WO2020051961A1 - 变压器模拟系统及整定值模拟测量方法 - Google Patents

变压器模拟系统及整定值模拟测量方法 Download PDF

Info

Publication number
WO2020051961A1
WO2020051961A1 PCT/CN2018/109164 CN2018109164W WO2020051961A1 WO 2020051961 A1 WO2020051961 A1 WO 2020051961A1 CN 2018109164 W CN2018109164 W CN 2018109164W WO 2020051961 A1 WO2020051961 A1 WO 2020051961A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
oil pipe
pipe
branch
transformer
Prior art date
Application number
PCT/CN2018/109164
Other languages
English (en)
French (fr)
Inventor
莫文雄
王勇
黄青丹
宋浩永
陈于晴
王炜
李助亚
赵崇智
刘静
裴利强
张亚茹
何彬彬
吴培伟
徐钦
曾慧
Original Assignee
广州供电局有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州供电局有限公司 filed Critical 广州供电局有限公司
Priority to EP18914931.3A priority Critical patent/EP3650874B1/en
Priority to US16/608,011 priority patent/US11309703B2/en
Publication of WO2020051961A1 publication Critical patent/WO2020051961A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • G01R31/3278Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches of relays, solenoids or reed switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H6/00Emergency protective circuit arrangements responsive to undesired changes from normal non-electric working conditions using simulators of the apparatus being protected, e.g. using thermal images
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2841Gas in oils, e.g. hydrogen in insulating oils

Definitions

  • the present invention relates to power grid testing equipment, and in particular, to a transformer simulation system and a method for setting value simulation measurement.
  • Heavy gas protection is the main protection for the internal fault of the transformer.
  • the insulation material is decomposed due to the arc and a large amount of gas is generated, which flows from the fuel tank to the oil pillow through the gas relay.
  • the oil flow speed reaches the setting Value, heavy gas turns on protection action.
  • the present invention overcomes the shortcomings of the prior art, and provides a transformer simulation system and a setting value simulation measurement method for determining a setting value of a gas relay.
  • a transformer simulation system includes a fuel tank, a heating device, a pump body, a first oil pipe, a second oil pipe, and a first flow sensor.
  • the heating device is disposed in the fuel tank, and the fuel tank is provided with a first inlet and a first inlet.
  • An outlet, the first outlet communicates with the first oil pipe, the first inlet communicates with the second oil pipe, and an end of the first oil pipe away from the oil tank is an oil inlet for communicating with a gas relay
  • the communicating first mounting end, the end of the second oil pipe far from the fuel tank is the second mounting end for communicating with the oil outlet of the gas relay, and the pump body is connected to the first oil pipe or the second
  • the oil pipe is connected, and the first flow sensor is disposed in the first oil pipe.
  • the above transformer simulation system can communicate the oil inlet of the gas relay with the first oil pipe, the oil outlet of the gas relay with the second oil pipe, and then turn on the pump body, so that the oil in the fuel tank is in the first oil pipe, the gas relay,
  • the second oil pipe circulates in sequence.
  • the heating device can heat the oil in the oil tank, so that the oil temperature simulates the oil temperature when the voltage regulator fails. At this time, the flow state of the oil when the voltage regulator fails can be simulated.
  • a flow sensor measures the oil flow speed in the first oil pipe at this time, and when the transformer fails, the oil flow speed will increase and reach the setting value of the gas relay, and then trigger the protective action of the gas relay, so the above transformer simulation system
  • the setting of the gas relay can be obtained by simulating the environment when the voltage transformer fails, and then measuring the oil flow speed at this time, and the type of insulating oil in the fuel tank can be replaced to obtain the setting of the corresponding gas relay. Value to prevent the original gas relay from failing to function due to the different properties of the insulating oil after the type of insulating oil is changed Protective effect.
  • the heating device includes a heat source, a turbine impeller, and a driver.
  • the axis line of the turbine impeller is vertically arranged.
  • the turbine impeller is opposite to the heat source.
  • the driver is used to drive the turbine impeller to rotate. .
  • the above-mentioned transformer simulation system further includes a third oil pipe, a fourth oil pipe, and a second flow sensor.
  • the fuel tank is further provided with a second inlet and a second outlet, and the third oil pipe is in communication with the second inlet.
  • the fourth oil pipe is in communication with the second outlet, an end of the third oil pipe away from the oil tank, and an end of the fourth oil pipe away from the oil tank are used to communicate with a gas relay.
  • the inner diameter is larger than the inner diameter of the third oil pipe, and the second oil pipe and the fourth oil pipe are provided with switch control valves, and the second flow sensor is provided in the third oil pipe.
  • the second oil pipe includes a first branch pipe and a second branch pipe.
  • One end of the first branch pipe is the second mounting end, and one end of the second branch pipe is in communication with the first inlet.
  • the other end of a branch and the other end of the second branch are respectively connected to the pump body
  • the fourth oil pipe includes a third branch and a fourth branch, and one end of the third branch is used to communicate with a gas relay,
  • the other end of the third branch is in communication with the first branch
  • one end of the fourth branch is in communication with the second inlet
  • the other end of the fourth branch is in communication with the second branch.
  • a temperature probe for detecting oil temperature is provided in the fuel tank, and the temperature probe is provided at the first outlet.
  • the above-mentioned transformer simulation system further includes a temperature sensor, and the temperature sensor is disposed in the first mounting end.
  • first mounting end and the second mounting end are both inclined relative to a horizontal plane, and the central axis of the first mounting end and the second mounting end are disposed in the same direction. In the vertical direction, the first One mounting end is lower than the second mounting end.
  • the heating temperature range of the heating device is 50 ° C to 80 ° C.
  • a pressure sensor for detecting oil pressure is provided in the fuel tank.
  • a setting value simulation measurement method adopting the transformer simulation system according to any one of the above, including the following steps:
  • the flow velocity in the first oil pipe is measured according to the first flow sensor, which is the setting value.
  • the power of the pump body is set to the conventional power of the transformer, that is, the power during the normal operation of the transformer, and the heating temperature of the heating device is set.
  • Set the oil temperature of the transformer failure which is the oil temperature when the transformer fails.
  • the internal environment of the transformer when the transformer fails can be simulated.
  • the flow rate in the first oil pipe measured by the first flow sensor is the transformer occurrence.
  • the speed of the oil flow at the time of the failure, and then the setting value of the gas relay then put different types of insulating oil in the fuel tank to get the corresponding setting value of the gas relay, to prevent the type of insulating oil from being changed after the type of insulating oil is changed.
  • Different properties cause the original gas relay to fail to provide protection.
  • FIG. 1 is a schematic structural diagram of a transformer simulation system according to an embodiment of the present invention
  • FIG. 2 is a partial cross-sectional view of a transformer simulation system according to an embodiment of the present invention.
  • first and second in the present invention do not represent a specific quantity and order, but are only used to distinguish names.
  • an environmentally friendly insulating oil such as a plant insulating oil, a synthetic ester insulating oil, or a mineral insulating oil can be loaded into the fuel tank.
  • an embodiment discloses a transformer simulation system including a fuel tank 100, a heating device 200, a pump body 300, a first oil pipe 410, a second oil pipe 420, and a first flow sensor 510.
  • the heating device 200 is provided in In the fuel tank 100, a first inlet and a first outlet are provided on the fuel tank 100.
  • the first outlet communicates with the first oil pipe 410
  • the first inlet communicates with the second oil pipe 420
  • the end of the first oil pipe 410 away from the fuel tank 100 is for communicating with
  • the first mounting end 411 of the gas inlet of the gas relay communicates
  • the end of the second oil pipe 420 away from the fuel tank 100 is a second mounting end 421 for communicating with the oil outlet of the gas relay
  • the pump body 300 is connected to the first oil pipe 410 or
  • the second oil pipe 420 is communicated
  • the first flow sensor 510 is disposed in the first oil pipe 410.
  • the above transformer simulation system can communicate the oil inlet of the gas relay with the first oil pipe 410, the oil outlet of the gas relay with the second oil pipe 420, and then turn on the pump body 300 so that the oil in the fuel tank 100 is in the first oil pipe. 410, the gas relay, and the second oil pipe 420 are sequentially cycled.
  • the heating device 200 can heat the oil in the oil tank 100 to make the oil temperature simulate the oil temperature when the voltage regulator fails.
  • the flow state of the oil, and the speed of the oil flow in the first oil pipe 410 is measured by the first flow sensor 510 at this time, and when the transformer fails, the oil flow speed will increase and reach the setting value of the gas relay, thereby triggering the gas
  • the protective action of the relay so the above transformer simulation system can simulate the environment when the voltage transformer fails, and then measure the oil flow speed at this time to obtain the setting value of the gas relay, and the insulating oil in the fuel tank 100 can be replaced.
  • Some gas relays cannot provide protection.
  • the “oil flow speed” is the flow speed of the insulating oil in the oil tank 100 in the pipe.
  • a heating device is installed in the oil tank 100 200 for heating the insulating oil.
  • the above-mentioned transformer simulation system further includes a controller 10, and the controller 10 is electrically connected to the pump body 300, the heating device 200, and the first flow sensor 510, respectively.
  • the controller 10 may pre-input the power of the pump body 300, the heating temperature of the hot price device, and receive the oil flow velocity measured by the first flow sensor 510.
  • the controller 10 is provided with a display screen for displaying data.
  • the data that can be displayed on the display screen includes oil flow speed, heating temperature, power of the pump body 300, and the like.
  • both ends of the first mounting end 411 and the second mounting end 421 are provided with a mounting flange for matching with a gas relay. At this time, the installation of the gas relay can be facilitated, and the gas relay can be kept stable during work.
  • the heating device 200 includes a heat source 210, a turbine impeller 220, and a driver 230.
  • the axis line of the turbine impeller 220 is vertically arranged, and the turbine impeller 220 is opposite to the heat source 210.
  • the heat emitted by the heat source 210 can be diffused to make the oil temperature in the fuel tank 100 uniform, prevent the oil temperature entering the first oil pipe 410 from being uneven, and affect the measurement of the setting value of the gas relay.
  • the heat source 210 is disposed at the bottom of the fuel tank 100, the turbine impeller 220 is disposed above the heat source 210, and a central axis of the turbine impeller 220 is disposed in a vertical direction. Since the heated insulating oil will rise, the heat source 210 is provided at the bottom of the fuel tank 100 to continuously heat the insulating oil at the bottom of the temperature. At the same time, the rotation of the turbine impeller 220 can speed up the temperature exchange between the insulating oils of different temperatures. Further, the oil temperature distribution in the fuel tank 100 is evenly distributed, which can better simulate the state of the insulating oil when the transformer fails. At the same time, the heat source 210 is located at the bottom of the fuel tank 100, which can also prevent the heat source 210 from drying up and causing safety accidents.
  • the heat source 210 is a heating wire bent in an “S” shape. At this time, the heat exchange with the insulating oil is faster, which can better simulate the heating of the insulating oil when the transformer fails.
  • a fuel gauge 110 is further provided in the fuel tank 100, and the fuel gauge 110 is used to measure the volume of the insulating oil in the fuel tank 100.
  • the above-mentioned transformer simulation system further includes a third oil pipe 430, a fourth oil pipe 440, and a second flow sensor 520.
  • the fuel tank 100 is further provided with a second inlet and a second outlet, and the third oil pipe 430 and The second inlet is in communication, the fourth oil pipe 440 is in communication with the second outlet, the end of the third oil pipe 430 away from the fuel tank 100 and the end of the fourth oil pipe 440 away from the fuel tank 100 are used to communicate with the gas relay.
  • the inner diameter of the first oil pipe 410 is larger than the first
  • the inner diameter of the three oil pipes 430, the on-off control valve 600 is provided in the second oil pipe 420 and the fourth oil pipe 440, and the second flow sensor 520 is provided in the third oil pipe 430.
  • the inner diameters of the first oil tank 100 and the third oil pipe 430 are different, they can be used to detect the setting values of the gas relays of different specifications.
  • the switch control valve 600 in the fourth oil pipe 440 can be turned off.
  • the switch control in the second oil pipe 420 can be turned off.
  • the inner diameter of the first oil pipe 410 is 80 mm
  • the inner diameter of the third oil pipe 430 is 25 mm.
  • Buchholz relays that match the tubing of the above specifications are more common and can be easily used.
  • the first oil pipe 410 and the second oil pipe 420 may be set to other sizes. Specifically, the inner diameters of the first oil pipe 410 and the second oil pipe 420 match, the inner diameters of the third oil pipe 430 and the fourth oil pipe 440 match, and the size of the on-off control valve 600 in the second oil pipe 420 matches the inner diameter of the second oil pipe 420 The size of the on-off control valve 600 in the fourth oil pipe 440 matches the inner diameter of the fourth oil pipe 440.
  • the second oil pipe 420 includes a first branch pipe 422 and a second branch pipe 423.
  • One end of the first branch pipe 422 is a second mounting end 421, and one end of the second branch pipe 423 is in communication with the first inlet.
  • the other end of a branch pipe 422 and the other end of the second branch pipe 423 communicate with the pump body 300 respectively.
  • the fourth oil pipe 440 includes a third branch pipe 441 and a fourth branch pipe 442.
  • One end of the third branch pipe 441 is used to communicate with the gas relay.
  • the other end of the three branch pipe 441 communicates with the first branch pipe 422, one end of the fourth branch pipe 442 communicates with the second inlet, and the other end of the fourth branch pipe 442 communicates with the second branch pipe 423.
  • the same pump body 300 can be used for testing the gas relays of different specifications, which can reduce the cost and volume of the above-mentioned transformer simulation system.
  • the switch control valve 600 is also provided in the first branch pipe 422 near the connection between the first branch pipe 422 and the third branch pipe 441, and the third branch pipe 441 is also located near the connection between the first branch pipe 422 and the third branch pipe 441.
  • There is an on-off control valve 600 and the on-off control valve 600 in the first branch pipe 422 is disposed between the second mounting end 421, the connection point of the first branch pipe 422, and the third branch pipe 441.
  • the on-off control valve 600 in the third branch pipe 441 and the fourth branch pipe 442 can be closed to prevent the insulating oil from flowing back to the fuel tank through the third branch pipe 441 or the fourth branch pipe 442.
  • the on-off control valve 600 in the first branch 422 and the second branch 423 can be closed to prevent the insulating oil from passing through the first branch 422 or the second branch 423 is returned to the fuel tank 100.
  • the on-off control valve 600 may be a shut-off ball valve, a solenoid valve, or a manual ball valve. It is convenient to control the opening and closing of the pipeline.
  • a temperature probe 700 for detecting oil temperature is provided in the fuel tank 100, and the temperature probe 700 is provided at the first outlet. Since the set temperature of the heating device 200 is not necessarily the same as the temperature of the insulating oil entering the first oil pipe 410, the temperature probe 700 can be used to detect the temperature of the insulating oil entering the first oil pipe 410, which can be detected according to the temperature probe 700 The obtained temperature adjusts the temperature of the heating device 200 so that the oil temperature of the insulating oil entering the first oil pipe 410 is similar to the oil temperature when the transformer fails, and the setting value of the gas relay can be better measured.
  • the temperature probe 700 is electrically connected to the controller 10.
  • the controller 10 can adjust the heating temperature of the heating device 200 through the oil temperature in the first oil pipe 410 measured by the temperature probe 700.
  • the number of the temperature probes 700 in the fuel tank 100 is at least three, one of which is located at the first outlet, one of which is located at the first inlet, and the other of which is located in the area where the heat source 210 is located. It is convenient to comprehensively monitor the temperature of the insulating oil in the fuel tank 100.
  • the above-mentioned transformer simulation system further includes a temperature sensor 800, and the temperature sensor 800 is disposed in the first mounting end 411.
  • the oil temperature of the insulating oil that will flow into the gas relay can be detected, and the influence of the oil temperature of the insulating oil on the setting value of the gas relay can be further understood.
  • the temperature of the insulating oil changes.
  • the number of the temperature sensors 800 is at least two, and the temperature sensor 800 is also provided in an end of the third oil pipe 430 away from the fuel tank 100.
  • the first mounting end 411 and the second mounting end 421 are both inclined relative to a horizontal plane, and the central axes of the first mounting end 411 and the second mounting end 421 are disposed in the same direction and are in a vertical direction.
  • the first mounting end 411 is lower than the second mounting end 421.
  • the heating temperature range of the heating device 200 is 50 ° C to 80 ° C.
  • the oil temperature is generally 50 ° C to 80 ° C. Therefore, by setting the heating device 200 to the above temperature range, the state of the insulating oil at the time of the failure can be better simulated.
  • a pressure sensor 900 for detecting oil pressure is provided in the fuel tank 100. At this time, the oil pressure of the insulating oil can be measured by the pressure sensor 900, so that the state changes of different insulating oils can be better understood when the temperature increases.
  • the number of the pressure sensors 900 is at least three, and one of the pressure sensors 900 is provided at an end of the first branch pipe 422 near the oil pump. In the direction of the flow of the insulating oil, the pressure sensor 900 is provided between the first branch pipe 422 and the first At a position downstream of the connection of the triode 441.
  • the pipeline When testing the gas relays of different specifications, the pipeline will be switched, so changes in flow rate and oil pressure will occur.
  • the above pressure sensor 900 is provided in the first branch pipe 422 and the first At the downstream position of the connection of the triode 441, changes in the oil pressure and other data can be detected after switching the pipeline, in order to better understand the changes in the state of the insulating oil when testing different types of gas relays.
  • the above-mentioned pressure sensor 900, temperature sensor 800, first flow sensor 510, second flow sensor 520, and temperature probe 700 can be used to analyze the flow speed ratio of different insulating oils when the pump body 300 is at the same power, Data such as temperature ratio, flow rate ratio, and power ratio in order to better understand the working status of different insulating oils when the oil temperature rises.
  • the pump body 300 includes a mounting cavity 310, a motor 320, and an oil pump impeller drivingly connected to the motor 320.
  • the oil pump impeller is disposed in the mounting cavity 310, and the mounting cavity 310 and the first manifold are respectively 422 and the second branch pipe 423 communicate with each other, and a pressure detector, a flow velocity detector, a temperature detector, and a power detector are provided in the installation cavity 310.
  • the working state of the pump body 300 can be fully detected to ensure accurate control of the flow rate and oil pressure of the insulating oil.
  • the first oil pipe 410 and the third oil pipe 430 are each provided with a sewage outlet. It is used for discharging impurities in the fuel tank 100 to ensure the stable operation of the variable pressure simulation device.
  • An embodiment discloses a setting value simulation measurement method, which adopts the transformer simulation system as described above, and includes the following steps:
  • the flow velocity in the first oil pipe 410 measured according to the first flow sensor 510 is a set value.
  • the power of the pump body 300 is set to the conventional power of the transformer, that is, the power of the transformer during normal operation, and the heating device 200 is set.
  • the heating temperature is set to the oil temperature of the transformer failure, which is the oil temperature when the transformer fails.
  • the internal environment of the transformer when the transformer fails can be simulated.
  • the flow rate is the oil flow speed when the transformer fails, and then the setting value of the gas relay is obtained.
  • different types of insulating oil are placed in the oil tank 100 to obtain the corresponding setting value of the gas relay, which prevents the replacement of the insulating oil. After the type, the original gas relay cannot protect because of the different properties of the insulating oil.
  • the method before communicating the oil inlet of the gas relay with the first mounting end 411 and communicating the oil outlet of the gas relay with the second mounting end 421, the method further includes the following steps:
  • An environmentally friendly insulating oil such as a vegetable insulating oil, a synthetic ester insulating oil, etc. is added to the fuel tank 100.
  • the new type of insulating oil can be tested to understand the corresponding setting value of the gas relay at this time.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)

Abstract

一种变压器模拟系统及整定值模拟测量方法,变压器模拟系统包括油箱(100)、加热装置(200)、泵体(300)、第一油管(410)、第二油管(420)及第一流量传感器(510),加热装置(200)设于油箱(100)内,油箱(100)上设有第一进口及第一出口,第一出口与第一油管(410)连通,第一进口与第二油管(420)连通,第一油管(410)远离油箱(100)的一端为用于与瓦斯继电器的进油口连通的第一安装端(411),第二油管(420)远离油箱(100)的一端为用于与瓦斯继电器的出油口连通的第二安装端(421),泵体(300)与第一油管(410)或第二油管(420)连通,第一流量传感器(510)设于第一油管(410)内。上述变压器模拟系统可测得油流速度,即瓦斯继电器的整定值,且可更换绝缘油的种类,得到与其对应的瓦斯继电器的整定值,防止由于绝缘油的性质不同导致原有的瓦斯继电器不能起到保护作用。

Description

变压器模拟系统及整定值模拟测量方法 技术领域
本发明涉及电网测试设备,特别是涉及一种变压器模拟系统及整定值模拟测量方法。
背景技术
重瓦斯保护是变压器内部故障的主保护,当油浸式变压器的内部发生故障时,由于电弧将绝缘材料分解并产生大量的气体,从油箱通过瓦斯继电器向油枕流动,当油流速度达到整定值时,重瓦斯开启保护动作。
传统的油浸式变压器使用矿物绝缘油作为绝缘液体,随着变压器的发展,绝缘液体的种类也在往环保、清洁等方向发展,但由于新型绝缘液体的特性与矿物绝缘油差别较大,导致应用新型绝缘液体的油浸式变压器发生故障时,油流速度会发生变化,若整定值仍参考之前的数值,会导致变压器不能及时进行重瓦斯保护,造成设备损伤及安全隐患。
发明内容
基于此,本发明在于克服现有技术的缺陷,提供一种可确定瓦斯继电器的整定值的变压器模拟系统及整定值模拟测量方法。
其技术方案如下:
一种变压器模拟系统,包括油箱、加热装置、泵体、第一油管、第二油管及第一流量传感器,所述加热装置设于所述油箱内,所述油箱上设有第一进口及第一出口,所述第一出口与所述第一油管连通,所述第一进口与所述第二油 管连通,所述第一油管远离所述油箱的一端为用于与瓦斯继电器的进油口连通的第一安装端,所述第二油管远离所述油箱的一端为用于与瓦斯继电器的出油口连通的第二安装端,所述泵体与所述第一油管或所述第二油管连通,所述第一流量传感器设于所述第一油管内。
上述变压器模拟系统,可将瓦斯继电器的进油口与第一油管连通,将瓦斯继电器的出油口与第二油管连通,随后开启泵体,使油箱内的油在第一油管、瓦斯继电器、第二油管之间依次循环,加热装置可对油箱内的油进行加热,使油温模拟电压器发生故障时的油温,此时可模拟电压器发生故障时,油的流动状态,并通过第一流量传感器测得此时第一油管内的油流速度,且由于变压器发生故障时,油流速度会增大并到达瓦斯继电器的整定值,进而触发瓦斯继电器的保护动作,因此上述变压器模拟系统可通过模拟电压器发生故障时的环境,进而测得此时的油流速度,也就得到了瓦斯继电器的整定值,且可更换油箱内的绝缘油的种类,得到与其对应的瓦斯继电器的整定值,防止在更换绝缘油的种类后,由于绝缘油的性质不同导致原有的瓦斯继电器不能起到保护作用。
进一步地,所述加热装置包括热源、涡轮叶轮及驱动器,所述涡轮叶轮的轴心线呈竖直设置,所述涡轮叶轮与所述热源相对设置,所述驱动器用于驱动所述涡轮叶轮转动。
进一步地,上述变压器模拟系统还包括第三油管、第四油管及第二流量传感器,所述油箱上还设有第二进口及第二出口,所述第三油管与所述第二进口连通,所述第四油管与所述第二出口连通,所述第三油管远离所述油箱的一端、所述第四油管远离所述油箱的一端均用于与瓦斯继电器连通,所述第一油管的内径大于所述第三油管的内径,所述第二油管及所述第四油管内均设有开关控制阀,所述第二流量传感器设于所述第三油管内。
进一步地,所述第二油管包括第一分管及第二分管,所述第一分管的一端为所述第二安装端,所述第二分管的一端与所述第一进口连通,所述第一分管的另一端及所述第二分管的另一端分别与所述泵体连通,所述第四油管包括第三分管及第四分管,所述第三分管的一端用于与瓦斯继电器连通,所述第三分管的另一端与所述第一分管连通,所述第四分管的一端与所述第二进口连通,所述第四分管的另一端与所述第二分管连通。
进一步地,所述油箱内设有用于检测油温的温度探头,所述温度探头设于所述第一出口处。
进一步地,上述变压器模拟系统还包括温度传感器,所述温度传感器设于所述第一安装端内。
进一步地,所述第一安装端及第二安装端均相对水平面倾斜设置,且所述第一安装端与所述第二安装端的中心轴沿同一方向设置,在竖直方向上,所述第一安装端低于所述第二安装端。
进一步地,所述加热装置的加热温度范围为50℃~80℃。
进一步地,所述油箱内设有用于检测油压的压力传感器。
一种整定值模拟测量方法,采用如上述任一项所述的变压器模拟系统,包括以下步骤:
将瓦斯继电器的进油口与所述第一安装端连通,将瓦斯继电器的出油口与所述第二安装端连通;
打开泵体,将泵体的功率设置为变压器常规功率;
将加热装置的加热温度设定为变压器故障油温;
根据第一流量传感器测得第一油管内的流速,即为整定值。
上述整定值模拟测量方法,将瓦斯继电器分别与第一油管、第二油管连通 之后,将泵体的功率设置为变压器常规功率,即为变压器常规工作时的功率,并将加热装置的加热温度设定为变压器故障油温,即为变压器发生故障时的油温,此时可模拟变压器发生故障时变压器内部环境,则此时根据第一流量传感器测得的第一油管内的流速即为变压器发生故障时的油流速度,进而得到瓦斯继电器的整定值,则在油箱内放入不同种类的绝缘油,得到与其对应的瓦斯继电器的整定值,防止在更换绝缘油的种类后,由于绝缘油的性质不同导致原有的瓦斯继电器不能起到保护作用。
附图说明
图1为本发明实施例所述的变压器模拟系统的结构示意图;
图2为本发明实施例所述的变压器模拟系统的局部剖视图。
附图标记说明:
100、油箱,110、油量计,200、加热装置,210、热源,220、涡轮叶轮,230、驱动器,300、泵体,310、安装腔体,320、电机,410、第一油管,411、第一安装端,420、第二油管,421、第二安装端,422、第一分管,423、第二分管,430、第三油管,440、第四油管,441、第三分管,442、第四分管,510、第一流量传感器,520、第二流量传感器,600、开关控制阀,700、温度探头,800、温度传感器,900、压力传感器,10、控制器。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是 使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明中所述“第一”、“第二”不代表具体的数量及顺序,仅仅是用于名称的区分。
本具体实施例中,油箱内可装入植物绝缘油、合成酯绝缘油等环保绝缘油;或矿物绝缘油等。
如图1所示,一实施例公开了一种变压器模拟系统,包括油箱100、加热装置200、泵体300、第一油管410、第二油管420及第一流量传感器510,加热装置200设于油箱100内,油箱100上设有第一进口及第一出口,第一出口与第一油管410连通,第一进口与第二油管420连通,第一油管410远离油箱100的一端为用于与瓦斯继电器的进油口连通的第一安装端411,第二油管420远离油箱100的一端为用于与瓦斯继电器的出油口连通的第二安装端421,泵体300与第一油管410或第二油管420连通,第一流量传感器510设于第一油管410内。
上述变压器模拟系统,可将瓦斯继电器的进油口与第一油管410连通,将 瓦斯继电器的出油口与第二油管420连通,随后开启泵体300,使油箱100内的油在第一油管410、瓦斯继电器、第二油管420之间依次循环,加热装置200可对油箱100内的油进行加热,使油温模拟电压器发生故障时的油温,此时可模拟电压器发生故障时,油的流动状态,并通过第一流量传感器510测得此时第一油管410内的油流速度,且由于变压器发生故障时,油流速度会增大并到达瓦斯继电器的整定值,进而触发瓦斯继电器的保护动作,因此上述变压器模拟系统可通过模拟电压器发生故障时的环境,进而测得此时的油流速度,也就得到了瓦斯继电器的整定值,且可更换油箱100内的绝缘油的种类,得到与其对应的瓦斯继电器的整定值,防止在更换绝缘油的种类后,由于绝缘油的性质不同导致原有的瓦斯继电器不能起到保护作用。
本实施例中,“油流速度”即为油箱100内的绝缘油在管内的流动速度。
当绝缘油的种类或者温度发生变化时,绝缘油的粘度等性质会发生改变,进而影响油流速度,因此为更好的模拟变压器发生故障时绝缘油的流动情况,在油箱100内设置加热装置200,用于对绝缘油进行加热。
可选地,上述变压器模拟系统还包括控制器10,控制器10分别与泵体300、加热装置200及第一流量传感器510电性连接。可对控制器10预输入泵体300的功率,热价装置的加热温度,并接收第一流量传感器510测得的油流速度。
可选地,控制器10上设有用于显示数据的显示屏。其中,可显示在显示屏上的数据包括油流速度、加热温度、泵体300的功率等。
具体地,第一安装端411及第二安装端421的端部均设有用于与瓦斯继电器匹配的安装法兰。此时可方便瓦斯继电器的安装,保证瓦斯继电器在工作时保持稳定。
进一步地,如图1及图2所示,加热装置200包括热源210、涡轮叶轮220 及驱动器230,涡轮叶轮220的轴心线呈竖直设置,涡轮叶轮220与热源210相对设置,驱动器230用于驱动涡轮叶轮220转动。通过涡轮叶轮220的转动,可将热源210发出的热量进行扩散,使油箱100内的油温均匀,防止进入第一油管410内的油温不均匀,影响对瓦斯继电器的整定值的测量。
可选地,热源210设于油箱100的底部,涡轮叶轮220设于热源210上方,且涡轮叶轮220的中心轴沿竖直方向设置。由于受热后的绝缘油会上升,则将热源210设于油箱100的底部可持续对温度交底的绝缘油进行加热,同时通过涡轮叶轮220的转动可加快不同温度的绝缘油之间的温度交换,进一步使油箱100内的油温分布平均,可更好的模拟变压器发生故障时绝缘油的状态,同时热源210设于油箱100底部也可防止热源210干烧造成安全事故。
具体地,热源210为呈“S”形弯折的发热丝。此时与绝缘油的热交换更迅速,可更好的模拟变压器发生故障时对绝缘油的加热情况。
可选地,如图2所示,油箱100内还设有油量计110,油量计110用于测量油箱100内绝缘油的体积。
进一步地,如图1所示,上述变压器模拟系统还包括第三油管430、第四油管440及第二流量传感器520,油箱100上还设有第二进口及第二出口,第三油管430与第二进口连通,第四油管440与第二出口连通,第三油管430远离油箱100的一端、第四油管440远离油箱100的一端均用于与瓦斯继电器连通,第一油管410的内径大于第三油管430的内径,第二油管420及第四油管440内均设有开关控制阀600,第二流量传感器520设于第三油管430内。此时由于第一油箱100与第三油管430的内径不同,可用于对不同规格的瓦斯继电器的整定值进行检测,当需要利用第一油管410及第二油管420进行瓦斯继电器的整定值检测时,可关掉第四油管440内的开关控制阀600,同样的,当需要利用 第三油管430及第四油管440进行瓦斯继电器的整定值检测时,可关掉第二油管420内的开关控制阀600。
可选地,第一油管410的内径为80mm,第三油管430的内径为25mm。与上述规格的油管匹配的瓦斯继电器较为常见,可方便使用。此外,也可将第一油管410及第二油管420设置为其他尺寸。具体地,第一油管410及第二油管420的内径匹配,第三油管430及第四油管440的内径匹配,且第二油管420内的开关控制阀600的尺寸与第二油管420的内径匹配,第四油管440内的开关控制阀600的尺寸与第四油管440的内径匹配。
进一步地,如图1所示,第二油管420包括第一分管422及第二分管423,第一分管422的一端为第二安装端421,第二分管423的一端与第一进口连通,第一分管422的另一端及第二分管423的另一端分别与泵体300连通,第四油管440包括第三分管441及第四分管442,第三分管441的一端用于与瓦斯继电器连通,第三分管441的另一端与第一分管422连通,第四分管442的一端与第二进口连通,第四分管442的另一端与第二分管423连通。此时对不同规格的瓦斯继电器进行测试时都可使用同一个泵体300,可降低上述变压器模拟系统的成本及体积。
可选地,第一分管422内靠近第一分管422与第三分管441的连接处也设有开关控制阀600,第三分管441内靠近第一分管422与第三分管441的连接处也设有开关控制阀600,第一分管422内的开关控制阀600设于第二安装端421、第一分管422与第三分管441的连接处之间。当绝缘油由第一油管410流动至第二油管420时,可关闭第三分管441及第四分管442内的开关控制阀600,防止绝缘油通过第三分管441或第四分管442回流至油箱100中,同理当绝缘油由第三油管430流动至第四油管440时,可关闭第一分管422及第二分管423 内的开关控制阀600,防止绝缘油通过第一分管422或第二分管423回流至油箱100中。
具体地,开关控制阀600可为截流球阀、电磁阀或手动球阀。方便对管路的开闭进行控制。
进一步地,如图1所示,油箱100内设有用于检测油温的温度探头700,温度探头700设于第一出口处。由于加热装置200设定温度与进入第一油管410内的绝缘油的温度不一定相同,因此可利用温度探头700对进入第一油管410内的绝缘油的温度进行检测,可根据温度探头700检测到的温度对加热装置200的温度进行调整,使进入第一油管410内的绝缘油的油温与变压器发生故障时的油温相近,可更好的测得瓦斯继电器的整定值。
可选地,温度探头700与控制器10电性连接。控制器10可通过温度探头700测得的第一油管410内的油温,对加热装置200的加热温度进行调整。
具体地,油箱100内的温度探头700的数量为至少三个,其中一个设于第一出口处,其中一个设于第一进口处,另一个设于热源210所在区域。便于对油箱100内绝缘油的温度进行全面的监测。
进一步地,如图1所示,上述变压器模拟系统还包括温度传感器800,温度传感器800设于第一安装端411内。此时可检测即将流入瓦斯继电器的绝缘油的油温,进一步了解绝缘油的油温对瓦斯继电器的整定值的影响,同时通过温度探头700及温度传感器800了解绝缘油通过第一分管422,由油箱100流至靠近瓦斯继电器的位置时,绝缘油的温度发生的变化。
可选地,温度传感器800的数量为至少两个,第三油管430远离油箱100的一端内也设有温度传感器800。
进一步地,如图1所示,第一安装端411及第二安装端421均相对水平面 倾斜设置,且第一安装端411与第二安装端421的中心轴沿同一方向设置,在竖直方向上,第一安装端411低于第二安装端421。此时可模拟变压器中瓦斯继电器的安装情况,以便更好的模拟瓦斯继电器的工作环境,得到更精确的瓦斯继电器的整定值。
进一步地,加热装置200的加热温度范围为50℃~80℃。当变压器的内部发生故障时,油温一般为50℃~80℃,因此通过将加热装置200设置为上述温度范围,可更好的模拟发生故障时绝缘油的状态。
进一步地,如图1所示,油箱100内设有用于检测油压的压力传感器900。此时可通过压力传感器900测量绝缘油的油压,可更好的了解不同绝缘油在温度升高时,其状态的变化。
可选地,压力传感器900的数量为至少三个,其中一个压力传感器900设于第一分管422靠近油泵的一端,在绝缘油的流动方向上,上述压力传感器900设于第一分管422与第三分管441的连接处的下游位置处。由于在对不同规格的瓦斯继电器进行测试时,会切换管路,因此会发生流量、油压等方面的变化,因此在绝缘油的流动方向上,上述压力传感器900设于第一分管422与第三分管441的连接处的下游位置处,可检测切换管路后油压等数据的变化,以便更好的了解在测试不同规格的瓦斯继电器时,绝缘油的状态的变化。
具体地,通过上述压力传感器900、温度传感器800、第一流量传感器510、第二流量传感器520及温度探头700等,可用于分析当泵体300处于同等功率时,不同绝缘油的流动速度比、温度比、流速比及动力比等数据,以便更好的了解不同绝缘油在油温升高时的工作状态。
可选地,如图1所示,泵体300包括安装腔体310、电机320及与电机320传动连接的油泵叶轮,油泵叶轮设于安装腔体310内,安装腔体310分别与第 一分管422、第二分管423连通,且安装腔体310内设有压力检测器、流速检测器、温度检测器及功率检测器。此时可对泵体300的工作状态进行充分的检测,确保对绝缘油的流速、油压等的精确控制。
可选地,第一油管410及第三油管430上均设有排污口。用于排出油箱100内的杂质,可保证上述变压力模拟装置的稳定工作。
一实施例公开了一种整定值模拟测量方法,采用如上述的变压器模拟系统,包括以下步骤:
将瓦斯继电器的进油口与第一安装端411连通,将瓦斯继电器的出油口与第二安装端421连通;
打开泵体300,将泵体300的功率设置为变压器常规功率;
将加热装置200的加热温度设定为变压器故障油温;
根据第一流量传感器510测得第一油管410内的流速,即为整定值。
上述整定值模拟测量方法,将瓦斯继电器分别与第一油管410、第二油管420连通之后,将泵体300的功率设置为变压器常规功率,即为变压器常规工作时的功率,并将加热装置200的加热温度设定为变压器故障油温,即为变压器发生故障时的油温,此时可模拟变压器发生故障时变压器内部环境,则此时根据第一流量传感器510测得的第一油管410内的流速即为变压器发生故障时的油流速度,进而得到瓦斯继电器的整定值,则在油箱100内放入不同种类的绝缘油,得到与其对应的瓦斯继电器的整定值,防止在更换绝缘油的种类后,由于绝缘油的性质不同导致原有的瓦斯继电器不能起到保护作用。
可选地,上述将瓦斯继电器的进油口与第一安装端411连通,将瓦斯继电器的出油口与第二安装端421连通之前,还包括以下步骤:
在油箱100内加入植物绝缘油、合成酯绝缘油等环保绝缘油。
此时可对新型的绝缘油进行测试,以便了解此时瓦斯继电器相应的整定值。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种变压器模拟系统,其特征在于,包括油箱、加热装置、泵体、第一油管、第二油管及第一流量传感器,所述加热装置设于所述油箱内,所述油箱上设有第一进口及第一出口,所述第一出口与所述第一油管连通,所述第一进口与所述第二油管连通,所述第一油管远离所述油箱的一端为用于与瓦斯继电器的进油口连通的第一安装端,所述第二油管远离所述油箱的一端为用于与瓦斯继电器的出油口连通的第二安装端,所述泵体与所述第一油管或所述第二油管连通,所述第一流量传感器设于所述第一油管内。
  2. 根据权利要求1所述的变压器模拟系统,其特征在于,所述加热装置包括热源、涡轮叶轮及驱动器,所述涡轮叶轮的轴心线呈竖直设置,所述涡轮叶轮与所述热源相对设置,所述驱动器用于驱动所述涡轮叶轮转动。
  3. 根据权利要求1所述的变压器模拟系统,其特征在于,还包括第三油管、第四油管及第二流量传感器,所述油箱上还设有第二进口及第二出口,所述第三油管与所述第二进口连通,所述第四油管与所述第二出口连通,所述第三油管远离所述油箱的一端、所述第四油管远离所述油箱的一端均用于与瓦斯继电器连通,所述第一油管的内径大于所述第三油管的内径,所述第二油管及所述第四油管内均设有开关控制阀,所述第二流量传感器设于所述第三油管内。
  4. 根据权利要求3所述的变压器模拟系统,其特征在于,所述第二油管包括第一分管及第二分管,所述第一分管的一端为所述第二安装端,所述第二分管的一端与所述第一进口连通,所述第一分管的另一端及所述第二分管的另一端分别与所述泵体连通,所述第四油管包括第三分管及第四分管,所述第三分管的一端用于与瓦斯继电器连通,所述第三分管的另一端与所述第一分管连通,所述第四分管的一端与所述第二进口连通,所述第四分管的另一端与所述第二 分管连通。
  5. 根据权利要求1所述的变压器模拟系统,其特征在于,所述油箱内设有用于检测油温的温度探头,所述温度探头设于所述第一出口处。
  6. 根据权利要求5所述的变压器模拟系统,其特征在于,还包括温度传感器,所述温度传感器设于所述第一安装端内。
  7. 根据权利要求1所述的变压器模拟系统,其特征在于,所述第一安装端及第二安装端均相对水平面倾斜设置,且所述第一安装端与所述第二安装端的中心轴沿同一方向设置,在竖直方向上,所述第一安装端低于所述第二安装端。
  8. 根据权利要求1所述的变压器模拟系统,其特征在于,所述加热装置的加热温度范围为50℃~80℃。
  9. 根据权利要求1所述的变压器模拟系统,其特征在于,所述油箱内设有用于检测油压的压力传感器。
  10. 一种整定值模拟测量方法,其特征在于,采用如权利要求1-9任一项所述的变压器模拟系统,包括以下步骤:
    将瓦斯继电器的进油口与所述第一安装端连通,将瓦斯继电器的出油口与所述第二安装端连通;
    打开泵体,将泵体的功率设置为变压器常规功率;
    将加热装置的加热温度设定为变压器故障油温;
    根据第一流量传感器测得第一油管内的流速,即为整定值。
PCT/CN2018/109164 2018-09-13 2018-09-30 变压器模拟系统及整定值模拟测量方法 WO2020051961A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18914931.3A EP3650874B1 (en) 2018-09-13 2018-09-30 Transformer simulation system and setting value simulation measurement method
US16/608,011 US11309703B2 (en) 2018-09-13 2018-09-30 Transformer simulation system, and simulation and measurement method for setting value

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811068880.0A CN109270447A (zh) 2018-09-13 2018-09-13 变压器模拟系统及整定值模拟测量方法
CN201811068880.0 2018-09-13

Publications (1)

Publication Number Publication Date
WO2020051961A1 true WO2020051961A1 (zh) 2020-03-19

Family

ID=65188582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109164 WO2020051961A1 (zh) 2018-09-13 2018-09-30 变压器模拟系统及整定值模拟测量方法

Country Status (4)

Country Link
US (1) US11309703B2 (zh)
EP (1) EP3650874B1 (zh)
CN (1) CN109270447A (zh)
WO (1) WO2020051961A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112326355A (zh) * 2020-11-10 2021-02-05 中国石油大学(华东) 一种油气田开发用油样采集装置
CN113740722A (zh) * 2021-07-17 2021-12-03 国网辽宁省电力有限公司电力科学研究院 一种用于气体继电器校验的智能检测装置及方法
CN113740722B (zh) * 2021-07-17 2024-06-11 国网辽宁省电力有限公司电力科学研究院 一种用于气体继电器校验的智能检测装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110780130B (zh) * 2019-10-17 2022-04-19 合肥市睿电电气技术咨询服务有限责任公司 一种变压器内部故障模拟试验装备
CN112630637B (zh) * 2020-11-20 2023-05-30 国网山东省电力公司青岛供电公司 一种电力变压器瓦斯继电器在线校验系统及方法
CN114674371B (zh) * 2022-03-28 2022-09-27 淮北工科检测检验有限公司 一种气体继电器检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201732147U (zh) * 2010-07-06 2011-02-02 郑州赛奥电子股份有限公司 气体继电器通用校验装置
WO2011101013A1 (de) * 2010-02-16 2011-08-25 Maschinenfabrik Reinhausen Gmbh Buchholzrelais
CN102889906A (zh) * 2012-10-17 2013-01-23 冉正华 单管道气体继电器检测台、对中夹紧机构及其检测方法
CN104569652A (zh) * 2014-11-28 2015-04-29 国网河南省电力公司电力科学研究院 模拟变压器重瓦斯故障实现的瓦斯定值校验台和校验方法
CN108375727A (zh) * 2018-03-20 2018-08-07 国家电投集团河南电力有限公司技术信息中心 一种瓦斯继电器校验台及其校验方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816801A (en) * 1973-01-11 1974-06-11 Westinghouse Electric Corp Electrical transformer
CN102652341B (zh) * 2009-12-24 2015-03-11 三菱电机株式会社 对充油电气设备中发生异常的可能性进行预测的方法
US8511160B2 (en) * 2011-03-31 2013-08-20 Qualitrol Company, Llc Combined hydrogen and pressure sensor assembly
CN202938496U (zh) * 2012-10-16 2013-05-15 刘申 一种新型电热开水器
CN204197309U (zh) 2014-07-06 2015-03-11 四川泛华航空仪表电器有限公司 自动化加放油检测装置
US10586649B2 (en) * 2017-03-13 2020-03-10 Abb Schweiz Ag Dissolved gas analysis devices, systems, and methods
CN107084803B (zh) 2017-05-15 2018-10-30 西南交通大学 油道堵塞下变压器绕组主绝缘温度梯度测试系统
CN207602111U (zh) 2017-10-13 2018-07-10 广东电网有限责任公司惠州供电局 一种油浸式电力变压器瓦斯保护模拟装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101013A1 (de) * 2010-02-16 2011-08-25 Maschinenfabrik Reinhausen Gmbh Buchholzrelais
CN201732147U (zh) * 2010-07-06 2011-02-02 郑州赛奥电子股份有限公司 气体继电器通用校验装置
CN102889906A (zh) * 2012-10-17 2013-01-23 冉正华 单管道气体继电器检测台、对中夹紧机构及其检测方法
CN104569652A (zh) * 2014-11-28 2015-04-29 国网河南省电力公司电力科学研究院 模拟变压器重瓦斯故障实现的瓦斯定值校验台和校验方法
CN108375727A (zh) * 2018-03-20 2018-08-07 国家电投集团河南电力有限公司技术信息中心 一种瓦斯继电器校验台及其校验方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3650874A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112326355A (zh) * 2020-11-10 2021-02-05 中国石油大学(华东) 一种油气田开发用油样采集装置
CN113740722A (zh) * 2021-07-17 2021-12-03 国网辽宁省电力有限公司电力科学研究院 一种用于气体继电器校验的智能检测装置及方法
CN113740722B (zh) * 2021-07-17 2024-06-11 国网辽宁省电力有限公司电力科学研究院 一种用于气体继电器校验的智能检测装置及方法

Also Published As

Publication number Publication date
EP3650874B1 (en) 2023-02-15
EP3650874A4 (en) 2020-05-13
US20210336433A1 (en) 2021-10-28
US11309703B2 (en) 2022-04-19
EP3650874A1 (en) 2020-05-13
CN109270447A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
WO2020051961A1 (zh) 变压器模拟系统及整定值模拟测量方法
CN103308293B (zh) 一种高温阀门检测试验系统
CN106872155B (zh) 一种排气阀性能测试系统以及测试方法
CN205352677U (zh) 一种阀门流量流阻试验装置
CN105403584A (zh) 模拟变压器不同油流速度高低温冲击热老化实验装置
US2067645A (en) Apparatus for measuring flowing gaseous fluids
CN107246262A (zh) 一种模拟抽油泵工作环境的漏失量检测装置及方法
CN105181271B (zh) 用于管道泄漏监测系统性能测试的泄放装置及测试方法
CN216284157U (zh) 非金属密封垫片的氦气密封性检测装置
CN105699023B (zh) 适用于二氧化碳管道放空和泄漏测试的测量装置与测量方法
CN108072100A (zh) 地暖管道泄漏检测装置及检测方法
CN105545719B (zh) 燃油泵寿命试验系统
CN104535113A (zh) 电热管测试装置及其测试方法
CN104154694B (zh) 一种降雪装置及气候室
CN110911021B (zh) 一种核工艺管道泄漏率探测装置功能验证试验回路系统
CN205388506U (zh) 一种循环式高压气体流量标准装置
KR102008889B1 (ko) 가스계량기 성능 시험평가 장치
RU91628U1 (ru) Устройство для оценки термоокислительной стабильности реактивных топлив в динамических условиях
CN108225891B (zh) 一种高低温介质循环测试装置及方法
CN113686415B (zh) 一种模拟实际应用场景的测流量标准装置
JP7440362B2 (ja) ガス漏れ検査システム
CN112577887B (zh) 一种供水管道环境温度模拟试验系统
CN110441049B (zh) 一种核电站自力式温度调节阀实流标定试验台架
CN103116005B (zh) 家用电器碳氢化合物制冷剂释放及低爆炸极限测量装置
CN212966614U (zh) 一种电冰箱制冷系统实训装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018914931

Country of ref document: EP

Effective date: 20191023

NENP Non-entry into the national phase

Ref country code: DE