WO2020052134A1 - 能源调度方法、能源控制设备和能源系统 - Google Patents

能源调度方法、能源控制设备和能源系统 Download PDF

Info

Publication number
WO2020052134A1
WO2020052134A1 PCT/CN2018/121501 CN2018121501W WO2020052134A1 WO 2020052134 A1 WO2020052134 A1 WO 2020052134A1 CN 2018121501 W CN2018121501 W CN 2018121501W WO 2020052134 A1 WO2020052134 A1 WO 2020052134A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
amount
scheduling
information
consumption
Prior art date
Application number
PCT/CN2018/121501
Other languages
English (en)
French (fr)
Inventor
许芳萃
肖振德
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020052134A1 publication Critical patent/WO2020052134A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks

Definitions

  • the present disclosure relates to the field of energy network technology, and in particular, to an energy dispatching method, energy control equipment, and energy system.
  • the current generation and supply of electrical energy mostly adopts a unified dispatching method. Electricity is generated by power plants and dispatched to different regions and users on the energy network.
  • an energy scheduling method which includes: an energy control device determining a remaining energy amount and expected energy consumption of a current area; generating energy scheduling information according to the remaining energy amount and expected energy consumption;
  • the control device is located on a block chain network, which publishes block chain information including energy dispatch information, so that each energy control device on the block chain network performs energy dispatch according to the block chain information and the energy usage of the corresponding area.
  • the energy scheduling information is an energy input request.
  • the energy scheduling method further includes: in a case where the remaining energy amount is less than the expected energy consumption and the blockchain information including the energy output request is received: according to the expected energy consumption, the remaining energy amount, and the energy output request
  • the energy surplus information determines the energy dispatch target node and energy dispatch amount.
  • the energy output request is generated for the energy control equipment in the area where the remaining energy amount is greater than the expected energy consumption; the energy application request is generated according to the energy dispatch target node and the energy dispatch amount.
  • the blockchain information including the energy application request is published on the blockchain network where the energy control equipment is located.
  • determining the energy scheduling target node and the energy scheduling amount includes at least one of the following: determining the energy scheduling when the sum of the energy surplus information and the remaining energy amount in a single energy output request is not less than the expected energy consumption
  • the target node is the source node of the energy output request; when the sum of the energy balance information and the remaining energy amount in a single energy output request are less than the expected energy consumption, multiple energy dispatch target nodes and For each energy dispatch target node, the energy dispatch amount; or, if the sum of the energy surplus information and the sum of the remaining energy amounts in the received energy output request are less than the expected energy consumption, determine the energy dispatch target node as a public storage ⁇ node.
  • determining the energy dispatching target node and the energy dispatching amount further includes: determining an energy dispatching target node and an energy dispatching target amount for the energy dispatching target node based on a minimum cost principle based on the energy unit price in the energy output request.
  • the energy scheduling method further includes: failing to receive a block including a predetermined output request within a predetermined period of time after the remaining energy amount is less than the expected energy consumption and after the release of the blockchain information including the energy input request In the case of chain information, it is determined to apply for energy from a public energy storage node; among them, the energy output request is generated for energy control equipment in a region where the amount of remaining energy is greater than the expected energy consumption.
  • the energy scheduling information is an energy output request.
  • the energy scheduling information is an energy output request, and the energy output request includes energy surplus information, where The energy input request is generated and published to the blockchain network for energy control equipment in areas where the amount of remaining energy is less than the expected energy consumption.
  • the energy scheduling method further includes: in a case where the remaining energy amount is greater than the expected energy consumption, and the blockchain information including the energy application request is received: the energy control device determines whether it is in accordance with the energy scheduling in the energy application request The target nodes match, where the energy application request is generated for energy control equipment with a residual energy amount less than the expected energy consumption, and the energy application request includes the energy scheduling target node and the energy scheduling volume; if they match, it is sent to the energy storage equipment in the current area
  • the energy output instruction enables the energy storage device to dispatch energy from the energy storage device in the source node area requested by the energy application through the energy network according to the energy dispatch amount.
  • the energy scheduling method further includes: calculating the total energy consumption of the current area in the energy allocation cycle according to the blockchain information; adjusting the amount of energy applied to the public energy storage equipment at the beginning of the next energy allocation cycle according to the total energy consumption; .
  • the energy scheduling method further includes: calculating the total energy consumption and / or energy consumption fluctuations of the current area during the energy deployment period according to the blockchain information; and evaluating the energy of the current area according to the total energy consumption and / or energy consumption fluctuations. use.
  • an energy control device including: an information determining unit configured to determine a remaining energy amount and an expected energy consumption of a current area; and an information generating unit configured to be based on the remaining energy Quantity and expected energy consumption to generate energy scheduling information; the information interaction unit is configured to publish the blockchain information including energy scheduling information on the blockchain network where the energy control equipment is located, so that each energy control device on the blockchain network Perform energy scheduling according to the blockchain information and the energy usage of the corresponding area; receive blockchain information from the blockchain network.
  • the energy scheduling information is an energy input request.
  • the information generating unit is further configured in a case where the remaining energy amount is less than the expected energy consumption and the information interaction unit receives the blockchain information including the energy output request: according to the expected energy consumption, the remaining energy amount and The energy surplus information in the energy output request determines the energy dispatch target node and energy dispatch amount.
  • the energy output request is generated for the energy control equipment in the area where the remaining energy amount is greater than the expected energy consumption.
  • Energy application request; the information interaction unit is further configured to issue the blockchain information including the energy application request on a blockchain network where the energy control device is located.
  • the energy scheduling information is an energy output request.
  • the information interaction unit receives the blockchain information including the energy input request: the energy scheduling information is an energy output request, and the energy output request includes the energy balance Information, among which, the energy input request is generated for a regional energy control device whose remaining energy amount is less than the expected energy consumption and published to the blockchain network.
  • the information generating unit is further configured to determine whether the remaining energy amount is greater than the expected energy consumption and receives the blockchain information including the energy application request: determine whether it is related to the energy scheduling target node in the energy application request Matching, where the energy application request is generated for the energy control equipment with the remaining energy amount less than the expected energy consumption, and the energy application request includes the energy scheduling target node and the energy scheduling quantity; if it matches, the energy application request is generated for the energy storage equipment in the current area.
  • the energy output instruction enables the energy storage device to dispatch energy from the energy storage device in the source node area requested by the energy application through the energy network according to the energy dispatch amount.
  • the energy control device further includes: an energy consumption statistics unit configured to calculate the total energy consumption of the current area in the energy deployment cycle according to the blockchain information; an energy application unit configured to adjust the The amount of energy applied to public energy storage equipment at the beginning of an energy deployment cycle.
  • the energy control device further includes: an energy consumption statistics unit configured to count the total energy consumption and / or energy consumption fluctuations of the current region during the energy deployment period according to the blockchain information; and the evaluation unit is configured to Total energy consumption and / or energy consumption fluctuations assess the energy use of the current area.
  • an energy control device including: a memory; and a processor coupled to the memory, the processor being configured to execute any one of the above energy sources based on instructions stored in the memory. Scheduling method.
  • a computer-readable storage medium on which computer program instructions are stored, and the instructions, when executed by a processor, implement the steps of any one of the energy scheduling methods described above.
  • an energy system including: a blockchain network, which is composed of a plurality of any one of the above energy control devices, and is configured to store and interact with blockchain information, Control energy scheduling; energy networks configured to store, apply, and schedule energy.
  • FIG. 1 is a flowchart of some embodiments of an energy scheduling method of the present disclosure.
  • FIG. 2 is a flowchart of another embodiment of an energy scheduling method of the present disclosure.
  • FIG. 3 is a flowchart of another embodiment of an energy scheduling method of the present disclosure.
  • FIG. 4 is a schematic diagram of some embodiments of an energy control device of the present disclosure.
  • FIG. 5 is a schematic diagram of another embodiment of an energy control device of the present disclosure.
  • FIG. 6 is a schematic diagram of still another embodiment of an energy control device of the present disclosure.
  • FIG. 7 is a schematic diagram of some embodiments of an energy network of the present disclosure.
  • FIG. 1 A flowchart of some embodiments of the energy scheduling method of the present disclosure is shown in FIG. 1.
  • the energy control device determines the remaining energy amount and expected energy consumption of the current area.
  • the energy control equipment can be connected to the energy storage equipment and energy consumption equipment in the area to obtain the remaining energy of the energy storage equipment, and it is expected to be based on the current energy consumption situation of the energy consumption equipment and the next production plan. Expected energy consumption over the next period of time, or during the remaining time period of a power distribution cycle.
  • step 102 energy scheduling information is generated according to the remaining energy amount and the expected energy consumption.
  • the energy scheduling information may be an energy input request in order to apply for energy from energy storage equipment in other regions; in other embodiments, when the amount of remaining energy is greater than In the case of expected energy consumption, energy scheduling information can be requested for energy output in order to provide energy to energy storage equipment in other regions.
  • step 103 the blockchain information including energy scheduling information is published on the blockchain network where the energy control device is located, so that each energy control device on the blockchain network can use the blockchain information and the energy usage of the corresponding area according to the blockchain information. Perform energy dispatch.
  • each energy control device located on the blockchain network can receive blockchain information from other nodes, parse and store the blockchain information.
  • Each energy control device on the blockchain network can use the blockchain information to perform energy scheduling analysis. Therefore, it is convenient for energy to implement decentralized scheduling among various regions, while solving the problem of energy shortage in some regions, it can also avoid energy waste in other regions, and improve energy efficiency.
  • FIG. 2 A flowchart of another embodiment of the energy scheduling method of the present disclosure is shown in FIG. 2, where the left and right dashed lines are executed by different energy control devices in the blockchain network, respectively.
  • the energy control equipment performing the steps on the left requires energy input, and the energy control equipment performing the steps on the right can provide redundant energy.
  • step 201 the energy control device determines the amount of remaining energy and expected energy consumption in the current area.
  • step 202 the energy control device determines whether the amount of remaining energy is less than the expected energy consumption. When it is determined that the remaining energy amount is less than the expected energy consumption, step 203 is performed. In some embodiments, if it is determined that the amount of remaining energy is equal to the expected energy consumption, no operation is performed. In some embodiments, if it is determined that the amount of remaining energy is greater than the expected energy consumption, the energy control device may actively generate an energy output request and generate blockchain information to publish to the network, so that the energy control device requiring energy input is based on the received energy output request Determine the nodes that can provide energy; the energy control device may not perform operations until it receives the blockchain information including the energy input request.
  • step 203 the energy control device generates an energy input request according to the remaining energy amount and the expected energy consumption.
  • step 204 the energy input request publishes blockchain information including the energy input request on the blockchain network.
  • each energy control device on the blockchain network receives, stores, and parses the blockchain information.
  • the energy control device with the remaining energy amount greater than the expected energy consumption receives the blockchain information and determines that the blockchain information includes an energy input request, step 206 is performed.
  • an energy output request is generated according to the remaining energy amount and the expected energy consumption, and the energy output request includes energy surplus information.
  • the energy balance information the remaining energy quantity-the expected energy consumption.
  • step 207 the blockchain information including the energy output request is published on the blockchain network where the energy control device is located.
  • step 208 the energy control device with the remaining energy amount less than the expected energy consumption determines whether the blockchain information is received, and determines whether the blockchain information includes an energy output request. If it is determined that the blockchain information including the energy output request is received, step 209 is performed.
  • the energy scheduling target node and the energy scheduling amount are determined according to the expected energy consumption, the remaining energy amount, and the energy surplus information in the energy output request.
  • the total energy dispatch amount the expected energy consumption-the amount of remaining energy.
  • the total energy dispatching amount (expected energy consumption-remaining energy amount) * (102-103)%, so as to avoid energy waste and prevent Transmission loss causes insufficient deployment of energy.
  • the energy scheduling target node when the sum of the energy surplus information and the remaining energy amount in a single energy output request is not less than the expected energy consumption, the energy scheduling target node may be determined as the source node of the energy output request, and the energy The amount of energy scheduling that the scheduling target node applies for scheduling is the total energy scheduling amount.
  • the sum of the energy balance information and the remaining energy amount in a single energy output request is less than the expected energy consumption, but the sum of the energy balance information and the remaining energy amount in multiple energy output requests is greater than the expected
  • multiple energy dispatch target nodes and the energy dispatch amount for each energy dispatch target node can be determined according to multiple energy output requests, the energy dispatch amount for each energy dispatch target node, and each energy dispatch can be determined.
  • the sum of the energy scheduling amounts of the target nodes is the total energy scheduling amount.
  • the total energy surplus information and the remaining energy quantity in the energy output request may be less than the expected energy consumption, or the release includes If the blockchain information including the energy output request is not received within a predetermined time after the blockchain information requested by the energy input, the public energy storage node is requested to dispatch energy.
  • the public energy storage node may have a device connected to the blockchain network, which can generate blockchain information by using the public energy storage node as a target for energy scheduling; in other embodiments, the public storage node The energy node can be independent of the blockchain network, and the energy control device sends an energy application request to the public energy storage node according to the address of the public energy storage node.
  • the energy price of each region may be different, and the energy output request may include energy unit price information.
  • the energy control equipment may consider the energy unit price information of each area, and select the least costly solution among the feasible solutions for energy dispatching.
  • scheduling may be based on the distance between regions.
  • the energy control device In step 210, the energy control device generates an energy application request, and publishes blockchain information including the energy application request on a blockchain network where the energy control device is located. In some embodiments, the energy control device may also control the energy storage device connected to it to prepare to receive energy scheduling through the energy network.
  • each energy control device on the blockchain network receives the blockchain information. If the energy control device whose expected energy consumption is less than the remaining energy amount determines that the blockchain information including the energy application request is received, step 212 is performed.
  • step 212 the energy control device determines whether it matches the energy scheduling target node in the energy application request. If they match, step 213 is performed; if they do not match, the blockchain information is stored and no other operations are performed.
  • step 213 an energy output instruction is sent to the energy storage equipment in the current area, so that the energy storage equipment dispatches the energy storage equipment in the source node area requested by the energy application through the energy network to dispatch energy in accordance with the energy scheduling amount.
  • energy-deficient devices can actively initiate requests through blockchain information, and then each region can publish its own ability to provide energy through the blockchain network.
  • Energy applications are exchanged through blockchain information, and each node in the network Record energy dispatch and transaction information, so as to complete transactions and avoid duplicate transactions, at the same time, ensure that the transaction records are secure and not tampered with, and facilitate interregional settlement.
  • FIG. 3 A flowchart of another embodiment of the energy scheduling method of the present disclosure is shown in FIG. 3.
  • step 301 energy is requested from a public energy storage device at the beginning of the deployment cycle.
  • the factory regularly dispatches energy from the power grid to public energy storage, and then dispatches it to each region separately.
  • There is a blockchain network in the factory and each area has energy control equipment as a blockchain node to access the blockchain network.
  • public energy storage may retain part of the energy for backup.
  • step 302 the energy control device determines the amount of remaining energy and the expected energy consumption in the current area.
  • step 303 the energy control device generates energy scheduling information according to the remaining energy amount and the expected energy consumption.
  • step 304 the blockchain information including the energy scheduling information is published on the blockchain network where the energy control device is located, and the blockchain information is received and stored.
  • the energy control device performs energy scheduling according to the blockchain information and the energy usage of the corresponding area.
  • the energy control devices may perform energy scheduling negotiation in the manner shown in the embodiment shown in FIG. 2.
  • step 306 the total energy consumption of the current region in the energy allocation period is calculated according to the blockchain information. In some embodiments, energy consumption fluctuations within a period or during a period can also be counted.
  • step 307 the energy usage of the current area is assessed. For example, for regions with large fluctuations in energy consumption, sudden increase in energy consumption, or mismatch between energy consumption and production, assess whether there are abnormal losses, and urge each region to save energy in the region.
  • step 308 the amount of energy requested is adjusted.
  • the trend of energy usage can be adjusted to the amount of energy applied to the public energy storage equipment at the beginning of each deployment cycle.
  • the applied energy amount may also be adjusted in combination with the subsequent production arrangement.
  • unified energy allocation can be performed at the beginning of the cycle, so that in consideration of fluctuations in electricity prices, energy can be purchased at price troughs and energy purchase costs can be reduced; the blockchain information stored at each node can be used to consume power Statistics, improve the reliability of power consumption statistics; can use the statistical results to evaluate various regions, and adjust the amount of energy provided to make energy distribution more reasonable, optimize the structure of energy use, and achieve the purpose of energy conservation.
  • the information determination unit 401 can determine the amount of remaining energy and the expected energy consumption of the current area.
  • the energy control device may be connected to the energy storage equipment and energy consuming equipment in the area, and the information determining unit 401 obtains the remaining energy of the energy storage equipment, and according to the current energy consumption of the energy consuming equipment, according to the next production Information such as plans is expected energy consumption over the next period of time, or for the remaining time period of an energy distribution cycle.
  • the information generating unit 402 can generate energy scheduling information based on the remaining energy amount and the expected energy consumption.
  • the energy scheduling information may be an energy input request in order to apply for energy from energy storage equipment in other regions; in other embodiments, when the amount of remaining energy is greater than In the case of expected energy consumption, energy scheduling information can be requested for energy output in order to provide energy to energy storage equipment in other regions.
  • the information interaction unit 403 can publish the blockchain information including energy scheduling information on the blockchain network, so that each energy control device on the blockchain network can perform energy scheduling according to the blockchain information and the energy usage situation of the corresponding area.
  • each energy control device located on the blockchain network can receive the blockchain information from other nodes through the respective information interaction unit 403, and parse and store the blockchain information.
  • Such energy control equipment can determine whether the expected energy consumption in the area matches the amount of remaining energy in time, and report it to the blockchain network.
  • Each energy control device on the blockchain network can use the blockchain information to perform energy scheduling analysis. Therefore, it is convenient for energy to implement decentralized scheduling among various regions, while solving the problem of energy shortage in some regions, it can also avoid energy waste in other regions, and improve energy efficiency.
  • the information generating unit 402 is also capable of generating an energy output request including the energy balance information in the case that the remaining energy amount is greater than the expected energy consumption and the information interaction unit receives the blockchain information including the energy input request.
  • the information interaction unit 403 publishes the blockchain information including the energy output request to the blockchain network, thereby realizing a response to the energy input request, and it is convenient for the energy control device that issues the energy input request to determine the energy scheduling target node that applies for energy.
  • the information generating unit 402 can also generate an energy application request if the remaining energy amount is less than the expected energy consumption and the information interaction unit 403 receives the blockchain information including the energy output request.
  • the manner of generating the energy application request may be as shown in step 209 of FIG. 2.
  • the information interaction unit 403 issues the blockchain information including the energy application request on the blockchain network.
  • Such an energy control device can generate an energy application request according to the situation of the energy storage and energy consuming equipment connected to itself and the energy remaining in other regions recorded in the received blockchain information, so as to achieve the energy transfer between regions.
  • Centralized scheduling, and the amount of scheduling meets the needs of each node.
  • the information generating unit 402 can also determine whether the information interaction unit 403 matches the energy scheduling target node in the energy application request when it receives the blockchain information including the energy application request. If they match, an energy output instruction is sent to the energy storage equipment in the current area, so that the energy storage equipment can dispatch energy from the energy storage equipment in the source node area requested by the energy application through the energy network according to the energy scheduling amount.
  • the energy control device may further include an energy consumption statistics unit 404 and an energy application unit 405.
  • the energy consumption statistics unit 404 can calculate the total energy consumption of the current region in the energy allocation period according to the blockchain information.
  • the energy consumption statistics unit 404 is also capable of counting energy consumption fluctuations within a period or during a week.
  • the energy application unit 405 can determine the amount of energy applied to the public energy storage at the beginning of each energy storage cycle, and analyze the trend of energy consumption according to the energy consumption situation determined by the energy consumption statistics unit 404 to adjust and apply to the public energy storage equipment The energy amount of energy is adjusted. In other embodiments, the applied energy amount may also be adjusted in combination with the subsequent production arrangement.
  • Such energy control equipment can perform unified energy allocation at the beginning of the cycle, thereby taking into account fluctuations in electricity prices, purchasing energy at price troughs, reducing energy purchase costs, adjusting energy supply in combination with the energy consumption of each cycle to achieve energy savings the goal of.
  • the energy control device may further include an assessment unit 406, capable of assessing the energy usage of the current area. For example, for regions with large fluctuations in energy consumption, sudden increase in energy consumption, or mismatch between energy consumption and production, assess whether there are abnormal losses, and urge each region to save energy in the region.
  • an assessment unit 406 capable of assessing the energy usage of the current area. For example, for regions with large fluctuations in energy consumption, sudden increase in energy consumption, or mismatch between energy consumption and production, assess whether there are abnormal losses, and urge each region to save energy in the region.
  • the energy control device includes a memory 501 and a processor 502.
  • the memory 501 may be a magnetic disk, a flash memory, or any other non-volatile storage medium.
  • the memory is configured to store the instructions in the corresponding embodiments of the energy scheduling method above.
  • the processor 502 is coupled to the memory 501 and may be implemented as one or more integrated circuits, such as a microprocessor or a microcontroller.
  • the processor 502 is used to execute instructions stored in the memory, which can facilitate the decentralized scheduling of energy between various regions, and solve the energy shortage problem in some regions while avoiding energy waste in other regions and improving energy utilization. rate.
  • the energy control device 600 includes a memory 601 and a processor 602.
  • the processor 602 is coupled to the memory 601 through a BUS bus 603.
  • the energy control device 600 may also be connected to the external storage device 605 through the storage interface 604 to call external data, and may also be connected to the network or another computer system (not shown) through the network interface 606. I won't go into details here.
  • a computer-readable storage medium stores computer program instructions thereon, which when executed by a processor, implement steps of a method corresponding to an embodiment of an energy scheduling method.
  • a processor executes computer program instructions thereon, which when executed by a processor, implement steps of a method corresponding to an embodiment of an energy scheduling method.
  • the embodiments of the present disclosure may be provided as a method, an apparatus, or a computer program product. Therefore, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code therein. .
  • the energy control devices 712 to 71n may be any one of the above energy control devices, and n is a positive integer.
  • the energy control devices 712 to 71n constitute a blockchain network 71.
  • Each energy control device is connected to the energy storage equipment and energy consumption equipment in the corresponding area, and obtains the energy storage situation and energy consumption situation in real time.
  • the energy storage devices 721-72n in each area constitute the energy network 72, which facilitates the energy dispatching of each energy storage device through the energy network.
  • the energy network 72 may further include energy consuming devices 731-73n.
  • each area may further include a production capacity device (such as a solar panel, etc.), and the generated energy is stored in the energy storage device.
  • each energy control device on the blockchain network can use the blockchain information to perform energy dispatch analysis, which facilitates the implementation of decentralized dispatch of energy between regions, while solving the energy shortage problem in some regions. It can also avoid energy waste in other areas and improve energy efficiency.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, which can be executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.
  • the methods and apparatus of the present disclosure may be implemented in many ways.
  • the methods and devices of the present disclosure may be implemented by software, hardware, firmware or any combination of software, hardware, firmware.
  • the above order of the steps of the method is for illustration only, and the steps of the method of the present disclosure are not limited to the order specifically described above unless otherwise specifically stated.
  • the present disclosure may also be implemented as programs recorded in a recording medium, which programs include machine-readable instructions for implementing the method according to the present disclosure.
  • the present disclosure also covers a recording medium storing a program for executing a method according to the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种能源调度方法、能源控制设备(600、711-71n)和能源系统,涉及能源网络技术领域。能源调度方法包括:能源控制设备(600、711-71n)确定当前区域的剩余能源量和预期能耗(101);根据剩余能源量和预期能耗生成能源调度信息(102);在能源控制设备(600、711-71n)位于的区块链网络(71)上发布包括能源调度信息的区块链信息(103),以便区块链网络(71)上的各个能源控制设备(600、711-71n)根据区块链信息和对应区域的能源使用情况执行能源调度。该方法能够方便能源在各个区域间实现去中心化的调度,在解决部分区域能源紧张问题的同时也能够避免其他区域的能源浪费,提高了能源的利用率。

Description

能源调度方法、能源控制设备和能源系统
相关申请的交叉引用
本申请是以CN申请号为201811067694.5,申请日为2018年9月13日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及能源网络技术领域,特别是一种能源调度方法、能源控制设备和能源系统。
背景技术
目前的电能生成和供给多采用统一调度的方式,由电厂产生电能,在能源网络上调度给不同的区域和用户。
受能耗波动的影响,各个区域对于能源的消耗会随时间变化,相关技术中的供电方式难以应对未知的能耗变化,从而造成在不同的区域和时间段内,能源浪费和能源紧张的情况并存的现象。
发明内容
根据本公开的一些实施例的一个方面,提出一种能源调度方法,包括:能源控制设备确定当前区域的剩余能源量和预期能耗;根据剩余能源量和预期能耗生成能源调度信息;在能源控制设备位于的区块链网络上发布包括能源调度信息的区块链信息,以便区块链网络上的各个能源控制设备根据区块链信息和对应区域的能源使用情况执行能源调度。
在一些实施例中,在剩余能源量小于预期能耗的情况下,能源调度信息为能源输入请求。
在一些实施例中,能源调度方法还包括:在剩余能源量小于预期能耗,且收到包括能源输出请求的区块链信息的情况下:根据预期能耗、剩余能源量和能源输出请求中的能源余量信息确定能源调度目标节点和能源调度量,其中,能源输出请求为剩余能源量大于预期能耗的区域的能源控制设备生成;根据能源调度目标节点和能源调度量生成能源申请请求,并在能源控制设备位于的区块链网络上发布包括能源申请请求 的区块链信息。
在一些实施例中,确定能源调度目标节点和能源调度量包括以下至少一项:在单条能源输出请求中的能源余量信息与剩余能源量之和不小于预期能耗的情况下,确定能源调度目标节点为能源输出请求的源节点;在单条能源输出请求中的能源余量信息与剩余能源量之和均小于预期能耗的情况下,根据多条能源输出请求确定多个能源调度目标节点和针对每个能源调度目标节点的能源调度量;或,在收到的能源输出请求中能源余量信息的总和与剩余能源量之和小于预期能耗的情况下,确定能源调度目标节点为公共储能节点。
在一些实施例中,确定能源调度目标节点和能源调度量还包括:根据能源输出请求中的能源单价,基于最少花费原则确定能源调度目标节点和针对能源调度目标节点的能源调度量。
在一些实施例中,能源调度方法还包括:在剩余能源量小于预期能耗,且在发布包括能源输入请求的区块链信息后的预定时长内,未能收到包括预定输出请求的区块链信息的情况下,确定向公共储能节点申请能源;其中,能源输出请求为剩余能源量大于预期能耗的区域的能源控制设备生成。
在一些实施例中,在剩余能源量大于预期能耗的情况下,能源调度信息为能源输出请求。
在一些实施例中,在剩余能源量大于预期能耗,且收到包括能源输入请求的区块链信息的情况下:能源调度信息为能源输出请求,能源输出请求中包括能源余量信息,其中,能源输入请求为剩余能源量小于预期能耗的区域的能源控制设备生成并发布至区块链网络。
在一些实施例中,能源调度方法还包括:在剩余能源量大于预期能耗,且收到包括能源申请请求的区块链信息的情况下:能源控制设备确定是否与能源申请请求中的能源调度目标节点相匹配,其中,能源申请请求为剩余能源量小于预期能耗的能源控制设备生成,能源申请请求中包括能源调度目标节点和能源调度量;若匹配,则向当前区域的储能设备发送能源输出指令,以便储能设备根据能源调度量,通过能源网络向能源申请请求的源节点区域的储能设备调度能源。
在一些实施例中,能源调度方法还包括:根据区块链信息统计能源调配周期内当前区域的总能耗;根据总能耗调整在下一个能源调配周期开始时向公共储能设备申请的能源量。
在一些实施例中,能源调度方法还包括:根据区块链信息统计能源调配周期内当前区域的总能耗和/或能耗波动;根据总能耗和/或能耗波动考核当前区域的能量使用。
根据本公开的另一些实施例的一个方面,提出一种能源控制设备,包括:信息确定单元,被配置为确定当前区域的剩余能源量和预期能耗;信息生成单元,被配置为根据剩余能源量和预期能耗生成能源调度信息;信息交互单元,被配置为在能源控制设备位于的区块链网络上发布包括能源调度信息的区块链信息,以便区块链网络上的各个能源控制设备根据区块链信息和对应区域的能源使用情况执行能源调度;接收来自区块链网络的区块链信息。
在一些实施例中,在剩余能源量小于预期能耗的情况下,能源调度信息为能源输入请求。
在一些实施例中,信息生成单元还被配置为在剩余能源量小于预期能耗,且信息交互单元收到包括能源输出请求的区块链信息的情况下:根据预期能耗、剩余能源量和能源输出请求中的能源余量信息确定能源调度目标节点和能源调度量,其中,能源输出请求为剩余能源量大于预期能耗的区域的能源控制设备生成;根据能源调度目标节点和能源调度量生成能源申请请求;信息交互单元还被配置为在能源控制设备位于的区块链网络上发布包括能源申请请求的区块链信息。
在一些实施例中,在剩余能源量大于预期能耗的情况下,能源调度信息为能源输出请求。
在一些实施例中,在剩余能源量大于预期能耗,且信息交互单元收到包括能源输入请求的区块链信息的情况下:能源调度信息为能源输出请求,能源输出请求中包括能源余量信息,其中,能源输入请求为剩余能源量小于预期能耗的区域能源控制设备生成并发布至区块链网络。
在一些实施例中,信息生成单元还被配置为在剩余能源量大于预期能耗,且收到包括能源申请请求的区块链信息的情况下:确定是否与能源申请请求中的能源调度目标节点相匹配,其中,能源申请请求为剩余能源量小于预期能耗的能源控制设备生成,能源申请请求中包括能源调度目标节点和能源调度量;若匹配,则生成向当前区域的储能设备发送的能源输出指令,以便储能设备根据能源调度量,通过能源网络向能源申请请求的源节点区域的储能设备调度能源。
在一些实施例中,能源控制设备还包括:能耗统计单元,被配置为根据区块链信息统计能源调配周期内当前区域的总能耗;能源申请单元,被配置为根据总能耗调整 在下一个能源调配周期开始时向公共储能设备申请的能源量。
在一些实施例中,能源控制设备还包括:能耗统计单元,被配置为根据区块链信息统计能源调配周期内当前区域的总能耗和/或能耗波动;考核单元,被配置为根据总能耗和/或能耗波动考核当前区域的能量使用。
根据本公开的又一些实施例的一个方面,提出一种能源控制设备,包括:存储器;以及耦接至存储器的处理器,处理器被配置为基于存储在存储器的指令执行上文中任意一种能源调度方法。
根据本公开的再一些实施例的一个方面,提出一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现上文中任意一种能源调度方法的步骤。
另外,根据本公开的一些实施例的一个方面,提出一种能源系统,包括:区块链网络,由多个上文中任意一种能源控制设备构成,被配置为存储和交互区块链信息,控制能源调度;能源网络,被配置为存储、应用和调度能源。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开的能源调度方法的一些实施例的流程图。
图2为本公开的能源调度方法的另一些实施例的流程图。
图3为本公开的能源调度方法的又一些实施例的流程图。
图4为本公开的能源控制设备的一些实施例的示意图。
图5为本公开的能源控制设备的另一些实施例的示意图。
图6为本公开的能源控制设备的又一些实施例的示意图。
图7为本公开的能源网络的一些实施例的示意图。
具体实施方式
下面通过附图和实施例,对本公开的技术方案做进一步的详细描述。
本公开的能源调度方法的一些实施例的流程图如图1所示。
在步骤101中,能源控制设备确定当前区域的剩余能源量和预期能耗。在一些实 施例中,能源控制设备可以与所在区域的储能设备、耗能设备连接,获取储能设备的剩余电能,并根据耗能设备当前的能耗情况、接下来生产计划等信息预计在接下来的一段时间内、或在一次电能分配周期的剩余时间段内的预期能耗。
在步骤102中,根据剩余能源量和预期能耗生成能源调度信息。在一些实施例中,在剩余能源量小于预期能耗的情况下能源调度信息可以为能源输入请求,以便向其他的区域的储能设备申请能源;在另一些实施例中,在剩余能源量大于预期能耗的情况下能源调度信息可以为能源输出请求,以便向其他区域的储能设备提供能源。
在步骤103中,在能源控制设备位于的区块链网络上发布包括能源调度信息的区块链信息,以便区块链网络上的各个能源控制设备根据区块链信息和对应区域的能源使用情况执行能源调度。在一些实施例中,位于区块链网络上的各个能源控制设备能够接收来自其他节点的区块链信息,解析并存储区块链信息。
通过这样的方法,能够及时确定区域的预期能耗与剩余能源量是否匹配,并上报至区块链网络,区块链网络上的各个能源控制设备均能够利用区块链信息执行能源调度分析,从而方便能源在各个区域间实现去中心化的调度,在解决部分区域能源紧张问题的同时也能够避免其他区域的能源浪费,提高了能源的利用率。
本公开的能源调度方法的另一些实施例的流程图如图2所示,其中,虚线左、右分别由区块链网络中不同的能源控制设备执行。执行左侧步骤的能源控制设备需要能源输入,且执行右侧步骤的能源控制设备能够提供冗余的能量。
在步骤201中,能源控制设备确定当前区域的剩余能源量和预期能耗。
在步骤202中,能源控制设备判断剩余能源量是否小于预期能耗。在确定剩余能源量小于预期能耗的情况下,执行步骤203。在一些实施例中,若确定剩余能源量等于预期能耗,则不执行操作。在一些实施例中,若确定剩余能源量大于预期能耗,能源控制设备可以主动生成能源输出请求并生成区块链信息发布至网络,使得需要能源输入的能源控制设备根据收到的能源输出请求确定能够提供能源的节点;能源控制设备也可以不执行操作,直至收到包括能源输入请求的区块链信息。
在步骤203中,能源控制设备根据剩余能源量和预期能耗生成能源输入请求。
在步骤204中,能源输入请求在区块链网络上发布包括能源输入请求的区块链信息。
在步骤205中,区块链网络上的各个能源控制设备接收、存储并解析区块链信息。当剩余能源量大于预期能耗的能源控制设备收到区块链信息,且确定区块链信息中包 括能源输入请求时,执行步骤206。
在步骤206中,根据剩余能源量和预期能耗生成能源输出请求,能源输出请求中包括能源余量信息。在一些实施例中,能源余量信息=剩余能源量-预期能耗。在一些实施例中,为避免能源的反复调度,储能设备可以留存部分能源备用,则能源余量信息=剩余能源量-预期能耗-留存能源量。留存能源量可以为预定值,也可根据当前能耗、生产工作安排确定。
在步骤207中,在能源控制设备位于的区块链网络上发布包括能源输出请求的区块链信息。
在步骤208中,剩余能源量小于预期能耗的能源控制设备判断是否收到区块链信息,且判断区块链信息中是否包括能源输出请求。若确定收到包括能源输出请求的区块链信息,则执行步骤209。
在步骤209中,根据预期能耗、剩余能源量和能源输出请求中的能源余量信息确定能源调度目标节点和能源调度量。在一些实施例中,总能源调度量=预期能耗-剩余能源量。在一些实施例中,考虑到传输过程中能源损耗的问题,可以使总能源调度量=(预期能耗-剩余能源量)*(102~103)%,从而在避免能源浪费的同时,防止由于传输损耗造成调配能源不足的情况。
在一些实施例中,在单条能源输出请求中的能源余量信息与剩余能源量之和不小于预期能耗的情况下,可以确定能源调度目标节点为该能源输出请求的源节点,向该能源调度目标节点申请调度的能源调度量即为总能源调度量。
在一些实施例中,在单条能源输出请求中的能源余量信息与剩余能源量之和均小于预期能耗,但多条能源输出请求中能源余量信息的总和与剩余能源量之和大于预期能耗的情况下,可以根据多条能源输出请求确定多个能源调度目标节点和针对每个能源调度目标节点的能源调度量,确定对每个能源调度目标节点的能源调度量,对各个能源调度目标节点的能源调度量总和为总能源调度量。
在一些实施例中,为避免通过区域间能源调度无法满足能源需求的情况,可以在能源输出请求中能源余量信息的总和与剩余能源量之和小于预期能耗的情况下,或在发布包括能源输入请求的区块链信息后的预定时长后,未能收到包括能源输出请求的区块链信息的情况下,向公共储能节点申请调度能量。在一些实施例中,公共储能节点可以具有与区块链网络连接的设备,能够通过将与公共储能节点作为能源调度目标节点,生成区块链信息;在另一些实施例中,公共储能节点可独立于区块链网络之外, 能源控制设备根据公共储能节点的地址定向的向公共储能节点发送能源申请请求。
在一些实施例中,各个区域的能源价格可以不同,能源输出请求中可以包括能源单价信息。能源控制设备在确定能源调度目标节点和能源调度量时,可以考虑各个区域的能源单价信息,在可行的方案中选择花费最少的方案进行能源调度。
在一些实施例中,在不考虑能源价格,或能源价格相同的情况下,考虑到调度效率、传输损耗的问题,可以根据区域之间的距离就近调度。
在步骤210中,能源控制设备生成能源申请请求,并在能源控制设备位于的区块链网络上发布包括能源申请请求的区块链信息。在一些实施例中,能源控制设备还可以控制其连接的储能设备准备通过能源网络接收能源调度。
在步骤211中,区块链网络上的各个能源控制设备接收区块链信息。若预期能耗小于剩余能源量的能源控制设备确定收到包括能源申请请求的区块链信息,则执行步骤212。
在步骤212中,能源控制设备判断是否与能源申请请求中的能源调度目标节点相匹配。若匹配,则执行步骤213;若不匹配,则存储区块链信息,不做其他操作。
在步骤213中,向当前区域的储能设备发送能源输出指令,以便储能设备通过能源网络向能源申请请求的源节点区域的储能设备调度符合能源调度量的能源。
通过这样的方法,能够由缺少能源的设备主动通过区块链信息发起请求,进而由各个区域通过区块链网络发布自身提供能源的能力,通过区块链信息交互能源申请情况,网络中各个节点记录能源调度、交易信息,从而在完成交易、避免重复交易的同时,保证交易记录的安全记录、不被篡改,便于区域间结算。
本公开的能源调度方法的又一些实施例的流程图如图3所示。
在步骤301中,调配周期开始时向公共储能设备申请能源。在一些实施例中,以具有多个区域的工厂为例,工厂定期从电网调度能源到公共储能,再分别调度给每个区域。工厂内存在区块链网络,各区域分别具有能源控制设备作为区块链节点接入区块链网络。在一些实施例中,公共储能可以留存部分能源备用。
在步骤302中,能源控制设备确定当前区域的剩余能源量和预期能耗。
在步骤303中,能源控制设备根据剩余能源量和预期能耗生成能源调度信息。
在步骤304中,在能源控制设备位于的区块链网络上发布包括能源调度信息的区块链信息,接收区块链信息并存储。
在步骤305中,能源控制设备根据区块链信息和对应区域的能源使用情况执行能 源调度。在一些实施例中,能源控制设备之间可以采用如图2所示实施例中的方式进行能源调度协商。
在步骤306中,根据区块链信息统计能源调配周期内当前区域的总能耗。在一些实施例中,还可以统计周期内或周期间的能耗波动情况。
在步骤307中,考核当前区域的能量使用。例如,对于耗能波动大、能耗突然增加,或者能耗量与生产量不匹配的区域,考核是否有异常损耗,从而督促各个区域节省本区域的能源。
在步骤308中,调整申请的能源量。在一些实施例中,可以对能源使用量的变化趋势对每个调配周期开始时向公共储能设备申请能源的能源量进行调整。在另一些实施例中,也可以结合接下来的生产安排调节申请的能源量。
通过这样的方法,能够在周期开始时执行能量的统一分配,从而考虑到电价波动的情况,在价格波谷处购置能源,降低能源购置成本;能够利用存储在各个节点的区块链信息进行耗电统计,提高耗电统计结果的可靠性;能够利用统计结果对各个区域的进行考核,且调整能源提供量,使能源的分配更加合理,优化能源使用结构,达到节能的目的。
本公开的能源控制设备的一些实施例的示意图如图4所示。信息确定单元401能够确定当前区域的剩余能源量和预期能耗。在一些实施例中,能源控制设备可以与所在区域的储能设备、耗能设备连接,信息确定单元401获取储能设备的剩余电能,并根据耗能设备当前的能耗情况、根据接下来生产计划等信息预计在接下来的一段时间内、或在一次电能分配周期的剩余时间段内的预期能耗。
信息生成单元402能够根据剩余能源量和预期能耗生成能源调度信息。在一些实施例中,在剩余能源量小于预期能耗的情况下能源调度信息可以为能源输入请求,以便向其他的区域的储能设备申请能源;在另一些实施例中,在剩余能源量大于预期能耗的情况下能源调度信息可以为能源输出请求,以便向其他区域的储能设备提供能源。
信息交互单元403能够在区块链网络上发布包括能源调度信息的区块链信息,以便区块链网络上的各个能源控制设备根据区块链信息和对应区域的能源使用情况执行能源调度。在一些实施例中,位于区块链网络上的各个能源控制设备能够通过各自的信息交互单元403接收来自其他节点的区块链信息,解析并存储区块链信息。
这样的能源控制设备能够及时确定区域的预期能耗与剩余能源量是否匹配,并上 报至区块链网络,区块链网络上的各个能源控制设备均能够利用区块链信息执行能源调度分析,从而方便能源在各个区域间实现去中心化的调度,在解决部分区域能源紧张问题的同时也能够避免其他区域的能源浪费,提高了能源的利用率。
在一些实施例中,信息生成单元402还能够在剩余能源量大于预期能耗,且信息交互单元收到包括能源输入请求的区块链信息的情况下,生成包括能源余量信息的能源输出请求,由信息交互单元403将包括能源输出请求的区块链信息发布至区块链网络,从而实现对能源输入请求的响应,便于发布能源输入请求的能源控制设备确定申请能源的能源调度目标节点。
在一些实施例中,信息生成单元402还能够在剩余能源量小于预期能耗,且信息交互单元403收到包括能源输出请求的区块链信息的情况下,生成能源申请请求。在一些实施例中,生成能源申请请求的方式可以如图2步骤209所示。信息交互单元403在区块链网络上发布包括能源申请请求的区块链信息。
这样的能源控制设备能够根据自身连接的储能、耗能设备的情况,以及收到的区块链信息中记录的其他区域的能源剩余情况生成能源申请请求,从而实现能源在区域之间的去中心化调度,且调度的量符合各个节点的需求。
在一些实施例中,信息生成单元402还能够在信息交互单元403收到包括能源申请请求的区块链信息时确定自身是否与能源申请请求中的能源调度目标节点相匹配。若匹配,则生成向当前区域的储能设备发送的能源输出指令,实现储能设备根据能源调度量,通过能源网络向能源申请请求的源节点区域的储能设备调度能源。
在一些实施例中,如图4所示,能源控制设备还可以包括能耗统计单元404和能源申请单元405。能耗统计单元404能够根据区块链信息统计能源调配周期内当前区域的总能耗。在一些实施例中,能耗统计单元404还能够统计周期内或周期间的能耗波动情况。能源申请单元405能够在每个储能周期开始时确定向公共储能申请的能源量,并根据能耗统计单元404确定的能耗情况,分析能耗的变化趋势对调整向公共储能设备申请能源的能源量进行调整。在另一些实施例中,也可以结合接下来的生产安排调节申请的能源量。
这样的能源控制设备能够在周期开始时执行能量的统一分配,从而考虑到电价波动的情况,在价格波谷处购置能源,降低能源购置成本,结合各个周期的能耗情况调整能源提供量,达到节能的目的。
在一些实施例中,如图4所示,能源控制设备还可以包括考核单元406,能够考 核当前区域的能量使用。例如,对于耗能波动大、能耗突然增加,或者能耗量与生产量不匹配的区域,考核是否有异常损耗,从而督促各个区域节省本区域的能源。
本公开能源控制设备的一些实施例的结构示意图如图5所示。能源控制设备包括存储器501和处理器502。其中:存储器501可以是磁盘、闪存或其它任何非易失性存储介质。存储器用于存储上文中能源调度方法的对应实施例中的指令。处理器502耦接至存储器501,可以作为一个或多个集成电路来实施,例如微处理器或微控制器。该处理器502用于执行存储器中存储的指令,能够方便能源在各个区域间实现去中心化的调度,在解决部分区域能源紧张问题的同时也能够避免其他区域的能源浪费,提高了能源的利用率。
在一些实施例中,还可以如图6所示,能源控制设备600包括存储器601和处理器602。处理器602通过BUS总线603耦合至存储器601。该能源控制设备600还可以通过存储接口604连接至外部存储装置605以便调用外部数据,还可以通过网络接口606连接至网络或者另外一台计算机系统(未标出)。此处不再进行详细介绍。
在该实施例中,通过存储器存储数据指令,再通过处理器处理上述指令,能够方便能源在各个区域间实现去中心化的调度,在解决部分区域能源紧张问题的同时也能够避免其他区域的能源浪费,提高了能源的利用率。
在另一些实施例中,一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现能源调度方法对应实施例中的方法的步骤。本领域内的技术人员应明白,本公开的实施例可提供为方法、装置、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开的能源网络的一些实施例的示意图如图7所示。能源控制设备712~71n可以为上文中任意一种能源控制设备,n为正整数。能源控制设备712~71n构成区块链网络71。每个能源控制设备与对应区域的储能设备、耗能设备连接,实时获取储能情况和能耗情况。在一些实施例中,各个区域的储能设备721~72n构成能源网络72,方便各个储能设备通过能源网络进行能源调度。在另一些实施例中,能源网络72中还可以包括耗能设备731~73n。在一些实施例中,各个区域中还可以包括产能设备(如太阳能板等),产生的能源存储于储能设备中。
这样的能源网络中,区块链网络上的各个能源控制设备均能够利用区块链信息执行能源调度分析,方便能源在各个区域间实现去中心化的调度,在解决部分区域能源紧张问题的同时也能够避免其他区域的能源浪费,提高了能源的利用率。
本公开是参照根据本公开实施例的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
至此,已经详细描述了本公开。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
可能以许多方式来实现本公开的方法以及装置。例如,可通过软件、硬件、固件或者软件、硬件、固件的任何组合来实现本公开的方法以及装置。用于所述方法的步骤的上述顺序仅是为了进行说明,本公开的方法的步骤不限于以上具体描述的顺序,除非以其它方式特别说明。此外,在一些实施例中,还可将本公开实施为记录在记录介质中的程序,这些程序包括用于实现根据本公开的方法的机器可读指令。因而,本公开还覆盖存储用于执行根据本公开的方法的程序的记录介质。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解: 依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (22)

  1. 一种能源调度方法,包括:
    能源控制设备确定当前区域的剩余能源量和预期能耗;
    根据所述剩余能源量和所述预期能耗生成能源调度信息;
    在所述能源控制设备位于的区块链网络上发布包括所述能源调度信息的区块链信息,以便所述区块链网络上的各个能源控制设备根据所述区块链信息和对应区域的能源使用情况执行能源调度。
  2. 根据权利要求1所述的能源调度方法,其中,在所述剩余能源量小于预期能耗的情况下,所述能源调度信息为能源输入请求。
  3. 根据权利要求2所述的能源调度方法,还包括:
    在所述剩余能源量小于预期能耗,且收到包括能源输出请求的区块链信息的情况下:
    根据所述预期能耗、所述剩余能源量和所述能源输出请求中的能源余量信息确定能源调度目标节点和能源调度量,其中,所述能源输出请求为剩余能源量大于预期能耗的区域的能源控制设备生成;
    根据所述能源调度目标节点和所述能源调度量生成能源申请请求,并在所述能源控制设备位于的区块链网络上发布包括所述能源申请请求的区块链信息。
  4. 根据权利要求3所述的能源调度方法,其中,所述确定能源调度目标节点和能源调度量包括以下至少一项:
    在单条所述能源输出请求中的能源余量信息与所述剩余能源量之和不小于所述预期能耗的情况下,确定所述能源调度目标节点为所述能源输出请求的源节点;
    在单条所述能源输出请求中的能源余量信息与所述剩余能源量之和均小于所述预期能耗的情况下,根据多条所述能源输出请求确定多个能源调度目标节点和针对每个能源调度目标节点的能源调度量;
    或,
    在收到的能源输出请求中能源余量信息的总和与所述剩余能源量之和小于所述预期能耗的情况下,确定所述能源调度目标节点为公共储能节点。
  5. 根据权利要求4所述的能源调度方法,其中,所述确定能源调度目标节点和能 源调度量还包括:
    根据能源输出请求中的能源单价,基于最少花费原则确定能源调度目标节点和针对所述能源调度目标节点的能源调度量。
  6. 根据权利要求2所述的能源调度方法,还包括:
    在所述剩余能源量小于预期能耗,且在发布包括所述能源输入请求的区块链信息后的预定时长内,未能收到包括所述预定输出请求的区块链信息的情况下,确定向公共储能节点申请能源;
    其中,所述能源输出请求为剩余能源量大于预期能耗的区域的能源控制设备生成。
  7. 根据权利要求1所述的能源调度方法,其中,在所述剩余能源量大于预期能耗的情况下,所述能源调度信息为能源输出请求。
  8. 根据权利要求1所述的能源调度方法,其中,
    在所述剩余能源量大于预期能耗,且收到包括能源输入请求的区块链信息的情况下:
    所述能源调度信息为能源输出请求,所述能源输出请求中包括能源余量信息,其中,所述能源输入请求为剩余能源量小于预期能耗的区域的能源控制设备生成并发布至所述区块链网络。
  9. 根据权利要求7或8所述的能源调度方法,还包括:
    在所述剩余能源量大于预期能耗,且收到包括能源申请请求的区块链信息的情况下:
    所述能源控制设备确定是否与所述能源申请请求中的能源调度目标节点相匹配,其中,所述能源申请请求为剩余能源量小于预期能耗的能源控制设备生成,所述能源申请请求中包括能源调度目标节点和能源调度量;
    若匹配,则向当前区域的储能设备发送能源输出指令,以便所述储能设备根据所述能源调度量,通过能源网络向所述能源申请请求的源节点区域的储能设备调度能源。
  10. 根据权利要求1所述的能源调度方法,还包括:
    根据区块链信息统计能源调配周期内当前区域的总能耗;
    根据所述总能耗调整在下一个能源调配周期开始时向公共储能设备申请的能源量。
  11. 根据权利要求1所述的能源调度方法,还包括:
    根据区块链信息统计能源调配周期内当前区域的总能耗和/或能耗波动;
    根据所述总能耗和/或所述能耗波动考核当前区域的能量使用。
  12. 一种能源控制设备,包括:
    信息确定单元,被配置为确定当前区域的剩余能源量和预期能耗;
    信息生成单元,被配置为根据所述剩余能源量和所述预期能耗生成能源调度信息;
    信息交互单元,被配置为在能源控制设备位于的区块链网络上发送包括所述能源调度信息的区块链信息,以便所述区块链网络上的各个能源控制设备根据所述区块链信息和对应区域的能源使用情况执行能源调度;接收来自区块链网络的区块链信息。
  13. 根据权利要求12所述的能源控制设备,其中,在所述剩余能源量小于预期能耗的情况下,所述能源调度信息为能源输入请求。
  14. 根据权利要求13所述的能源控制设备,其中,所述信息生成单元还被配置为在所述剩余能源量小于预期能耗,且所述信息交互单元收到包括能源输出请求的区块链信息的情况下:
    根据所述预期能耗、所述剩余能源量和所述能源输出请求中的能源余量信息确定能源调度目标节点和能源调度量,其中,所述能源输出请求为剩余能源量大于预期能耗的区域的能源控制设备生成;
    根据所述能源调度目标节点和所述能源调度量生成能源申请请求;
    所述信息交互单元还被配置为在所述能源控制设备位于的区块链网络上发送包括所述能源申请请求的区块链信息。
  15. 根据权利要求12所述的能源控制设备,其中,在所述剩余能源量大于预期能耗的情况下,所述能源调度信息为能源输出请求。
  16. 根据权利要求12或15所述的能源控制设备,其中,
    在所述剩余能源量大于预期能耗,且所述信息交互单元收到包括能源输入请求的区块链信息的情况下:
    所述能源调度信息为能源输出请求,所述能源输出请求中包括能源余量信息,其中,所述能源输入请求为剩余能源量小于预期能耗的区域能源控制设备生成并发布至所述区块链网络。
  17. 根据权利要求15或16所述的能源控制设备,其中,所述信息生成单元还被配置为在所述剩余能源量大于预期能耗,且收到包括能源申请请求的区块链信息的情况下:
    确定是否与所述能源申请请求中的能源调度目标节点相匹配,其中,所述能源申请请求为剩余能源量小于预期能耗的能源控制设备生成,所述能源申请请求中包括能源调度目标节点和能源调度量;
    若匹配,则生成向当前区域的储能设备发送的能源输出指令,以便所述储能设备根据所述能源调度量,通过能源网络向所述能源申请请求的源节点区域的储能设备调度能源。
  18. 根据权利要求12所述的能源控制设备,还包括:
    能耗统计单元,被配置为根据区块链信息统计能源调配周期内当前区域的总能耗;
    能源申请单元,被配置为根据所述总能耗调整在下一个能源调配周期开始时向公共储能设备申请的能源量。
  19. 根据权利要求12所述的能源控制设备,还包括:
    能耗统计单元,被配置为根据区块链信息统计能源调配周期内当前区域的总能耗和/或能耗波动;
    考核单元,被配置为根据所述总能耗和/或所述能耗波动考核当前区域的能量使用。
  20. 一种能源控制设备,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行如权利要求1至11任一项所述的方法。
  21. 一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现权利要求1至11任意一项所述的方法的步骤。
  22. 一种能源系统,包括:
    区块链网络,由多个权利要求12~20任意一项所述的能源控制设备构成,被配置为存储和交互区块链信息,控制能源调度;
    能源网络,被配置为存储、应用和调度能源。
PCT/CN2018/121501 2018-09-13 2018-12-17 能源调度方法、能源控制设备和能源系统 WO2020052134A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811067694.5 2018-09-13
CN201811067694.5A CN109066691B (zh) 2018-09-13 2018-09-13 能源调度方法、能源控制设备和能源系统

Publications (1)

Publication Number Publication Date
WO2020052134A1 true WO2020052134A1 (zh) 2020-03-19

Family

ID=64761519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121501 WO2020052134A1 (zh) 2018-09-13 2018-12-17 能源调度方法、能源控制设备和能源系统

Country Status (2)

Country Link
CN (1) CN109066691B (zh)
WO (1) WO2020052134A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110276544A (zh) * 2019-06-19 2019-09-24 华北电力大学(保定) 基于区块链的多元信息交互综合能源服务系统及方法
CN111382905A (zh) * 2020-03-04 2020-07-07 湖南城市学院 一种综合利用自然能源的能源利用系统及方法
CN111598430A (zh) * 2020-05-13 2020-08-28 国网山东省电力公司平邑县供电公司 一种智能电网的跨区域协调信息处理方法和装置
CN112925228A (zh) * 2021-02-04 2021-06-08 柴冬梅 一种南水北调智能控制供水系统及调度方法
CN114596693A (zh) * 2022-03-10 2022-06-07 华晨宝马汽车有限公司 用于能源监控和管理的方法、系统、介质和程序产品
CN117495058B (zh) * 2023-12-29 2024-04-19 浙江浙能能源服务有限公司 一种智能调节的能源调度控制方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108011370A (zh) * 2017-12-27 2018-05-08 华北电力大学(保定) 一种基于全球能源区块链的分布式能源调度交易方法
CN108092412A (zh) * 2018-02-02 2018-05-29 珠海格力电器股份有限公司 能源信息处理方法及其设备、能源互联网系统
CN108335209A (zh) * 2018-04-15 2018-07-27 珠海市华清创新科技有限公司 一种包括供应端索引区块链的分布式能源系统
CN108400590A (zh) * 2018-03-07 2018-08-14 四川省华森新科信息有限公司 一种基于区块链和云电源的微能网生态系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359701A (zh) * 2017-07-11 2017-11-17 无锡清盛电力电子有限公司 一种电能路由器测控合并单元
CN107797532A (zh) * 2017-09-06 2018-03-13 珠海格力电器股份有限公司 能源控制装置、交互装置、方法、用电系统及存储介质
CN107707025A (zh) * 2017-10-12 2018-02-16 珠海格力电器股份有限公司 需求侧能源互联系统、能源互联控制系统
CN108075493B (zh) * 2017-12-28 2020-05-05 上海唯链信息科技有限公司 一种基于区块链技术的分布式能源系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108011370A (zh) * 2017-12-27 2018-05-08 华北电力大学(保定) 一种基于全球能源区块链的分布式能源调度交易方法
CN108092412A (zh) * 2018-02-02 2018-05-29 珠海格力电器股份有限公司 能源信息处理方法及其设备、能源互联网系统
CN108400590A (zh) * 2018-03-07 2018-08-14 四川省华森新科信息有限公司 一种基于区块链和云电源的微能网生态系统
CN108335209A (zh) * 2018-04-15 2018-07-27 珠海市华清创新科技有限公司 一种包括供应端索引区块链的分布式能源系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI GANG ET AL: "Energy Management Analysis and Scheme Design of Microgrid Based on Blockchain", ELECTRIC POWER CONSTRUCTION, no. 2, 1 February 2018 (2018-02-01), pages 43 - 49, ISSN: 1000-7229 *

Also Published As

Publication number Publication date
CN109066691A (zh) 2018-12-21
CN109066691B (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
WO2020052134A1 (zh) 能源调度方法、能源控制设备和能源系统
CN108830110B (zh) 基于区块链的能源交互装置、能源互联网系统和交互方法
US9020800B2 (en) Method and apparatus for controlling energy services based on market data
JP2015510199A5 (zh)
CN105074664A (zh) 成本最小化的任务调度程序
CN110544112B (zh) 一种考虑可再生能源的区域调频市场出清的方法及装置
CN108132839B (zh) 一种资源调度方法及装置
US11789082B2 (en) Systems and method for managing dispatch and lifecycle of energy storage systems on an electrical grid, including management of energy storage systems for provisioning of multiple services
CN110020742A (zh) 一种工业用户源荷储需求响应优化方法及设备
Lipari et al. A real-time commercial aggregator for distributed energy resources flexibility management
US20220271535A1 (en) Distributed ledger for transacting with grid constraints to ensure grid stability
CN113793102A (zh) 基于平台的库存管理方法和装置
JP5835675B2 (ja) 小口電力の集約売買支援システムおよび小口電力の集約売買支援方法
Guo et al. Energy management of Internet data centers in multiple local energy markets
JP2023508785A (ja) 2層市場の発電・消費電力バランスに適用する繋がり方法及びシステム
US9979191B2 (en) Power control method, device and system for instigating a power control based on the examined allocation
CN115702429A (zh) 资源管理方法和系统
CN110648164A (zh) 一种节点边际电价区间的确定方法和装置
Alizadeh et al. Scalable model predictive control of demand for ancillary services
KR102197767B1 (ko) 스마트 시티에서 신재생 에너지와 전기자동차 충전의 결합
CN114445223A (zh) 一种基于区块链的电力需求响应交易方法及系统
CN111242383A (zh) 一种基于新能源优先消纳的调度决策优化调整方法及系统
CN110362410A (zh) 基于离线应用的资源控制方法、系统、设备及存储介质
CN117674300B (zh) 虚拟电厂资源调度方法、装置、终端设备以及存储介质
Zhang et al. Optimal bidding strategy for data center aggregators considering spatio-temporal transfer characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933144

Country of ref document: EP

Kind code of ref document: A1