WO2020052473A1 - 一种终端的节能方法及装置 - Google Patents

一种终端的节能方法及装置 Download PDF

Info

Publication number
WO2020052473A1
WO2020052473A1 PCT/CN2019/104181 CN2019104181W WO2020052473A1 WO 2020052473 A1 WO2020052473 A1 WO 2020052473A1 CN 2019104181 W CN2019104181 W CN 2019104181W WO 2020052473 A1 WO2020052473 A1 WO 2020052473A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
energy saving
time
bandwidth
Prior art date
Application number
PCT/CN2019/104181
Other languages
English (en)
French (fr)
Inventor
胡小群
程蕾
董旭晖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020052473A1 publication Critical patent/WO2020052473A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of mobile communication technologies, and in particular, to a method and device for energy saving of a terminal.
  • the cell bandwidth is large and the subcarrier interval is relatively short.
  • terminals need to consume more power for blind detection of physical downlink.
  • Control channel Physical Downlink Control Channel, PDCCH
  • the base station generally configures discontinuous reception (DRX) related parameters to the terminal, and then the terminal stops monitoring the paging and broadcast messages of the base station in the corresponding time period according to the configuration of the DRX, thereby realizing the terminal. Energy saving.
  • DRX discontinuous reception
  • the main problem with this method is that the terminal saves energy during the time period specified by the base station, which may affect the normal service of the terminal.
  • the present application provides a method and device for energy saving of a terminal, so as to realize effective energy saving of the terminal without affecting terminal services.
  • the present application provides a method for saving energy of a terminal.
  • the method includes: the terminal sends energy saving demand information to an access network device, and the energy saving demand information includes time-frequency resource information required by the terminal.
  • the terminal receives an energy saving instruction from the access network device, and the energy saving instruction is used to instruct energy saving according to the energy saving demand information.
  • the terminal saves energy according to the energy saving demand information. Based on this solution, because the energy-saving instruction sent by the access network device to the terminal is used to instruct energy saving according to the energy-saving demand information sent by the terminal, the energy-saving method meets the requirements of the terminal, so it will not affect the normal business of the terminal and improve The effect of energy saving.
  • the terminal determines the downlink scheduling timing of the terminal, then the time-frequency resource information required by the terminal includes the downlink scheduling timing of the terminal, and the downlink scheduling timing of the terminal refers to the time slot where the PDCCH scheduling information is located to the scheduling The number of time slots between the time slots in which information is scheduled.
  • the terminal determines the downlink scheduling timing of the terminal, and sends the downlink scheduling timing of the terminal to the access network device as scheduling demand information, and then the access network device can configure the downlink scheduling timing to the terminal, so that the terminal can schedule the downlink scheduling timing Turning on the receiver to receive data at the specified time will help the terminal save energy and power.
  • the terminal before the terminal determines the downlink scheduling timing of the terminal, the terminal further includes: the terminal determines that the terminal does not currently have a low-latency service, and / or the terminal determines that the current power of the terminal is less than the first power threshold. That is, when determining that there is currently no low-latency service and / or determining that the current power of the terminal is less than the first power threshold, the terminal determines the downlink scheduling timing of the terminal, and sends the downlink scheduling timing of the terminal to the time-frequency resource information required by the terminal to Access network equipment.
  • the downlink scheduling timing of the terminal is increased by a first step according to the current power of the terminal. Long, to obtain the updated downlink scheduling timing, and then send the updated downlink scheduling timing of the terminal to the access network device as the information of the time-frequency resources required by the terminal. That is, the downlink scheduling sequence sent by the terminal to the access network device can be adjusted according to the current power of the terminal.
  • the terminal determines the bandwidth required by the terminal; wherein the energy saving requirement information includes the bandwidth required by the terminal.
  • the information on the time-frequency resources required by the terminal includes the bandwidth required by the terminal.
  • the terminal can request the access network device to reduce the bandwidth, so the bandwidth required by the terminal is taken as the terminal requirement
  • the time-frequency resource information is sent to the access network device, so that the access network device configures the terminal with the required bandwidth value.
  • the required bandwidth of the terminal is reduced by the second step to obtain the updated required bandwidth of the terminal. , And then send the updated bandwidth required by the terminal to the access network device as the time-frequency resource information required by the terminal. That is, the bandwidth required by the terminal to be sent by the terminal to the access network device can be adjusted according to the current power of the terminal.
  • the terminal determines the number of uplink symbols required by the terminal; wherein the information of the time-frequency resources required by the terminal includes the number of uplink symbols required by the terminal.
  • the time-frequency resource information required by the terminal includes the terminal needs Number of upstream symbols.
  • the terminal can request the access network device to reduce the number of uplink symbols, so The number of uplink symbols required by the terminal is sent to the access network device as the time-frequency resource information required by the terminal, so that the access network device configures the terminal with the number of uplink symbols it needs.
  • the number of uplink symbols required by the terminal is reduced by a third step to obtain an updated The number of uplink symbols required by the terminal, and then sending the updated number of uplink symbols required by the terminal to the access network device as the time-frequency resource information required by the terminal. That is, the number of uplink symbols that the terminal sends to the terminal of the access network device can be adjusted according to the current power of the terminal.
  • the time-frequency resource information required by the terminal in any of the foregoing embodiments includes at least one of a downlink scheduling timing of the terminal, a bandwidth required by the terminal, or a number of uplink symbols required by the terminal.
  • the terminal performs energy saving according to the energy saving instruction, and includes: the terminal performs configuration according to at least one of a downlink scheduling timing of the terminal, a bandwidth required by the terminal, or a number of uplink symbols required by the terminal.
  • the energy saving indication in any of the foregoing embodiments may be a radio resource control (Radio Resource Control, RRC) reconfiguration message.
  • RRC Radio Resource Control
  • the present application provides a method for saving energy of a terminal.
  • the method includes: an access network device receives information about energy saving requirements from the terminal, and the information about energy saving requirements includes information about time-frequency resources required by the terminal.
  • the access network device sends an energy saving instruction to the terminal, where the energy saving instruction is used to instruct energy saving according to the energy saving demand information.
  • the time-frequency resource information required by the terminal includes at least one of the following information: the downlink scheduling timing of the terminal, the bandwidth required by the terminal, and the number of uplink symbols required by the terminal.
  • the downlink scheduling timing of the terminal refers to The number of time slots between the time slot where the PDCCH scheduling information is located and the time slot where the downlink data scheduled by the scheduling information is located.
  • the energy saving indication in any of the foregoing embodiments may be an RRC reconfiguration message.
  • the present application provides a communication device having the functions of implementing a terminal or an access network device in the foregoing method embodiments.
  • This function can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a processor, a memory, a bus, and a communication interface; the memory stores computer-executable instructions, the processor is connected to the memory through the bus, and when the communication device is running, the communication device The processor executes the computer execution instructions stored in the memory, so that the communication device executes the energy saving method of the terminal as in the foregoing first aspect to the second aspect, or any implementation manner of the first aspect to the second aspect.
  • the communication device may be a terminal, an access network device, or the like.
  • the communication device may also be a chip, such as a chip of a terminal, or a chip in an access network device.
  • the chip includes a processing unit, and optionally, a storage unit.
  • the chip may be used for The energy saving method of the terminal is performed as described in the first aspect to the second aspect, or any one of the first aspect to the second aspect.
  • the present application provides a computer storage medium storing computer software instructions for the above-mentioned terminal or access network device, which contains a program designed to execute any of the above-mentioned aspects.
  • the present application provides a computer program product.
  • the computer program product includes computer software instructions, and the computer software instructions can be loaded by a processor to implement a process in a method for saving energy of a terminal in any of the above aspects.
  • the present application provides a system including the terminal in the first aspect or any implementation manner of the first aspect, and the access in the first aspect or any implementation manner of the first aspect. Network equipment.
  • FIG. 1 is a schematic diagram of a possible network architecture provided by this application.
  • FIG. 2 is a schematic flowchart of an energy saving method for a terminal provided by this application
  • FIG. 3 is a schematic diagram of a device provided by this application.
  • FIG. 5 is a schematic diagram of an access network device provided by the present application.
  • a schematic diagram of a possible network architecture applicable to this application includes at least one terminal 10 that communicates with an access network device 20 through a wireless interface. For clarity, only one Access network equipment and a terminal.
  • the terminal is a device with wireless transceiver function.
  • the terminal can be deployed on land, including indoor or outdoor, handheld or vehicle; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and Satellite first class).
  • the terminal may be a mobile phone, a tablet, a computer with a wireless transmitting and receiving function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, or an industrial control.
  • UE user equipment
  • An access network device which can also be called a radio access network (RAN) device, is a device that provides wireless communication functions for terminals.
  • the access network equipment includes, for example, but is not limited to, a next-generation base station (gNB) in 5G, an evolved node B (eNB), a radio network controller (RNC), and a node B ( node (B, NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home nodeB, or home nodeB, HNB), baseband unit (baseBand unit) , BBU), transmission point (transmitting and receiving point (TRP), transmission point (transmitting point, TP), mobile switching center, etc.
  • gNB next-generation base station
  • eNB evolved node B
  • RNC radio network controller
  • BSC base station controller
  • BTS base transceiver station
  • home base station e.g., home nodeB, or home nodeB, HNB
  • baseband unit base
  • Air interface resources may include time domain resources and frequency domain resources, and time domain resources and frequency domain resources may also be referred to as time frequency resources.
  • the frequency domain resource may be located in a set frequency range.
  • the frequency range may also be referred to as a band or a frequency band, and the width of the frequency domain resource may be referred to as a bandwidth (BW).
  • BW bandwidth
  • this application provides a method for energy saving of a terminal.
  • this embodiment provides an energy saving method for a terminal. The method includes the following steps:
  • Step 201 The terminal sends the energy saving demand information to the access network device. Accordingly, the access network device can receive the energy saving demand information.
  • the energy-saving requirement information includes information on time-frequency resources required by the terminal.
  • the time-frequency resource information required by the terminal may include at least one of a downlink scheduling sequence of the terminal, a bandwidth required by the terminal, or a number of uplink symbols required by the terminal.
  • the terminal may determine the downlink scheduling timing of the terminal, where the downlink scheduling timing herein refers to the number of time slots between the time slot where the PDCCH scheduling information is located and the time slot where the downlink data scheduled by the scheduling information is located. Then, the downlink scheduling sequence is sent to the access network device as the information of the time-frequency resource required by the terminal, and the downlink scheduling sequence is also sent to the access network device as the terminal's energy saving demand information.
  • the terminal determines the downlink scheduling timing of the terminal, and uses the downlink scheduling timing as The information of the time-frequency resources required by the terminal is sent to the access network device.
  • the terminal determines that the current power of the terminal is less than the first power threshold, it determines the downlink scheduling timing of the terminal, and sends the downlink scheduling timing to the access network device as the time-frequency resource information required by the terminal.
  • the terminal determines that the terminal does not currently have a low-latency service and determines that the current power of the terminal is less than the first power threshold, it determines the downlink scheduling timing of the terminal, and uses the downlink scheduling timing as the time-frequency resource required by the terminal.
  • the information is sent to the access network equipment.
  • the terminal may determine whether a low-latency service currently exists by judging the Quality of Service (QoS) classification identifier (QoS) of the current service.
  • QoS Quality of Service
  • QoS Quality of Service
  • the K0 value can be used to indicate the downlink scheduling timing of the terminal, for example, the terminal can calculate the downlink scheduling timing according to its own needs.
  • Symbol represents the number of symbols in a subframe (for example, it can be set to 14).
  • K0 when the terminal has a low-latency service, K0 may not be enabled, that is, K0 is set to 0, and when the terminal determines that there is currently no low-latency service, K0 may be enabled.
  • the calculated K0 may be 1, or 2, Or 3 and so on.
  • the terminal determines the downlink scheduling timing of the terminal, and sends the downlink scheduling timing of the terminal to the access network equipment as the information of the time-frequency resources required by the terminal in the scheduling demand information, and the access network equipment can configure the downlink to the terminal. Scheduling the timing so that the terminal can turn on the receiver to receive data at the time specified by the downlink scheduling timing, which will help the terminal save energy and prevent the terminal from having to turn on the receiver and receive physical data through the receiver after receiving the PDCCH scheduling information. Power consumption caused by downlink shared channel (Physical Downlink, Shared CHANnel, PDSCH) data.
  • downlink shared channel Physical Downlink, Shared CHANnel, PDSCH
  • the terminal may further increase the downlink scheduling timing of the terminal by a first step according to the current power of the terminal to obtain an updated The downlink scheduling sequence, and then sends the updated downlink scheduling sequence of the terminal to the access network device as energy saving demand information. That is, the downlink scheduling sequence sent by the terminal to the access network device can be adjusted according to the current power of the terminal.
  • the second power threshold value] may be divided into N segments, where N is a preset integer greater than, and the length of the first step corresponding to each segment is different.
  • N is a preset integer greater than
  • N is preset integer greater than
  • N is preset to 3 which can be divided into:
  • the first step length is 1, so the calculated downlink scheduling timing is increased by 1.
  • the first step length is 2, so the calculated downlink scheduling timing is increased by 2 and so on.
  • the lower the current power value the more energy conservation is required. Therefore, the calculated K0 value is appropriately increased to increase the delay and thereby achieve the purpose of energy conservation. Therefore, in this solution, if the K0 value is updated, the updated K0 value may be sent to the access network device as energy saving demand information.
  • the terminal may determine a bandwidth required by the terminal, and send the bandwidth required by the terminal to the access network device as energy saving requirement information.
  • the bandwidth difference threshold can be configured according to the energy saving requirements of the terminal. For example, the lower the terminal's current power, the smaller the bandwidth difference threshold can be configured. Conversely, the more the terminal's current power, the more the bandwidth difference threshold can be. The larger the configuration area.
  • the bandwidth difference threshold is 30 RB
  • the actual bandwidth allocated by the terminal is 200 RB
  • the actual bandwidth required by the terminal is 50 RB. Because the difference between the actual bandwidth allocated by the terminal (200 RB) and the bandwidth required by the terminal (50 RB) is 150 RB, It is greater than the bandwidth difference threshold of 30 RB, so the terminal determines that the bandwidth of the terminal needs to be reduced to achieve energy saving purposes. Therefore, the terminal sends the calculated bandwidth required by the terminal to the access network device as the energy saving requirement information.
  • the difference between the actual bandwidth allocated by the terminal and the bandwidth required by the terminal is greater than the bandwidth difference threshold, which means that the actual bandwidth allocated by the terminal is too large, and the terminal does not need to use so much bandwidth, so the bandwidth can be appropriately reduced.
  • Bandwidth required by the terminal (beta * average amount of data) / (k * R * Qm * v).
  • beta is a coefficient used to adjust the number of calculated resource blocks (RBs).
  • the average data volume (also known as the average traffic volume) is obtained by counting the amount of terminal data over a period of time, and k is the number of The number of effective resource elements (RE) of an RB.
  • R is the code rate
  • Qm is the modulation order
  • v is the average Rank number.
  • R and Qm can be obtained by looking up the table according to the statistical average modulation and coding strategy (Modulation and Coding Scheme, MCS). For example, one or more MCSs in the scheduling information scheduled over a period of time may be obtained, and then the average MCS is calculated according to the obtained one or more MCSs, and then the table is obtained to obtain R and Qm corresponding to the average MCS.
  • MCS Modulation and Coding Scheme
  • the terminal when the difference between the currently allocated bandwidth of the terminal and the bandwidth required by the terminal is large, such as greater than the bandwidth difference threshold, the terminal can request the access network device to reduce the bandwidth, so the bandwidth required by the terminal is taken as the energy saving requirement The information is sent to the access network device, so that the access network device configures the terminal with the required bandwidth value.
  • the terminal may further reduce the required bandwidth of the terminal by the second step to obtain the updated terminal required according to the current power of the terminal. Bandwidth, and then send the updated bandwidth required by the terminal to the access network device as the time-frequency resource information required by the terminal. That is, the bandwidth required by the terminal to be sent by the terminal to the access network device can be adjusted according to the current power of the terminal.
  • the third power threshold value] may be divided into M segments, where M is a preset integer greater than 1, and the second step length corresponding to each segment is different.
  • M is a preset integer greater than 1
  • M is preset to 4
  • the first segment (0, 5%]
  • the corresponding second step size is 4 * k (RB).
  • k (the required bandwidth of the terminal-the minimum bandwidth of the terminal) / M.
  • the bandwidth required by the terminal is 50 RB
  • the minimum bandwidth of the terminal is 10 RB
  • M 4
  • k 10.
  • the first segment (0,5%), the corresponding second step size is 40RB.
  • the current power of the terminal is 18%, which belongs to the fourth stage. Therefore, the calculated bandwidth required by the terminal is reduced by 10 RBs, and the obtained updated terminal needs 40 RB.
  • the current power of the terminal is 12%, which belongs to the third stage. Therefore, the calculated bandwidth required by the terminal is reduced by 20 RB, the obtained updated terminal needs 30 RB, and so on.
  • the bandwidth required by the terminal is appropriately reduced to reduce the allocated bandwidth, thereby achieving the purpose of energy conservation. Therefore, in this solution, if the bandwidth required by the terminal is updated, the updated bandwidth required by the terminal is sent to the access network device as energy saving requirement information.
  • the terminal may determine the number of uplink symbols required by the terminal, and send the number of uplink symbols required by the terminal to the access network device as energy saving requirement information.
  • the time-frequency resource information required by the terminal includes the terminal needs The number of uplink symbols and sends the number of uplink symbols required by the terminal to the access network device as energy saving requirement information.
  • the threshold difference between the number of symbols is 2, the number of uplink symbols actually allocated by the terminal is 12, and the number of uplink symbols actually required by the terminal is 8, because the number of uplink symbols (12) actually allocated by the terminal and the number of uplink symbols required by the terminal ( 8)
  • the difference is 4, which is greater than the symbol number difference threshold 2, so the terminal determines that the number of uplink symbols of the terminal needs to be reduced to achieve the purpose of energy saving. Therefore, the terminal sends the calculated number of uplink symbols required by the terminal to the access network device as the energy saving requirement information.
  • the difference between the number of uplink symbols actually allocated by the terminal and the number of uplink symbols required by the terminal is greater than the symbol number difference threshold means that the number of uplink symbols actually allocated by the terminal is too large, and the terminal does not need to use so many uplink symbols. Therefore, the number of uplink symbols can be appropriately reduced.
  • the number of uplink symbols required by the terminal RB0 * symbol / RBbwp.
  • RB0 is the number of RBs actually scheduled by the user
  • symbol is the number of symbols actually scheduled by the user (for example, it can be the number of symbols included in a slot, for example, 14)
  • RBbwp is the currently used bandwidth part (BWP) ).
  • the RB0 here may be the bandwidth actually allocated by the terminal
  • the RBbwp may be the bandwidth required by the terminal.
  • the terminal when the difference between the number of uplink symbols actually allocated by the terminal and the number of uplink symbols required by the terminal is large, such as greater than the threshold of the number of symbols difference, the terminal can request the access network device to reduce the number of uplink symbols, so The number of uplink symbols required by the terminal is sent to the access network device as energy saving requirement information, so that the access network device configures the terminal with the number of uplink symbols it needs.
  • the terminal may further reduce the number of uplink symbols required by the terminal by a third step according to the current power of the terminal to obtain an update.
  • the number of uplink symbols required by the terminal and then sends the updated number of uplink symbols required by the terminal to the access network device as energy saving requirement information. That is, the number of uplink symbols that the terminal sends to the terminal of the access network device can be adjusted according to the current power of the terminal.
  • the fourth power threshold may be divided into L segments, where L is a preset integer greater than 1, and the third step corresponding to each segment is different.
  • L is a preset integer greater than 1
  • L is preset to 4
  • t (the number of uplink symbols required by the terminal-the minimum number of uplink symbols) / L.
  • the current power of the terminal is 18%, which belongs to the second stage. Therefore, the calculated number of uplink symbols required by the terminal is reduced by 3, and the obtained number of updated symbols required by the terminal is 5.
  • the current power of the terminal is 32%, which belongs to the fourth stage. Therefore, the calculated number of uplink symbols required by the terminal is reduced by 1, the number of uplink symbols required by the updated terminal is 7, and so on.
  • the lower the current power value the more energy conservation is required. Therefore, the calculated number of uplink symbols required by the terminal is appropriately reduced to reduce the number of allocated uplink symbols, thereby achieving the purpose of energy conservation. Therefore, in this solution, if the number of uplink symbols required by the terminal is updated, the updated number of uplink symbols required by the terminal is sent to the access network device as energy saving requirement information. That is, the number of uplink symbols that the terminal sends to the terminal of the access network device can be adjusted according to the current power of the terminal.
  • the foregoing implementation manners of adjusting the downlink scheduling timing of the terminal, adjusting the bandwidth required by the terminal, and adjusting the number of uplink symbols of the terminal may also be used in combination to obtain the energy saving demand information sent by the terminal to the access network device.
  • the first power threshold, the second power threshold, the third power threshold, and the fourth power threshold may be partly the same, or all different, or all the same, which is not limited in this application, and may be set as required. set.
  • the terminal may use a media access control (MAC) control element (Control Element, CE), or the terminal may use MSG3 during the access process, or a scheduling request ( Scheduling Request (SR), or Preamble, sends information about the energy-saving requirements of the terminal to the access network device.
  • MAC media access control
  • CE Control Element
  • SR Scheduling Request
  • Preamble sends information about the energy-saving requirements of the terminal to the access network device.
  • Step 202 The access network device sends an energy saving instruction to the terminal. Accordingly, the terminal can receive the energy saving instruction.
  • the energy saving indication may be an RRC reconfiguration message.
  • the energy saving instruction may include information of time-frequency resources required by the terminal, for example, may include downlink scheduling timing of the terminal, and / or, bandwidth required by the terminal, and / or number of uplink symbols required by the terminal.
  • the information of the time-frequency resources required by the terminal included in the energy-saving instruction herein is the information of the time-frequency resources required by the terminal and sent by the terminal to the access network device.
  • the energy saving instruction may not include information about time-frequency resources required by the terminal, and the energy saving instruction is used to instruct the terminal to save energy according to the information of the time-frequency resources stored locally by the terminal.
  • the access network device updates the configuration of the downlink scheduling timing after receiving the downlink scheduling timing, and then can The downlink scheduling timing is configured to the terminal through an RRC configuration message.
  • the access network device performs scheduling according to the configuration of the downlink scheduling sequence sent by the terminal. After receiving the downlink scheduling information, the terminal immediately turns off the receiver, and then turns on the receiver at the PDSCH position corresponding to the downlink scheduling timing to receive the downlink data.
  • the access network device converts the bandwidth required by the terminal to a BWP configuration, and then It can be delivered to the terminal through the RRC configuration message, and the required BWP can be activated through RRC or Downlink Control Information (DCI). And, the terminal performs data transmission and reception on the activated BWP.
  • DCI Downlink Control Information
  • the access network device updates the uplink symbol configuration after receiving the uplink symbols required by the terminal, and then It can be configured to the terminal through an RRC configuration message.
  • the access network device uses the new uplink symbol to schedule the terminal.
  • Step 203 The terminal saves energy according to the energy saving demand information.
  • the terminal configures according to at least one of the downlink scheduling timing of the terminal, the bandwidth required by the terminal, or the number of uplink symbols required by the terminal, thereby achieving the purpose of energy saving.
  • the energy saving method conforms to the requirements of the terminal, and therefore does not affect the terminal. Normal business, and it has improved the energy saving effect and minimized the energy consumption of the terminal.
  • FIG. 3 shows a possible exemplary block diagram of a device involved in the embodiment of the present invention, and the device 300 may exist in the form of software.
  • the apparatus 300 may include a processing unit 302 and a communication unit 303.
  • the communication unit 303 may include a receiving unit and a sending unit.
  • the processing unit 302 is configured to control and manage the operations of the device 300.
  • the communication unit 303 is configured to support communication between the device 300 and other network entities.
  • the device 300 may further include a storage unit 301 for storing program code and data of the device 300.
  • the processing unit 302 may be a processor or a controller.
  • the processing unit 302 may be a general-purpose central processing unit (CPU), a general-purpose processor, digital signal processing (DSP), or an application-specific integrated circuit. circuits, ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that realizes a computing function, for example, includes a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 303 may be a communication interface, a transceiver, or a transceiver circuit.
  • the communication interface is collectively referred to. In a specific implementation, the communication interface may include multiple interfaces.
  • the storage unit 301 may be a memory.
  • the apparatus 300 may be an access network device in any of the foregoing embodiments, or may be a chip in the access network device.
  • the processing unit may be, for example, a processor
  • the communication unit may be, for example, a transceiver
  • the transceiver includes a radio frequency circuit.
  • the storage unit may be, for example, a memory.
  • the processing unit may be, for example, a processor
  • the communication unit may be, for example, an input / output interface, a pin, or a circuit.
  • the processing unit may execute computer-executing instructions stored in the storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, and the like.
  • the storage unit may also be the chip located in the access network device.
  • External storage units such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • the communication unit 303 includes a sending unit and a receiving unit: the receiving unit is configured to receive energy saving demand information from the terminal, and the energy saving demand information includes information about time-frequency resources required by the terminal; and the sending unit is configured to: Sending the energy saving instruction to the terminal, where the energy saving instruction is used to instruct energy saving according to the energy saving demand information.
  • the time-frequency resource information required by the terminal includes at least one of a downlink scheduling timing of the terminal, a bandwidth required by the terminal, or a number of uplink symbols required by the terminal.
  • the downlink scheduling timing of the terminal refers to the number of time slots between the time slot in which the PDCCH scheduling information is located and the time slot in which the downlink data scheduled by the scheduling information is located.
  • the energy saving indication is an RRC reconfiguration message.
  • the device 300 may be a terminal in any of the above embodiments, or may be a chip in the terminal.
  • the processing unit may be, for example, a processor
  • the communication unit may be, for example, a transceiver
  • the transceiver includes a radio frequency circuit.
  • the storage unit may be, for example, a memory.
  • the processing unit may be a processor
  • the communication unit may be, for example, an input / output interface, a pin, or a circuit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the terminal, such as a ROM or other device that can store static information and instructions. Type of static storage device, RAM, etc.
  • the sending unit is configured to send energy saving demand information to the access network device, where the energy saving demand information includes information about time-frequency resources required by the terminal; the receiving unit, And configured to receive an energy saving instruction from the access network device, where the energy saving instruction is used to instruct energy saving according to the energy saving demand information; and the processing unit is used to perform energy saving according to the energy saving instruction.
  • the terminal may further determine a downlink scheduling timing of the terminal, and the time-frequency resource information required by the terminal includes the downlink scheduling timing of the terminal, and the downlink scheduling timing of the terminal is The number of time slots between the time slot where the PDCCH scheduling information of the physical downlink control channel is located and the time slot where the downlink data scheduled by the scheduling information is located.
  • the terminal before the terminal determines the downlink scheduling timing of the terminal, the terminal further includes: the terminal determines that the terminal does not currently have a low-latency service, and / or the terminal determines the terminal The current power of is less than the first power threshold.
  • the terminal determines that the current power of the terminal is less than a second power threshold, and then increases the downlink scheduling timing of the terminal by a first step according to the current power of the terminal to obtain an update. Subsequent downlink scheduling timing; the time-frequency resource information required by the terminal includes the downlink scheduling timing of the terminal, and specifically: the time-frequency resource information required by the terminal includes the updated downlink scheduling timing.
  • the terminal may also determine a bandwidth required by the terminal; wherein the time-frequency resource information required by the terminal includes the bandwidth required by the terminal.
  • the time-frequency resource information required by the terminal includes all Describe the bandwidth required by the terminal.
  • the terminal determines that the current power of the terminal is less than a third power threshold, and then reduces the bandwidth required by the terminal by a second step according to the current power of the terminal, Bandwidth required by the terminal; information about time-frequency resources required by the terminal includes bandwidth required by the terminal, and specifically: information about time-frequency resources required by the terminal includes updated bandwidth required by the terminal.
  • the terminal determines the number of uplink symbols required by the terminal; wherein the time-frequency resource information required by the terminal includes the number of uplink symbols required by the terminal.
  • the terminal determines that a difference between the number of uplink symbols actually allocated by the terminal and the number of uplink symbols required by the terminal is greater than a symbol number difference threshold, the time-frequency required by the terminal
  • the resource information includes the number of uplink symbols required by the terminal.
  • the terminal when the terminal determines that the current power of the terminal is less than a fourth power threshold, the terminal reduces the number of uplink symbols required by the terminal by a third step according to the current power of the terminal to obtain The updated number of uplink symbols required by the terminal; the time-frequency resource information required by the terminal includes the number of uplink symbols required by the terminal, and specifically: the time-frequency resource information required by the terminal includes the updated all The number of uplink symbols required by the terminal is described.
  • the time-frequency resource information required by the terminal includes at least one of a downlink scheduling timing of the terminal, a bandwidth required by the terminal, or a number of uplink symbols required by the terminal;
  • the The terminal performing energy saving according to the energy saving instruction includes: the terminal performs configuration according to at least one of a downlink scheduling timing of the terminal, a bandwidth required by the terminal, or a number of uplink symbols required by the terminal.
  • the energy saving indication is a radio resource control RRC reconfiguration message.
  • the device shown in FIG. 3 is a terminal or an access network device
  • the specific beneficial effects of the energy saving method of the terminal used for execution may be referred to the related description in the foregoing method embodiments, and details are not described herein again.
  • FIG. 4 shows a simplified schematic diagram of a possible design structure of a terminal involved in an embodiment of the present invention.
  • the terminal 400 includes a transmitter 401, a receiver 402, and a processor 403.
  • the processor 403 may also be a controller, which is shown as "controller / processor 403" in FIG. 4.
  • the terminal 400 may further include a modem processor 405, where the modem processor 405 may include an encoder 406, a modulator 407, a decoder 408, and a demodulator 409.
  • the transmitter 401 adjusts (eg, analog conversion, filtering, amplification, upconversion, etc.) the output samples and generates an uplink signal, which is transmitted to the access described in the above embodiment via an antenna Network equipment.
  • the antenna receives the downlink signal transmitted by the access network device in the above embodiment.
  • the receiver 402 conditions (e.g., filters, amplifies, downconverts, and digitizes, etc.) the signal received from the antenna and provides input samples.
  • the encoder 406 receives service data and signaling messages to be transmitted on the uplink, and processes (e.g., formats, encodes, and interleaves) the service data and signaling messages.
  • the modulator 407 further processes (e.g., symbol maps and modulates) the encoded service data and signaling messages and provides output samples.
  • a demodulator 409 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 408 processes (e.g., deinterleaves and decodes) the symbol estimates and provides decoded data and signaling messages sent to the terminal 400.
  • the encoder 406, the modulator 407, the demodulator 409, and the decoder 408 may be implemented by a synthesized modem processor 405. These units process according to the radio access technology used by the radio access network. It should be noted that when the terminal 400 does not include the modem processor 405, the above functions of the modem processor 405 may also be performed by the processor 403.
  • the processor 403 controls and manages the actions of the terminal 400, and is configured to execute the processing procedure performed by the terminal 400 in the foregoing embodiment of the present invention.
  • the processor 403 is configured to execute a terminal-related processing process and / or other processes of the technical solution described in this application in the method for saving energy of a terminal in any embodiment of the present application.
  • the terminal 400 may further include a memory 404, and the memory 404 is configured to store program code and data for the terminal 400.
  • FIG. 5 shows a possible structural diagram of an access network device according to an embodiment of the present invention.
  • the access network device 500 includes a processor 502 and a communication interface 504.
  • the processor 502 may also be a controller, which is shown as “controller / processor 502” in FIG. 5.
  • the communication interface 504 is configured to support communication between an access network device and a terminal.
  • the access network device 500 may further include a transmitter / receiver 501.
  • the transmitter / receiver 501 is configured to support radio communication between an access network device and a terminal in the foregoing embodiment.
  • the processor 502 may perform various functions for communicating with a terminal.
  • the uplink signal from the terminal is received via the antenna, demodulated by the receiver 501 (for example, demodulating high-frequency signals into baseband signals), and further processed by the processor 502 to restore the services sent by the terminal Data and signaling information.
  • service data and signaling messages are processed by the processor 502 and modulated by the transmitter 501 (for example, modulating a baseband signal into a high-frequency signal) to generate a downlink signal and transmitted to the terminal via an antenna .
  • the above-mentioned demodulation or modulation function may also be completed by the processor 502.
  • the processor 502 is further configured to execute a processing process involving an access network device and / or other processes of the technical solution described in this application in the energy saving method of any terminal in the embodiments of the present application.
  • the access network device 500 may further include a memory 503, and the memory 503 is configured to store program codes and data of the access network device 500.
  • FIG. 5 only shows a simplified design of the access network device 500.
  • the access network device 500 may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all access network devices that can implement the embodiments of the present invention are in the present invention. Within the scope of protection of the embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like including one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk)).
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (Solid State Disk)
  • Various illustrative logic units and circuits described in the embodiments of the present application may be implemented by a general-purpose processor, a digital signal processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic devices. Discrete gate or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor. Alternatively, the general-purpose processor may also be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • a software unit may be stored in a RAM memory, a flash memory, a ROM memory, an EPROM memory, an EEPROM memory, a register, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium in the art.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may be provided in an ASIC, and the ASIC may be provided in a terminal. Alternatively, the processor and the storage medium may also be provided in different components in the terminal.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, which can be executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种终端的节能方法及装置。该方法包括:终端向接入网设备发送节能需求信息,所述节能需求信息包括所述终端需要的时频资源的信息。终端接收来自接入网设备的节能指示,所述节能指示用于指示根据节能需求信息进行节能。终端根据节能需求信息进行节能。基于该方案,由于接入网设备发送给终端的节能指示用于指示根据终端发送的节能需求信息进行节能,因而该节能方式是符合终端的要求的,因此不会影响终端的正常业务,并且提升了节能的效果。

Description

一种终端的节能方法及装置
相关申请的交叉引用
本申请要求在2018年09月11日提交中国专利局、申请号为201811057641.5、申请名称为“一种终端的节能方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种终端的节能方法及装置。
背景技术
第五代(5th generation,5G)移动网络中,小区带宽大,子载波间隔比较短,与长期演进(Long Term Evolution,LTE)网络相比,终端需要耗费更多的电量用于盲检物理下行控制信道(Physical Downlink Control Channel,PDCCH)信道和接收数据。
现有技术中,一般是由基站向终端配置非连续接收(Discontinuous Reception,DRX)相关参数,然后终端根据DRX的配置,在相应的时间段停止监听基站的寻呼、广播等消息,从而实现终端的节能。
该方法存在的主要问题是:终端在基站指定的时间段进行节能,可能会影响终端的正常业务。
发明内容
本申请提供一种终端的节能方法及装置,用以实现在不影响终端业务的情况下,实现终端的有效节能。
第一方面,本申请提供一种终端的节能方法,该方法包括:终端向接入网设备发送节能需求信息,所述节能需求信息包括所述终端需要的时频资源的信息。终端接收来自接入网设备的节能指示,所述节能指示用于指示根据节能需求信息进行节能。终端根据节能需求信息进行节能。基于该方案,由于接入网设备发送给终端的节能指示用于指示根据终端发送的节能需求信息进行节能,因而该节能方式是符合终端的要求的,因此不会影响终端的正常业务,并且提升了节能的效果。
在一种可能的实现方式中,终端确定终端的下行调度时序,则终端需要的时频资源的信息包括终端的下行调度时序,终端的下行调度时序是指PDCCH调度信息所在的时隙到该调度信息调度的数据所在的时隙之间的时隙数。基于该方案,终端确定终端的下行调度时序,并将终端的下行调度时序作为调度需求信息发送至接入网设备,进而接入网设备可以向终端配置下行调度时序,使得终端可以在下行调度时序指定的时间点开启接收机接收数据,将有助于终端节能电量。
在一种可能的实现方式中,终端确定终端的下行调度时序之前,还包括:终端确定终端当前没有低时延业务,和/或,终端确定终端的当前电量小于第一电量阈值。即终端在确 定当前没有低时延业务和/或确定终端的当前电量小于第一电量阈值时,确定终端的下行调度时序,并将终端的下行调度时序作为终端需要的时频资源的信息发送至接入网设备。
在一种可能的实现方式中,终端在确定终端的下行调度时序之后,若确定终端的当前电量小于第二电量阈值,则根据终端的当前电量,将所述终端的下行调度时序增加第一步长,得到更新后的下行调度时序,然后将更新后的终端的下行调度时序作为终端需要的时频资源的信息发送至接入网设备。即终端发送至接入网设备的下行调度时序是可以根据终端的当前电量进行调节的。
在又一种可能的实现方式中,终端确定终端需要的带宽;其中,节能需求信息包括终端需要的带宽。
在又一种可能的实现方式中,当终端确定终端实际分配的带宽与终端需要的带宽的差值大于带宽差值阈值时,则终端需要的时频资源的信息包括终端需要的带宽。基于该方案,当终端当前实际分配的带宽与终端需求的带宽的差值较大,比如大于带宽差值阈值时,则终端可以请求接入网设备减少带宽,因此将终端需要的带宽作为终端需要的时频资源的信息发送至接入网设备,使得接入网设备为终端配置其需要的带宽值。
在一种可能的实现方式中,终端在确定终端需要的带宽后,若确定终端的当前电量小于第三电量阈值,则将终端需要的带宽减少第二步长,得到更新后的终端需要的带宽,然后将更新后的终端需要的带宽作为终端需要的时频资源的信息发送至接入网设备。即终端发送至接入网设备的终端需要的带宽是可以根据终端的当前电量进行调节的。
在又一种可能的实现方式中,终端确定终端需要的上行符号数;其中,终端需要的时频资源的信息包括终端需要的上行符号数。
在又一种可能的实现方式中,当终端确定终端实际分配的上行符号数与终端需要的上行符号数的差值大于符号数差值阈值时,则终端需要的时频资源的信息包括终端需要的上行符号数。基于该方案,当终端当前实际分配的上行符号数与终端需求的上行符号数的差值较大,比如大于符号数差值阈值时,则终端可以请求接入网设备减少上行符号数,因此将终端需要的上行符号数作为终端需要的时频资源的信息发送至接入网设备,使得接入网设备为终端配置其需要的上行符号数。
在一种可能的实现方式中,终端在确定终端需要的上行符号数后,若确定终端的当前电量小于第四电量阈值,则将终端需要的上行符号数减少第三步长,得到更新后的终端需要的上行符号数,然后将更新后的终端需要的上行符号数作为终端需要的时频资源的信息发送至接入网设备。即终端发送至接入网设备的终端需要的上行符号数是可以根据终端的当前电量进行调节的。
在一种可能的实现方式中,上述任一实施例中的终端需要的时频资源的信息包括终端的下行调度时序、终端需要的带宽或终端需要的上行符号数中的至少一个。终端根据节能指示进行节能,包括:终端根据终端的下行调度时序、终端需要的带宽或终端需要的上行符号数中的至少一个进行配置。
在一种可能的实现方式中,上述任一实施例中的节能指示可以为无线资源控制(Radio Resource Control,RRC)重配置消息。
第二方面,本申请提供一种终端的节能方法,该方法包括:接入网设备接收来自终端的节能需求信息,该节能需求信息包括终端需要的时频资源的信息。接入网设备向终端发送节能指示,该节能指示用于指示根据所述节能需求信息进行节能。基于该方案,由于接 入网设备发送给终端的节能指示是示根据终端发送的节能需求信息进行节能,因而该节能方式是符合终端的要求的,因此不会影响终端的正常业务,并且提升了节能的效果。
在一种可能的实现方式中,终端需要的时频资源的信息包括以下信息中的至少一个:终端的下行调度时序、终端需要的带宽、终端需要的上行符号数,终端的下行调度时序是指PDCCH调度信息所在的时隙到所述调度信息调度的下行数据所在的时隙之间的时隙数。
在一种可能的实现方式中,上述任一实施例中的节能指示可以为RRC重配置消息。
第三方面,本申请提供一种通信装置,该通信装置具有实现上述方法实施例中终端或接入网设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该通信装置包括:处理器、存储器、总线和通信接口;该存储器存储有计算机执行指令,该处理器与该存储器通过该总线连接,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述第一方面至第二方面、或第一方面至第二方面的任一实现方式中的终端的节能方法。例如,该通信装置可以是终端、或接入网设备等。
在另一种可能的设计中,该通信装置还可以是芯片,如终端的芯片、或接入网设备内的芯片,该芯片包括处理单元,可选地,还包括存储单元,该芯片可用于执行如上述第一方面至第二方面、或第一方面至第二方面的任一实现方式中的终端的节能方法。
第四方面,本申请提供了一种计算机存储介质,储存有为上述终端或接入网设备所用的计算机软件指令,其包含用于为执行上述任意方面所设计的程序。
第五方面,本申请提供了一种计算机程序产品。该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现上述任意方面中任意一项的终端的节能方法中的流程。
第六方面,本申请提供一种系统,该系统包括上述第一方面或第一方面的任一实现方式中的终端,和,上述第一方面或第一方面的任一实现方式中的接入网设备。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请提供的一种可能的网络架构示意图;
图2为本申请提供的一种终端的节能方法流程示意图;
图3为本申请提供的一种装置示意图;
图4为本申请提供的一种终端示意图;
图5为本申请提供的一种接入网设备示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请描述的架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对于本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新 业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
如图1所示,为本申请所适用的一种可能的网络架构示意图,包括至少一个终端10,该终端10通过无线接口与接入网设备20通信,为清楚起见,图中只示出一个接入网设备和一个终端。
终端是一种具有无线收发功能的设备,终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端,以及还可以包括用户设备(user equipment,UE)等。
接入网设备,也可以称为无线接入网(radio access network,RAN)设备,是一种为终端提供无线通信功能的设备。接入网设备例如包括但不限于:5G中的下一代基站(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。
在小区中,接入网设备和终端可以通过空口资源进行数据传输。空口资源可以包括时域资源和频域资源,时域资源和频域资源还可以称为时频资源。频域资源可以位于设置的频率范围,频率范围还可以称为频带(band)或频段,频域资源的宽度可以称为带宽(bandwidth,BW)。
基于图1所示的系统架构,本申请提供一种终端的节能方法。如图2所示,为本申请提供的终端的节能方法。该方法包括以下步骤:
步骤201,终端向接入网设备发送节能需求信息。相应地,接入网设备可以接收到该节能需求信息。
该节能需求信息中包括终端需要的时频资源的信息。其中,终端需要的时频资源的信息可以包括终端的下行调度时序、终端需要的带宽或终端需要的上行符号数中的至少一个。
在一种实现方式中,终端可以确定终端的下行调度时序,这里的下行调度时序是指PDCCH调度信息所在的时隙到该调度信息调度的下行数据所在的时隙之间的时隙数。然后,将下行调度时序作为终端需要的时频资源的信息发送至接入网设备,也即将下行调度时序作为终端的节能需求信息发送至接入网设备。
作为一种实现方式,终端若确定当前没有低时延业务(如超高可靠与低延迟的通信(Ultra Reliable&Low Latency Communication,uRLLC)业务),则确定终端的下行调度时序,并将下行调度时序作为终端需要的时频资源的信息发送至接入网设备。作为又一种实现方式,终端若确定终端的当前电量小于第一电量阈值,则确定终端的下行调度时序,并将下行调度时序作为终端需要的时频资源的信息发送至接入网设备。作为又一种实现方式,终端若确定终端当前没有低时延业务并且确定终端的当前电量小于第一电量阈值,则确定终端的下行调度时序,并将下行调度时序作为终端需要的时频资源的信息发送至接入网设备。 其中,终端可以通过判断当前业务的服务质量(Quality of Service,QoS)分类标识(QoS Class Identifier,QCI),确定当前是否存在低时延业务。
在5G通信中,可以使用K0值来表示终端的下行调度时序,比如终端可以根据自己的需求计算下行调度时序。作为示例,下面给出一种K0值的计算方式:K0=ceil((t1+t2)/symbol),其中,ceil()函数表示向上取整,t1表示终端解析盲检PDCCH的处理时间,t2表示开启接收机的过程所需要的时间,例如t2是开始开启接收机到完成开启接收机所需要的时间,symbol表示一个子帧中的符号数(例如可以取值为14)。一般情况下,K0值越大,则终端的业务处理时延越高;反之,K0值越小,则终端的业务处理时延越低。因此,当终端有低时延业务时,可以不开启K0,即K0设置为0,而当终端确定当前没有低时延业务时,可以开启K0,比如计算得到的K0可以为1、或2、或3等。
基于该方案,终端确定终端的下行调度时序,并将终端的下行调度时序作为调度需求信息中的终端需要的时频资源的信息发送至接入网设备,进而接入网设备可以向终端配置下行调度时序,使得终端可以在下行调度时序指定的时间点开启接收机接收数据,将有助于终端节能电量,能够避免终端在接收到PDCCH调度信息后,需要一直开启接收机并通过接收机接收物理下行共享信道(Physical Downlink Shared CHannel,PDSCH)数据而带来的电量耗费。
进一步的,终端在确定终端的下行调度时序之后,若确定终端的当前电量小于第二电量阈值,则还可以根据终端的当前电量,将终端的下行调度时序增加第一步长,得到更新后的下行调度时序,然后将更新后的终端的下行调度时序作为节能需求信息发送至接入网设备。即终端发送至接入网设备的下行调度时序是可以根据终端的当前电量进行调节的。
比如,作为一种实现方式,可以将[0,第二电量阈值]划分为N段,N为预设的大于的整数,每段对应的第一步长不同。下面结合具体示例进行说明。比如第二电量阈值为30%,N预设为3,则可以划分:
第一段:(0,10%],对应的第一步长为3。
第二段:(10%,20%],对应的第一步长为2。
第三段:(20%,30%),对应的第一步长为1。
比如,终端当前电量为25%,属于第三段,则第一步长为1,因此将计算得到的下行调度时序增加1。再比如,终端当前的电量为15%,属于第二段,则第一步长为2,因此将计算得到的下行调度时序增加2等等。
需要说明的是,上述仅作为示例,实际应用中还可以有其他的设定第一步长的方式,本申请不做限定。
一般地,当前电量值越低,表明越需要节能,因此将计算得到的K0值适当增大,以提高时延,从而达到节能的目的。因此该方案中,若更新了K0值,则可以将更新后的K0值作为节能需求信息发送至接入网设备。
在又一种可能的实现方式中,终端可以确定终端需要的带宽,将终端需要的带宽作为节能需求信息发送至接入网设备。
在又一种可能的实现方式中,当终端确定终端实际分配的带宽与终端需要的带宽的差值大于带宽差值阈值时,则终端需要的时频资源的信息包括终端需要的带宽,并将终端需要的带宽作为节能需求信息发送至接入网设备。其中,带宽差值阈值是可以根据终端的节能需求配置的,比如终端的当前电量越少,则带宽差值阈值可以配置地越小,反之,终端 的当前电量越多,则带宽差值阈值可以配置地越大。
比如,带宽差值阈值为30RB,终端实际分配的带宽为200RB,而终端实际需要的带宽为50RB,由于终端实际分配的带宽(200RB)与终端需要的带宽(50RB)的差值为150RB,其大于带宽差值阈值30RB,因此终端确定需要减少终端的带宽,以实现节能目的。因此终端将计算得到的终端需要的带宽作为节能需求信息发送至接入网设备。其中,终端实际分配的带宽与终端需要的带宽的差值大于带宽差值阈值的含义为:终端实际分配的带宽过大,终端不需要使用如此多的带宽,因此可以适当地减小带宽。
作为示例,下面给出一种终端需要的带宽的计算方式。终端需要的带宽=(beta*平均数据量)/(k*R*Qm*v)。其中,beta为系数,用于调整计算的资源块(resource block,RB)数,平均数据量(也称为平均业务量)是统计一段时间的终端数据量得到的,k为一个时隙中的一个RB的有效资源单元(resource element,RE)数,比如,k可以等于156,即12*13=156(12为每个符号中的RE数目,13为每个时隙中有效的符号数),R为码率,Qm为调制阶数,v为平均的Rank数,其中,R和Qm可以根据统计得到的平均调制与编码策略(Modulation and Coding Scheme,MCS)查表得到。比如,可以获取一段时间内调度的调度信息里的一个或多个MCS,然后根据获取的一个或多个MCS计算得到平均MCS,然后查表,获取该平均MCS对应的R和Qm。需要说明的是,在具体实现中,可以计算终端需要的上行带宽,也可以计算终端需要的下行带宽,或者还可以计算终端需要的上行带宽和下行带宽。
基于该方案,当终端当前实际分配的带宽与终端需求的带宽的差值较大,比如大于带宽差值阈值时,则终端可以请求接入网设备减少带宽,因此将终端需要的带宽作为节能需求信息发送至接入网设备,使得接入网设备为终端配置其需要的带宽值。
进一步的,终端在确定终端需要的带宽之后,若确定终端的当前电量小于第三电量阈值,则还可以根据终端的当前电量,将终端需要的带宽减少第二步长得到更新后的终端需要的带宽,然后将更新后的终端需要的带宽作为终端需要的时频资源的信息发送至接入网设备。即终端发送至接入网设备的终端需要的带宽是可以根据终端的当前电量进行调节的。
比如,作为一种实现方式,可以将[0,第三电量阈值]划分为M段,M为预设的大于1的整数,每段对应的第二步长不同。下面结合具体示例进行说明。比如第三电量阈值为20%,M预设为4,则可以划分:
第一段:(0,5%],对应的第二步长为4*k(RB)。
第二段:(5%,10%],对应的第二步长为3*k(RB)。
第三段:(10%,15%],对应的第二步长为2*k(RB)。
第四段:(15%,20%),对应的第二步长为1*k(RB)。
其中,k=(终端需要的带宽-终端最低带宽)/M。比如,终端需要的带宽为50RB,终端最低带宽为10RB,M=4,则k=10。因此:
第一段:(0,5%],对应的第二步长为40RB。
第二段:(5%,10%],对应的第二步长为30RB。
第三段:(10%,15%],对应的第二步长为20RB。
第四段:(15%,20%),对应的第二步长为10RB。
比如,终端当前电量为18%,属于第四段,因此将计算得到的终端需要的带宽减少10RB,得到的更新后的终端需要的带宽为40RB。再比如,终端当前的电量为12%,属于第三段, 因此将计算得到的终端需要的带宽减少20RB,得到的更新后的终端需要的带宽为30RB等等。
需要说明的是,上述仅作为示例,实际应用中还可以有其他的设定第一步长的方式,本申请不做限定。
一般地,当前电量值越低,表明越需要节能,因此将计算得到的终端需要的带宽适当降低,以减少分配的带宽,从而达到节能的目的。因此该方案中,若更新了终端需要的带宽,则将更新后的终端需要的带宽作为节能需求信息发送至接入网设备。
在又一种可能的实现方式中,终端可以确定终端需要的上行符号数,将终端需要的上行符号数作为节能需求信息发送至接入网设备。
在又一种可能的实现方式中,当终端确定终端实际分配的上行符号数与终端需要的上行符号数的差值大于符号数差值阈值时,则终端需要的时频资源的信息包括终端需要的上行符号数,并将终端需要的上行符号数作为节能需求信息发送至接入网设备。
比如,符号数差值阈值为2,终端实际分配的上行符号数为12,而终端实际需要的上行符号数为8,由于终端实际分配的上行符号数(12)与终端需要的上行符号数(8)的差值为4,其大于符号数差值阈值2,因此终端确定需要减少终端的上行符号数,以实现节能目的。因此终端将计算得到的终端需要的上行符号数作为节能需求信息发送至接入网设备。其中,终端实际分配的上行符号数与终端需要的上行符号数的差值大于符号数差值阈值的含义为:终端实际分配的上行符号数过多,终端不需要使用如此多的上行符号数,因此可以适当地减少上行符号数。
作为示例,下面给出一种终端需要的上行符号数的计算方式。终端需要的上行符号数=RB0*symbol/RBbwp。其中,RB0为用户实际调度的RB数,symbol为用户实际调度的符号数(例如可以是一个时隙包括的符号的个数,例如为14),RBbwp为当前使用的带宽部分(bandwidth part,BWP)。其中,这里的RB0可以是上述终端实际分配的带宽,这里的RBbwp可以是上述终端需要的带宽,具体计算方式可以参考前述描述,这里不再赘述。
基于该方案,当终端当前实际分配的上行符号数与终端需求的上行符号数的差值较大,比如大于符号数差值阈值时,则终端可以请求接入网设备减少上行符号数,因此将终端需要的上行符号数作为节能需求信息发送至接入网设备,使得接入网设备为终端配置其需要的上行符号数。
进一步的,终端在确定终端需要的上行符号数之后,若确定终端的当前电量小于第四电量阈值,则还可以根据终端的当前电量,将终端需要的上行符号数减少第三步长得到更新后的终端需要的上行符号数,然后将更新后的终端需要的上行符号数作为节能需求信息发送至接入网设备。即终端发送至接入网设备的终端需要的上行符号数是可以根据终端的当前电量进行调节的。
比如,作为一种实现方式,可以将[0,第四电量阈值]划分为L段,L为预设的大于1的整数,每段对应的第三步长不同。下面结合具体示例进行说明。比如第四电量阈值为40%,L预设为4,则可以划分:
第一段:(0,10%],对应的第三步长为4*t。
第二段:(10%,20%],对应的第三步长为3*t。
第三段:(20%,30%],对应的第三步长为2*t。
第四段:(30%,40%),对应的第三步长为1*t。
其中,t=(终端需要的上行符号数-最少上行符号数)/L。比如,最少上行符号数为4,终端需要的上行符号数为8,L=4,则t=1。因此:
第一段:(0,10%],对应的第三步长为4。
第二段:(10%,20%],对应的第三步长为3。
第三段:(20%,30%],对应的第三步长为2。
第四段:(30%,40%),对应的第三步长为1。
比如,终端当前电量为18%,属于第二段,因此将计算得到的终端需要的上行符号数减少3,得到的更新后的终端需要的上行符号数为5。再比如,终端当前的电量为32%,属于第四段,因此将计算得到的终端需要的上行符号数减少1,得到的更新后的终端需要的上行符号数为7等等。
需要说明的是,上述仅作为示例,实际应用中还可以有其他的设定第一步长的方式,本申请不做限定。
一般地,当前电量值越低,表明越需要节能,因此将计算得到的终端需要的上行符号数适当降低,以减少分配的上行符号数,从而达到节能的目的。因此该方案中,若更新了终端需要的上行符号数,则将更新后的终端需要的上行符号数作为节能需求信息发送至接入网设备。即终端发送至接入网设备的终端需要的上行符号数是可以根据终端的当前电量进行调节的。
作为一种实现方式,上述调整终端的下行调度时序、调整终端需要的带宽、调整终端的上行符号数的实现方式还可以相结合使用,以得到终端发送至接入网设备的节能需求信息。
作为一种实现方式,上述第一电量阈值、第二电量阈值、第三电量阈值、第四电量阈值可以部分相同、或者全部不同、或者全部相同,本申请对此不做限定,可根据需要设定。
作为一种实现方式,上述任一实施例中,终端可以通过媒体接入控制(media access control,MAC)控制单元(Control Element,CE)、或者终端在接入过程中通过MSG3、或者调度请求(Scheduling Request,SR)、或者Preamble的方式向接入网设备发送终端的节能需求信息。
步骤202,接入网设备向终端发送节能指示。相应地,终端可以接收到该节能指示。
比如,该节能指示可以为RRC重配置消息。
作为一种实现方式,节能指示中可以包括终端需要的时频资源的信息,比如可以包括终端的下行调度时序,和/或,终端需要的带宽,和/或,终端需要的上行符号数。这里的节能指示中包括的终端需要的时频资源的信息即为终端向接入网设备发送的终端需要的时频资源的信息。
作为又一种实现方式,该节能指示中也可以不包括终端需要的时频资源的信息,该节能指示用于指示终端根据本地存储的终端需要的时频资源的信息进行节能。
在一种实现方式中,若接入网设备接收到的终端需要的时频资源的信息包括下行调度时序,则接入网设备接收到下行调度时序之后,更新下行调度时序的配置,然后可以将下行调度时序通过RRC配置消息配置给终端。并且,接入网设备在有数据调度时,按照终端发送的下行调度时序的配置进行调度。终端在接收到下行调度信息之后,立即关闭接收机,然后在下行调度时序对应的PDSCH位置上开启接收机,接收下行数据。
在一种实现方式中,若接入网设备接收到的终端需要的时频资源的信息包括终端需要 的带宽,则接入网设备接收到终端需要的带宽之后,将其转换为BWP配置,然后可以通过RRC配置消息下发给终端,以及通过RRC或下行控制信息(Downlink control information,DCI)激活所需的BWP。并且,终端在激活的BWP上进行数据收发。
在一种实现方式中,若接入网设备接收到的终端需要的时频资源的信息包括终端需要的上行符号,则接入网设备接收到终端需要的上行符号之后,更新上行符号配置,然后可以通过RRC配置消息配置给终端。接入网设备在后续的上行调度时,使用新的上行符号调度终端。
步骤203,终端根据节能需求信息进行节能。
即终端根据终端的下行调度时序、终端需要的带宽或终端需要的上行符号数中的至少一个进行配置,从而实现节能的目的。
通过上述步骤201-步骤203,由于接入网设备发送给终端的节能指示用于指示终端根据终端发送的节能需求信息进行节能,因而该节能方式是符合终端的要求的,因此不会影响终端的正常业务,并且提升了节能的效果,最大限度降低了终端的能耗。
在采用集成的单元的情况下,图3示出了本发明实施例中所涉及的装置的可能的示例性框图,该装置300可以以软件的形式存在。装置300可以包括:处理单元302和通信单元303。作为一种实现方式,该通信单元303可以包括接收单元和发送单元。处理单元302用于对装置300的动作进行控制管理。通信单元303用于支持装置300与其他网络实体的通信。装置300还可以包括存储单元301,用于存储装置300的程序代码和数据。
其中,处理单元302可以是处理器或控制器,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元303可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口。存储单元301可以是存储器。
在第一种应用中,该装置300可以为上述任一实施例中的接入网设备,还可以为接入网设备中的芯片。例如,当装置300为接入网设备时,该处理单元例如可以是处理器,该通信单元例如可以是收发器,该收发器包括射频电路,可选地,该存储单元例如可以是存储器。例如,当装置300为接入网设备中的芯片时,该处理单元例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该接入网设备内的位于该芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
具体地,当通信单元303包括发送单元和接收单元时:接收单元,用于接收来自终端的节能需求信息,所述节能需求信息包括所述终端需要的时频资源的信息;发送单元,用于向所述终端发送所述节能指示,所述节能指示用于指示根据所述节能需求信息进行节能。
在一种可能的实现方式中,所述终端需要的时频资源的信息包括所述终端的下行调度时序、所述终端需要的带宽或所述终端需要的上行符号数中的至少一个,所述终端的下行调度时序是指PDCCH调度信息所在的时隙到所述调度信息调度的下行数据所在的时隙之间的时隙数。
在一种可能的实现方式中,所述节能指示为RRC重配置消息。
在第二种应用中,该装置300可以为上述任一实施例中的终端,还可以为终端中的芯片。例如,装置300可以为终端时,该处理单元例如可以是处理器,该通信单元例如可以是收发器,该收发器包括射频电路,可选地,该存储单元例如可以是存储器。例如,装置300可以为终端中的芯片时,该处理单元例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该终端内的位于该芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
具体地,当通信单元303包括发送单元和接收单元时:发送单元,用于向接入网设备发送节能需求信息,所述节能需求信息包括所述终端需要的时频资源的信息;接收单元,用于接收来自所述接入网设备的节能指示,所述节能指示用于指示根据所述节能需求信息进行节能;处理单元,用于根据所述节能指示进行节能。
在一种可能的实现方式中,所述终端还可以确定所述终端的下行调度时序,所述终端需要的时频资源的信息包括所述终端的下行调度时序,所述终端的下行调度时序是指物理下行控制信道PDCCH调度信息所在的时隙到所述调度信息调度的下行数据所在的时隙之间的时隙数。
在一种可能的实现方式中,所述终端确定所述终端的下行调度时序之前,还包括:所述终端确定所述终端当前没有低时延业务,和/或,所述终端确定所述终端的当前电量小于第一电量阈值。
在一种可能的实现方式中,所述终端确定所述终端的当前电量小于第二电量阈值,则根据所述终端的当前电量,将所述终端的下行调度时序增加第一步长,得到更新后的下行调度时序;所述终端需要的时频资源的信息包括所述终端的下行调度时序,具体为:所述终端需要的时频资源的信息包括更新后的下行调度时序。
在一种可能的实现方式中,所述终端还可以确定所述终端需要的带宽;其中,所述终端需要的时频资源的信息包括所述终端需要的带宽。
在一种可能的实现方式中,当所述终端确定所述终端实际分配的带宽与所述终端需要的带宽的差值大于带宽差值阈值时,所述终端需要的时频资源的信息包括所述终端需要的带宽。
在一种可能的实现方式中,所述终端确定所述终端的当前电量小于第三电量阈值,则根据所述终端的当前电量,将所述终端需要的带宽减少第二步长,得到更新后的所述终端需要的带宽;所述终端需要的时频资源的信息包括所述终端需要的带宽,具体为:所述终端需要的时频资源的信息包括更新后的所述终端需要的带宽。
在一种可能的实现方式中,所述终端确定所述终端需要的上行符号数;其中,所述终端需要的时频资源的信息包括所述终端需要的上行符号数。
在一种可能的实现方式中,当所述终端确定所述终端实际分配的上行符号数与所述终端需要的上行符号数的差值大于符号数差值阈值时,所述终端需要的时频资源的信息包括 所述终端需要的上行符号数。
在一种可能的实现方式中,所述终端确定所述终端的当前电量小于第四电量阈值,则根据所述终端的当前电量,将所述终端需要的上行符号数减少第三步长,得到更新后的所述终端需要的上行符号数;所述终端需要的时频资源的信息包括所述终端需要的上行符号数,具体为:所述终端需要的时频资源的信息包括更新后的所述终端需要的上行符号数。
在一种可能的实现方式中,所述终端需要的时频资源的信息包括所述终端的下行调度时序、所述终端需要的带宽或所述终端需要的上行符号数中的至少一个;所述终端根据所述节能指示进行节能,包括:所述终端根据所述终端的下行调度时序、所述终端需要的带宽或所述终端需要的上行符号数中的至少一个进行配置。
在一种可能的实现方式中,所述节能指示为无线资源控制RRC重配置消息。
图3所示的装置为终端、或为接入网设备时,所用于执行的终端的节能方法的具体有益效果,可参考前述方法实施例中的相关描述,这里不再赘述。
图4示出了本发明实施例中所涉及的终端的一种可能的设计结构的简化示意图。所述终端400包括发射器401,接收器402和处理器403。其中,处理器403也可以为控制器,图4中表示为“控制器/处理器403”。可选的,所述终端400还可以包括调制解调处理器405,其中,调制解调处理器405可以包括编码器406、调制器407、解码器408和解调器409。
在一个示例中,发射器401调节(例如,模拟转换、滤波、放大和上变频等)输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的接入网设备。在下行链路上,天线接收上述实施例中接入网设备发射的下行链路信号。接收器402调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器405中,编码器406接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器407进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器409处理(例如,解调)该输入采样并提供符号估计。解码器408处理(例如,解交织和解码)该符号估计并提供发送给终端400的已解码的数据和信令消息。编码器406、调制器407、解调器409和解码器408可以由合成的调制解调处理器405来实现。这些单元根据无线接入网采用的无线接入技术来进行处理。需要说明的是,当终端400不包括调制解调处理器405时,调制解调处理器405的上述功能也可以由处理器403完成。
处理器403对终端400的动作进行控制管理,用于执行上述本发明实施例中由终端400进行的处理过程。例如,处理器403用于执行本申请任一实施例的终端的节能方法中涉及终端的处理过程和/或本申请所描述的技术方案的其他过程。
进一步的,终端400还可以包括存储器404,存储器404用于存储用于终端400的程序代码和数据。
图5示出了本发明实施例提供的接入网设备的一种可能的结构示意图。接入网设备500包括处理器502和通信接口504。其中,处理器502也可以为控制器,图5中表示为“控制器/处理器502”。通信接口504用于支持接入网设备与终端进行通信。进一步的,接入网设备500还可以包括发射器/接收器501。所述发射器/接收器501用于支持接入网设备与 上述实施例中的终端之间进行无线电通信。所述处理器502可以执行各种用于与终端通信的功能。在上行链路,来自终端的上行链路信号经由天线接收,由接收器501进行解调(例如将高频信号解调为基带信号),并进一步由处理器502进行处理来恢复终端发送的业务数据和信令信息。在下行链路上,业务数据和信令消息由处理器502进行处理,并由发射器501进行调制(例如将基带信号调制为高频信号)来产生下行链路信号,并经由天线发射给终端。需要说明的是,上述解调或调制的功能也可以由处理器502完成。
例如,处理器502还用于执行本申请实施例中的任一终端的节能方法中涉及接入网设备的处理过程和/或本申请所描述的技术方案的其他过程。
进一步的,接入网设备500还可以包括存储器503,存储器503用于存储接入网设备500的程序代码和数据。
可以理解的是,图5仅仅示出了接入网设备500的简化设计。在实际应用中,接入网设备500可以包括任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明实施例的接入网设备都在本发明实施例的保护范围之内。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端中。可选地,处理器和存储媒介也可以设置于终端中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (15)

  1. 一种终端的节能方法,其特征在于,包括:
    终端向接入网设备发送节能需求信息,所述节能需求信息包括所述终端需要的时频资源的信息;
    所述终端接收来自所述接入网设备的节能指示,所述节能指示用于指示根据所述节能需求信息进行节能;
    所述终端根据所述节能需求信息进行节能。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端确定所述终端的下行调度时序;
    其中,所述终端需要的时频资源的信息包括所述终端的下行调度时序,所述终端的下行调度时序是指物理下行控制信道PDCCH调度信息所在的时隙到所述调度信息调度的下行数据所在的时隙之间的时隙数。
  3. 如权利要求2所述的方法,其特征在于,所述终端确定所述终端的下行调度时序之前,还包括:
    所述终端确定所述终端当前没有低时延业务,和/或,所述终端确定所述终端的当前电量小于第一电量阈值。
  4. 如权利要求2或3所述的方法,其特征在于,所述方法还包括:
    所述终端确定所述终端的当前电量小于第二电量阈值,则根据所述终端的当前电量,将所述终端的下行调度时序增加第一步长,得到更新后的下行调度时序;
    所述终端需要的时频资源的信息包括所述终端的下行调度时序,具体为:
    所述终端需要的时频资源的信息包括更新后的下行调度时序。
  5. 如权利要求1至4任一所述的方法,其特征在于,所述方法还包括:
    所述终端确定所述终端需要的带宽;
    其中,所述终端需要的时频资源的信息包括所述终端需要的带宽。
  6. 如权利要求5所述的方法,其特征在于,当所述终端确定所述终端实际分配的带宽与所述终端需要的带宽的差值大于带宽差值阈值时,所述终端需要的时频资源的信息包括所述终端需要的带宽。
  7. 如权利要求5或6所述的方法,其特征在于,所述方法还包括:
    所述终端确定所述终端的当前电量小于第三电量阈值,则根据所述终端的当前电量,将所述终端需要的带宽减少第二步长,得到更新后的所述终端需要的带宽;
    所述终端需要的时频资源的信息包括所述终端需要的带宽,具体为:
    所述终端需要的时频资源的信息包括更新后的所述终端需要的带宽。
  8. 如权利要求1至7任一所述的方法,其特征在于,所述方法还包括:
    所述终端确定所述终端需要的上行符号数;
    其中,所述终端需要的时频资源的信息包括所述终端需要的上行符号数。
  9. 如权利要求8所述的方法,其特征在于,当所述终端确定所述终端实际分配的上行符号数与所述终端需要的上行符号数的差值大于符号数差值阈值时,所述终端需要的时频资源的信息包括所述终端需要的上行符号数。
  10. 如权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述终端确定所述终端的当前电量小于第四电量阈值,则根据所述终端的当前电量,将所述终端需要的上行符号数减少第三步长,得到更新后的所述终端需要的上行符号数;
    所述终端需要的时频资源的信息包括所述终端需要的上行符号数,具体为:
    所述终端需要的时频资源的信息包括更新后的所述终端需要的上行符号数。
  11. 如权利要求1所述的方法,其特征在于,所述终端需要的时频资源的信息包括所述终端的下行调度时序、所述终端需要的带宽或所述终端需要的上行符号数中的至少一个;
    所述终端根据所述节能指示进行节能,包括:
    所述终端根据所述终端的下行调度时序、所述终端需要的带宽或所述终端需要的上行符号数中的所述至少一个进行配置。
  12. 一种终端的节能方法,其特征在于,包括:
    接入网设备接收来自终端的节能需求信息,所述节能需求信息包括所述终端需要的时频资源的信息;
    所述接入网设备向所述终端发送节能指示,所述节能指示用于指示根据所述节能需求信息进行节能。
  13. 如权利要求12所述的方法,其特征在于,所述终端需要的时频资源的信息包括所述终端的下行调度时序、所述终端需要的带宽或所述终端需要的上行符号数中的至少一个,所述终端的下行调度时序是指物理下行控制信道PDCCH调度信息所在的时隙到所述调度信息调度的下行数据所在的时隙之间的时隙数。
  14. 一种通信装置,其特征在于,包括:处理器和存储器,所述处理器用于执行所述存储器存储的程序代码,以使该通信装置执行如权利要求1至11任一项所述的方法。
  15. 一种通信装置,其特征在于,包括:处理器和存储器,所述处理器用于执行所述存储器存储的程序代码,以使该通信装置执行如权利要求12或13所述的方法。
PCT/CN2019/104181 2018-09-11 2019-09-03 一种终端的节能方法及装置 WO2020052473A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811057641.5A CN110891302B (zh) 2018-09-11 2018-09-11 一种终端的节能方法及装置
CN201811057641.5 2018-09-11

Publications (1)

Publication Number Publication Date
WO2020052473A1 true WO2020052473A1 (zh) 2020-03-19

Family

ID=69745551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104181 WO2020052473A1 (zh) 2018-09-11 2019-09-03 一种终端的节能方法及装置

Country Status (2)

Country Link
CN (1) CN110891302B (zh)
WO (1) WO2020052473A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104012152A (zh) * 2011-10-27 2014-08-27 诺基亚公司 用于在通信系统中管理接收参数的装置和方法
US20150055534A1 (en) * 2012-03-13 2015-02-26 Lg Electronics Inc. Method of controlling transmit power of ue in wireless communication system and apparatus for the same
CN104754627A (zh) * 2013-12-30 2015-07-01 电信科学技术研究院 资源监听方法、用户设备以及网络设备
CN106465275A (zh) * 2014-05-13 2017-02-22 高通股份有限公司 用于管理移动设备功耗的技术

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102316560A (zh) * 2010-07-06 2012-01-11 中兴通讯股份有限公司 一种动态配置不连续接收的装置及方法
CN102625421A (zh) * 2011-01-27 2012-08-01 中兴通讯股份有限公司 一种用户设备的节电方法和系统
EP2781125A1 (en) * 2011-11-16 2014-09-24 Telefonaktiebolaget L M Ericsson (publ) Method and arrangement for enabling reduced battery consumption in a mobile terminal
CN103249121A (zh) * 2012-02-13 2013-08-14 电信科学技术研究院 一种机器型通信终端的触发控制方法、装置及系统
CN103384394A (zh) * 2012-05-04 2013-11-06 中兴通讯股份有限公司 用户设备耗电、耗电配置参数处理方法及装置
WO2013182738A1 (en) * 2012-06-08 2013-12-12 Nokia Corporation Enhanced power saving optimized configuration handling
CN103959864B (zh) * 2012-08-06 2016-09-21 华为技术有限公司 信令发送方法及相关设备
CN108377581A (zh) * 2016-11-04 2018-08-07 维沃移动通信有限公司 一种非连续接收drx参数的配置方法、移动终端及基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104012152A (zh) * 2011-10-27 2014-08-27 诺基亚公司 用于在通信系统中管理接收参数的装置和方法
US20150055534A1 (en) * 2012-03-13 2015-02-26 Lg Electronics Inc. Method of controlling transmit power of ue in wireless communication system and apparatus for the same
CN104754627A (zh) * 2013-12-30 2015-07-01 电信科学技术研究院 资源监听方法、用户设备以及网络设备
CN106465275A (zh) * 2014-05-13 2017-02-22 高通股份有限公司 用于管理移动设备功耗的技术

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"UE Power Saving during Active State", 3GPP TSG RAN WG2 NR #99BIS, R2-1711704, 13 October 2017 (2017-10-13), XP051355744 *

Also Published As

Publication number Publication date
CN110891302A (zh) 2020-03-17
CN110891302B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN107454665B (zh) 用于针对wlan的低功率唤醒信号及操作的方法和装置
US20200374780A1 (en) Information processing method and apparatus
WO2020082313A1 (zh) Dci的接收方法、发送方法、装置及存储介质
US10952160B2 (en) Method for indicating power headroom report, and apparatus
WO2020063130A1 (zh) 一种资源确定方法及装置
WO2020063768A1 (zh) 唤醒信号发送、接收方法、装置、基站、终端和存储介质
US20120233481A1 (en) Method, apparatus and computer program product for decreasing power consumption of an apparatus
WO2018228579A1 (zh) 确定传输块大小的方法及装置
US10856324B2 (en) Scheduling method and device
WO2019174453A1 (zh) 信息发送的方法和装置
WO2022116838A1 (zh) 通信方法、装置、设备、存储介质以及程序产品
WO2019214406A1 (zh) 一种测量方法、第一设备和第二设备
TW202106061A (zh) 針對iot 設備的基於目標傳呼丟失率的最佳化的傳呼接收
US20230055108A1 (en) Communications devices and methods
WO2012151965A1 (zh) 数据传输方法及装置、数据处理方法及装置、帧结构
CN113615264A (zh) 无线通信系统中用于降低终端功耗的方法和装置
WO2020088417A1 (zh) 一种旁链路资源的配置方法及装置
WO2022141009A1 (zh) 寻呼消息发送的方法和装置
EP3512253A1 (en) Communication method, base station and terminal
WO2020052473A1 (zh) 一种终端的节能方法及装置
WO2020097935A1 (zh) 一种通信方法及装置
JP2021535659A (ja) ウェイクアップ信号の反復の適応
WO2020244583A1 (zh) 一种通信方法及装置
WO2021051368A1 (zh) 功率控制方法、装置及设备
WO2019192408A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860587

Country of ref document: EP

Kind code of ref document: A1