WO2020052221A1 - 基于生物竞争原理的水域蓝藻处理方法及应用的装置 - Google Patents

基于生物竞争原理的水域蓝藻处理方法及应用的装置 Download PDF

Info

Publication number
WO2020052221A1
WO2020052221A1 PCT/CN2019/080207 CN2019080207W WO2020052221A1 WO 2020052221 A1 WO2020052221 A1 WO 2020052221A1 CN 2019080207 W CN2019080207 W CN 2019080207W WO 2020052221 A1 WO2020052221 A1 WO 2020052221A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyanobacteria
water
processing tank
area
fishing
Prior art date
Application number
PCT/CN2019/080207
Other languages
English (en)
French (fr)
Inventor
郑正
张威振
顾蓬
罗兴章
何坚
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学 filed Critical 复旦大学
Priority to US17/273,425 priority Critical patent/US11933010B2/en
Publication of WO2020052221A1 publication Critical patent/WO2020052221A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/22Settling tanks; Sedimentation by gravity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/02Separating microorganisms from the culture medium; Concentration of biomass
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/04Devices for cleaning or keeping clear the surface of open water from oil or like floating materials by separating or removing these materials
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • E02B8/02Sediment base gates; Sand sluices; Structures for retaining arresting waterborne material
    • E02B8/023Arresting devices for waterborne materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/24Separation of coarse particles, e.g. by using sieves or screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to a cyanobacteria bloom management method, in particular to a cyanobacteria treatment method in waters based on the principle of biological competition, and also relates to a cyanobacteria treatment device applied in the method.
  • Cyanobacteria blooms are the most common in China.
  • Cyanobacteria also known as blue-green algae and cyanobacteria, contain photosynthetic pigments such as chlorophyll a and light-capturing pigment phycobiliprotein, which can perform oxygen photosynthesis.
  • Cyanobacteria have large morphological differences, and two types of spherical and rod-shaped single-cell filamentous polymers (cell chains) are known. Most cyanobacteria have a diameter and width of 3-10 ⁇ m. When many individuals gather together, they can form a visible group. Cyanobacteria are extremely destructive to water and toxic to humans.
  • the algae of the lake dies, it continuously deposits on the bottom of the lake and rots and decomposes. It also consumes a large amount of dissolved oxygen in the deep water body. In severe cases, it may exhaust the dissolved oxygen in the deep water body and become anaerobic, making it difficult for aerobic organisms to survive, and even As a result, a large number of fish in the water have died of suffocation and aquatic resources have been damaged. This anaerobic state can trigger or accelerate the release of nutrients accumulated in the sediment, causing a higher load of nutrients in the water body, forming a vicious cycle of eutrophic water bodies, and the deterioration of this water body will eventually lead to aging and decay of the lake. Although some common treatment methods can kill cyanobacteria in large quantities, the cyanobacteria cannot be collected in time, and the harm caused by cyanobacteria cannot be completely eliminated.
  • the present inventors made in-depth research on existing cyanobacteria management methods, and devised a cyanobacteria treatment method based on the principle of biological competition that can overcome the defects of the prior art.
  • the inventors conducted intensive research and devised a method for treating cyanobacteria in waters based on the principle of biological competition.
  • this method the area where cyanobacteria are most likely to be concentrated is first found, that is, in the bank of the waters, around the area.
  • Set up algae blocking nets, use manual or mechanical fishing methods to quickly and extensively clean up cyanobacteria in this area, and plant fresh water plants on the shores of waters in order to fundamentally improve water quality. It is also necessary to arrange treatment in larger areas of waters.
  • the tanks gradually kill the cyanobacteria through the densely disposed processing tanks, and collect the dead cyanobacteria to prevent the dead cyanobacteria from continuing to pollute the waters, and collect and process the processing tanks according to a predetermined rule to facilitate the recycling of the processing tanks, thereby completing the present invention. invention.
  • the object of the present invention is to provide a method for treating cyanobacteria in waters based on the principle of biological competition.
  • the method includes the following steps:
  • Step 1 Select the area where the cyanobacteria are most concentrated on the concave bank of the water area as the fishing point 1, excavate the sedimentation tank 2 on the shore, and extract the cyanobacteria from the fishing point 1 to the sedimentation tank 2;
  • Step 2 Set algae netting 3 around the fishing point 1 on the surface of the water area;
  • Step 3 Plant aquatic plants 4 along the bank of the bank.
  • the step 1 includes the following sub-steps:
  • Sub-step 1 find the water concave bank according to the hydrological data
  • Sub-step 2 On the concave bank of the water area, select a sampling point at a predetermined distance along the shore, and collect a water sample at the sampling point.
  • Step 3 Detect and analyze the content of nitrogen and phosphorus in the water sample at each sampling point, and set fishing points on the shore according to the content of nitrogen and phosphorus;
  • a processing tank 5 is arranged in the water area upstream of the fishing point 1,
  • the processing tank 5 is suspended in water, and at least a part of the processing tank 5 is located above the water surface.
  • a side wall near the water surface is provided with an algae inlet passage 6 through which cyanobacteria pass, and a side wall below the algae inlet passage 6 is sealed.
  • the top of the processing tank 5 is open, and aquatic plants are planted in the processing tank 5.
  • the aquatic plants are local dominant species, such as emergent plants.
  • a railing 7 for intercepting the processing tank 5 is placed horizontally on the water surface of the water area,
  • the railing 7 allows the treatment tank 5 to stay in a specific area of the water.
  • a closing opening 8 is provided on the railing 7,
  • the processing tank 5 can pass through the opening 8 in sequence under the action of water flow.
  • annular support floating ring 9 is provided outside the processing tank 5;
  • an inner diameter dimension of the notch 8 is larger than an outer diameter dimension of the supporting floating ring 9.
  • the processing tank 5 is recovered downstream of the fishing point 1, and after the processing tank 5 is emptied, it is continuously put into the upstream of the fishing point 1.
  • the invention also provides a water area cyanobacteria treatment device based on the biological competition principle.
  • the device includes a treatment tank used in the water area cyanobacteria treatment method based on the biological competition principle.
  • the cyanobacteria treatment method based on the biological competition principle provided by the present invention can not only clean up the cyanobacteria that have been enriched in real time, but also continue the cyanobacteria cleaning work in a larger water area. Emerging plants to improve water quality and fundamentally solve the potential safety hazards caused by cyanobacteria;
  • the cyanobacteria treatment method based on the biological competition principle kills the cyanobacteria through a treatment tank, and at the same time contains the killed cyanobacteria to prevent the dead cyanobacteria from continuing to pollute the water area, making the overall cyanobacteria treatment method more Scientific and reasonable, can greatly reduce the harm caused by cyanobacteria.
  • FIG. 1 shows an overall schematic diagram of a water area of a water area cyanobacteria treatment method according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a treatment tank of a cyanobacteria treatment method in a water area according to a preferred embodiment of the present invention.
  • the method includes the following steps:
  • Step 1 Select the area where the cyanobacteria are most concentrated on the concave bank of the water area as the fishing point 1, excavate the sedimentation tank 2 on the shore, and extract the cyanobacteria from the fishing point 1 to the sedimentation tank 2;
  • Step 2 Set algae netting 3 around the fishing point 1 on the surface of the water area;
  • Step 3 Plant aquatic plants 4 along the bank of the bank.
  • the waters described in the present invention mainly include inland waters such as rivers, rivers, and lakes.
  • the concave bank is a term commonly used in the art.
  • the inner bend of a river meandering is called a convex bank, and the outer bend is called a concave bank.
  • the river water flows through the curved channel and is affected by centrifugal force.
  • the surface water flows to the concave bank, and the bottom water flows from the concave bank to the convex bank, forming a curved circulation. Therefore, the blue algae can easily gather on the concave bank.
  • the above steps 1, 2 and 3 are not in chronological order, and they need to work continuously for a long time to show results.
  • the step 1 includes the following sub-steps:
  • Sub-step 1 Find the concave bank of the water area according to the hydrological data, which includes the historical records of the water area, and can infer the diversion and erosion of the water area.
  • Sub-step 2 On the concave bank of the water area, select a sampling point at a predetermined distance along the shore and collect water samples at the sampling point.
  • the predetermined distance is preferably 5-10 meters, which needs to be appropriately based on the overall length of the concave bank. Adjustment;
  • Step 3 Detect and analyze the content of nitrogen and phosphorus in the water sample at each sampling point, and set fishing points on the shore according to the nitrogen and phosphorus content. There are multiple fishing points, and the fishing points are set at nitrogen. In areas where the total content of elements and phosphorus is high, there is a certain interval between fishing points.
  • the density of the cyanobacteria at the fishing point is high, and the cyanobacteria can be extracted to the sedimentation tank by mechanical means, or can be manually harvested and transferred, such as the fishing / extraction equipment given in a cyanobacteria processing system in Chinese patent 2015205131697;
  • a treatment tank 5 is arranged in the water upstream of the fishing point 1,
  • the processing tank 5 is suspended in water, and at least a part of the processing tank 5 is located above the water surface.
  • a side wall near the water surface is provided with an algae inlet passage 6 through which cyanobacteria pass, and a side wall below the algae inlet passage 6 is sealed.
  • the treatment tank is also located on the surface of the water surface, and the algae inlet channel 6 thereon is just in contact with the cyanobacteria in the water, so that the cyanobacteria can naturally enter the processing tank 5, and the cyanobacteria are in the processing tank After being killed, it will naturally fall into the bottom of the processing tank 5 and be stored until the processing tank is manually cleaned, so the cyanobacteria killed in the processing tank cannot continue to pollute the water area.
  • the number of the processing tanks needs to be large, and the specific number thereof needs to be determined according to the area of the water area and the degree of cyanobacteria flooding, and it is preferable to fill the processing tanks with water.
  • the top of the processing tank 5 is open, and aquatic plants are planted in the processing tank 5 to see that the cyanobacteria are killed by the competition of aquatic plants, and the dead cyanobacteria are concentrated in the interior of the processing tank. Bottom, and because the lower side of the processing tank is closed, it cannot overflow from the processing tank.
  • the aquatic plant described in the present invention is a local dominant species, such as aquatic plants such as reeds, calamus, lotus roots, lotus, cress, white amaranth, lotus, cattail, etc.
  • calamus can be selected, and the dominant species can be selected at the same time
  • the dominant species can be selected at the same time
  • iris, reed, and cress plants used in the treatment of Dianchi Lake in China.
  • a chemical or biological agent may be placed in the treatment tank, and the agent may kill the cyanobacteria or shorten the life of the cyanobacteria.
  • a railing 7 for intercepting the processing tank 5 is horizontally arranged on the water surface of the water area
  • the railing 7 makes the processing tank 5 stay in a specific area of the water area.
  • the railing prevents the processing tank from flowing with the water flow, so that the processing tank stays on the water for a certain period of time. It is designed according to the number of plants or the type of agent. Generally, it stays for at most one to three days, and then the treatment tank is gradually updated.
  • a closing opening 8 is provided on the railing 7,
  • the processing tank 5 can pass through the opening 8 in sequence under the action of water flow. There can be multiple openings 8, and each opening 8 can only allow a single processing tank to pass in sequence, and cannot pass multiple processing tanks at the same time;
  • annular support floating ring 9 is provided outside the processing tank 5;
  • an inner diameter dimension of the notch 8 is larger than an outer diameter dimension of the supporting floating ring 9.
  • the supporting floating ring 9 is made of a light elastic material that does not absorb water, such as a high molecular polymer; the supporting floating ring 9 can provide sufficient buoyancy for the processing tank, and can also make two adjacent There is a certain gap between the processing tanks to prevent the processing tanks from completely sealing the surface of the water area.
  • the support floating ring 9 can also effectively prevent the processing tanks from turning over, ensuring that the processing tanks are always in a vertical state, and the cyanobacteria in the processing tanks are always upright. , Especially the dead cyanobacteria cannot flow by themselves;
  • a connecting rod 51 is provided on the processing tank 5, one end of the connecting rod 51 is connected to the processing tank 5, and the other end is connected to the supporting floating ring 9.
  • a plurality of connecting rods 51 are provided, and the processing tank 5 and the supporting floating ring 9 are fixedly connected into an integrated structure by the plurality of connecting rods 51.
  • the connecting rod 51 is located below the water surface, and a submerged plant may be attached to the connecting rod 51;
  • an attachment rod 52 is further provided outside the treatment tank 5, and the attachment rod 52 is thin rod-shaped and is also used to attach submerged plants; the submerged plants can further purify water quality and compete with biologically Way to compress the living space of cyanobacteria;
  • the submerged plants described in the present invention include one or more of a variety of plants such as aureus, trichophyta, triceratops, and sauerkraut, which can be specifically selected according to actual needs;
  • the upper half of the supporting floating ring 9 floats on the water surface, and the lower half of the supporting floating ring 9 is located below the water surface, so that the cyanobacteria floating on the water and located on the inner ring of the supporting floating ring 9 are isolated from the external After a part of the cyanobacteria is killed, the sun can irradiate the submerged plants below the water surface, which facilitates the photosynthesis of the submerged plants.
  • the algae inlet channel 6 on the processing tank 5 is closed, so that the side wall of the processing tank is completely closed, which will not cause two Secondary pollution.
  • a plurality of baffle doors 10 matched with the algae inlet passage 6 are provided inside the processing tank 5.
  • the number of the baffle doors 10 and the algae inlet passage are provided.
  • the number of 6 is the same, the height of the baffle door 10 is slightly higher than the height of the algae-intake passage 6, the width of the baffle door 10 is slightly larger than the width of the algae-intake passage 6, between two adjacent algae-intake passages 6
  • the distance value is greater than or equal to the width value of the baffle door 10, which is distributed between the algae inlet channels 6;
  • a connection ring 11 is also provided inside the processing tank 5.
  • Each baffle door 10 is connected to the connection ring 11.
  • the connection ring 11 is used to control the baffle door 10 to rotate or translate so as to pass the baffle door. Cover the algae entry channel 6;
  • a control signal transmitting device such as an infrared transmitting device, an electromagnetic signal transmitting device, etc. is provided at the opening 8 on the railing 7, and a control signal receiving device is provided on the processing tank 5 to receive all The signal from the control signal transmitting device is described, and after receiving the signal, the control ring 11 controls the baffle door 10 to move, thereby blocking / sealing the algae entry channel 6.
  • the processing tank 5 passes through the gap 8 and enters the fishing area surrounded by the algae net 3 for centralized processing. Specifically, the fishing area is recovered in the fishing area. In the treatment tank 5, the cyanobacteria in the treatment tank 5 are poured into the sedimentation tank 2, and the treatment tank 5 is continued to be placed upstream of the fishing point 1.
  • a water channel 12 is excavated on the shore, and the flow direction of the water flow in the water channel is opposite to that of the water flow in the water area; the treatment tank 5 is completed in the sedimentation tank 2. After that, it can be directly placed in the nearby canal 12 and flows upstream of the water area under the action of the water flow of the canal.
  • a conveyor belt 13 is set at the end of the canal. The water is transported to the water to realize the recycling of the treatment tank 5.
  • a water pump is further provided at the end of the water channel, which is used to extract the water in the water channel into the water area in real time, so that the water in the pool can continuously flow from the vicinity of the sedimentation tank to the upstream of the water area.
  • the opening 8 can be opened and the processing tanks can be discharged one by one without having to check the content of cyanobacteria in the processing tanks, even in the processing tanks released at the initial stage.
  • the content of cyanobacteria is low, and the number of cyanobacteria in the treatment tanks released later will be more and more, so that the treatment tanks can be recycled.
  • the treatment tank 5 is also provided with an opening switch of the baffle door 10. After cleaning the cyanobacteria in the treatment tank, the user can manually control the opening switch to move the baffle door 10, so that the algae entry channel 6 is again On.
  • the invention also provides a water area cyanobacteria processing device based on the biological competition principle.
  • the device specifically includes the processing tank used in the water area cyanobacteria processing method based on the biological competition principle described above.
  • the area with an area of about 1.2 million square meters and a water depth of 4 to 8 meters is supplemented with freshwater. Cyanobacteria blooms occur every summer and no fish survive.
  • the cyanobacteria treatment in this water area is carried out using the method provided by the present invention.
  • the concave bank of the water area is selected, the fishing point is selected in the concave bank, and the sedimentation pond is dug at the shore near the fishing point.
  • the cyanobacteria are harvested from the fishing point by mechanical means and sent to the sedimentation pond.
  • Algae nets are set on the surface of the water area around the point, aquatic plants are planted along the bank of the concave bank, and 3,000 to 4,000 processing tanks are arranged upstream of the fishing point, and the processing tank is continuously circulated. After two weeks of continuous processing, The amount of cyanobacteria in the water area has been significantly reduced, and the color of the water body has changed from green to transparent. The treatment continued for a full year. In the next year, there were no cyanobacteria blooms in the water area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Sustainable Development (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Molecular Biology (AREA)
  • Ocean & Marine Engineering (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

一种基于生物竞争原理的水域蓝藻处理方法,首先找到蓝藻最容易富集的区域,即水域凹岸处,在该区域周围设置拦藻网(3),在该区域内采用人工或者机械捕捞的方式快速、大量地清理蓝藻,在水域岸边栽种挺水植物,以便从根本上改善水质,还需要在更大面积的水域中布置处理罐(5),通过密集设置的处理罐(5)逐渐杀死蓝藻,并且收集死亡的蓝藻,防止死亡的蓝藻继续污染水域,并安照预定规律收集处理处理罐(5),以便于处理罐(5)的循环使用;还公开了基于生物竞争原理的水域蓝藻处理装置。

Description

基于生物竞争原理的水域蓝藻处理方法及应用的装置 技术领域
本发明涉及蓝藻水华治理方法,尤其是一种基于生物竞争原理的水域蓝藻处理方法,还涉及该方法中应用的蓝藻处理装置。
背景技术
水华是水体富营养化状态下生态平衡破坏的集中体现,在我国以蓝藻水华最为常见。蓝藻也称蓝绿藻、蓝细菌,含有光合色素如叶绿素a和捕光色素藻胆蛋白,能进行放氧光合作用。蓝藻形态差异较大,已知有球状、杆状单细胞丝状聚合物(细胞链)两种形体。绝大多数蓝藻个体直径和宽度为3~10μm,当许多个个体聚集在一起时,可形成肉眼可见的群体。蓝藻对水体的破坏性和对人体的毒害性都是极大的,我国每年都要投入巨大的人力物力来清理蓝藻,多个相关部门单位针对当地的水化规模、特点及具体环境等情况采取多种应对处理措施,例如采用引水换水、底泥疏浚、围隔拦截等工程处理方式,又如采用硫酸铜、高锰酸盐、硫酸铝、高铁酸盐复合药剂、液氯等化学试剂,或者蓝藻生物抑制剂等生物制剂进行蓝藻处理;
目前常用的这些处理方法都能够在一定程度上缓解蓝藻的危害,但是也都具有其各自的缺点;
另外,湖泊藻类死亡后不断向湖底沉积,不断地腐烂分解,也会消耗深层水体大量溶解氧,严重时可能使深层水体溶解氧消耗殆尽而呈厌氧状态,使得需氧生物难以生存,甚至导致水中鱼类大批窒息死亡、水产资源遭到破坏。这种厌氧状态,可以触发或者加速底泥积累的营养物质释放,造成水体营养物质 的更高负荷,形成富营养化水体的恶性循环,这种水体腐化变质最终导致湖泊老化和衰亡,所以目前的一些常见处理方式中虽然能够大批量杀死蓝藻,但是不能及时地将蓝藻收集起来,没能从根本上解除蓝藻带来的危害。
由于上述原因,本发明人对现有的蓝藻治理方法做了深入研究,设计出一种基于生物竞争原理的,能够克服先有技术缺陷的蓝藻处理方法。
发明内容
为了克服上述问题,本发明人进行了锐意研究,设计出一种基于生物竞争原理的水域蓝藻处理方法,该方法中首先找到蓝藻最容易富集的区域,即水域凹岸处,在该区域周围设置拦藻网,在该区域内采用人工或者机械捕捞的方式快速、大量地清理蓝藻,在水域岸边栽种挺水植物,以便从根本上改善水质,还需要在更大面积的水域中布置处理罐,通过密集设置的处理罐逐渐杀死蓝藻,并且收集死亡的蓝藻,防止死亡的蓝藻继续污染水域,并安照预定规律收集处理所述处理罐,以便于处理罐的循环使用,从而完成本发明。
具体来说,本发明的目的在于提供一种基于生物竞争原理的水域蓝藻处理方法,该方法包括如下步骤:
步骤1:在水域的凹岸选择蓝藻最为集中的区域作为捕捞点1,在岸边挖掘沉降池2,将蓝藻从捕捞点1抽取至沉降池2;
步骤2:在水域表面,围绕捕捞点1设置拦藻网3;
步骤3:沿着凹岸水边栽种水生植物4。
其中,所述步骤1包括如下子步骤:
子步骤1,根据水文资料找到水域凹岸,
子步骤2,在水域凹岸上,沿着岸边每隔预定距离选择一 个采样点,并在采样点处采集水样,
步骤3,检测分析各个采样点的水样中氮元素和磷元素的含量,并根据氮元素和磷元素含量在岸边设置捕捞点;
优选地,所述捕捞点有多个。
其中,在所述捕捞点1上游水域中布置处理罐5,
所述处理罐5悬浮在水域中,且所述处理罐5至少有一部分本体位于水面上方,
在所述处理罐5上,在靠近水面的侧壁上开设有供蓝藻通过的进藻通道6,所述进藻通道6下方的侧壁密封。
其中,所述处理罐5顶部敞口,在所述处理罐5中种植水生植物。
其中,所述水生植物为当地优势物种,如挺水植物。
其中,在水域的水面上横置有用于拦截所述处理罐5的栏杆7,
通过所述栏杆7使得所述处理罐5停留在水域的特定区域。
其中,在所述栏杆7上开设有可关闭的豁口8,
所述处理罐5可在水流的作用下依次从豁口8中穿出。
其中,在所述处理罐5外部设置有环状的支撑浮圈9;
优选地,所述豁口8的内径尺寸大于所述支撑浮圈9的外径尺寸。
其中,当所述处理罐5从所述豁口8中穿出时,关闭所述处理罐5上的进藻通道6。
其中,在所述捕捞点1的下游回收所述处理罐5,在清空所述处理罐5后继续将之投放到捕捞点1的上游。
本发明还提供一种基于生物竞争原理的水域蓝藻处理装置,该装置包括上文中基于生物竞争原理的水域蓝藻处理方法所用的处理罐。
本发明所具有的有益效果包括:
(1)根据本发明提供的基于生物竞争原理的水域蓝藻处理方法既能够实时、高效地清理已经富集的蓝藻,还能够在更大的水域范围内持续蓝藻的清理工作,而且通过岸边种植挺水植物来改善水质,进而从根本上解决蓝藻带来的安全隐患;
(2)根据本发明提供的基于生物竞争原理的水域蓝藻处理方法中通过处理罐来杀死蓝藻,同时盛装被杀死的蓝藻,防止死亡的蓝藻继续污染水域,使得整体蓝藻处理方式的更为科学合理,能够极大程度地降低蓝藻带来的危害。
附图说明
图1示出根据本发明一种优选实施方式的水域蓝藻处理方法的水域整体示意图;
图2示出根据本发明一种优选实施方式的水域蓝藻处理方法的处理罐结构示意图。
附图标号说明:
1-捕捞点
2-沉降池
3-拦藻网
4-水生植物
5-处理罐
51-连杆
52-附着杆
6-进藻通道
7-栏杆
8-豁口
9-支撑浮圈
10-挡板门
11-连接圈
12-水渠
13-输送带
具体实施方式
下面通过附图和实施例对本发明进一步详细说明。通过这些说明,本发明的特点和优点将变得更为清楚明确。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
根据本发明提供的一种基于生物竞争原理的水域蓝藻处理方法,如图1中所示,该方法包括如下步骤:
步骤1:在水域的凹岸选择蓝藻最为集中的区域作为捕捞点1,在岸边挖掘沉降池2,将蓝藻从捕捞点1抽取至沉降池2;
步骤2:在水域表面,围绕捕捞点1设置拦藻网3;
步骤3:沿着凹岸水边栽种水生植物4。
本发明中所述的水域主要包括江、河、湖等内陆水域,所述凹岸是本领域中的常用术语,河流曲流的内弯环抱处叫凸岸,外弯处叫凹岸,河水流经弯曲河道,受离心力作用,表层水流偏向凹岸,底部水流由凹岸流向凸岸,形成弯道环流,所以蓝藻极易在凹岸汇集。
本发明中上述步骤1、步骤2和步骤3并没有时间上的先后顺序,都需要持续工作较长时间才能显示出成效,
所述步骤1包括如下子步骤:
子步骤1,根据水文资料找到水域凹岸,所述水文资料包 括该水域的历史记载,可以推断出该水域的改道及侵蚀情况,
子步骤2,在水域凹岸上,沿着岸边每隔预定距离选择一个采样点,并在采样点处采集水样,该预定距离优选为5-10米,需要根据凹岸的整体长度来适当调整;
步骤3,检测分析各个采样点的水样中氮元素和磷元素的含量,并根据氮元素和磷元素含量在岸边设置捕捞点,所述捕捞点有多个,所述捕捞点设置在氮元素和磷元素总含量较高的区域,并且各个捕捞点之间留有一定的间隔。
所述捕捞点处的蓝藻密度较大,可以采用机械手段将之抽取至沉降池,也可以由人工来捞取、转移蓝藻,如中国专利2015205131697一种蓝藻处理系统中给出的捕捞/抽取设备;
在一个优选的实施方式中,如图1和图2中所述,在所述捕捞点1上游水域中布置处理罐5,
所述处理罐5悬浮在水域中,且所述处理罐5至少有一部分本体位于水面上方,
在所述处理罐5上,在靠近水面的侧壁上开设有供蓝藻通过的进藻通道6,所述进藻通道6下方的侧壁密封。
由于蓝藻大部分位于水面表层,所述处理罐也位于水面表层,且其上的进藻通道6刚好与水域中的蓝藻接触,从而使得蓝藻能够自然地进入到处理罐5中,蓝藻在处理罐中被杀死后自然会落入到处理罐5的底部,并存储起来,直至人工清理该处理罐时,所以在处理罐中被杀死的蓝藻不能继续污染水域。
所述处理罐的数量需要较多,其具体数量需要根据水域的面积和蓝藻泛滥程度来确定,优选地需要将处理罐布满水域。
在一个优选的实施方式中,所述处理罐5顶部敞口,在所述处理罐5中种植水生植物看,通过水生植物的生物竞争杀死蓝藻,死亡的蓝藻就集中在了处理罐的内部底部,并且由于处 理罐下方侧部封闭,不能从处理罐中溢出。
优选地,本发明中所述的水生植物为当地优势物种,如芦、蒲草、荸荠、莲、水芹、茭白荀、荷花、香蒲等挺水植物,还可以选择菖蒲,该优势物种可以同时选择多种,且要求具有易活、耐污、根系发达等特点,再根据实际情况对其进行合理搭配,例如,在中国滇池治理中选用的菖蒲、芦苇、水芹等植物搭配。
在一个优选的实施方式中,在所述处理罐中还可以放在化学或者生物药剂,通过药剂杀死蓝藻或者缩短蓝藻的寿命。
在一个优选的实施方式中,如图1中所示,在水域的水面上横置有用于拦截所述处理罐5的栏杆7,
通过所述栏杆7使得所述处理罐5停留在水域的特定区域,优选地,所述栏杆阻止处理罐随着水流流动,使得处理罐停留在水面上一定时间,具体停留时间需要根据处理罐中植物数量或者药剂的种类来设计,一般至多停留一至三天,就开始逐步更新处理罐。
优选地,如图1中所述,在所述栏杆7上开设有可关闭的豁口8,
所述处理罐5可在水流的作用下依次从豁口8中穿出。所述豁口8可以有多个,每个豁口8只能允许单个处理罐依次通过,不能多个处理罐同时通过;
在一个优选的实施方式中,如图2中所示,在所述处理罐5外部设置有环状的支撑浮圈9;
优选地,所述豁口8的内径尺寸大于所述支撑浮圈9的外径尺寸。
优选地,所述支撑浮圈9由不吸水的轻质弹性材料制成,如高分子聚合物等;所述支撑浮圈9即可以为处理罐提供足够 的浮力,还可以使得相邻两个处理罐之间留有一定的间隙,避免处理罐完全封闭水域表面,另外,通过设置支撑浮圈9还可以有效地防止处理罐侧翻,确保处理罐一直处于竖直状态,处理罐内的蓝藻,尤其是死亡的蓝藻不能自行流出;
在一个优选的实施方式中,在所述处理罐5上设置有连杆51,所述连杆51一端与处理罐5相连,另一端与支撑浮圈9相连。
所述连杆51设置有多个,通过所述多个连杆51使得处理罐5和支撑浮圈9固接为一体结构。
所述连杆51位于水面以下,在所述连杆51上还可以附着有沉水植物;
优选地,在所述处理罐5外部还设置有附着杆52,所述附着杆52呈细杆状,也用于附着沉水植物;通过所述沉水植物能够进一步净化水质,以生物竞争的方式压缩蓝藻的生存空间;
本发明中所述的沉水植物包括金鱼藻、车轮藻、狸藻和眼子菜等多种植物中的一种或多种,可以根据实际需要具体选择;
所述支撑浮圈9的上半部分漂浮在水面上,其下半部分位于水面以下,从而将浮在水面上的位于支撑浮圈9内圈的蓝藻与外部的蓝藻隔离开,待内圈的蓝藻被杀死一部分以后,阳光能够照射到水面下方的沉水植物,便于沉水植物进行光合作用。
在一个优选的实施方式中,当所述处理罐5从所述豁口8中穿出时,关闭所述处理罐5上的进藻通道6,使得处理罐的侧壁完全封闭,不会造成二次污染。
进一步优选地,如图2中所示,在所述处理罐5内部设置有多个与进藻通道6相配合的挡板门10,优选地,所述挡板门10的数量与进藻通道6的数量相同,所述挡板门10的高度略高于进藻通道6的高度,所述挡板门10的宽度略大于进藻通道6的宽度,相邻两个进藻通道6之间的距离值大于或等于挡板门10的 宽度值,所述挡板门10分布在各个进藻通道6之间;
在所述处理罐5内部还设置有连接圈11,各个挡板门10都与连接圈11相连,所述连接圈11用于控制所述挡板门10转动或者平移,以便于通过挡板门遮盖所述进藻通道6;
进一步优选地,在所述栏杆7上的豁口8处设置控制信号发射装置,如红外线发射装置、电磁信号发射装置等等,在所述处理罐5上设置有控制信号接收装置,用以接收所述控制信号发射装置发出的信号,并在接收到该信号后控制连接圈11带动挡板门10移动,进而遮挡/封闭进藻通道6。
在一个优选的实施方式中,处理罐5从豁口8中穿出,并进入到由拦藻网3围绕而成的捕捞区域内进行集中处理,具体来说,在所述捕捞区域中回收所述处理罐5,将处理罐5中的蓝藻倾倒至沉降池2,并继续将处理罐5投放到捕捞点1的上游。
具体来说,如图1中所示,在岸边挖掘有水渠12,所述水渠内水流的流动方向与所述水域中水流的流动方向相反;所述处理罐5在沉降池2中处理完成后可以直接放置到附近的水渠12中,在水渠的水流作用下流动水域的上游,在所述上游,在水渠的末端设置有输送带13,通过所述输送带13将水渠中的处理罐5输送至水域中,以便实现处理罐5的循环利用。优选地,在水渠末端还设置有水泵,其用于实时将水渠中的水抽取至水域中,以便水池中的水可以持续不断地从沉降池附近流动至水域上游。
由于所述处理罐5的数量较多,可以在上游投放一定数量的处理罐后,即开启豁口8,逐个放出处理罐,而不必检查处理罐中蓝藻的含量,即使开始阶段放出的处理罐中蓝藻含量较低,后续放出的处理罐中的蓝藻数量会越来越多,从而使得处理罐循环使用工作。
在所述处理罐5上还设置有挡板门10的开启开关,使用者在清理干净处理罐内的蓝藻后,可以通过手动控制该开启开关来移动挡板门10,使得进藻通道6再次开启。
本发明还提供一种基于生物竞争原理的水域蓝藻处理装置,该装置具体来说包括上文中所述的基于生物竞争原理的水域蓝藻处理方法所用的处理罐。
在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”“前”“后”等指示的方位或位置关系为基于本发明工作状态下的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例:
面积约为120万平方米,水深为4~8米的有淡水补充的水域,每年夏季都会爆发蓝藻水华,无鱼类生存;对该水域做蓝藻治理工作,采用本发明提供的方法,在蓝藻爆发季节,根据水文资料选择该水域的凹岸,在凹岸中选择捕捞点,并在捕捞点附近的岸边挖掘沉降池,通过机械手段从捕捞点捞取蓝藻送入至沉降池,在捕捞点外围的水域表面上设置拦藻网,沿着凹岸水边栽种水生植物,在捕捞点上游布置三千至四千个处理罐,并持续循环输送该处理罐,连续处理两周时间后,水域中的蓝藻数量明显降低,水体颜色由绿色变为透明色;继续处理满一整年,第二年该水域无蓝藻水华爆发,由水体达到3类水质要求,可进行水产养殖。
以上结合了优选的实施方式对本发明进行了说明,不过这些实施方式仅是范例性的,仅起到说明性的作用。在此基础上,可以对本发明进行多种替换和改进,这些均落入本发明的保护范围内。

Claims (10)

  1. 一种基于生物竞争原理的水域蓝藻处理方法,其特征在于,该方法包括如下步骤:
    步骤1:在水域边缘选择捕捞点(1),在岸边挖掘沉降池(2),将蓝藻从捕捞点(1)抽取至沉降池(2);
    步骤2:在水域表面,围绕捕捞点(1)设置拦藻网(3);
    步骤3:沿着凹岸水边栽种水生植物(4)。
  2. 根据权利要求1所述的方法,其特征在于,
    所述步骤1包括如下子步骤:
    子步骤1,根据水文资料找到水域凹岸,
    子步骤2,在水域凹岸上,沿着岸边每隔预定距离选择一个采样点,并在采样点处采集水样,
    步骤3,检测分析各个采样点的水流、常规风向、蓝藻密度等,并根据蓝藻聚集效果在岸边设置捕捞点;
    优选地,所述捕捞点有多个。
  3. 根据权利要求1所述的方法,其特征在于,
    在所述捕捞点(1)上游水域中布置处理罐(5),
    所述处理罐(5)悬浮在水域中,且所述处理罐(5)至少有一部分本体位于水面上方,
    在所述处理罐(5)上,在靠近水面的侧壁上开设有供蓝藻通过的进藻通道(6),所述进藻通道(6)下方的侧壁密封;
    优选地,所述处理罐(5)顶部敞口,在所述处理罐(5)中种植水生植物。
  4. 根据权利要求1-3之一所述的方法,其特征在于,
    所述水生植物为当地优势物种。
  5. 根据权利要求2所述的方法,其特征在于,
    在水域的水面上横置有用于拦截所述处理罐(5)的栏杆(7),
    通过所述栏杆(7)使得所述处理罐(5)停留在水域的特定区域。
  6. 根据权利要求5所述的方法,其特征在于,
    在所述栏杆(7)上开设有可关闭的豁口(8),
    所述处理罐(5)可在水流的作用下依次从豁口(8)中穿出,并进入到由拦藻网(3)围绕而成的捕捞区域内进行集中处理。
  7. 根据权利要求6所述的方法,其特征在于,
    在所述处理罐(5)外部设置有环状的支撑浮圈(9);
    优选地,所述豁口(8)的内径尺寸大于所述支撑浮圈(9)的外径尺寸。
  8. 根据权利要求6所述的方法,其特征在于,
    当所述处理罐(5)从所述豁口(8)中穿出时,关闭所述处理罐(5)上的进藻通道(6)。
  9. 根据权利要求8所述的方法,其特征在于,
    在所述捕捞区域中回收所述处理罐(5),将处理罐(5)中的蓝藻倾倒至沉降池(2),并继续将处理罐(5)投放到捕捞点(1)的上游。
  10. 基于生物竞争原理的水域蓝藻处理装置,其特征在于,该装置包括权利要求1-9中任一项基于生物竞争原理的水域蓝藻处理方法所用的处理罐。
PCT/CN2019/080207 2018-09-13 2019-03-28 基于生物竞争原理的水域蓝藻处理方法及应用的装置 WO2020052221A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/273,425 US11933010B2 (en) 2018-09-13 2019-03-28 Method and device for treating cyanobacteria in water area based on biological competition principle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811070277.6A CN109205929B (zh) 2018-09-13 2018-09-13 基于生物竞争原理的水域蓝藻处理方法及应用的装置
CN201811070277.6 2018-09-13

Publications (1)

Publication Number Publication Date
WO2020052221A1 true WO2020052221A1 (zh) 2020-03-19

Family

ID=64983843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080207 WO2020052221A1 (zh) 2018-09-13 2019-03-28 基于生物竞争原理的水域蓝藻处理方法及应用的装置

Country Status (3)

Country Link
US (1) US11933010B2 (zh)
CN (1) CN109205929B (zh)
WO (1) WO2020052221A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116495853A (zh) * 2023-06-19 2023-07-28 湖南中拓环境工程有限公司 一种蓝藻水华处理装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115233638B (zh) * 2022-08-15 2023-05-12 江苏中科基业环境科技有限公司 一种可移动水上悬浮型控藻净水装置及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120026214A (ko) * 2010-09-09 2012-03-19 레인보우스케이프주식회사 부도형 수질정화장치
CN103422480A (zh) * 2013-08-20 2013-12-04 复旦大学 一种大水域蓝藻导流富集的方法与装置
CN104071900A (zh) * 2014-06-30 2014-10-01 复旦大学 一种大型富营养化藻型湖泊水景区的生态恢复方法
CN205346971U (zh) * 2016-01-06 2016-06-29 湖北省水利水电科学研究院 一种用于种植沉水植物的浮力装置
CN106830344A (zh) * 2017-03-09 2017-06-13 桂林融通科技有限公司 一种生物净水系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120026214A (ko) * 2010-09-09 2012-03-19 레인보우스케이프주식회사 부도형 수질정화장치
CN103422480A (zh) * 2013-08-20 2013-12-04 复旦大学 一种大水域蓝藻导流富集的方法与装置
CN104071900A (zh) * 2014-06-30 2014-10-01 复旦大学 一种大型富营养化藻型湖泊水景区的生态恢复方法
CN205346971U (zh) * 2016-01-06 2016-06-29 湖北省水利水电科学研究院 一种用于种植沉水植物的浮力装置
CN106830344A (zh) * 2017-03-09 2017-06-13 桂林融通科技有限公司 一种生物净水系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116495853A (zh) * 2023-06-19 2023-07-28 湖南中拓环境工程有限公司 一种蓝藻水华处理装置
CN116495853B (zh) * 2023-06-19 2023-09-05 湖南中拓环境工程有限公司 一种蓝藻水华处理装置

Also Published As

Publication number Publication date
US11933010B2 (en) 2024-03-19
CN109205929B (zh) 2020-07-24
US20210340045A1 (en) 2021-11-04
CN109205929A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
CN107410140B (zh) 一种池塘生态工业化循环水养殖与净化系统
Xiong et al. Occurrence of microplastic in the water of different types of aquaculture ponds in an important lakeside freshwater aquaculture area of China
CN105565584A (zh) 一种快速构建河道水体生态系统的方法
Omori et al. Methods of farming sexually propagated corals and outplanting for coral reef rehabilitation; with list of references for coral reef rehabilitation through active restoration measure
WO2020052221A1 (zh) 基于生物竞争原理的水域蓝藻处理方法及应用的装置
CN206024876U (zh) 一种小龙虾循环水养殖系统
KR100903691B1 (ko) 적조 및 녹조원인생물 및 이들을 포식할 수 있는 원생생물성 포식자의 배양 장치
Middaugh et al. Toxicity of chlorine to juvenile spot, Leiostomus xanthurus
CN108338100B (zh) 一种集约化生态高效鲟鱼养殖组合池及其养殖方法
CN115341514A (zh) 核电厂冷源安全综合设防系统
CN105248335A (zh) 一种裂腹鱼类受精卵孵化方法
CN109179857B (zh) 一种基于生态隔离-鱼类修复-底质锁磷-植物攫取的富营养化水体修复方法
CN104642224B (zh) 一种鳗鲡受精卵孵化和初孵仔鱼培育的单体装置
CN208572925U (zh) 河口潮间带生物监测网
CN108684598B (zh) 智能化海水池塘休闲景观生态养殖系统
CN102863082B (zh) 一种利用毛蚶净化自然海水的方法及其专用净化池系统
CN206442959U (zh) 一种池水表层有害藻类清除装置
KR200285364Y1 (ko) 자연산 어류의 유도 및 사육을 위한 양식장 구조
CN210620389U (zh) 一种前端生态强化沉沙净化装置
CN208454739U (zh) 智能生态处理蓝藻系统
CN214482856U (zh) 一种锦鲤养殖池排污截留病鱼、死鱼装置
CN108651397A (zh) 河口潮间带生物监测网及其构建方法
CN113754184B (zh) 河湖生活排污口水质生态净化处理长廊
CN217509707U (zh) 一种黑斑蛙养殖箱
CN210313709U (zh) 一种湖泊河道水体生态修复系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859618

Country of ref document: EP

Kind code of ref document: A1