WO2020052011A1 - Mécanisme de refroidissement de moteur à grande vitesse pour compresseur d'air de pile à combustible - Google Patents

Mécanisme de refroidissement de moteur à grande vitesse pour compresseur d'air de pile à combustible Download PDF

Info

Publication number
WO2020052011A1
WO2020052011A1 PCT/CN2018/112020 CN2018112020W WO2020052011A1 WO 2020052011 A1 WO2020052011 A1 WO 2020052011A1 CN 2018112020 W CN2018112020 W CN 2018112020W WO 2020052011 A1 WO2020052011 A1 WO 2020052011A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
end cover
impeller
thrust
cooling
Prior art date
Application number
PCT/CN2018/112020
Other languages
English (en)
Chinese (zh)
Inventor
王帅
张宏杰
张前
贾晓光
李晓彤
马存
Original Assignee
石家庄金士顿轴承科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石家庄金士顿轴承科技有限公司 filed Critical 石家庄金士顿轴承科技有限公司
Publication of WO2020052011A1 publication Critical patent/WO2020052011A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the invention belongs to the technical field of power equipment and relates to a high-speed motor cooling mechanism for a fuel cell air compressor.
  • the fuel cell air compressor for vehicles is driven by a high-speed motor.
  • the prerequisite for improving the service life is to meet the optimal applicable temperature requirements of the stator and rotor of the motor.
  • High-speed motors have the advantages of small size and high power density, but they also cause problems of high heat generation and difficult heat dissipation.
  • the temperature of the motor directly affects the service life of the motor.
  • Reasonable cooling method and cooling structure guarantee the life of the motor.
  • the high-speed permanent magnet motor has a gap of 0.5 to 2 mm between the stator and the rotor.
  • the motor stator uses cooling water arranged inside the motor case to reduce the temperature.
  • the traditional water cooling method is basically the cooling of the stator, which has little effect on the rotor, resulting in a high temperature of the rotor and a decrease in the efficiency of the motor.
  • the invention patent application with publication number CN102094840 A discloses a blower for a fuel cell vehicle.
  • the blower includes an air flow groove and a cooling water channel formed in a high-speed motor housing to improve cooling efficiency and reduce shaft load. Improve durability.
  • the impeller produces high-pressure, high-temperature air. Most of the gas is supplied to the fuel cell through the volute. Part of the air leaked from the labyrinth seal on the left end of the impeller flows through the gap between the bearing seat and the stator and rotor of the motor, and is finally discharged through the exhaust hole on the end face of the bearing end cover. . Because the air is compressed when it generates heat. The higher the pressure ratio, the higher the air temperature rise and the worse the cooling effect.
  • This structure is not suitable for a fuel cell system with an outlet pressure ratio higher than 2.0.
  • the object of the present invention is to provide a high-speed motor cooling mechanism for a fuel cell air compressor, in order to optimize the cooling mechanism of the motor, realize cooling of the rotor portion of the motor, improve the overall cooling effect of the high-speed motor for a fuel cell air compressor, and improve fuel Battery air compressor's stability and extended service life.
  • the technical solution of the present invention is: a high-speed motor cooling mechanism for a fuel cell air compressor, which includes a casing, a left-side casing, an impeller, a volute, an air bearing, an air-cooled impeller, a motor rotor, and a stator.
  • the right side of the motor is provided with an impeller and a right bearing end cover.
  • the right bearing end cover is installed at the right end of the casing.
  • the impeller is installed between the volute and the right bearing end cover.
  • the impeller is coaxial with the rotor.
  • the left side of the motor is provided with a thrust bearing seat, a thrust disk and a left bearing end cover.
  • the left bearing end cover is installed at the left end of the casing.
  • Thrust air bearings are respectively provided between the thrust bearing seat and the thrust disk and between the thrust disk and the left bearing end cover. There is a radial direction between the left bearing end cover and the rotor and between the right bearing end cover and the rotor.
  • the cooling mechanism is an active air-cooled heat dissipation mechanism.
  • the active air-cooled heat dissipation mechanism includes an air inlet, an air-cooled impeller, and an air outlet.
  • the air inlet is located on the left side of the casing, and the air outlet is located on the right side of the casing.
  • the air-cooled impeller is the same as the rotor.
  • the shaft is installed between the left housing and the thrust bearing seat.
  • the thrust bearing seat and the left bearing end cover are provided with air-cooled channels.
  • the air-cooled impeller rotates and blows air, and the cooling air passes through the air inlet, the air-cooled impeller, the air-cooled channel of the thrust bearing seat, the thrust disk, the air-cooled channel of the left bearing end cover, the gap between the rotor and the stator, and the exhaust air. It is vented through the port to actively cool the heat inside the motor.
  • Both thrust air bearings and radial air bearings are dynamic air bearings.
  • the casing is provided with a water cooling channel, and the water cooling channel is arranged in the axial direction.
  • the two ends of the water cooling channel form a circulating circuit through the left bearing end cover and the right bearing seat end cover. Sealing rings are installed on the connection surfaces of the water cooling channel and the right bearing end cover and the left bearing end cover.
  • the motor is provided with an air purifier, and the air inlet is connected with the air purifier.
  • the air-cooled impeller is a high specific speed centrifugal impeller.
  • the high-speed motor for the fuel cell air compressor of the present invention adds an active air-cooling heat dissipation mechanism, and uses an air-cooled impeller installed coaxially with the rotor to suck in external cold air through an air inlet on the left casing of the motor, and the cooling air passes through the thrust bearing.
  • the air-cooled channel of the seat, the thrust disk, the air-cooled channel of the left bearing end cover, and the gap between the stator rotor and the right bearing end cover are exhausted to the outside through the air outlet on the right side of the motor casing, thereby achieving the cooling of the motor rotor.
  • the water-cooled channel inside the motor casing is formed by the serpentine circuit formed by the bearing housing end cover and the seal ring, which improves the cooling water capacity in the motor casing, and the cooling effect is better than the circumferential water channel of the traditional structure.
  • FIG. 1 is a schematic structural diagram of a high-speed motor for a fuel cell air compressor according to the present invention.
  • 1-air inlet 2-air-cooled impeller, 3-thrust air bearing, 4-radial air bearing, 5-rotor, 6-stator, 7-exhaust air outlet, 8-impeller, 9-chassis
  • 10 Water cooling channel
  • 11 Left housing
  • 12 Thrust bearing seat
  • 13 Thrust plate
  • 14 Left bearing end cover
  • 15 Air-cooled channel
  • 16 Right bearing end cover
  • 17 Volute housing
  • 18 Air-cooled aisle.
  • the high-speed motor cooling mechanism for a fuel cell air compressor is shown in FIG. 1, and includes a casing 9, a left-side casing 11, a volute 17, a rotor 5, and a stator 6.
  • An impeller 8 and a right bearing end cover 16 are provided on the right side of the motor.
  • the right bearing end cover is bolted to the right end of the casing.
  • the impeller 8 is installed between the volute and the right bearing end cover.
  • the impeller is coaxial with the rotor.
  • the left side of the motor is provided with a thrust bearing seat 12, a thrust plate 13 and a left bearing end cover 14, and the left bearing end cover is fixedly installed at the left end of the casing with bolts.
  • a thrust air bearing 3 is respectively provided between the thrust bearing seat and the thrust disc and between the thrust disc and the left bearing end cover.
  • the thrust air bearing is a dynamic pressure air bearing.
  • Radial air bearings 4 are provided between the left bearing end cover and the rotor and between the right bearing end cover and the rotor.
  • the radial air bearings are dynamic pressure air bearings.
  • the cooling mechanism includes an active air cooling mechanism and a water cooling mechanism.
  • the active air cooling mechanism includes an air inlet 1, an air-cooled impeller 2, an exhaust port 7, and an air purifier.
  • the air-cooled impeller is a centrifugal impeller.
  • the air inlet is located on the left casing 11 and the air exhaust is located on the right side of the casing.
  • the air-cooled impeller and the rotor are coaxially installed between the left casing and the thrust bearing seat.
  • the thrust bearing seat and the left bearing end cover are provided with air-cooled channels 15 for passing cooling air.
  • the water-cooling heat-dissipating mechanism includes a water-cooling channel 10 arranged along the axial direction of the casing 9. The two ends of the water-cooling channel form a circulating circuit through the left bearing end cover 14 and the right bearing seat end cover 16.
  • Air-cooled channel 18 Air-cooled channel 18.
  • the air inlet 1 is connected to an air purifier, and air-cooled with clean air to prevent dust from blocking the air-cooled aisle.
  • the air cooling process is as follows: the cooling air is generated by the rotation of the air-cooled impeller, and the cooling air passes through the air inlet of the air inlet, the air-cooled impeller, the air-cooled channel of the thrust bearing seat, the thrust disk, the air-cooled channel of the left bearing end cover, the rotor and The gap between the stators, the right bearing end cover to the exhaust port is discharged through the exhaust port, and the interior of the motor is actively cooled by heat.
  • the water cooling channel 10 inside the motor casing 1 is processed by the drawing process of aluminum profiles.
  • the two ends of the water cooling channel are formed by a serpentine circuit formed by a bearing seat end cover and a seal ring, which can increase the cooling water capacity in the motor casing and reduce the cooling effect. Good, at the same time, it has the characteristics of strong casing strength, high processing efficiency and low rejection rate.
  • the high-speed permanent magnet motor and dynamic pressure air bearing support the compressor's speed range from 80,000 to 180,000 rpm, which effectively improves the aerodynamic efficiency and air volume adjustment range, ensuring that sufficient and stable air sources are provided for the fuel cell under extreme conditions.
  • the power range of high-speed motors ranges from 5 to 15 kW, the blower pressure ratio is 2 to 2.5, and the flow range is 50 to 120 g / s. At the same time, the overall weight of the air compressor is reduced.
  • the cooling method adopted by the present invention is air cooling and water cooling, the cooling effect is more effective, the overall cooling effect of the high-speed motor for a fuel cell air compressor is improved, the stability of the fuel cell air compressor is improved, and it is beneficial to extend the high-speed motor Life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne un mécanisme de refroidissement de moteur à grande vitesse destiné à un compresseur d'air de pile à combustible, comprenant un boîtier (9), un boîtier latéral gauche (11), une roue (8), une volute (17), des paliers à air (3, 4), une roue de refroidissement d'air (2), un rotor (5), un stator (6), un couvercle d'extrémité de palier droit (16), un siège de palier de butée (12), un disque de poussée (13) et un couvercle d'extrémité de palier gauche (14). Le mécanisme de refroidissement est un mécanisme de dissipation de chaleur par refroidissement d'air actif et comprend une entrée d'air (1), la roue de refroidissement d'air (2) et une sortie d'air (7) ; l'entrée d'air (1) est située sur le boîtier latéral gauche (11), et la sortie d'air (7) est située sur le côté droit du boîtier (9) ; la roue de refroidissement d'air (2) est coaxiale au rotor (5) et est montée entre le boîtier latéral gauche (11) et le siège de palier de butée (12) ; de l'air de refroidissement passe à travers l'entrée d'air (1), la roue de refroidissement d'air (2), un canal de trou de refroidissement d'air (15) du siège de palier de butée (12), le disque de poussée (13), le canal de trou de refroidissement d'air du couvercle d'extrémité de palier gauche (14), un espace entre le rotor (5) et le stator (6), et la sortie d'air (7) pour être évacué, réalisant ainsi une dissipation de chaleur par refroidissement d'air actif à l'intérieur d'un moteur. L'agencement supplémentaire du mécanisme de dissipation de chaleur par refroidissement d'air actif permet de réaliser le refroidissement du rotor du moteur, d'améliorer l'effet de refroidissement global et la stabilité du moteur à grande vitesse pour le compresseur, et de prolonger la durée de vie.
PCT/CN2018/112020 2018-09-10 2018-10-26 Mécanisme de refroidissement de moteur à grande vitesse pour compresseur d'air de pile à combustible WO2020052011A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811048250.7A CN109245431A (zh) 2018-09-10 2018-09-10 一种燃料电池空气压缩机用高速电机冷却机构
CN201811048250.7 2018-09-10

Publications (1)

Publication Number Publication Date
WO2020052011A1 true WO2020052011A1 (fr) 2020-03-19

Family

ID=65067676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112020 WO2020052011A1 (fr) 2018-09-10 2018-10-26 Mécanisme de refroidissement de moteur à grande vitesse pour compresseur d'air de pile à combustible

Country Status (2)

Country Link
CN (1) CN109245431A (fr)
WO (1) WO2020052011A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230257925A1 (en) * 2018-08-30 2023-08-17 Whirlpool Corporation Motor assembly for a laundry treating appliance

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111486105B (zh) * 2019-01-29 2022-04-29 青岛海尔智能技术研发有限公司 一种离心式压缩机和热泵系统
CN111486109A (zh) * 2019-01-29 2020-08-04 青岛海尔智能技术研发有限公司 离心压缩机、热泵系统
CN110247504A (zh) * 2019-05-31 2019-09-17 佛山特博科技有限公司 一种用于氢燃料电池双冷式超高速离心空压机电机总装
CN110149024B (zh) * 2019-07-08 2024-04-05 泉州市华德机电设备有限公司 一种高速电机自抽热冷却结构
CN113202820A (zh) * 2021-04-30 2021-08-03 蜂巢蔚领动力科技(江苏)有限公司 一种燃料电池空气压缩机空气冷却和密封系统
CN113417869A (zh) * 2021-05-28 2021-09-21 海拓宾未来工业集团有限公司 一种空气悬浮式低压纯无油离心压缩机
CN114370426B (zh) * 2021-07-02 2022-12-02 鑫磊压缩机股份有限公司 一种组合式叶轮空压机
CN113757136B (zh) * 2021-09-09 2023-08-08 鑫磊压缩机股份有限公司 一种磁悬浮多级压缩机的散热系统
CN114017365A (zh) * 2021-11-12 2022-02-08 海南极锐浩瀚动力系统科技有限公司 具有封闭式定子的燃料电池用高速空气悬浮压缩机、燃料电池系统及车辆
CN114370425B (zh) * 2021-11-22 2024-02-27 鑫磊压缩机股份有限公司 一种离心空压机组合叶轮结构
CN114370431A (zh) * 2021-11-22 2022-04-19 鑫磊压缩机股份有限公司 一种空压机散热结构
CN114370416A (zh) * 2021-12-27 2022-04-19 广州市昊志机电股份有限公司 一种空压机和燃料电池系统
CN114922864B (zh) * 2022-06-02 2024-01-19 河北金士顿科技有限责任公司 空气悬浮高速离心鼓风机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1703818A (zh) * 2002-10-28 2005-11-30 瓦莱奥电机设备公司 集成在发电机或发电-起动器的后部的功率电子设备的冷却装置
CN203104215U (zh) * 2013-01-06 2013-07-31 宁波安信数控技术有限公司 一种适用多种冷却方式的电机
CN103326512A (zh) * 2013-05-16 2013-09-25 西安交通大学 一种超高速永磁电机驱动的离心式空气压缩机冷却结构
CN204947803U (zh) * 2015-06-30 2016-01-06 上海熊猫机械(集团)有限公司 一种风冷和水冷综合式冷却电机机构
CN205841269U (zh) * 2016-07-26 2016-12-28 石家庄金士顿轴承科技有限公司 一种离心式鼓风机的风冷结构
CN207426878U (zh) * 2017-10-20 2018-05-29 比亚迪股份有限公司 驱动电机和具有其的车辆
CN207559750U (zh) * 2017-10-25 2018-06-29 石家庄金士顿轴承科技有限公司 一种高速永磁电机直联离心鼓风机降温装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1703818A (zh) * 2002-10-28 2005-11-30 瓦莱奥电机设备公司 集成在发电机或发电-起动器的后部的功率电子设备的冷却装置
CN203104215U (zh) * 2013-01-06 2013-07-31 宁波安信数控技术有限公司 一种适用多种冷却方式的电机
CN103326512A (zh) * 2013-05-16 2013-09-25 西安交通大学 一种超高速永磁电机驱动的离心式空气压缩机冷却结构
CN204947803U (zh) * 2015-06-30 2016-01-06 上海熊猫机械(集团)有限公司 一种风冷和水冷综合式冷却电机机构
CN205841269U (zh) * 2016-07-26 2016-12-28 石家庄金士顿轴承科技有限公司 一种离心式鼓风机的风冷结构
CN207426878U (zh) * 2017-10-20 2018-05-29 比亚迪股份有限公司 驱动电机和具有其的车辆
CN207559750U (zh) * 2017-10-25 2018-06-29 石家庄金士顿轴承科技有限公司 一种高速永磁电机直联离心鼓风机降温装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230257925A1 (en) * 2018-08-30 2023-08-17 Whirlpool Corporation Motor assembly for a laundry treating appliance

Also Published As

Publication number Publication date
CN109245431A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2020052011A1 (fr) Mécanisme de refroidissement de moteur à grande vitesse pour compresseur d'air de pile à combustible
WO2021114606A1 (fr) Moteur de traction à aimant permanent haute-puissance refroidi à l'air et à l'eau ayant une structure d'accrochage
CN106655596A (zh) 一种内外双循环的全封闭电机自通风冷却结构
CN103441612A (zh) 一种磁悬浮永磁同步大功率高速风机
CN113381530A (zh) 一种全封闭双循环风冷电机结构
CN110594170B (zh) 离心式压缩机和氢燃料电池系统
JP2015031238A (ja) プロペラファン式送風機/発電機
CN112943436B (zh) 一种风道式冷却变频机组及其布局方法
CN212935650U (zh) 一种燃料电池离心式空压机冷却结构
CN110768414A (zh) 一种永磁电机的冷却结构
EP3440328A1 (fr) Dispositif de chargement électrique à refroidissement de rotor
CN107086713B (zh) 一种高效散热的风冷定转子电机
KR102157459B1 (ko) 고효율 터보송풍기
CN116526753B (zh) 一种具有复合散热方式的磁悬浮电机及磁悬浮鼓风机
CN203482014U (zh) 一种磁悬浮永磁同步大功率高速风机
CN218335566U (zh) 一种风水冷磁悬浮电机及具有其的风机
CN112994323A (zh) 电机轴承冷却结构
CN112713716B (zh) 一种设有内外冷却风路的封闭式电机及电机机座
CN104868656A (zh) 永磁电机
CN213981357U (zh) 一种双极离心空压机冷却系统
CN214887794U (zh) 一种高速离心式压缩机
CN220706053U (zh) 一种具有散热结构且推力后置的磁悬浮鼓风机机头
CN215990422U (zh) 空压机用风冷却单元、空压机及氢燃料电池系统
CN214154274U (zh) 风冷电主轴结构
CN215646498U (zh) 一种高安全性能的磁悬浮电机机壳

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933391

Country of ref document: EP

Kind code of ref document: A1