WO2020053070A1 - Armature de frettage bi-module de pneumatique pour vehicule lourd de type genie civil - Google Patents

Armature de frettage bi-module de pneumatique pour vehicule lourd de type genie civil Download PDF

Info

Publication number
WO2020053070A1
WO2020053070A1 PCT/EP2019/073732 EP2019073732W WO2020053070A1 WO 2020053070 A1 WO2020053070 A1 WO 2020053070A1 EP 2019073732 W EP2019073732 W EP 2019073732W WO 2020053070 A1 WO2020053070 A1 WO 2020053070A1
Authority
WO
WIPO (PCT)
Prior art keywords
equal
reinforcement
tire
layer
hooping
Prior art date
Application number
PCT/EP2019/073732
Other languages
English (en)
Inventor
Cédric KHAYAT
Vincent Estenne
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Priority to US17/275,642 priority Critical patent/US20220041019A1/en
Priority to BR112021002821-8A priority patent/BR112021002821A2/pt
Publication of WO2020053070A1 publication Critical patent/WO2020053070A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2006Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords consisting of steel cord plies only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2012Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers
    • B60C2009/2016Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers comprising cords at an angle of 10 to 30 degrees to the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2012Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers
    • B60C2009/2029Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers with different cords in the same layer, i.e. cords with different materials or dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2048Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by special physical properties of the belt plies
    • B60C2009/2051Modulus of the ply
    • B60C2009/2054Modulus of the ply being different within the same ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2077Diameters of the cords; Linear density thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/208Modulus of the cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2093Elongation of the reinforcements at break point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2214Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre characterised by the materials of the zero degree ply cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2228Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre characterised by special physical properties of the zero degree plies
    • B60C2009/2233Modulus of the zero degree ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2252Physical properties or dimension of the zero degree ply cords
    • B60C2009/2257Diameters of the cords; Linear density thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2252Physical properties or dimension of the zero degree ply cords
    • B60C2009/2261Modulus of the cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2252Physical properties or dimension of the zero degree ply cords
    • B60C2009/228Elongation of the reinforcements at break point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2252Physical properties or dimension of the zero degree ply cords
    • B60C2009/2295Physical properties or dimension of the zero degree ply cords with different cords in the same layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles
    • B60C2200/065Tyres specially adapted for particular applications for heavy duty vehicles for construction vehicles

Definitions

  • the present invention relates to a radial tire, intended to equip a heavy vehicle of the civil engineering type, and relates more particularly to the crown reinforcement of such a tire, and even more particularly to its hooping reinforcement.
  • a radial tire for a heavy vehicle of the civil engineering type within the meaning of the standard of the European Tire and Rim Technical Organization or ETRTO, is intended to be mounted on a rim whose diameter is at least equal to 25 inches.
  • ETRTO European Tire and Rim Technical Organization
  • the invention is described for a large radial tire, intended to be mounted on a dumper, vehicle for transporting materials extracted from quarries or surface mines, via a rim whose diameter is at least equal to 49 inches and can reach 57 inches, even 63 inches.
  • a tire having a geometry of revolution relative to an axis of rotation the geometry of the tire is generally described in a meridian plane containing the axis of rotation of the tire.
  • the radial, axial and circumferential directions respectively designate the directions perpendicular to the axis of rotation of the tire, parallel to the axis of rotation of the tire and perpendicular to the meridian plane.
  • the circumferential direction is tangent to the circumference of the tire.
  • radially interior means “closer”, respectively “further from the axis of rotation of the tire”.
  • axially exterior is meant “closer”, respectively “further from the equatorial plane of the tire”, the equatorial plane of the tire being the plane passing through the middle of the rolling surface and perpendicular to the axis of rotation.
  • a tire comprises a tread, intended to come into contact with a ground by means of a rolling surface, the two axial ends of which are connected by means of two sidewalls with two beads. ensuring the mechanical connection between the tire and the rim on which it is intended to be fitted.
  • a radial tire also comprises a reinforcing reinforcement, consisting of a crown reinforcement, radially internal to the tread, and a carcass reinforcement, radially internal to the crown reinforcement.
  • the carcass reinforcement of a radial tire for a heavy vehicle of the civil engineering type usually comprises at least one carcass layer comprising generally metallic reinforcements, coated with a polymeric material of elastomer or elastomer type, obtained by mixing and called coating mixture.
  • a carcass layer comprises a main part, connecting the two beads together and generally winding, in each bead, from the inside towards the outside of the tire around a circumferential reinforcement element, most often metallic, called bead wire, to form a reversal.
  • the metal reinforcements of a carcass layer are substantially parallel to each other and form, with the circumferential direction, an angle between 85 ° and 95 °.
  • the crown reinforcement of a radial tire for a heavy vehicle of the civil engineering type comprises a superposition of crown layers extending circumferentially, radially outside the carcass reinforcement.
  • Each top layer consists of generally metallic reinforcements, which are parallel to each other and coated with a polymeric material of the elastomer or coating mixture type.
  • a metallic reinforcement is characterized mechanically by a curve representing the tensile force (in N), applied to the metallic reinforcement, as a function of its relative elongation (in%), called the force curve. elongation. From this force-elongation curve, mechanical tensile characteristics of the metal reinforcement are deduced, such as the structural elongation As (in%), the total elongation at break At (in%), the force at break Fm (load maximum in N) and the breaking strength Rm (in MPa), these characteristics being measured according to ISO 6892 of 1984.
  • the structural elongation As results from the relative positioning of the wires metal components of the metal reinforcement under a low tensile force.
  • the elastic extension Ae results from the intrinsic elasticity of the metal of the metallic wires, constituting the metallic reinforcement, taken individually, the behavior of the metal according to Hooke's law.
  • the plastic elongation Ap results from the plasticity, that is to say from the irreversible deformation, beyond the elastic limit, of the metal of these metallic wires taken individually.
  • an extension module expressed in GPa, which represents the slope of the straight line tangent to the force-elongation curve at this point.
  • the elastic extension module or the Young modulus is called the extension module of the elastic linear part of the force-elongation curve.
  • An elastic metallic reinforcement is characterized by a structural elongation As at least equal to 1% and a total elongation at break At at least equal to 4%.
  • an elastic metallic reinforcement has an elastic modulus in extension at most equal to 150 GPa, and usually comprised between 40 GPa and 150 GPa.
  • a non-extensible metallic reinforcement is characterized by a total elongation At, under a tensile force equal to 10% of the breaking force Fm, at most equal to 0.2%.
  • a non-extensible metallic reinforcement has an elastic module in extension usually comprised between 150 GPa and 200 GPa.
  • the protective layers constituting the protective frame and radially outermost
  • the working layers constituting the frame and radially between the protective armature and the carcass reinforcement.
  • the protective reinforcement comprising at least one protective layer, essentially protects the working layers from mechanical or physical attack. chemicals, which can propagate through the tread radially towards the inside of the tire.
  • the protective reinforcement often comprises two protective layers, radially superimposed, formed of elastic metallic reinforcements, mutually parallel in each layer and crossed from one layer to the next, forming, with the circumferential direction, angles at least equal to 10 °.
  • the working reinforcement comprising at least two working layers, has the function of encircling the tire and giving it rigidity and road holding. It takes up both mechanical inflation stresses generated by the inflation pressure of the tire and transmitted by the carcass reinforcement, and mechanical rolling stresses generated by the rolling of the tire on a ground and transmitted by the tread. . It must also resist oxidation and impact and puncture, thanks to its intrinsic design and that of the protective frame.
  • the working frame usually comprises two working layers, radially superimposed, formed of non-extensible metal reinforcements, mutually parallel in each layer and crossed from one layer to the next, forming, with the circumferential direction, angles at most equal to 60 °, and preferably at least equal to 15 ° and at most equal to 45 °.
  • a hooping frame having a rigidity in circumferential extension high.
  • the hooping reinforcement whose function is to at least partially absorb the mechanical inflation stresses, also improves the endurance of the crown reinforcement by stiffening the crown reinforcement when the tire is flattened under a radial load and, in particular, subject to a drift angle around the radial direction.
  • the hooping reinforcement usually comprises two hooping layers, radially superimposed, formed of metal reinforcements, mutually parallel in each layer and crossed from one layer to the next, forming, with the circumferential direction, angles at more equal to 10 °.
  • the hooping frame can be positioned radially inside the working frame, between the two working layers of the working frame, or radially outside the working frame.
  • the hooping layers there are the so-called hooping layers with closed angles, that is to say whose metal reinforcements form, with the circumferential direction, angles at least equal to 5 ° and at most equal at 10 °, and the circumferential hooping layers, more precisely substantially circumferential, that is to say of which the metal reinforcements form, with the circumferential direction, angles at most equal to 5 ° and which may be zero.
  • the closed angle hoop layers include metallic reinforcements having free ends at the axial ends of the hoop layers.
  • the circumferential hooping layers comprise metal reinforcements having no free ends at the axial ends of the hooping layers, since the circumferential hooping layers are most often obtained by the circumferential winding of a sheet of metal reinforcements or by the circumferential winding of a continuous metallic reinforcement.
  • the document WO 2014048897 A1 aims to desensitize the crown of a radial tire for a heavy vehicle of the civil engineering type to shocks occurring essentially at the center of its tread, and describes an additional reinforcement centered on the equatorial plane of the pneumatic, comprising at least one additional layer, formed of metal reinforcements making with the circumferential direction an angle at most equal to 10 °, the metal reinforcements of each additional layer being elastic and having an elastic modulus in extension at most equal to 150 GPa.
  • the additional reinforcement, described in this document, is therefore a hooping reinforcement with elastic metallic reinforcements, the hooping layers being either hooping layers with closed angles, or circumferential hooping layers.
  • Document WO 2016139348 A1 aims to improve both the performance of cleavage endurance and impact resistance of the crown of a tire for heavy vehicle of the civil engineering type, and describes a hooping reinforcement, formed by a circumferential winding of a ply so as to form a radial stack of at least two hooping layers, comprising circumferential elastic metallic reinforcements making, with the circumferential direction of angles at most equal to 2.5 °, the reinforcement of hooping being radially positioned between the working layers, and the circumferential metal reinforcements of the hooping reinforcement having a breaking force at least equal to 800 daN.
  • the hooping frame, described in this document, is therefore a hooping frame made up of circumferential hooping layers with elastic metallic reinforcements.
  • a hooping reinforcement with circumferential hooping layers when the tire, when running, is subjected to an axial force, parallel to its axis of rotation, also called transverse or lateral force, the axial ends circumferential hooping layers are subjected to significant tensions due to the bending on edge, around a radial axis, of the crown reinforcement as a whole.
  • the most axially outermost metal reinforcements of the circumferential hooping layers are then subjected to high elongations, which can lead to their rupture and, consequently, damage to the hooping reinforcement, which in turn can cause a damage to the crown reinforcement and premature removal of the tire.
  • the inventors have set themselves the objective, for a radial tire for a heavy vehicle of the civil engineering type comprising a hooping reinforcement with circumferential hooping layers, to increase the breaking strength of the hooping reinforcement, at the level of its axial ends, while guaranteeing satisfactory endurance of the crown reinforcement, during the rolling of the tire, in particular in drift.
  • This objective was achieved, according to the invention, by a tire for heavy vehicle of the civil engineering type comprising a crown reinforcement, radially internal to a tread and radially external to a carcass reinforcement,
  • the crown reinforcement comprising, radially from the outside towards the inside, a protective reinforcement and a working reinforcement
  • the protective reinforcement comprising at least one protective layer comprising elastic metallic reinforcements having an elastic modulus in extension at most equal to 150 GPa, coated in an elastomeric material, parallel to each other and forming, with a circumferential direction tangent to the circumference of the tire, an angle at least equal to 10 °,
  • the working reinforcement comprising two working layers respectively comprising non-extensible metal reinforcements having an elastic modulus in extension greater than 150 GPa and at most equal to 200 GPa, coated in an elastomeric material, parallel to each other, forming, with the circumferential direction, an angle at least equal to 15 ° and at most equal to 45 °, and crossed from one working layer to the next,
  • the crown reinforcement also comprising, radially inside the protective reinforcement, a circumferential hooping reinforcement,
  • the circumferential hooping reinforcement comprising at least one circumferential hooping layer having an axial width and comprising metallic reinforcements, coated in an elastomeric material, parallel to each other and forming, with the circumferential direction, an angle at most equal to 5 ° ,
  • the at least one circumferential hooping layer comprising a median portion, having a median width and an elastic module in median extension, and two lateral portions, extending axially on either side the median portion and each having a lateral width and a elastic module in lateral extension,
  • the lateral width being at least 0.05 times the median width
  • the elastic module in lateral extension being at most equal to 0.9 times the elastic module in median extension.
  • each hooping layer of the hooping reinforcement is broken down into a middle portion and two side portions, extending on either side the middle portion, the side portions being narrower and less rigid than the middle portion.
  • Each lateral portion has a width, called lateral width, at the less than 5% of the median width of the median portion. In other words, the lateral width must be sufficiently large compared to the median width.
  • each lateral portion has an elastic module in lateral extension at most equal to 90% of the elastic module in median extension of the median portion. In other words, the elastic module in lateral extension must be sufficiently small compared to the elastic module in median extension.
  • the elastic module in extension Ec of a portion of layer, consisting of metallic reinforcements, having a diameter D and an elastic module in extension E R and two by two separated by a pitch P, distance between the respective centers of two consecutive reinforcements, is equal to E R * (I1 * D) / (4 * P).
  • the lateral portion in extension of the hooping layer due to its lower modulus elastic in extension, therefore of its greater flexibility, has a greater elongation capacity than the adjacent middle portion, which reduces the tension applied in this lateral portion and therefore the risk of rupture of the metal reinforcements at the end of this portion lateral.
  • the lateral width is at most equal to 0.5 times the median width.
  • the rigidity in extension of the lateral portion equal to the product of the elastic module in lateral extension by the thickness of the lateral portion divided by the lateral width, therefore inversely proportional to the lateral width, becomes too small in relative value compared to the rigidity in extension of the middle portion; resulting in excessive elongation of the side portion and excessive tension in the metal end reinforcements of this side portion.
  • the elastic module in lateral extension is at least equal to 0.3 times the elastic module in median extension.
  • the elastic module in lateral extension becomes too small in relative value compared to the elastic module in median extension, resulting in insufficient hooping of the lateral portion and a resumption of the efforts in extension, applied to the layer. hooping, essentially by the middle portion, with, therefore, an increased risk of cleavage at the axial ends of the working layers.
  • the working frame having an axial width, the axial width of the at least one circumferential hooping layer is at least equal to 0.3 times and at most equal to 0.7 times the axial width of the working frame .
  • the axial width of the working reinforcement is defined as the width of the widest working layer, which is often the most radially inner working layer. Below the lower limit of the axial width of the working reinforcement, the hooping width is insufficient and the risk of cleavage at the axial ends of the working layers is increased. Beyond the upper limit, the hooping width is too large and the tension forces in the hooping layer become excessive.
  • the middle portion and the lateral portions of the at least one circumferential hooping layer respectively comprise elastic metallic reinforcements having an elastic modulus in extension at most equal to 150 GPa.
  • the metal reinforcements of the middle portion and of the lateral portions are elastic, that is to say with a large elongation capacity, with a total elongation at break At at least equal to 4%.
  • the elastic modulus in median extension is at least equal to 110 GPa.
  • This lower bound requires the elastic module in median extension to be included in the interval [110 GPA, 150 GPa], therefore in the upper range of the elastic modules in extension, which makes it possible to have a significant difference in stiffness between the middle portion and the lateral portions of the hooping layer.
  • the elastic metal reinforcements of the middle portion and the lateral portions of the at least one circumferential hooping layer are multi-strand cables of lxN structure comprising a single layer of N strands wound in a helix, each strand comprising an internal layer of M internal wires wound in a helix and an external layer of K external wires wound in a helix around the internal layer.
  • Multi-strand cable formulas are classic assemblies for elastic cables.
  • the circumferential hooping reinforcement comprises at least two layers of circumferential hooping, to obtain the desired level of circumferential rigidity, and therefore hooping.
  • the respective axial widths of the at least two circumferential hooping layers are equal, for reasons of simplicity of manufacture.
  • the circumferential hooping frame is positioned radially between two working layers of the working frame.
  • the circumferential hooping frame is positioned radially inside the working frame.
  • the radial positioning of the circumferential hooping reinforcement relative to the working reinforcement impacts the distribution of forces in the crown and the associated risks of damage to the various components of the crown reinforcement.
  • the more radially outer the circumferential hooping frame the more the tension forces in the circumferential hooping frame, and therefore the associated risk of rupture, decrease.
  • the shearing at the ends of the working reinforcement, and therefore the risk of cleavage increases.
  • the distance of the circumferential hooping reinforcement from the carcass reinforcement reduces the risk of cracking of the carcass reinforcement.
  • the metal reinforcements of the at least one protective layer form, with the circumferential direction, an angle at least equal to 15 ° and at most equal to 35 °.
  • the protective frame comprises two protective layers, the respective metal reinforcements are crossed from one protective layer to the next.
  • FIG. 1 there is shown a meridian half-section, in a YZ plane, of a tire 1 for heavy vehicle of civil engineering type according to the invention, comprising a crown reinforcement 3, radially internal to a strip bearing 2 and radially external to a carcass reinforcement 4.
  • the crown reinforcement 3 comprises, radially from the outside towards the interior, a protective reinforcement 5 and a working reinforcement 6.
  • the protective reinforcement 5 comprises two protective layers (51, 52) comprising elastic metallic reinforcements having an elastic modulus in extension at most equal to 150 GPa, coated in an elastomeric material, parallel to each other and forming, with a circumferential direction XX ′ tangent to the circumference of the pneumatic, an angle at least equal to 10 ° (not shown) and crossed from one protective layer to the next.
  • the working frame 6 comprises two working layers (61, 62) respectively comprising non-extensible metal reinforcements having an elastic modulus in extension greater than 150 GPa and at most equal to 200 GPa, coated in an elastomeric material, parallel to each other , forming, with the circumferential direction XX ', an angle at least equal to 15 ° and at most equal to 45 ° (not shown), and crossed from one working layer to the next.
  • the working reinforcement 6 has an axial width LT, defined as the width of the widest working layer, which is, in the example shown, the most radially interior 61.
  • the crown reinforcement 3 also comprises, radially inside the protective reinforcement 5, a circumferential hooping reinforcement 7, positioned radially between the two working layers (61, 62) of the reinforcement working 6.
  • the circumferential hooping reinforcement 7 comprises two circumferential hooping layers (71, 72) having respectively an axial width (L1, L2), and comprising metal reinforcements, coated in an elastomeric material, parallel to each other and forming , with the circumferential direction XX ', an angle at most equal to 5 ° (not shown).
  • the axial widths (L1, L2) of the two circumferential hooping layers (71, 72) are not equal.
  • each circumferential hooping layer (71, 72) comprises a median portion (711, 721), having a median width (Ll 1, L21) and an elastic module in median extension (El 1, E21), and two lateral portions (712, 722), extending axially on either side the middle portion (711, 721) and each having a lateral width (L12, L22) and an elastic module in lateral extension (E12, E22).
  • the lateral width (L12, L22) is at least equal to 0.05 times the median width (L1, L21) and the elastic modulus in lateral extension (E12, E22) is at most equal to 0.9 times the elastic modulus in median extension ( El l, E21).
  • FIG. 2A shows a schematic top view of a circumferential hooping layer (71, 72) at rest.
  • the elastic metal reinforcements of each lateral portion (712, 722) are shown in dotted lines, while those of each middle portion (711, 721) are shown in solid lines. At rest, all these metal reinforcements, parallel to each other, are positioned in circumferential planes XZ.
  • FIG. 2B shows a schematic top view of a circumferential hooping layer (71, 72) deformed in bending on edge, when the tire is subjected to a drift angle around a radial direction ZZ '.
  • the elastic metal reinforcements of the lateral portion (712, 722) in extension are more flexible than those of the middle portion (711, 721), because, according to the invention, the elastic module in lateral extension (E12, E22) is at most equal to 0.9 times the elastic modulus in median extension (El l, E21), and therefore have an elongation capacity making it possible to limit the stress in extension to which they are subjected.
  • FIG. 3 represents standard behavior laws in extension respectively for the metallic reinforcements constituting a median portion and those constituting a lateral portion of the circumferential hooping layer.
  • the extension stress (Sl l, S 12) expressed in MPa, defined as the ratio between the extension force, expressed in N, and the reinforcement section, expressed in mm , is shown as a function of the extensional deformation (Dl l, D12), that is to say of the corresponding relative elongation, expressed in%.
  • the stress in extension (Sl l, S 12) varies very slightly until a first value of deformation in extension corresponding to the structural elongation (AS11, AS 12) of the respective elastic metallic reinforcements of middle portion and lateral portion, then increases according to a slope corresponding to the elastic modulus in extension (El l, E12) until a deformation in extension at break (AR11, AR12).
  • This graph shows that the elastic modulus in lateral extension E12 is at most equal to 0.9 times the elastic modulus in median extension El l.
  • the inventors compared two tires II and 12 according to the invention to a reference tire R in the dimension 59/80 R 63.
  • the reference tire R as well as the tires II and 12 according to the invention all have a crown reinforcement 3 having the same radial stack of crown layers.
  • the crown reinforcement 3 comprises, radially from the outside inwards, a protective reinforcement 5 having two protective layers (51, 52), the respective elastic metallic reinforcements of which are crossed from one layer to the next, form, with the circumferential direction XX ', an angle equal to 33 °, and a working frame 6 having two working layers (61, 62) whose respective non-extensible metal reinforcements, crossed from one layer to the next, form , with the circumferential direction XX ', an angle equal to 33 °.
  • the crown reinforcement 3 further comprises, radially interposed between the working layers (61, 62) of the working reinforcement 6, a circumferential hooping reinforcement 7 having two hooping layers circumferential (71, 72) whose respective elastic metal reinforcements form, with the circumferential direction, an angle substantially equal to 0 °.
  • the two circumferential hooping layers (71, 72), having respectively an axial width L1 equal to 520 mm and an axial width L2 equal to 520 mm, comprise elastic metallic reinforcements of the cable type.
  • the two circumferential hooping layers (71, 72) have respectively an axial width L1 equal to 520 mm and an axial width L2 equal to 520 mm.
  • the two circumferential hooping layers (71, 72) each comprise a median portion (711, 721), having a median width (Ll 1, L21) equal to 410 mm and an elastic modulus in median extension (El 1, E21) equal at 88 GPa, and two lateral portions (712, 722), extending axially on either side the middle portion (711, 721), each lateral portion (712, 722) having a lateral width (L12, L22) equal to 55 mm and an elastic module in lateral extension (E12, E22) equal to 79 GPa.
  • the tire 12 according to the invention differs from the tire II only in the nature of the elastic metal reinforcements of the lateral portions (712, 722) of the circumferential hooping layers (71, 72).
  • the inventors carried out, for tires R, Il and 12, numerical simulations of the finite element type in running, the tire being inflated to a pressure P equal to 7 bars, crushed under a radial load Z equal to 102024 daN (104 tonnes), and subjected to a lateral drift thrust Fy equal to 25% of the radial load Z. They thus determined the maximum tensile forces in the circumferential hooping layers and / or in their median and lateral portions respectively, presented in Table 2 below:
  • the inventors have also determined the maximum amplitudes of shear deformations, around the wheel, in elastomeric mixtures, positioned radially inside and outside the axial end portions of the working layer 72 the most radially external, this criterion being considered as relevant with regard to the endurance of the summit with respect to cleavage. These maximum amplitudes of shear deformations are presented in table 3 below:
  • the maximum amplitudes of shear elongation remain substantially the same level between the tires R, Il and 12, hence performance in endurance cleavage of the apex that is substantially identical between the reference tire and the tires according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

La présente invention a pour objet un pneumatique radial (1) pour véhicule lourd de type génie civil et vise à augmenter la tenue à la rupture de son armature de frettage à couches circonférentielles, en garantissant une endurance satisfaisante de son armature de sommet. Selon l'invention, la au moins une couche de frettage circonférentielle (71, 72) comprend une portion médiane (711, 721), ayant une largeur médiane (L11, L21) et un module élastique en extension médian (E11, E21), et deux portions latérales (712, 722), prolongeant axialement de part et d'autre la portion médiane (711, 721) et ayant chacune une largeur latérale (L12, L22) et un module élastique en extension latéral (E12, E22), la largeur latérale (L12, L22) est au moins égale à 0.05 fois la largeur médiane (L11, L21) et le module élastique en extensionlatéral (E12, E22) est au plus égal à 0.9 fois le module élastique en extension médian (E11, E21).

Description

Titre : ARMATURE DE FRETTAGE BI-MODULE DE PNEUMATIQUE
POUR VEHICUEE EOURD DE TYPE GENIE CIVIE
[0001] La présente invention a pour objet un pneumatique radial, destiné à équiper un véhicule lourd de type génie civil, et concerne plus particulièrement l’armature de sommet d’un tel pneumatique, et encore plus particulièrement son armature de frettage.
[0002] Typiquement un pneumatique radial pour véhicule lourd de type génie civil, au sens de la norme de la European Tyre and Rim Technical Organisation ou ETRTO, est destiné à être monté sur une jante dont le diamètre est au moins égal à 25 pouces. Bien que non limitée à ce type d’application, l’invention est décrite pour un pneumatique radial de grande dimension, destiné à être monté sur un dumper, véhicule de transport de matériaux extraits de carrières ou de mines de surface, par l’intermédiaire d’une jante dont le diamètre est au moins égal à 49 pouces et peut atteindre 57 pouces, voire 63 pouces.
[0003] Un pneumatique ayant une géométrie de révolution par rapport à un axe de rotation, la géométrie du pneumatique est généralement décrite dans un plan méridien contenant l’axe de rotation du pneumatique. Pour un plan méridien donné, les directions radiale, axiale et circonférentielle désignent respectivement les directions perpendiculaire à l’axe de rotation du pneumatique, parallèle à l’axe de rotation du pneumatique et perpendiculaire au plan méridien. La direction circonférentielle est tangente à la circonférence du pneumatique.
[0004] Dans ce qui suit, les expressions «radialement intérieur», respectivement «radialement extérieur» signifient «plus proche », respectivement «plus éloigné de l’axe de rotation du pneumatique». Par «axialement intérieur», respectivement «axialement extérieur», on entend «plus proche», respectivement «plus éloigné du plan équatorial du pneumatique», le plan équatorial du pneumatique étant le plan passant par le milieu de la surface de roulement et perpendiculaire à l’axe de rotation.
[0005] De façon générale un pneumatique comprend une bande de roulement, destinée à venir en contact avec un sol par l’intermédiaire d’une surface de roulement, dont les deux extrémités axiales sont reliées par l’intermédiaire de deux flancs à deux bourrelets assurant la liaison mécanique entre le pneumatique et la jante sur laquelle il est destiné à être monté.
[0006] Un pneumatique radial comprend également une armature de renforcement, constituée d’une armature de sommet, radialement intérieure à la bande de roulement, et d’une armature de carcasse, radialement intérieure à l’armature de sommet.
[0007] L’armature de carcasse d’un pneumatique radial pour véhicule lourd de type génie civil comprend habituellement au moins une couche de carcasse comprenant des renforts généralement métalliques, enrobés par un matériau polymérique de type élastomère ou élastomérique, obtenu par mélangeage et appelé mélange d’enrobage. Une couche de carcasse comprend une partie principale, reliant les deux bourrelets entre eux et s’enroulant généralement, dans chaque bourrelet, de l’intérieur vers l’extérieur du pneumatique autour d’un élément de renforcement circonférentiel le plus souvent métallique appelé tringle, pour former un retournement. Les renforts métalliques d’une couche de carcasse sont sensiblement parallèles entre eux et forment, avec la direction circonférentielle, un angle compris entre 85° et 95°.
[0008] L’armature de sommet d’un pneumatique radial pour véhicule lourd de type génie civil comprend une superposition de couches de sommet s’étendant circonférentiellement, radialement à l’extérieur de l’armature de carcasse. Chaque couche de sommet est constituée de renforts généralement métalliques, parallèles entre eux et enrobés par un matériau polymérique de type élastomère ou mélange d’enrobage.
[0009] En ce qui concerne les renforts métalliques, un renfort métallique est caractérisé mécaniquement par une courbe représentant la force de traction (en N), appliquée au renfort métallique, en fonction de son allongement relatif (en %), dite courbe force- allongement. De cette courbe force-allongement sont déduites des caractéristiques mécaniques en traction du renfort métallique, telles que l’allongement structural As (en %), l’allongement total à la rupture At (en %), la force à la rupture Fm (charge maximale en N) et la résistance à la rupture Rm (en MPa), ces caractéristiques étant mesurées selon la norme ISO 6892 de 1984.
[0010] L'allongement total à la rupture At du renfort métallique est, par définition, la somme de ses allongements respectivement structural, élastique et plastique (At = As + Ae + Ap). L’allongement structural As résulte du positionnement relatif des fils métalliques constitutifs du renfort métallique sous un faible effort de traction. L’allongement élastique Ae résulte de l’élasticité intrinsèque du métal des fils métalliques, constituant le renfort métallique, pris individuellement, le comportement du métal suivant une loi de Hooke. L’allongement plastique Ap résulte de la plasticité, c’est-à-dire de la déformation irréversible, au-delà de la limite élastique, du métal de ces fils métalliques pris individuellement. Ces différents allongements ainsi que leurs significations respectives, bien connus de l’homme du métier, sont décrits, par exemple, dans les documents US5843583, W02005/014925 et W02007/090603.
[0011] On définit également, en tout point de la courbe force-allongement d’un renfort métallique, un module en extension, exprimé en GPa, qui représente la pente de la droite tangente à la courbe force-allongement en ce point. En particulier, on appelle module élastique en extension ou module d’Young, le module en extension de la partie linéaire élastique de la courbe force-allongement.
[0012] Parmi les renforts métalliques, on distingue usuellement les renforts métalliques élastiques et les renforts métalliques non extensibles ou inextensibles. Un renfort métallique élastique est caractérisé par un allongement structural As au moins égal à 1% et un allongement total à rupture At au moins égal à 4%. En outre, un renfort métallique élastique a un module élastique en extension au plus égal à 150 GPa, et compris usuellement entre 40 GPa et 150 GPa. Un renfort métallique non extensible est caractérisé par un allongement total At, sous une force de traction égale à 10% de la force à rupture Fm, au plus égal à 0.2%. Par ailleurs, un renfort métallique non extensible a un module élastique en extension compris usuellement entre 150 GPa et 200 GPa.
[0013] Concernant les couches de sommet de l’armature de sommet, on distingue usuellement les couches de protection, constitutives de l’armature de protection et radialement les plus à l’extérieur, et les couches de travail, constitutives de l’armature de travail et radialement comprises entre l’armature de protection et l’armature de carcasse.
[0014] L’armature de protection, comprenant au moins une couche de protection, protège essentiellement les couches de travail des agressions mécaniques ou physico- chimiques, susceptibles de se propager à travers la bande de roulement radialement vers l’intérieur du pneumatique.
[0015] L’armature de protection comprend souvent deux couches de protection, radialement superposées, formées de renforts métalliques élastiques, parallèles entre eux dans chaque couche et croisés d’une couche à la suivante, en formant, avec la direction circonférentielle, des angles au moins égaux à 10°.
[0016] L’armature de travail, comprenant au moins deux couches de travail, a pour fonction de ceinturer le pneumatique et de lui conférer de la rigidité et de la tenue de route. Elle reprend à la fois des sollicitations mécaniques de gonflage, générées par la pression de gonflage du pneumatique et transmises par l’armature de carcasse, et des sollicitations mécaniques de roulage, générées par le roulage du pneumatique sur un sol et transmises par la bande roulement. Elle doit en outre résister à l’oxydation et aux chocs et perforations, grâce à sa conception intrinsèque et à celle de l’armature de protection.
[0017] L’armature de travail comprend usuellement deux couches de travail, radialement superposées, formées de renforts métalliques non extensibles, parallèles entre eux dans chaque couche et croisés d’une couche à la suivante, en formant, avec la direction circonférentielle, des angles au plus égaux à 60°, et, de préférence, au moins égaux à 15° et au plus égaux à 45°.
[0018] De plus, pour diminuer les sollicitations mécaniques de gonflage transmises à l’armature de travail, il est connu de disposer, radialement à l’extérieur de l’armature de carcasse, une armature de frettage, ayant une rigidité en extension circonférentielle élevée. L’armature de frettage, dont la fonction est de reprendre au moins en partie les sollicitations mécaniques de gonflage, améliore également l’endurance de l’armature de sommet par une rigidifïcation de l’armature de sommet, lorsque le pneumatique est écrasé sous une charge radiale et, en particulier, soumis à un angle de dérive autour de la direction radiale.
[0019] L’armature de frettage comprend usuellement deux couches de frettage, radialement superposées, formées de renforts métalliques, parallèles entre eux dans chaque couche et croisés d’une couche à la suivante, en formant, avec la direction circonférentielle, des angles au plus égaux à 10°. L’armature de frettage peut être positionnée radialement à l’intérieur de l’armature de travail, entre les deux couches de travail de l’armature de travail, ou radialement à l’extérieur de l’armature de travail.
[0020] Parmi les couches de frettage, on distingue les couches de frettage dites à angles fermés, c’est-à-dire dont les renforts métalliques forment, avec la direction circonférentielle, des angles au moins égaux à 5° et au plus égaux à 10°, et les couches de frettage circonférentielles, plus précisément sensiblement circonférentielles, c’est-à- dire dont les renforts métalliques forment, avec la direction circonférentielle, des angles au plus égaux à 5° et pouvant être nuls. Les couches de frettage à angles fermés comprennent des renforts métalliques ayant des extrémités libres au niveau des extrémités axiales des couches de frettage. Les couches de frettage circonférentielles comprennent des renforts métalliques n’ayant pas d’extrémités libres au niveau des extrémités axiales des couches de frettage, car les couches de frettage circonférentielles sont obtenues le plus souvent par l’enroulement circonférentiel d’une nappe de renforts métalliques ou par l’enroulement circonférentiel d’un renfort métallique continu.
[0021] Le document WO 2014048897 Al a pour objectif de désensibiliser le sommet d’un pneumatique radial pour véhicule lourd de type génie civil aux chocs survenant essentiellement au centre de sa bande de roulement, et décrit une armature additionnelle centrée sur le plan équatorial du pneumatique, comprenant au moins une couche additionnelle, formée de renforts métalliques faisant avec la direction circonférentielle un angle au plus égal à 10°, les renforts métalliques de chaque couche additionnelle étant élastiques et ayant un module élastique en extension au plus égal à 150 GPa. L’armature additionnelle, décrite dans ce document, est donc une armature de frettage à renforts métalliques élastiques, les couches de frettage pouvant être soit des couches de frettage à angles fermés, soit des couches de frettage circonférentielles.
[0022] Le document WO 2016139348 Al a pour objectif d’améliorer à la fois les performances d’endurance au clivage et de résistance aux chocs du sommet d’un pneumatique pour véhicule lourd de type génie civil, et décrit une armature de frettage, formée par un enroulement circonférentiel d’une nappe de façon à former un empilement radial d’au moins deux couches de frettage, comprenant des renforts métalliques élastiques circonférentiels faisant, avec la direction circonférentielle des angles au plus égaux à 2.5°, l’armature de frettage étant radialement positionnée entre les couches de travail, et les renforts métalliques circonférentiels de l’armature de frettage ayant une force à rupture au moins égale à 800 daN. L’armature de frettage, décrite dans ce document, est donc une armature de frettage constituée de couches de frettage circonférentielles à renforts métalliques élastiques.
[0023] Dans le cas spécifique d’une armature de frettage à couches de frettage circonférentielles, lorsque le pneumatique, en roulage, est soumis à un effort axial, parallèle à son axe de rotation, appelé également effort transversal ou latéral, les extrémités axiales des couches de frettage circonférentielles sont soumises à des tensions importantes en raison de la flexion sur chant, autour d’un axe radial, de l’armature de sommet dans son ensemble. En d’autres termes, les renforts métalliques les plus axialement extérieurs des couches de frettage circonférentielles sont alors soumis à des allongements élevés, pouvant entraîner leur rupture et, par conséquent, un endommagement de l’armature de frettage, pouvant entraîner à son tour un endommagement de l’armature de sommet et un retrait prématuré du pneumatique.
[0024] Pour diminuer les tensions dans les renforts métalliques positionnés aux extrémités axiales des couches de frettage circonférentielles, il est connu, par exemple, de diminuer les angles formés, avec la direction circonférentielle, par les renforts métalliques des couches de travail, pour augmenter la contribution de l’armature de travail au frettage du pneumatique. Il est également connu de diminuer le module élastique en extension des renforts métalliques des couches de frettage circonférentielles, et donc d’augmenter leur capacité d’allongement. Mais les deux solutions précédemment décrites présentent l’inconvénient de générer une augmentation des cisaillements aux extrémités axiales des couches de travail, et donc de diminuer l’endurance de l’armature de sommet, ce qui va à l’encontre de l’objectif du frettage qui est, en particulier, de maîtriser lesdits cisaillements et, par conséquent, de garantir une endurance satisfaisante de l’armature de sommet.
[0025] Les inventeurs se sont donnés pour objectif, pour un pneumatique radial pour véhicule lourd de type génie civil comprenant une armature de frettage à couches de frettage circonférentielles, d’augmenter la tenue à la rupture de l’armature de frettage, au niveau de ses extrémités axiales, tout en garantissant une endurance satisfaisante de l’armature de sommet, lors du roulage du pneumatique, en particulier en dérive. [0026] Cet objectif a été atteint, selon l’invention, par un pneumatique pour véhicule lourd de type génie civil comprenant une armature de sommet, radialement intérieure à une bande de roulement et radialement extérieure à une armature de carcasse,
-l’armature de sommet comprenant, radialement de l’extérieur vers l’intérieur, une armature de protection et une armature de travail,
-l’armature de protection comprenant au moins une couche de protection comprenant des renforts métalliques élastiques ayant un module élastique en extension au plus égal à 150 GPa, enrobés dans un matériau élastomérique, parallèles entre eux et formant, avec une direction circonférentielle tangente à la circonférence du pneumatique, un angle au moins égal à 10°,
-l’armature de travail comprenant deux couches de travail comprenant respectivement des renforts métalliques non extensibles ayant un module élastique en extension supérieur à 150 GPa et au plus égal à 200 GPa, enrobés dans un matériau élastomérique, parallèles entre eux, formant, avec la direction circonférentielle, un angle au moins égal à 15° et au plus égal à 45°, et croisés d’une couche de travail à la suivante,
-l’armature de sommet comprenant également, radialement à l’intérieur de l’armature de protection, une armature de frettage circonférentielle,
-l’armature de frettage circonférentielle comprenant au moins une couche de frettage circonférentielle ayant une largeur axiale et comprenant des renforts métalliques, enrobés dans un matériau élastomérique, parallèles entre eux et formant, avec la direction circonférentielle, un angle au plus égal à 5°,
-la au moins une couche de frettage circonférentielle comprenant une portion médiane, ayant une largeur médiane et un module élastique en extension médian, et deux portions latérales, prolongeant axialement de part et d’autre la portion médiane et ayant chacune une largeur latérale et un module élastique en extension latéral,
-la largeur latérale étant au moins égale à 0.05 fois la largeur médiane,
-et le module élastique en extension latéral étant au plus égal à 0.9 fois le module élastique en extension médian.
[0027] Selon l’invention, chaque couche de frettage de l’armature de frettage est décomposée en une portion médiane et deux portions latérales, prolongeant de part et d’autre la portion médiane, les portions latérales étant moins larges et moins rigides que la portion médiane. Chaque portion latérale a une largeur, appelée largeur latérale, au moins égale à 5% de la largeur médiane de la portion médiane. En d’autres termes, la largeur latérale doit être suffisamment grande par rapport à la largeur médiane. De plus chaque portion latérale a un module élastique en extension latéral au plus égal à 90% du module élastique en extension médian de la portion médiane. En d’autres termes, le module élastique en extension latéral doit être suffisamment petit par rapport au module élastique en extension médian. Par définition, le module élastique en extension Ec d’une portion de couche, constitué de renforts métalliques, ayant un diamètre D et un module élastique en extension ER et deux à deux séparés par un pas P, distance entre les centres respectifs de deux renforts consécutifs, est égal à ER*(I1*D)/ (4*P).
[0028] Lors d’une flexion sur chant, autour d’un axe radial, de l’armature de sommet, donc de chaque couche de frettage, la portion latérale en extension de la couche de frettage, en raison de son plus faible module élastique en extension, donc de sa plus grande souplesse, a une capacité d’allongement plus grande que la portion médiane adjacente, ce qui diminue la tension appliquée dans cette portion latérale et donc le risque de rupture des renforts métalliques d’extrémité de cette portion latérale.
[0029] Préférentiellement la largeur latérale est au plus égale à 0.5 fois la largeur médiane. Au-delà de cette borne supérieure, la rigidité en extension de la portion latérale, égale au produit du module élastique en extension latéral par l’épaisseur de la portion latérale divisé par la largeur latérale, donc inversement proportionnelle à la largeur latérale, devient trop petite en valeur relative par rapport à la rigidité en extension de la portion médiane ; ce qui entraîne un allongement excessif de la portion latérale et une tension excessive dans les renforts métalliques d’extrémité de cette portion latérale.
[0030] Encore préférentiellement le module élastique en extension latéral est au moins égal à 0.3 fois le module élastique en extension médian. En deçà de cette borne inférieure, le module élastique en extension latéral devient trop petit en valeur relative par rapport au module élastique en extension médian, d’où un frettage insuffisant de la portion latérale et une reprise des efforts en extension, appliqués à la couche de frettage, essentiellement par la portion médiane, avec, par conséquent, un risque augmenté de clivage aux extrémités axiales des couches de travail. [0031] Avantageusement, l’armature de travail ayant une largeur axiale, la largeur axiale de la au moins une couche de frettage circonférentielle est au moins égale à 0.3 fois et au plus égale à 0.7 fois la largeur axiale de l’armature de travail. La largeur axiale de l’armature de travail est définie comme la largeur de la couche de travail la plus large, qui est souvent la couche de travail la plus radialement intérieure. En deçà de la borne inférieure de la largeur axiale de l’armature de travail, la largeur de frettage est insuffisante et le risque de clivage aux extrémités axiales des couches de travail est accru. Au-delà de la borne supérieure, la largeur de frettage est trop importante et les efforts de tension dans la couche de frettage deviennent excessifs.
[0032] Préférentiellement la portion médiane et les portions latérales de la au moins une couche de frettage circonférentielle comprennent respectivement des renforts métalliques élastiques ayant un module élastique en extension au plus égal à 150 GPa. Les renforts métalliques de la portion médiane et des portions latérales sont élastiques, c’est-à-dire avec une grande capacité d’allongement, avec un allongement total à rupture At au moins égal à 4%.
[0033] Encore préférentiellement le module élastique en extension médian est au moins égal à 110 GPa. Cette borne inférieure impose au module élastique en extension médian d’être compris dans l’intervalle [110 GPA, 150 GPa], donc dans la plage haute des modules élastiques en extension, ce qui permet d’avoir un écart de rigidités significatif entre la portion médiane et les portions latérales de la couche de frettage.
[0034] Selon un mode de réalisation préféré, les renforts métalliques élastiques de la portion médiane et des portions latérales de la au moins une couche de frettage circonférentielle sont des câbles multitorons de structure lxN comprenant une unique couche de N torons enroulés en hélice, chaque toron comprenant une couche interne de M fils internes enroulés en hélice et une couche externe de K fils externes enroulés en hélice autour de la couche interne. Les formules de câbles à multitorons sont des assemblages classiques pour des câbles élastiques.
[0035] Selon une variante préférée du précédent mode de réalisation préféré, l’unique couche de N torons, enroulés en hélice, comprend N=3 ou N=4 torons, de préférence N=4 torons. [0036] Encore préférentiellement, la couche interne de M fils internes, enroulés en hélice, de chaque toron comprend M=3, 4 ou 5 fils internes, de préférence M=3 fils internes.
[0037] Egalement préférentiellement, la couche externe de K fils externes, enroulés en hélice autour de la couche interne de chaque toron, comprend K=7, 8, 9, 10 ou 11 fils externes, de préférence K=8 fils externes.
[0038] Selon un mode de réalisation usuel, l’armature de frettage circonférentielle comprend au moins deux couches de frettage circonférentielle, pour obtenir le niveau de rigidité circonférentielle, et donc de frettage, souhaité.
[0039] Selon une variante préférée, les largeurs axiales respectives des au moins deux couches de frettage circonférentielle sont égales, pour des raisons de simplicité de fabrication.
[0040] Dans une première configuration avantageuse, l’armature de frettage circonférentielle est positionnée radialement entre deux couches de travail de l’armature de travail.
[0041] Dans une deuxième configuration avantageuse, l’armature de frettage circonférentielle est positionnée radialement à l’intérieur de l’armature de travail.
[0042] Le positionnement radial de l’armature de frettage circonférentielle par rapport à l’armature de travail impacte la répartition des efforts dans le sommet et les risques associés d’endommagement des différents composants de l’armature de sommet. Ainsi, plus l’armature de frettage circonférentielle est radialement extérieure, plus les efforts de tension dans l’armature de frettage circonférentielle, et donc le risque de rupture associé, diminuent. Par ailleurs, les cisaillements en extrémités d’armature de travail, et donc le risque de clivage, augmente. De plus, l’éloignement de l’armature de frettage circonférentielle par rapport à l’armature de carcasse diminue le risque de fissuration de l’armature de carcasse.
[0043] Avantageusement, les renforts métalliques de la au moins une couche de protection forment, avec la direction circonférentielle, un angle au moins égal à 15° et au plus égal à 35°. [0044] Encore avantageusement, l’armature de protection comprend deux couches de protection dont les renforts métalliques respectifs sont croisés d’une couche de protection à la suivante.
[0045] Les caractéristiques de l’invention sont illustrées par les figures 1, 2 A, 2B et 3 schématiques et non représentées à l’échelle:
-Figure 1 : Demi-coupe méridienne d’un sommet de pneumatique pour véhicule lourd de type génie civil selon l’invention.
-Figure 2A : Vue de dessus schématique d’une couche de frettage circonférentielle au repos.
-Figure 2B : Vue de dessus schématique d’une couche de frettage circonférentielle en flexion sur chant.
-Figure 3 : Lois de comportement en extension types pour une portion médiane et une portion latérale de couche de frettage circonférentielle.
[0046] Sur la figure 1, est représentée une demi-coupe méridienne, dans un plan YZ, d’un pneumatique 1 pour véhicule lourd de type génie civil selon l’invention, comprenant une armature de sommet 3, radialement intérieure à une bande de roulement 2 et radialement extérieure à une armature de carcasse 4. L’armature de sommet 3 comprend, radialement de l’extérieur vers l’intérieur, une armature de protection 5 et une armature de travail 6. L’armature de protection 5 comprend deux couches de protection (51, 52) comprenant des renforts métalliques élastiques ayant un module élastique en extension au plus égal à 150 GPa, enrobés dans un matériau élastomérique, parallèles entre eux et formant, avec une direction circonférentielle XX’ tangente à la circonférence du pneumatique, un angle au moins égal à 10° (non représenté) et croisés d’une couche de protection à la suivante. L’armature de travail 6 comprend deux couches de travail (61, 62) comprenant respectivement des renforts métalliques non extensibles ayant un module élastique en extension supérieur à 150 GPa et au plus égal à 200 GPa, enrobés dans un matériau élastomérique, parallèles entre eux, formant, avec la direction circonférentielle XX’, un angle au moins égal à 15° et au plus égal à 45° (non représenté), et croisés d’une couche de travail à la suivante. L’armature de travail 6 a une largeur axiale LT, définie comme la largeur de la couche de travail la plus large, qui est, dans l’exemple représenté, la couche de travail la plus radialement intérieure 61. L’armature de sommet 3 comprend également, radialement à l’intérieur de l’armature de protection 5, une armature de frettage circonférentielle 7, positionnée radialement entre les deux couches de travail (61, 62) de l’armature de travail 6. L’armature de frettage circonférentielle 7 comprend deux couches de frettage circonférentielles (71, 72) ayant respectivement une largeur axiale (Ll, L2), et comprenant des renforts métalliques, enrobés dans un matériau élastomérique, parallèles entre eux et formant, avec la direction circonférentielle XX’, un angle au plus égal à 5° (non représenté). Dans l’exemple représenté, les largeurs axiales (Ll, L2) des deux couches de frettage circonférentielle (71, 72) ne sont pas égales. Selon l’invention, chaque couche de frettage circonférentielle (71, 72) comprend une portion médiane (711, 721), ayant une largeur médiane (Ll 1 , L21) et un module élastique en extension médian (El 1, E21), et deux portions latérales (712, 722), prolongeant axialement de part et d’autre la portion médiane (711, 721) et ayant chacune une largeur latérale (L12, L22) et un module élastique en extension latéral (E12, E22). La largeur latérale (L12, L22) est au moins égale à 0.05 fois la largeur médiane (Ll 1, L21) et le module élastique en extension latéral (E12, E22) est au plus égal à 0.9 fois le module élastique en extension médian (El l, E21). Compte tenu de la représentation de l’invention sur une demi-coupe méridienne, symétrisable par rapport au plan XZ, seules les moitiés respectives des largeurs Ll, Ll l, L2, L21 et LT sont représentées et, de même, une seule portion latérale (712, 722) de chaque couche de frettage circonférentielle (71, 72) est représentée.
[0047] La figure 2A représente une vue de dessus schématique d’une couche de frettage circonférentielle (71, 72) au repos. Les renforts métalliques élastiques de chaque portion latérale (712, 722) sont représentés en pointillés, alors que ceux de chaque portion médiane (711, 721) sont représentés en traits pleins. Au repos, tous ces renforts métalliques, parallèles entre eux, sont positionnés dans des plans circonférentiels XZ.
[0048] La figure 2B représente une vue de dessus schématique d’une couche de frettage circonférentielle (71, 72) déformée en flexion sur chant, lorsque le pneumatique est soumis à un angle de dérive autour d’une direction radiale ZZ’. Les renforts métalliques élastiques de la portion latérale (712, 722) en extension sont plus souples que ceux de la portion médiane (711, 721), car, selon l’invention, le module élastique en extension latéral (E12, E22) est au plus égal à 0.9 fois le module élastique en extension médian (El l, E21), et ont donc une capacité d’allongement permettant de limiter la contrainte en extension auxquels ils sont soumis.
[0049] La figure 3 représente des lois de comportement en extension types respectivement pour les renforts métalliques constitutifs d’une portion médiane et ceux constitutifs d’une portion latérale de couche de frettage circonférentielle. Pour respectivement la portion médiane et chaque portion latérale, la contrainte en extension (Sl l, S 12), exprimée en MPa, définie comme le rapport entre l’effort en extension, exprimé en N, et la section de renfort, exprimée en mm, est représentée en fonction de la déformation en extension (Dl l, D12), c’est-à-dire de l’allongement relatif correspondant, exprimé en % . Pour chacune des lois de comportement représentées, la contrainte en extension (Sl l, S 12) varie très faiblement jusqu’à une première valeur de déformation en extension correspondant à l’allongement structural (AS11, AS 12) des renforts métalliques élastiques respectifs de portion médiane et de portion latérale, puis augmente selon une pente correspondant au module élastique en extension (El l, E12) jusqu’à une déformation en extension à rupture (AR11, AR12). Ce graphe montre que le module élastique en extension latéral E12 est au plus égal à 0.9 fois le module élastique en extension médian El l.
[0050] Les inventeurs ont comparé deux pneumatiques II et 12 selon l’invention à un pneumatique de référence R dans la dimension 59/80 R 63.
[0051] Le pneumatique de référence R ainsi que les pneumatiques II et 12 selon l’invention ont tous une armature de sommet 3 ayant le même empilement radial de couches de sommet. L’armature de sommet 3 comprend, radial ement de l’extérieur vers l’intérieur, une armature de protection 5 ayant deux couches de protection (51, 52) dont les renforts métalliques élastiques respectifs, croisés d’une couche à la suivante, forment, avec la direction circonférentielle XX’, un angle égal à 33°, et une armature de travail 6 ayant deux couches de travail (61, 62) dont les renforts métalliques non extensibles respectifs, croisés d’une couche à la suivante, forment, avec la direction circonférentielle XX’, un angle égal à 33°. L’armature de sommet 3 comprend en outre, radialement intercalée entre les couches de travail (61, 62) de l’armature de travail 6, une armature de frettage circonférentielle 7 ayant deux couches de frettage circonférentielles (71, 72) dont les renforts métalliques élastiques respectifs forment, avec la direction circonférentielle, un angle sensiblement égal à 0°.
[0052] Pour le pneumatique de référence R, les deux couches de frettage circonférentielles (71, 72), ayant respectivement une largeur axiale Ll égale à 520 mm et une largeur axiale L2 égale à 520 mm, comprennent des renforts métalliques élastiques de type câbles multitorons de structure 44.35=4*(3+8)*35, c’est-à-dire constitués de N=4 torons, chaque toron comprenant une couche interne de M=3 fils internes et une couche externe de K=8 fils externes enroulés en hélice autour de la couche interne, les fils ayant une section de diamètre d=0.35 mm, dans une variante dite VI. Pour la variante VI de câble 44.35 considérée, les renforts ont un module élastique en extension ER égal à 130 GPa, un diamètre D égal à 3.8 mm, et sont répartis axialement selon un pas axial P égal à 4.4 mm, d’où un module élastique en extension de chaque couche de frettage égal à ER*(I1*D)/ (4*R)=130*(P*3.8)/ (4*4.4)=88 GPa.
[0053] Pour le pneumatique II selon l’invention, les deux couches de frettage circonférentielles (71, 72) ont respectivement une largeur axiale Ll égale à 520 mm et une largeur axiale L2 égale à 520 mm. Les deux couches de frettage circonférentielles (71, 72) comprennent chacune une portion médiane (711, 721), ayant une largeur médiane (Ll 1, L21) égale à 410 mm et un module élastique en extension médian (El 1, E21) égal à 88 GPa, et deux portions latérales (712, 722), prolongeant axialement de part et d’autre la portion médiane (711, 721), chaque portion latérale (712, 722) ayant une largeur latérale (L12, L22) égale à 55 mm et un module élastique en extension latéral (E12, E22) égal à 79 GPa. Dans le cas présent, la largeur latérale (L12, L22) est égale à 410/520 = 0.13 fois la largeur médiane (L 11 , L21), donc au moins égale à 0.05 fois la largeur médiane (Ll 1, L21). Le module élastique en extension latéral (E12, E22) est égal à 79/88 = 0.9 fois le module élastique en extension médian (El l, E21). Le module élastique en extension médian (El l, E21) de la portion médiane (711, 721) résulte de l’utilisation de renfort métalliques élastiques de type câbles multitorons de structure 44.35=4*(3+8)35, c’est-à-dire constitués de N=4 torons, chaque toron comprenant une couche interne de M=3 fils internes et une couche externe de K=8 fils externes enroulés en hélice autour de la couche interne, les fils ayant une section de diamètre d=0.35 mm, dans une variante dite VI. Pour la variante VI de câble 44.35 considérée, les renforts ont un module élastique en extension ER égal à 130 GPa, un diamètre D égal à 3.8 mm, et sont répartis axialement selon un pas axial P égal à 4.4 mm, d’où un module élastique en extension médian (El l, E21) égal à ER*(El*D)/ (4*R)=130*(P*3.8)/ (4*4.4)=88 GPa. Le module élastique en extension latéral (E12, E22) de la portion latérale (712, 722) résulte de G utilisation des renfort métalliques élastiques de type câbles multitorons de structure 44.35=4*(3+8)35, c’est-à-dire constitués de N=4 torons, chaque toron comprenant une couche interne de M=3 fils internes et une couche externe de K=8 fils externes enroulés en hélice autour de la couche interne, les fils ayant une section de diamètre d=0.35 mm, mais dans une variante dite V2. Pour la variante V2 de câble 44.35 considérée, les renforts ont un module élastique en extension ER égal à 117 GPa, un diamètre D égal à 3.8 mm, et sont répartis axialement selon un pas axial P égal à 4.4 mm, d’où un module élastique en extension latéral (E12, E22) égal à ER*(I1*D)/ (4*R)=117*(P*3.8)/ (4*4.4)=79 GPa.
[0054] Le pneumatique 12 selon l’invention diffère du pneumatique II uniquement par la nature des renforts métalliques élastiques des portions latérales (712, 722) des couches de frettage circonférentielles (71, 72). Dans ce cas, le module élastique en extension latéral (E12, E22) est égal à 46 GPA, soit 46/88 = 0.52 fois le module élastique en extension médian (El l, E21) égal à 88 GPa, donc au plus égal à 0.9 fois le module élastique en extension médian (El l, E21). Le module élastique en extension latéral (E12, E22) de la portion latérale (712, 722) résulte de l’utilisation des renfort métalliques élastiques de type câbles multitorons de structure 52.26=4*(5+8)*26, c’est- à-dire constitués de N=4 torons, chaque toron comprenant une couche interne de M=5 fils internes et une couche externe de K=8 fils externes enroulés en hélice autour de la couche interne, les fils ayant une section de diamètre d=0.26 mm. Ces renforts ont un module élastique en extension ER égal à 70 GPa, un diamètre D égal à 3.1 mm, et sont répartis axialement selon un pas axial P égal à 3.7 mm, d’où un module élastique en extension latéral (E12, E22) égal à ER*(I1*D)/ (4*R)=70*(P*3.1)/ (4*3.7)=46 GPa.
[0055] Les caractéristiques techniques respectives des pneumatiques R, Il et 12, présentées précédemment, sont résumées dans le tableau 1 ci-dessous:
Figure imgf000018_0001
Figure imgf000019_0001
Tableau 1
[0056] Les inventeurs ont réalisé, pour les pneumatiques R, Il et 12, des simulations numériques de type éléments finis en roulage, le pneumatique étant gonflé à une pression P égale à 7 bars, écrasé sous une charge radiale Z égale à 102024 daN (104 tonnes), et soumis à une poussée latérale de dérive Fy égale à 25% de la charge radiale Z. Ils ont ainsi déterminé les efforts de traction maximaux dans les couches de frettage circonférentielles et/ou dans leurs portions respectivement médiane et latérales, présentés dans le tableau 2 ci-dessous :
Figure imgf000020_0001
Tableau 2
[0057] Le tableau 2 montre, par rapport au pneumatique de référence R :
Pour le pneumatique II : une réduction des efforts de traction maximaux égale à (331 -418)* 100/418 = -21 % pour les renforts de la portion latérale 712 de la couche 71 radialement intérieure, et égale à (276-348)* 100/348 = -21 % pour les renforts de la portion latérale 722 de la couche 72 radialement extérieure. Pour le pneumatique 12 : une réduction des efforts de traction maximaux égale à (263-418)* 100/418 = -37 % pour les renforts de la portion latérale 712 de la couche 71 radialement intérieure, et égale à (228-348)* 100/348 = -35 % pour les renforts de la portion latérale 722 de la couche 72 radialement extérieure. [0058] Cette réduction significative des efforts de traction maximaux dans les renforts de portion latérale de couche de frettage circonférentielle entraîne une augmentation significative de la tenue à la rupture de l’armature de frettage, au niveau de ses extrémités axiales.
[0059] Les inventeurs ont par ailleurs déterminé les amplitudes maximales de déformations de cisaillement, au tour de roue, dans les mélanges élastomériques, positionnés radialement à l’intérieur et à l’extérieur des portions d’extrémités axiales de la couche de travail 72 la plus radialement extérieure, ce critère étant considéré comme pertinent vis-à-vis de l’endurance du sommet par rapport au clivage. Ces amplitudes maximales de déformations de cisaillement sont présentées dans le tableau 3 ci- dessous :
Figure imgf000021_0001
Tableau 3
[0060] Selon le tableau 3, les amplitudes maximales d’élongation de cisaillement restent sensiblement du même niveau entre les pneumatiques R, Il et 12, d’où des performances en endurance clivage du sommet sensiblement identiques entre le pneumatique de référence et les pneumatiques selon l’invention.

Claims

REVENDICATIONS
1 - Pneumatique (1) pour véhicule lourd de type génie civil comprenant une armature de sommet (3), radialement intérieure à une bande de roulement (2) et radialement extérieure à une armature de carcasse (4),
-l’armature de sommet (3) comprenant, radialement de l’extérieur vers l’intérieur, une armature de protection (5) et une armature de travail (6),
-l’armature de protection (5) comprenant au moins une couche de protection (51, 52) comprenant des renforts métalliques élastiques ayant un module élastique en extension au plus égal à 150 GPa, enrobés dans un matériau élastomérique, parallèles entre eux et formant, avec une direction circonférentielle (XX’) tangente à la circonférence du pneumatique, un angle au moins égal à 10°,
-l’armature de travail (6) comprenant deux couches de travail (61, 62) comprenant respectivement des renforts métalliques non extensibles ayant un module élastique en extension supérieur à 150 GPa et au plus égal à 200 GPa, enrobés dans un matériau élastomérique, parallèles entre eux, formant, avec la direction circonférentielle (XX’), un angle au moins égal à 15° et au plus égal à 45°, et croisés d’une couche de travail à la suivante,
-l’armature de sommet (3) comprenant également, radialement à l’intérieur de l’armature de protection (5), une armature de frettage circonférentielle (7),
-l’armature de frettage circonférentielle (7) comprenant au moins une couche de frettage circonférentielle (71, 72) ayant une largeur axiale (Ll, L2) et comprenant des renforts métalliques, enrobés dans un matériau élastomérique, parallèles entre eux et formant, avec la direction circonférentielle (XX’), un angle au plus égal à 5°,
caractérisé en ce que la au moins une couche de frettage circonférentielle (71, 72) comprend une portion médiane (711, 721), ayant une largeur médiane (Ll 1, L21) et un module élastique en extension médian (El 1, E21), et deux portions latérales (712, 722), prolongeant axialement de part et d’autre la portion médiane (711, 721) et ayant chacune une largeur latérale (L12, L22) et un module élastique en extension latéral (E12, E22), en ce que la largeur latérale (L12, L22) est au moins égale à 0.05 fois la largeur médiane (Ll 1 , L21) et en ce que le module élastique en extension latéral (El 2, E22) est au plus égal à 0.9 fois le module élastique en extension médian (El 1, E21).
2 - Pneumatique (1) pour véhicule lourd de type génie civil selon la revendication 1, dans lequel la largeur latérale (L12, L22) est au plus égale à 0.5 fois la largeur médiane (Ll 1, L21).
3 - Pneumatique (1) pour véhicule lourd de type génie civil selon l’une des revendications 1 ou 2, dans lequel le module élastique en extension latéral (El 2, E22) est au moins égal à 0.3 fois le module élastique en extension médian (El 1, E21).
4 - Pneumatique (1) pour véhicule lourd de type génie civil selon l’une quelconque des revendications 1 à 3, l’armature de travail (6) ayant une largeur axiale (LT), dans lequel la largeur axiale (Ll, L2) de la au moins une couche de frettage circonférentielle (71, 72) est au moins égale à 0.3 fois et au plus égale à 0.7 fois la largeur axiale (LT) de l’armature de travail (4).
5 - Pneumatique (1) pour véhicule lourd de type génie civil selon l’une quelconque des revendications 1 à 4, dans lequel la portion médiane (711, 721) et les portions latérales (712, 722) de la au moins une couche de frettage circonférentielle (71, 72) comprennent respectivement des renforts métalliques élastiques ayant un module élastique en extension au plus égal à 150 GPa.
6 - Pneumatique (1) pour véhicule lourd de type génie civil selon la revendication 5, dans lequel le module élastique en extension médian (El l, E21) est au moins égal à 110 GPa.
7 - Pneumatique (1) pour véhicule lourd de type génie civil selon l’une des revendications 5 ou 6, dans lequel les renforts métalliques élastiques de la portion médiane (711, 721) et des portions latérales (712, 722) de la au moins une couche de frettage circonférentielle (71, 72) sont des câbles multitorons de structure lxN comprenant une unique couche de N torons enroulés en hélice, chaque toron comprenant une couche interne de M fils internes enroulés en hélice et une couche externe de K fils externes enroulés en hélice autour de la couche interne.
8 - Pneumatique (1) pour véhicule lourd de type génie civil selon la revendication 7, dans lequel l’unique couche de N torons, enroulés en hélice, comprend N=3 ou N=4 torons, de préférence N=4 torons. 9 - Pneumatique (1) pour véhicule lourd de type génie civil selon l’une des revendications 7 ou 8, dans lequel la couche interne de M fils internes, enroulés en hélice, de chaque toron comprend M=3, 4 ou 5 fils internes, de préférence M=3 fils.
10 - Pneumatique (1) pour véhicule lourd de type génie civil selon l’une quelconque des revendications 7 à 9, dans lequel la couche externe de K fils externes, enroulés en hélice autour de la couche interne de chaque toron, comprend K=7, 8, 9, 10 ou 11 fils externes, de préférence K=8 fils externes.
11 - Pneumatique (1) pour véhicule lourd de type génie civil selon l’une quelconque des revendications 1 à 10, dans lequel l’armature de frettage circonférentielle (7) comprend au moins deux couches de frettage circonférentielle (71, 72).
12 - Pneumatique (1) pour véhicule lourd de type génie civil selon la revendication 11, dans lequel les largeurs axiales (Ll, L2) respectives des au moins deux couches de frettage circonférentielle (71, 72) sont égales.
13 - Pneumatique (1) pour véhicule lourd de type génie civil selon l’une quelconque des revendications 1 à 12, dans lequel l’armature de frettage circonférentielle (7) est positionnée radialement entre deux couches de travail (61, 62) de l’armature de travail
(6).
14 - Pneumatique (1) pour véhicule lourd de type génie civil selon l’une quelconque des revendications 1 à 12, dans lequel l’armature de frettage circonférentielle (7) est positionnée radialement à l’intérieur de l’armature de travail (6).
PCT/EP2019/073732 2018-09-12 2019-09-05 Armature de frettage bi-module de pneumatique pour vehicule lourd de type genie civil WO2020053070A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/275,642 US20220041019A1 (en) 2018-09-12 2019-09-05 Module Hooping Reinforcement for a Tire of a Heavy Duty Civil Engineering Vehicle
BR112021002821-8A BR112021002821A2 (pt) 2018-09-12 2019-09-05 armadura de guarnecimento bimódulo de pneumático para veículo pesado de tipo de engenharia civil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1858171 2018-09-12
FR1858171 2018-09-12

Publications (1)

Publication Number Publication Date
WO2020053070A1 true WO2020053070A1 (fr) 2020-03-19

Family

ID=65201384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/073732 WO2020053070A1 (fr) 2018-09-12 2019-09-05 Armature de frettage bi-module de pneumatique pour vehicule lourd de type genie civil

Country Status (3)

Country Link
US (1) US20220041019A1 (fr)
BR (1) BR112021002821A2 (fr)
WO (1) WO2020053070A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773115A1 (fr) * 1995-11-08 1997-05-14 COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN-MICHELIN & CIE Pneumatique "Poids-Lourds" radial avec armature de sommet ayant une nappe multipartite
US5843583A (en) 1996-02-15 1998-12-01 N.V. Bekaert S.A. Cord with high non-structural elongation
WO2005014925A1 (fr) 2003-07-22 2005-02-17 N.V. Bekaert S.A. Corde hybride a fort coefficient d'elongation
WO2007090603A1 (fr) 2006-02-09 2007-08-16 Societe De Technologie Michelin Cable composite elastique pour pneumatique
US20100024946A1 (en) * 2006-12-26 2010-02-04 Bridgestone Corporation Pneumatic tire
WO2014048897A1 (fr) 2012-09-26 2014-04-03 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicule lourd de type genie civil
WO2016139348A1 (fr) 2015-03-05 2016-09-09 Compagnie Generale Des Etablissements Michelin Armature de sommet de pneumatique pour vehicule lourd de type genie civil

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4433725B2 (ja) * 2003-08-28 2010-03-17 横浜ゴム株式会社 空気入りラジアルタイヤ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773115A1 (fr) * 1995-11-08 1997-05-14 COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN-MICHELIN & CIE Pneumatique "Poids-Lourds" radial avec armature de sommet ayant une nappe multipartite
US5843583A (en) 1996-02-15 1998-12-01 N.V. Bekaert S.A. Cord with high non-structural elongation
WO2005014925A1 (fr) 2003-07-22 2005-02-17 N.V. Bekaert S.A. Corde hybride a fort coefficient d'elongation
WO2007090603A1 (fr) 2006-02-09 2007-08-16 Societe De Technologie Michelin Cable composite elastique pour pneumatique
US20100024946A1 (en) * 2006-12-26 2010-02-04 Bridgestone Corporation Pneumatic tire
WO2014048897A1 (fr) 2012-09-26 2014-04-03 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicule lourd de type genie civil
WO2016139348A1 (fr) 2015-03-05 2016-09-09 Compagnie Generale Des Etablissements Michelin Armature de sommet de pneumatique pour vehicule lourd de type genie civil

Also Published As

Publication number Publication date
US20220041019A1 (en) 2022-02-10
BR112021002821A2 (pt) 2021-05-04

Similar Documents

Publication Publication Date Title
EP2900486B1 (fr) Pneumatique pour vehicule lourd de type genie civil
EP3283307B1 (fr) Armature de renforcement de pneumatique
EP3489035B1 (fr) Armature de renforcement de pneumatique
WO2020053071A1 (fr) Armature de frettage d'un pneumatique pour vehicule lourd de type genie civil
WO2019058053A1 (fr) Armature de sommet de pneumatique pour vehicule lourd de type genie civil
WO2015091609A1 (fr) Armature de sommet de pneumatique pour vehicule lourd de type genie civil
EP2934912B1 (fr) Sommet de pneumatique pour vehicule lourd de type genie civil
WO2019202239A1 (fr) Armature de protection a couches differenciees pour pneumatique pour vehicule lourd de type genie civil
EP3541637B1 (fr) Armature de frettage d'un pneumatique pour vehicule lourd de type genie civil
EP4096936B1 (fr) Architecture optimisée de pneumatique de type poids-lourd, agricole ou génie civil
WO2020053070A1 (fr) Armature de frettage bi-module de pneumatique pour vehicule lourd de type genie civil
EP3541636B1 (fr) Armature de frettage d'un pneumatique pour vehicule lourd de type genie civil
EP4058303B1 (fr) Armature de sommet de pneumatique pour vehicule lourd de genie civil
EP3969294B1 (fr) Pneumatique pour vehicule lourd de type genie civil dote d'une armature de protection a trois couches differenciees
EP3898277B1 (fr) Armature de carcasse d'un pneumatique pour vehicule lourd de type genie civil
WO2019202240A1 (fr) Armature de protection de pneumatique pour vehicule lourd de type genie civil
EP4058628B1 (fr) Câble multi-torons à deux couches avec couche interne gainée à rendement amélioré
EP4096937B1 (fr) Architecture optimisée de pneumatique de type poids-lourd, agricole ou génie civil
WO2022129741A1 (fr) Architecture optimisee d'un pneumatique de type genie civil
WO2022129740A1 (fr) Architecture optimisee d'un pneumatique de type genie civil
WO2021014065A1 (fr) Pneumatique pour vehicule lourd de type genie civil avec une armature sommet simplifiee
WO2023247257A1 (fr) Architecture optimisée de pneumatique de type poids-lourd ou genie civil
FR3130858A1 (fr) Câble multi-torons à deux couches à endurance sous flexion améliorée
FR3112717A1 (fr) architecture optimisée de pneumatique de génie civil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19762983

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021002821

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021002821

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210215

122 Ep: pct application non-entry in european phase

Ref document number: 19762983

Country of ref document: EP

Kind code of ref document: A1