WO2020050543A1 - 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치 및 방법 - Google Patents

다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치 및 방법 Download PDF

Info

Publication number
WO2020050543A1
WO2020050543A1 PCT/KR2019/010994 KR2019010994W WO2020050543A1 WO 2020050543 A1 WO2020050543 A1 WO 2020050543A1 KR 2019010994 W KR2019010994 W KR 2019010994W WO 2020050543 A1 WO2020050543 A1 WO 2020050543A1
Authority
WO
WIPO (PCT)
Prior art keywords
shield box
wireless device
antenna
channel
testing
Prior art date
Application number
PCT/KR2019/010994
Other languages
English (en)
French (fr)
Inventor
곽영수
임용훈
주경환
홍성만
Original Assignee
주식회사 이노와이어리스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이노와이어리스 filed Critical 주식회사 이노와이어리스
Publication of WO2020050543A1 publication Critical patent/WO2020050543A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • H04B17/0087Monitoring; Testing using service channels; using auxiliary channels using auxiliary channels or channel simulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel

Definitions

  • the present invention provides a simple and high reliability for various tests on wireless devices having multiple antennas by canceling interference components generated in the process of testing by wirelessly connecting a wireless device having multiple antennas with a test device (non-contact type) by signal processing.
  • An apparatus and method for canceling interference components for testing of a multi-antenna wireless device which can be performed under the same conditions.
  • a wireless terminal is an element of a mobile communication system, and when a mobile communication system is tested, it becomes a direct device under test (DUT) or plays an element of the test system.
  • DUT direct device under test
  • the test system and the wireless terminal are generally connected through a wired RF port provided by the terminal.
  • some wireless terminals such as recently released smartphones, do not provide a wired port. To test this, in the past, manually puncture the plastic case on the back of the smartphone and solder it to connect the RF cable. There was a hassle to connect.
  • OTA over-the-air
  • FIG. 1 is a configuration diagram of a multi-antenna wireless device test apparatus to which a wireless connection method proposed by Prior Art 1 described later is applied.
  • a wireless terminal signal is transmitted and received through a plurality of probe antennas installed in an anechoic chamber.
  • an additional RF amplifier is required because path loss between the terminal antenna and the probe antenna increases.
  • FIG. 2 is a cross-sectional configuration diagram of a shield box for testing a wireless terminal proposed as a prior patent of the present applicant (see prior art 2).
  • reference numeral 10 'denotes a wireless terminal and 14b represents a terminal antenna.
  • Reference numeral 100 is a shield box
  • 110 is an upper box
  • 111 is an upper case
  • 112 is a first radio wave absorber
  • 113 is a third radio wave absorber
  • 114 is a second radio wave absorber
  • 115 is a probe antenna
  • 116 is an RF cable
  • 117 RF connector
  • 118 denotes a handle
  • reference numeral 120 denotes a lower portion of the box
  • 121 denotes a lower case
  • 130 a hinge.
  • the shield box of the prior art 2 places the probe antenna 115 relatively close to the terminal antenna 14b to minimize path loss, which is a problem of the prior art 1, and improves the insulation performance between antennas.
  • a wave absorber 114 is disposed between the probe antennas 115 to increase (crosstalk decreases).
  • Patent Registration (Invention name: Wireless smart device sensitivity test system using reverberation chamber capable of reconfiguring radio wave environment)
  • Patent Publication (Invention name: antenna system providing high insulation between antennas in an electronic device)
  • the present invention makes it easy and high to perform various tests for wireless devices having multiple antennas by canceling interference components generated in the process of testing by connecting wireless devices having multiple antennas wirelessly (without contact) to a test device through signal processing.
  • An object of the present invention is to provide an apparatus and method for canceling interference components for testing multi-antenna radio equipment, which can be performed under reliability.
  • a wireless device having multiple antennas is accommodated, and a probe antenna having multiple antennas and an equal number of antennas or more is provided between a shield box and a test device disposed near the multiple antennas.
  • a reverse channel calculation unit for calculating an inverse channel value for a channel value in the shield box, and an inverse channel generation for generating an inverse channel value calculated by the inverse channel calculation unit to cancel interference components generated in the shield box.
  • the inverse channel calculator calculates the inverse channel using the signal power received by each terminal antenna of the wireless device.
  • the inverse channel value for the shield box channel is calculated based on the magnitude and phase of all interference components inside the shield box calculated using the signal power.
  • a wireless device having multiple antennas is accommodated, and a probe antenna having multiple antennas and an equal number of antennas or more is performed by a compensator provided between a shield box and a test device disposed near the multiple antennas, (A) collecting signal power received by each terminal antenna after transmitting a signal through each probe antenna; (B) calculating a size for all channel components inside the shield box; (C) calculating phases for all interference components inside the shield box; (D) calculating an inverse channel value for the shield box channel based on the magnitude and phase of the interference component inside the shield box, and (f) canceling the interference component inside the shield box by generating an inverse channel signal in the compensator
  • a method for canceling interference components for testing a multi-antenna wireless device comprising a.
  • step (c) the phase calculation in step (c) is performed in a manner that maximizes or minimizes signal power received by the wireless device.
  • the phase calculation in step (c) is performed by searching for the entire range of phases.
  • phase calculation in step (c) is performed by substituting two or more phase values.
  • phase calculation in step (c) is optimized in an iterative manner using the signal power received by the wireless device as a cost function to be optimized.
  • the channel matrix measured by the downlink path and its inverse matrix are applied to the uplink path.
  • the interference component canceling apparatus and method for testing a multi-antenna wireless device of the present invention can be tested even for a wireless terminal that does not provide a wired RF port, and a structurally complicated crosstalk or There is an advantage in that sufficient insulation performance can be secured without using a leak-proof radio wave absorber, and reliability of test results can be guaranteed when testing a wireless device employing a MIMO antenna.
  • FIG. 1 is a configuration diagram of a multi-antenna wireless terminal test apparatus to which a wireless connection method proposed in Prior Art 1 is applied.
  • Figure 2 is a cross-sectional configuration of a shield box for wireless terminal testing proposed in the prior art 2.
  • 3 is an interference component canceling device and its surrounding configuration for testing a multi-antenna wireless terminal according to an embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of a downlink channel inside the compensator and shield box of the present invention.
  • 5 is a diagram for explaining a process of canceling an interference component by taking one interference path as an example in the present invention.
  • FIG. 6 is a view showing a compensator and a shield box when there are four antennas of a wireless terminal.
  • FIG. 7 is a flowchart illustrating a method for canceling interference components for testing a multi-antenna wireless device of the present invention.
  • FIG. 8 is a graph showing an exemplary test result of canceling an interference component using the method of the present invention.
  • FIG. 3 is an interference component canceling device and its surrounding configuration for testing a multi-antenna wireless terminal according to an embodiment of the present invention, illustrating a case in which there are two terminal antennas, but the same principle is extended even if the number of terminal antennas increases. can do.
  • the main technical idea of the present invention for achieving the above object is to measure the cross path signal between multiple antennas, ie, cross talk or leakage components (hereinafter referred to as 'interference components'). This is to cancel it.
  • the interference component canceling apparatus of the present invention includes a shield box 400 and a test apparatus 200 in which the wireless terminal 500 is accommodated, for example, a communication device such as a base station, a channel emulator, and a base station emulator. Or a signal generator (SA) or signal analyzer (SA).
  • a communication device such as a base station, a channel emulator, and a base station emulator.
  • SA signal generator
  • SA signal analyzer
  • the solid line represents a wired RF channel (path)
  • the dotted line represents a wireless RF channel
  • the dashed-dotted line indicates various information collected by the wireless terminal 500, for example, RSRP (Reference Signal Received Power) information.
  • RSRP Reference Signal Received Power
  • (Diagnostic monitoring) represents a data line transmitted to the interference component canceling device 300 through the interface.
  • the interference component canceling apparatus 300 of the present invention may be installed inside or outside the shield box 400.
  • the probe antenna 410 is located around the terminal antenna 510 of the wireless terminal 500. Accordingly, a wireless channel or path S is formed between the terminal antenna 510 and the probe antenna 410.
  • the interference component generated in the radio channel between multiple antennas is measured and canceled, which will be described in detail as follows.
  • the inverse component generator 310 of the interference component canceling apparatus generates a reverse channel calculated by the inverse channel calculator 310 to cancel the interference component generated in the shield box 400, thereby testing the device 200 ) And the wireless terminal 500 directly.
  • the inverse channel calculator 410 and the inverse channel generator 420 may be implemented by hardware or software means including, for example, digital elements and RF elements.
  • the interference component canceling apparatus of the present invention is described as a 'compensator'.
  • FIG. 4 is an explanatory diagram of a downlink channel inside the compensator and shield box of the present invention.
  • S is a channel inside the shield box 400
  • C is a channel inside the compensator 300 for canceling interference components.
  • R1 and R2 are two wireless terminal antennas in the shield box 400, respectively, and T1 and T2 are probe antennas in the shield box 400.
  • C1 and C2 are terminals connected to the test device 200.
  • each element of the matrix is a complex number having magnitude and phase.
  • Equation 1 S 11 and S 22 represent a main path in the shield box 400 to which T1-R1 and T2-R2 are connected, respectively, and S 12 and S 21 are interference paths generating interference components, respectively. (cross path).
  • the problem of canceling the interference component is to select the channel coefficient C of the compensator 300 appropriately so that the interference component does not occur.
  • the interference component can be canceled by setting the coefficient of the compensator channel C to the inverse matrix of S as shown in Equation 2 below.
  • Equation 2 since the symbols of C 12 and C 21 of the compensator 300 are opposite to S 12 and S 21 , respectively, when the phases thereof are set to be 180 °, interference components of the shield box 400 are canceled. It can be seen that. With this in mind, in the present invention, instead of the shield box channel S , a channel matrix as in Equation 3 below is defined.
  • Equation 3 is a matrix of each row of the shield box channel S divided by the phases of the main paths S 11 and S 22 .
  • the inverse matrix of this matrix is used as the compensator channel C.
  • the compensator channel can be expressed as Equation 4 below.
  • Equation 4 the size component of each element Can be obtained from RSRP measurements, and Is the value to be measured as the phase difference between the main path and the interference path. Multiplying the compensator matrix C shown in Equation 4 by the shield box matrix S shown in Equation 1 gives Equation 5 below.
  • Equation 5 When the compensator 300 and the shield box 400 are synthesized from Equation 5, it can be seen that the interference component cancels out and becomes zero. On the other hand, the phase component of the main path in Equation (5) remains the same, which is not a problem for the purpose of canceling the interference component because it does not affect the radio terminal test and communication with the base station.
  • the received power information of each antenna signal measured by the wireless terminal 500 and provided through the DM interface is used.
  • the terminal received power information is differently expressed according to the communication standard. In the LTE standard, it is expressed as RSRP, and in the WCDMA standard, it is expressed as RSCP (Received Signal Code Power) (hereinafter referred to as 'RSRP'). This is all power received from the antenna stage, and the unit is dBm. On the other hand, if the terminal received power is used in this way, the phase information of the shield box channel S is unknown, and only the size information can be known.
  • the conversion formula for obtaining the magnitude (magnitude) of the shield box channel S from the RSRP measured by the wireless terminal 500 may be expressed as Equation 6 below.
  • RSRP mn is an RSRP measurement value received by the n th antenna R n of the wireless terminal when transmitted through the m th probe antenna T m .
  • is a proportionality constant in the conversion relationship.
  • P s is the output power of the signal generator 200, which is a type of test apparatus, that is, the compensator input power.
  • This signal is an interference component generated in the terminal antenna R2 by passing through the interference path and is simultaneously applied to the component that has passed the offset path. Offset by Therefore, the canceled signal has the same magnitude as the interference component (signal) and has the opposite phase.
  • the signal generator 200 is connected to C1 as shown in FIG. 5, and the RSRP value is measured through the second antenna port R2 of the wireless terminal 500.
  • the sizes of C 11 and C 12 of the compensator 300 are respectively set as shown in FIG. 1, and then the phase of C 12 is changed between 0 ° and 360 °, for example, at 1 ° intervals, measured by port R2. Find the phase ⁇ 12 where one RSRP value is minimum. When the RSRP value becomes minimum, the signal input from the signal generator 200 passes through the two paths formed by the compensator 300 and the shield box 400, and that the offset is made at the R2 antenna of the wireless terminal 500. Shows.
  • the same method is applied to the other interference path to find the phase ⁇ 21 where the RSRP value is minimum.
  • the optimal phase can be found with only 4 measurements.
  • RSRP_2 (rsrp2) is a sum of two paths, and may be expressed as Equation 7 below.
  • Equation 7 ⁇ 12 may be defined as in Equation 8 below, which is the optimal phase value to be obtained.
  • Terminal rsrp2 is measured twice for two values of And set the measured rsrp2 Is done. When measuring twice Set to, then measure the measured rsrp2 Shall be
  • Equation (9) Equation (9) below can be obtained.
  • Equation 10 Equation 10 below
  • Equation 11 Equation 11 below. It can be easily solved.
  • Equation 12 Solution of equations in equation (11) There are two cases as shown in Equation 12 below, these values of the compensator 300 as shown in Equation 12 below. Set to and make 2 measurements, then select the value where RSRP is small.
  • the signal power received by the wireless terminal is used as a cost function that is an optimization target to optimize in an iterative manner, that is, RSRP for ⁇ is repeatedly measured and converged to the optimal value while updating ⁇ by the measured value.
  • RSRP for ⁇ is repeatedly measured and converged to the optimal value while updating ⁇ by the measured value.
  • it is an iterative search method in the form of Equation 13 below.
  • t is an iteration index, which is a method of calculating the amount to be updated from the t-th RSRP measurement value and adding it to the t-th phase value to update and converge the t + 1th phase value.
  • the search speed can be made faster, and the measurement is performed at every update, so an accurate search is possible.
  • FIG. 6 is a diagram illustrating a compensator 300 'and a shield box 400' when there are four antennas of a wireless terminal.
  • Equation 14 the compensator channel C and the shield box channel S are expressed by Equation 14 below.
  • Equation 15 a channel matrix such as Equation 15 below can be defined.
  • is equal to Equation 16 below.
  • Equation 16 is a matrix obtained by dividing each row of the shield box channel S by the phases of the main path channels S 11 , S 22 , S 33 and S 44 . If the inverse matrix of this matrix is used as a compensator, Equation 17 below is given.
  • Equation 18 the overall characteristics of the compensator and the shield box channel
  • Equation 18 when the compensator 300 'and the shield box 400' are synthesized, it can be seen that the interference component is canceled by zero. As in the case of two antennas, the phase component of the main path remains, which is not a problem at all for the purpose of removing interference components since it has no effect on terminal testing and communication with the base station.
  • FIG. 7 is a flowchart illustrating a method for canceling interference components for testing a multi-antenna wireless device according to the present invention, which is performed mainly with a compensator.
  • step S10 the signal is transmitted through the first probe antenna from the signal generator 200, and then the received power of each terminal antenna is collected, as described above, collected through the DM interface (hereinafter the same).
  • step S20 after the signal is transmitted from the signal generator 200 through the next probe antenna, the received power of each terminal antenna is collected.
  • step S30 it is determined whether the collection of the received power through all probe antennas is completed. If not, step S20 or less is repeatedly performed. If completed, the process proceeds to step S40, whereby all channel components inside the shield box The size for is calculated, for example, by Equation 6 described above.
  • step S50 phases for all interference components inside the shield box are calculated, for example, by the first to third phase calculation methods described above.
  • step S60 an inverse channel value for the shield box channel is calculated based on the magnitude and phase of the interference component inside the shield box previously calculated, for example, by the principle of Equation 4 or 17 described above. .
  • step S70 the compensator generates an inverse channel signal to cancel the interference component inside the shield box, which is canceled by the same principle as in Equation 5 or 18 described above.
  • FIG. 8 is a graph showing an exemplary test result of canceling the crosstalk using the method of the present invention. As shown in FIG. 8, it can be seen that when the phase is 243 degrees, the crosstalk canceling effect inside the shield box through the compensator 300 is maximized. Table 1 below shows the results before and after compensation through the compensator 300 of the present invention, and it can be seen that the insulation performance, that is, the crosstalk cancellation performance is improved by about 13 dB.
  • the downlink channel has been described, but the compensator channel C obtained from the downlink channel is applied to the uplink channel without any additional processing.
  • the channel in the shield box is the same because channel reciprocity is established between the two channels using the same frequency in the downlink and uplink.
  • first phase measurement method that is, in the full search method, if a section including a minimum point is searched after performing a coarse search in units of 5 degrees, for example, less than 1 degree from the previous point again It may be possible to perform a fine search at intervals of.
  • the method proposed in the present invention is mainly applicable to a wireless terminal, it can be applied to a base station even if a sufficient number of antennas is sufficiently considered. Will be able to.
  • the phase was calculated in a manner that minimizes the received signal power, but on the contrary, the phase may be calculated in a manner that maximizes the received signal power.
  • the present invention can guarantee the reliability of test results when testing a wireless device employing a MIMO antenna, and can also test wireless terminals that do not provide a wired RF port. Sufficient insulation performance can be secured without using an absorber.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

본 발명은 다중 안테나를 갖는 무선 기기를 테스트 장치와 무선(비접촉식)으로 연결하여 테스트하는 과정에서 발생하는 간섭 성분을 신호 처리에 의해 상쇄함으로써 다중 안테나를 갖는 무선 기기에 대한 각종 테스트를 간편하면서도 높은 신뢰성 하에서 수행할 수 있도록 지원하는, 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치 및 방법에 관한 것이다. 본 발명의 일 특징에 따르면, 다중 안테나를 갖는 무선 기기가 수납되며 다중 안테나와 동수 이상의 안테나를 갖는 프로브 안테나가 상기 다중 안테나 부근에 배치되는 실드 박스와 테스트 장치 사이에 구비되고, 실드 박스 내부의 채널 값에 대한 역채널 값을 산출하는 역채널 산출부 및 상기 역채널 산출부에 의해 산출된 역채널값을 생성하여 상기 실드 박스에서 발생하는 간섭 성분을 상쇄시키는 역채널 생성부를 포함하여 이루어진, 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치가 제공된다. 전술한 구성에서, 상기 역채널 산출부는 무선 기기의 각 단말 안테나가 수신한 신호 전력을 이용하여 역채널을 산출한다. 상기 신호 전력을 이용하여 산출한 실드 박스 내부의 모든 간섭 성분에 대한 크기와 위상에 의거하여 실드 박스 채널에 대한 역채널값을 산출한다.

Description

다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치 및 방법
본 발명은 다중 안테나를 갖는 무선 기기를 테스트 장치와 무선(비접촉식)으로 연결하여 테스트하는 과정에서 발생하는 간섭 성분을 신호 처리에 의해 상쇄함으로써 다중 안테나를 갖는 무선 기기에 대한 각종 테스트를 간편하면서도 높은 신뢰성 하에서 수행할 수 있도록 지원하는, 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치 및 방법에 관한 것이다.
무선 단말은 이동통신 시스템의 한 요소로서, 이동통신 시스템을 테스트할 때 직접 테스트 대상(DUT; Device Under Test)이 되거나 혹은 테스트 시스템의 한 요소를 담당하게 된다. 무선 단말이 테스트 목적으로 사용되는 경우 테스트 시스템과 무선 단말은 일반적으로 단말이 제공하는 유선 RF 포트를 통하여 연결된다.
이와 같이 테스트 시스템과 무선 단말이 유선 RF 포트를 경유하여 유선으로 연결되는 경우에는 테스트의 정확성 및 일관성이 높은 반면 그 준비 과정이 복잡하다는 문제점이 있었다. 즉, 유선 연결을 위해 무선 단말의 배면 덮개를 열어야 하고, 외부의 전자파를 차단하기 위한 실드 박스 내부에서 박스에 부착된 커넥터와 무선 단말을 RF 케이블을 통해 정확하게 연결해야 하는 등의 번거롭고도 주의가 필요한 작업이 요구되는 문제점이 있었다.
또한, 최근에 출시된 스마트폰과 같은 무선 단말 중에서는 유선 포트를 제공하지 않는 제품도 있는바, 이를 테스트하기 위해 종래에는 스마트폰 배면의 플라스틱 케이스에 수작업으로 구멍을 낸 후 납땜을 하여 RF 케이블을 연결해야 하는 번거로움이 있었다.
이러한 유선 연결의 어려움을 해결하기 위해 무선(OTA; Over The Air) 연결 방법이 제안되었는바, 이러한 무선 연결 방법은 무선 단말의 외부에 프로브 안테나를 설치하여 무선(비접촉식)으로 무선 단말의 송수신 신호를 전달하는 방법이다.
도 1은 후술하는 선행기술 1로 제안된 무선 연결 방법을 적용한 다중 안테나 무선 기기 테스트 장치의 구성도이다. 도 1에 도시한 테스트 장치에서는 무반향 챔버(anechoic chamber)에 설치된 복수의 프로브 안테나를 통해 무선 단말 신호를 송수신하고 있다. 그러나 이러한 테스트 장치에서 무반향 챔버의 내부 공간이 무선 단말에 비해 넓은 경우에는 단말 안테나와 프로브 안테나 사이의 경로 손실(path loss)이 증가하기 때문에 추가적인 RF 증폭기가 필요하다는 문제점이 있었다.
이외에도 복수의 단말 안테나와 복수의 프로브 안테나 사이의 간섭 경로(cross path) 때문에 절연(isolation)이 확보되지 않고, 이에 따라 MIMO 채널에 대한 테스트를 수행할 때 신뢰성이 현저히 떨어지는 등의 문제점이 있었다.
도 2는 본 출원인의 선행특허로 제안된 무선 단말 테스트용 실드 박스의 단면 구성도(선행기술 2 참조)이다. 도 2에서 참조번호 10'은 무선 단말, 14b는 단말 안테나를 나타낸다. 참조번호 100은 실드 박스, 110은 박스 상부, 111은 상부 케이스, 112는 제1 전파 흡수재, 113은 제3 전파 흡수재, 114는 제2 전파 흡수재, 115는 프로브 안테나, 116은 RF 케이블, 117은 RF 커넥터, 118은 손잡이를 나타낸다, 참조번호 120은 박스 하부, 121은 하부 케이스, 123은 제1 전파 흡수재, 130은 힌지를 나타낸다.
도 2에 도시한 바와 같이, 선행기술 2의 실드 박스는 선행기술 1의 문제점인 경로 손실을 최소화하기 위해 프로브 안테나(115)를 단말 안테나(14b)에 상대적으로 가깝게 위치시키고, 안테나 간 절연 성능을 증가(크로스 토크는 감소)시키기 위해 프로브 안테나(115) 사이에 전파 흡수재(114)를 배치하고 있다.
그러나 선행기술 2의 실드 박스에 따르면, 무선 단말의 종류 별로 프로브 안테나의 위치 및 전파 흡수재의 위치나 사이즈가 바뀌어야 하기 때문에 여러 종류의 단말을 테스트하는 경우에는 여러 종류의 전파 흡수재와 프로브 안테나 고정 기구가 필요하다는 문제점이 있었다.
선행기술 1: US 9,002,287 B2(SYSTEM FOR TESTING MULTI-ANTENNA DEVICES)
선행기술 2: KR 10-1689530호 등록특허공보(발명의 명칭: 무선 단말 테스트용 실드 박스)
선행기술 3: KR 10-1442557호 등록특허공보(발명의 명칭: 전파 환경의 재구성이 가능한 잔향 챔버를 이용한 무선 스마트 기기 감도 시험 시스템)
선행기술 4: KR 10-2012-0096927호 공개특허공보(발명의 명칭: 전자 장치에서 안테나들 사이에 높은 절연을 제공하는 안테나 시스템)
본 발명은 다중 안테나를 갖는 무선 기기를 테스트 장치와 무선(비접촉식)으로 연결하여 테스트하는 과정에서 발생하는 간섭 성분을 신호 처리에 의해 상쇄함으로써, 다중 안테나를 갖는 무선 기기에 대한 각종 테스트를 간편하면서도 높은 신뢰성 하에서 수행할 수 있도록 하는, 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치 및 방법을 제공함을 목적으로 한다.
전술한 목적을 달성하기 위한 본 발명의 일 특징에 따르면, 다중 안테나를 갖는 무선 기기가 수납되며 다중 안테나와 동수 이상의 안테나를 갖는 프로브 안테나가 상기 다중 안테나 부근에 배치되는 실드 박스와 테스트 장치 사이에 구비되고, 실드 박스 내부의 채널 값에 대한 역채널 값을 산출하는 역채널 산출부 및 상기 역채널 산출부에 의해 산출된 역채널값을 생성하여 상기 실드 박스에서 발생하는 간섭 성분을 상쇄시키는 역채널 생성부를 포함하여 이루어진, 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치가 제공된다.
전술한 구성에서, 상기 역채널 산출부는 무선 기기의 각 단말 안테나가 수신한 신호 전력을 이용하여 역채널을 산출한다.
상기 신호 전력을 이용하여 산출한 실드 박스 내부의 모든 간섭 성분에 대한 크기와 위상에 의거하여 실드 박스 채널에 대한 역채널값을 산출한다.
본 발명의 다른 특징에 따르면, 다중 안테나를 갖는 무선 기기가 수납되며 다중 안테나와 동수 이상의 안테나를 갖는 프로브 안테나가 상기 다중 안테나 부근에 배치되는 실드 박스와 테스트 장치 사이에 구비된 보상기에 의해 수행되고, 각 프로브 안테나를 통해 신호를 전송한 후 각 단말 안테나가 수신한 신호 전력을 수집하는 (a) 단계; 실드 박스 내부의 모든 채널 성분에 대한 크기를 산출하는 (b) 단계; 실드 박스 내부의 모든 간섭 성분에 대한 위상을 산출하는 (c) 단계; 실드 박스 내부의 간섭 성분의 크기 및 위상에 의거하여 실드 박스 채널에 대한 역채널값을 산출하는 (d) 단계 및 보상기에서 역채널 신호를 생성하여 실드 박스 내부의 간섭 성분을 상쇄하는 (f) 단계를 포함하여 이루어진 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 방법이 제공된다.
전술한 구성에서, 상기 (c) 단계에서의 위상 산출은, 무선 기기가 수신한 신호 전력을 최대화 또는 최소화하는 방식으로 수행된다.
상기 (c) 단계에서의 위상 산출은, 위상의 전 범위를 탐색하는 방식으로 수행된다.
상기 (c) 단계에서의 위상 산출은, 2개 이상의 위상값을 대입하여 수행된다.
상기 (c) 단계에서의 위상 산출은, 무선 기기가 수신한 신호 전력을 최적화 대상인 비용 함수(cost function)로 사용하여 반복적인 방식으로 최적화한다.
TDD 시스템에 대하여 다운링크 경로로 측정한 채널 행렬 및 이의 역행렬을 업링크 경로에 적용한다.
본 발명의 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치 및 방법은, 유선 RF 포트를 제공하지 않는 무선 단말에 대해서도 테스트가 가능하고, 기존의 무선 테스트 방법에서 사용하는, 구조적으로 복잡한 크로스 토크나 누설 방지용 전파 흡수체를 사용하지 않고도 충분한 절연 성능을 확보할 수가 있으며, MIMO 안테나를 채택한 무선 기기를 테스트하는 경우에 테스트 결과의 신뢰성을 담보할 수 있다는 장점이 있다.
도 1은 선행기술 1로 제안된 무선 연결 방법을 적용한 다중 안테나 무선 단말 테스트 장치의 구성도.
도 2는 선행기술 2로 제안된 무선 단말 테스트용 실드 박스의 단면 구성도.
도 3은 본 발명의 일 실시 예에 따른 다중 안테나 무선 단말의 테스트를 위한 간섭 성분 상쇄 장치 및 그 주변 구성도.
도 4는 본 발명의 보상기와 실드 박스 내부의 다운링크 채널 설명도.
도 5는 본 발명에서 하나의 간섭 경로를 예로 들어 간섭 성분을 상쇄하는 과정을 설명하기 위한 도.
도 6은 무선 단말의 안테나가 4개인 경우의 보상기와 실드 박스를 나타낸 도면.
도 7은 본 발명의 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 방법을 설명하기 위한 흐름도.
도 8은 본 발명의 방법을 사용하여 간섭 성분을 상쇄한 시험 결과를 예시적으로 보인 그래프.
이하에는 첨부한 도면을 참조하여 본 발명의 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치 및 방법의 바람직한 실시 예에 대해 상세하게 설명한다.
도 3은 본 발명의 일 실시 예에 따른 다중 안테나 무선 단말의 테스트를 위한 간섭 성분 상쇄 장치 및 그 주변 구성도로서, 단말 안테나가 2개인 경우를 예시하고 있으나 단말 안테나 수가 증가하더라도 동일한 원리를 확장 적용할 수 있다.
전술한 목적을 달성하기 위한 본 발명의 주된 기술 사상은 다중 안테나 사이의 간섭 경로 (cross path) 신호, 즉 크로스 토크(cross talk)나 누설(leakage) 성분(이하 '간섭 성분'이라 한다)을 측정하여 이를 상쇄(cancel)시키는 것이다.
도 3에 도시한 바와 같이, 본 발명의 간섭 성분 상쇄 장치는 무선 단말(500)이 수납되는 실드 박스(400)와 테스트 장치(200), 예를 들어 기지국과 같은 통신 장치, 채널 에뮬레이터, 기지국 에뮬레이터나 신호 발생기(SA: Signal Generator) 또는 신호 분석기(SA: Signal Analyzer)와 같은 시험 기기 사이에 연결될 수 있다.
도 3에서 실선은 유선 RF 채널(경로)을 나타내고, 점선은 무선 RF 채널을 나타내며, 일점쇄선은 무선 단말(500)이 수집한 각종 정보, 예를 들어 RSRP(Reference Signal Received Power) 정보 등을 DM(Diagnostic monitoring) 인터페이스를 통해 간섭 성분 상쇄 장치(300)에 전달하는 데이터 라인을 나타낸다. 본 발명의 간섭 성분 상쇄 장치(300)는 실드 박스(400)의 내부 또는 외부에 설치될 수 있다.
한편, 무선 단말(500)의 단말 안테나(510) 주변에는 프로브 안테나(410)가 위치하는데, 이에 따라 단말 안테나(510)와 프로브 안테나(410) 사이에는 무선 채널 또는 경로(S)가 형성된다. 본 발명에서는 이러한 다중 안테나 사이의 무선 채널에서 발생하는 간섭 성분을 측정하여 이를 상쇄(cancel)시키는바, 이를 구체적으로 설명하면 다음과 같다.
1. 실드 박스(400) 내부의 채널값(S)을 측정한다.
2. 측정한 채널값(S)으로부터 간섭 성분 상쇄 장치(300)의 역채널 산출부(310)가 실드 박스(400)의 역채널값(inverse channel, S-1) 을 산출한다.
3. 간섭 성분 상쇄 장치의 역채널 생성부(310)가 역채널 산출부(310)에서 산출된 역채널을 생성하여 실드 박스(400)에서 발생하는 간섭 성분을 상쇄(cancelling)시킴으로써 테스트 장치(200)와 무선 단말(500) 사이를 유선으로 직접 연결한 효과를 나타낸다.
역채널 산출부(410)와 역채널 생성부(420)는, 예를 들어 디지털 소자와 RF 소자를 포함하는 하드웨어 또는 소프트웨어 수단으로 구현될 수 있을 것이다.
이하의 발명(실시 예) 설명에서는 본 발명의 간섭 성분 상쇄 장치를 '보상기'(compensator)로 하여 설명을 진행한다.
도 4는 본 발명의 보상기와 실드 박스 내부의 다운링크 채널 설명도이다. 도 4에서 S는 실드 박스(400) 내부의 채널이며, C는 간섭 성분 상쇄를 위한 보상기(300) 내부의 채널이다. R1 및 R2는 각각 실드 박스(400) 내의 2개의 무선 단말 안테나이며, T1과 T2는 실드 박스(400) 내의 프로브 안테나이다. C1과 C2는 테스트 장치(200)와 연결되는 단자이다.
이 경우에 실드 박스 채널 S와 보상기 채널 C를 행렬로 나타내면 아래의 수학식 1과 같은바, 이 행렬의 각 요소는 크기(magnitude)와 위상(phase)을 갖는 복소수이다.
Figure PCTKR2019010994-appb-M000001
수학식 1에서 S11과 S22는 각각 T1-R1, T2-R2가 연결되는 실드 박스(400) 내의 주된 경로(main path)를 나타내고, S12와 S21은 각각 간섭 성분을 발생시키는 간섭 경로(cross path)를 나타낸다. 간섭 성분을 상쇄하는 문제는 결국 보상기(300)의 채널 계수 C를 적절히 선택하여 간섭 성분이 발생하지 않도록 하는 것이다.
실드 박스 채널 S의 각 요소의 크기와 위상을 완전히 안다면, 보상기 채널 C의 계수를 아래의 수학식 2와 같이 S의 역행렬로 설정함으로써 간섭 성분을 상쇄할 수 있다.
Figure PCTKR2019010994-appb-M000002
그러나 무선 단말(500)에서 측정한 채널 정보를 알 수 없기 때문에 실제로는 이 방법을 사용할 수가 없다. 이하에서는 본 발명에서 사용하는 간섭 성분 상쇄 방법을 상세하게 설명한다.
위의 수학식 2에서 보상기(300)의 C12와 C21의 부호는 S12와 S21와 각각 반대이기 때문에, 이들의 위상이 180°가 되도록 설정하면 실드 박스(400)의 간섭 성분이 상쇄됨을 알 수 있다. 이에 착안하여, 본 발명에서는 실드 박스 채널 S 대신에 아래의 수학식 3과 같은 채널 행렬을 정의한다.
Figure PCTKR2019010994-appb-M000003
위의 수학식 3은 실드 박스 채널 S의 각 행을 주된 경로 S11와 S22의 위상으로 나눈 행렬이다. 이 행렬의 역행렬을 보상기 채널 C로 사용하는데, 보상기 채널은 아래의 수학식 4와 같이 나타낼 수 있다.
Figure PCTKR2019010994-appb-M000004
수학식 4에서, 각 요소의 크기 성분
Figure PCTKR2019010994-appb-I000001
은 RSRP 측정값으로부터 얻을 수 있고,
Figure PCTKR2019010994-appb-I000002
Figure PCTKR2019010994-appb-I000003
는 주된 경로와 간섭 경로의 위상차로서 측정해야 하는 값이다. 수학식 4에 나타낸 보상기 행렬 C를 수학식 1에 나타낸 실드 박스 행렬 S에 곱하면 아래의 수학식 5를 얻을 수 있다.
Figure PCTKR2019010994-appb-M000005
수학식 5로부터 보상기(300)와 실드 박스(400)가 합성되면, 간섭 성분이 상쇄되어 0이 됨을 알 수 있다. 한편, 수학식 5에서 주된 경로의 위상 성분은 그대로 남아 있는데, 이는 무선 단말 시험 및 기지국과의 통신 시에 아무런 영향을 미치지 않기 때문에 간섭 성분 상쇄 목적에는 아무런 문제가 되지 않는다.
다음으로, 실드 박스 내부의 채널 측정 방법 중에서 크기 측정 방법에 대해 설명한다.
본 발명의 방법에서는 무선 단말(500)이 측정하여 DM 인터페이스를 통해 제공하는 안테나별 신호의 수신 전력 정보를 사용한다. 통신 규격에 따라 단말 수신 전력 정보가 다르게 표현되는데, LTE 규격에서는 RSRP로 표현되고, WCDMA 규격에서는 RSCP(Received Signal Code Power)로 표현된다(이하 'RSRP'로 통칭한다). 이는 모두 안테나 단에서 수신한 전력으로서 단위는 dBm이다. 한편, 이와 같이 단말 수신 전력을 사용하면 실드 박스 채널 S의 위상 정보는 알 수 없고 크기 정보만을 알 수 있다.
무선 단말(500)이 측정한 RSRP로부터 실드 박스 채널 S의 크기(magnitude)를 구하는 환산식은 아래의 수학식 6과 같이 나타낼 수 있다.
Figure PCTKR2019010994-appb-M000006
수학식 6에서, RSRPmn는 m번째 프로브 안테나 Tm을 통하여 송신했을 때, 무선 단말의 n번째 안테나 Rn에 수신된 RSRP 측정값이다.
Figure PCTKR2019010994-appb-I000004
는 RSRPmn를 선형 스케일로 변환한 값으로, 복소수인 실드 박스 채널 Smn에 대한 크기 측정값을 나타낸다. α는 변환 관계상의 비례상수이다.
다음으로, 실드 박스 채널 측정 방법 중에서 위상차 측정 방식에 대해 설명하는데, 본 발명에서는 다음의 3가지를 제안한다.
도 5는 본 발명에서 하나의 간섭 경로를 예로 들어 간섭 성분을 상쇄하는 과정을 설명하기 위한 도이다. 도 5에서 Ps는 테스트 장치의 일종인 신호 발생기(200)의 출력 전력, 즉 보상기 입력 전력인데, 이 신호는 간섭 경로를 통과하여 단말 안테나 R2에 발생한 간섭 성분으로서 동시에 상쇄 경로를 통과한 성분에 의해 상쇄된다. 그러므로, 상쇄 신호는 간섭 성분(신호)와 크기가 같고 위상이 반대가 된다.
- 첫번째 위상 측정 방법 - 풀 서치(full search) 방법
실드 박스(400) 내의 간섭 성분을 상쇄시키기 위해, 도 5와 같이 C1에 신호 발생기(200)를 연결하고, 무선 단말(500)의 2번째 안테나 포트 R2를 통해 RSRP 값을 측정한다. 보상기(300)의 C11과 C12의 크기를 도 1과 같이 각각 설정한 다음, C12의 위상을 0° ~ 360° 사이에서 변경, 예를 들어 1° 간격으로 변경시키면서, 포트 R2로 측정한 RSRP 값이 최소로 되는 위상 θ12를 찾는다. RSRP 값이 최소가 된 경우는 신호 발생기(200)로부터 입력된 신호가 보상기(300)와 실드 박스(400)가 형성하는 두 경로를 통과하여 무선 단말(500)의 R2 안테나에서 상쇄가 이루어졌음을 나타낸다.
다른 1개의 간섭 경로에 대해서도 동일한 방법을 적용하여 RSRP 값이 최소로 되는 위상 θ21을 찾는다.
- 두번째 위상 측정 방법 - 패스트 서치(fast search) 방법
전술한 첫번째 방법에서는, RSRP가 최소가 되는 위상을 찾기 위해 여러 번의 RSRP 측정이 필요하기 때문에 최적의 위상을 찾기까지 시간이 오래 걸리지만, 두번째 방법에서는 단지 4회의 측정만으로 최적의 위상을 찾을 수 있다.
도 5에서 RSRP_2(rsrp2)는 두 경로의 합으로, 아래의 수학식 7과 같이 나타낼 수 있다.
Figure PCTKR2019010994-appb-M000007
수학식 7에서, δ12는 아래의 수학식 8과 같이 정의될 수 있는데, 이 값이 구해야 하는 최적의 위상값이다.
Figure PCTKR2019010994-appb-M000008
수학식 7에 나타낸 rsrp2는
Figure PCTKR2019010994-appb-I000005
일 때, 최소값을 가지며, 다음과 같은 과정으로 δ12를 구할 수 있다.
1.
Figure PCTKR2019010994-appb-I000006
의 두가지 값에 대해 단말 rsrp2를 2회 측정하는데, 1회 측정시에는
Figure PCTKR2019010994-appb-I000007
으로 설정하고, 이때 측정된 rsrp2를
Figure PCTKR2019010994-appb-I000008
으로 한다. 2회 측정시에는
Figure PCTKR2019010994-appb-I000009
로 설정하고, 이때 측정된 rsrp2를
Figure PCTKR2019010994-appb-I000010
로 한다.
2. 2회 측정값과 수학식 7을 조합하면,
Figure PCTKR2019010994-appb-I000011
를 포함하는 아래 수학식 9의 방정식을 얻을 수 있다.
Figure PCTKR2019010994-appb-M000009
3. 수학식 8의 방정식을 풀어
Figure PCTKR2019010994-appb-I000012
를 구한다.
한편,
Figure PCTKR2019010994-appb-I000013
Figure PCTKR2019010994-appb-I000014
를 어떤 값으로 설정하는가에 따라 여러 가지 해법이 존재할 수 있는데, 이를 특정값, 예를 들어 아래의 수학식 10과 같이 180° 차이가 나도록 설정하면, 방정식은 아래의 수학식 11과 같이 단순한 형태가 되어 쉽게 풀 수가 있다.
Figure PCTKR2019010994-appb-M000010
Figure PCTKR2019010994-appb-M000011
수학식 11에서 방정식의 해인
Figure PCTKR2019010994-appb-I000015
가 아래의 수학식 12와 같이 2가지인 경우가 있는데, 아래의 수학식 12와 같이 이 값들을 보상기(300)의
Figure PCTKR2019010994-appb-I000016
로 설정하고 2번의 측정을 한 다음, RSRP가 작게 측정되는 값을 택한다.
Figure PCTKR2019010994-appb-M000012
- 세번째 위상 측정 방법 - 반복적 서치(iterative search) 방법
무선 단말이 수신한 신호 전력을 최적화 대상인 비용 함수(cost function)로 사용하여 반복적인 방식으로 최적화, 즉 θ에 대한 RSRP를 반복적으로 측정하고, 측정값에 의해 θ를 업데이트 하면서 최적값에 수렴시킨다. 예를 들면, 아래의 수학식 13과 같은 형태의 반복적 서치 방식이다.
Figure PCTKR2019010994-appb-M000013
수학식 13에서, t는 반복 인덱스(iteration index)인데, t번째 RSRP 측정값으로부터 업데이트 할 양을 산출하여 t번째 위상값에 더하는 방법으로 t+1번째의 위상값을 업데이트 하여 수렴시키는 방식이다. 풀 서치 방식에 비해 서치 속도를 빠르게 할 수 있으며, 매 업데이트 마다 측정이 이루어지기 때문에 정확한 검색이 가능하다.
- MIMO 안테나 수의 확장성
전술한 실시 예는 2*2인 경우를 대상으로 설명을 하였으나, 더 많은 수의 안테나를 사용하는 무선 단말에까지 동일한 원리로 확장 가능하다. 도 6은 무선 단말의 안테나가 4개인 경우의 보상기(300')와 실드 박스(400')를 나타낸 도면이다.
도 6의 경우에 보상기 채널 C와 실드 박스 채널 S는 아래의 수학식 14와 같다.
Figure PCTKR2019010994-appb-M000014
여기에서 실드 박스 채널 S 대신에 아래의 수학식 15와 같은 채널 행렬을 정의할 수 있다.
Figure PCTKR2019010994-appb-M000015
여기에서, Φ는 아래의 수학식 16과 같다.
Figure PCTKR2019010994-appb-M000016
수학식 16의 의미는 실드 박스 채널 S의 각 행을 주된 경로 채널 S11, S22, S33 및 S44의 위상으로 나눈 행렬이다. 이 행렬의 역행렬을 보상기로 사용하면 아래의 수학식 17과 같다.
Figure PCTKR2019010994-appb-M000017
그리고 보상기와 실드 박스 채널이 합성된 전체 특성은 아래의 수학식 18과 같이 나타낼 수 있다.
Figure PCTKR2019010994-appb-M000018
수학식 18과 같이 보상기(300')와 실드 박스(400')가 합성되면, 간섭 성분이 0으로 상쇄됨을 알 수 있다. 안테나가 2개인 경우와 마찬가지로 주된 경로의 위상 성분이 남아 있는데, 이는 단말 테스트 및 기지국과의 통신 시에 아무런 영향을 미치지 않기 때문에 간섭 성분 제거 목적에는 전혀 문제가 되지 않는다.
도 7은 본 발명의 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 방법을 설명하기 위한 흐름도인데, 보상기를 주체로 하여 수행된다.
먼저, 단계 S10에서는 신호 생성기(200)로부터 첫 번째 프로브 안테나를 통해 신호를 전송한 후 각 단말 안테나의 수신 전력을 수집하는데, 전술한 바와 같이 DM 인터페이스를 통해 수집(이하 동일)한다.
마찬가지 방식으로 단계 S20에서는 신호 생성기(200)로부터 다음 프로브 안테나를 통해 신호 전송 후 각 단말 안테나의 수신 전력을 수집한다.
다음으로, 단계 S30에서는 모든 프로브 안테나를 통한 수신 전력의 수집이 완료되었는지를 판단하는데, 완료되지 않은 경우 단계 S20 이하를 반복 수행하는 반면에 완료된 경우에는 단계 S40으로 진행하여 실드 박스 내부의 모든 채널 성분에 대한 크기를 산출, 예를 들어 전술한 수학식 6에 의해 산출한다.
다음으로, 단계 S50에서는 실드 박스 내부의 모든 간섭 성분에 대한 위상을 산출하는데, 예를 들어 전술한 첫 번째 내지 세 번째 위상 산출 방법에 의해 산출한다.
다음으로, 단계 S60에서는 앞서 산출된 실드 박스 내부의 간섭 성분의 크기 및 위상에 의거하여 실드 박스 채널에 대한 역채널 값을 산출하는데, 예를 들어 전술한 수학식 4 또는 17의 원리에 의해 산출한다.
마지막으로 단계 S70에서는 보상기에서 역채널 신호를 생성하여 실드 박스 내부의 간섭 성분을 상쇄하는데, 전술한 수학식 5 또는 18과 동일한 원리에 의해 상쇄한다.
이하에는 프로브 안테나의 수가 M(M은 자연수)이고, 무선 단말의 안테나 수가 N(N은 자연수)인 경우, 보상기의 계수를 구하는 방법을 슈도 코드(pseudo code)로 나타내었다. M≥N이어야 하고, 일반적으로 M=N이다.
Figure PCTKR2019010994-appb-I000017
도 8은 본 발명의 방법을 사용하여 크로스 토크를 상쇄한 시험 결과를 예시적으로 보인 그래프이다. 도 8에 도시한 바와 같이, 위상이 243도일 때 보상기(300)를 통한 실드 박스 내부의 크로스 토크 상쇄 효과가 최대가 됨을 알 수 있다. 아래의 표 1은 본 발명의 보상기(300)를 통한 보상 전후의 결과를 보이고 있는바, 절연 성능, 즉 크로스 토크 상쇄 성능이 13 dB 정도 향상되었음을 알 수 있다.
주된 경로[dBm] 간섭 경로[dBm] 주된 경로 대비 절연 성능[dB]
보상전 -80.75 -105.81 -25.36
보상후 -80.5 -118.81 -38.31
편차 [dB] 0.25 [dB] 13 [dB] 12.95 [dB]
이상에서는 다운링크 채널에 대해서 설명을 진행하였으나, 업링크의 채널의 경우에도 별도의 처리 과정없이 다운링크 채널에서 구한 보상기 채널 C을 그대로 적용한다. 이는 TDD(Time Division Multiplexing) 방식의 경우 다운링크와 업링크가 동일한 주파수를 사용하여 양방항 채널 사이에 채널 호환성(reciprocity)이 성립함으로써 실드 박스 내부의 채널이 동일하기 때문이다. 이상, 첨부한 도면을 참조하여 본 발명의 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치 및 방법의 바람직한 실시 예에 대하여 상세히 설명하였으나 이는 예시에 불과한 것이며, 본 발명의 기술적 사상의 범주 내에서 다양한 변형과 변경이 가능할 것이다. 따라서, 본 발명의 권리범위는 이하의 청구범위의 기재에 의하여 정해져야 할 것이다.
예를 들어, 전술한 첫번째 위상 측정 방법, 즉 풀 서치 방법에서, 예를 들어 5도 단위로 성긴 서치(coarse search)를 수행하다가 최소점을 포함하는 구간이 탐색되면, 이전 지점부터 다시 1도 이하의 간격으로 조밀한 서치(fine search)를 수행할 수도 있을 것이다.
한편, 본 발명에서 제안하는 방법은 주로 무선 단말에 대해 적용 가능하지만 비록 안테나 수가 많은 것을 충분히 감안하면 기지국에도 적용 가능할 것이고, 이에 따라 본 발명은 무선 단말이나 기지국을 모두 포함하는 무선 기기를 대상으로 할 수 있을 것이다.
또한, 이상의 실시 예에서는 수신 신호 전력을 최소화시키는 방식으로 위상을 산출하였으나 이와는 반대로 수신 신호 전력을 최대화시키는 방식으로 위상을 산출할 수도 있을 것이다.
본 발명은 MIMO 안테나를 채택한 무선 기기를 테스트하는 경우에 테스트 결과의 신뢰성을 담보할 수 있어, 유선 RF 포트를 제공하지 않는 무선 단말에 대해서도 테스트를 할 수 있으므로, 구조적으로 복잡한 크로스 토크나 누설 방지용 전파 흡수체를 사용하지 않고도 충분한 절연 성능을 확보할 수가 있다.

Claims (10)

  1. 다중 안테나를 갖는 무선 기기가 수납되며 다중 안테나와 동수 이상의 안테나를 갖는 프로브 안테나가 상기 다중 안테나 부근에 배치되는 실드 박스와 테스트 장치 사이에 구비되고,
    실드 박스 내부의 채널 값에 대한 역채널 값을 산출하는 역채널 산출부 및
    상기 역채널 산출부에 의해 산출된 역채널값을 생성하여 상기 실드 박스에서 발생하는 간섭 성분을 상쇄시키는 역채널 생성부를 포함하여 이루어진, 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치.
  2. 청구항 1에서,
    상기 역채널 산출부는 무선 기기의 각 단말 안테나가 수신한 신호 전력을 이용하여 역채널을 산출하는 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치.
  3. 청구항 2에서,
    상기 신호 전력을 이용하여 산출한 실드 박스 내부의 모든 간섭 성분에 대한 크기와 위상에 의거하여 실드 박스 채널에 대한 역채널값을 산출하는 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치.
  4. 다중 안테나를 갖는 무선 기기가 수납되며 다중 안테나와 동수 이상의 안테나를 갖는 프로브 안테나가 상기 다중 안테나 부근에 배치되는 실드 박스와 테스트 장치 사이에 구비된 보상기에 의해 수행되고,
    각 프로브 안테나를 통해 신호를 전송한 후 각 단말 안테나가 수신한 신호 전력을 수집하는 (a) 단계;
    실드 박스 내부의 모든 채널 성분에 대한 크기를 산출하는 (b) 단계;
    실드 박스 내부의 모든 간섭 성분에 대한 위상을 산출하는 (c) 단계;
    실드 박스 내부의 간섭 성분의 크기 및 위상에 의거하여 실드 박스 채널에 대한 역채널값을 산출하는 (d) 단계; 및
    보상기에서 역채널 신호를 생성하여 실드 박스 내부의 간섭 성분을 상쇄하는 (f) 단계; 를
    수행하는 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 방법.
  5. 청구항 4에서,
    상기 (c) 단계에서의 위상 산출은, 무선 기기가 수신한 신호 전력을 최대화 또는 최소화하는 방식으로 수행되는 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 방법.
  6. 청구항 4에서,
    상기 (c) 단계에서의 위상 산출은, 위상의 전 범위를 탐색하는 방식으로 수행되는 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 방법.
  7. 청구항 4에서,
    상기 (c) 단계에서의 위상 산출은, 2개 이상의 위상값을 대입하여 수행되는 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 방법.
  8. 청구항 4에서,
    상기 (c) 단계에서의 위상 산출은, 무선 기기가 수신한 신호 전력을 최적화 대상인 비용 함수(cost function)로 사용하여 반복적인 방식으로 최적화하는 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 방법.
  9. 청구항 4 내지 8중 어느 한 항에서,
    TDD 시스템에 대하여 다운링크 경로로 측정한 채널 행렬 및 이의 역행렬을 업링크 경로에 적용하는 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 방법.
  10. 다중 안테나를 갖는 무선 기기가 수납되며 다중 안테나와 동수 이상의 안테나를 갖는 프로브 안테나가 상기 다중 안테나 부근에 배치되는 실드 박스와 테스트 장치 사이에 구비된 보상기에 의해 수행되고,
    각 프로브 안테나를 통해 신호를 전송한 후 각 단말 안테나가 수신한 신호 전력을 수집하는 (a) 단계;
    상기 실드 박스 내부의 모든 채널 경로 신호에 대한 크기를 산출하는 (b) 단계 및
    상기 실드 박스 내부의 모든 간섭 경로 신호에 대한 위상을 산출하는 (c) 단계를 포함하여 이루어지되,
    상기 (c) 단계에서의 위상 산출은, 상기 무선 기기가 수신한 신호 전력을 최대화 또는 최소화하는 방식으로 수행되는 것을 특징으로 하는 신호 처리 방법.
PCT/KR2019/010994 2018-09-04 2019-08-28 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치 및 방법 WO2020050543A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180105348A KR102129268B1 (ko) 2018-09-04 2018-09-04 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치 및 방법
KR10-2018-0105348 2018-09-04

Publications (1)

Publication Number Publication Date
WO2020050543A1 true WO2020050543A1 (ko) 2020-03-12

Family

ID=69722081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010994 WO2020050543A1 (ko) 2018-09-04 2019-08-28 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치 및 방법

Country Status (2)

Country Link
KR (1) KR102129268B1 (ko)
WO (1) WO2020050543A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432421A (zh) * 2020-04-02 2020-07-17 宁波艾欧迪互联科技有限公司 一种5g通信测试仪表多被测终端同步测试方法
CN114867051A (zh) * 2022-05-07 2022-08-05 南京码锐为电子科技有限公司 一种无线通信抗干扰的控制系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102523640B1 (ko) 2022-01-28 2023-04-19 주식회사 이노와이어리스 이동통신 단말 시험용 실드 박스
KR102523642B1 (ko) 2022-01-28 2023-04-19 주식회사 이노와이어리스 이동통신 단말 시험용 실드 박스

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100075682A (ko) * 2007-11-07 2010-07-02 퀄컴 인코포레이티드 내장형 모듈 수신기 잡음 프로파일링
US20130202020A1 (en) * 2011-02-09 2013-08-08 Agilent Technologies, Inc Method of generating interference signals and device to carry out such a method
KR20150086532A (ko) * 2012-12-03 2015-07-28 제너럴 테스트 시스템 아이엔씨. 무선 단말기의 성능을 테스팅하기 위한 방법 및 디바이스
KR20150129752A (ko) * 2013-03-15 2015-11-20 라이트포인트 코포레이션 무선 테스트 신호를 이용하여 무선주파수 무선 신호 송수신기를 테스트하는 시스템 및 방법
US20180109330A1 (en) * 2016-10-16 2018-04-19 Ambit Microsystems (Shanghai) Ltd. Multi-antenna noise power measuring method and apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011044333A2 (en) 2009-10-09 2011-04-14 Skycross, Inc. Antenna system providing high isolation between antennas on electronics device
CN103562737B (zh) * 2011-06-15 2016-12-14 布鲁泰斯特公司 用于测量天线、移动电话以及其他无线终端的性能的改进的方法和装置
KR101442557B1 (ko) 2013-05-30 2014-09-22 주식회사 한국차폐시스템 전파환경의 재구성이 가능한 잔향챔버를 이용한 무선 스마트기기 감도 시험 시스템
KR101689530B1 (ko) 2015-06-24 2016-12-26 주식회사 이노와이어리스 무선 단말 테스트용 실드 박스

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100075682A (ko) * 2007-11-07 2010-07-02 퀄컴 인코포레이티드 내장형 모듈 수신기 잡음 프로파일링
US20130202020A1 (en) * 2011-02-09 2013-08-08 Agilent Technologies, Inc Method of generating interference signals and device to carry out such a method
KR20150086532A (ko) * 2012-12-03 2015-07-28 제너럴 테스트 시스템 아이엔씨. 무선 단말기의 성능을 테스팅하기 위한 방법 및 디바이스
KR20150129752A (ko) * 2013-03-15 2015-11-20 라이트포인트 코포레이션 무선 테스트 신호를 이용하여 무선주파수 무선 신호 송수신기를 테스트하는 시스템 및 방법
US20180109330A1 (en) * 2016-10-16 2018-04-19 Ambit Microsystems (Shanghai) Ltd. Multi-antenna noise power measuring method and apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432421A (zh) * 2020-04-02 2020-07-17 宁波艾欧迪互联科技有限公司 一种5g通信测试仪表多被测终端同步测试方法
CN111432421B (zh) * 2020-04-02 2024-03-15 宁波大学 一种5g通信测试仪表多被测终端同步测试方法
CN114867051A (zh) * 2022-05-07 2022-08-05 南京码锐为电子科技有限公司 一种无线通信抗干扰的控制系统
CN114867051B (zh) * 2022-05-07 2023-11-03 南京码锐为电子科技有限公司 一种无线通信抗干扰的控制系统

Also Published As

Publication number Publication date
KR20200027263A (ko) 2020-03-12
KR102129268B1 (ko) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2020050543A1 (ko) 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치 및 방법
WO2021107472A1 (en) Method and user equipment for a signal reception
KR100655767B1 (ko) 스마트 안테나 어레이를 실시간으로 계측하는 방법
CN102857309B (zh) 一种有源天线系统射频指标的测试方法和装置
WO2017007292A1 (en) Method and apparatus for calibration in radio frequency module
WO2014178642A1 (en) Apparatus and method for transmitting/receiving reference signal in wireless communication system supporting beam forming scheme
WO2010140829A2 (en) Apparatus and method for calibration for cooperative multiple input multiple output in a wireless communication system
US20220078643A1 (en) Radio equipment test device
WO2020158966A1 (ko) Massive mimo 채널에 대한 채널 추정을 수행하는 방법 및 이를 위한 통신 장치
WO2019112230A1 (ko) 클럭 주파수를 제어하는 전자 장치 및 그의 동작 방법
US20090072838A1 (en) Multi-port switching apparatus, device testing system and method of testing therefor
WO2014193152A1 (en) Method for allocating resource for device for wireless communication and base station for same
WO2018084353A1 (ko) 신호 발생기 및 신호 발생기를 포함하는 측정 시스템
WO2011078428A1 (ko) Dvb-h 시스템 등의 무선 통신 시스템용 테스트 장치의 iq 캘리브레이션 방법, 장치 및 테스트 장치 제조방법
CN109890046B (zh) 测试无线通信设备的夹具功率损耗的方法及系统
CN100550707C (zh) 测量具有多个频率分配的基站的接收灵敏度的方法
WO2020138940A1 (en) Method for testing wireless communication module and electronic device including the wireless communication module
WO2020004862A1 (ko) 무선 통신 시스템에서 액세스 포인트에 접속하는 방법 및 단말
WO2020139046A1 (en) Device and method for testing rf integrated circuit in wireless communication system
Shen et al. The advantages of the RTS method in MIMO OTA measurements
CN108020848A (zh) 一种基于频率转换的rdss导航信号模拟器自校准方法
Shen et al. Inverse matrix autosearch technique for the RTS MIMO OTA test
WO2020009540A1 (ko) 중계기 및 이의 동작 방법
CN114629569A (zh) 无线收发通信设备的测试性试验系统及其测试方法
WO2019107853A1 (ko) 빔포밍을 위한 위상을 설정하는 방법, 이를 위한 전자 장치, 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856702

Country of ref document: EP

Kind code of ref document: A1