WO2020052305A1 - 一种用于弹簧式安全阀动态特性的测试装置及测试方法 - Google Patents

一种用于弹簧式安全阀动态特性的测试装置及测试方法 Download PDF

Info

Publication number
WO2020052305A1
WO2020052305A1 PCT/CN2019/091451 CN2019091451W WO2020052305A1 WO 2020052305 A1 WO2020052305 A1 WO 2020052305A1 CN 2019091451 W CN2019091451 W CN 2019091451W WO 2020052305 A1 WO2020052305 A1 WO 2020052305A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
safety valve
valve
pressure vessel
test
Prior art date
Application number
PCT/CN2019/091451
Other languages
English (en)
French (fr)
Inventor
宋学官
王荣誉
项晓敏
宗超勇
郑凤杰
李昆鹏
孙伟
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/767,418 priority Critical patent/US11519818B2/en
Publication of WO2020052305A1 publication Critical patent/WO2020052305A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/003Machine valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0075For recording or indicating the functioning of a valve in combination with test equipment
    • F16K37/0083For recording or indicating the functioning of a valve in combination with test equipment by measuring valve parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/0033Electrical or magnetic means using a permanent magnet, e.g. in combination with a reed relays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/0041Electrical or magnetic means for measuring valve parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0075For recording or indicating the functioning of a valve in combination with test equipment
    • F16K37/0091For recording or indicating the functioning of a valve in combination with test equipment by measuring fluid parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention belongs to the technical field of valve testing, and relates to a testing device and a testing method for dynamic characteristics of a spring-type safety valve.
  • Safety valve is an essential pressure relief device in the process industry fields such as boilers, nuclear power, and chemical industry. As the last barrier of the pressure-bearing system, once the pressure-bearing system has an overpressure problem, the safety valve will be able to open accurately and stably. The excess pressure in the pressure-bearing system is discharged, and the excessive pressure release in the pressure-bearing system can be avoided by timely seating.
  • the most commonly used safety valve is a spring-type safety valve.
  • the spring-type safety valve uses the force generated by spring compression to balance the pressure on the valve disc and seal the contact surface between the valve disc and the valve seat.
  • the safety valve When the inlet pressure of the safety valve is less than the setting pressure of the safety valve, the safety valve is in the closing stage; as the inlet pressure of the safety valve gradually increases above the setting pressure of the safety valve, the spring force is not enough to resist the inlet pressure, and the valve disc begins After leaving the valve seat, the safety valve quickly opens and is in the discharge stage; as the pressure of the safety valve continues to decrease, the inlet pressure of the safety valve gradually decreases.
  • the inlet pressure is less than the spring force, the valve disc starts to seat, thereby making the pressure bearing system The moderate pressure is maintained within a certain range.
  • the present invention provides a test device and a test method for the dynamic characteristics of a spring-type safety valve with a simple structure, high test accuracy, and abundant test functions.
  • the invention can well realize the test of the dynamic characteristics of the safety valve.
  • a testing device for the dynamic characteristics of a spring-type safety valve including a gas supply device, a voltage stabilizing device, a quick start-stop device, a pipeline pressure detection device, a pipeline gas mass flow detection device, a safety valve stem displacement detection device, and a safety valve.
  • System 10 test bench 13, pipe support 12, and acquisition system 51.
  • the air supply device includes a two-cylinder air compressor 18, a connection pipe A1, an air storage tank 2, and a ball valve 17.
  • the two-cylinder air compressor 18 is connected to the gas storage tank 2 through a connecting pipe A1, and the gas storage tank 2 and the ball valve 17 are connected by a thread.
  • the voltage stabilizing device includes a connection pipe B19, an electric valve 3, a connection pipe C16, a pressure vessel 15, a pressure sensor A4, a pressure relief valve 5, and a pressure gauge 6.
  • the left end of the connecting pipe B19 is connected with the right end of the ball valve 17 by a thread.
  • the left end of the electric valve 3 is connected with the right end of the connecting pipe B19 by a flange.
  • the right end of the electric valve 3 is connected with the left end of the connecting pipe C16 by a flange. All flange connections are bolted. It is sealed with a seal ring.
  • the right end of the connection tube C16 is connected to the left end of the pressure vessel 15 by a thread.
  • the pressure relief valve 5 is connected to the pressure sensor A4 by a thread.
  • the pressure sensor A4 is connected to the top of the pressure vessel 15 by a screw.
  • the pressure gauge 6 is connected to the pressure vessel. 15 is connected by a screw.
  • the electric valve 3 is used to adjust the air pressure in the pressure vessel 15 and the air pressure in the pressure vessel 15 is fed back through the air pressure sensor A4. When the air pressure in the pressure vessel 15 is far below the set pressure, the electric control is controlled The larger angle of valve 3 makes the air pressure in pressure vessel 15 increase rapidly.
  • the electric valve 3 is controlled to rotate by a smaller angle to make the pressure in the pressure vessel 15
  • the pressure of the pressure is increased slowly, so that the pressure in the pressure vessel 15 does not fluctuate greatly, so as to achieve the purpose of voltage stabilization and avoid the dynamic characteristics test of the safety valve 40 Tremors occurred during the process.
  • the quick start-stop device is a solenoid valve 14, which is arranged at the right end of the pressure vessel 15 and is used to control the outflow of the gas in the pressure vessel 15. Specifically: the left end of the solenoid valve 14 and the right end of the pressure vessel 15 are threaded, and the right end of the solenoid valve 14 is connected to the left end of the connection pipe D23 by a screw. During operation, the gas in the pressure vessel 15 is quickly released. When testing the seat-return characteristics of the safety valve 40, the PLC system 53 stops issuing control signals to stop the solenoid valve 14 from operating, thereby stopping the gas in the pressure vessel 15 from being released.
  • the solenoid valve 14 is used to replace the traditional manual opening ball valve, and the entire process is more intelligent. In addition, the use of the solenoid valve 14 can make the opening and closing time shorter, and can more accurately test the characteristics of the safety valve 40 opening and seating.
  • the pipeline pressure detection device is a pressure sensor B7 and a pressure sensor C11, which are used to monitor the pressure change at the outlet of the pressure vessel 15 and the pressure change at the inlet of the safety valve system 10 in real time.
  • the left end of the air pressure sensor B7 is connected to the right end of the connecting pipe D23 by screws
  • the right end of the air pressure sensor B7 is connected to the left end of the connecting pipe E20
  • the left end of the air pressure sensor C11 is connected to the right end of the connecting pipe F21
  • the right end of the air pressure sensor C11 is connected to the connecting pipe G22
  • the left end is connected by a screw.
  • the pipeline gas mass flow detection device is a gas mass flow sensor 8 for real-time monitoring of changes in the mass flow of the gas in the pipeline.
  • the left end of the gas mass flow sensor 8 and the right end of the connecting pipe E20 are connected by a flange, and the right end of the gas mass flow sensor 8 and the left end of the connecting pipe F21 are also connected by a flange.
  • the gas mass The flow sensor 8 can monitor the change of the mass flow rate of the gas in the pipeline in real time.
  • the safety valve stem displacement detection device is a laser displacement sensor 9 for monitoring the change in displacement of the safety valve stem 41 in real time.
  • the laser displacement sensor 9 is fixed on the laser displacement sensor fixing bracket 31 by the cross head fastening bolt A46 and the cross head fastening bolt B48, and the laser displacement sensor fixing bracket 31 is fixed on the safety valve bracket by the cross head fixing screw C47.
  • the safety valve stem 41 moves up and down, and the laser displacement sensor 9 can monitor the displacement change of the safety valve stem 41 in real time.
  • the safety valve system 10 includes a safety valve 40, a hexagon socket bolt A39, a hexagon socket bolt B43, a connection plate 34, a left bracket 24, and a right bracket 38.
  • the safety valve 40 is connected to the connection plate through a hexagon socket bolt A39 and a hexagon socket bolt B43. 34 connection, the left bracket 24 and the right bracket 38 of the safety valve are connected with the test bench 13 through anchor bolts, and the lower end of the safety valve 40 is connected with the connecting pipe G22 by threads;
  • the laser displacement sensor bracket includes a cross head fastening bolt A46, a cross head fastening bolt B48, a laser displacement sensor fixing bracket 31, a cross head set screw C47, a laser displacement sensor bracket adjusting plate 49, and a cross head set screw B32. And cross beam 28.
  • the laser displacement sensor 9 is fixed on the laser displacement sensor fixing bracket 31 by the cross head fastening bolt A46 and the cross head fastening bolt B48
  • the laser displacement sensor fixing bracket 31 is fixed on the laser displacement sensor bracket by the cross head fixing screw C47.
  • the adjustment plate 49 has a grooved hole in the laser displacement sensor fixing bracket 31, which can move the laser displacement sensor fixing bracket 31 to the left and right.
  • the laser displacement sensor bracket adjustment plate 49 is fixed on the cross beam 28 by a cross head set screw B32, wherein the cross beam 28 is provided with a slot hole 50, which can move the laser displacement sensor bracket adjustment plate 49 back and forth.
  • the acquisition system 51 is connected to a pipeline pressure detection device, a pipeline gas mass flow detection device, and a safety valve stem displacement detection device.
  • the acquisition system 51 includes a power supply module 52, a PLC system 53, and a host computer 54.
  • the power supply module 52 converts a 220V voltage into a 24V voltage, and is used to provide a pressure sensor A4, a pressure sensor B7, a pressure sensor C11, and a gas mass flow sensor 8
  • the PLC system 53 is mainly used to collect the signals of the laser displacement sensor 9, the gas mass flow sensor 8, the air pressure sensor A4, the air pressure sensor B7, and the air pressure sensor C11.
  • the PLC system 53 and the host computer 54 perform RS485.
  • the PLC system 53 can also control the opening degree of the electric valve 3 and the start and stop of the solenoid valve 14.
  • the first step is to make the pressure in the pressure vessel 15 reach the set pressure: start the system, set the inlet pressure of the safety valve 40 to be tested, and then the two-cylinder air compressor 2 is inflated, and the PLC system 53 sends a control signal to make the electric
  • the opening degree of the valve 3 reaches the maximum, and the gas is rapidly inflated.
  • the gas pressure in the pressure vessel 15 is determined by the air pressure sensor A4.
  • the PLC system 53 sends a control signal to make the electric valve
  • the opening of 3 is reduced, so that the air intake of the pressure vessel 15 is slow and the pressure fluctuation is reduced.
  • the PLC system 53 sends a signal to control the electric valve 3 to close. At this time, the pressure vessel The pressure within 15 is stable at the set pressure;
  • the second step is to test the accurate opening and stable discharge of the safety valve 40: the PLC system 53 sends a control signal to control the solenoid valve 14 to open, the gas in the pressure vessel 15 flows out, and acts on the safety valve 40 through the pipeline. At this time, the safety valve 40 When it is opened, the air pressure in the pressure vessel 15 gradually decreases. When the air pressure in the pressure vessel 15 is lower than the set pressure, the PLC system 53 controls the electric valve 3 to continue to work, and continuously fills the air in the pressure vessel 15 to make the pressure vessel 15 The air pressure is stabilized at a set pressure, so that the safety valve 15 is in a stable discharge stage. The PLC system 53 collects data from various sensors during the test. The collected data is processed by the upper computer 54 and the safety valve 40 is opened and discharged. The inlet pressure of the safety valve 40 and the stem displacement curve of the safety valve 40 are analyzed to determine whether the safety valve 40 is opened accurately and whether the discharge process is stable;
  • the third step is to test the rapid return of the safety valve 40: After the safety valve 40 is discharged for a period of time, the PLC system 53 sends a control signal to control the electric valve 3 to close, the pressure in the pressure vessel 15 gradually decreases, and the safety valve 40 gradually discharges from a stable state. In the seated state, the PLC system 53 collects the data of each sensor during the test. The collected data is processed by the upper computer 54 to obtain the inlet pressure of the safety valve 40 and the valve of the safety valve 40 during the seated process. Rod displacement curve, analyze and judge whether the seat of safety valve 40 is seated in time;
  • the fourth step if the test is completed, then the system is closed and the test is ended; if the test is not completed, then the inlet pressure of the safety valve 40 is continuously adjusted and the above process is repeated.
  • This test device installs an air pressure sensor on the pressure vessel, and an electric valve is installed on the pipeline between the gas storage tank and the pressure vessel.
  • the opening of the electric valve is controlled by the air pressure signal fed back by the air pressure sensor, which can realize the pressure vessel.
  • the pressure is stable, which provides stable pressure for the dynamic characteristics test of the safety valve.
  • This test device is equipped with a solenoid valve between the pressure vessel and the safety valve.
  • the solenoid valve can control the opening and closing of the pressure vessel during the test. It solves the problem of slow response of the manual rotation of the ball valve in the traditional test process, which makes the whole The testing process is more intelligent.
  • the test device monitors the inlet pressure of the safety valve through a pressure sensor, the mass flow sensor monitors the mass flow of gas in the pipeline, and the laser displacement sensor monitors the displacement change of the safety valve stem, which can well realize the dynamic characteristics of the safety valve. test.
  • This test device collects the signals of the air pressure sensor, gas mass flow sensor and laser displacement sensor through the PLC system, and the collected signals are transmitted to the upper computer via RS485 for processing and real-time display of the safety valve during the safety valve dynamic test process. Curve of rod displacement and inlet pressure.
  • FIG. 1 is an overall structural diagram of a safety valve dynamic characteristic test device
  • FIG. 2 is a structural diagram of a connection pipe of a safety valve dynamic characteristic test device
  • Figure 3 is a structural diagram of a safety valve bracket
  • Figure 4 is a structural diagram of the connection of the safety valve and the safety valve bracket
  • Figure 5 is a side view of the safety valve bracket
  • FIG. 6 is a structural diagram of a laser displacement sensor bracket
  • FIG. 7 is a schematic structural diagram of a collection system
  • FIG. 8 is a signal flowchart of the acquisition system
  • Figure 9 is a flowchart of the pressure vessel pressure stabilization process before the safety valve is opened.
  • Figure 10 is a flow chart of the pressure vessel pressure stabilization process during the discharge of the safety valve
  • FIG. 11 is a flowchart of the working process of the safety valve dynamic characteristic test device.
  • the overall structure of the safety valve dynamic characteristic test device is shown in Figures 1 and 2.
  • the air compressor 18 and the gas storage tank 2 are connected by a connecting pipe A1.
  • the right end of the gas storage tank 2 and the left end of the ball valve 17 are threaded.
  • the ball valve 17 The right end is connected with the left end of the connecting pipe B19 by a thread.
  • the right end of the connecting pipe B19 is connected with the left end of the electric valve 3 by a flange and fastened with bolts.
  • the right end of the electric valve 3 is connected with the left end of the connecting pipe C16 by a flange and fastened with a bolt.
  • the right end of the connecting pipe C16 It is connected to the left end of the pressure vessel 15 by a screw.
  • the pressure vessel 15 is equipped with a pressure sensor A4 and a pressure gauge 6.
  • the pressure sensor A4 is equipped with a pressure relief valve 5.
  • the right end of the pressure vessel 15 is connected with a solenoid valve 14 through a thread.
  • the right end of the solenoid valve 14 It is screwed with the connection pipe D23.
  • the right end of the connection pipe D23 is connected with the air pressure sensor B7 by screws.
  • the right end of the pressure sensor B7 is connected with the left end of the connection pipe E20 by screws.
  • the middle of the connection pipe E20 is supported by the pipe bracket 12.
  • connection pipe E20 It is connected to the left end of the gas mass flow sensor 8 through a flange, and the right end of the gas mass flow sensor 8 and the left end of the connecting pipe F21 are flanged.
  • the right end of the takeover F21 is connected with the left end of the air pressure sensor C11 by screws.
  • the right end of the air pressure sensor C11 is connected with the left end of the connection pipe G22 by screws.
  • the sensor fixing bracket 31, the laser displacement sensor bracket adjusting plate 49 and the cross beam 28 are fixed on the safety valve system 10.
  • the structure of the safety valve bracket is shown in Figure 3.
  • the left bracket 24 and the left baffle 25 are connected by set screws A26
  • the connection plate 34 and the left baffle 25 are connected by a flat head fastening bolt A27
  • the cross beam 28 It is connected with the left bracket 24 through set screws C29
  • the laser displacement sensor fixing bracket 31 is connected with the cross beam 28 through the cross head set screws A30 and Phillips head set screws B32
  • the cross beam 28 and the right bracket 38 are connected with set screws.
  • D33 connection, the connection plate 34 and the right baffle plate 37 are connected by a flat head fastening bolt B35
  • the right bracket 38 and the right baffle plate 37 are connected by set screws B36
  • the left bracket 24 and the right frame 38 are connected by ground feet.
  • the bolt is connected to the test stand 13.
  • the structure of the safety valve and safety valve bracket connection is shown in Figure 4.
  • the safety valve 40 and the connection plate 34 are connected by the hexagon socket bolt A39 and the hexagon socket bolt B43.
  • the aluminum rod 42 and the safety valve stem 41 are threaded.
  • the stem 42 can be moved on the safety valve stem 41 to adjust the distance between the laser displacement sensor 9 and the aluminum stem 42.
  • FIG. 5 A side view of the safety valve bracket is shown in FIG. 5.
  • the left bracket 24 is provided with a transverse groove hole 44 and a longitudinal groove hole 45, wherein the transverse groove hole 44 is used for lateral movement of the set screw A26, and the longitudinal groove The hole 45 is used for vertical movement of the set screw C29.
  • the structure of the laser displacement sensor bracket is shown in Fig. 6.
  • the laser displacement sensor 9 is fixed on the laser displacement sensor fixing bracket 31 by the cross head fastening bolt A46 and the cross head fastening bolt B48.
  • the laser displacement sensor fixing bracket 31 is fastened by the cross head.
  • the fixing screw C47 is fixed on the laser displacement sensor bracket adjusting plate 49.
  • the laser displacement sensor fixing bracket 31 has a slotted hole that can be moved left and right.
  • the laser displacement sensor bracket adjusting plate 49 is provided with a cross head set screw A30 and a cross head set screw.
  • B32 is fixed on the beam 28, and the beam 28 is provided with a slot hole 50, which can move the laser displacement sensor bracket adjustment plate 49 back and forth.
  • the structure diagram of the acquisition system 51 is shown in Figure 7.
  • the acquisition system 51 includes a power module 52, a PLC system 53, and a host computer 54.
  • the power module 52 is mainly a pressure sensor A4, a pressure sensor B7, a pressure sensor C11, and a gas mass flow sensor.
  • the laser displacement sensor 9 supplies power.
  • the PLC system 53 is mainly used to collect the signals of the laser displacement sensor 9, the gas mass flow sensor 8, the air pressure sensor A4, the air pressure sensor B7, and the air pressure sensor C11.
  • the PLC system 53 will collect the signals of the sensors.
  • the signal is transmitted to the upper computer via RS485.
  • the PLC system 53 can also be used to control the opening of the electric valve 3 and the start and stop of the solenoid valve 14.
  • the signal flow chart of the acquisition system 51 is shown in Figure 8.
  • the 220V power voltage is converted to 24V by the power module 52.
  • the 24V voltage is the laser displacement sensor 9, the gas mass flow sensor 8, the air pressure sensor A4, the air pressure sensor B7, and the air pressure sensor C11.
  • the voltage signals of the laser displacement sensor 9 and the gas mass flow sensor 8 are processed by the voltage signal conditioning circuit and transmitted to the PLC system.
  • the current signals of the air pressure sensor A4, the pressure sensor B7, and the pressure sensor C11 are processed by the current signal conditioning circuit and transmitted to the PLC system.
  • PLC system, PLC system transmits data to host computer via RS485.
  • the flow chart of the pressure stabilization process of the pressure vessel 15 before the safety valve 40 is released is shown in FIG. 9.
  • the PLC system 53 controls the electric valve 3 to open wide, and detects the pressure in the pressure vessel 15.
  • the PLC system 53 controls The electric valve 3 opens with a small opening.
  • the air pressure in the pressure vessel 15 determines whether the pressure in the pressure vessel 15 has reached the set pressure. If it reaches the set pressure, close the electric valve 3. If it does not reach the set pressure, continue to detect the air pressure in the pressure vessel 14. .
  • the flow chart of the pressure stabilization process of the pressure vessel 15 during the pressure relief process of the safety valve 40 is shown in FIG. 10.
  • the air pressure in the pressure vessel 15 is detected to determine whether the pressure in the pressure vessel 15 is lower than the set pressure. Pressure, then continue to detect the pressure in the pressure vessel 15, if it is lower than the set pressure, the PLC system 53 controls the electric valve 3 to open a small opening, and then continues to detect the pressure in the pressure vessel 15 until the pressure in the pressure vessel 15 reaches Set the pressure, close the electric valve 3, and repeat the process.
  • the working process flow chart of the safety valve 40 dynamic characteristic test device is shown in FIG. 11.
  • the system is started, the inlet pressure of the safety valve 40 is set, and then the air compressor 18 is inflated to detect the pressure in the pressure vessel 15 to determine the pressure vessel. Whether the pressure in 15 reaches the set pressure. If the set pressure is not reached, then the air pressure in the pressure vessel 15 is continuously detected. If the set pressure is reached, the PLC system 53 controls the solenoid valve 14 to open, and the PLC system 53 collects data from various sensors during the opening of the safety valve 40 and tests Whether the safety valve 40 is accurately opened.
  • the voltage stabilizing device stabilizes the pressure vessel 15 and the PLC system 53 collects data from various sensors during the discharge process of the safety valve 40 to test whether the safety valve 40 is stably discharged.
  • the PLC system 53 sends out a control signal to close the solenoid valve 14, and the PLC system 53 collects data from various sensors during the seating of the safety valve 40 to test whether the safety valve 40 is seated in a timely manner. Determine whether the test is completed. If the test is completed, then shut down the system. If the test is not completed, repeat the above process and continue to set different inlet pressures of the safety valve 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种用于弹簧式安全阀动态特性的测试装置,主要用于测试安全阀开启、排放和回座特性。测试装置包括供气装置、稳压装置、快速启停装置、管道气压检测装置、管道气体质量流量检测装置、安全阀阀杆位移检测装置、安全阀系统(10)、试验台(13)、管道支架(12)和采集系统(51)。稳压装置用于稳定调节压力容器(15)内的气压,快速启停装置用于控制压力容器(15)的开启和关闭,管道气体质量流量检测装置用于管道内的气体的质量流量的检测,安全阀阀杆(41)位移检测装置用于检测安全阀阀杆(41)的位移变化,采集系统(51)用于实验数据的采集、处理和保存。装置结构简单、精度高,为安全阀动态特性的测试提供了保障。还提供一种用于弹簧式安全阀动态特性的测试方法。

Description

一种用于弹簧式安全阀动态特性的测试装置及测试方法 技术领域
本发明属于阀门测试技术领域,涉及一种用于弹簧式安全阀动态特性的测试装置及测试方法。
背景技术
安全阀在锅炉、核电、化工等过程工业领域中是必不可少的泄压装备,作为承压系统的最后一道屏障,一但承压系统出现超压问题,安全阀将能够准确的开启,稳定的排放出承压系统内多余的压力,又可以通过及时的回座来避免承压系统内压力的过度泄放。最常用的安全阀是弹簧式安全阀,弹簧式安全阀利用弹簧压缩产生的力来平衡作用在阀瓣上的压力并使阀瓣与阀座接触面密封。当安全阀的入口压力小于安全阀的整定压力时,安全阀处于关闭阶段;随着安全阀的入口压力逐渐增大高于安全阀的整定压力时,弹簧力不足以抵抗入口压力,阀瓣开始离开阀座,安全阀迅速开启并处于排放阶段;随着安全阀的不断泄压,安全阀的入口压力逐渐减小,当入口压力小于弹簧力时,阀瓣开始回座,从而使承压系统中的压力维持在一定范围内。
安全阀的准确开启、稳定排放和迅速回座对安全阀的性能有很大的影响,研究安全阀的动态特性具有十分重要的意义。因此,需要发明一种用于弹簧式安全阀动态特性的测试装置及测试方法。
技术问题
针对现有技术存在的问题,本发明提供一种结构简单、测试精度高、测试功能丰富的用于弹簧式安全阀动态特性的测试装置及测试方法。本发明通过对安全阀的入口压力、安全阀阀杆的位移、压力容器内的压力和管道内气体的质量流量进行监测,可以很好地实现安全阀动态特性的测试。
技术解决方案
为了达到上述目的,本发明采用的技术方案如下:
一种用于弹簧式安全阀动态特性的测试装置,包括供气装置、稳压装置、快速启停装置、管道气压检测装置、管道气体质量流量检测装置、安全阀阀杆位移检测装置、安全阀系统10、试验台13、管道支架12和采集系统51。
所述的供气装置包括双缸空气压缩机18、连接管A1、储气罐2和球阀17。所述的双缸空气压缩机18与储气罐2之间通过连接管A1连接,储气罐2与球阀17之间通过螺纹连接。
所述的稳压装置包括连接管B19、电动阀3、连接管C16、压力容器15、气压传感器A4、泄压阀5和压力表6。连接管B19左端与球阀17右端通过螺纹连接,电动阀3左端与连接管B19右端通过法兰连接,电动阀3右端与连接管C16左端通过法兰连接,所有法兰连接处均用螺栓紧固并用密封圈密封,连接管C16右端与压力容器15左端通过螺纹连接,泄压阀5与气压传感器A4之间通过螺纹连接,气压传感器A4与压力容器15顶端通过螺纹连接,压力表6与压力容器15之间通过螺纹连接,电动阀3用于调节压力容器15内的气压,通过气压传感器A4反馈压力容器15内的气压,当压力容器15内的气压远低于设定的压力时,控制电动阀3转动较大的角度,使压力容器15内的气压快速增加,当气压传感器A4内的气压达到设定的压力的80%时,控制电动阀3转动较小的角度,使压力容器15内的气压缓慢增加,这样不会使压力容器15内的压力出现较大的波动,从而达到稳压的目的,避免安全阀40动态特性测试过程中出现震颤。
所述的快速启停装置为电磁阀14,设置在压力容器15的右端,用于控制压力容器15内的气体流出。具体为:电磁阀14左端与压力容器15右端为螺纹连接,电磁阀14右端与连接管D23左端通过螺纹连接,当测试安全阀40开启和排放特性时,PLC系统53发出控制信号让电磁阀14工作,压力容器15内的气体被快速放出。当测试安全阀40回座特性时,PLC系统53停止发出控制信号,让电磁阀14停止工作,从而使压力容器15内的气体停止放出。用电磁阀14代替传统的手工开启球阀,整个过程更加智能化,此外,使用电磁阀14可以使开启和关闭的时间更短,更能准确地测试安全阀40开启和回座的特性。
所述的管道气压检测装置为气压传感器B7和气压传感器C11,用于实时监测压力容器15出口处的气压变化和安全阀系统10入口处的气压变化。具体为:气压传感器B7左端与连接管D23右端通过螺钉连接,气压传感器B7右端与连接管E20左端为螺钉连接,气压传感器C11左端与连接管F21右端为螺钉连接,气压传感器C11右端与连接管G22左端通过螺钉连接,当压力容器15出口和安全阀40入口处的压力发生变化时,气压传感器B7和气压传感器C11可以实时监测两处气压的变化。
所述的管道气体质量流量检测装置为气体质量流量传感器8,用于实时监测管道内的气体的质量流量的变化。具体为:气体质量流量传感器8左端与连接管E20右端通过法兰连接,气体质量流量传感器8右端与连接管F21左端也通过法兰连接,当管道内的气体的质量流量发生变化时,气体质量流量传感器8可以实时监测管道内气体的质量流量的变化。
所述的安全阀阀杆位移检测装置为激光位移传感器9,用于实时监测安全阀阀杆41位移的变化。具体为:激光位移传感器9通过十字头紧固螺栓A46和十字头紧固螺栓B48固定在激光位移传感器固定支架31上,激光位移传感器固定支架31通过十字头紧定螺钉C47固定在安全阀支架调节板49上,在安全阀泄压过程中,安全阀阀杆41会上下移动,激光位移传感器9可以实时监测安全阀阀杆41的位移变化。
所述的安全阀系统10包括安全阀40、内六角螺栓A39、内六角螺栓B43、连接板34、左支架24和右支架38,安全阀40通过内六角螺栓A39和内六角螺栓B43与连接板34连接,安全阀左支架24和右支架38通过地脚螺栓与试验台13连接,安全阀40下端通过螺纹与连接管G22连接;
所述的激光位移传感器支架包括十字头紧固螺栓A46、十字头紧固螺栓B48、激光位移传感器固定支架31、十字头紧定螺钉C47、激光位移传感器支架调节板49、十字头紧定螺钉B32和横梁28。具体为:激光位移传感器9通过十字头紧固螺栓A46和十字头紧固螺栓B48固定在激光位移传感器固定支架31上,激光位移传感器固定支架31通过十字头紧定螺钉C47固定在激光位移传感器支架调节板49上,激光位移传感器固定支架31上有槽型孔,可以使激光位移传感器固定支架31左右移动,激光位移传感器支架调节板49通过十字头紧定螺钉B32固定在横梁28上,其中横梁28上设有槽型孔50,可以使激光位移传感器支架调节板49前后移动。
所述的采集系统51与管道气压检测装置、管道气体质量流量检测装置以及安全阀阀杆位移检测装置连接。所述的采集系统51包括电源模块52、PLC系统53和上位机54,电源模块52将220V电压转换成24V电压,用于给气压传感器A4、气压传感器B7、气压传感器C11、气体质量流量传感器8和激光位移传感器9供电,PLC系统53主要是用来采集激光位移传感器9、气体质量流量传感器8、气压传感器A4、气压传感器B7和气压传感器C11的信号,PLC系统53与上位机54通过RS485进行数据传输,PLC系统53除了可以控制数据的采集,还可以控制电动阀3的开度和电磁阀14的启停。
一种用于弹簧式安全阀动态特性的测试方法,包括以下步骤:
第一步、使压力容器15内的压力达到设定压力:启动系统,设定要进行试验的安全阀40的入口压力,然后双缸空气压缩机2进行充气,PLC系统53发出控制信号使电动阀3的开度达到最大,快速充气,通过气压传感器A4判断压力容器15内的气体压力,当压力容器15内的压力达到试验设定压力的80%时,PLC系统53发出控制信号使电动阀3的开度减小,从而使压力容器15的进气缓慢,减小压力波动,当压力容器15内的气压达到设定压力时,PLC系统53发出信号控制电动阀3关闭,这时压力容器15内的压力稳定在设定的压力;
第二步、测试安全阀40的准确开启和稳定排放:PLC系统53发出控制信号,控制电磁阀14开启,压力容器15内的气体流出,通过管道作用在安全阀40上,这时安全阀40开启,压力容器15内的气压逐渐下降,当压力容器15内的气压低于设定的压力时,PLC系统53控制电动阀3继续工作,不断向压力容器15内补气,使压力容器15内的气压稳定在设定的压力,使安全阀15处于稳定排放阶段,PLC系统53采集试验过程中的各个传感器的数据,采集到的数据经上位机54处理后得到安全阀40开启和排放过程中的安全阀40的入口压力和安全阀40的阀杆位移曲线,分析判断安全阀40的开启是否准确和排放过程是否稳定;
第三步、测试安全阀40的迅速回座:安全阀40排放一段时间后,PLC系统53发出控制信号,控制电动阀3关闭,压力容器15内的气压逐渐降低,安全阀40逐渐由稳定排放变成回座状态,PLC系统53采集试验过程中的各个传感器的数据,采集到的数据经上位机54处理后得到安全阀40回座过程中的安全阀40的入口压力和安全阀40的阀杆位移曲线,分析判断安全阀40的回座是否及时;
第四步、如果测试完成,那么关闭系统,测试结束;如果测试没有完成,那么继续调节安全阀40的入口压力,重复上述过程。
有益效果
本发明技术方案的优点主要体现在:
(1)本测试装置在压力容器上安装气压传感器,在储气罐和压力容器之间的管道上安装有电动阀,通过气压传感器反馈的气压信号控制电动阀的开度,可以实现压力容器内的压力稳定,为安全阀的动态特性测试提供稳定的压力。
(2)本测试装置在压力容器与安全阀之间安装有电磁阀,通过电磁阀可以控制试验过程中压力容器的开启与关闭,解决了传统测试过程中手工转动球阀响应慢的问题,使整个测试过程更加智能化。
(3)本测试装置通过气压传感器监测安全阀的入口压力、质量流量传感器监测管道内气体的质量流量、激光位移传感器监测安全阀阀杆的位移变化,可以很好地实现对安全阀动态特性的测试。
(4)本测试装置通过PLC系统采集气压传感器、气体质量流量传感器和激光位移传感器的信号,采集到的信号经RS485传至上位机进行处理并实时显示安全阀动态特性测试过程中的安全阀阀杆位移和入口压力的曲线。
附图说明
图1 为安全阀动态特性测试装置的总体结构图;
图2 为安全阀动态特性测试装置的连接管道结构图;
图3 为安全阀支架的结构图;
图4 为安全阀与安全阀支架连接的结构图;
图5 为安全阀支架的侧视图;
图6为激光位移传感器支架的结构图;
图7为采集系统的结构示意图;
图8 为采集系统的信号流程图;
图9 为安全阀开启前压力容器稳压过程流程图;
图10为安全阀排放过程中压力容器稳压过程流程图;
图11为安全阀动态特性测试装置的工作过程流程图。
图中:1连接管A;2储气罐;3电动阀;4气压传感器A;5泄压阀;6压力表;7气压传感器B;8气体质量流量传感器;9激光位移传感器;10安全阀系统;11气压传感器C;12管道支架;13试验台;14电磁阀;15压力容器;16 连接管C;17球阀;18双缸空气压缩机;19连接管B;20连接管E;21连接管F;22连接管G;23连接管D;24左支架;25左挡板;26紧定螺钉A;27一字头紧固螺栓A;28横梁;29紧定螺钉C;30十字头紧定螺钉A;31激光位移传感器固定支架;32十字头紧定螺钉B;33紧定螺钉D;34连接板;35一字头紧固螺栓B;36紧定螺钉B;37右挡板;38右支架;39内六角螺栓A;40安全阀;41安全阀阀杆;42铝杆;43内六角螺栓B;44横向槽型孔;45纵向槽型孔;46十字头紧固螺栓A;47十字头紧定螺钉C;48十字头紧固螺栓B;49激光位移传感器支架调节板;50槽型孔;51采集系统;52电源模块;53 PLC系统;54上位机。
本发明的实施方式
下面结合附图对本发明作更详细的描述:
安全阀动态特性测试装置的总体结构如图1和图2所示,空气压缩机18与储气罐2之间用连接管A1连接,储气罐2右端与球阀17左端用螺纹连接,球阀17右端与连接管B19左端通过螺纹连接,连接管B19右端与电动阀3左端通过法兰连接并用螺栓紧固,电动阀3右端通过法兰与连接管C16左端连接并用螺栓紧固,连接管C16右端与压力容器15左端通过螺纹连接,压力容器15上面安装有气压传感器A4和压力表6,气压传感器A4上面安装有泄压阀5,压力容器15右端通过螺纹与电磁阀14连接,电磁阀14右端与连接管D23为螺纹连接,连接管D23右端与气压传感器B7之间通过螺钉连接,气压传感器B7右端与连接管E20左端通过螺钉连接,连接管E20中部通过管道支架12支撑,连接管E20的右端与气体质量流量传感器8左端通过法兰连接,气体质量流量传感器8右端与连接管F21左端之间为法兰连接,连接管F21右端与气压传感器C11左端通过螺钉连接,气压传感器C11右端与连接管G22左端之间通过螺钉连接,连接管G22的另一端与安全阀40的入口通过螺纹连接,激光位移传感器9通过激光位移传感器固定支架31、激光位移传感器支架调节板49和横梁28固定在安全阀系统10上。
安全阀支架的结构如图3所示,左支架24与左挡板25之间通过紧定螺钉A26连接,连接板34与左挡板25之间通过一字头紧固螺栓A27连接,横梁28与左支架24之间通过紧定螺钉C29连接,激光位移传感器固定支架31通过十字头紧定螺钉A30和十字头紧定螺钉B32与横梁28连接,横梁28与右支架38之间通过紧定螺钉D33连接,连接板34与右挡板37之间通过一字头紧固螺栓B35连接,右支架38与右挡板37之间通过紧定螺钉B36连接,左支架24与右支架38通过地脚螺栓与试验台13连接。
安全阀与安全阀支架连接的结构如图4所示,安全阀40与连接板34之间通过内六角螺栓A39和内六角螺栓B43连接,铝杆42与安全阀阀杆41为螺纹连接,铝杆42可以在安全阀阀杆41上移动,用来调节激光位移传感器9和铝杆42之间的距离。
安全阀支架的侧视图如图5所示,在左支架24上设有横向槽型孔44和纵向槽型孔45,其中横向槽型孔44用于紧定螺钉A26的左右横向移动,纵向槽型孔45用于紧定螺钉C29的上下纵向移动。
激光位移传感器支架的结构如图6所示,激光位移传感器9通过十字头紧固螺栓A46和十字头紧固螺栓B48固定在激光位移传感器固定支架31上,激光位移传感器固定支架31通过十字头紧定螺钉C47固定在激光位移传感器支架调节板49上,激光位移传感器固定支架31上有槽型孔,可以左右移动,激光位移传感器支架调节板49通过十字头紧定螺钉A30和十字头紧定螺钉B32固定在横梁28上,其中横梁28上设有槽型孔50,可以使激光位移传感器支架调节板49前后移动。
采集系统51的结构示意图如图7所示,采集系统51包括电源模块52、PLC系统53和上位机54,电源模块52主要是为气压传感器A4、气压传感器B7、气压传感器C11、气体质量流量传感器8、激光位移传感器9供电,PLC系统53主要是用来采集激光位移传感器9、气体质量流量传感器8、气压传感器A4、气压传感器B7和气压传感器C11的信号,PLC系统53将采集到的传感器的信号经RS485传至上位机,PLC系统53还可以用来控制电动阀3的开度和电磁阀14的启停。
采集系统51的信号流程图如图8所示,220V的电源电压通过电源模块52转变成24V,24V电压为激光位移传感器9、气体质量流量传感器8、气压传感器A4、气压传感器B7和气压传感器C11供电,激光位移传感器9和气体质量流量传感器8的电压信号经电压信号调理电路处理后传至PLC系统,气压传感器A4、气压传感器B7和气压传感器C11的电流信号经电流信号调理电路处理后传至PLC系统,PLC系统将数据经RS485传至上位机。
安全阀40泄压前压力容器15稳压过程流程图如图9所示,首先设定安全阀40的入口压力,然后PLC系统53控制电动阀3开启大开度,检测压力容器15内的气压,判断压力容器15内的气压是否达到设定压力的80%,如果没有,那么继续检测压力容器15内的气压,如果压力容器15内的气压达到设定压力的80%,那么PLC系统53控制电动阀3开启小开度。继续检测压力容器15内的气压,判断压力容器15内的压力是否达到设定压力,如果达到设定压力,那么关闭电动阀3,如果没有达到设定压力,那么继续检测压力容器14内的气压。
安全阀40泄压过程中压力容器15稳压过程流程图如图10所示,首先检测压力容器15内的气压,判断压力容器15内的压力是否低于设定压力,如果没有低于设定压力,那么继续检测压力容器15内的气压,如果低于设定压力,那么PLC系统53控制电动阀3开启小开度,然后继续检测压力容器15内的气压,直到压力容器15内的压力达到设定压力,关闭电动阀3,重复上述过程。
安全阀40动态特性测试装置的工作过程流程图如图11所示,首先启动系统,设定安全阀40的入口压力,然后空气压缩机18进行充气,检测压力容器15内的气压,判断压力容器15内的压力是否达到设定压力。如果没有达到设定压力,那么继续检测压力容器15内的气压,如果达到设定的压力,那么PLC系统53控制电磁阀14开启,PLC系统53采集安全阀40开启过程中各个传感器的数据,测试安全阀40是否准确开启。这时稳压装置对压力容器15进行稳压,PLC系统53采集安全阀40排放过程中各个传感器的数据,测试安全阀40是否稳定排放。安全阀40排放一段时间后,PLC系统53发出控制信号,使电磁阀14关闭,PLC系统53采集安全阀40回座过程中各个传感器的数据,测试安全阀40是否及时回座。判断测试是否完成,如果测试完成,那么关闭系统,如果测试没有完成,那么重复上述过程,继续设定不同的安全阀40的入口压力。
本说明书仅仅是对技术方案的实现形式的列举,本发明的保护范围不应该局限于实施例所述的具体形式,还应该涉及本领域技术人员根据本技术方案所能想到的同等技术手段。

Claims (4)

  1. 一种用于弹簧式安全阀动态特性的测试装置,其特征在于,所述的测试装置包括供气装置、稳压装置、快速启停装置、管道气压检测装置、管道气体质量流量检测装置、安全阀阀杆位移检测装置、安全阀系统(10)、试验台(13)、管道支架(12)和采集系统(51);
    所述的供气装置中的储气罐(2)与球阀(17)、双缸空气压缩机(18)连接;
    所述的稳压装置包括连接管B(19)、电动阀(3)、连接管C(16)、压力容器(15)、气压传感器A(4)、泄压阀(5)和压力表(6);所述的连接管B(19)一端与球阀(17)连接,另一端通过电动阀(3)与连接管C(16)连接,连接管C(16)连接压力容器(15)的一端,压力容器(15)上方安装压力表(6)、气压传感器A(4),气压传感器A(4)上方安装泄压阀(5);气压传感器A(4)反馈压力容器(15)内的气压,并通过电动阀(3)调节压力容器(15)内的气压,达到稳压的目的;
    所述的快速启停装置为电磁阀(14),设置在压力容器(15)的另一端,用于控制压力容器(15)内的气体流出,可以准确地测试安全阀(40)开启和回座的特性;
    所述的管道气压检测装置为气压传感器B(7)和气压传感器C(11),气压传感器B(7)通过连接管D(23)与电磁阀(14)连接,气压传感器C(11)通过连接管G(22)与安全阀(40)连接,二者用于实时监测压力容器(15)出口处的气压变化和安全阀系统(10)入口处的气压变化;且两个气压传感器之间通过管路连接,二者之间的管路上设有管道气体质量流量检测装置,管道气体质量流量检测装置为气体质量流量传感器(8),用于实时监测管道内的气体的质量流量的变化;
    所述的安全阀阀杆位移检测装置为激光位移传感器(9),通过激光位移传感器固定支架(31)固定在激光位移传感器支架调节板(49)上;在安全阀(40)泄压过程中,安全阀阀杆(41)上下移动,激光位移传感器(9)可以实时监测安全阀阀杆(41)的位移变化;
    所述的安全阀系统(10)包括安全阀(40)、连接板(34)、左支架(24)和右支架(38);安全阀(40)与连接板(34)连接,安全阀左支架(24)和右支架(38)通过地脚螺栓与试验台(13)连接,安全阀(40)下端通过螺纹与连接管G(22)连接;
    所述的激光位移传感器支架包括十字头紧固螺栓A(46)、十字头紧固螺栓B(48)、激光位移传感器固定支架(31)、激光位移传感器支架调节板(49)和横梁(28);所述的激光位移传感器(9)通过激光位移传感器固定支架(31)固定在激光位移传感器支架调节板(49)上;激光位移传感器固定支架(31)上设有槽型孔,可以使激光位移传感器固定支架(31)左右移动;激光位移传感器支架调节板(49)固定在横梁(28)上,横梁(28)上设有槽型孔(50),可以使激光位移传感器支架调节板(49)前后移动;
    所述的采集系统(51)与管道气压检测装置、管道气体质量流量检测装置以及安全阀阀杆位移检测装置连接,包括电源模块(52)、PLC系统(53)和上位机(54);所述的电源模块(52)用于给气压传感器A(4)、气压传感器B(7)、气压传感器C(11)、气体质量流量传感器(8)和激光位移传感器(9)供电;所述的PLC系统(53)用来采集激光位移传感器(9)、气体质量流量传感器(8)、气压传感器A(4)、气压传感器B(7)和气压传感器C(11)的信号,并将信息传输至上位机(54),另外,PLC系统(53)还可以控制电动阀(3)的开度和电磁阀(14)的启停。
  2. 根据权利要求1所述的一种用于弹簧式安全阀动态特性的测试装置,其特征在于,所述的稳压装置中,当压力容器(15)内的气压远低于设定压力时,通过PLC系统(53)控制电动阀(3)使压力容器(15)内的气压快速增加;当气压传感器A(4)检测到的气压达到设定的压力的80%时,通过PLC系统(53)控制电动阀(3)使压力容器(15)内的气压缓慢增加,保证压力容器(15)内的压力不会出现大的波动,达到稳压目的,进而避免安全阀测试过程中出现震颤。
  3. 根据权利要求1或2所述的一种用于弹簧式安全阀动态特性的测试装置,其特征在于,所述的电磁阀(14)控制压力容器(15)内的气体流出,具体为:电磁阀(14)一端与压力容器(15)另一端连接,电磁阀(14)另一端与连接管D(23)连接,在试验过程中:当测试安全阀(40)开启特性时,PLC系统(53)发出控制信号让电磁阀(14)工作,压力容器(15)内的气体被快速放出;当测试安全阀(40)的回座特性时,PLC系统(53)停止发出控制信号,让电磁阀(14)停止工作,从而使压力容器(15)内的气体停止放出;通过电磁阀(14)代替传统的手工开启球阀,能够准确地测试安全阀(40)开启和回座的特性。
  4. 采用权利要求1-3任一所述的测试装置用于弹簧式安全阀动态特性的测试方法,其特征在于以下步骤:
    第一步、使压力容器(15)内的压力达到设定压力
    启动系统,设定要进行试验的安全阀(40)的入口压力,通过双缸空气压缩机(2)进行充气,PLC系统(53)发出控制信号使电动阀(3)的开度达到最大,快速充气,通过气压传感器A(4)判断压力容器(15)内的气体压力,当压力容器(15)内的压力达到试验设定压力的80%时,PLC系统(53)发出控制信号使电动阀(3)的开度减小,从而使压力容器(15)的进气缓慢,减小压力波动,当压力容器(15)内的气压达到设定压力时,PLC系统(53)发出信号控制电动阀(3)关闭,此时压力容器(15)内的压力稳定在设定的压力;
    第二步、测试安全阀(40)的准确开启和稳定排放
    PLC系统(53)发出控制信号,控制电磁阀(14)开启,压力容器(15)内的气体流出并通过管道作用在安全阀(40)上,此时安全阀(40)开启,压力容器(15)内的气压逐渐下降,当压力容器(15)内的气压低于设定的压力时,PLC系统(53)控制电动阀(3)继续工作,不断向压力容器(15)内补气,使压力容器(15)内的气压稳定在设定的压力,进而使安全阀(15)处于稳定排放阶段;PLC系统(53)采集试验过程中的各个传感器的数据,采集到的数据经上位机(54)处理后得到安全阀(40)开启和排放过程中的安全阀(40)的入口压力和安全阀(40)的阀杆位移曲线,分析判断安全阀(40)的开启过程是否准确和排放过程是否稳定;
    第三步、测试安全阀(40)的迅速回座
    安全阀(40)排放后,PLC系统(53)发出控制信号,控制电动阀(3)关闭,压力容器(15)内的气压逐渐降低,安全阀(40)逐渐由稳定排放变成回座状态,PLC系统(53)采集试验过程中的各个传感器的数据,采集到的数据经上位机(54)处理后得到安全阀(40)回座过程中的安全阀(40)的入口压力和安全阀(40)的阀杆位移曲线,分析判断安全阀(40)的回座是否及时;
    第四步、如果测试完成,那么关闭系统,测试结束;如果测试没有完成,那么继续调节安全阀(40)的入口压力,重复上述过程。
PCT/CN2019/091451 2018-09-11 2019-06-17 一种用于弹簧式安全阀动态特性的测试装置及测试方法 WO2020052305A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/767,418 US11519818B2 (en) 2018-09-11 2019-06-17 Test device and test method for dynamic characteristics of spring-loaded safety valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811053627.8A CN108801626B (zh) 2018-09-11 2018-09-11 一种用于弹簧式安全阀动态特性的测试装置及测试方法
CN201811053627.8 2018-09-11

Publications (1)

Publication Number Publication Date
WO2020052305A1 true WO2020052305A1 (zh) 2020-03-19

Family

ID=64082268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091451 WO2020052305A1 (zh) 2018-09-11 2019-06-17 一种用于弹簧式安全阀动态特性的测试装置及测试方法

Country Status (3)

Country Link
US (1) US11519818B2 (zh)
CN (1) CN108801626B (zh)
WO (1) WO2020052305A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766060A (zh) * 2020-06-24 2020-10-13 武汉理工大学 一种电控气压制动系统自动调压阀的测试装置和测试方法
CN111855191A (zh) * 2020-06-08 2020-10-30 合肥通用机械研究院有限公司 一种低温安全阀性能试验系统及试验方法
CN113390627A (zh) * 2021-06-30 2021-09-14 四川航天烽火伺服控制技术有限公司 一种减压阀离心过载试验装置
CN117740273A (zh) * 2024-02-19 2024-03-22 永忠工程管理(集团)有限公司 一种高原寒冷地带用给排水管测试装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108801626B (zh) * 2018-09-11 2019-08-13 大连理工大学 一种用于弹簧式安全阀动态特性的测试装置及测试方法
CN109520722A (zh) * 2018-11-23 2019-03-26 格力电器(武汉)有限公司 安全阀泄压性能测试系统及方法
CN109596339B (zh) * 2019-01-10 2024-05-10 深圳市质量安全检验检测研究院 安全阀型式试验自动控制系统及方法
CN109596340B (zh) * 2019-01-17 2024-05-24 深圳市质量安全检验检测研究院 一种附加背压式安全阀排放侧试验装置及其试验方法
CN111025074A (zh) * 2020-01-13 2020-04-17 宁波奥克斯电气股份有限公司 一种稳压块测试装置及测试方法
CN112651088B (zh) * 2020-09-30 2023-02-03 中国核动力研究设计院 先导式安全阀动态特性分析的建模方法以及分析模型系统
CN112945544A (zh) * 2021-03-26 2021-06-11 重庆科技学院 一种安全阀智能整定压力测定系统
CN113945376B (zh) * 2021-10-28 2022-06-28 大连理工大学 一种用于核电的先导式蒸汽释放隔离阀动态性能的测试装置及测试方法
CN114755004B (zh) * 2022-04-22 2023-01-03 大连理工大学 一种用于蒸汽释放隔离阀主阀阀盘升力的测试装置及测试方法
CN114755003B (zh) * 2022-04-22 2023-01-03 大连理工大学 一种用于蒸汽释放隔离阀主阀的动态特性测试装置及测试方法
CN115931342B (zh) * 2023-03-15 2023-05-16 合肥通用机械研究院有限公司 一种用于安全阀的综合试验台及综合测试方法
CN116296358B (zh) * 2023-05-22 2024-02-20 四川弥韧科技有限公司 一种自闭阀自动检测设备及检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190955A (ja) * 2013-03-28 2014-10-06 Azbil Corp 流体を用いた部品判別装置
CN205745489U (zh) * 2016-06-30 2016-11-30 江苏省特种设备安全监督检验研究院南通分院 安全阀及安全阀的在线检测装置
GB2548512A (en) * 2015-06-19 2017-09-20 Seetru Ltd Safety valve leak analysis system
CN206638408U (zh) * 2017-03-10 2017-11-14 武汉市锅炉压力容器检验研究所 一种无阀杆弹簧式安全阀在线校验装置
CN108801626A (zh) * 2018-09-11 2018-11-13 大连理工大学 一种用于弹簧式安全阀动态特性的测试装置及测试方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146974A (en) * 1981-03-06 1982-09-10 Keiji Inouchi Test device for spring safety valve
FR2535822A1 (fr) * 1982-11-10 1984-05-11 Electricite De France Installation pour le controle de la pression de reglage d'une soupape de securite
AU4517001A (en) * 1999-12-10 2001-06-18 Barrow Financial Associates Pressure relief valve detection and monitoring device and system
CN103499439A (zh) * 2013-10-11 2014-01-08 深圳市特种设备安全检验研究院 一种安全阀在线检测仪
KR101511249B1 (ko) * 2013-11-26 2015-04-13 한전케이피에스 주식회사 안전밸브 성능 시험방법
CN207336052U (zh) * 2017-10-24 2018-05-08 四川省简阳市川力机械制造有限责任公司 一种安全阀、调节阀性能测试系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190955A (ja) * 2013-03-28 2014-10-06 Azbil Corp 流体を用いた部品判別装置
GB2548512A (en) * 2015-06-19 2017-09-20 Seetru Ltd Safety valve leak analysis system
CN205745489U (zh) * 2016-06-30 2016-11-30 江苏省特种设备安全监督检验研究院南通分院 安全阀及安全阀的在线检测装置
CN206638408U (zh) * 2017-03-10 2017-11-14 武汉市锅炉压力容器检验研究所 一种无阀杆弹簧式安全阀在线校验装置
CN108801626A (zh) * 2018-09-11 2018-11-13 大连理工大学 一种用于弹簧式安全阀动态特性的测试装置及测试方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111855191A (zh) * 2020-06-08 2020-10-30 合肥通用机械研究院有限公司 一种低温安全阀性能试验系统及试验方法
CN111766060A (zh) * 2020-06-24 2020-10-13 武汉理工大学 一种电控气压制动系统自动调压阀的测试装置和测试方法
CN111766060B (zh) * 2020-06-24 2022-04-15 武汉理工大学 一种电控气压制动系统自动调压阀的测试装置和测试方法
CN113390627A (zh) * 2021-06-30 2021-09-14 四川航天烽火伺服控制技术有限公司 一种减压阀离心过载试验装置
CN113390627B (zh) * 2021-06-30 2022-11-15 四川航天烽火伺服控制技术有限公司 一种减压阀离心过载试验装置
CN117740273A (zh) * 2024-02-19 2024-03-22 永忠工程管理(集团)有限公司 一种高原寒冷地带用给排水管测试装置
CN117740273B (zh) * 2024-02-19 2024-05-03 永忠工程管理(集团)有限公司 一种高原寒冷地带用给排水管测试装置

Also Published As

Publication number Publication date
US11519818B2 (en) 2022-12-06
US20200386654A1 (en) 2020-12-10
CN108801626A (zh) 2018-11-13
CN108801626B (zh) 2019-08-13

Similar Documents

Publication Publication Date Title
WO2020052305A1 (zh) 一种用于弹簧式安全阀动态特性的测试装置及测试方法
KR101527315B1 (ko) 공기구동기의 스프링 성능 시험 장치
CN109084972A (zh) 一种用于安全阀阀盘升力的测试装置及测试方法
CN103134730A (zh) 线束延伸性能测试装置
CN207396022U (zh) 一种带有装配设备的用于阀门的试验系统
CN103195957A (zh) 一种具有在线监测与校验功能的弹簧式安全阀
CN108507801A (zh) 一种车辆制动检测的踩踏装置
CN113945376B (zh) 一种用于核电的先导式蒸汽释放隔离阀动态性能的测试装置及测试方法
CN201417215Y (zh) 伺服式安全阀在线校验仪
CN112461535A (zh) 一种用于管道燃气自闭阀超欠压自闭性能检测的设备
CN202420986U (zh) 线束延伸性能测试装置
CN109570984B (zh) 液压螺栓拉伸器校准仪
KR101439957B1 (ko) Posrv 성능 평가 시험 장치
CN115523343A (zh) 一种用于弹簧式安全阀的测试装置及测试方法
CN210322219U (zh) 一种减压阀气密性检测装置
CN219840744U (zh) 一种水轮机顶盖螺栓断裂故障在线监测装置
CN112178009A (zh) 一种电液执行器性能测试实验台
CN101881690B (zh) 液化石油气瓶阀高压闭合密封检测台及检测方法
CN212180203U (zh) 一种用于阀门壳体的检漏装置
RU201257U1 (ru) Пружинный предохранительный клапан с системой контроля давления настройки, обеспечивающий передачу данных в систему автоматического управления
CN114755003A (zh) 一种用于蒸汽释放隔离阀主阀的动态特性测试装置及测试方法
CN207487887U (zh) 一种阶跃压力连续可控的压力传感器校准装置
CN221325837U (zh) 一种液压管路流固耦合振动试验装置
CN209802863U (zh) 一种结构胶现场检测装置
CN220772550U (zh) 一种安全阀校验检测台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859712

Country of ref document: EP

Kind code of ref document: A1