WO2020051827A1 - 一种灯泡、灯丝及制作方法 - Google Patents

一种灯泡、灯丝及制作方法 Download PDF

Info

Publication number
WO2020051827A1
WO2020051827A1 PCT/CN2018/105445 CN2018105445W WO2020051827A1 WO 2020051827 A1 WO2020051827 A1 WO 2020051827A1 CN 2018105445 W CN2018105445 W CN 2018105445W WO 2020051827 A1 WO2020051827 A1 WO 2020051827A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
filament
emitting unit
type semiconductor
semiconductor layer
Prior art date
Application number
PCT/CN2018/105445
Other languages
English (en)
French (fr)
Inventor
黄尊祥
李元明
黄德华
李元坚
Original Assignee
瑞金徳煜光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞金徳煜光电有限公司 filed Critical 瑞金徳煜光电有限公司
Priority to PCT/CN2018/105445 priority Critical patent/WO2020051827A1/zh
Publication of WO2020051827A1 publication Critical patent/WO2020051827A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/90Methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/02Arrangement of electric circuit elements in or on lighting devices the elements being transformers, impedances or power supply units, e.g. a transformer with a rectifier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/06Arrangement of electric circuit elements in or on lighting devices the elements being coupling devices, e.g. connectors

Definitions

  • the invention belongs to the field of lighting technology, and particularly relates to the design of a light bulb and a filament used by the light bulb.
  • the traditional LED light bulb uses a plastic blister case, and the packaged LED lamp beads (SMD) are pasted on a PCB board and placed in the blister case.
  • the PCB board is connected to a driving power source and a heat dissipation component.
  • the light emitting angle of this kind of light bulb is small, can not achieve 360-degree full ambient light of the incandescent lamp, and the appearance is greatly different from the traditional incandescent lamp, and it cannot completely replace the incandescent lamp.
  • the inventor provides a light bulb, which includes a bulb, a stem, a conductive joint, and a filament, the bulb and the stem are sealed to form a closed cavity, and the filament is disposed in the closed In the cavity, the filament is connected to the conductive joint through the stem, and forms an electrical connection with the external power source through the conductive joint;
  • the filament includes a substrate and an epitaxial stack on the substrate.
  • the epitaxial stack includes at least two light-emitting units, and a conductive line is disposed between the at least two light-emitting units to be electrically conducted.
  • the bubble shell is also filled with a thermally conductive material
  • the thermally conductive material includes a thermally conductive gas, a thermally conductive liquid, or a thermally conductive adhesive.
  • the outer periphery of the filament is further covered with a fluorescent layer, and the fluorescent layer is a fluorescent powder layer or a fluorescent film.
  • an outer cover is provided on the outer periphery of the filament, and a fluorescent layer is provided in the outer cover.
  • the filament includes at least two light-emitting unit groups, and each of the light-emitting unit groups includes at least one light-emitting unit, wherein at least one light-emitting unit group is covered with a low color temperature fluorescent layer, and at least one light-emitting unit group is packaged. Cover with high color temperature fluorescent layer.
  • the filament includes at least three light-emitting unit groups, and each of the light-emitting unit groups includes at least one light-emitting unit, wherein at least one light-emitting unit group is covered with a red fluorescent layer, and at least one light-emitting unit group is covered with Green fluorescent layer.
  • the driving power source may be disposed in the conductive joint, the filament is connected to the driving power source, and the driving power source is connected to the conductive joint.
  • a resistor is included, the filament is connected to the resistor, and is connected to the conductive joint through the resistor.
  • the filaments are connected to each other to form a flat arrangement of an I-shape, an arc shape, a V-shape, an N-shape or a W-shape.
  • the epitaxial stack at both ends of the filament is also etched to the substrate, and an extraction electrode is designed on the substrate, and the extraction electrode is connected to the light emitting unit.
  • the filament is further provided with a conductive pin, and the conductive pin is connected to the light emitting unit.
  • the at least two light emitting units include a first light emitting unit and a second light emitting unit, wherein the first light emitting unit includes a first N-type semiconductor layer, a first active layer, and a first P-type semiconductor layer,
  • the second light-emitting unit includes a second N-type semiconductor layer, a second active layer, and a second P-type semiconductor layer.
  • a conductive line is provided between the first N-type semiconductor layer and the second P-type semiconductor layer for electrical conduction.
  • a P-type semiconductor layer and a second N-type semiconductor layer are respectively connected to a conductive pin.
  • the filament includes a third light-emitting unit
  • the third light-emitting unit includes a third N-type semiconductor layer, a third active layer, and a third P-type semiconductor layer
  • the first light-emitting unit and the second light-emitting unit is connected in parallel and connected to the lead-out electrode.
  • the filament includes a fourth light-emitting unit
  • the fourth light-emitting unit includes a fourth N-type semiconductor layer, a fourth active layer, and a fourth P-type semiconductor layer
  • the first light-emitting unit and the fourth light-emitting unit are connected in series with each other.
  • the filament includes at least four light-emitting units, and a conductive line is provided between the at least two light-emitting units to be electrically conductive;
  • the conducting directions of the at least two light emitting units and the at least two other light emitting units are opposite.
  • the filament includes a fifth light-emitting unit and a sixth light-emitting unit
  • the fifth light-emitting unit includes a fifth N-type semiconductor layer, a fifth active layer, and a fifth P-type semiconductor layer
  • the sixth light-emitting unit includes a first A six N-type semiconductor layer, a sixth active layer, and a sixth P-type semiconductor layer
  • a conductive line is provided between the fifth light emitting unit and the sixth light emitting unit to be electrically conducted, and the fifth light emitting unit and the sixth light emitting unit are also Connected to the lead-out electrode, the conducting directions of the fifth light emitting unit and the sixth light emitting unit are opposite to the conducting directions of the first light emitting unit and the second light emitting unit.
  • the filament includes at least five light emitting units, wherein the four light emitting units are connected to form a bridge rectifier circuit, an input end of the bridge rectifier circuit is connected to an external power source, and an output end of the bridge rectifier circuit is connected to at least one of the Lighting unit.
  • the filament includes a seventh light emitting unit, an eighth light emitting unit, a ninth light emitting unit, a tenth light emitting unit, and a conductive line;
  • the seventh light-emitting unit includes a seventh N-type semiconductor layer, a seventh active layer, and a seventh P-type semiconductor layer;
  • the eighth light-emitting unit includes an eighth N-type semiconductor layer, an eighth active layer, and an eighth P-type semiconductor Layer;
  • the ninth light-emitting unit includes a ninth N-type semiconductor layer, a ninth active layer, and a ninth P-type semiconductor layer;
  • the tenth light-emitting unit includes a tenth N-type semiconductor layer, a tenth active layer, and a tenth P-type semiconductor Floor;
  • the seventh P-type semiconductor layer is connected to an eighth N-type semiconductor layer, the seventh N-type semiconductor layer is connected to a ninth N-type semiconductor layer, the eighth P-type semiconductor layer is connected to a tenth P-type semiconductor layer, and the ninth P The semiconductor layer is connected to the tenth N-type semiconductor layer to form a bridge rectifier circuit.
  • the filament includes an integrated circuit IC, and the integrated circuit IC is connected to the light emitting unit for controlling an electrical input of the light emitting unit.
  • the filament includes a constant current IC for making a current input to the light emitting unit constant.
  • the filaments are connected in the same conduction direction, and both ends are connected to the support wire.
  • the two filaments include at least two filaments, two ends of the two filaments are connected to each other, and the conduction directions are opposite. When an alternating current is input, the two filaments are alternately turned on to emit light.
  • the filaments in the filament pair are arranged in parallel, two ends are connected to each other, the conducting directions of the filaments are opposite, and the two ends of the filament pair are respectively connected to the support wire.
  • filament pairs are connected in sequence from end to end, and the two ends are connected with the supporting wire.
  • the filament of the present invention includes a plurality of filaments, and a plurality of support wires extend from the stem; part of the support wires extend from the middle of the stem to the periphery and are connected to the filament for supporting and fixing the filament.
  • the filament of the present invention has high luminous efficiency and good heat dissipation performance, the size of the filament can be made small enough.
  • the filament may not need to be arranged vertically, but instead may be arranged in a plane. It can have a certain tilt angle, the filament and the filament may not be completely on the same horizontal plane, and may have a certain angle.
  • the structure of the bulb designed in this way is beautiful, and the structure and light angle are similar to incandescent lamps, which is the most ideal for incandescent lamps replacement of.
  • a filament includes a substrate and an epitaxial stack on the substrate.
  • the epitaxial stack includes a first light-emitting unit and a second light-emitting unit.
  • the first and second light-emitting units are spaced apart from each other.
  • a conductive line is provided between the unit and the second light emitting unit to be electrically conducted.
  • the substrate is a transparent substrate.
  • the epitaxial stack at both ends of the filament is also etched to the substrate, and an extraction electrode is designed on the substrate, and the extraction electrode is connected to the light emitting unit.
  • the filament is further provided with a conductive pin, and the conductive pin is connected to the light emitting unit.
  • the first light-emitting unit includes a first N-type semiconductor layer, a first active layer, and a first P-type semiconductor layer
  • the second light-emitting unit includes a second N-type semiconductor layer, a second active layer, and a second A P-type semiconductor layer
  • a conductive line is provided between the first N-type semiconductor layer and the second P-type semiconductor layer for electrical conduction
  • the first P-type semiconductor layer and the second N-type semiconductor layer are respectively connected to a conductive pin.
  • a third light-emitting unit is included.
  • the third light-emitting unit includes a third N-type semiconductor layer, a third active layer, and a third P-type semiconductor layer.
  • the first light-emitting unit, the second light-emitting unit, and the third The light emitting units are connected in parallel and connected to the lead-out electrode.
  • the filament includes a fourth light-emitting unit
  • the fourth light-emitting unit includes a fourth N-type semiconductor layer, a fourth active layer, and a fourth P-type semiconductor layer
  • the first light-emitting unit and the fourth light-emitting unit are connected in series with each other.
  • the filament includes at least four light-emitting units, and a conductive line is provided between the at least two light-emitting units to be electrically conductive;
  • the conducting directions of the at least two light emitting units and the at least two other light emitting units are opposite.
  • the filament includes a fifth light-emitting unit and a sixth light-emitting unit
  • the fifth light-emitting unit includes a fifth N-type semiconductor layer, a fifth active layer, and a fifth P-type semiconductor layer
  • the sixth light-emitting unit includes a first A six N-type semiconductor layer, a sixth active layer, and a sixth P-type semiconductor layer
  • a conductive line is provided between the fifth light emitting unit and the sixth light emitting unit to be electrically conducted, and the fifth light emitting unit and the sixth light emitting unit are also Connected to the lead-out electrode, the conducting directions of the fifth light emitting unit and the sixth light emitting unit are opposite to the conducting directions of the first light emitting unit and the second light emitting unit.
  • the filament includes at least five light emitting units, wherein the four light emitting units are connected to form a bridge rectifier circuit, an input end of the bridge rectifier circuit is connected to an external power source, and an output end of the bridge rectifier circuit is connected to at least one of the Lighting unit.
  • the filament includes a seventh light emitting unit, an eighth light emitting unit, a ninth light emitting unit, a tenth light emitting unit, and a conductive line;
  • the seventh light-emitting unit includes a seventh N-type semiconductor layer, a seventh active layer, and a seventh P-type semiconductor layer;
  • the eighth light-emitting unit includes an eighth N-type semiconductor layer, an eighth active layer, and an eighth P-type semiconductor Layer;
  • the ninth light-emitting unit includes a ninth N-type semiconductor layer, a ninth active layer, and a ninth P-type semiconductor layer;
  • the tenth light-emitting unit includes a tenth N-type semiconductor layer, a tenth active layer, and a tenth P-type semiconductor Floor;
  • the seventh P-type semiconductor layer is connected to an eighth N-type semiconductor layer, the seventh N-type semiconductor layer is connected to a ninth N-type semiconductor layer, the eighth P-type semiconductor layer is connected to a tenth P-type semiconductor layer, and the ninth P The semiconductor layer is connected to the tenth N-type semiconductor layer to form a bridge rectifier circuit.
  • the filament includes an integrated circuit IC, and the integrated circuit IC is connected to the light emitting unit for controlling an electrical input of the light emitting unit.
  • the filament includes a constant current IC for making a current input to the light emitting unit constant.
  • a filament manufacturing method includes the following steps:
  • the epitaxial stack including an N-type semiconductor layer, an active layer, and a P-type semiconductor layer;
  • the growth substrate and the epitaxial stack are cut and separated to obtain several filaments.
  • the step includes etching the epitaxial stack so that the epitaxial stack is etched into light-emitting units having a gap and separated from each other, and the light-emitting units are connected by a conductive line formed by a plating film.
  • the epitaxial layers at both ends are etched to the substrate, a lead-out electrode is formed on the substrate, and a conductive line is connected to the lead-out electrode connection and the light-emitting unit.
  • the method further includes a step of bonding a conductive pin to the substrate and forming an electrical connection with the light emitting unit.
  • the method further includes a step of coating a fluorescent film or coating a fluorescent powder layer on the periphery of the filament.
  • the etching is wet etching, and further includes a step of designing an etching pattern so that the light-emitting units on the wafer after the etching are in a column-aligned arrangement, and the single-row multi-light-emitting unit arrangement is obtained by cutting the wafer. Filament.
  • the patterning process is to design the pattern and arrangement of the light-emitting units, and use photolithography and etching processes to etch the epitaxial stack on the substrate into the designed light-emitting units.
  • the conductive circuit is manufactured by forming an insulating layer on an isolation channel between the light emitting units, and then forming a conductive circuit on the insulating layer and the light emitting unit by using a metal plating process.
  • the method further comprises the step of cutting the wafer into a flat-shaped, arc-shaped, V-shaped, N-shaped or W-shaped filament using laser cutting.
  • the aspect ratio of the filament is greater than 10: 1.
  • the light emitting units after cutting are filaments arranged in two rows and multiple light emitting units in each row,
  • the method further includes a step of designing an etching pattern, and the conduction directions of the two-row light-emitting units are opposite.
  • the filament includes a step of designing an etching pattern so that the filament has an arrangement structure in which the area of the light emitting unit in the middle is large and the area of the light emitting units on both sides is small, that is, the width of the light emitting unit of the filament is smaller as the width is closer to the ends. .
  • the method further includes a step of: before cutting and separating, covering the phosphor powder layer or attaching a fluorescent film, and then performing cutting and separation to obtain a filament with a fluorescent layer.
  • the above technical solution integrates a light-emitting unit on a growth substrate to form a filament, and can obtain high brightness with a small size.
  • the light bulb can be made in a planar arrangement, and the light bulb designed in this way has a beautiful structure.
  • the shape structure and light angle are similar to incandescent lamps, which is the most ideal substitute for incandescent lamps.
  • the production of the filament of the invention omits the conventional die-bonding and wire bonding processes of LED packaging, the process is simple, the production yield is high, the product has good heat dissipation performance and high reliability.
  • FIG. 1 is a schematic structural diagram of a light bulb according to a preferred embodiment of the present application.
  • FIG. 2 is a schematic diagram of a filament structure according to a preferred embodiment of the present application.
  • FIG. 3 is a cross-sectional view of a filament described in a preferred embodiment of the present application.
  • FIG. 4 is a schematic diagram of a filament structure of light emitting units connected in parallel according to a preferred embodiment of the present invention
  • FIG. 5 is a schematic diagram of a filament structure with conductive pins described in a preferred embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of an AC filament described in a preferred embodiment of the present application.
  • FIG. 7 Schematic diagram of a filament structure including two light-emitting unit groups described in the preferred embodiment of the present case
  • FIG. 8 is a schematic structural diagram of an AC filament with a bridge rectifier circuit according to a preferred embodiment of the present application
  • FIG. 9 is a schematic diagram of an AC filament with a bridge rectifier circuit according to a preferred embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a light bulb according to a preferred embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a light bulb according to a preferred embodiment of the present invention.
  • the first light emitting unit
  • the first N-type semiconductor layer is N-type semiconductor layer
  • the second light emitting unit
  • a fourth light emitting unit 114.
  • a sixth light emitting unit
  • the seventh light emitting unit The seventh light emitting unit.
  • a light bulb 10 includes a bulb 100, a conductive joint 12, a stem 101, and a filament 11. As shown in the figure, the bulb 100 and the stem 101 are sealed to form a closed cavity.
  • the stem 101 includes a support wire 16.
  • the filament 11 is disposed in the closed cavity. The filament 11 is connected to the conductive joint 12 through the support wire 16 of the stem, and forms an electrical connection with an external power source through the conductive joint 12;
  • Figure 2 and Figure 3 show the specific structure of the filament. From Figure 3 we can see that the filament 11 includes a substrate 110 and an epitaxial stack on the substrate.
  • the epitaxial stack It is a structural component that can undergo electron migration and emit light after being energized, and has a plurality of material component structures.
  • a conductive line 13 is provided between the first light-emitting unit and the second light-emitting unit for electrical conduction, and the first light-emitting unit and the second light-emitting unit are further connected to the lead-out electrode 14.
  • This kind of filament can emit light through the first and second light-emitting units, and high brightness can be obtained in a small size.
  • the light bulb can be made in a planar arrangement. The designed light bulb has a beautiful structure, an external structure and a light emitting angle. Similar to incandescent lamps, they are the ideal replacement for incandescent lamps.
  • the blister shell 100 is further filled with a thermally conductive material
  • the thermally conductive material includes a thermally conductive gas, a thermally conductive liquid, or a thermally conductive adhesive.
  • the role of the thermally conductive material is to increase the thermal conductivity of the medium surrounding the filament and ensure that the heat generated during the filament's operation can be timely diverted.
  • the heat-conducting gas may be an inert gas conventionally used for filling the bulb, such as helium, neon, etc.
  • the heat-conducting liquid or heat-conducting glue may be a potting compound for the bulb, such as a silicone liquid, a heat-conducting potting compound, and the like.
  • the filament with a fluorescent layer.
  • the fluorescent layer is used to make the filament emit light of different colors.
  • the fluorescent layer may be coated on A phosphor layer on the periphery of the filament or a fluorescent film covering the periphery of the filament.
  • An outer cover may be provided on the outer periphery of the phosphor layer through the filament, and the outer cover is arranged in the outer cover.
  • the filament includes at least two light-emitting unit groups, and each of the light-emitting unit groups includes at least one light-emitting unit, wherein at least one of the light-emitting unit groups is coated with a low color temperature fluorescent layer, such as a color temperature 2700K fluorescent layer, and at least A group of light emitting units is coated with a high color temperature fluorescent layer, such as a color temperature 6500K fluorescent layer.
  • a low color temperature fluorescent layer such as a color temperature 2700K fluorescent layer
  • a high color temperature fluorescent layer such as a color temperature 6500K fluorescent layer.
  • the filament includes at least three light-emitting unit groups, and each of the light-emitting unit groups includes at least one light-emitting unit, wherein at least one of the light-emitting unit groups is covered with a red fluorescent layer to emit red light, and the other at least one group is light-emitting.
  • the unit group is coated with a green fluorescent layer and emits green light.
  • the other group of light-emitting unit groups is not coated with a fluorescent layer and emits blue natural light to form RGB light. It may further include a group of light-emitting unit groups coated with a white light fluorescent layer. It emits white light and makes up RGBW light.
  • the light bulb of the present invention further includes a driving power source 18.
  • a driving power source refers to a power converter that converts a power supply into a specific voltage and current to drive an LED to emit light.
  • the input of the LED driving power includes high-voltage power frequency AC (that is, mains power), low-voltage DC, high-voltage DC, and low-voltage high-frequency AC (such as the output of an electronic transformer).
  • the driving power source of this embodiment is disposed in the conductive joint 12, and the driving power source is used to connect with an external power source. By designing the driving power supply, the working voltage that meets the requirements of filament work can be obtained, so that the bulb can work more stably and efficiently.
  • the epitaxial stack of the filament of the light bulb may include a plurality of semiconductor layers, for example, the first light emitting unit 111 includes a first P-type semiconductor from top to bottom. Layer 1111, a first active layer 1112, and a first N-type semiconductor layer 1113.
  • the second light-emitting unit 112 includes a second P-type semiconductor layer 1121, a second active layer 1122, and a second N-type semiconductor layer 1123.
  • Source layers such as multiple quantum wells, can form electrons between the semiconductor layers after the entire structure is energized to emit light.
  • an insulating layer 15 is respectively provided on the first N-type semiconductor layer 1113 of the first light-emitting unit 111 and the second N-type semiconductor layer 1123 of the second light-emitting unit 112, and the insulating layer 15 can be electrically conductive.
  • the line 13 is electrically insulated.
  • the filament 11 of the present invention can be provided with multiple independent epitaxial stacks, and different implementations can be obtained by using different connection methods between the independent epitaxial stacks. Please refer to FIG. 4 here.
  • the filament of the present invention may include a third light emitting unit 113, which includes a third P-type semiconductor layer, a third active layer, and a third N-type semiconductor layer (see the first structure for the structure).
  • Second light-emitting unit the same below
  • the first light-emitting unit, the second light-emitting unit, and the third light-emitting unit are connected in parallel, that is, as shown in the plan view of the epitaxial stack, the N-type exposed on the right side of the epitaxial stack
  • the semiconductor layers are connected to each other through conductive lines 13, and the other P-type semiconductor layers are connected to each other, and are respectively connected to the two lead-out electrodes 14 on the filament, so as to realize a parallel circuit inside the filament.
  • the filament 11 Designing multiple parallel light-emitting units can also be achieved by the above design.
  • the filament 11 includes a fourth light-emitting unit 114, and the fourth light-emitting unit includes a fourth P-type semiconductor layer, a fourth active layer, and a fourth N-type semiconductor layer.
  • the first light-emitting unit 111 is connected in series to the fourth light-emitting unit 114, the fourth light-emitting unit is connected to the second light-emitting unit 112 in series, a plurality of light-emitting units are connected in series with each other through the conductive line 13, and the light-emitting units at both ends are connected to the lead-out electrode.
  • conductive pins 17 are provided on the substrate at both ends of the filament, and a metal pin is bonded to the lead-out electrode 14 to form the conductive pin 17.
  • the filament 11 includes a fifth light emitting unit 115 and a sixth light emitting unit 116, and the fifth light emitting unit 115 includes a fifth P-type semiconductor layer and a fifth active layer. And a fifth N-type semiconductor layer; the sixth light-emitting unit includes a sixth P-type semiconductor layer, a sixth active layer, and a sixth N-type semiconductor layer; a conductive line is provided between the fifth light-emitting unit and the sixth light-emitting unit to conduct electricity
  • the fifth light-emitting unit and the sixth light-emitting unit are also connected to the lead-out electrode 14, and the first light-emitting unit and the second light-emitting unit are also normally connected to the lead-out electrode 14, and the fifth light-emitting unit and the sixth light-emitting unit are turned on.
  • the directions are opposite to the conducting directions of the first light emitting unit and the second light emitting unit.
  • the conduction direction here is opposite, and its polarity is opposite to that of the same extraction electrode 14.
  • the branch where the first light emitting unit and the second light emitting unit are located is on, the branch where the fifth light emitting unit and the sixth light emitting unit are located is conductive. Is not conducting.
  • the branches where the first light-emitting unit 111 and the second light-emitting unit 112 are located are conducted from right to left, and the branches where the fifth light-emitting unit 115 and the sixth light-emitting unit 116 are located from left. To the right.
  • the conducting directions of the fifth light-emitting unit 115 and the sixth light-emitting unit 116 are opposite to the conducting directions of the first light-emitting unit 111 and the second light-emitting unit 112.
  • light is alternately turned on.
  • more light-emitting units may be provided between the fifth light-emitting unit 115 and the sixth light-emitting unit 116 and between the first light-emitting unit 111 and the second light-emitting unit 112, so that the light effect of the branch is better.
  • the brightness is higher, and the design method of this embodiment can enable the two branches with opposite conduction directions to maintain the light-emitting effect when directly connected to the AC circuit. Can save the design burden of external rectifier circuit or drive power.
  • two branches can be arranged side by side.
  • the design of the epitaxial stack is relatively small, which does not cause the filament width to increase too much, and also guarantees the light emitting effect of the filament.
  • FIG. 7 discloses another embodiment of the filament structure including two light-emitting unit groups, in which the conduction directions of the fifth light-emitting unit 115 and the sixth light-emitting unit 116 and the first light-emitting unit 111 and the second The light-emitting units 112 are turned on in the same direction.
  • the filament includes at least five light-emitting units, wherein the four light-emitting units are connected to form a bridge rectifier circuit, and an input terminal of the bridge rectifier circuit is connected to an external power source. An output terminal of the bridge rectifier circuit is connected to at least one of the light emitting units.
  • the filament includes a seventh light emitting unit 117, an eighth light emitting unit 118, a ninth light emitting unit 119, a tenth light emitting unit 1110, and a conductive line;
  • the seventh light-emitting unit 117 includes a seventh P-type semiconductor layer, a seventh active layer, and a seventh N-type semiconductor layer
  • the eighth light-emitting unit 118 includes an eighth P-type semiconductor layer, an eighth active layer, and an eighth N-type semiconductor layer
  • the ninth light-emitting unit 119 includes a ninth P-type semiconductor layer, a ninth active layer, and a ninth N-type semiconductor layer
  • the tenth light-emitting unit 1110 includes a tenth P-type semiconductor layer, a tenth active layer, and The tenth N-type semiconductor layer
  • the seventh to tenth light-emitting units of the present invention can be formed into a bridge circuit and integrated in the filament, thereby playing a rectifying role so that the driving power or rectifying circuit can not be connected outside the filament, and can be self-rectified. In this way, other light emitting units connected through the rectification lead line can work normally.
  • the specific connection can be tried as follows.
  • the seventh P-type semiconductor layer is connected to the eighth N-type semiconductor layer, and the seventh N-type semiconductor layer is connected to the ninth N-type semiconductor layer.
  • the semiconductor layers are connected, the eighth P-type semiconductor layer is connected to the tenth P-type semiconductor layer, and the ninth P-type semiconductor layer is connected to the tenth N-type semiconductor layer.
  • the conductive line draws current between the seventh light-emitting unit 117 and the tenth light-emitting unit 1110 and between the eighth light-emitting unit 118 and the ninth light-emitting unit 119 to the lower circuit.
  • the filament 11 that we design may further include an integrated circuit IC, which is designed together on a substrate substrate, such as a sapphire substrate.
  • a control circuit is provided there.
  • the control circuit here may be a simple gate circuit, or a simple crystal oscillator may be added for timing, and pulse control to a triode switch may be simply used to send an enable signal.
  • the epitaxial stack needs to be connected to a PCB circuit to receive an enable signal, and connected to the lead-out electrode 14 through an integrated circuit IC.
  • the design of the present invention can control the working mode of the LED epitaxial laminated unit inside the filament through the control circuit, such as strobe, hold, turn on, turn off, etc., which better achieves the technology of designing the multiple working modes of the tungsten-proof filament lamp. effect.
  • the filament includes a constant current IC for making a current input to the light emitting unit constant.
  • the light bulb includes at least two filaments 11, and in some cases, two or more filaments of the present invention can be connected end to end according to the same conduction direction to achieve a series connection between the filaments.
  • the two ends of the filament group are then connected to the support wires of the stem, so that the effect of multiple filaments working together can be achieved.
  • the anode of the second filament 102 is connected to a support wire 16
  • the anode of the second filament 102 is connected to the anode of the third filament 103
  • the anode of the third filament is connected to the anode of the fourth filament
  • the anode of the fourth filament is connected to the anode of the fifth filament
  • the anode of the fifth filament is connected to the other support Wire connection.
  • a sixth filament 106, a seventh filament 107, an eighth filament 108, and a ninth filament 109 are arranged in the bulb, and extend in the stem.
  • the output includes at least five support wires such as a first support wire 161, a second support wire 162, a third support wire 163, a fourth support wire 164, and a fifth support wire 165; part of the support wires extend from the middle of the stem to the surroundings.
  • the first support wire 161, the second support wire 162, the third support wire 163, the fourth support wire 164, and the fifth support wire 165 on the top of the bulb are respectively connected to the filament. Connect at one end.
  • the size of the filament can be made small enough.
  • the filament may not need to be arranged vertically, but instead may be arranged in a plane. It can have a certain tilt angle, the filament and the filament may not be completely on the same horizontal plane, and may have a certain angle.
  • the structure of the bulb designed in this way is beautiful, and the structure and light angle are similar to incandescent lamps, which is the most ideal for incandescent lamps replacement of.
  • the filaments are connected to each other to form a curved, V-shaped, N-shaped or W-shaped planar arrangement.
  • the plurality of filaments 11 includes a first filament pair.
  • the filaments in the filament pair are arranged in parallel, and the two ends are connected to each other.
  • the conduction directions of the filaments are opposite.
  • the filaments 11 here may be an internal epitaxial stack.
  • the layer unit has a unidirectional filament structure, and the two ends of the filament pair are respectively connected with the supporting wires.
  • the filament of the present invention can be directly connected to an AC circuit for use, and a driving power supply or a rectifier circuit can be omitted for the design of a tungsten-proof filament lamp, thereby reducing the weight and cost of the bulb.
  • the brightness of the bulb is increased. It includes more than two filament pairs, the filament pairs are connected in sequence from end to end, and both ends are connected with the support wire. The same multiple filaments can also be well adapted to external AC circuits.
  • embodiments of the present invention also provide a novel filament and a method for manufacturing the same, including a substrate and an epitaxial stack on the substrate, wherein the substrate may be a transparent substrate, preferably The ground can use a sapphire substrate, and then use an epitaxial growth method on the substrate to grow an epitaxial stack, and then etch the epitaxial stack to obtain a first light emitting unit 111 and a second light emitting unit 112 spaced apart from each other; a first light emitting unit A conductive line is electrically connected to the second light-emitting unit, and the conductive line can be obtained by metal plating.
  • the epitaxial stack growth of the present invention includes an N-type semiconductor layer, an active layer, and a P-type semiconductor. Layers, regardless of the order of arrangement from top to bottom.
  • the first light-emitting unit may include a first N-type semiconductor layer, a first active layer, and a first P-type semiconductor layer from the inside to the outside, and the second light-emitting unit also includes a second N-type semiconductor layer.
  • a second active layer, and a second P-type semiconductor layer, a conductive line is provided between the first N-type semiconductor layer and the second P-type semiconductor layer for electrical conduction, and the first P-type semiconductor layer and the second N-type semiconductor layer are respectively Connected to a conductive pin 17.
  • the epitaxial stack at both ends of the filament is etched until the substrate is exposed, and an extraction electrode 14 is formed on the exposed substrate.
  • the extraction electrode 14 is connected to the light-emitting unit through a conductive line.
  • a metal structure is further riveted to the lead-out electrode 14 to form a conductive pin 17.
  • the stepped structure of the epitaxial stack is etched to the substrate to prevent the metal structure from contacting the epitaxial stack to a limited extent. The occurrence of a short circuit condition.
  • a third light-emitting unit may also be manufactured.
  • the third light-emitting unit includes a third N-type semiconductor layer, a third active layer, and a third P-type semiconductor layer.
  • the light emitting unit and the third light emitting unit are connected in parallel and connected to the extraction electrode 14.
  • the filament can also make a fourth light-emitting unit.
  • the fourth light-emitting unit includes a fourth N-type semiconductor layer, a fourth active layer, and a fourth P-type semiconductor layer.
  • the first light-emitting unit, the fourth light-emitting unit, and the second The light emitting units are connected to each other in series.
  • the filament includes a fifth light-emitting unit and a sixth light-emitting unit
  • the fifth light-emitting unit includes a fifth N-type semiconductor layer, a fifth active layer, and a fifth P-type semiconductor layer
  • a sixth light-emitting unit includes a sixth N-type semiconductor layer, a sixth active layer, and a sixth P-type semiconductor layer.
  • a conductive line is provided between the fifth light-emitting unit and the sixth light-emitting unit to be electrically conducted.
  • the unit is also connected to the lead-out electrode 14, and the conducting directions of the fifth light emitting unit and the sixth light emitting unit are opposite to the conducting directions of the first light emitting unit and the second light emitting unit.
  • This structure is a filament structure design that can meet the needs of AC power supply.
  • the branch where the fifth light emitting unit and the sixth light emitting unit are located and the branch where the first light emitting unit and the second light emitting unit are located are arranged side by side on the filament. That is to say, unlike the single-row light-emitting unit design and single-row cut filament described above, the light-emitting unit of the filament of this embodiment is a double-row, and starting from the etching circuit diagram, the conduction directions of the two-row light-emitting units are set On the contrary, the practicality of the filament design of the present invention can be effectively improved.
  • the filament includes a seventh light-emitting unit, an eighth light-emitting unit, a ninth light-emitting unit, a tenth light-emitting unit, and a conductive line; the seventh to tenth light-emitting units form a bridge so as to be externally connected.
  • the modulation of the AC circuit can achieve the filament to improve the adaptability to the external AC circuit, and reduce the workload of other light emitting units in the filament except the bridge circuit. It is also possible to design an integrated circuit IC on the filament during the etching through the design of the printed circuit diagram, and achieve different functions according to the design of the circuit diagram, such as a simple light-emitting control circuit, which is used to send an enable signal. Integrated crystal or design pulse circuit modulation and so on.
  • the invention also includes a method for making a filament, which includes the following steps:
  • the epitaxial stack including an N-type semiconductor layer, an active layer, and a P-type semiconductor layer;
  • the growth substrate and the epitaxial stack are cut and separated to obtain several filaments.
  • the light-emitting unit here may be an epitaxial stacked unit formed after the epitaxial growth is etched, and finally the epitaxial corrosion is made into light-emitting units spaced apart from each other.
  • the light-emitting units are electrically connected through conductive lines made of metal plating, and then pass through a laser. The wafer is cut to obtain a filament including two or more light emitting units.
  • a step is also performed to bond a conductive pin to the substrate and form an electrical connection with the light emitting unit.
  • a fluorescent film or a phosphor layer is coated on the periphery of the filament.
  • the fluorescent film here can be bonded and cut as necessary.
  • the specific embodiment further includes a step of: before cutting and separating, first covering a phosphor powder layer or attaching a fluorescent film, and then performing cutting and separation to obtain a filament with a fluorescent layer.
  • the fluorescent films of different colors can be bonded on the wafer, and the technical effect of emitting different colors of light can be achieved after the filament is finally cut.
  • the aspect ratio of the filament of the present invention is preferably greater than 10: 1. This is because the particle size of the epitaxial laminated unit itself is small enough, most of which are below 1mm.
  • the design of more than ten filament epitaxial laminated units in a single row can better match the driving power and achieve the technical effect of providing sufficient brightness. It also meets the design requirements of LED filaments for tungsten-like filament lamps. While ensuring beautiful appearance and practicality, it can also reduce the volume of the filaments, thereby generating less heat and meeting high brightness requirements.
  • the design pattern enables the filament to have an arrangement structure in which the area of the light-emitting unit in the middle is larger and the area of the light-emitting units on both sides is smaller, that is, the width of the light-emitting unit is arranged closer to the ends of the filament.
  • This light-emitting unit structure can make the heat distribution of the filament more uniform and increase the service life of the filament.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种灯泡、灯丝及制作方法,其中灯泡包括泡壳、芯柱、导电接头及灯丝,所述泡壳与芯柱密封形成密闭腔体,所述灯丝设置于所述密闭腔体内,灯丝通过芯柱连接至导电接头,并通过导电接头与外部电源形成电气连接;其中,灯丝包括衬底及衬底上的外延叠层,所述外延叠层包括至少二个发光单元,所述至少二个发光单元间设置有导电线路得以电导通。所述灯丝还设计有一引出电极,引出电极连接至所述发光单元。所述灯丝还设置有导电引脚,导电引脚连接合于所述引出电极上,连接至所述发光单元。

Description

一种灯泡、灯丝及制作方法 技术领域
本发明属于照明技术领域,尤其涉及一种灯泡以及其使用的灯丝的设计。
背景技术
1772年燃气照明才进入人们的生活,这是人类照明历史上的第一次革命。1879年爱迪生发明白炽灯,让人类照明进入了一个崭新的时代,这是人类照明历史上的第二次革命。在当前全球能源供给日趋紧张,节能环保成为全球共识的背景下,各国政府相继推出了淘汰白炽灯的政策。LED照明凭借着节能环保等优势,将代替白炽灯和荧光灯进入普通照明领域,成为第三代照明灯具。
传统LED灯泡采用塑料泡壳,将封装好的LED灯珠(SMD)贴在PCB板上,放置在泡壳内,PCB板连接驱动电源和散热部件。这种灯泡发光角度较小,不能做到白炽灯的360度全周光,且外观与传统白炽灯有较大差异,无法完全替代白炽灯。
开发出一种能够360度全周发光,且外观与传统白炽灯相似,又节能、环保的灯泡,成为白炽灯最理想的替代产品,具有非常重要的意义。
发明内容
为此,需要提供一种新型的能够便于生产的灯泡、灯丝及制作方法。
为实现上述目的,发明人提供了一种灯泡,其特征在于,包括泡壳、芯柱、导电接头及灯丝,所述泡壳与芯柱密封形成密闭腔体,所述灯丝设置于所述密闭腔体内,灯丝通过芯柱连接至导电接头,并通过导电接头与外部电源形成电气连接;
其中,灯丝包括衬底及衬底上的外延叠层,所述外延叠层包括至少二个 发光单元,所述至少二个发光单元间设置有导电线路得以电导通。
进一步地,所述泡壳内还填充有导热材料,所述导热材料包括导热气体、导热液体或导热胶。
优选地,所述灯丝外周还包覆有荧光层,所述荧光层为荧光粉层或荧光膜。
进一步地,所述灯丝外周还设有外罩,所述外罩内设有荧光层。
进一步地,所述的灯丝包括至少二组发光单元组,各所述的发光单元组至少包括一个发光单元,其中至少一组发光单元组包覆低色温荧光层,另至少一组发光单元组包覆高色温荧光层。
进一步地,所述的灯丝包括至少三组发光单元组,各所述的发光单元组至少包括一个发光单元,其中至少一组发光单元组包覆红色荧光层,另至少一组发光单元组包覆绿色荧光层。
进一步地,包括驱动电源,所述驱动电源可设置于导电接头内,所述灯丝连接至驱动电源,通过驱动电源连接至导电接头。
进一步地,包括电阻,所述灯丝连接电阻,通过电阻连接至导电接头。
进一步地,所述灯丝相互连接,形成一个平面排布的一字型、弧形、V字型、N字型或W字型。
进一步地,所述灯丝两端的外延叠层还被蚀刻至衬底,且在衬底上设计有一引出电极,引出电极连接至所述发光单元。
进一步地,所述灯丝还设置有导电引脚,导电引脚连接至所述发光单元。
具体地,所述至少二个发光单元包括有第一发光单元以及第二发光单元,其中所述第一发光单元包括第一N型半导体层、第一有源层和第一P型半导体层,所述第二发光单元包括第二N型半导体层、第二有源层和第二P型半导体层,第一N型半导体层与第二P型半导体层间设置有导电线路得以电导通,第一P型半导体层、第二N型半导体层分别与一导电引脚连接。
具体地,所述灯丝包括第三发光单元,所述第三发光单元包括第三N型 半导体层、第三有源层和第三P型半导体层,所述第一发光单元、第二发光单元、第三发光单元并联并与引出电极连接。
具体地,所述灯丝包括第四发光单元,所述第四发光单元包括第四N型半导体层、第四有源层和第四P型半导体层,所述第一发光单元、第四发光单元、第二发光单元相互串联连接。
具体地,所述灯丝包括至少四个发光单元,至少二个发光单元之间设置有导电线路以电导通;
其中,所述至少二个发光单元与另至少二个发光单元的导通方向相反。
具体地,所述灯丝包括第五发光单元、第六发光单元,所述第五发光单元包括第五N型半导体层、第五有源层和第五P型半导体层;第六发光单元包括第六N型半导体层、第六有源层和第六P型半导体层;第五发光单元与第六发光单元之间设置有导电线路得以电导通,所述第五发光单元、第六发光单元还与引出电极连接,所述第五发光单元、第六发光单元的导通方向与第一发光单元、第二发光单元的导通方向相反,交流电输入时,交替导通发光。
具体地,所述灯丝包括至少五个发光单元,其中所述四个发光单元连接组成桥式整流电路,桥式整流电路的输入端连接外部电源,桥式整流电路的输出端连接至少一个所述发光单元。
具体地,所述灯丝包括第七发光单元、第八发光单元、第九发光单元、第十发光单元、导电线路;
所述第七发光单元包括第七N型半导体层、第七有源层和第七P型半导体层;第八发光单元包括第八N型半导体层、第八有源层和第八P型半导体层;第九发光单元包括第九N型半导体层、第九有源层和第九P型半导体层;第十发光单元包括第十N型半导体层、第十有源层和第十P型半导体层;
所述第七P型半导体层与第八N型半导体层连接,第七N型半导体层与第九N型半导体层连接,第八P型半导体层与第十P型半导体层连接,第九P 型半导体层与第十N型半导体层连接,组成桥式整流电路。
进一步地,所述灯丝包括集成电路IC,所述集成电路IC连接所述发光单元,用于控制发光单元的电输入。
具体地,所述灯丝包括恒流IC,所述恒流IC用于使输入至发光单元的电流恒定。
具体地,包括至少两条灯丝,所述灯丝按相同导通方向连接,两端再与支撑导线连接。
具体地,包括至少两条灯丝,两条灯丝两端相互连接,导通方向相反,交流电输入时,两条灯丝交替导通发光。
具体地,包括第一灯丝对,所述灯丝对内的灯丝平行设置,两端相互连接,灯丝的导通方向相反,灯丝对的两端分别与支撑导线连接。
进一步地,包括两个或两个以上的灯丝对,所述灯丝对首尾依次连接,两端再与支撑导线连接。
具体地,包括多条灯丝,芯柱中延伸出多条支撑导线;部分支撑导线从芯柱中间向四周延伸,并连接至灯丝,用于支撑和固定灯丝。而由于本发明的灯丝发光效率高,散热性能好,灯丝尺寸可以做得足够小,为了更接近传统钨丝灯的外形结构,灯丝可以无需竖直设置,而是采用平面设置,灯丝与水平方向可以具有一定的倾斜角度,灯丝与灯丝之间可以不要完全在同一水平面上,可以具有一定的夹角,这样设计出来的灯泡结构美观,外形结构与发光角度与白炽灯相似,是白炽灯最理想的替代品。
一种灯丝,包括衬底及衬底上的外延叠层,所述外延叠层包括第一发光单元、第二发光单元,所述第一发光单元、第二发光单元相互隔开;第一发光单元与第二发光单元间设置有导电线路得以电导通。
优选地,所述衬底为透明衬底。
进一步地,灯丝两端的外延叠层还被蚀刻至衬底,且在衬底上设计有一引出电极,引出电极连接至所述发光单元。
进一步地,所述灯丝还设置有导电引脚,导电引脚连接至所述发光单元。
具体地,第一发光单元包括第一N型半导体层、第一有源层和第一P型半导体层,所述第二发光单元包括第二N型半导体层、第二有源层和第二P型半导体层,第一N型半导体层与第二P型半导体层间设置有导电线路得以电导通,第一P型半导体层、第二N型半导体层分别与一导电引脚连接。
具体地,包括第三发光单元,所述第三发光单元包括第三N型半导体层、第三有源层和第三P型半导体层,所述第一发光单元、第二发光单元、第三发光单元并联并与引出电极连接。
具体地,所述灯丝包括第四发光单元,所述第四发光单元包括第四N型半导体层、第四有源层和第四P型半导体层,所述第一发光单元、第四发光单元、第二发光单元相互串联连接。
具体地,所述灯丝包括至少四个发光单元,至少二个发光单元之间设置有导电线路以电导通;
其中,所述至少二个发光单元与另至少二个发光单元的导通方向相反。
具体地,所述灯丝包括第五发光单元、第六发光单元,所述第五发光单元包括第五N型半导体层、第五有源层和第五P型半导体层;第六发光单元包括第六N型半导体层、第六有源层和第六P型半导体层;第五发光单元与第六发光单元之间设置有导电线路得以电导通,所述第五发光单元、第六发光单元还与引出电极连接,所述第五发光单元、第六发光单元的导通方向与第一发光单元、第二发光单元的导通方向相反,交流电输入时,交替导通发光。
具体地,所述灯丝包括至少五个发光单元,其中所述四个发光单元连接组成桥式整流电路,桥式整流电路的输入端连接外部电源,桥式整流电路的输出端连接至少一个所述发光单元。
具体地,所述灯丝包括第七发光单元、第八发光单元、第九发光单元、第十发光单元、导电线路;
所述第七发光单元包括第七N型半导体层、第七有源层和第七P型半导体层;第八发光单元包括第八N型半导体层、第八有源层和第八P型半导体层;第九发光单元包括第九N型半导体层、第九有源层和第九P型半导体层;第十发光单元包括第十N型半导体层、第十有源层和第十P型半导体层;
所述第七P型半导体层与第八N型半导体层连接,第七N型半导体层与第九N型半导体层连接,第八P型半导体层与第十P型半导体层连接,第九P型半导体层与第十N型半导体层连接,组成桥式整流电路。
进一步地,所述灯丝包括集成电路IC,所述集成电路IC连接所述发光单元,用于控制发光单元的电输入。
具体地,所述灯丝包括恒流IC,所述恒流IC用于使输入至发光单元的电流恒定。
一种灯丝制作方法,包括如下步骤:
准备生长衬底;
在生长衬底上生长外延叠层,外延叠层包括N型半导体层、有源层和P型半导体层;
图形化所述外延叠层,以形成至少二个发光单元;
在所述外延叠层和衬底上,制作导电线路,连接各发光单元;
切割分离生长衬底及外延叠层,得到若干个灯丝。
进一步地,所述步骤包括,蚀刻所述外延叠层,使得外延叠层被蚀刻成具有间隙,相互隔离开的发光单元,发光单元之间还通过镀膜形成的导电线路连接。
进一步地,蚀刻两端的外延叠层至衬底,在衬底上制作一引出电极,并且制作导电线路连接引出电极连接和所述发光单元。
进一步地,还包括步骤,将一导电引脚接合于所述衬底上,并且与所述发光单元形成电气连接。
进一步地,还包括步骤,在灯丝的外围包覆荧光膜或涂布荧光粉层。
具体地,所述蚀刻为湿式蚀刻,还包括步骤,设计蚀刻图案,使得蚀刻后晶圆片上的发光单元为列对齐式的排布,根据对晶圆片进行切割,得到单列多发光单元排布的灯丝。
具体地,所述图形化制程为,设计发光单元图形及排布方式,采用光刻和蚀刻工艺将衬底上的外延叠层蚀刻为所设计的若干个发光单元。
具体地,导电线路的制作为,在发光单元之间的隔离沟道上制作绝缘层,然后在绝缘层及发光单元上,采用金属镀膜的工艺形成导电线路。
进一步地,还包括步骤,使用激光切割,将晶圆片切割成一个平面排布的一字型、弧形、V字型、N字型或W字型的灯丝。
进一步地,所述灯丝的长宽比大于10:1。
具体地,切割后的发光单元为双列、各列多发光单元排布的灯丝,
还包括步骤,设计蚀刻图案,双列发光单元的导通方向相反。
具体地,包括步骤,设计蚀刻图案,使得灯丝具备中间的发光单元面积较大且两边的发光单元面积较小排列结构,亦即,灯丝的发光单元宽度呈越靠近两端宽度越小的排列结构。
具体地,还包括步骤,在切割分离前,先包覆荧光粉层或贴上荧光膜,再进行切割分离,得到带有荧光层的灯丝。
区别于现有技术,上述技术方案通过在生长衬底上集成发光单元,形成灯丝,较小的尺寸就能获得很高的亮度,可以采用平面排列的方式制作灯泡,这样设计出来的灯泡结构美观,外形结构与发光角度与白炽灯相似,是白炽灯最理想的替代品。本发明灯丝的制作省掉了传统LED封装的固晶和焊线工艺,工艺制程简单,生产良率高,产品散热性能好,可靠性高。
附图说明
图1为本案较佳实施例中所述的灯泡结构示意图;
图2为本案较佳实施例中所述的灯丝结构示意图;
图3为本案较佳实施例中所述的灯丝剖视图;
图4为本案较佳实施例中所述的发光单元并联连接的灯丝结构示意图;图5为本案较佳实施例中所述的带导电引脚的灯丝结构示意图;
图6为本案较佳实施例中所述的交流灯丝结构示意图;
图7本案较佳实施例中所述的包括两组发光单元组的灯丝结构示意图
图8为本案较佳实施例中所述的带桥式整流电路的交流灯丝结构示意图;图9为本案较佳实施例中所述的带桥式整流电路的交流灯丝原理图;
图10为本案较佳实施例中所述的灯泡结构示意图;
图11为本案较佳实施例中所述的灯泡结构示意图。
附图标记说明:
10、灯泡;
100、泡壳;
101、芯柱;
11、灯丝;
102、第二灯丝;
103、第三灯丝;
104、第四灯丝;
105、第五灯丝;
106、第六灯丝;
107、第七灯丝;
108、第八灯丝;
109、第九灯丝;
110、衬底;
111、第一发光单元;
1111、第一P型半导体层;
1112、第一有源层;
1113、第一N型半导体层;
112、第二发光单元;
1121、第二P型半导体层;
1122、第二有源层;
1123、第二N型半导体层;
113、第三发光单元;
114、第四发光单元;
115、第五发光单元;
116、第六发光单元;
117、第七发光单元;
118、第八发光单元;
119、第九发光单元;
1110、第十发光单元;
12、导电接头;
13、导电线路;
14、引出电极;
15、绝缘层;
16、支撑导线;
161、第一支撑导线;
162、第二支撑导线;
163、第三支撑导线;
164、第四支撑导线;
165、第五支撑导线;
17、导电引脚;
18、驱动电源。
具体实施方式
为详细说明技术方案的技术内容、构造特征、所实现目的及效果,以下结合具体实施例并配合附图详予说明。
请参阅图1,为本实施例一种灯泡10,包括泡壳100、导电接头12、芯柱101及灯丝11,如图中所示,所述泡壳100与芯柱101密封形成密闭腔体,所述芯柱101包括支撑导线16。所述灯丝11设置于所述密闭腔体内,灯丝11通过芯柱的支撑导线16连接至导电接头12,并通过导电接头12与外部电源形成电气连接;
图2及图3展示了灯丝的具体结构,从图3中我们可以看到,灯丝11包括衬底110及衬底上的外延叠层,在下面的描述例中我们将会知道,外延叠层是通电后能够发生电子迁移从而发光的结构部件,具有多个材料组分结构,在这里我们先介绍外延叠层包括第一发光单元111、第二发光单元112,图中第一发光单元、第二发光单元相互隔开,共性是它们都生长在衬底上。在本实施例的结构中,第一发光单元与第二发光单元间设置有导电线路13得以电导通,第一发光单元、第二发光单元还与引出电极14连接。这种灯丝可以通过第一、第二发光单元的发光,较小的尺寸就能获得很高的亮度,可以采用平面排列的方式制作灯泡,这样设计出来的灯泡结构美观,外形结构与发光角度与白炽灯相似,是白炽灯最理想的替代品。
其他一些进一步的实施例中,所述泡壳100内还填充有导热材料,所述导热材料包括导热气体、导热液体或导热胶。导热材料的作用是增大灯丝周围介质的导热效率,保证灯丝工作时产生的热量能够及时疏导。这里导热气体可以是常规用于填充在灯泡内的惰性气体,如氦气、氖气等等,导热液体或导热胶可以是灯泡的灌封胶,如有机硅液体、导热灌封胶等。
在某些优选的实施例中,我们还在灯丝外周还包覆有荧光层,荧光层用于使灯丝发出不同颜色的光,在本发明的实施例中,所述荧光层可以为涂布在灯丝外周的荧光粉层或包覆在灯丝外周的荧光膜。荧光粉层可以通过灯丝 外周还设有外罩,设置在所述的外罩内。
进一步地,所述的灯丝包括至少二组发光单元组,各所述的发光单元组至少包括一个发光单元,其中至少一组发光单元组包覆低色温荧光层,例如色温2700K荧光层,另至少一组发光单元组包覆高色温荧光层,例如色温6500K荧光层。
进一步地,所述的灯丝包括至少三组发光单元组,各所述的发光单元组至少包括一个发光单元,其中至少一组发光单元组包覆红色荧光层,发出红色光,另至少一组发光单元组包覆绿色荧光层,发出绿色光,另一组发光单元组不包覆荧光层,发出蓝色本色光,组成RGB的光;还可以再包括一组发光单元组包覆白光荧光层,发出白光,组成RGBW的光。
在进一步的实施例中,如图1所示,本发明灯泡还包括驱动电源18,在本领域中,驱动电源指是把电源供应转换为特定的电压电流以驱动LED发光的电源转换器,通常情况下,LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。该实施例的驱动电源设置于导电接头12内,所述驱动电源用于与外部电源连接。通过设计驱动电源,能够得到满足灯丝工作要求的工作电压,从而使得灯泡更加稳定、高效地工作。
在具体的某些实施例中,如图2及图3所示,灯泡的灯丝的外延叠层可以包括多个半导体层,如所述第一发光单元111从上至下包括第一P型半导体层1111、第一有源层1112和第一N型半导体层1113,所述第二发光单元112包括第二P型半导体层1121、第二有源层1122和第二N型半导体层1123,有源层如多量子阱能够在整个结构通电之后在半导体层之间形成电子迁移从而发出光亮。当然,外延叠层形成P型半导体在下,N型半导体在上的结构也是可以的。如图所示的实施例中我们通过在第一N型半导体层与第二P型半导体层间设置有导电线路13得以电导通,而第一P型半导体层、第二N型半导体层上分别与一导电引脚17连接。从而使得灯丝能够与外部电路导通。
进一步,所述第一发光单元111的第一N型半导体层1113以及所述第二发光单元112的第二N型半导体层1123上,分别设置有绝缘层15,所述绝缘层15可以对导电线路13进行电气绝缘。
又如一些具体的实施例中,本发明的灯丝11可以设置多个相互独立的外延叠层,而相互独立的外延叠层之间通过不同的连接方式能够获得不同的实施电路。这里请看图4,本发明的灯丝可以包括第三发光单元113,所述第三发光单元113包括第三P型半导体层、第三有源层和第三N型半导体层(结构参见第一、第二发光单元,下同),所述第一发光单元、第二发光单元、第三发光单元并联,即如图中所示的外延叠层俯视图中,外延叠层右侧露出的N型半导体层之间通过导电线路13相互连接,其余的P型半导体层之间相互连接之后,分别与灯丝上的两个引出电极14连接,从而在灯丝内部实现并联电路,当然举一反三地,在灯丝11上设计多个并联的发光单元也能够通过上述设计来实现。
而另一些图5所示的具体实施例中,所述灯丝11包括第四发光单元114,所述第四发光单元包括第四P型半导体层、第四有源层和第四N型半导体层,所述第一发光单元111串联至第四发光单元114,第四发光单元串联至第二发光单元112,多个发光单元通过导电线路13相互串联连接,两端的发光单元连接至引出电极。当然举一反三地,再行设计更多的串联的发光单元也能够通过上述设计来实现灯丝内部的多发光单元的串联。另,如图所示,灯丝两端的衬底上设置导电引脚17,一金属引脚接合于所述引出电极14,形成导电引脚17。
另外一些图6所示的具体的实施例中,所述灯丝11包括第五发光单元115、第六发光单元116,所述第五发光单元115包括第五P型半导体层、第五有源层和第五N型半导体层;第六发光单元包括第六P型半导体层、第六有源层和第六N型半导体层;第五发光单元与第六发光单元之间设置有导电线路得以电导通,所述第五发光单元、第六发光单元还与引出电极14连接,同时第 一发光单元、第二发光单元也正常连接到引出电极14,第五发光单元、第六发光单元的导通方向与第一发光单元、第二发光单元的导通方向相反。这里的导电方向相反,其与同一引出电极14相连接的极性相反,当第一发光单元、第二发光单元所在的支路为导通时第五发光单元、第六发光单元所在的支路为不导通。在图6所示的情况便是,第一发光单元111与第二发光单元112所在的支路从右至左导通,而第五发光单元115、第六发光单元116所在的支路从左至右导通。所述第五发光单元115、第六发光单元116的导通方向与第一发光单元111、第二发光单元112的导通方向相反,交流电输入时,交替导通发光。当然举一反三地,第五发光单元115、第六发光单元116之间及第一发光单元111、第二发光单元112之间可以设置更多的发光单元,从而使得所在支路的发光效果更好,亮度更高,而本实施例的设计方法能够使得导通方向相反的两个支路在直接接入交流电路时还能够保持发光效果。可以省去外部整流电路或驱动电源的设计负担。同时在实际的应用例中,两支路可以并排设置,外延叠层一般设计较小,并不会导致灯丝的宽度增大过多,而同样保证了灯丝的发光效果。
另请参看图7,其揭示了另一种包括两组发光单元组的灯丝结构实施态样,其中第五发光单元115、第六发光单元116的导通方向与第一发光单元111、第二发光单元112的导通方向相同。
请看图8及9,在另一具体实施例中,所述灯丝包括至少五个发光单元,其中所述四个发光单元连接组成桥式整流电路,桥式整流电路的输入端连接外部电源,桥式整流电路的输出端连接至少一个所述发光单元。在该具体实施例中,灯丝包括第七发光单元117、第八发光单元118、第九发光单元119、第十发光单元1110、导电线路;
同样的,第七发光单元117包括第七P型半导体层、第七有源层和第七N型半导体层;第八发光单元118包括第八P型半导体层、第八有源层和第八N型半导体层;第九发光单元119包括第九P型半导体层、第九有源层和第九N 型半导体层;第十发光单元1110包括第十P型半导体层、第十有源层和第十N型半导体层;
具体的连接电路请看图9,本发明的第七至第十发光单元可以形成桥式电路集成在灯丝中,从而起到整流的作用使得灯丝外可以不用接驱动电源或整流电路,能够自整流从而让通过整流导出线接出的其他发光单元正常工作,具体连接可以试举例如下,所述第七P型半导体层与第八N型半导体层连接,第七N型半导体层与第九N型半导体层连接,第八P型半导体层与第十P型半导体层连接,第九P型半导体层与第十N型半导体层连接。导电线路将第七发光单元117与第十发光单元1110之间、第八发光单元118与第九发光单元119之间的电流引出至下级电路。通过上述设计,我们能够通过在芯片上设置多个独立的外延叠层执行整流工作从而提高灯丝的外部电路适应性,那么明显地,当本发明的灯丝每个都能够自主地完成整流工作后,能够省掉现有的LED灯的驱动电源的设计,能够降低灯泡成本,并且使得整个灯泡更加的轻便。
其他一些具体的实施例中,我们设计的灯丝11还可以包括集成电路IC,所述集成电路IC一同设计在衬底基板、如蓝宝石基板上,放置集成电路IC的区域上没有外延叠层,但其上设置有控制电路,这里的控制电路可以是一个简单的门电路、抑或加入简单的晶振进行计时,发出脉冲控制给三极管开关等方式简单地用于发出致能信号即可,而其他部分的外延叠层需要连入PCB电路接收致能信号,通过集成电路IC与引出电极14连接。从而本发明的设计能够通过控制电路控制灯丝内部LED外延叠层单元的工作模式,如频闪、保持、开启、关闭等等,更好地达到了防钨丝灯的多元化工作模式设计的技术效果。另,所述灯丝包括恒流IC,所述恒流IC用于使输入至发光单元的电流恒定。
再进一步的具体实施例中,灯泡内包括至少两个灯丝11,一些情况下,本发明的两条或多条灯丝可以根据相同导通方向首尾依次连接,达到灯丝之 间的串联,串联好的灯丝组的两端再与芯柱的支撑导线连接,从而能够达到多个灯丝共同工作的效果。如图10所示的实施例中,我们还可以设计包括第二灯丝102、第三灯丝103、第四灯丝104、第五灯丝105,所述第二灯丝102的正极与一支撑导线16连接,第二灯丝102的负极与第三灯丝103的正极连接,第三灯丝的负极与第四灯丝的正极连接,第四灯丝的正极与第五灯丝的负极连接,第五灯丝的负极与另一支撑导线连接。通过这样的连接设计,灯丝连接形成一个平面的弧形,使得灯泡在结构上就更为贴近传统的钨丝灯设计。
又如图11所示的具体实施例中,如图所示的灯泡结构示意图,泡壳中设置了第六灯丝106、第七灯丝107、第八灯丝108和第九灯丝109,芯柱中延伸出至少包括五条支撑导线如第一支撑导线161、第二支撑导线162、第三支撑导线163、第四支撑导线164、第五支撑导线165;部分支撑导线从芯柱中间向四周延伸。从图中我们可以看到,灯泡的第一支撑导线161、第二支撑导线162、第三支撑导线163、第四支撑导线164、第五支撑导线165顶部的多个接电部位分别与灯丝的一端连接。而由于本发明的灯丝发光效率高,散热性能好,灯丝尺寸可以做得足够小,为了更接近传统钨丝灯的外形结构,灯丝可以无需竖直设置,而是采用平面设置,灯丝与水平方向可以具有一定的倾斜角度,灯丝与灯丝之间可以不要完全在同一水平面上,可以具有一定的夹角,这样设计出来的灯泡结构美观,外形结构与发光角度与白炽灯相似,是白炽灯最理想的替代品。
进一步地,所述灯丝相互连接,形成一个平面排布的弧形、V字型、N字型或W字型。
那么在进一步的实施例中,多个灯丝11包括第一灯丝对,所述灯丝对内的灯丝平行设置,两端相互连接,灯丝的导通方向相反,这里的灯丝11可以为内部的外延叠层单元单向导通的灯丝结构,灯丝对的两端分别与支撑导线连接。通过该种设计,能够使得本发明的灯丝能够直接接入交流电路中使用, 能够为防钨丝灯的设计省却驱动电源或整流电路,降低灯泡的重量、成本。优选的实施例中为了提升灯泡的亮度。包括两个以上的灯丝对,所述灯丝对首尾依次连接,两端再与支撑导线连接。同样多个灯丝对于外接交流电路也能够很好地适应。
为了提供满足上述要求的灯泡及其设计,本发明的实施例中还提供一种新型灯丝及其制备方法,包括衬底及衬底上的外延叠层,其中衬底可选用透明衬底,优选地可以采用蓝宝石基底,然后采用在基底上生长外延的方法,生长外延叠层,再对外延叠层进行蚀刻从而获得相互隔开的第一发光单元111、第二发光单元112;第一发光单元与第二发光单元间设置有导电线路得以电导通,导电线路可以通过金属镀膜来获得,具体的一些实施例中,本发明的外延叠层生长包括N型半导体层、有源层、P型半导体层,而从上到下的排布顺序不论。作为某个具体的实施例,第一发光单元由内至外可以包括第一N型半导体层、第一有源层和第一P型半导体层,第二发光单元同样包括第二N型半导体层、第二有源层和第二P型半导体层,第一N型半导体层与第二P型半导体层间设置有导电线路得以电导通,第一P型半导体层、第二N型半导体层分别与一导电引脚17连接。
在其它的一些实施例中,灯丝的两端的外延叠层还被蚀刻直至露出衬底,并且在露出的衬底上制作引出电极14,引出电极14通过导电线路连接至发光单元。在另一些实施例中,还将一金属结构铆接在引出电极14上,形成导电引脚17,那么通过将外延叠层蚀刻至衬底的阶梯结构能够有限防止金属结构于外延叠层接触,避免了短路情况的产生。
在灯丝制作的时候,还可以制作第三发光单元,所述第三发光单元包括第三N型半导体层、第三有源层和第三P型半导体层,所述第一发光单元、第二发光单元、第三发光单元并联并与引出电极14连接。灯丝还可以制作第四发光单元,所述第四发光单元包括第四N型半导体层、第四有源层和第四P型半导体层,所述第一发光单元、第四发光单元、第二发光单元相互串联连 接。当然还可以同时在灯丝制作的时候通过画不同的电路图来制作更多的发光单元、来进行相互串联、并联的连接,从而最终达到整个灯丝的协同工作,用户可以设置足够多的发光单元排布来满足灯丝光量的需求。
更具体地说,所述灯丝包括第五发光单元、第六发光单元,所述第五发光单元包括第五N型半导体层、第五有源层和第五P型半导体层;第六发光单元包括第六N型半导体层、第六有源层和第六P型半导体层;第五发光单元与第六发光单元之间设置有导电线路得以电导通,所述第五发光单元、第六发光单元还与引出电极14连接,所述第五发光单元、第六发光单元的导通方向与第一发光单元、第二发光单元的导通方向相反。这种结构是一种能满足交流电直通需求的灯丝结构设计,一般地,第五发光单元、第六发光单元所在的支路与第一发光单元、第二发光单元所在的支路并排设置在灯丝上,也就是说,不同于前述单排发光单元设计、单排切割的灯丝,本实施例的灯丝的发光单元为双排,并且从蚀刻电路图入手,将两列的发光单元的导通方向设置为相反,能够有效提高本发明灯丝设计的实用性。
其他一些具体的实施例中,所述灯丝包括第七发光单元、第八发光单元、第九发光单元、第十发光单元、导电线路;第七发光单元至第十发光单元形成电桥从而对外接的交流电路进行调制,能够达到灯丝提高对外接交流电路的适应性,并且降低灯丝中除桥接电路以外的其他发光单元的工作负荷。还可以通过印刷电路图的设计,在蚀刻的时候在灯丝上设计集成电路IC,根据电路图设计的不同达到不同的功能,如简单的发光控制电路,所述控制电路用于发出致能信号,还可以集成晶振或设计脉冲电路调制等等。
本发明还包括一种灯丝制作方法,包括如下步骤:
准备生长衬底;
在生长衬底上生长外延叠层,外延叠层包括N型半导体层、有源层和P型半导体层;
图形化所述外延叠层,以形成至少二个发光单元;
在所述外延叠层和衬底上,制作导电线路,连接各发光单元;
切割分离生长衬底及外延叠层,得到若干个灯丝。
这里的发光单元可以是生长好的外延被蚀刻后形成的外延叠层单元,最终使得外延腐蚀成相互间隔的发光单元,发光单元之间通过金属镀膜制成的导电线路电连接,再行通过激光切割晶圆片,得到包括两个以上发光单元的灯丝。
还进行步骤,将一导电引脚接合于所述衬底上,并且与所述发光单元形成电气连接。
最后再在灯丝的外围包覆荧光膜或涂布荧光粉层。这里的荧光膜能够根据需要进行贴合、切割。具体的实施例中还包括步骤,在切割分离前,先包覆荧光粉层或贴上荧光膜,再进行切割分离,得到带有荧光层的灯丝。可以在晶圆片上贴合不同颜色的荧光膜,最终切割后的灯丝就能达到发出不同颜色光线的技术效果。
在进一步的实施例中,本发明的灯丝的长宽比优选为大于10:1。这是由于外延叠层单元的粒径本身足够小,大多数是在1mm以下,设计单列十个以上排布的灯丝外延叠层单元能够更好地匹配驱动电源和达到提供足够亮度的技术效果,并满足仿钨丝灯的LED灯丝的设计需求,在保证美观、实用的同时还能够减少灯丝的体积,从而产生更少的发热及满足高亮度需求。
在其他一些具体的实施例中,我们可以通过步骤改变设计蚀刻图案,使得切割后的发光单元为双列、各列多发光单元排布的灯丝,双列发光单元的导通方向相反。又如其他一种设计图案能够使得灯丝具备中间的发光单元面积较大且两边的发光单元面积较小排列结构,亦即发光单元宽度呈越靠近灯丝两端宽度越小的排列结构。这种发光单元结构能够使得灯丝的热分布更均匀,提高灯丝的使用寿命。
需要说明的是,尽管在本文中已经对上述各实施例进行了描述,但并非因此限制本发明的专利保护范围。因此,基于本发明的创新理念,对本文所 述实施例进行的变更和修改,或利用本发明说明书及附图内容所作的等效结构或等效流程变换,直接或间接地将以上技术方案运用在其他相关的技术领域,均包括在本发明的专利保护范围之内。

Claims (36)

  1. 一种灯泡,其特征在于,包括泡壳、芯柱、导电接头及灯丝,
    所述泡壳与芯柱密封形成密闭腔体,所述灯丝设置于所述密闭腔体内,灯丝通过芯柱连接至导电接头,并通过导电接头与外部电源形成电气连接;
    其中,灯丝包括衬底及衬底上的外延叠层,所述外延叠层包括至少二个发光单元,所述至少二个发光单元间设置有导电线路得以电导通。
  2. 根据权利要求1所述的灯泡,其特征在于,所述泡壳内还填充有导热材料,所述导热材料包括导热气体、导热液体或导热胶。
  3. 根据权利要求1所述的灯泡,其特征在于,所述灯丝外周还包覆有荧光层,所述荧光层为荧光粉层或荧光膜。
  4. 根据权利要求1所述的灯泡,其特征在于,所述灯丝外周还设有外罩,所述外罩内设有荧光层。
  5. 根据权利要求1所述的灯泡,其特征在于,所述的灯丝包括至少二组发光单元组,各所述的发光单元组至少包括一个发光单元,其中至少一组发光单元组包覆低色温荧光层,另至少一组发光单元组包覆高色温荧光层。
  6. 根据权利要求1所述的灯泡,其特征在于,所述的灯丝包括至少三组发光单元组,各所述的发光单元组至少包括一个发光单元,其中至少一组发光单元组包覆红色荧光层,另至少一组发光单元组包覆绿色荧光层。
  7. 根据权利要求1所述的灯泡,其特征在于,包括驱动电源,所述灯丝连接至驱动电源,通过驱动电源连接至导电接头。
  8. 根据权利要求1所述的灯泡,其特征在于,包括电阻,所述灯丝连接电阻,通过电阻连接至导电接头。
  9. 根据权利要求1所述的灯泡,其特征在于,所述灯丝还设置有导电引脚,导电引脚连接至所述发光单元。
  10. 根据权利要求1所述的灯泡,其特征在于,所述至少二个发光单元包括有第一发光单元以及第二发光单元,其中第一发光单元包括第一N型半 导体层、第一有源层和第一P型半导体层,所述第二发光单元包括第二N型半导体层、第二有源层和第二P型半导体层,第一N型半导体层与第二P型半导体层间设置有导电线路得以电导通,第一P型半导体层、第二N型半导体层分别与所述导电引脚连接。
  11. 根据权利要求1所述的灯泡,其特征在于,所述灯丝的至少二个发光单元并联连接。
  12. 根据权利要求1所述的灯泡,其特征在于,所述灯丝的至少二个发光单元相互串联连接。
  13. 根据权利要求1所述的灯泡,其特征在于,所述灯丝的至少二个发光单元相互连接,导通方向相反,交流电输入时,发光单元交替导通发光。
  14. 根据权利要求1所述的灯泡,所述灯丝包括至少五个发光单元,其中所述四个发光单元连接组成桥式整流电路,桥式整流电路的输入端连接外部电源,桥式整流电路的输出端连接至少一个所述发光单元。
  15. 根据权利要求1所述的灯泡,其特征在于,所述灯丝包括集成电路IC,所述集成电路IC连接所述发光单元,用于控制发光单元的电输入。
  16. 根据权利要求1所述的灯泡,其特征在于,包括两条或多条灯丝,两条或多条灯丝根据相同导通方向首尾依次连接,两端再与芯柱的一支撑导线连接,所述支撑导线连接至所述导电接头。
  17. 根据权利要求1所述的灯泡,其特征在于,包括至少两条灯丝,两条灯丝两端相互连接,导通方向相反,交流电输入时,两条灯丝交替导通发光。
  18. 根据权利要求1所述的灯泡,其特征在于,所述灯丝相互连接,形成一个平面排布的一字型、弧形、V字型、N字型或W字型。
  19. 一种灯丝,其特征在于,包括衬底及衬底上的外延叠层,所述外延叠层包括至少二个发光单元,所述至少二个发光单元间设置有导电线路得以电导通。
  20. 根据权利要求19所述的灯丝,其特征在于,还设置有导电引脚,导电引脚连接至所述发光单元。
  21. 根据权利要求19所述的灯丝,其特征在于,所述至少二个发光单元包括有第一发光单元以及第二发光单元,其中第一发光单元包括第一N型半导体层、第一有源层和第一P型半导体层,所述第二发光单元包括第二N型半导体层、第二有源层和第二P型半导体层,第一N型半导体层与第二P型半导体层间设置有导电线路得以电导通,第一P型半导体层、第二N型半导体层分别与所述导电引脚连接。
  22. 根据权利要求19所述的灯丝,其特征在于,外周还包覆有荧光层,所述荧光层为荧光粉层或荧光膜。
  23. 根据权利要求19所述的灯丝,其特征在于,外周还设有外罩,所述外罩内设有荧光层。
  24. 根据权利要求19所述的灯丝,其特征在于,包括至少二组发光单元组,各所述的发光单元组至少包括一个发光单元,其中至少一组发光单元组包覆低色温荧光层,另至少一组发光单元组包覆高色温荧光层。
  25. 根据权利要求19所述的灯丝,其特征在于,包括至少三组发光单元组,各所述的发光单元组至少包括一个发光单元,其中至少一组发光单元组包覆红色荧光层,另至少一组发光单元组包覆绿色荧光层。
  26. 根据权利要求19所述的灯丝,其特征在于,所述至少二个发光单元并联连接。
  27. 根据权利要求19所述的灯丝,其特征在于,所述至少二个发光单元相互串联连接。
  28. 根据权利要求19所述的灯丝,其特征在于,所述至少二个发光单元相互连接,导通方向相反,交流电输入时,发光单元交替导通发光。
  29. 根据权利要求19所述的灯丝,其特征在于,包括至少五个发光单元,其中所述四个发光单元连接组成桥式整流电路,桥式整流电路的输入端连接 外部电源,桥式整流电路的输出端连接至少一个所述发光单元。
  30. 根据权利要求19所述的灯丝,其特征在于,包括集成电路IC,所述集成电路IC连接所述发光单元,用于控制发光单元的电输入。
  31. 一种灯丝制作方法,其特征在于,包括如下步骤:
    准备生长衬底;
    在生长衬底上生长外延叠层,外延叠层包括N型半导体层、有源层和P型半导体层;
    图形化所述外延叠层,以形成至少二个发光单元;
    在所述外延叠层和衬底上,制作导电线路,连接各发光单元;
    切割分离生长衬底及外延叠层,得到若干个灯丝。
  32. 根据权利要求31所述的灯丝制作方法,其特征在于,还包括步骤,将一导电引脚接合于所述衬底上,并且与所述发光单元形成电气连接。
  33. 根据权利要求31所述的灯丝制作方法,其特征在于,还包括步骤,在灯丝的外围包覆荧光膜或涂布荧光粉层。
  34. 根据权利要求31所述的灯丝制作方法,其特征在于,还包括步骤,使用激光切割,将晶圆片切割成一个平面排布的一字型、弧形、V字型、N字型或W字型的灯丝。
  35. 根据权利要求31所述的灯丝制作方法,其特征在于,包括步骤,设计蚀刻图案,使得灯丝具备中间的发光单元面积较大且两边的发光单元面积较小排列结构。
  36. 根据权利要求31所述的灯丝制作方法,其特征在于,还包括步骤,在切割分离前,先包覆荧光粉层或贴上荧光膜,再进行切割分离,得到带有荧光层的灯丝。
PCT/CN2018/105445 2018-09-13 2018-09-13 一种灯泡、灯丝及制作方法 WO2020051827A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/105445 WO2020051827A1 (zh) 2018-09-13 2018-09-13 一种灯泡、灯丝及制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/105445 WO2020051827A1 (zh) 2018-09-13 2018-09-13 一种灯泡、灯丝及制作方法

Publications (1)

Publication Number Publication Date
WO2020051827A1 true WO2020051827A1 (zh) 2020-03-19

Family

ID=69777297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105445 WO2020051827A1 (zh) 2018-09-13 2018-09-13 一种灯泡、灯丝及制作方法

Country Status (1)

Country Link
WO (1) WO2020051827A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11974370B2 (en) 2020-07-27 2024-04-30 Savant Technologies Llc Lighting device and method for adjusting light attribute of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2783693Y (zh) * 2005-03-04 2006-05-24 吕大明 交流led照明灯
JP2010170945A (ja) * 2009-01-26 2010-08-05 Panasonic Corp 電球形照明装置
CN103560194A (zh) * 2013-10-28 2014-02-05 嵘瑞芯光电科技(上海)有限公司 Led灯丝芯片条的制造方法及led灯丝
CN106257666A (zh) * 2015-06-19 2016-12-28 嘉兴山蒲照明电器有限公司 Led球泡灯
CN207500853U (zh) * 2017-10-31 2018-06-15 江西鸿利光电有限公司 一种可调色温的led灯丝及灯丝灯
CN108376680A (zh) * 2017-01-31 2018-08-07 三星电子株式会社 Led器件和包括led器件的led灯

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2783693Y (zh) * 2005-03-04 2006-05-24 吕大明 交流led照明灯
JP2010170945A (ja) * 2009-01-26 2010-08-05 Panasonic Corp 電球形照明装置
CN103560194A (zh) * 2013-10-28 2014-02-05 嵘瑞芯光电科技(上海)有限公司 Led灯丝芯片条的制造方法及led灯丝
CN106257666A (zh) * 2015-06-19 2016-12-28 嘉兴山蒲照明电器有限公司 Led球泡灯
CN108376680A (zh) * 2017-01-31 2018-08-07 三星电子株式会社 Led器件和包括led器件的led灯
CN207500853U (zh) * 2017-10-31 2018-06-15 江西鸿利光电有限公司 一种可调色温的led灯丝及灯丝灯

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11974370B2 (en) 2020-07-27 2024-04-30 Savant Technologies Llc Lighting device and method for adjusting light attribute of the same

Similar Documents

Publication Publication Date Title
KR100928259B1 (ko) 발광 장치 및 그 제조방법
US6834981B2 (en) Light-emitting unit, light-emitting unit combination, and lighting apparatus assembled from a plurality of light-emitting units
US8471284B2 (en) LED package structure and fabrication method thereof
CN108365080A (zh) MicroLED或mini LED封装结构
CN202275828U (zh) 一种可调色温的白光led集成封装结构
TWI447975B (zh) 發光二極體晶片之結構、發光二極體封裝基板之結構、發光二極體封裝結構及其製法
TW201318147A (zh) 發光二極體陣列
CN101771028B (zh) 一种白光led芯片及其制造方法
WO2020051827A1 (zh) 一种灯泡、灯丝及制作方法
WO2016202213A1 (zh) 一种led日光管
TWI416993B (zh) 交流電發光二極體模組及其應用之光源裝置與其製造方法
CN208738244U (zh) 一种内置恒流驱动的led器件
CN208951719U (zh) 一种发光装置及发光元件
JP2007188942A (ja) 整流回路を副キャリアに結合した発光ダイオードの発光装置及びその製造方法
CN210920980U (zh) Led灯光源以及led灯
CN207967031U (zh) 一种用于led光源的芯片及用其制备的led光源
CN203910794U (zh) 二极管芯片联合封装结构
CN208014743U (zh) MicroLED或mini LED封装结构
CN203413588U (zh) Led光源板组件、led灯芯和led照明装置
CN109185724A (zh) 一种灯泡、灯丝及制作方法
CN205609523U (zh) 一种360度发光的led器件及led光源
CN202712254U (zh) 具有高集成高光效的热电分离功率型发光二极体
CN202189831U (zh) 一种高功率高亮度led光源封装结构
TWI479695B (zh) A light emitting diode chip and a light emitting element
WO2022236880A1 (zh) 一种高光效led灯具的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933521

Country of ref document: EP

Kind code of ref document: A1