WO2020052303A1 - 一种防碰撞模拟装置及放射治疗系统 - Google Patents

一种防碰撞模拟装置及放射治疗系统 Download PDF

Info

Publication number
WO2020052303A1
WO2020052303A1 PCT/CN2019/090997 CN2019090997W WO2020052303A1 WO 2020052303 A1 WO2020052303 A1 WO 2020052303A1 CN 2019090997 W CN2019090997 W CN 2019090997W WO 2020052303 A1 WO2020052303 A1 WO 2020052303A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulation
collision
rod
movable frame
fixed frame
Prior art date
Application number
PCT/CN2019/090997
Other languages
English (en)
French (fr)
Inventor
何冰
Original Assignee
深圳市奥沃医学新技术发展有限公司
西安大医集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市奥沃医学新技术发展有限公司, 西安大医集团有限公司 filed Critical 深圳市奥沃医学新技术发展有限公司
Publication of WO2020052303A1 publication Critical patent/WO2020052303A1/zh
Priority to US17/199,692 priority Critical patent/US20210196983A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • A61N2005/1076Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus using a dummy object placed in the radiation field, e.g. phantom

Definitions

  • the present application relates to the technical field of medical equipment, and in particular, to an anti-collision simulation device and a radiation therapy system.
  • the gamma knife radiotherapy system uses multiple radioactive isotopes such as cobalt-60 to emit gamma rays from multiple directions and intersect at an intersection, thereby killing tumor cells at the intersection and achieving the purpose of tumor radiotherapy.
  • multiple radioactive isotopes such as cobalt-60 to emit gamma rays from multiple directions and intersect at an intersection, thereby killing tumor cells at the intersection and achieving the purpose of tumor radiotherapy.
  • FIG. 1 it is a gamma knife radiotherapy system in the prior art, which includes a treatment device 01 and a treatment bed 02.
  • the patient lies on the treatment bed 02, and the treatment bed 02 can transport the patient to the treatment device 01, and then the treatment device 01 performs radiotherapy on the patient's patient part (for example, the head).
  • the patient cannot be observed while inside the treatment device 01, in order to prevent the treatment device from colliding with the patient's body part (such as the head), the patient needs to perform a collision prevention simulation of the treatment before entering the treatment device 01 for radiation treatment to avoid Risk of collision in the treatment device 01.
  • FIG. 1 it is a gamma knife radiotherapy system in the prior art, which includes a treatment device 01 and a treatment bed 02.
  • the patient lies on the treatment bed 02, and the treatment bed 02 can transport the patient to the treatment device 01, and then the treatment device 01 performs radiotherapy on the patient's patient part (for example, the head).
  • the patient cannot be observed while inside the treatment device 01,
  • the anti-collision simulation device 03 includes a support rod 031 installed on the treatment device 01 and an analog rod 032 rotatably connected to the upper end of the support rod 031, wherein the analog rod 032 has a trajectory of one rotation.
  • the enclosed space is equivalent to or slightly smaller than the internal space of the treatment device 01.
  • install the anti-collision simulation device 03 at the corresponding position generally the treatment bed 02.
  • the anti-collision simulation device 03 is removed.
  • the anti-collision simulation device 03 needs to be installed and removed before each treatment, and the position of the anti-collision simulation device 03 needs to be manually adjusted. Disassembly and installation are inconvenient, operation is inconvenient, and it takes a long time, which increases the time that the doctor is beside the gamma knife radiotherapy system, and makes the doctor receive the scattered radiation of the radiotherapy system for a long time, which is not good for the health of the doctor.
  • Embodiments of the present application provide an anti-collision simulation device and a radiation therapy system, which can quickly perform anti-collision simulation, have simple operation, and reduce damage to doctors' health.
  • An embodiment of the present application provides an anti-collision simulation device, which is applied to a radiation therapy device, and includes a support frame and an analog rod rotatably connected to the support frame.
  • the movable frame can be moved relative to the fixed frame, so that the simulation rod is located at different positions.
  • a first driving device is further included, and the first driving device is connected to the movable frame for driving the movable frame to move relative to the fixed frame.
  • a second driving device is further included, and the second driving device is connected to the analog rod for driving the analog rod to rotate.
  • the fixed frame and the movable frame are slidingly connected through a sliding mechanism.
  • the fixed frame includes a fixed frame body and a guide provided on the fixed frame body
  • the movable frame includes a movable frame body and a sliding member provided on the movable frame body; or, the fixed frame
  • the frame includes a fixed frame body and a slide member provided on the fixed frame body
  • the movable frame includes a movable frame body and a guide member provided on the movable frame body; wherein the guide member and the slide member
  • the sliding mechanism is configured.
  • the guide in the sliding mechanism is a guide rail, and the slide is a slider that can be slid with the guide rail; or the guide is a guide post, and the slide is a guide The guide post cooperates with the sliding guide sleeve.
  • the first driving device is a pneumatic cylinder or a hydraulic cylinder, a piston rod of the pneumatic cylinder or the hydraulic cylinder is fixedly connected to the movable frame, and a cylinder body of the pneumatic cylinder or the hydraulic cylinder is opposite to the fixed frame.
  • the first driving device is a linear motor, a mover of the linear motor is fixedly connected to the movable frame, and a stator of the linear motor is relatively fixed to the fixed frame.
  • the first driving device is a rotary electric machine
  • the anti-collision simulation device further includes a transmission mechanism in which a rotary motion connected to the rotary motor changes into a linear motion, and the transmission mechanism is connected to the movable frame, and Under the action of the rotating electric machine, the movable frame is driven to move linearly relative to the fixed frame.
  • the transmission mechanism includes a rotary motion piece and a linear motion piece that cooperate with each other, the rotary motion piece is connected to an output shaft of the rotary electric machine, and the linear motion piece is connected to the movable frame.
  • the rotary movement member of the transmission mechanism is a screw shaft, and the linear movement member is a nut that can be matched with the screw shaft; or the rotary movement member is a gear, and the linear movement member It is a rack that can cooperate with the gear shaft.
  • a first sensing device electrically connected, a first controller, and a prompter
  • the first sensing device is disposed on the simulation pole, and is configured to detect distance information between the simulation pole and the patient
  • the first controller is configured to control the prompter to issue a prompt signal according to the distance information detected by the sensing device.
  • it further comprises: a second sensing device and a second controller, the second controller is electrically connected to the second driving device and the second sensing device, respectively, and the second sensing device is disposed on the second sensing device On an analog stick, for detecting distance information between the analog stick and the patient, and sending the distance information to the second controller, where the second controller is used for The distance information controls a state in which the second driving device drives the analog rod to operate.
  • the inside of the analog rod is made of a flexible material.
  • the cross section of the analog rod is semi-circular, and the arc-shaped convex surface is located on the inner side of the analog rod.
  • the support frame includes a fixed frame and a movable frame
  • the simulation rod can be rotatably connected to the movable frame
  • the fixed frame can be fixedly installed relative to the radiation therapy device
  • the movable frame can move relative to the fixed frame.
  • the simulation rod is located at the working position.
  • the simulation rod is rotated for anti-collision simulation; after the anti-collision simulation is completed, the movable frame is again opposed to During the movement of the fixed frame, the simulation rod is located at another position, such as a hidden position. At this time, the anti-collision simulation device will not interfere and block the movement of the treatment table.
  • the movable frame can be moved relative to the fixed frame so that the simulation rod is located at different positions, and the simulation rod is located at different positions to perform corresponding anti-collision simulation and The treatment bed can be moved without frequent installation and removal of anti-collision simulation devices.
  • the operation is convenient and simple, and the position of the anti-collision simulation devices fixedly installed relative to the radiation therapy device is fixed, which facilitates the positioning of the simulation rod. Therefore, anti-collision simulation can be performed quickly, reducing the time that the doctor is next to the radiotherapy system, and reducing the damage to the doctor's health.
  • an embodiment of the present application further provides a radiation therapy system, including the above-mentioned anti-collision simulation device and a treatment bed; the movable frame of the anti-collision simulation device can be moved relative to the fixed frame so that all The simulation rod is located at different positions in the vertical direction with respect to the treatment table.
  • the anti-collision control device is configured to send to the treatment bed control device according to different positions of the simulation rod of the anti-collision simulation device.
  • Different control instructions the treatment table control device is configured to control the corresponding movement of the treatment table according to the received control instructions; or the anti-collision control device is used to send the treatment table control device to The position information of the simulation lever of the anti-collision simulation device; and the treatment bed control device controls the corresponding movement of the treatment bed according to the position information.
  • the anti-collision control device is configured to control the movement of the movable frame to obtain the position information of the simulation rod of the anti-collision simulation device; or the radiotherapy system further includes: a position detection device, The position detection device is configured to detect position information of the simulation lever of the anti-collision simulation device.
  • the radiation therapy system provided in the embodiment of the present application includes the above-mentioned anti-collision simulation device and a treatment bed, and the movable frame of the anti-collision simulation device can move relative to the fixed frame, so that the simulation rod can be positioned relative to the treatment bed. Different positions in the vertical direction. In this way, when anti-collision simulation is needed, only the movable frame needs to be moved relative to the fixed frame, so that the simulation rod is located at the working position. At this time, the simulation rod is rotated for anti-collision simulation; after the anti-collision simulation is completed, the movable frame is again opposed to each other. During the movement of the fixed frame, the simulation rod is located at another position, such as a hidden position.
  • the anti-collision simulation device will not interfere and block the movement of the treatment table.
  • the anti-collision simulation device does not need to be installed and removed frequently, the operation is convenient and simple, and the position of the anti-collision simulation device fixed relative to the radiation therapy device is relatively fixed, which is convenient for positioning. Therefore, the operation is simple and convenient, and an anti-collision simulation can be performed quickly to reduce the time that the doctor is next to the radiotherapy system and reduce the damage to the doctor's health.
  • FIG. 1 is a schematic structural diagram of a gamma knife radiotherapy system in the prior art
  • FIG. 2 is a schematic structural diagram of an anti-collision simulation device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural side view of an anti-collision simulation device according to an embodiment of the present application.
  • FIG. 4 is a schematic side structural diagram of an analog rod of an anti-collision simulation device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a part of a simulation rod of an anti-collision simulation device according to an embodiment of the present application made of a flexible material;
  • FIG. 6 is a schematic structural diagram of a rectangular cross section of a simulation rod of an anti-collision simulation device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a semi-circular cross section of an analog rod of an anti-collision simulation device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a radiation therapy system according to an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, unless otherwise stated, “multiple” means two or more.
  • An embodiment of the present application provides an anti-collision simulation device 100, as shown in FIG. 2 and FIG. 3, which can be applied to a radiation therapy device (not shown in the figure), including a support frame 1 and rotatably connected to the support frame 1
  • the simulated rod 2 on the upper surface, the space surrounded by the trajectory of the simulated rod 2 matches the space in the treatment cabin of the radiation therapy device.
  • the support frame 1 includes a fixed frame 11 and a movable frame 12, and the fixed frame 11 can be opposite to the radiation treatment device.
  • the analog rod 2 is rotatably connected to the movable frame 12, and the movable frame 12 can move relative to the fixed frame 11 so that the analog rod 2 is located at different positions.
  • the anti-collision simulation device of the embodiment of the present application since the support frame 1 includes a fixed frame 11 and a movable frame 12, the simulation rod 2 can be rotatably connected to the movable frame 12, and the fixed frame 11 can be opposite to The radiation therapy device is fixedly installed, and the movable frame 12 can be moved relative to the fixed frame 11 so that the simulation rod 2 is located at different positions. In this way, when anti-collision simulation is needed, it is only necessary to move the movable frame 12 relative to the fixed frame 11 so that the simulation rod 2 is in the working position.
  • the simulation rod 2 is rotated to perform the collision simulation; after the collision simulation is completed, again
  • the movable frame 12 is moved relative to the fixed frame 11 so that the simulation rod 2 is located at another position, such as a hidden position.
  • the collision avoidance simulation device will not interfere and block the movement of the treatment table.
  • the movable frame 12 can be moved relative to the fixed frame 11 so that the simulated rod 2 is located at different positions, and the simulated rod 2 is located at different positions to correspond.
  • the anti-collision simulation and treatment bed move without frequent installation and removal of the anti-collision simulation device.
  • anti-collision simulation can be performed quickly, reducing the time that the doctor is next to the radiotherapy system, and reducing the damage to the doctor's health.
  • the patient's corresponding diseased part (such as the head) is placed in the treatment cabin of the radiotherapy device.
  • the space in the treatment cabin is semicircular and uniformly distributed.
  • the source device emits therapeutic radiation to treat the patient's patient's site.
  • the space surrounded by the trajectory of the simulated rod 2 matches the space in the treatment cabin of the radiation therapy device, which is equivalent to the rotation of the simulated rod 2 to simulate the space in the treatment cabin of the radiation therapy device.
  • a collision means that the patient will not collide with the treatment cabin when he enters the treatment cabin for treatment.
  • the space surrounded by the trajectory of the analog rod 2 matches the space in the treatment cabin of the radiotherapy device, which may be exactly the same size as the space in the treatment cabin, or it may be smaller than a preset offset threshold of the space in the treatment cabin. .
  • the anti-collision simulation device 100 in the embodiment of the present application is applied to a radiation therapy device, and the fixing frame 11 can be fixedly installed relative to the radiation therapy device.
  • the anti-collision simulation device 100 is used in conjunction with a radiation therapy device. Specifically, the anti-collision simulation device 100 can be installed and fixed on a radiation therapy device, or the anti-collision simulation device 100 can be fixed on another place (for example, fixed on radiation therapy). On the ground next to the device, etc.).
  • the different positions where the analog stick 2 is located refer to positions determined with reference to the rotation center of the analog stick 2, and have no relationship with the rotation angle of the analog stick 2.
  • the different positions include at least a working position and a hidden position, where the working position refers to the relative position between the space surrounded by the trajectory of the simulated rod 2 and the patient on the treatment bed at this time, compared with the patient's treatment in the treatment cabin of the radiotherapy device The time is consistent with the relative position of the treatment cabin, and an anti-collision simulation can be performed at this time; the hidden position means that the simulation rod 2 moves with the movable rack 12 at this time beyond the movement track of the treatment bed, and will not interfere with the movement of the treatment bed.
  • the simulation rod 2 is above the treatment bed when it is in the working position, and below the treatment bed when it is in the hidden position.
  • the movement of the movable frame 12 relative to the fixed frame 11 may be manually operated or automatically controlled by a driving device.
  • Manual operation to achieve the drive requires manual operation by the doctor in the treatment room.
  • the doctor can control the movement of the movable frame 12 relative to the fixed frame 11 in a control room isolated from the treatment room, which can reduce the doctor's Time, reducing the risk of radiation to doctors. Therefore, the anti-collision simulation device in this embodiment further includes a first driving device 3.
  • the first driving device 3 is connected to the movable frame 12 for driving the movable frame 12 to move relative to the fixed frame 11.
  • the rotation of the analog rod 2 may also be manually operated or automatically controlled by a driving device.
  • the driving device when used to automatically control the rotation of the simulation rod 2, the doctor can control the rotation of the simulation rod 2 in the control room to perform automatic simulation when the simulation rod 2 is in the working position, thereby reducing the number of doctors. Spend time in the treatment room to reduce the risk of radiation exposure to doctors. Therefore, the anti-collision simulation device in this embodiment further includes a second driving device 4, and the second driving device 4 is connected to the analog rod 2 for driving the analog rod 2 to rotate.
  • the first driving device 3 may be separately provided to facilitate the operation of the movable frame 12 at different positions; the second driving device 4 may be separately provided to facilitate the rotation operation of the analog rod 2; or the first driving device may be provided. Both the device 3 and the second driving device 4 are provided. In this way, after setting the patient's position, the doctor can move the simulation rod 2 with the movable frame 12 to different positions in the control room, and control the rotation of the simulation rod 2 to fully realize the automatic operation. Anti-collision simulation greatly reduces the time the doctor stays in the treatment room and reduces the risk of radiation.
  • the movable frame 12 can move relative to the fixed frame 11 and can be implemented in various ways, such as curvilinear motion (such as rotation) and linear motion (such as sliding), as long as the analog rod 2 can be located in different positions (hidden position or working position) Just fine.
  • curvilinear motion such as rotation
  • linear motion such as sliding
  • the curved movement of the movable frame 12 relative to the fixed frame 11 occupies a large space, has a long running distance, and is inconvenient for layout. Therefore, it is preferable that the movable frame 12 can move linearly relative to the fixed frame 11.
  • the fixed frame 11 and the movable frame 12 are slidingly connected through the sliding mechanism 5, so that the movable frame 12 can move linearly relative to the fixed frame 11.
  • the fixing frame 11 includes a fixing frame body 111 and a guide 51 provided on the fixing frame body 111.
  • the movable frame 12 includes a movable frame body 121 and a sliding member provided on the movable frame body 121. 52; or, the fixing frame 11 includes a fixing frame body 111 and a sliding member 52 provided on the fixing frame body 111, and the movable frame 12 includes a movable frame body 121 and a guide 51 provided on the movable frame body 121; 51 and the slider 52 constitute the sliding mechanism 5.
  • the cooperation of the guide member 51 and the slide member 52 may be implemented in various manners, such as a guide rail slider mode or a guide post guide sleeve mode.
  • the guide member 51 in the sliding mechanism 5 is a guide rail
  • the slider 52 is a slider that can slide in cooperation with the guide rail;
  • the guide member 51 is a guide post
  • the sliding member 52 is a guide sleeve that can be slid in cooperation with the guide post.
  • the first driving device 3 may be a motor (including a linear motor and a rotary motor), a pneumatic or a hydraulic cylinder, etc.
  • the linear motor, the gas-liquid or the hydraulic cylinder may be Provide linear driving force, rotary motor can provide rotary driving force.
  • a corresponding mechanism is required to convert the linear driving force into a rotational force.
  • the first driving device 3 is a rotary motor, the movable frame 12 can be directly driven to rotate.
  • the movable frame 12 when the movable frame 12 is required to perform a linear movement (such as sliding) relative to the fixed frame 11, if the first driving device 3 is a linear motor , Pneumatic or hydraulic cylinder, can directly drive the movable frame 12 to move linearly. If the first driving device 3 is a rotary motor, a corresponding mechanism is needed to convert the rotary driving force into linear power.
  • a specific implementation manner is described by taking a linear movement (such as sliding) of the movable frame 12 relative to the fixed frame 11 as an example.
  • the movable frame 12 can be directly driven to move linearly.
  • the first driving device 3 is a pneumatic cylinder or a hydraulic cylinder, the piston rod of the pneumatic cylinder or the hydraulic cylinder is fixedly connected to the movable frame 12, and the cylinder body of the pneumatic cylinder or the hydraulic cylinder is relatively fixed to the fixed frame 11;
  • a driving device 3 is a linear motor.
  • the mover of the linear motor is fixedly connected to the movable frame 12.
  • the stator of the linear motor is relatively fixed to the fixed frame 11.
  • the cylinder of the pneumatic cylinder or hydraulic cylinder and the stator of the linear motor are relatively fixed to the fixed frame 11, and may be directly fixed on the fixed frame 11, or may be fixed in other positions or devices in which the relative position to the fixed frame 11 is unchanged. on.
  • the anti-collision simulation device 100 further includes: a transmission mechanism connected with the rotating electric machine to turn the rotary motion into a linear movement, and the transmission mechanism is connected to the movable frame 12 for driving the movable frame 12 relative to the fixed frame 11 under the action of the rotating electrical machine. Linear motion.
  • the transmission mechanism includes a rotary motion piece and a linear motion piece that cooperate with each other, the rotary motion piece is connected to the output shaft of the rotary motor, and the linear motion piece is connected to the movable frame 12.
  • the rotating and linear motion parts that cooperate with each other, for example, a ball screw mechanism or a rack and pinion mechanism. That is, the rotary motion member of the transmission mechanism is a screw shaft, and the linear motion member is a nut that can be matched with the screw shaft;
  • the rotary moving member is a gear
  • the linear moving member is a rack that can be matched with a gear shaft.
  • the second driving device 4 is used to drive the analog rod 2 to rotate.
  • a rotary motor is generally used for driving.
  • the simulation rod 2 rotates. If it is found that the simulation rod 2 collides with the patient, it indicates that the position of the patient needs to be adjusted. However, this simulation method cannot avoid the collision of the simulation rod 2 on the patient. Therefore, in order to avoid the collision of the simulation rod 2 with the patient during the anti-collision simulation, a sensing device can be provided on the simulation rod 2, and the distance information between the simulation rod 2 and the patient can be detected by the sensing device, and the distance information can be further based on the distance information. It is known whether the continuous rotation of the analog stick 2 will collide with the patient. If it is found that the continuous rotation of the simulation rod 2 will collide with the patient, it means that the position of the patient needs to be adjusted, and at this time, the rotation of the simulation rod 2 can be stopped, so that the patient does not need to be hit.
  • the sensing device can send a prompt signal to prompt the doctor to stop rotating the analog rod 2.
  • the method further includes: a first sensing device 6, a first controller, and a prompter which are electrically connected.
  • the first sensing device 6 is disposed on the analog rod 2 for detecting distance information between the analog rod 2 and the patient.
  • a controller is used to control the prompter to send a prompt signal based on the distance information detected by the sensing device.
  • the prompt signal may be a sound, light, or image from a buzzer, an indicator, and a display screen.
  • the analog lever 2 When the analog lever 2 is automatically operated by the second driving device 4, it further includes: a second sensing device 7 and a second controller, the second controller is electrically connected to the second driving device and the second sensing device 7, respectively, and the second The sensing device 7 is arranged on the analog stick 2 and is used to detect the distance information between the analog stick 2 and the patient, and sends the distance information to the second controller, and the second controller is used for detecting the distance sent by the second sensing device 7 Information to control the running state of the first driving device driving the analog stick 2.
  • the state in which the first driving device drives the analog stick 2 is to control the analog stick 2 to rotate or stop.
  • the inside of the analog rod 2 is made of a flexible material.
  • the flexible material can well cushion the impact caused by the collision, and effectively avoid the injury to the patient when the simulated rod 2 collides with the patient.
  • medical silicone is preferably used as the flexible material.
  • the cross-sectional shape of the simulation rod 2 may have various shapes. For example, as shown in FIG. 6, the shape of the approximate rod or the side of the space formed by the trajectory of the rotation of the simulation rod 2 is recessed inward. Collision is a direct collision and surface contact, which has a greater impact on the patient. Therefore, in order to alleviate the injury to the patient when the simulated rod 2 collides with the patient, as shown in FIGS. 5 and 7, the cross-section of the simulated rod 2 is semicircular, and the arc-shaped convex surface is located inside the simulated rod 2. In this way, the collision between the simulated rod 2 and the patient is a progressive linear contact, which effectively relieves the injury to the patient when the simulated rod 2 collides with the patient.
  • the first sensing device 6 and the second sensing device 7 are disposed on the simulation rod 2, and preferably are disposed on a side (inside) of the simulation rod 2 near the patient.
  • the first sensing device 6 and the second sensing device 7 avoid the simulation rod 2.
  • the inner side is located on both sides of the analog rod 2.
  • the first sensing device 6 and the second sensing device 7 are used to detect distance information between the analog stick 2 and the patient, and may be an infrared sensor, a laser sensor, or the like.
  • the embodiment of the present application also provides a radiation therapy system, which includes the above-mentioned anti-collision simulation device 100 and treatment bed 200; the movable frame 12 of the anti-collision simulation device 100 can move relative to the fixed frame 11 to make the simulation rod 2 is located at different positions in the vertical direction with respect to the treatment table 200.
  • the radiation therapy system provided in the embodiment of the present application includes the anti-collision simulation device 100 and the treatment bed 200 described above, and the movable frame 12 of the anti-collision simulation device 100 can move relative to the fixed frame 11, so that the simulation rod 2 can be located opposite to each other. Different positions of the treatment table 200 in the vertical direction. In this way, when performing an anti-collision simulation, it is only necessary to move the movable frame 12 relative to the fixed frame 11 so that the simulation rod 2 is in the working position. At this time, the simulation rod 2 is rotated to perform an anti-collision simulation; 12 moves relative to the fixed frame 11 so that the simulation rod 2 is located at another position, such as a hidden position.
  • the collision avoidance simulation device 100 will not interfere with and block the movement of the treatment table 200.
  • the anti-collision simulation device 100 does not need to be installed and removed frequently, the operation is convenient and simple, and the position of the anti-collision simulation device 100 fixed relative to the radiation therapy device is relatively fixed and convenient for positioning. Therefore, the operation is simple and convenient, and an anti-collision simulation can be performed quickly to reduce the time that the doctor is next to the radiotherapy system and reduce the damage to the doctor's health.
  • the radiotherapy system further includes an anti-collision control device 300 and a treatment table control device 400 that are electrically connected.
  • the anti-collision control device 300 is configured to simulate an analog rod of the anti-collision simulation device 100.
  • Different positions of 2 send different control instructions to the treatment bed control device 400; the treatment bed control device 400 is configured to control the movement of the treatment bed 200 according to the received control instruction.
  • the treatment bed control device 400 sends different control instructions including: when it is found that the position of the simulation rod 2 of the anti-collision simulation device 100 will hinder the movement of the treatment bed 200, sending an alarm instruction or a prohibition instruction, and the treatment bed control device 400 is not allowed to control When the treatment bed 200 moves to make the treatment bed 200 stationary; and when it is found that the position of the simulation rod 2 of the anti-collision simulation device 100 does not hinder the movement of the treatment bed 200, a safety command or a drive instruction is sent to allow the treatment bed control device 400 to control The treatment bed 200 moves, and the treatment bed 200 can move at this time.
  • the radiotherapy system further includes an anti-collision control device 300 and a treatment table control device 400 electrically connected.
  • the anti-collision control device 300 is configured to send an anti-collision simulation to the treatment table control device 400
  • the position information of the analog stick 2 of the device 100; the treatment table control device 400 controls the corresponding movement of the treatment table 200 according to the position information.
  • the anti-collision control device 300 only sends the position information of the simulation rod 2 of the anti-collision simulation device 100 to the treatment table control device 400, and the treatment table control device 400 determines whether or not based on the position information of the simulation rod 2 of the anti-collision simulation device 100 Control the movement of the treatment table 200.
  • the collision between the treatment table 200 and the collision prevention simulation device 100 can be prevented.
  • the anti-collision control device 300 is configured to different positions of the analog rod 2 of the anti-collision simulation device 100, and the position information of the analog rod 2 of the anti-collision simulation device 100 includes a working position and a hidden position.
  • the determination method may be a detection device (such as an infrared sensor or the like) to detect the position of the rotation center of the analog rod 2 of the collision avoidance simulation device 100.
  • the acquisition of the position information of the analog rod 2 of the anti-collision simulation device 100 may be implemented in various ways.
  • the anti-collision control device 300 is used to control the movement of the movable frame 12 of the anti-collision simulation device 100
  • Information the position information of the analog rod 2 of the anti-collision simulation device 100 can be obtained; or, the radiation therapy system further includes: a position detection device 500, and the position information of the analog rod 2 of the anti-collision simulation device 100 is directly detected by the position detection device 500.
  • the treatment table control device 400 confirms whether the simulation rod 2 is on the movement path of the movement direction of the treatment table 200 according to the position information of the simulation rod 2 and the position information of the treatment table 200. If it is, the treatment table 200 is stopped; if not, Then, the movement of the treatment bed 200 is controlled.
  • the treatment bed control device 400 may send an instruction to the anti-collision control device 300, so that the anti-collision control device 300 controls
  • the movable rack 12 of the collision simulation device 100 moves so that the simulation rod 2 moves to a hidden position and does not send a collision with the treatment table 200;
  • the treatment bed control device 400 finds that the position of the simulation rod 2 is on the movement path of the movement direction of the treatment bed 200, the treatment bed control device 400 issues an alarm message to display the movement disorder, and the therapist sends a descending instruction to the collision prevention simulation Control System.
  • the anti-collision control device 300 is a host computer of the first driving device 3 of the anti-collision simulation device 100.
  • the anti-collision control device 300 sends a signal to the first driving device 3 so that the first driving device 3 drives.
  • the movable frame 12 moves to realize different positions of the simulation rod 2.
  • a general treatment table 200 can realize three-dimensional movement (three-dimensional coordinate system X direction, Y direction, and Z direction), and the simulation rod 2 of the collision avoidance simulation device 100 is not located in a hidden position. It is common for collisions in motion in the Y direction, but collisions that occur when moving in other directions are not excluded. Therefore, in the radiation therapy system of the embodiment of the present application, the anti-collision control device 300 can prevent the anti-collision simulation device 100 from treating All possible collisions of the bed 200 in three dimensions.
  • the anti-collision simulation device 100 can be designed with an independent industrial shape; or, the anti-collision simulation device 100 and other industrial structures of the radiation therapy system can be integrated, such as an anti-collision simulation device
  • the support frame 1 (or the fixed frame 11) of 100 is integrated with the industrial modeling of other structures; further, in order to avoid the inconvenience caused by the leakage of the simulation rod 2 of the anti-collision simulation device 100, a corresponding position of the radiation therapy system can also be provided.
  • a receiving slot for the analog rod can also be provided.

Abstract

一种防碰撞模拟装置(100)及放射治疗系统,涉及医疗设备技术领域。防碰撞模拟装置(100),应用于放射治疗装置上,包括支撑架(1),以及可旋转连接在支撑架(1)上的模拟杆(2),模拟杆(2)旋转的轨迹围成的空间与放射治疗装置的治疗舱内的空间相匹配,支撑架(1)包括固定架(11)和活动架(12),固定架(11)可相对于放射治疗装置固定安装,模拟杆(2)可旋转连接在活动架(12)上,活动架(12)可相对于固定架(11)运动,以使模拟杆(2)位于不同位置。防碰撞模拟装置(100)及放射治疗系统用于放射治疗前的防碰撞模拟,可以快速进行防碰撞模拟,操作简单,降低对医生健康的损害。

Description

一种防碰撞模拟装置及放射治疗系统
本申请要求于2018年9月14日提交至国家知识产权局、申请号为201821510640.7、发明名称为“一种防碰撞模拟装置及放射治疗系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗设备技术领域,尤其涉及一种防碰撞模拟装置及放射治疗系统。
背景技术
伽玛刀放疗系统是利用多个放射性同位素例如钴-60从多个方向发出γ射线并相交于一交点,从而将至于交点处的肿瘤细胞杀死,达到肿瘤放射治疗的目的。
如图1所示,为现有技术的一种伽玛刀放疗系统,包括:治疗装置01和治疗床02。在治疗时,患者躺在治疗床02上,治疗床02可以将患者运送至治疗装置01内,进而由治疗装置01对患者的病患部位(例如头部)进行放射治疗。由于患者在治疗装置01内部时无法观测,因此,为了防止治疗装置碰撞患者的身体部位(例如头部),在患者进入治疗装置01进行放射治疗前需要对其进行治疗的防碰撞模拟,以避免在治疗装置01内发生碰撞危险。具体的,如图1所示,防碰撞模拟装置03包括安装在治疗装置01上的支撑杆031,以及与支撑杆031的上端可旋转连接的模拟杆032,其中,模拟杆032旋转一周的轨迹围成的空间等同于或略小于治疗装置01的内部空间。这样,在患者进入治疗装置01进行放射治疗前,将防碰撞模拟装置03安装在对应位置(一般为治疗床02)上,调整好位置后,摇动模拟杆032,看模拟杆032是否会碰撞患者。在完成防碰撞模拟后,由于防碰撞模拟装置03会影响治疗床02的移动,因此将防碰撞模拟装置03拆除。
但是,现有技术的伽玛刀放疗系统,由于每次治疗前都需要安装和拆除防碰撞模拟装置03,且需要人工调整防碰撞模拟装置03的位置。拆卸和安装不方便,操作不便,耗时较长,增加了医生处于伽玛刀放疗系统旁 边的时间,而使医生接收较长时间的放疗系统的散射辐射,不利于医生的健康。
发明内容
本申请的实施例提供一种防碰撞模拟装置及放射治疗系统,可以快速进行防碰撞模拟,操作简单,降低对医生健康的损害。
为达到上述目的,本申请的实施例采用如下技术方案:
本申请实施例提供一种防碰撞模拟装置,应用于放射治疗装置上,包括支撑架,以及可旋转连接在所述支撑架上的模拟杆,所述模拟杆旋转的轨迹围成的空间与所述放射治疗装置的治疗舱内的空间相匹配,所述支撑架包括固定架和活动架,所述固定架可相对于所述放射治疗装置固定安装,所述模拟杆可旋转连接在所述活动架上,所述活动架可相对于所述固定架运动,以使所述模拟杆位于不同位置。
进一步地,还包括第一驱动装置,所述第一驱动装置与所述活动架连接,用于驱动所述活动架相对于所述固定架运动。
进一步地,还包括第二驱动装置,所述第二驱动装置与所述模拟杆连接,用于驱动所述模拟杆旋转。
进一步地,所述固定架和所述活动架通过滑动机构滑动连接。
进一步地,所述固定架包括固定架本体和设置在所述固定架本体上的导向件,所述活动架包括活动架本体和设置在所述活动架本体上的滑动件;或者,所述固定架包括固定架本体和设置在所述固定架本体上的滑动件,所述活动架包括活动架本体和设置在所述活动架本体上的导向件;其中,所述导向件和所述滑动件构成所述滑动机构。
进一步地,所述滑动机构中的所述导向件为导轨,所述滑动件为可与所述导轨配合滑动的滑块;或者,所述导向件为导柱,所述滑动件为可与所述导柱配合滑动的导套。
进一步地,所述第一驱动装置为气压缸或液压缸,所述气压缸或液压缸的活塞杆与所述活动架固定连接,所述气压缸或液压缸的缸体与所述固定架相对固定;或者,所述第一驱动装置为直线电机,所述直线电机的动子与所述活动架固定连接,所述直线电机的定子与所述固定架相对固定。
进一步地,所述第一驱动装置为旋转电机;所述防碰撞模拟装置还包括:与所述旋转电机连接的转动运动变直线运动的传动机构,所述传动机构与所述活动架连接,用于在所述旋转电机的作用下,带动所述活动架相对于所述固定架直线运动。
进一步地,所述传动机构包括互相配合的旋转运动件和直线运动件,所述旋转运动件与所述旋转电机的输出轴连接,所述直线运动件与所述活动架连接。
进一步地,所述传动机构的所述旋转运动件为丝杠轴,所述直线运动件为可与所述丝杠轴配合的螺母;或者,所述旋转运动件为齿轮,所述直线运动件为可与所述齿轮轴配合的齿条。
进一步地,还包括:电联接的第一感应装置、第一控制器和提示器,所述第一感应装置设置在所述模拟杆上,用于检测所述模拟杆与患者之间的距离信息,所述第一控制器用于根据所述感应装置检测到的距离信息,控制所述提示器发出提示信号。
进一步地,还包括:第二感应装置和第二控制器,所述第二控制器分别与所述第二驱动装置和所述第二感应装置电联接,所述第二感应装置设置在所述模拟杆上,用于检测所述模拟杆与患者之间的距离信息,并将所述距离信息发送至所述第二控制器,所述第二控制器用于根据所述第二感应装置发送的所述距离信息,控制所述第二驱动装置驱动所述模拟杆运行的状态。
可选地,所述模拟杆的内侧由柔性材料制成。
可选地,所述模拟杆的横截面为半圆形,且弧形凸面位于所述模拟杆的内侧。
本申请实施例的防碰撞模拟装置,由于支撑架包括固定架和活动架,模拟杆可旋转连接在活动架上,固定架可相对于放射治疗装置固定安装,且活动架可相对于固定架运动,以使模拟杆位于不同位置。这样,当需要进行防碰撞模拟时,只需要将活动架相对于固定架运动,使模拟杆位于工作位置,此时旋转模拟杆进行防碰撞模拟;在完成防碰撞模拟后,再次将活动架相对于固定架运动,使模拟杆位于另外的一个位置,例如隐藏位置, 此时防碰撞模拟装置不会干涉和阻挡治疗床的运动。相比现有技术,固定架可相对于放射治疗装置固定安装后,通过活动架可相对于固定架运动,以使模拟杆位于不同位置,进而模拟杆位于不同位置可以进行对应的防碰撞模拟和治疗床移动,不用频繁地安装和拆除防碰撞模拟装置,操作方便简单,且相对于放射治疗装置固定安装的防碰撞模拟装置的位置固定不变,方便模拟杆的定位。因此,可以快速进行防碰撞模拟,减少医生处于放疗系统旁边的时间,降低对医生健康的损害。
另一方面,本申请实施例还提供一种放射治疗系统,包括上述的防碰撞模拟装置以及治疗床;所述防碰撞模拟装置的所述活动架可相对于所述固定架运动,以使所述模拟杆位于相对于所述治疗床在竖直方向上的不同位置。
进一步地,还包括电联接的防碰撞控制装置和治疗床控制装置,所述防碰撞控制装置用于根据所述防碰撞模拟装置的所述模拟杆的不同位置,向所述治疗床控制装置发送不同的控制指令;所述治疗床控制装置用于根据接收到的所述控制指令,控制所述治疗床相应地运动;或者,所述防碰撞控制装置用于向所述治疗床控制装置发送所述防碰撞模拟装置的所述模拟杆的位置信息;所述治疗床控制装置根据所述位置信息,控制所述治疗床相应地运动。
进一步地,所述防碰撞控制装置用于控制所述活动架的运动,以得到所述防碰撞模拟装置的所述模拟杆的位置信息;或者,所述放射治疗系统还包括:位置检测装置,所述位置检测装置用于检测所述防碰撞模拟装置的所述模拟杆的位置信息。
本申请实施例提供的放射治疗系统,由于包括上述的防碰撞模拟装置以及治疗床,且通过防碰撞模拟装置的活动架可相对于所述固定架运动,可以使模拟杆位于相对于治疗床在竖直方向上的不同位置。这样,当需要进行防碰撞模拟时,只需要将活动架相对于固定架运动,使模拟杆位于工作位置,此时旋转模拟杆进行防碰撞模拟;在完成防碰撞模拟后,再次将活动架相对于固定架运动,使模拟杆位于另外的一个位置,例如隐藏位置,此时防碰撞模拟装置不会干涉和阻挡治疗床的运动。相比现有技术,不用 频繁地安装和拆除防碰撞模拟装置,操作方便简单,且相对于放射治疗装置固定的防碰撞模拟装置的位置相对比较固定,方便定位。因此,操作简单方便,可以快速进行防碰撞模拟,减少医生处于放疗系统旁边的时间,降低对医生健康的损害。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术的一种伽玛刀放疗系统的结构示意图;
图2为本申请实施例的防碰撞模拟装置的结构示意图;
图3为本申请实施例的防碰撞模拟装置的侧视结构示意图;
图4为本申请实施例的防碰撞模拟装置的模拟杆的侧面结构示意图;
图5为本申请实施例的防碰撞模拟装置的模拟杆的一部分为柔性材料的结构示意图;
图6为本申请实施例的防碰撞模拟装置的模拟杆的截面为矩形的结构示意图;
图7为本申请实施例的防碰撞模拟装置的模拟杆的截面为半圆形的结构示意图;
图8为本申请实施例的放射治疗系统的结构示意图。
附图标记:
01-治疗装置;02-治疗床;03-防碰撞模拟装置;031-支撑杆;032-模拟杆;1-支撑架;11-固定架;12-活动架;2-模拟杆;3-第一驱动装置;4-第二驱动装置;5-滑动机构;51-导向件;52-滑动件;6-第一感应装置;7-第二感应装置;100-防碰撞模拟装置;200-治疗床;300-防碰撞控制装置;400-治疗床控制装置;500-位置检测装置。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请实施例提供一种防碰撞模拟装置100,如图2和图3所示,可应用于放射治疗装置(图中未示出)上,包括支撑架1,以及可旋转连接在支撑架1上的模拟杆2,模拟杆2旋转的轨迹围成的空间与放射治疗装置的治疗舱内的空间相匹配,支撑架1包括固定架11和活动架12,固定架11可相对于放射治疗装置固定安装,模拟杆2可旋转连接在活动架12上,活动架12可相对于固定架11运动,以使模拟杆2位于不同位置。
本申请实施例的防碰撞模拟装置,如图2和图3所示,由于支撑架1包括固定架11和活动架12,模拟杆2可旋转连接在活动架12上,固定架11可相对于放射治疗装置固定安装,且活动架12可相对于固定架11运动,以使模拟杆2位于不同位置。这样,当需要进行防碰撞模拟时,只需要将活动架12相对于固定架11运动,使模拟杆2位于工作位置,此时旋转模拟杆2进行防碰撞模拟;在完成防碰撞模拟后,再次将活动架12相对于固定架11运动,使模拟杆2位于另外的一个位置,例如隐藏位置,此时防碰撞模拟装置不会干涉和阻挡治疗床的运动。相比现有技术,固定架11可相对于放射治疗装置固定安装后,通过活动架12可相对于固定架11运动,以使模拟杆2位于不同位置,进而模拟杆2位于不同位置可以进行对应的 防碰撞模拟和治疗床移动,不用频繁地安装和拆除防碰撞模拟装置,操作方便简单,且相对于放射治疗装置固定安装的防碰撞模拟装置的位置固定不变,方便模拟杆2的定位。因此,可以快速进行防碰撞模拟,减少医生处于放疗系统旁边的时间,降低对医生健康的损害。
需要说明的是,在患者放射治疗时,通过将患者对应的患病部位(例如头部)放入放射治疗装置的治疗舱内,一般的,治疗舱内的空间为半圆形,通过均匀分布的射源装置发射治疗射线,以对患者的病患部位治疗。模拟杆2旋转的轨迹围成的空间与放射治疗装置的治疗舱内的空间相匹配,相当于模拟杆2的旋转模拟了放射治疗装置的治疗舱内的空间,进而如果患者与模拟杆2不碰撞,就说明患者进入治疗舱内治疗时不会与治疗舱发生碰撞。其中,模拟杆2旋转的轨迹围成的空间与放射治疗装置的治疗舱内的空间相匹配,可以是与该治疗舱空间大小完全相同,也可以是小于该治疗舱空间的预设偏移阈值。本申请实施例的防碰撞模拟装置100应用于放射治疗装置上,且固定架11可相对于放射治疗装置固定安装。是指防碰撞模拟装置100与放射治疗装置配套使用,具体地,可以是防碰撞模拟装置100安装固定在放射治疗装置上,也可以是防碰撞模拟装置100固定在其他地方(例如固定在放射治疗装置旁边的地面上等)。另外,模拟杆2位于的不同位置是指以模拟杆2的旋转中心为参考确定的位置,与模拟杆2旋转的角度没有关系。不同位置至少包括工作位置和隐藏位置,其中工作位置是指此时模拟杆2旋转时的轨迹围成的空间与治疗床上患者之间的相对位置,相比患者在放射治疗装置的治疗舱内治疗时与治疗舱的相对位置是一致的,此时可以进行防碰撞模拟;隐藏位置是指此时模拟杆2随活动架12运动至治疗床运动轨迹以外,不会对治疗床的运动干涉。例如,一般的,模拟杆2位于工作位置时在治疗床上方,位于隐藏位置时在治疗床下方。
活动架12相对于固定架11的运动可以是手动操作,也可以是用驱动装置自动控制。手动操作来实现驱动,就需要医生在治疗室内进行手动操作。而在用驱动装置自动控制活动架12相对于固定架11运动的情况下,医生可以在与治疗室隔离的控制室内控制活动架12相对于固定架11的运 动,这样可减少医生在治疗室内的时间,降低医生受到的辐射风险。因此,本实施例中的防碰撞模拟装置还包括第一驱动装置3,第一驱动装置3与活动架12连接,用于驱动活动架12相对于固定架11运动。
当然,模拟杆2的旋转也可以是手动操作,或者通过驱动装置自动控制。同样的,相比较来说,用驱动装置自动控制模拟杆2旋转的情况下,医生可以在模拟杆2位于工作位置时,在控制室内控制模拟杆2的旋转,以进行自动模拟,从而减少医生在治疗室内的时间,降低医生受到的辐射风险。因此,本实施例中的防碰撞模拟装置还包括第二驱动装置4,第二驱动装置4与模拟杆2连接,用于驱动模拟杆2旋转。
需要说明的是,可以是单独设置第一驱动装置3,方便活动架12位于不同位置的操作;也可以是单独设置第二驱动装置4,方便模拟杆2的旋转操作;也可以是第一驱动装置3和第二驱动装置4都设置,这样,医生在安置好患者的位置后,可以在控制室内进行模拟杆2随活动架12运动至不同位置,以及控制模拟杆2的旋转,完全实现自动防碰撞模拟,大大降低了医生处于治疗室内的时间,降低辐射风险。
活动架12可相对于固定架11运动,可以有多种实现方式,例如曲线运动(例如转动)和直线运动(例如滑动)等,只要可使模拟杆2位于不同位置(隐藏位置或工作位置)即可。相比较来说,活动架12相对于固定架11进行曲线运动的方式占用空间大,运行距离长,不方便布局。因此,优选地活动架12可相对于固定架11直线运动。常见的,固定架11和活动架12通过滑动机构5滑动连接,可以使活动架12相对于固定架11直线运动。
具体地,参照图2和图3,固定架11包括固定架本体111和设置在固定架本体111上的导向件51,活动架12包括活动架本体121和设置在活动架本体121上的滑动件52;或者,固定架11包括固定架本体111和设置在固定架本体111上的滑动件52,活动架12包括活动架本体121和设置在活动架本体121上的导向件51;其中,导向件51和滑动件52构成滑动机构5。
导向件51和滑动件52的配合可以有多种实现方式,例如导轨滑块的 方式,或者导柱导套的方式。具体地,参照图2和图3,滑动机构5中的导向件51为导轨,滑动件52为可与导轨配合滑动的滑块;
或者,导向件51为导柱,滑动件52为可与导柱配合滑动的导套。
第一驱动装置3可以为电机(包括直线电机和旋转电机)、气压或液压缸等,其中,以第一驱动装置3直接提供的驱动力的形式来说,直线电机、气液或液压缸可提供直线驱动力,旋转电机可提供旋转驱动力。这样,当需要活动架12相对于固定架11进行曲线运动(例如转动)时,如果第一驱动装置3为直线电机、气压或液压缸,需要对应的机构将直线驱动力转化为旋转力,如果第一驱动装置3为旋转电机时,可以直接驱动活动架12转动;同样的,当需要活动架12相对于固定架11进行直线运动(例如滑动等)时,如果第一驱动装置3为直线电机、气压或液压缸,可以直接驱动活动架12直线运动,如果第一驱动装置3为旋转电机时,需要对应的机构将旋转驱动力转化为直线动力。下面以活动架12相对于固定架11进行直线运动(例如滑动等)为例,介绍具体的实现方式。
如果第一驱动装置为直线电机、气压或液压缸,可以直接驱动活动架12直线运动。具体地,第一驱动装置3为气压缸或液压缸,气压缸或液压缸的活塞杆与活动架12固定连接,气压缸或液压缸的缸体与固定架11相对固定;或者,所述第一驱动装置3为直线电机,直线电机的动子与活动架12固定连接,直线电机的定子与固定架11相对固定。其中,气压缸或液压缸的缸体以及直线电机的定子与固定架11相对固定,可以是直接固定在固定架11上,也可以是固定在与固定架11相对位置不变的其他位置或装置上。
如果第一驱动装置3为旋转电机时,需要对应的机构将旋转驱动力转化为直线动力。因此,防碰撞模拟装置100还包括:与旋转电机连接的转动运动变直线运动的传动机构,传动机构与活动架12连接,用于在旋转电机的作用下,带动活动架12相对于固定架11直线运动。
具体地,传动机构包括互相配合的旋转运动件和直线运动件,旋转运动件与旋转电机的输出轴连接,直线运动件与活动架12连接。
互相配合的旋转运动件和直线运动件的实现方式有多种,例如,滚珠 丝杠机构或齿轮齿条机构。即,传动机构的旋转运动件为丝杠轴,直线运动件为可与丝杠轴配合的螺母;
或者,旋转运动件为齿轮,直线运动件为可与齿轮轴配合的齿条。
需要说明的是,第二驱动装置4用于驱动模拟杆2旋转,为了方便布局,节省成本,一般采用旋转电机来驱动。
在模拟杆2进行防碰撞模拟时,模拟杆2旋转,如果发现模拟杆2与患者发生碰撞,就表示需要调整患者的位置。但是,这种模拟方法不能避免模拟杆2对患者的碰撞。因此,为了可以在进行防碰撞模拟时避免模拟杆2对患者的碰撞,可以在模拟杆2上设置感应装置,利用感应装置检测模拟杆2与患者之间的距离信息,进而可以根据该距离信息知道模拟杆2继续旋转是否会与患者碰撞。如果发现模拟杆2继续旋转会与患者碰撞,就表示需要调整患者的位置,此时停止模拟杆2的旋转即可,进而不用碰撞患者。
设置感应装置避免模拟杆2对患者的碰撞具体的实现方式有多种,例如,当模拟杆2为手动操作时,可以使感应装置发出提示信号,以提示医生停止旋转模拟杆2。具体地,还包括:电联接的第一感应装置6、第一控制器和提示器,第一感应装置6设置在模拟杆2上,用于检测模拟杆2与患者之间的距离信息,第一控制器用于根据感应装置检测到的距离信息,控制提示器发出提示信号。其中,提示信号可以是蜂鸣器、指示灯和显示屏等发出的声音、光线或图像等。
当模拟杆2为通过第二驱动装置4自动操作时,还包括:第二感应装置7和第二控制器,第二控制器分别与第二驱动装置和第二感应装置7电联接,第二感应装置7设置在模拟杆2上,用于检测模拟杆2与患者之间的距离信息,并将该距离信息发送至第二控制器,第二控制器用于根据第二感应装置7发送的距离信息,控制第一驱动装置驱动模拟杆2运行的状态。其中,第一驱动装置驱动模拟杆2运行的状态为控制模拟杆2转动或停止。
一般的,在模拟杆2旋转以进行防碰撞模拟时,如果发生碰撞,模拟杆2的靠近患者的一侧(内侧)会先碰到患者,为了减小模拟杆2可能对 患者碰撞引起的损伤,参照图4和图5,模拟杆2的内侧由柔性材料制成。柔性材料可以很好的缓冲碰撞带来的冲击,有效避免模拟杆2与患者碰撞时而对患者的损伤。另外,对于医疗设备,柔性材料优选采用医用硅胶。
需要说明的是,为保证模拟杆2旋转时不会发生变形而导致的其旋转的轨迹构成的空间与实际需要产生较大偏差,仅将模拟杆2朝向且旋转的轨迹形成的空间的一侧由柔性材料制成,模拟杆2的其他部位可以采用较高强度的材料制成,以保证其结构强度。例如高强度铝合金,外表面做硬质阳极氧化处理,保证模拟杆2不变形。
模拟杆2的截面形状可以有多种,例如,如图6所示,近似矩形或者朝向模拟杆2旋转的轨迹形成的空间的一侧向内凹陷的形状,但是,这样模拟杆2与患者的碰撞,是直接碰撞且面接触,对患者冲击较大。因此,为了缓解模拟杆2与患者碰撞时而对患者损伤,如图5和图7所示,模拟杆2的横截面为半圆形,且弧形凸面位于模拟杆2的内侧。这样,模拟杆2与患者的碰撞是渐进式的线性接触,有效缓解了模拟杆2与患者碰撞时而对患者损伤。
需要说明的是,第一感应装置6和第二感应装置7设置在模拟杆2上,优选设置在模拟杆2靠近患者的一侧(内侧)。但是,由于模拟杆2的内侧为了避免对患者较大的损伤,由柔性材料制成,因此,如图4和图5所示,第一感应装置6和第二感应装置7避开模拟杆2的内侧,设置在模拟杆2的两侧。另外,第一感应装置6和第二感应装置7用于检测模拟杆2与患者之间的距离信息,可以是红外线传感器和激光传感器等。
另一方面,本申请实施例还提供一种放射治疗系统,包括上述的防碰撞模拟装置100以及治疗床200;防碰撞模拟装置100的活动架12可相对于固定架11运动,以使模拟杆2位于相对于治疗床200在竖直方向上的不同位置。
本申请实施例提供的放射治疗系统,由于包括上述的防碰撞模拟装置100以及治疗床200,且通过防碰撞模拟装置100的活动架12可相对于固定架11运动,可以使模拟杆2位于相对于治疗床200在竖直方向上的不同位置。这样,进行防碰撞模拟时,只需要将活动架12相对于固定架11运 动,使模拟杆2位于工作位置,此时旋转模拟杆2进行防碰撞模拟;完成防碰撞模拟后,再次将活动架12相对于固定架11运动,使模拟杆2位于另外的一个位置,例如隐藏位置,此时防碰撞模拟装置100不会干涉和阻挡治疗床200的运动。相比现有技术,不用频繁地安装和拆除防碰撞模拟装置100,操作方便简单,且相对于放射治疗装置固定的防碰撞模拟装置100的位置相对比较固定,方便定位。因此,操作简单方便,可以快速进行防碰撞模拟,减少医生处于放疗系统旁边的时间,降低对医生健康的损害。
为了防止在实际操作中发生的误操作,使防碰撞模拟装置100的模拟杆2位于工作位置时,治疗床运送患者,导致防碰撞模拟装置100的模拟杆2与放射治疗装置发生碰撞,参照图8,在本申请实施例的放射治疗系统的一个实施例中,还包括电联接的防碰撞控制装置300和治疗床控制装置400,防碰撞控制装置300用于根据防碰撞模拟装置100的模拟杆2的不同位置,向治疗床控制装置400发送不同的控制指令;治疗床控制装置400用于根据接收到的控制指令,控制治疗床200相应地运动。
治疗床控制装置400发送不同的控制指令包括:发现防碰撞模拟装置100的模拟杆2所处的位置会阻碍治疗床200的运动时,发送警报指令或禁止指令,不允许治疗床控制装置400控制治疗床200运动,使治疗床200静止;以及发现防碰撞模拟装置100的模拟杆2所处的位置不会阻碍治疗床200的运动时,发送安全指令或驱动指令,允许治疗床控制装置400控制治疗床200运动,此时治疗床200可以运动。
在本申请实施例的放射治疗系统的另一个实施例中,还包括电联接的防碰撞控制装置300和治疗床控制装置400,防碰撞控制装置300用于向治疗床控制装置400发送防碰撞模拟装置100的模拟杆2的位置信息;治疗床控制装置400根据位置信息控制治疗床200相应地运动。
防碰撞控制装置300仅将防碰撞模拟装置100的模拟杆2的位置信息发送至治疗床控制装置400,由治疗床控制装置400来根据防碰撞模拟装置100的模拟杆2的位置信息来判断是否控制治疗床200运动。
因此,通过设置防碰撞控制装置300和治疗床控制装置400,可以防 止治疗床200与防碰撞模拟装置100的碰撞。
需要说明的是,防碰撞控制装置300用于根据防碰撞模拟装置100的模拟杆2的不同位置,以及防碰撞模拟装置100的模拟杆2的位置信息包括工作位置和隐藏位置。其判断的方式可以是利用检测装置(例如红外线传感器等)检测防碰撞模拟装置100的模拟杆2的旋转中心所处的位置。
防碰撞模拟装置100的模拟杆2的位置信息的获取可以是多种实现方式,例如,由于防碰撞控制装置300用于控制防碰撞模拟装置100的活动架12的运动,根据活动架12运动的信息,可以得到防碰撞模拟装置100的模拟杆2的位置信息;或者,放射治疗系统还包括:位置检测装置500,通过位置检测装置500直接检测防碰撞模拟装置100的模拟杆2的位置信息。
为了使防止治疗床200与防碰撞模拟装置100的碰撞更加准确,可以在根据防碰撞模拟装置100的模拟杆2的位置信息的基础上,再与治疗床200即将运动的路径信息结合,来判断是否会发生碰撞,使判断更加准确。例如,治疗床控制装置400根据模拟杆2的位置信息和治疗床200的位置信息确认模拟杆2是否在治疗床200运动方向的运动路径上,若在,则控制治疗床200停止运动;若不在,则控制治疗床200运动。
进一步的,如果治疗床控制装置400发现模拟杆2的位置在治疗床200运动方向的运动路径上,可以是治疗床控制装置400向防碰撞控制装置300发送指令,令防碰撞控制装置300控制防碰撞模拟装置100的活动架12运动,以使得模拟杆2运动至隐藏位置,不会与治疗床200发送碰撞;
或者,如果治疗床控制装置400发现模拟杆2的位置在治疗床200运动方向的运动路径上,治疗床控制装置400,发出警报信息,显示该运动障碍,由治疗医师发送下降指令给防碰撞模拟控制系统。
另外,需要说明的是,防碰撞控制装置300是防碰撞模拟装置100的第一驱动装置3的上位机,通过防碰撞控制装置300向第一驱动装置3发送信号,使得第一驱动装置3驱动活动架12运动,以实现模拟杆2的不同位置。
需要说明的是,参照图1所示,一般的治疗床200可以实现三维方向 的运动(三维坐标系X方向、Y方向和Z方向),而防碰撞模拟装置100的模拟杆2没有位于隐藏位置时,常见于在Y方向的运动的碰撞,但是也不排除其他方向运动时发生的碰撞,因此,本申请实施例的放射治疗系统中,防碰撞控制装置300可以防止防碰撞模拟装置100与治疗床200三维方向的所有可能的碰撞。
另外,为了放射治疗系统更加美观,可以将防碰撞模拟装置100设计一独立的工业造型;或者,将防碰撞模拟装置100和放射治疗系统的其他结构的工业造型一体化,例如将防碰撞模拟装置100的支撑架1(或者固定架11)与其他结构的工业造型一体化;进一步地,为了避免防碰撞模拟装置100的模拟杆2外漏造成不便,还可以在放射治疗系统的对应位置设置可容纳模拟杆的容纳槽。
以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求所述的保护范围为准。

Claims (17)

  1. 一种防碰撞模拟装置,应用于放射治疗装置上,其特征在于,包括支撑架,以及可旋转连接在所述支撑架上的模拟杆,所述模拟杆旋转的轨迹围成的空间与所述放射治疗装置的治疗舱内的空间相匹配,所述支撑架包括固定架和活动架,所述固定架可相对于所述放射治疗装置固定安装,所述模拟杆可旋转连接在所述活动架上,所述活动架可相对于所述固定架运动,以使所述模拟杆位于不同位置。
  2. 根据权利要求1所述的防碰撞模拟装置,其特征在于,还包括第一驱动装置,所述第一驱动装置与所述活动架连接,用于驱动所述活动架相对于所述固定架运动。
  3. 根据权利要求2所述的防碰撞模拟装置,其特征在于,还包括第二驱动装置,所述第二驱动装置与所述模拟杆连接,用于驱动所述模拟杆旋转。
  4. 根据权利要求1~3中任一项所述的防碰撞模拟装置,其特征在于,所述固定架和所述活动架通过滑动机构滑动连接。
  5. 根据权利要求4所述的防碰撞模拟装置,其特征在于,所述固定架包括固定架本体和设置在所述固定架本体上的导向件,所述活动架包括活动架本体和设置在所述活动架本体上的滑动件;
    或者,所述固定架包括固定架本体和设置在所述固定架本体上的滑动件,所述活动架包括活动架本体和设置在所述活动架本体上的导向件;
    其中,所述导向件和所述滑动件构成所述滑动机构。
  6. 根据权利要求5所述的防碰撞模拟装置,其特征在于,所述滑动机构中的所述导向件为导轨,所述滑动件为可与所述导轨配合滑动的滑块;
    或者,所述导向件为导柱,所述滑动件为可与所述导柱配合滑动的导套。
  7. 根据权利要求2所述的防碰撞模拟装置,其特征在于,所述第一驱动装置为气压缸或液压缸,所述气压缸或液压缸的活塞杆与所述活动架固定连接,所述气压缸或液压缸的缸体与所述固定架相对固定;
    或者,所述第一驱动装置为直线电机,所述直线电机的动子与所述活 动架固定连接,所述直线电机的定子与所述固定架相对固定。
  8. 根据权利要求2所述的防碰撞模拟装置,其特征在于,所述第一驱动装置为旋转电机;所述防碰撞模拟装置还包括:与所述旋转电机连接的转动运动变直线运动的传动机构,所述传动机构与所述活动架连接,用于在所述旋转电机的作用下,带动所述活动架相对于所述固定架直线运动。
  9. 根据权利要求8所述的防碰撞模拟装置,其特征在于,所述传动机构包括互相配合的旋转运动件和直线运动件,所述旋转运动件与所述旋转电机的输出轴连接,所述直线运动件与所述活动架连接。
  10. 根据权利要求9所述的防碰撞模拟装置,其特征在于,所述传动机构的所述旋转运动件为丝杠轴,所述直线运动件为可与所述丝杠轴配合的螺母;
    或者,所述旋转运动件为齿轮,所述直线运动件为可与所述齿轮轴配合的齿条。
  11. 根据权利要求1或3所述的防碰撞模拟装置,其特征在于,还包括:电联接的第一感应装置、第一控制器和提示器,所述第一感应装置设置在所述模拟杆上,用于检测所述模拟杆与患者之间的距离信息,所述第一控制器用于根据所述感应装置检测到的距离信息,控制所述提示器发出提示信号。
  12. 根据权利要求3所述的防碰撞模拟装置,其特征在于,还包括:第二感应装置和第二控制器,所述第二控制器分别与所述第二驱动装置和所述第二感应装置电联接,所述第二感应装置设置在所述模拟杆上,用于检测所述模拟杆与患者之间的距离信息,并将所述距离信息发送至所述第二控制器,所述第二控制器用于根据所述第二感应装置发送的所述距离信息,控制所述第二驱动装置驱动所述模拟杆运行的状态。
  13. 根据权利要求1所述的防碰撞模拟装置,其特征在于,所述模拟杆的内侧由柔性材料制成。
  14. 根据权利要求1所述的防碰撞模拟装置,其特征在于,所述模拟杆的横截面为半圆形,且弧形凸面位于所述模拟杆的内侧。
  15. 一种放射治疗系统,其特征在于,包括权利要求1~14中任一项 所述的防碰撞模拟装置以及治疗床;所述防碰撞模拟装置的所述活动架可相对于所述固定架运动,以使所述模拟杆位于相对于所述治疗床在竖直方向上的不同位置。
  16. 根据权利要求15所述的放射治疗系统,其特征在于,还包括电联接的防碰撞控制装置和治疗床控制装置,
    所述防碰撞控制装置用于根据所述防碰撞模拟装置的所述模拟杆的不同位置,向所述治疗床控制装置发送不同的控制指令;所述治疗床控制装置用于根据接收到的所述控制指令,控制所述治疗床相应地运动;
    或者,
    所述防碰撞控制装置用于向所述治疗床控制装置发送所述防碰撞模拟装置的所述模拟杆的位置信息;所述治疗床控制装置根据所述位置信息,控制所述治疗床相应地运动。
  17. 根据权利要求16所述的放射治疗系统,其特征在于,所述防碰撞控制装置用于控制所述防碰撞模拟装置的所述活动架的运动,以得到所述防碰撞模拟装置的所述模拟杆的位置信息;
    或者,
    所述放射治疗系统还包括:位置检测装置,所述位置检测装置用于检测所述防碰撞模拟装置的所述模拟杆的位置信息。
PCT/CN2019/090997 2018-09-14 2019-06-12 一种防碰撞模拟装置及放射治疗系统 WO2020052303A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/199,692 US20210196983A1 (en) 2018-09-14 2021-03-12 Anti-collision simulation device and radiotherapy system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821510640.7U CN209405529U (zh) 2018-09-14 2018-09-14 一种防碰撞模拟装置及放射治疗系统
CN201821510640.7 2018-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/199,692 Continuation-In-Part US20210196983A1 (en) 2018-09-14 2021-03-12 Anti-collision simulation device and radiotherapy system

Publications (1)

Publication Number Publication Date
WO2020052303A1 true WO2020052303A1 (zh) 2020-03-19

Family

ID=67930444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090997 WO2020052303A1 (zh) 2018-09-14 2019-06-12 一种防碰撞模拟装置及放射治疗系统

Country Status (3)

Country Link
US (1) US20210196983A1 (zh)
CN (1) CN209405529U (zh)
WO (1) WO2020052303A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2585887B (en) * 2019-07-19 2021-11-03 Elekta ltd Collision avoidance in radiotherapy
CN111297356A (zh) * 2020-02-17 2020-06-19 山东省肿瘤防治研究院(山东省肿瘤医院) 一种核磁加速器线圈测量装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5878112A (en) * 1996-06-25 1999-03-02 Siemens Aktiengesellschaft Medical system having movable components and a control device for preventing component collisions
CN101254114A (zh) * 2008-04-07 2008-09-03 深圳市蓝韵实业有限公司 一种镰刀型数字化放射摄影系统防碰撞装置
CN101947360A (zh) * 2009-07-09 2011-01-19 西门子公司 具有防碰撞装置的医疗设备
CN103429159A (zh) * 2011-03-09 2013-12-04 皇家飞利浦有限公司 成像系统受检者支撑体
CN204864557U (zh) * 2015-05-29 2015-12-16 深圳市奥沃医学新技术发展有限公司 手动碰撞模拟装置及使用手动碰撞模拟装置的放疗设备
CN108273199A (zh) * 2018-01-19 2018-07-13 深圳市奥沃医学新技术发展有限公司 一种位置检测方法、装置及放射治疗系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5878112A (en) * 1996-06-25 1999-03-02 Siemens Aktiengesellschaft Medical system having movable components and a control device for preventing component collisions
CN101254114A (zh) * 2008-04-07 2008-09-03 深圳市蓝韵实业有限公司 一种镰刀型数字化放射摄影系统防碰撞装置
CN101947360A (zh) * 2009-07-09 2011-01-19 西门子公司 具有防碰撞装置的医疗设备
CN103429159A (zh) * 2011-03-09 2013-12-04 皇家飞利浦有限公司 成像系统受检者支撑体
CN204864557U (zh) * 2015-05-29 2015-12-16 深圳市奥沃医学新技术发展有限公司 手动碰撞模拟装置及使用手动碰撞模拟装置的放疗设备
CN108273199A (zh) * 2018-01-19 2018-07-13 深圳市奥沃医学新技术发展有限公司 一种位置检测方法、装置及放射治疗系统

Also Published As

Publication number Publication date
US20210196983A1 (en) 2021-07-01
CN209405529U (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
US20220362581A1 (en) Radiation therapy system with follow-the-lights user interface
KR20150092721A (ko) 이동식 의료 장치 및 이동식 의료 장치의 운동을 제어하기 위한 방법
WO2020052303A1 (zh) 一种防碰撞模拟装置及放射治疗系统
US7441952B2 (en) Method and system for X-ray diagnosis of an examination object
CN107174753A (zh) 多机械臂式术中放射治疗装置
CN104307113A (zh) 放射治疗系统
CN104548328A (zh) 微创局部放疗机器人装置
JP6714739B2 (ja) ビームスキャニングコリメータを備えたポータブル医療用撮像システム
CN108392253B (zh) 一种落地式肿瘤放射性粒子植入治疗自动穿刺装置
CN203914938U (zh) 一种ct系统
CN104307114A (zh) 五自由度o型臂放射治疗系统
CN204745370U (zh) 用于头部放疗设备的防碰撞保护罩
CN204133565U (zh) 具有筛查和穿刺功能的乳腺机
CN110090036A (zh) 多功能射线摄影装置及控制方法
US20200138329A1 (en) Systems and methods for imaging, locating, and tracking a patient
JP2004255160A (ja) 放射線治療用複合装置
CN108042929A (zh) 术中放射治疗装置
CN104107510B (zh) 高强度聚焦超声治疗系统的运动扫描装置
CN104056367A (zh) 放射治疗设备
JP4727616B2 (ja) 放射線照射方法および放射線治療装置制御装置
CN214713838U (zh) 图像引导放射治疗设备的控制系统
CN105854190B (zh) 一种基于立体定向精确放射技术的(χ+γ)射线集成数字化放射治疗装置
CN204121623U (zh) 五自由度o型臂放射治疗系统
CN110090033A (zh) 智能型射线摄影装置及控制方法
CN206577247U (zh) 放疗设备的测距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859308

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19859308

Country of ref document: EP

Kind code of ref document: A1