voltajes en bornes de los interruptores, dado que estos voltajes serán función de la temperatura y de la corriente que los atraviesa, disponiendo también de un sensor de temperatura y conociendo la función característica del modelo de interruptor utilizado, la MCU o lógica equivalente evaluará la corriente que en tiempo real está circulando por todas y cada una de las sub-baterías. Consideramos esta opción preferente por ser más económica y simple que la opción alternativa de incorporar sensores de corriente o shunts que sería otra opción más precisa pero más costosa en términos constructivos y económicos.  The MCU or equivalent logic includes analog input channels, through which it captures through which it captures the currents in the sub-batteries, either from a local shunt or from the switch itself, and the terminal voltages of the switches, since these Voltages will be a function of temperature and the current that passes through them, also having a temperature sensor and knowing the characteristic function of the switch model used, the MCU or equivalent logic will evaluate the current that is flowing through each and every time one of the sub-batteries. We consider this preferred option to be cheaper and simpler than the alternative option of incorporating current sensors or shunts, which would be another more precise option but more costly in constructive and economic terms.
Se incorpora a la MCU o lógica equivalente un software que ejecuta un algoritmo configurable de diagnóstico de alarmas global y local por sub-batería.  Software that runs a configurable global and local alarm diagnostics by sub-battery is incorporated into the MCU or equivalent logic.
La MCU o lógica equivalente incluirá un software o algoritmo configurable de desconexión o aislamiento de sub-baterías que por su mal estado o estado de riesgo pueden tener una repercusión negativa o contaminación eléctrica en la vida y capacidad de la batería.  The MCU or equivalent logic will include a configurable software or algorithm for disconnection or isolation of sub-batteries that due to their poor condition or risk status may have a negative impact or electrical contamination on the life and capacity of the battery.
Tecnología Eléctrica/Electrónica Electrical / Electronic Technology
Se ha realizado un análisis del circuito de conexión/desconexión, con interruptores eléctricos, lo que facilita el análisis mediante una interpretación visual directa. No obstante, dado el estado de la tecnología electrónica actual, estos interruptores preferentemente se realizarán mediante transistores MOS-FET de alto rendimiento, alta fiabilidad, poco volumen y bajo coste para así optimizar los resultados de viabilidad, seguridad y rendimiento. An analysis of the connection / disconnection circuit has been carried out, with electrical switches, which facilitates the analysis through direct visual interpretation. However, given the state of current electronic technology, these switches are preferably They will be made using high performance, high reliability, low volume and low cost MOS-FET transistors to optimize the results of feasibility, safety and performance.
El control de tiempos e interruptores se realiza con una o varias unidades micro- controladoras MCU's o con lógica eléctrica equivalente, estas MCU’s como es habitual incluirán conexiones de red cableada o sin cable. The control of times and switches is carried out with one or more microcontroller units MCU 's or with equivalent electrical logic, these MCUs as usual will include wired or wireless network connections.
La implementación descrita, por sí sola, nos da otros valores añadidos aparte de los ya mencionados:  The implementation described, by itself, gives us other added values apart from those already mentioned:
El elemento interruptor, tiene una cierta característica de resistencia interna función de la corriente y la temperatura, con esta información midiendo el voltaje en interruptor, la micro-controladora MCU o lógica equivalente tendrá una estimación de la corriente. A través de una conexión de red cableada o no se transmite una imagen clara del estado y operación de las baterías en tiempo real a un puesto de usuario o pantalla/teclado... Como consecuencia disponemos de una información detallada del funcionamiento de la batería.  The switch element has a certain internal resistance characteristic as a function of current and temperature, with this information measuring the switch voltage, the MCU microcontroller or equivalent logic will have an estimate of the current. Through a wired or no network connection, a clear image of the status and operation of the batteries is transmitted in real time to a user station or screen / keyboard ... As a consequence, we have detailed information on the operation of the battery.
Una avería de una sub-batería provoca en muchos casos daños colaterales de interferencia y a veces degenerativos, con los datos disponibles la avería será detectada y aislada mediante el interruptor correspondiente a la batería averiada. Nuestro sistema será así tolerante a averías. Esta capacidad se sumará a la reversión temporal de estados para otra vez alargar más la vida y la eficacia de nuestra batería.  A failure of a sub-battery in many cases causes collateral damage of interference and sometimes degenerative, with the available data the failure will be detected and isolated by means of the switch corresponding to the failed battery. Our system will thus be fault tolerant. This capacity will add to the temporary reversal of states to once again extend the life and efficiency of our battery.
El ordenador efectúa el control explicado, con los siguientes parámetros.  The computer performs the explained control, with the following parameters.
TCICLO: cada TCICLO segundos se revierte el estado de la batería componente.  TCICLO: every TCICLO seconds the state of the component battery is reversed.
IDB: intensidad de descarga/carga de la batería en amperios  IDB: battery discharge / charge current in amps
RINTERNA: resistencia interna de la batería + contactos en OHMs RINTERNA: internal resistance of the battery + contacts in OHMs
EBATERÍA: voltios generados por la batería en Voltios. EBATTERY: volts generated by the battery in Volts.
VI N VERSA: voltaje para revertir el estado en Voltios.  VI N VERSA: voltage to reverse the state in Volts.
PULSO: duración del pulso de corriente inversa en segundos.  PULSE: duration of the reverse current pulse in seconds.
TPCQID: tanto por ciento de corriente inversa respecto a directa.  TPCQID: percentage of inverse current compared to direct.
Aplicando ligadura: TPCQID/100*IDB*TCICLO = (VINVERSA-EBATERIAj/RINTERNA * PULSO  Applying ligature: TPCQID / 100 * IDB * TCICLO = (VINVERSA-EBATERIAj / RINTERNA * PULSO
De donde TCICLO = ( ((VINVERSA-EBATERÍA)/RINTERNA*PULSO) ) / (TPCQID/100*IDB)From where TCICLO = (((VINVERSA-EBATERÍA) / RINTERNA * PULSO)) / (TPCQID / 100 * IDB)
Ventajas de la invención Advantages of the invention
Según lo descrito anteriormente, la batería de conexionado dinámico interno auto- gestionado que se presenta, aporta múltiples ventajas sobre las baterías actuales, como son:  As described above, the self-managed internal dynamic connection battery that is presented, provides multiple advantages over current batteries, such as:
Aumenta la duración de la vida útil de la batería en muchas condiciones en más en un 100%, Incrementa los amperios hora por descarga de la batería en muchas descargas en más del 24%, y Increases battery life span in many conditions by more than 100%, Increases the amp hours per battery discharge on many discharges by more than 24%, and
En consecuencia mejora la efectividad o valor de la batería expresada en amperios hora totalizados por todas las descargas a lo largo de su vida útil; llegando a multiplicar por más de 2 la efectividad de la misma batería cuando no se la hubiera dotado de esta invención.  Consequently, it improves the effectiveness or value of the battery expressed in total ampere hours for all discharges throughout its useful life; managing to multiply by more than 2 the effectiveness of the same battery when it had not been equipped with this invention.
Utilizando los mismos interruptores instalados, también es posible conseguir el aislamiento de sub-baterías averiadas, lo que evita los daños contaminantes derivados de esta situación.  Using the same installed switches, it is also possible to achieve the isolation of faulty sub-batteries, which avoids the contaminating damages derived from this situation.
La persona experta en la técnica comprenderá fácilmente que puede combinar características de diferentes realizaciones con características de otras posibles realizaciones, siempre que esa combinación sea técnicamente posible.  The person skilled in the art will readily understand that he can combine features of different embodiments with features of other possible embodiments, provided that such a combination is technically possible.
Descripción general de las figuras  General description of the figures
Para comprender mejor el objeto de la presente invención, y asociadas a las explicaciones y definiciones adjuntamos las siguientes figuras:  To better understand the object of the present invention, and associated with the explanations and definitions, we attach the following figures:
La figura -1- muestra una batería formada por un paquete de sub-baterías con‘p’ baterías en paralelo por capa y un total de‘s’ capas con un conexionado fijo usual según el estado de la técnica, en el que se han representado dos capas genéricas CP(i) y CP(k) y sus vecinas respectivas CP(i+1) y CP(k-1).  Figure -1- shows a battery made up of a sub-battery pack with 'p' batteries in parallel per layer and a total of's' layers with a usual fixed connection according to the state of the art, in which represented two generic layers CP (i) and CP (k) and their respective neighbors CP (i + 1) and CP (k-1).
La figura -2- muestra la batería con una implementación general objeto de la presente invención  Figure -2- shows the battery with a general implementation object of the present invention
La figura -3 muestra la batería con una implementación específica sencilla de laboratorio, para la evaluación de los resultados o beneficios conseguidos mediante la presente invención.  Figure -3 shows the battery with a simple specific implementation of laboratory, for the evaluation of the results or benefits achieved by the present invention.
La figura -4- muestra un gráfico de un registro de la capacidad de descarga de una batería objeto de la presente invención en relación a una batería según el estado de la técnica en tanto por uno, según resultados obtenidos en laboratorio mediante la implementación de la figura -3  Figure -4- shows a graph of a record of the discharge capacity of a battery object of the present invention in relation to a battery according to the state of the art as well as one, according to results obtained in the laboratory by implementing the figure -3
Realización del prototipo de evaluación de la invención, valoración de resultados  Realization of the prototype of evaluation of the invention, evaluation of results
El prototipo de evaluación para una ejecución más sencilla y directa, se ha montado mediante cableado directo de relés electro-mecánicos, evitando así la necesidad de circuitos impresos.  The evaluation prototype for a simpler and more direct execution has been assembled by direct wiring of electro-mechanical relays, thus avoiding the need for printed circuits.
En la figura 2, la capa de sub-baterías CP(i) representa la reversión de estados transitorios alterando las conexiones de los polos negativos de las sub-baterías y es aplicable a cualquier capa que no sea la última. La capa de sub-baterías CP(k) representa la reversión de estados transitorios cambiando la conexión de los polos positivos de las sub-baterías y es aplicable a cualquier capa que no sea la primera capa. In Figure 2, the CP (i) sub-battery layer represents the reversal of transient states by altering the connections of the negative poles of the sub-batteries and is applicable to any layer other than the last one. The CP (k) sub-battery layer represents reversal of transient states by changing the connection of the positive poles of the sub-batteries and is applicable to any layer other than the first layer.
La Figura 3 representa el esquema eléctrico del modelo más sencillo que hemos utilizado para la comparación de dos baterías en paralelo, una tratada y la otra no. (11 y 12 respectivamente) son dos baterías de Ion Litio de C=2.6 amperios x hora y V=3.6V, sometemos ambas a ciclos de carga y descarga sucesivos según la secuencia definida por el fabricante.  Figure 3 represents the electrical diagram of the simplest model that we have used for the comparison of two batteries in parallel, one treated and the other not. (11 and 12 respectively) are two Lithium Ion batteries of C = 2.6 amps per hour and V = 3.6V, we both subject to successive charge and discharge cycles according to the sequence defined by the manufacturer.
Los contactos (20) activados por ordenador colocan las baterías en carga desde la fuente (22) configurada a 4.2V de tensión máxima y 8.84 amperios de corriente máxima. Los contactos (21) activados por ordenador colocan las baterías en descarga a través de la resistencia (23) que ocasiona una descarga a una corriente media de 1.31C. El contacto (24) de 2 posiciones, activado por ordenador sitúa la batería tratada (11) en carga transitoria cuando el contacto (21) está activado a través de la fuente de alimentación (25) configurada a 7.2 V de tensión máxima y 40 amperios de corriente máxima, y en descarga transitoria de cortocircuito cuando el contacto (20) está activado.  The computer activated contacts (20) place the batteries in charge from the source (22) configured at 4.2V maximum voltage and 8.84 amps maximum current. The contacts (21) activated by computer place the batteries in discharge through the resistance (23) that causes a discharge at an average current of 1.31C. The computer-activated 2-position contact (24) places the treated battery (11) in transient charge when the contact (21) is activated through the power supply (25) configured at 7.2 V maximum voltage and 40 amps of maximum current, and in transient short-circuit discharge when the contact (20) is activated.
El contacto (26) de 2 posiciones, no se activa nunca por lo que la batería (12) no es tratada con la reversión de estado en ningún momento. Los shunts (27, 28, 29 y 30) suministran al ordenador la medida de la corriente en la batería tratada (11), corriente en batería no tratada (12), corriente de carga y corriente de descarga respectivamente.  The 2-position contact (26) is never activated, so the battery (12) is not treated with the state reversal at any time. The shunts (27, 28, 29 and 30) supply the computer with the measurement of the current in the treated battery (11), current in the untreated battery (12), charging current and discharge current respectively.
Según los parámetros descritos del control del ordenador:  According to the described parameters of the computer control:
Para IDB = C = 2.6 A, RINTERNA=0.11OHM, EBATERÍA: 3.6V, VINVERSA= 7.2 V, PULSO = 0.022 seg., TPCQID= 3.4. Obtenemos TCICLO = 8.14 seg.  For IDB = C = 2.6 A, RINTERNA = 0.11OHM, EBATTERY: 3.6V, VINVERSA = 7.2 V, PULSE = 0.022 sec., TPCQID = 3.4. We get TCICLO = 8.14 sec.
Sometidas ambas baterías en paralelo a los mismos ciclos carga/descarga con descargas a corriente 1.31C a una resistencia óhmica fija y cargas cc-cv con corriente a 1.7C y Voltaje 4.2V, hemos representado la relación en tanto por uno entre ambas baterías (eje y) en función del número de descargas (eje x).  Both batteries submitted in parallel to the same charge / discharge cycles with discharges at 1.31C current at a fixed ohmic resistance and DC-CV loads with current at 1.7C and Voltage 4.2V, we have represented the relationship by both between both batteries ( y-axis) depending on the number of discharges (x-axis).
En la figura 4 se distingue una primera batería tratada (11) de reversión de estado momentáneo TPCQID= 1.38 y una batería sin tratamiento (12) sin reversión de estados se han sometido a un proceso continuo de carga y descarga durante 4 semanas con un total de 41539 grabaciones (1 por minuto), lo que nos ha permitido ver con claridad la tendencia de desgaste de ambas baterías en las sucesivas descargas y apreciar que el desgaste es sustancialmente menor en la tratada con la invención.  In figure 4 a first momentary state reversal treated battery (11) TPCQID = 1.38 and a non-treated battery (12) without state reversal have been subjected to a continuous process of charge and discharge for 4 weeks with a total of of 41539 recordings (1 per minute), which has allowed us to clearly see the tendency of wear of both batteries in the successive discharges and to appreciate that the wear is substantially less in that treated with the invention.
De estos ensayos se desprende que la batería no tratada da una vida útil (ver definición anterior) de 147 ciclos con una vida aproximada de 14 días, mientras que para la batería tratada con la reversión de estados de la batería (A) la vida es de 316 ciclos, unos 28 días. El objetivo de estos ensayos no es valorar las prestaciones de una batería en particular sino comparar las prestaciones que ofrece una batería con o sin la aplicación del conexionado objeto de la presente invención; por esta razón hablamos de un factor de mejora de 2.24. Dado que en este test ambas baterías, con tratamiento (11) con las reversiones de estado y la batería sin tratamiento (12) están conectadas en paralelo entre sí, comparten en todo momento un voltaje común. Puesto que el voltaje multiplicado por los amperios hora es energía en vatios hora, la relación entre los amperios horas y las energías es la misma, por esta razón podemos afirmar que la batería tratada con las reversiones locales de estado transitorias haría funcionar un vehículo más del doble de los kilómetros (y en rutas más largas) que una batería no tratada con la invención aquí expuesta. From these tests it appears that the untreated battery gives a useful life (see previous definition) of 147 cycles with an approximate life of 14 days, while for the battery treated with the reversal of battery states (A) the life is 316 cycles, about 28 days. The objective of these tests is not to assess the performance of a particular battery but to compare the performance offered by a battery with or without the application of the piping object of the present invention; For this reason we speak of an improvement factor of 2.24. Since in this test both batteries, with treatment (11) with status reversals and the battery without treatment (12) are connected in parallel with each other, they share a common voltage at all times. Since the voltage multiplied by the ampere hours is energy in watt hours, the relation between the ampere hours and the energies is the same, for this reason we can affirm that the battery treated with the transient local state reversals would operate a vehicle more than the twice the kilometers (and on longer routes) than a battery not treated with the invention here exposed.
El ensayo de contraste anterior se ha repetido con grupos de 4 baterías, 2 tratadas y 2 sin tratar. Con grupos de 8 baterías, 4 tratadas y 4 sin tratar. Y con grupos de 12 baterías, 6 tratadas y 6 sin tratar. Hasta más de una decena de ensayos durante meses, y en todos los casos en los que se respetaron los requisitos de la patente, se observaron resultados similares donde la media de“C” y vida de las baterías tratadas con la reversión transitoria de estados mejoraban claramente con los factores mencionados a las no tratadas o de conexionado convencional estático.  The previous contrast test has been repeated with groups of 4 batteries, 2 treated and 2 untreated. With groups of 8 batteries, 4 treated and 4 untreated. And with groups of 12 batteries, 6 treated and 6 untreated. Up to more than a dozen tests over months, and in all cases in which the patent requirements were respected, similar results were observed where the average “C” and life of the batteries treated with the transient reversal of states improved clearly with the factors mentioned to the untreated or static conventional connection.
Toda la información referida a ejemplos, ensayos, o modos de realización forma parte de la descripción de la invención.  All the information referring to examples, tests, or embodiments forms part of the description of the invention.

Claims

REIVINDICACIONES
1.- Batería de conexionado dinámico interno auto-gestionado, de las que se componen de un grupo de sub-baterías {SB(1 ,1), SB(1 ,2) . SB(1 ,p), SB(2,1), SB(2,2) . SB(2,p),1.- Self-managed internal dynamic connection battery, consisting of a group of sub-batteries {SB (1, 1), SB (1, 2). SB (1, p), SB (2,1), SB (2,2). SB (2, p),
... ,SB(s,p)}, siendo‘p’ el número de sub-baterías conectadas en paralelo entre sí y‘s’ el número de paquetes o capas de sub-baterías en paralelo que colocados en serie componen la batería, caracterizada por que las sub-baterías en paralelo {SB(i, 1), SB(i,2),... ,SB(i,p))} componen la capa CP(i), donde Ϊ toma valores entre y ‘s’, estando la capa CP(i) delimitada o establecida en el lado de los polos positivos de las sub-baterías por un conductor o pletina conductora PC(i-1) y en el lado de los polos negativos por la pletina conductora PC(i), donde incorpora al menos un interruptor ISX(i,j) conectado en serie con cada una de las sub-baterías SB(i,j), de manera que con este interruptor en posición de abierto, la sub-batería SB(i,j) en serie pasa a un estado de desconexión, y cuando está en posición de cierre, la sub-batería SB(i,j) en serie toma el mismo estado de la batería a la que pertenece, donde: ..., SB (s, p)}, where 'p' is the number of sub-batteries connected in parallel with each other and s' is the number of packages or layers of parallel sub-batteries that placed in series make up the battery , characterized in that the parallel sub-batteries {SB (i, 1), SB (i, 2), ..., SB (i, p))} compose the CP (i) layer, where Ϊ takes values between and 's', the CP (i) layer being delimited or established on the side of the positive poles of the sub-batteries by a conductor or conductive plate PC (i-1) and on the side of the negative poles by the plate conductive PC (i), where it incorporates at least one ISX switch (i, j) connected in series with each of the SB sub-batteries (i, j), so that with this switch in the open position, the sub- Serial SB (i, j) battery goes into a disconnected state, and when in the closed position, the serial SB (i, j) sub-battery takes the same state as the battery to which it belongs, where:
esta desconexión se realiza cíclica y alternativamente, -no con todos los interruptores abiertos a la vez sino con un reparto uniforme en el tiempo-, recorriendo las sub-baterías SB(i,j) en cada ciclo, de manera que la desconexión cíclica temporal cambia de forma transitoria el estado de cada una de las sub-baterías SB(i,j) a estado de desconexión sin alterar el servicio o estado de la batería  This disconnection is carried out cyclically and alternatively, -not with all the switches open at the same time but with a uniform distribution over time-, running through the SB (i, j) sub-batteries in each cycle, so that the temporary cyclical disconnection transiently changes the state of each of the SB (i, j) sub-batteries to disconnected state without altering the service or state of the battery
y por comprender: and for understanding:
unidad micro-controladora MCU o lógica equivalente, para el control de dichos interruptores ISX(i,j) o cualquier circuito eléctrico que realice de forma equivalente dicha función de control, disponiendo de canales de salida digital, mediante los que activa los interruptores.  MCU micro-controller unit or equivalent logic, for the control of said ISX switches (i, j) or any electrical circuit that performs said control function equivalently, having digital output channels through which it activates the switches.
2.- Batería de conexionado dinámico interno auto-gestionado, según reivindicación primera, caracterizada por que para cada interruptor ISX(i,j) se incorpora un nuevo interruptor de descarga local asociado ISD(i,j) con un borne conectado al mismo polo de la sub-batería SB(ij) al que está conectado ISX(i,j) y el otro borne: 2.- Self-managed internal dynamic connection battery, according to the first claim, characterized in that for each ISX switch (i, j) a new associated local discharge switch ISD (i, j) is incorporated with a terminal connected to the same pole from the SB sub-battery (ij) to which ISX (i, j) is connected and the other terminal:
- si el polo de la sub-batería SB(i,j) mencionado es el negativo, el otro borne de ISD(i,j) lo conectaremos al polo positivo de la misma sub-batería SB(ij) (pletina PC(i-1 )) o de cualquier sub-batería anterior SB((i-1 ,j), SB(i-2,j)... (Pletinas PC(i-2), PC(i-3)...)  - if the pole of the SB (i, j) sub-battery is negative, the other ISD terminal (i, j) will be connected to the positive pole of the same SB (ij) sub-battery (PC board (i -1)) or any previous sub-battery SB ((i-1, j), SB (i-2, j) ... (Decks PC (i-2), PC (i-3) ... )
- si el polo de la sub-batería SB(i,j) mencionado es el positivo, el otro borne de ISD(i,j) lo conectaremos al polo negativo de la misma sub-batería SB(i,j) (pletina PC(i)) o de cualquier sub-batería posterior SB((i+1 ,j), SB(i+2,j)... (Pletinas PC(i+1), PC(i+2)...) - if the pole of the SB (i, j) sub-battery is positive, the other ISD terminal (i, j) will be connected to the negative pole of the same SB (i, j) sub-battery (PC board (i)) or any subsequent sub-battery SB ((i + 1, j), SB (i + 2, j) ... (Decks PC (i + 1), PC (i + 2) ... )
3.- Batería de conexionado dinámico interno auto-gestionado, según reivindicación anterior, caracterizada por que el interruptor ISX(i,j) en estado de apertura y el interruptor ISD(i,j) el estado de cierre, asociados a la sub-batería SB(i,j) pone a esta sub-batería SB(i,j) en estado de descarga, de manera que al ejecutar esta desconexión/conexión momentánea cíclicamente cuando la batería no esté en descarga, cada una de las sub-baterías SB(i,j) cambia su estado particular a descarga de forma transitoria cíclicamente. 3.- Self-managed internal dynamic connection battery, according to the previous claim, characterized in that the ISX switch (i, j) in the open state and the ISD switch (i, j) in the closed state, associated with the sub- battery SB (i, j) puts this sub-battery SB (i, j) in discharge state, so that when executing this momentary disconnection / connection cyclically when the battery is not discharged, each of the sub-batteries SB (i, j) changes its particular state to discharge cyclically transiently.
4 Batería de conexionado dinámico interno auto-gestionado, según reivindicación primera, caracterizada por que para cada interruptor ISX(ij), se incorpora un interruptor ISC(i,j) de carga local asociado a este con un borne conectado al mismo polo de la sub-batería SB(i,j) al que está conectado ISX(i,j) y el otro borne está conectado a: 4 Self-managed internal dynamic connection battery, according to the first claim, characterized in that for each ISX switch (ij), a local charge ISC switch (i, j) is incorporated, associated with this with a terminal connected to the same pole of the SB sub-battery (i, j) to which ISX (i, j) is connected and the other terminal is connected to:
- si el polo de la sub-batería SB(i,j) mencionado es el negativo, el otro borne de ISC(i,j) se conecta al polo negativo de una sub-batería de la capa siguiente, es decir a la pletina PC(i+1) o posterior PC(i+2), PC(i+3)...  - if the pole of the SB sub-battery (i, j) mentioned is negative, the other ISC terminal (i, j) is connected to the negative pole of a sub-battery of the next layer, that is to say to the plate PC (i + 1) or later PC (i + 2), PC (i + 3) ...
- si el polo de la sub-batería SB(i,j) mencionado es el positivo, el otro borne de ISC(i,j) se conecta al polo positivo de una sub-batería de la capa precedente, es decir a la pletina PC(i- 2) o anterior PC(i-3), PC(i-4).  - if the pole of the SB sub-battery (i, j) mentioned is positive, the other ISC terminal (i, j) is connected to the positive pole of a sub-battery of the preceding layer, that is to say to the plate PC (i-2) or earlier PC (i-3), PC (i-4).
5.- Batería de conexionado dinámico interno auto-gestionado, según reivindicación anterior, caracterizada por que el interruptor ISX(i,j) en estado de apertura y el interruptor ISC(i,j) el estado de cierre, asociados a la sub-batería SB(i,j) pone a esta sub-batería SB(i,j) en estado de carga, de manera que al ejecutar esta desconexión/conexión momentánea cíclicamente cuando la batería no esté en carga, cada una de las sub-baterías SB(i,j) cambia su estado particular a carga de forma transitoria cíclicamente. 5.- Self-managed internal dynamic connection battery, according to the previous claim, characterized in that the ISX switch (i, j) in the open state and the ISC switch (i, j) in the closed state, associated with the sub- battery SB (i, j) puts this sub-battery SB (i, j) in a state of charge, so that when executing this momentary disconnection / connection cyclically when the battery is not charging, each of the sub-batteries SB (i, j) transiently changes its particular state to charge cyclically.
6.- Batería de conexionado dinámico interno auto-gestionado, según reivindicaciones anteriores, caracterizada porque la MCU o lógica equivalente se conecta a un sensor de corriente mediante el que reconoce el estado (carga, descarga, desconexión) de la batería. 6.- Self-managed internal dynamic connection battery, according to previous claims, characterized in that the MCU or equivalent logic is connected to a current sensor through which it recognizes the status (charge, discharge, disconnection) of the battery.
7.- Batería de conexionado dinámico interno auto-gestionado, según reivindicación anterior, caracterizada porque la MCU o lógica equivalente dispone de un software que ejecuta la secuenciación uniforme de las acciones de control de los interruptores según unos parámetros de control configurables: tiempo de ciclo, tiempo y tipo de transitorio a aplicar a las sub-baterías (transitorio de carga, de descarga o de desconexión) en cada uno de los estados de la batería. 7.- Self-managed internal dynamic connection battery, according to the previous claim, characterized in that the MCU or equivalent logic has software that executes the uniform sequencing of the control actions of the switches according to configurable control parameters: cycle time , time and type of transient to be applied to the sub-batteries (transient charging, discharging or disconnection) in each of the states of the battery.
8.- Batería de conexionado dinámico interno auto-gestionado, según reivindicación anterior, caracterizada porque los parámetros de de control anteriores (tiempo de ciclo, tiempo y tipo de transitorio) están configurados de forma que la cantidad de amperios-hora asociados a las alteraciones transitorias de estado, está en un rango que va desde el 0% (desactivado) al 10% del valor“C” o capacidad normalizada de la sub-batería, con tiempos de ciclo inferiores a los 15 minutos. 8.- Self-managed internal dynamic connection battery, according to the previous claim, characterized in that the previous control parameters (cycle time, time and type of transient) are configured so that the number of ampere-hours associated with the alterations transient status, is in a range that goes from 0% (deactivated) to 10% of the “C” value or normalized capacity of the sub-battery, with cycle times of less than 15 minutes.
9.- Batería de conexionado dinámico interno auto-gestionado, según reivindicación anterior, caracterizada porque la MCU o lógica equivalente dispone de canales de entrada analógica, por los que capta las corrientes en las sub-baterías bien sea desde un shunt local o desde el propio interruptor. 9.- Self-managed internal dynamic connection battery, according to the previous claim, characterized in that the MCU or equivalent logic has analog input channels, through which it captures the currents in the sub-batteries either from a local shunt or from the own switch.
10.- Batería de conexionado dinámico interno auto-gestionado, según reivindicación anterior, caracterizada porque la MCU o lógica equivalente incorpora un software que ejecuta un algoritmo configurable de diagnóstico de alarmas global y local por sub-batería. 10.- Self-managed internal dynamic connection battery, according to the previous claim, characterized in that the MCU or equivalent logic incorporates software that executes a configurable algorithm for diagnosing global and local alarms by sub-battery.
11.- Batería de conexionado dinámico interno auto-gestionado, según reivindicación anterior, caracterizada porque la MCU o lógica equivalente incorpora un software o algoritmo configurable de desconexión o aislamiento de sub-baterías de efectos perjudiciales sobre la capacidad y/o duración de la batería. 11.- Self-managed internal dynamic connection battery, according to the previous claim, characterized in that the MCU or equivalent logic incorporates a configurable software or algorithm for disconnection or isolation of sub-batteries with detrimental effects on the capacity and / or duration of the battery. .
PCT/ES2019/070595 2018-09-12 2019-09-09 Battery having self-managed dynamic internal connections WO2020053462A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201830885A ES2748067A1 (en) 2018-09-12 2018-09-12 SELF-MANAGED DYNAMIC INTERNAL CONNECTION BATTERY (Machine-translation by Google Translate, not legally binding)
ESP201830885 2018-09-12

Publications (1)

Publication Number Publication Date
WO2020053462A1 true WO2020053462A1 (en) 2020-03-19

Family

ID=69726869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070595 WO2020053462A1 (en) 2018-09-12 2019-09-09 Battery having self-managed dynamic internal connections

Country Status (2)

Country Link
ES (1) ES2748067A1 (en)
WO (1) WO2020053462A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120091964A1 (en) * 2010-10-14 2012-04-19 Gm Global Technology Operations, Inc. Battery fault tolerant architecture for cell failure modes series bypass circuit
US20120256568A1 (en) * 2009-07-02 2012-10-11 Chong Uk Lee Multi-port reconfigurable battery
CN107275691A (en) * 2017-06-05 2017-10-20 广州供电局有限公司 Battery pack managing and control system and control method
US20180099579A1 (en) * 2015-04-20 2018-04-12 Upgrade Technology Engineering Ltd. Battery system comprising a control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120256568A1 (en) * 2009-07-02 2012-10-11 Chong Uk Lee Multi-port reconfigurable battery
US20120091964A1 (en) * 2010-10-14 2012-04-19 Gm Global Technology Operations, Inc. Battery fault tolerant architecture for cell failure modes series bypass circuit
US20180099579A1 (en) * 2015-04-20 2018-04-12 Upgrade Technology Engineering Ltd. Battery system comprising a control system
CN107275691A (en) * 2017-06-05 2017-10-20 广州供电局有限公司 Battery pack managing and control system and control method

Also Published As

Publication number Publication date
ES2748067A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
KR20210092721A (en) Serial battery pack capacity online monitoring and charging/discharging dual state equalization circuit and method
JP6891421B2 (en) Power storage device for starting the engine, control method of the power storage device for starting the engine, vehicle
JP5717217B2 (en) Power storage device
US6617830B2 (en) Capacitor system for a vehicle
ES2552207T3 (en) Energy storage set and procedure to operate such a set
JP6872549B2 (en) Current measuring device using shunt resistor
US20140009116A1 (en) Balance correction apparatus and electric storage system
US20140197794A1 (en) Battery pack including different kinds of cells and power device including the same
US20150002099A1 (en) Battery management converter system
JP2012524380A5 (en)
JP6549306B2 (en) vehicle
US9160190B2 (en) System and method for assessing ADC operation and voltage of a battery pack
US9178367B2 (en) Balance correction apparatus and electric storage system
US20140111161A1 (en) Battery pack
CN110754014A (en) System and method for operating a dual battery system
KR20190048972A (en) Starting battery system for cell balancing of Lithium battery pack and capacitor
JP2009148110A (en) Charger/discharger and power supply device using the same
WO2020053462A1 (en) Battery having self-managed dynamic internal connections
JP2021023018A (en) On-vehicle power supply system
JP4758788B2 (en) Power supply
ES2725004T3 (en) Battery system for electrical connection with a component
KR101572923B1 (en) Battery system
JP5428589B2 (en) Lithium-ion capacitor cell charge / discharge device
JP6915286B2 (en) Power storage device
KR20130021555A (en) The parallel connection device of the circuit for charge and discharge of multiple batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859904

Country of ref document: EP

Kind code of ref document: A1