WO2020050461A1 - Method and system for inspecting solar panel using drone - Google Patents

Method and system for inspecting solar panel using drone Download PDF

Info

Publication number
WO2020050461A1
WO2020050461A1 PCT/KR2019/000361 KR2019000361W WO2020050461A1 WO 2020050461 A1 WO2020050461 A1 WO 2020050461A1 KR 2019000361 W KR2019000361 W KR 2019000361W WO 2020050461 A1 WO2020050461 A1 WO 2020050461A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar panel
central server
image
flying object
defective
Prior art date
Application number
PCT/KR2019/000361
Other languages
French (fr)
Korean (ko)
Inventor
백경석
오재철
Original Assignee
주식회사 아이온커뮤니케이션즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이온커뮤니케이션즈 filed Critical 주식회사 아이온커뮤니케이션즈
Publication of WO2020050461A1 publication Critical patent/WO2020050461A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Definitions

  • the present invention relates to the field of inspection of solar panels. More specifically, the present invention relates to a method and system for inspecting whether a solar panel is defective using a drone.
  • Solar power generation consists of solar panels, accumulators, and power converters.
  • sunlight is applied to a photovoltaic panel in which a P-type semiconductor and an N-type semiconductor are bonded, holes and electrons are generated in the photovoltaic panel by the energy of the sunlight.
  • holes are gathered toward the P-type semiconductor and electrons are gathered toward the N-type semiconductor, so that a potential difference occurs, and current flows accordingly.
  • the advantages of photovoltaic power generation are that there is no pollution, power can be generated only as needed at the required location, and maintenance is easy.
  • a method and system for inspecting a solar panel using a drone according to an embodiment is a technical task to assign IDs to solar panels included in the solar panel group.
  • a method and system for inspecting a photovoltaic panel using a drone according to an embodiment of the present invention is to quickly detect a photovoltaic panel having a defect.
  • a method and system for inspecting a solar panel using a drone is a technical task to eliminate the hassle of having to take a photo or the like by directly visiting a location where the solar panel is installed.
  • a central server that divides the photovoltaic panel group into a plurality of regions and allocates identification (ID) to the photovoltaic panel included in each region for each region, based on the image of the photovoltaic panel group photographed through the camera. ; And receiving the ID information of the solar panel requiring inspection from the central server, flying to the solar panel corresponding to the received ID information, and photographing an image of the solar panel corresponding to the ID information to the central server. It may include a flying object to transmit.
  • the central server identifies edges of the photovoltaic panel group in the image of the photovoltaic panel group, calculates the total area of the photovoltaic panel group based on the identified edges, and enables the flying object to fly
  • the solar panel group may be divided into a plurality of regions each corresponding to an area capable of being inspected in time.
  • the central server calculates an actual distance of contours connecting the identified edges based on GPS coordinates corresponding to the identified edges, and calculates the total area of the solar panel group based on the calculated actual distance. Can be calculated.
  • the central server may classify the solar panel group into a plurality of regions corresponding to each of the plurality of waypoints in consideration of the flight time between each of the plurality of waypoints and the charging device.
  • the central server may identify a solar panel included in each of the plurality of regions based on an image of the plurality of regions, and assign an ID to the identified solar panel.
  • the central server transmits flight course information for the plurality of regions to the flying object, and the flying object sequentially sequentially images the photovoltaic panels included in each of the plurality of regions according to the flight course information. You can shoot.
  • the central server may determine the flight course so that time spent for charging the flying object is minimized.
  • the central server transmits inspection commands for different areas among the plurality of areas to each of the plurality of flying objects, and each of the plurality of flying objects is an inspection command received by itself. It can fly to the area corresponding to the image of the solar panel.
  • the central server receives sensing data of a solar panel from a sensor installed in association with the solar panel group, determines a defective solar panel based on the received sensing data, and the flying object is the central It is possible to receive the ID information of the defective solar panel from a server, and fly to the defective solar panel to photograph the defective solar panel with a plurality of different types of cameras.
  • the flying object transmits an image of the defective solar panel taken by the first camera among the plurality of cameras to the central server, and when the request of the central server is received, the second camera among the plurality of cameras receives the image.
  • An image of a defective solar panel may be transmitted to the central server.
  • a communication unit that receives an image of a group of solar panels photographed through a camera; An ID designating unit dividing the photovoltaic panel group into a plurality of regions based on the received image, and assigning IDs to photovoltaic panels included in each region for each region; And a controller configured to receive an image of a photovoltaic panel from a flying object and determine whether the photovoltaic panel is defective, wherein the communication unit transmits the ID information of the photovoltaic panel requiring inspection to the flying object to perform the flight. It is possible to cause an object to photograph an image of a solar panel corresponding to the ID information.
  • the method and system for inspecting a solar panel using a drone may assign IDs to the solar panels included in the solar panel group.
  • a method and system for inspecting a solar panel using a drone may quickly detect a solar panel having a defect.
  • the method and system for inspecting a photovoltaic panel using a drone may eliminate the hassle of having a manager visit a location where the photovoltaic panel is installed and take a picture.
  • FIG. 1 is a view showing a defect detection system of a solar panel according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method of detecting a defect in a solar panel according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method of detecting a defect in a solar panel according to another embodiment of the present invention.
  • 4 to 6 are diagrams for explaining a method of assigning IDs to photovoltaic panels included in a photovoltaic panel group.
  • FIG. 7 is a view illustrating a flight course for a plurality of regions in a solar panel group according to an embodiment.
  • FIG. 8 is a view for explaining a process in which a flying object is flying into a group of solar panels including a defective solar panel.
  • 9 is a view showing visible light images, infrared images, and EL images photographed by flying objects.
  • FIG. 10 is a block diagram showing the configuration of a central server according to an embodiment of the present invention.
  • one component when one component is referred to as “connected” or “connected” with another component, the one component may be directly connected to the other component, or may be directly connected, but in particular, It should be understood that, as long as there is no objection to the contrary, it may or may be connected via another component in the middle.
  • two or more components are expressed as ' ⁇ unit (unit)', 'module', or two or more components are combined into one component or one component is divided into more detailed functions. It may be differentiated into.
  • each of the components to be described below may additionally perform some or all of the functions of other components in addition to the main functions in charge of them, and some of the main functions of each component are different. Needless to say, it may be carried out exclusively by components.
  • FIG. 1 is a view showing a defect detection system of a solar panel according to an embodiment of the present invention.
  • a system for detecting a defect in a solar panel may include a central server 100, a flying object 200, a solar panel group 300, and an administrator terminal 400.
  • the photovoltaic panel group 300 is composed of a plurality of photovoltaic panels.
  • the solar panel group 300 may be installed on a water surface such as a river or a lake.
  • the defect detection system of the solar panel may further include a sensor 500 installed in connection with the solar panel constituting the solar panel group 300.
  • the central server 100 and the sensor 500, the central server 100 and the flying object 200, and the central server 100 and the manager terminal 400 may transmit and receive data through a network.
  • the network may include a wired network and a wireless network, and specifically, various such as a local area network (LAN), a metropolitan area network (MAN), and a wide area network (WAN). It may include a network.
  • the network may include a known World Wide Web (WWW).
  • WWW World Wide Web
  • the network according to the present invention is not limited to the networks listed above, and may include at least a part of a known wireless data network, a known telephone network, and a known wired / wireless television network.
  • the central server 100 may determine whether the solar panel is defective, and transmit the determination result to the manager terminal 400.
  • the central server 100 may collect solar panel-related data in advance to determine a defect.
  • the central server 100 may detect whether the solar panel is defective by comparing sensing data received from the sensor 500 and image data received from the flying object 200 with previously collected solar panel related data.
  • the flying object 200 flies to the solar panel group 300 under the control of the central server 100 to take a photo of the solar panel.
  • the flying object 200 transmits the photographed image to the central server 100 so that the central server 100 can determine whether the solar panel is defective.
  • the central server 100 can quickly detect a solar panel having a defect based on sensing data and image data, and the image data can be obtained by the flying object 200 Therefore, it is not necessary for the administrator to move to the location where the solar panel group 300 is installed for direct picture taking.
  • FIG. 2 is a flowchart illustrating a method of detecting a defect in a solar panel according to an embodiment of the present invention.
  • step S210 the sensor 500 collects the sensing data for the solar panel constituting the solar panel group 300 and transmits it to the central server 100.
  • a plurality of sensors 500 may be provided, and each of the plurality of sensors 500 may be installed in each of the plurality of solar panels to collect sensing data of each of the solar panels.
  • the sensing data collected by the sensor 500 may include at least one of the amount of power generation of the solar panel, the amount of solar radiation into the solar panel, the temperature of the solar panel, and the humidity of the solar panel, but is not limited thereto. It does not work.
  • the sensing data may be measured by one sensor 500 or may be measured by different types of sensors 500.
  • step S220 the central server 100 determines a defective solar panel among the plurality of solar panels based on the sensing data received from the sensor 500.
  • the defective-possible solar panel may mean a solar panel suspected of occurrence of defects.
  • the central server 100 may compare the previously collected solar panel-related data and sensing data to determine a defective solar panel.
  • the central server 100 may determine a defective solar panel based on a predetermined algorithm, and the predetermined algorithm may include, for example, a machine learning algorithm.
  • the central server 100 collects in advance big data including solar panel-related data in which a defect has occurred and solar panel-related data in a normal state, trains a machine learning algorithm with the collected data, and then learns
  • the sensing data may be input to an algorithm to determine a solar panel suspected of being defective among a plurality of solar panels.
  • the central server 100 transmits the information of the defective solar panel to the flying object (200).
  • the central server 100 may transmit ID (identification) information of the defective solar panel to the flying object 200.
  • the ID information may include location information of a region to which the defective solar panel belongs and location information of a defective solar panel within the region.
  • the ID of the solar panels constituting the solar panel group 300 may be previously stored in the central server 100.
  • step S240 the flying object 200 determines a destination (that is, a point where a defective solar panel is installed) based on the information received from the central server 100, and makes a flight to the determined destination.
  • a destination that is, a point where a defective solar panel is installed
  • step S250 the flying object 200 arrives at the defective solar panel, and then photographs the defective solar panel with a camera.
  • the flying object 200 may include a plurality of cameras of different types.
  • the plurality of cameras may include, for example, a plurality of visible light cameras, infrared cameras, and electro luminescence (EL) cameras.
  • the flying object 200 may photograph a defective solar panel with each of a plurality of cameras while a plurality of different types of cameras are mounted, or the flying object 200 may be equipped with a single camera. In the state, a defective solar panel may be photographed in a visible light shooting mode, an infrared shooting mode, or an EL shooting mode.
  • the flying object 200 is a visible light camera, an infrared camera, and an EL camera, and a defective solar panel is photographed in order of the visible light image 600a, the infrared image 600b, and the EL image 600c as illustrated in FIG. 9. ).
  • the order of photographing the visible light camera, infrared camera, and EL camera is only an example, and the order of photographing the defective solar panel may be variously changed.
  • the reason why the flying object 200 according to an embodiment of the present invention photographs a plurality of images with a plurality of cameras of different types is because it is inaccurate to determine whether a panel is defective using only one type of image. .
  • the first possible defective panel is detected using the sensing data, and the flying object 200 is moved to the detected defective possible panel to capture a plurality of different types of images.
  • step S260 the flying object 200 transmits a plurality of images to the central server 100.
  • step S270 the central server 100 finally determines whether the defective solar panel is defective based on the plurality of received images.
  • the central server 100 may finally determine whether the defect is defective by comparing the solar panel-related data collected in advance with the received image.
  • step S280 the central server 100 transmits the result of the defect determination to the manager terminal 400.
  • the central server 100 together with the ID information and / or location information (eg, GPS coordinates, etc.) of the photovoltaic panel determined to be defective when transmitting the result of the defect determination to the administrator terminal 400 together with the administrator terminal 400 Can transmit.
  • the manager can move to the panel where the defect occurred and take measures such as panel replacement and panel inspection.
  • the central server 100 may manage the ID information and / or location information of the photovoltaic panel that is primarily determined to be defective, even if the defective photovoltaic panel is finally determined as normal. ).
  • the reason that the defect was first suspected to be suspect is because it is in an actual defect state, but the judgment may not have been made accurately. Accordingly, the administrator may directly check whether the solar panel is defective, when the information of the solar panel determined as the suspected defect state is received from the central server 100, periodically or when necessary.
  • FIG. 3 is a flowchart illustrating a method of detecting a defect in a solar panel according to another embodiment of the present invention.
  • Steps S305 to S320 illustrated in FIG. 3 are the same as steps S210 to S240 described with reference to FIG. 2, and detailed descriptions thereof will be omitted.
  • step S325 the flying object 200 is flying with a defective solar panel, and after taking a defective solar panel with a first camera among a plurality of cameras, in step S330, the first photographed with the first camera
  • the image is transmitted to the central server 100.
  • the first image may be, for example, an infrared image.
  • step S335 the central server 100 determines whether the defective solar panel is defective based on the first image.
  • step S340 when it is determined that the state of the defective solar panel is not defective based on the first image, the central server 100 transmits a request to retake the defective solar panel to the flying object 200. .
  • step S360 the central server 100 transmits the result of the defective determination to the manager terminal 400.
  • the flying object 200 flies to a return position (eg, an initial starting position).
  • step S340 when a re-shooting request is received from the central server 100, in step S345, the flying object 200 photographs a defective solar panel with a second camera different from the first camera among the plurality of cameras.
  • the second camera may include, for example, a visible light camera.
  • step S350 the flying object 200 transmits the second image captured by the second camera to the central server 100.
  • step S355 the central server 100 again determines whether or not the defective solar panel is defective based on the second image, and in step S360, the defect determination result of the defective solar panel is transmitted to the manager terminal 400 do.
  • step S355 the flight object 200 returns to the return position (for example, the initial departure position) if a request to re-shoot is not received from the central server 100 for a predetermined time. Can fly.
  • step S355 when the defective solar panel is determined to be normal, and the flying object 200 further includes a third camera, the central server 100 may re-request the shooting with the flying object 200. You can.
  • the flying object 200 may transmit a third image to the central server 100 by photographing a defective solar panel with a third camera according to a re-shooting request.
  • the third image may be, for example, an EL image.
  • the central server 100 may finally determine whether the defective solar panel is defective based on the third image, and transmit the determination result to the manager terminal 400. When it is determined that the defective solar panel is not defective based on the third image, the central server 100 may finally determine the state of the solar panel as normal.
  • the flying object 200 for example, a drone
  • the flying object 200 may stop flying without additional shooting, and the defective solar panel may be rejected from the first image. If this is determined to be normal, a defective solar panel is re-photographed with a second camera. In addition, if the defective solar panel is determined to be defective from the second image captured by the second camera, the flying object 200 may stop flying without additional shooting.
  • the flying object 200 transmits a plurality of images to the central server 100 after taking multiple shots with each of a plurality of cameras, but in the embodiment shown in FIG. If an object 200 is photographed after a defective photovoltaic panel is taken, if a re-photographing request is received, re-photographing is performed, so that the flight time can be reduced.
  • 4 to 6 are diagrams for explaining a method of assigning IDs to photovoltaic panels included in the photovoltaic panel group 300.
  • the flying object 200 may photograph the solar panel included in the solar panel group 300 by flying based on the ID of each solar panel.
  • the central server 100 may transmit the ID of the solar panel to be photographed by the flying object 200 to the flying object 200 so that the flying object 200 can fly to the corresponding solar panel.
  • the image acquired while the flying object 200 periodically inspects the solar panel group 300 may be transmitted to the central server 100 together with the ID of the solar panel.
  • the central server 100 displays the solar panel group Of the photovoltaic panels included in (300), except for the photovoltaic panel in which the inspection (or shooting) of the flying object 200 is completed, the ID of the photovoltaic panel to be inspected again is completed or the battery is replaced. It may be transmitted to the flying object 200, or another flying object 200.
  • the central server 100 identifies the edges P1 to P14 of the solar panel group 300 from the image 40 photographed for the solar panel group 300.
  • the central server 100 may identify the corners P1 to P14 of the solar panel group 300 in the image 40 through an image analysis algorithm.
  • C. Harris and M. Stephens, 'A combined corner and edge detector' may refer to Alvey Vision Conference.
  • the image 40 may be taken by an administrator or the like and transmitted to the central server 100, or may be taken by a flying object 200 and transmitted to the central server 100.
  • the central server 100 acquires the GPS coordinates of each of the identified corners P1 to P14.
  • the coordinate information of each corner P1 to P14 when the drone's camera is used as a reference point, and each corner P1 to P14 using the drone's GPS coordinates Star GPS coordinates can be obtained.
  • the drone's GPS coordinates are (1,1), and the coordinates of any one corner when the drone's camera is the reference point, (1,1), the coordinates of either corner is (2,2).
  • a GPS module may be installed in the drone.
  • the central server 100 detects the boundary line E connecting the edges P1 to P14 identified in the image 40, and the detected boundary line E ) To calculate the actual distance. Since the GPS coordinates of each corner P1 to P14 are identified, the actual distance of the boundary line E connecting the two corners can be calculated based on the GPS coordinates of the two corners. The central server 100 calculates the total area of the solar panel group 300 through the actual distance of the boundary line E.
  • the central server 100 is a group of solar panels (R1 to R4) corresponding to the area that can be inspected within the flight time of the flight object 200 (R1 to R4) 300). For example, if 10 minutes of flight is possible with the battery capacity of the flying object 200, the solar panel group 300 may be divided into regions R1 to R4 corresponding to an area that can be inspected within 10 minutes. .
  • the central server 100 may store GPS coordinates of each corner of the plurality of regions R1 to R4. For example, GPS coordinates of five corners may be stored corresponding to the R1 area, and GPS coordinates of four corners may be stored corresponding to the R2 area.
  • the central server 100 divides the solar panel group 300 into a plurality of regions R1 to R4, sets a plurality of waypoints in the solar panel group 300, and multiple regions. In order to cover the entire solar panel group 300, the area may be gradually increased around the set waypoints. If the area of any one of the areas corresponding to each of the plurality of waypoints is larger than the area that can be inspected within the flight time of the flying object 200, the central server 100 may divide the area. .
  • the central server 100 flies the time required to inspect the one area and the time taken to fly to the waypoint of another area after the inspection ends.
  • a plurality of regions may be set to be within a flight time of the object 200.
  • the central server 100 may divide the solar panel group 300 into a plurality of regions in consideration of the location of the charging device located near the solar panel group 300. As an example, as shown in FIG. 7, when three charging devices are located in the vicinity of the solar panel group 300, after inspecting (or photographing) each region R1 to R4, charging is performed in the shortest time.
  • the solar panel group 300 may be divided into a plurality of regions so that the battery can be charged by flying with the device.
  • the charging device may be a rapid charging device.
  • the charging device may be a wireless quick charging device.
  • the central server 100 sets the area of the area corresponding to the waypoint located near the charging device located near the solar panel group 300 to be larger than the area of the area corresponding to the waypoint located away from the charging device. It might be. This is because the flight time between the charging device and the waypoint is considered, and if the inspection is performed at a waypoint located far from the charging device, the flight holding time for the inspection will be shorter. In other words, the flying object 200 charging the battery in the charging device can be inspected while flying for a long time in an area adjacent to the charging device, but can be inspected while flying only for a short time in an area far from the charging device. .
  • the central server 100 may divide the solar panel group 300 into a plurality of regions in consideration of the location of the flying object base located near the solar panel group 300.
  • the flying object 200 may return to the flying object base for battery replacement.
  • at least one flying object base is located in the vicinity of the solar panel group 300, after inspecting (or photographing) each area R1 to R4, the battery is flew to the at least one flying object base in the shortest time.
  • the solar panel group 300 may be divided into a plurality of regions to replace.
  • the central server 100 is greater than the area of the area corresponding to the waypoint located far from the flying object base, and the area of the area corresponding to the waypoint located near the flying object base located near the solar panel group 300. You can also set it large.
  • the central server 100 may assign IDs to the solar panels included in each of the plurality of regions R1 to R4. 6 illustrates an image corresponding to any one region 350, the central server 100 receives the image of the flying object 200 or the region 350 photographed by the administrator, and then receives the image Each solar panel 310 can be identified.
  • the flying object 200 may fly the waypoints of each area to capture an image corresponding to each area, and transmit the captured image to the central server 100.
  • the region 350 may include a boundary line 320 between each photovoltaic panel 310, and the central server 100 identifies the boundary line 320 through image processing technology , The solar panels 310 located adjacent to the boundary line 320 may be detected. Then, the central server 100 may assign an ID to each of the solar panels 310.
  • the ID may indicate the row and column of the solar panel 310 included in the region 350.
  • a (3, 1) can be assigned as an ID
  • a (5, 3) may be assigned as an ID.
  • the ID of the solar panel may be assigned as K (m, n).
  • the K may be identification information of a region.
  • the central server 100 transmits ID information of the solar panel requiring inspection to the flying object 200, and the flying object 200 can fly to the solar panel according to the received ID information.
  • the flying object 200 may check the GPS coordinate values of the corners of the area based on the identification information of the area included in the ID information. Then, the flying object 200 may identify a solar panel requiring inspection within the area based on the row values and column values included in the ID information in the area specified by the GPS coordinate values. To this end, the flying object 200 may identify the solar panel corresponding to the row value and column value included in the ID information by specifying the area, photographing the specified area, and analyzing the captured image.
  • the central server 100 transmits the GPS coordinates of each corner of the area to the flying object 200 instead of the identification information of the area, and additionally, the row and column values of the solar panel in the area are flying objects. It can also be transmitted to (200).
  • the central server 100 is the location information (eg, GPS coordinates) of the solar panel group 300, the area of the solar panel group 300, the corners of the solar panel group 300 At least one of the GPS coordinates, the GPS coordinates of the corners of the regions included in the solar panel group 300, the row values of the solar panels included in each region, and the column values of the solar panels included in each region in a cloud manner Can be saved.
  • location information eg, GPS coordinates
  • the central server 100 is the location information (eg, GPS coordinates) of the solar panel group 300, the area of the solar panel group 300, the corners of the solar panel group 300 At least one of the GPS coordinates, the GPS coordinates of the corners of the regions included in the solar panel group 300, the row values of the solar panels included in each region, and the column values of the solar panels included in each region in a cloud manner Can be saved.
  • the central server 100 may detect a defective solar panel and transmit its ID information to the flying object 200 to allow the flying object 200 to fly to the defective solar panel.
  • the flying object 200 may inspect the entire solar panel group 300 periodically or aperiodically.
  • the central server 100 may transmit flight course information to the flying object 200, so that the flying object 200 may inspect the solar panel group 300 while flying along the flying course.
  • the central server 100 may determine the flight course so that the time spent for charging the flying object (eg, the flight time required to reciprocate the charging device) is minimized in determining the flight course. have.
  • the solar panel group 300 is divided into a first region R1, a second region R2, a third region R3, and a fourth region R4, and the solar panel It is assumed that the charging device 1, the charging device 2 and the charging device 3 are located in the vicinity of the group 300.
  • the first path f1 is a flight path from the charging device 1 to the first way point w1 of the first area R1.
  • the second path f2 is a flight path from the first way point w1 or the inspection end point to the charging device 1 after the inspection (or imaging) of the first area R1 is completed.
  • the third route f3 is a flight route from the charging device 1 to the second way point w2 of the second area R2.
  • the fourth route f4 is a flight route from the second way point w2 or the inspection end point to the charging device 2.
  • the fifth route f5 is a flight route from the charging device 2 to the third way point w3 of the third area R3.
  • the sixth route f6 is a flight route from the third way point w3 or the inspection end point to the charging device 3.
  • the seventh route f7 is a flight route from the charging device 3 to the fourth way point w4 of the fourth area R4.
  • the area of the fourth area R4 close to the charging device 3 is larger than the area of the third area R3 far from the charging device 3.
  • the eighth route f8 is a flight route from the fourth way point w4 or the inspection end point to the charging device 3.
  • the flying object 200 waits on the charging device 3, and the central server 100 transmits the flight path information opposite to that shown in FIG. 7 to the flying object 200 so that the flying object 200 is the opposite You can have them fly along the flight path.
  • a charging device is not located in the vicinity of the solar panel group 300, but instead, at least one flying object base for battery replacement of the flying object 200 may be located.
  • the central server 100 may determine a flight course in consideration of a plurality of areas in the solar panel group 300 and the location of at least one flying object base.
  • the flying object 200 since the discharge rate of the battery of the flying object 200 is variable according to external temperature, etc., the flying object 200 is flying while inspecting according to the flight course, and when the remaining power of its battery is less than the reference value , It may transmit a return message to the central server 100 while moving to the nearest charging device.
  • the central server 100 checks the ID of the solar panel corresponding to the image that the returned flying object 200 last photographed, and continuously transmits the ID of the solar panel requiring inspection to another flying object 200 By doing so, other flying objects 200 may be inspected by a solar panel in a relay manner.
  • the central server 100 may transmit information of different areas to each of the plurality of flying objects 200.
  • each of the plurality of flying objects 200 may fly to an area allocated to it to inspect the solar panel of the corresponding area.
  • the first flight object 200 may transmit a flight command to the first area
  • the second flight object 200 may transmit a flight command to the second area.
  • the first flying object 200 flies to the first area to take an image and transmits it to the central server 100
  • the second flying object 200 flies to the second area to take an image to shoot the central server 100 Can be transferred to.
  • FIG. 8 is a view for explaining a process in which the flying object 200 flies to a solar panel group including a defective solar panel.
  • the flying object 200 may fly to the third solar panel group 300c based on the information received from the central server 100.
  • the flying object 200 may further receive identification information and / or location information of a photovoltaic panel group including the defective photovoltaic panel together with the ID information of the defective photovoltaic panel.
  • the flying object 200 flies based on the power stored in the battery, it is very important to efficiently manage the battery power amount of the flying object 200.
  • the flying object 200 arrives at the third photovoltaic panel group 300c and then completes photographing of the defective photovoltaic panel, or before taking the photo, the third photovoltaic panel group 300c
  • the battery may be charged through a charging facility connected to. Thereafter, when the photographing and charging is completed, the flying object 200 waits for a flight command to the next destination while waiting at a position where the third solar panel group 300c is installed, or returns to the origin of the flying object 200 You can wait.
  • the flying object 200 is less than a predetermined reference amount of power stored in the battery while flying to the third solar panel group 300c or the third solar panel group 300c as the amount of power stored in the battery If it is not possible to reach the adjacent solar panel group 300, for example, fly to the second solar panel group 300b and receive power from a charging facility installed in the second solar panel group 300b. After charging the battery, it can fly to the third solar panel group 300c.
  • FIG. 10 is a block diagram showing the configuration of a central server 100 according to an embodiment of the present invention.
  • the central server 100 may include a memory 710, a communication unit 730, an ID designation unit 750, and a control unit 770.
  • the memory 710 includes an area of the solar panel group 300, GPS coordinate information of corners of the solar panel group 300, identification information of areas included in the solar panel group 300, GPS coordinates of corners of the areas At least one of information and ID information of the solar panels included in each region may be stored. Also, the memory 710 may store data related to the solar panel collected in advance for determination of the defective solar panel or final defect determination. Also, the memory 710 may store flight course information for setting a flight course of the flight object 200 in advance.
  • the communication unit 730 may transmit and receive data through a network with a sensor 500, a flying object 200, and a manager terminal 400 installed in connection with a plurality of solar panels.
  • the ID designator 750 may divide the photovoltaic panel group 300 into a plurality of regions based on the image of the photovoltaic panel group 300, and allocate an ID to the photovoltaic panel included in each region. .
  • the control unit 770 determines a defective solar panel based on the sensing data of a plurality of solar panels received from the sensor 500, and when an image of the defective solar panel is received from the flying object 200, receives A defective solar panel may be determined based on the image. To this end, the control unit 770 may transmit the ID information of the defective solar panel requiring inspection to the flying object 200 through the communication unit 730.
  • control unit 750 may determine whether the solar panel is defective based on the received image.
  • the above-described embodiments of the present invention can be written as a program that can be executed on a computer, and the created program can be stored in a medium.
  • the medium may be a computer that continuously stores executable programs or may be temporarily stored for execution or download.
  • the medium may be various recording means or storage means in the form of a single or several hardware combinations, and is not limited to a medium directly connected to a computer system, but may be distributed on a network.
  • Examples of the medium include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical recording media such as CD-ROMs and DVDs, and magneto-optical media such as floptical disks, And program instructions including ROM, RAM, flash memory, and the like.
  • examples of other media include an application store for distributing applications, a site for distributing or distributing various software, and a recording medium or storage medium managed by a server.
  • control unit 770 control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Photovoltaic Devices (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

Disclosed is a system for detecting a fault in a solar panel according to one embodiment, the system being characterized by comprising: a central server which divides a solar panel group into a plurality of regions on the basis of an image of the solar panel group captured by a camera, and assigns an identification (ID) to solar panels in each region; and a flying object that captures an image of the solar panel included in the solar panel group, and transmits, to the central server, ID information about the image-captured solar panels and an image acquired as a result of image capturing.

Description

드론을 이용한 태양광 패널의 검사 방법 및 시스템Method and system for inspection of solar panel using drone
본 발명은 태양광 패널의 검사 분야에 관한 것이다. 보다 구체적으로, 본 발명은 드론을 이용하여 태양광 패널의 불량 여부를 검사하는 방법 및 시스템에 관한 것이다.The present invention relates to the field of inspection of solar panels. More specifically, the present invention relates to a method and system for inspecting whether a solar panel is defective using a drone.
태양광 발전은 태양광 패널과 축전지, 전력변환장치 등으로 구성된다. 태양빛이 P형 반도체와 N형 반도체를 접합시킨 태양광 패널로 인가되면 태양빛이 가지고 있는 에너지에 의해 태양광 패널에서 정공(hole)과 전자(electron)가 발생한다. 이때 정공은 P형 반도체 쪽으로, 전자는 N형 반도체 쪽으로 모이게 되어 전위차가 발생하고, 그에 따라 전류가 흐르게 된다. 태양광 발전의 장점은 공해가 없고, 필요한 장소에서 필요한 만큼만 발전할 수 있으며, 유지 보수가 용이하다는 것이다.Solar power generation consists of solar panels, accumulators, and power converters. When sunlight is applied to a photovoltaic panel in which a P-type semiconductor and an N-type semiconductor are bonded, holes and electrons are generated in the photovoltaic panel by the energy of the sunlight. At this time, holes are gathered toward the P-type semiconductor and electrons are gathered toward the N-type semiconductor, so that a potential difference occurs, and current flows accordingly. The advantages of photovoltaic power generation are that there is no pollution, power can be generated only as needed at the required location, and maintenance is easy.
태양광 발전소의 보급이 확대되면서 운용 중인 발전소의 발전 효율의 중요성이 높아지고 있다. 특히, 태양광 패널에서의 국소적인 불량 발생은 발전 효율을 낮출 뿐 아니라, 주위 패널에 영향을 미치므로 발견과 동시에 신속한 교체가 요구된다.As the spread of solar power plants increases, the importance of power generation efficiency of operating power plants is increasing. In particular, the occurrence of local defects in the photovoltaic panel not only lowers the power generation efficiency, but also affects the surrounding panel, and thus requires rapid replacement upon discovery.
최근, 태양광 패널이 수상에 설치되는 경우가 많은데, 수상에 설치된 태양광 패널은 그 접근의 어려움으로 인해 드론과 같은 비행 물체가 검사에 이용되고 있으나, 태양광 패널의 정확한 측위 방안이 제안되어 있지 않다는 점에서 검사의 애로가 존재한다.Recently, photovoltaic panels are often installed on the water, and flying objects such as drones are used for inspection due to the difficulty of access to the photovoltaic panels installed on the water, but an accurate positioning method of the solar panel has not been proposed. There are difficulties in prosecution in that they are not.
일 실시예에 따른 드론을 이용한 태양광 패널의 검사 방법 및 시스템은 태양광 패널 그룹에 포함된 태양광 패널들에 ID를 할당하는 것을 기술적 과제로 한다.A method and system for inspecting a solar panel using a drone according to an embodiment is a technical task to assign IDs to solar panels included in the solar panel group.
또한, 일 실시예에 따른 드론을 이용한 태양광 패널의 검사 방법 및 시스템은 불량이 발생한 태양광 패널을 신속하게 검출하는 것을 기술적 과제로 한다.In addition, a method and system for inspecting a photovoltaic panel using a drone according to an embodiment of the present invention is to quickly detect a photovoltaic panel having a defect.
또한, 일 실시예에 따른 드론을 이용한 태양광 패널의 검사 방법 및 시스템은 관리자가 직접 태양광 패널이 설치된 위치를 방문하여 사진 촬영 등을 해야 하는 번거로움을 제거하는 것을 기술적 과제로 한다.In addition, a method and system for inspecting a solar panel using a drone according to an embodiment of the present invention is a technical task to eliminate the hassle of having to take a photo or the like by directly visiting a location where the solar panel is installed.
일 실시예에 따른 태양광 패널의 불량 검출 시스템은,Defect detection system of a solar panel according to an embodiment,
카메라를 통해 촬영된 태양광 패널 그룹에 대한 영상에 기초하여, 상기 태양광 패널 그룹을 복수의 영역으로 구분하고, 각 영역별로 각 영역에 포함된 태양광 패널에 ID(identification)를 할당하는 중앙 서버; 및 상기 중앙 서버로부터 검사가 필요한 태양광 패널의 ID 정보를 수신하고, 수신된 ID 정보에 대응하는 태양광 패널로 비행하여, 상기 ID 정보에 대응하는 태양광 패널을 촬영한 영상을 상기 중앙 서버로 전송하는 비행 물체를 포함할 수 있다.A central server that divides the photovoltaic panel group into a plurality of regions and allocates identification (ID) to the photovoltaic panel included in each region for each region, based on the image of the photovoltaic panel group photographed through the camera. ; And receiving the ID information of the solar panel requiring inspection from the central server, flying to the solar panel corresponding to the received ID information, and photographing an image of the solar panel corresponding to the ID information to the central server. It may include a flying object to transmit.
상기 중앙 서버는, 상기 태양광 패널 그룹에 대한 영상에서 상기 태양광 패널 그룹의 모서리들을 식별하고, 식별된 모서리들에 기초하여 상기 태양광 패널 그룹의 전체 면적을 산출하고, 상기 비행 물체의 비행 가능 시간 내 검사가 가능한 면적에 각각 대응하는 복수의 영역들로 상기 태양광 패널 그룹을 구분할 수 있다.The central server identifies edges of the photovoltaic panel group in the image of the photovoltaic panel group, calculates the total area of the photovoltaic panel group based on the identified edges, and enables the flying object to fly The solar panel group may be divided into a plurality of regions each corresponding to an area capable of being inspected in time.
상기 중앙 서버는, 상기 식별된 모서리들에 대응하는 GPS 좌표에 기초하여, 상기 식별된 모서리들을 연결한 윤곽선들의 실제 거리를 산출하고, 산출된 실제 거리에 기초하여 상기 태양광 패널 그룹의 전체 면적을 산출할 수 있다.The central server calculates an actual distance of contours connecting the identified edges based on GPS coordinates corresponding to the identified edges, and calculates the total area of the solar panel group based on the calculated actual distance. Can be calculated.
상기 중앙 서버는, 복수의 웨이 포인트 각각과 충전 기기 사이의 비행 시간을 고려하여 상기 복수의 웨이 포인트 각각에 대응하는 복수의 영역으로 상기 태양광 패널 그룹을 구분할 수 있다.The central server may classify the solar panel group into a plurality of regions corresponding to each of the plurality of waypoints in consideration of the flight time between each of the plurality of waypoints and the charging device.
상기 중앙 서버는, 상기 복수의 영역의 영상에 기초하여, 상기 복수의 영역 각각에 포함된 태양광 패널을 식별하고, 식별된 태양광 패널에 ID를 할당할 수 있다.The central server may identify a solar panel included in each of the plurality of regions based on an image of the plurality of regions, and assign an ID to the identified solar panel.
상기 중앙 서버는, 상기 복수의 영역들에 대한 비행 코스 정보를 상기 비행 물체로 전송하고, 상기 비행 물체는, 상기 비행 코스 정보에 따라 상기 복수의 영역들 각각에 포함된 태양광 패널의 영상을 순차적으로 촬영할 수 있다.The central server transmits flight course information for the plurality of regions to the flying object, and the flying object sequentially sequentially images the photovoltaic panels included in each of the plurality of regions according to the flight course information. You can shoot.
상기 중앙 서버는, 상기 비행 물체의 충전을 위해 소비되는 시간이 최소화되도록 상기 비행 코스를 결정할 수 있다.The central server may determine the flight course so that time spent for charging the flying object is minimized.
상기 비행 물체는 복수 개이되, 상기 중앙 서버는, 상기 복수의 영역 중 서로 다른 영역에 대한 검사 명령을 상기 복수 개의 비행 물체 각각으로 전송하고, 상기 복수 개의 비행 물체 각각은, 자신에게 수신된 검사 명령에 대응하는 영역으로 비행하여 태양광 패널의 영상을 촬영할 수 있다.There are a plurality of flying objects, and the central server transmits inspection commands for different areas among the plurality of areas to each of the plurality of flying objects, and each of the plurality of flying objects is an inspection command received by itself. It can fly to the area corresponding to the image of the solar panel.
상기 중앙 서버는, 상기 태양광 패널 그룹과 관련되어 설치된 센서로부터 태양광 패널의 센싱 데이터를 수신하고, 상기 수신된 센싱 데이터에 기초하여 불량 가능 태양광 패널을 결정하고, 상기 비행 물체는, 상기 중앙 서버로부터 상기 불량 가능 태양광 패널의 ID 정보를 수신하고, 상기 불량 가능 태양광 패널로 비행하여 서로 다른 종류의 복수의 카메라로 상기 불량 가능 태양광 패널을 촬영할 수 있다.The central server receives sensing data of a solar panel from a sensor installed in association with the solar panel group, determines a defective solar panel based on the received sensing data, and the flying object is the central It is possible to receive the ID information of the defective solar panel from a server, and fly to the defective solar panel to photograph the defective solar panel with a plurality of different types of cameras.
상기 비행 물체는, 상기 복수의 카메라 중 제 1 카메라로 상기 불량 가능 태양광 패널을 촬영한 영상을 상기 중앙 서버로 전송하고, 상가 중앙 서버의 요청이 수신되면 상기 복수의 카메라 중 제 2 카메라로 상기 불량 가능 태양광 패널을 촬영한 영상을 상기 중앙 서버로 전송할 수 있다.The flying object transmits an image of the defective solar panel taken by the first camera among the plurality of cameras to the central server, and when the request of the central server is received, the second camera among the plurality of cameras receives the image. An image of a defective solar panel may be transmitted to the central server.
일 실시예에 따른 중앙 서버 장치는,Central server device according to an embodiment,
카메라를 통해 촬영된 태양광 패널 그룹에 대한 영상을 수신하는 통신부; 상기 수신된 영상에 기초하여, 상기 태양광 패널 그룹을 복수의 영역으로 구분하고, 각 영역별로 각 영역에 포함된 태양광 패널에 ID를 할당하는 ID 지정부; 및 태양광 패널을 촬영한 영상을 비행 물체로부터 수신하여 상기 태양광 패널의 불량 여부를 판단하는 제어부를 포함하되, 상기 통신부는, 검사가 필요한 태양광 패널의 ID 정보를 비행 물체로 전송하여 상기 비행 물체가 상기 ID 정보에 대응하는 태양광 패널의 영상을 촬영하게 할 수 있다.A communication unit that receives an image of a group of solar panels photographed through a camera; An ID designating unit dividing the photovoltaic panel group into a plurality of regions based on the received image, and assigning IDs to photovoltaic panels included in each region for each region; And a controller configured to receive an image of a photovoltaic panel from a flying object and determine whether the photovoltaic panel is defective, wherein the communication unit transmits the ID information of the photovoltaic panel requiring inspection to the flying object to perform the flight. It is possible to cause an object to photograph an image of a solar panel corresponding to the ID information.
일 실시예에 따른 드론을 이용한 태양광 패널의 검사 방법 및 시스템은 태양광 패널 그룹에 포함된 태양광 패널들에 ID를 할당할 수 있다.The method and system for inspecting a solar panel using a drone according to an embodiment may assign IDs to the solar panels included in the solar panel group.
또한, 일 실시예에 따른 드론을 이용한 태양광 패널의 검사 방법 및 시스템은 불량이 발생한 태양광 패널을 신속하게 검출할 수 있다.In addition, a method and system for inspecting a solar panel using a drone according to an embodiment may quickly detect a solar panel having a defect.
또한, 일 실시예에 따른 드론을 이용한 태양광 패널의 검사 방법 및 시스템은 관리자가 직접 태양광 패널이 설치된 위치를 방문하여 사진 촬영 등을 해야 하는 번거로움을 제거할 수 있다.In addition, the method and system for inspecting a photovoltaic panel using a drone according to an embodiment may eliminate the hassle of having a manager visit a location where the photovoltaic panel is installed and take a picture.
다만, 본 발명의 일 실시예에 따른 드론을 이용한 태양광 패널의 검사 방법 및 시스템이 달성할 수 있는 효과는 이상에서 언급한 것들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the effects that can be achieved by the method and system for inspecting a solar panel using a drone according to an embodiment of the present invention are not limited to those mentioned above, and other effects not mentioned can be seen from the description below. It will be clearly understood by those skilled in the art to which the invention pertains.
본 명세서에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 간단한 설명이 제공된다.A brief description of each drawing is provided to better understand the drawings cited herein.
도 1은 본 발명의 일 실시예에 따른 태양광 패널의 불량 검출 시스템을 도시하는 도면이다.1 is a view showing a defect detection system of a solar panel according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 태양광 패널의 불량 검출 방법을 설명하기 위한 흐름도이다.2 is a flowchart illustrating a method of detecting a defect in a solar panel according to an embodiment of the present invention.
도 3은 본 발명의 다른 실시예에 따른 태양광 패널의 불량 검출 방법을 설명하기 위한 흐름도이다.3 is a flowchart illustrating a method of detecting a defect in a solar panel according to another embodiment of the present invention.
도 4 내지 도 6은 태양광 패널 그룹에 포함된 태양광 패널들에 대해 ID를 할당하는 방법을 설명하기 위한 도면이다.4 to 6 are diagrams for explaining a method of assigning IDs to photovoltaic panels included in a photovoltaic panel group.
도 7은 일 실시예에 따른 태양광 패널 그룹 내 복수의 영역들에 대한 비행 코스를 예시하는 도면이다.7 is a view illustrating a flight course for a plurality of regions in a solar panel group according to an embodiment.
도 8은 비행 물체가 불량 가능 태양광 패널을 포함하는 태양광 패널 그룹으로 비행하는 과정을 설명하기 위한 도면이다.FIG. 8 is a view for explaining a process in which a flying object is flying into a group of solar panels including a defective solar panel.
도 9는 비행 물체에 의해 촬영되는 가시광선 영상, 적외선 영상 및 EL 영상을 도시하는 도면이다.9 is a view showing visible light images, infrared images, and EL images photographed by flying objects.
도 10은 본 발명의 일 실시예에 따른 중앙 서버의 구성을 도시하는 블록도이다.10 is a block diagram showing the configuration of a central server according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고, 이를 상세한 설명을 통해 상세히 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명은 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The present invention can be applied to various changes and can have various embodiments, and specific embodiments are illustrated in the drawings and will be described in detail through detailed description. However, this is not intended to limit the present invention to specific embodiments, and it should be understood that the present invention includes all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 본 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제 1, 제 2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.In describing the present invention, when it is determined that a detailed description of related known technologies may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted. In addition, the numbers (eg, first, second, etc.) used in the description process of the present specification are merely identification symbols for distinguishing one component from another component.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "접속된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결되거나 또는 직접 접속될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결되거나 또는 접속될 수도 있다고 이해되어야 할 것이다.Further, in this specification, when one component is referred to as "connected" or "connected" with another component, the one component may be directly connected to the other component, or may be directly connected, but in particular, It should be understood that, as long as there is no objection to the contrary, it may or may be connected via another component in the middle.
또한, 본 명세서에서 '~부(유닛)', '모듈' 등으로 표현되는 구성요소는 2개 이상의 구성요소가 하나의 구성요소로 합쳐지거나 또는 하나의 구성요소가 보다 세분화된 기능별로 2개 이상으로 분화될 수도 있다. 또한, 이하에서 설명할 구성요소 각각은 자신이 담당하는 주기능 이외에도 다른 구성요소가 담당하는 기능 중 일부 또는 전부의 기능을 추가적으로 수행할 수도 있으며, 구성요소 각각이 담당하는 주기능 중 일부 기능이 다른 구성요소에 의해 전담되어 수행될 수도 있음은 물론이다.In addition, in this specification, two or more components are expressed as '~ unit (unit)', 'module', or two or more components are combined into one component or one component is divided into more detailed functions. It may be differentiated into. In addition, each of the components to be described below may additionally perform some or all of the functions of other components in addition to the main functions in charge of them, and some of the main functions of each component are different. Needless to say, it may be carried out exclusively by components.
이하, 본 발명의 기술적 사상에 의한 실시예들을 차례로 상세히 설명한다.Hereinafter, embodiments according to the spirit of the present invention will be described in detail.
도 1은 본 발명의 일 실시예에 따른 태양광 패널의 불량 검출 시스템을 도시하는 도면이다.1 is a view showing a defect detection system of a solar panel according to an embodiment of the present invention.
도 1을 참조하면, 태양광 패널의 불량 검출 시스템은 중앙 서버(100), 비행 물체(200), 태양광 패널 그룹(300) 및 관리자 단말(400)을 포함할 수 있다.Referring to FIG. 1, a system for detecting a defect in a solar panel may include a central server 100, a flying object 200, a solar panel group 300, and an administrator terminal 400.
태양광 패널 그룹(300)은 복수의 태양광 패널로 이루어져 있다. 태양광 패널 그룹(300)은 강, 호수 등의 수상에 설치된 것일 수 있다. 도 1에는 도시되어 있지는 않지만, 태양광 패널의 불량 검출 시스템은 태양광 패널 그룹(300)을 구성하는 태양광 패널과 관련되어 설치된 센서(500)를 더 포함할 수 있다.The photovoltaic panel group 300 is composed of a plurality of photovoltaic panels. The solar panel group 300 may be installed on a water surface such as a river or a lake. Although not illustrated in FIG. 1, the defect detection system of the solar panel may further include a sensor 500 installed in connection with the solar panel constituting the solar panel group 300.
중앙 서버(100)와 센서(500), 중앙 서버(100)와 비행 물체(200) 및 중앙 서버(100)와 관리자 단말(400)은 네트워크를 통해 데이터를 송수신할 수 있다. 여기서, 네트워크는 유선 네트워크와 무선 네트워크를 포함할 수 있으며, 구체적으로, 근거리 네트워크(LAN: Local Area Network), 도시권 네트워크(MAN: Metropolitan Area Network), 광역 네트워크(WAN: Wide Area Network) 등의 다양한 네트워크를 포함할 수 있다. 또한, 네트워크는 공지의 월드 와이드 웹(WWW: World Wide Web)을 포함할 수도 있다. 그러나, 본 발명에 따른 네트워크는 상기 열거된 네트워크에 국한되지 않고, 공지의 무선 데이터 네트워크나 공지의 전화 네트워크, 공지의 유무선 텔레비전 네트워크를 적어도 일부로 포함할 수도 있다.The central server 100 and the sensor 500, the central server 100 and the flying object 200, and the central server 100 and the manager terminal 400 may transmit and receive data through a network. Here, the network may include a wired network and a wireless network, and specifically, various such as a local area network (LAN), a metropolitan area network (MAN), and a wide area network (WAN). It may include a network. In addition, the network may include a known World Wide Web (WWW). However, the network according to the present invention is not limited to the networks listed above, and may include at least a part of a known wireless data network, a known telephone network, and a known wired / wireless television network.
중앙 서버(100)는 태양광 패널의 불량 여부를 판단하고, 판단 결과를 관리자 단말(400)로 전송할 수 있다. 중앙 서버(100)는 불량 판정을 위해 태양광 패널 관련 데이터를 미리 수집할 수 있다.The central server 100 may determine whether the solar panel is defective, and transmit the determination result to the manager terminal 400. The central server 100 may collect solar panel-related data in advance to determine a defect.
중앙 서버(100)는 센서(500)로부터 수신되는 센싱 데이터 및 비행 물체(200)로부터 수신되는 영상 데이터를 미리 수집된 태양광 패널 관련 데이터와 비교하여 태양광 패널의 불량 여부를 검출할 수 있다.The central server 100 may detect whether the solar panel is defective by comparing sensing data received from the sensor 500 and image data received from the flying object 200 with previously collected solar panel related data.
비행 물체(200)는 중앙 서버(100)의 제어 하에 태양광 패널 그룹(300)으로 비행하여 태양광 패널의 사진을 촬영한다. 비행 물체(200)는 촬영된 영상을 중앙 서버(100)로 전송하여 중앙 서버(100)가 태양광 패널의 불량 여부를 판정할 수 있게 한다.The flying object 200 flies to the solar panel group 300 under the control of the central server 100 to take a photo of the solar panel. The flying object 200 transmits the photographed image to the central server 100 so that the central server 100 can determine whether the solar panel is defective.
본 발명의 일 실시예에 따르면, 중앙 서버(100)는 센싱 데이터 및 영상 데이터에 기초하여 불량이 발생한 태양광 패널을 신속하게 검출할 수 있고, 상기 영상 데이터는 비행 물체(200)에 의해 획득 가능하므로 관리자가 직접 사진 촬영을 위해 태양광 패널 그룹(300)이 설치된 위치로 이동할 필요가 없게 된다.According to an embodiment of the present invention, the central server 100 can quickly detect a solar panel having a defect based on sensing data and image data, and the image data can be obtained by the flying object 200 Therefore, it is not necessary for the administrator to move to the location where the solar panel group 300 is installed for direct picture taking.
이하에서는, 도 2 및 도 3을 참조하여 본 발명의 일 실시예에 따른 태양광 패널의 불량 검출 시스템의 동작에 대해 상세히 설명한다.Hereinafter, the operation of the defect detection system of the solar panel according to an embodiment of the present invention will be described in detail with reference to FIGS. 2 and 3.
도 2는 본 발명의 일 실시예에 따른 태양광 패널의 불량 검출 방법을 설명하기 위한 흐름도이다.2 is a flowchart illustrating a method of detecting a defect in a solar panel according to an embodiment of the present invention.
S210 단계에서, 센서(500)는 태양광 패널 그룹(300)을 구성하는 태양광 패널에 대한 센싱 데이터를 수집하여 중앙 서버(100)로 전송한다.In step S210, the sensor 500 collects the sensing data for the solar panel constituting the solar panel group 300 and transmits it to the central server 100.
센서(500)는 복수 개일 수 있으며, 복수의 센서(500) 각각이 복수의 태양광 패널 각각에 설치되어 각 태양광 패널의 센싱 데이터를 수집할 수 있다. A plurality of sensors 500 may be provided, and each of the plurality of sensors 500 may be installed in each of the plurality of solar panels to collect sensing data of each of the solar panels.
일 실시예에서, 센서(500)가 수집하는 센싱 데이터는 태양광 패널의 발전량, 태양광 패널로의 일사량, 태양광 패널의 온도 및 태양광 패널의 습도 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다. 상기 센싱 데이터는 하나의 센서(500)에 의해 측정될 수도 있고, 서로 다른 종류의 센서(500)에 의해 측정될 수도 있다.In one embodiment, the sensing data collected by the sensor 500 may include at least one of the amount of power generation of the solar panel, the amount of solar radiation into the solar panel, the temperature of the solar panel, and the humidity of the solar panel, but is not limited thereto. It does not work. The sensing data may be measured by one sensor 500 or may be measured by different types of sensors 500.
S220 단계에서, 중앙 서버(100)는 센서(500)로부터 수신된 센싱 데이터에 기초하여 복수의 태양광 패널 중 불량 가능 태양광 패널을 결정한다. 불량 가능 태양광 패널이란, 불량의 발생이 의심되는 태양광 패널을 의미할 수 있다.In step S220, the central server 100 determines a defective solar panel among the plurality of solar panels based on the sensing data received from the sensor 500. The defective-possible solar panel may mean a solar panel suspected of occurrence of defects.
중앙 서버(100)는 미리 수집된 태양광 패널 관련 데이터와 센싱 데이터를 비교하여 불량 가능 태양광 패널을 결정할 수 있다. 일 실시예에서, 중앙 서버(100)는 소정 알고리즘에 기초하여 불량 가능 태양광 패널을 결정할 수 있으며, 소정 알고리즘은 예를 들어, 기계 학습 알고리즘을 포함할 수 있다.The central server 100 may compare the previously collected solar panel-related data and sensing data to determine a defective solar panel. In one embodiment, the central server 100 may determine a defective solar panel based on a predetermined algorithm, and the predetermined algorithm may include, for example, a machine learning algorithm.
구체적으로, 중앙 서버(100)는 불량이 발생한 태양광 패널 관련 데이터와 정상 상태의 태양광 패널 관련 데이터를 포함하는 빅 데이터를 미리 수집하고, 수집된 데이터로 기계 학습 알고리즘을 학습시킨 후, 학습된 알고리즘에 센싱 데이터를 입력하여 복수의 태양광 패널 중 불량이 의심되는 태양광 패널을 결정할 수 있다.Specifically, the central server 100 collects in advance big data including solar panel-related data in which a defect has occurred and solar panel-related data in a normal state, trains a machine learning algorithm with the collected data, and then learns The sensing data may be input to an algorithm to determine a solar panel suspected of being defective among a plurality of solar panels.
S230 단계에서, 중앙 서버(100)는 불량 가능 태양광 패널의 정보를 비행 물체(200)로 전송한다. 일 실시예에서, 중앙 서버(100)는 불량 가능 태양광 패널의 ID (identification) 정보를 비행 물체(200)로 전송할 수 있다. 후술하는 바와 같이, 상기 ID 정보는, 불량 가능 태양광 패널이 속한 영역의 위치 정보와 해당 영역 내 불량 가능 태양광 패널의 위치 정보를 포함할 수 있다.In step S230, the central server 100 transmits the information of the defective solar panel to the flying object (200). In one embodiment, the central server 100 may transmit ID (identification) information of the defective solar panel to the flying object 200. As described later, the ID information may include location information of a region to which the defective solar panel belongs and location information of a defective solar panel within the region.
일 실시예에서, 중앙 서버(100)에는 태양광 패널 그룹(300)을 구성하는 태양광 패널들의 ID가 미리 저장될 수 있다.In one embodiment, the ID of the solar panels constituting the solar panel group 300 may be previously stored in the central server 100.
S240 단계에서, 비행 물체(200)는 중앙 서버(100)로부터 수신된 정보에 기초하여 목적지(즉, 불량 가능 태양광 패널이 설치된 지점)를 결정하고, 결정된 목적지로 비행을 한다. 비행 물체(200)가 중앙 서버(100)로부터 수신된 ID 정보에 기초하여 불량 가능 태양광 패널의 위치로 비행하는 과정에 대해서는 후술한다.In step S240, the flying object 200 determines a destination (that is, a point where a defective solar panel is installed) based on the information received from the central server 100, and makes a flight to the determined destination. The process of the flying object 200 flying to the position of the defective solar panel based on the ID information received from the central server 100 will be described later.
S250 단계에서, 비행 물체(200)는 불량 가능 태양광 패널에 도착한 뒤, 불량 가능 태양광 패널을 카메라로 촬영한다.In step S250, the flying object 200 arrives at the defective solar panel, and then photographs the defective solar panel with a camera.
일 실시예에서, 비행 물체(200)는 서로 다른 종류의 복수의 카메라를 포함할 수 있다. 복수의 카메라는 예를 들어, 가시광선 카메라, 적외선 카메라 및 EL(electro luminescence) 카메라 중 복수 개를 포함할 수 있다. 일 실시예에서 비행 물체(200)는 서로 다른 종류의 복수의 카메라를 장착한 상태에서 복수의 카메라 각각으로 불량 가능 태양광 패널을 촬영할 수 있고, 또는 비행 물체(200)는 하나의 카메라를 장착한 상태에서 가시광선 촬영 모드, 적외선 촬영 모드 또는 EL 촬영 모드로 불량 가능 태양광 패널을 촬영할 수도 있다.In one embodiment, the flying object 200 may include a plurality of cameras of different types. The plurality of cameras may include, for example, a plurality of visible light cameras, infrared cameras, and electro luminescence (EL) cameras. In one embodiment, the flying object 200 may photograph a defective solar panel with each of a plurality of cameras while a plurality of different types of cameras are mounted, or the flying object 200 may be equipped with a single camera. In the state, a defective solar panel may be photographed in a visible light shooting mode, an infrared shooting mode, or an EL shooting mode.
비행 물체(200)는 가시광선 카메라, 적외선 카메라 및 EL 카메라의 순서로 불량 가능 태양광 패널을 촬영하여 도 9에 도시된 것과 같은 가시광선 영상(600a), 적외선 영상(600b) 및 EL 영상(600c)을 획득할 수 있다. 상기 가시광선 카메라, 적외선 카메라 및 EL 카메라의 촬영 순서는 하나의 예시일 뿐이며, 불량 가능 태양광 패널을 촬영하는 순서는 다양하게 변경될 수 있다.The flying object 200 is a visible light camera, an infrared camera, and an EL camera, and a defective solar panel is photographed in order of the visible light image 600a, the infrared image 600b, and the EL image 600c as illustrated in FIG. 9. ). The order of photographing the visible light camera, infrared camera, and EL camera is only an example, and the order of photographing the defective solar panel may be variously changed.
본 발명의 일 실시예에 따른 비행 물체(200)가 서로 다른 종류의 복수의 카메라로 복수의 영상을 촬영하는 이유는, 어느 하나의 종류의 영상만으로 패널의 불량 여부를 판정하는 것이 부정확하기 때문이다.The reason why the flying object 200 according to an embodiment of the present invention photographs a plurality of images with a plurality of cameras of different types is because it is inaccurate to determine whether a panel is defective using only one type of image. .
불량 상태의 태양광 패널은 적외선 카메라로 촬영 시, 주변 정상 패널과는 다른 색깔(온도 차이 발생하여 다른 색으로 표시)로 나타난다. 다만 적외선 카메라가 찾지 못하는 불량 유형이 존재하는데, 예를 들면, 먼지나 오물이 태양광 패널 위에 존재하는 경우 햇빛과의 접촉을 방해하는 현상이 발생할 수 있다. 이러한 경우는 적외선 카메라보다는 가시광선 카메라가 효율적이다. 또한, 태양광 패널의 내부의 미세한 크랙이 발생한 경우는 EL 카메라의 EL 영상을 통해 검출이 용이해질 수 있다. 세 종류의 카메라를 항상 검사에 이용하면 신속한 검출이 가능할 수는 있지만, 특히 EL 영상은 고해상도로 촬영해야 하고, 비행 물체(200)가 빠르게 이동할 수 없는 촬영 조건을 가지므로 짧은 시간에 넓은 발전소를 검사하는 경우에는 역효과가 나타난다.When the solar panel in a bad state is photographed with an infrared camera, it appears in a different color from the surrounding normal panel (displayed in a different color due to a temperature difference). However, there are some types of defects that infrared cameras cannot find. For example, when dust or dirt is present on a solar panel, a phenomenon that interferes with contact with sunlight may occur. In this case, a visible light camera is more efficient than an infrared camera. In addition, when a minute crack occurs inside the solar panel, detection may be facilitated through the EL image of the EL camera. When three types of cameras are used for inspection at all times, rapid detection may be possible, but EL images must be taken in high resolution, and because the flying object 200 has a shooting condition that cannot be quickly moved, a wide power plant is inspected in a short time. If it does, there is an adverse effect.
따라서, 본 발명의 일 실시예에서는, 센싱 데이터를 이용하여 1차적으로 불량 가능 패널을 검출하고, 검출된 불량 가능 패널로 비행 물체(200)를 이동시켜 서로 다른 종류의 복수의 영상을 촬영하게 하는 것이다.Accordingly, in one embodiment of the present invention, the first possible defective panel is detected using the sensing data, and the flying object 200 is moved to the detected defective possible panel to capture a plurality of different types of images. will be.
불량 가능 태양광 패널에 대한 촬영이 종료되면, S260 단계에서, 비행 물체(200)는 복수의 영상을 중앙 서버(100)로 전송한다.When the photographing of the defective solar panel is finished, in step S260, the flying object 200 transmits a plurality of images to the central server 100.
S270 단계에서, 중앙 서버(100)는 수신된 복수의 영상에 기초하여 불량 가능 태양광 패널의 불량 여부를 최종적으로 판단한다.In step S270, the central server 100 finally determines whether the defective solar panel is defective based on the plurality of received images.
앞서 설명한 바와 같이, 중앙 서버(100)는 미리 수집된 태양광 패널 관련 데이터와 수신된 영상을 비교하여 불량 여부를 최종적으로 판단할 수 있다.As described above, the central server 100 may finally determine whether the defect is defective by comparing the solar panel-related data collected in advance with the received image.
S280 단계에서, 중앙 서버(100)는 불량 판정 결과를 관리자 단말(400)로 전송한다. 중앙 서버(100)는 불량 판정 결과를 관리자 단말(400)로 전송할 때 불량으로 판정된 태양광 패널의 ID 정보 및/또는 위치 정보(예를 들어, GPS 좌표 등)를 관리자 단말(400)로 함께 전송할 수 있다.In step S280, the central server 100 transmits the result of the defect determination to the manager terminal 400. The central server 100 together with the ID information and / or location information (eg, GPS coordinates, etc.) of the photovoltaic panel determined to be defective when transmitting the result of the defect determination to the administrator terminal 400 together with the administrator terminal 400 Can transmit.
관리자는 불량이 발생한 패널로 이동하여 패널 교체, 패널 검사 등의 조치를 취할 수 있다.The manager can move to the panel where the defect occurred and take measures such as panel replacement and panel inspection.
일 실시예에서, 중앙 서버(100)는 불량 가능 태양광 패널이 최종적으로 정상으로 판정되었더라도, 불량이 의심되는 것으로 1차적으로 판단된 태양광 패널의 ID 정보 및/또는 위치 정보를 관리자 단말(400)로 전송할 수 있다. 불량이 의심되는 것으로 1차적으로 판단되었다는 것은, 실제 불량 상태에 있으나 영상으로 그 판단이 정확하게 이루어지지 않은 것일 수도 있기 때문이다. 따라서, 관리자는 불량 의심 상태로 판단된 태양광 패널의 정보가 중앙 서버(100)로부터 수신되면, 정기적으로 또는 필요할 때, 태양광 패널의 불량 여부를 직접 점검할 수도 있다.In one embodiment, the central server 100 may manage the ID information and / or location information of the photovoltaic panel that is primarily determined to be defective, even if the defective photovoltaic panel is finally determined as normal. ). The reason that the defect was first suspected to be suspect is because it is in an actual defect state, but the judgment may not have been made accurately. Accordingly, the administrator may directly check whether the solar panel is defective, when the information of the solar panel determined as the suspected defect state is received from the central server 100, periodically or when necessary.
도 3은 본 발명의 다른 실시예에 따른 태양광 패널의 불량 검출 방법을 설명하기 위한 흐름도이다.3 is a flowchart illustrating a method of detecting a defect in a solar panel according to another embodiment of the present invention.
도 3에 도시된 S305 단계 내지 S320 단계는 도 2와 관련하여 설명한 S210 단계 내지 S240 단계와 동일하므로 상세한 설명은 생략한다.Steps S305 to S320 illustrated in FIG. 3 are the same as steps S210 to S240 described with reference to FIG. 2, and detailed descriptions thereof will be omitted.
S325 단계에서, 비행 물체(200)는 불량 가능 태양광 패널로 비행한 후, 복수의 카메라 중 제 1 카메라로 불량 가능 태양광 패널을 촬영한 후, S330 단계에서, 제 1 카메라로 촬영된 제 1 영상을 중앙 서버(100)로 전송한다. 제 1 영상은 예를 들어, 적외선 영상일 수 있다.In step S325, the flying object 200 is flying with a defective solar panel, and after taking a defective solar panel with a first camera among a plurality of cameras, in step S330, the first photographed with the first camera The image is transmitted to the central server 100. The first image may be, for example, an infrared image.
S335 단계에서, 중앙 서버(100)는 제 1 영상에 기초하여 불량 가능 태양광 패널의 불량 여부를 판정한다.In step S335, the central server 100 determines whether the defective solar panel is defective based on the first image.
S340 단계에서, 제 1 영상에 기초하여 불량 가능 태양광 패널의 상태가 불량이 아닌 것으로 판정된 경우, 중앙 서버(100)는 불량 가능 태양광 패널의 재촬영 요청을 비행 물체(200)로 전송한다.In step S340, when it is determined that the state of the defective solar panel is not defective based on the first image, the central server 100 transmits a request to retake the defective solar panel to the flying object 200. .
제 1 영상에 기초하여 불량 가능 태양광 패널의 상태가 불량으로 판정된 경우에는, S360 단계에서, 중앙 서버(100)는 불량 판정 결과를 관리자 단말(400)로 전송한다. 이 경우, 비행 물체(200)는 중앙 서버(100)로부터 소정 시간 동안 재촬영 요청이 수신되지 않으면 복귀 위치(예를 들어, 최초 출발 위치)로 비행한다.When the state of the defective solar panel is determined to be defective based on the first image, in step S360, the central server 100 transmits the result of the defective determination to the manager terminal 400. In this case, if the re-shooting request is not received from the central server 100 for a predetermined time, the flying object 200 flies to a return position (eg, an initial starting position).
상기 S340 단계에서, 중앙 서버(100)로부터 재촬영 요청이 수신된 경우, S345 단계에서 비행 물체(200)는 복수의 카메라 중 상기 제 1 카메라와 상이한 제 2 카메라로 불량 가능 태양광 패널을 촬영한다. 제 2 카메라는 예를 들어 가시광선 카메라를 포함할 수 있다.In step S340, when a re-shooting request is received from the central server 100, in step S345, the flying object 200 photographs a defective solar panel with a second camera different from the first camera among the plurality of cameras. . The second camera may include, for example, a visible light camera.
S350 단계에서, 비행 물체(200)는 제 2 카메라로 촬영된 제 2 영상을 중앙 서버(100)로 전송한다.In step S350, the flying object 200 transmits the second image captured by the second camera to the central server 100.
S355 단계에서, 중앙 서버(100)는 제 2 영상에 기초하여 불량 가능 태양광 패널의 불량 여부를 다시 판정하고, S360 단계에서, 불량 가능 태양광 패널의 불량 판정 결과를 관리자 단말(400)로 전송한다.In step S355, the central server 100 again determines whether or not the defective solar panel is defective based on the second image, and in step S360, the defect determination result of the defective solar panel is transmitted to the manager terminal 400 do.
만약, S355 단계에서 불량 가능 태양광 패널이 불량으로 판정된 경우, 비행 물체(200)는 중앙 서버(100)로부터 소정 시간 동안 재촬영 요청이 수신되지 않으면 복귀 위치(예를 들어, 최초 출발 위치)로 비행할 수 있다.If, in step S355, the defective solar panel is determined to be defective, the flight object 200 returns to the return position (for example, the initial departure position) if a request to re-shoot is not received from the central server 100 for a predetermined time. Can fly.
그러나, S355 단계에서, 불량 가능 태양광 패널이 정상으로 판정되었고, 비행 물체(200)가 제 3 카메라를 더 포함하는 경우, 중앙 서버(100)는 비행 물체(200)로 재촬영 요청을 다시 할 수 있다. 비행 물체(200)는 재촬영 요청에 따라 제 3 카메라로 불량 가능 태양광 패널을 촬영하여 제 3 영상을 중앙 서버(100)로 전송할 수 있다. 상기 제 3 영상은 예를 들어, EL 영상일 수 있다. 중앙 서버(100)는 제 3 영상에 기초하여 불량 가능 태양광 패널의 불량 여부를 최종적으로 판단하고, 판단 결과를 관리자 단말(400)로 전송할 수 있다. 제 3 영상에 기초하여 불량 가능 태양광 패널이 불량이 아닌 것으로 판단된 경우에는 중앙 서버(100)는 해당 태양광 패널의 상태를 최종적으로 정상으로 판정할 수 있다.However, in step S355, when the defective solar panel is determined to be normal, and the flying object 200 further includes a third camera, the central server 100 may re-request the shooting with the flying object 200. You can. The flying object 200 may transmit a third image to the central server 100 by photographing a defective solar panel with a third camera according to a re-shooting request. The third image may be, for example, an EL image. The central server 100 may finally determine whether the defective solar panel is defective based on the third image, and transmit the determination result to the manager terminal 400. When it is determined that the defective solar panel is not defective based on the third image, the central server 100 may finally determine the state of the solar panel as normal.
비행 물체(200), 예를 들어, 드론의 경우 배터리에 저장된 전력을 통해 비행을 하기 때문에 비행 시간의 조절이 매우 중요하다. 따라서, 도 3에 도시된 실시예에서는 비행 물체(200)의 영상 촬영 횟수를 최소로 하여 비행 물체(200)의 배터리 전력량을 감소시킬 수 있다. 다시 말하면, 제 1 카메라에 의해 촬영된 제 1 영상으로부터 불량 가능 태양광 패널이 불량으로 판정되었다면, 비행 물체(200)는 추가 촬영없이 비행을 중단할 수 있으며, 제 1 영상으로부터 불량 가능 태양광 패널이 정상으로 판정되었다면 제 2 카메라로 불량 가능 태양광 패널을 재촬영한다. 그리고, 제 2 카메라에 의해 촬영된 제 2 영상으로부터 불량 가능 태양광 패널이 불량으로 판정되었다면, 비행 물체(200)는 추가 촬영없이 비행을 중단할 수 있다.In the case of the flying object 200, for example, a drone, it is very important to adjust the flight time because it is flying through power stored in the battery. Therefore, in the embodiment illustrated in FIG. 3, the number of images taken of the flying object 200 may be minimized to reduce the amount of battery power of the flying object 200. In other words, if the defective solar panel is determined to be defective from the first image photographed by the first camera, the flying object 200 may stop flying without additional shooting, and the defective solar panel may be rejected from the first image. If this is determined to be normal, a defective solar panel is re-photographed with a second camera. In addition, if the defective solar panel is determined to be defective from the second image captured by the second camera, the flying object 200 may stop flying without additional shooting.
즉, 도 2에 도시된 실시예에서는 비행 물체(200)가 복수의 카메라 각각으로 복수 회의 촬영을 한 후, 복수의 영상을 중앙 서버(100)로 전송하지만, 도 3에 도시된 실시예에서는 비행 물체(200)가 불량 가능 태양광 패널을 촬영한 이후 재촬영 요청이 수신되는 경우 재촬영을 진행하므로, 비행 시간을 감소시킬 수 있는 것이다.That is, in the embodiment shown in FIG. 2, the flying object 200 transmits a plurality of images to the central server 100 after taking multiple shots with each of a plurality of cameras, but in the embodiment shown in FIG. If an object 200 is photographed after a defective photovoltaic panel is taken, if a re-photographing request is received, re-photographing is performed, so that the flight time can be reduced.
도 4 내지 도 6은 태양광 패널 그룹(300)에 포함된 태양광 패널들에 대해 ID를 할당하는 방법을 설명하기 위한 도면이다.4 to 6 are diagrams for explaining a method of assigning IDs to photovoltaic panels included in the photovoltaic panel group 300.
앞서 설명한 바와 같이, 비행 물체(200)는 각 태양광 패널의 ID를 기반으로 비행을 하여 태양광 패널 그룹(300)에 포함된 태양광 패널을 촬영할 수 있다. 구체적으로, 중앙 서버(100)는 비행 물체(200)가 촬영하여야 할 태양광 패널의 ID를 비행 물체(200)로 전송하여 비행 물체(200)가 해당 태양광 패널로 비행하게 할 수 있다. 또는, 비행 물체(200)가 주기적으로 태양광 패널 그룹(300)의 검사를 진행하면서 획득한 영상을 태양광 패널의 ID와 함께 중앙 서버(100)로 전송할 수도 있다. 또는, 비행 물체(200)가 태양광 패널 그룹(300)의 검사를 완료하지 못하고 배터리 충전 또는 배터리 교체 등을 위해 충전 기기 또는 비행 물체 기지로 복귀한 경우, 중앙 서버(100)는 태양광 패널 그룹(300)에 포함된 태양광 패널들 중 비행 물체(200)의 검사(또는 촬영)가 완료된 태양광 패널을 제외하고, 다시 검사를 시작하여야 할 태양광 패널의 ID를 충전이 완료된 또는 배터리가 교체된 비행 물체(200), 또는 다른 비행 물체(200)로 전송할 수도 있다.As described above, the flying object 200 may photograph the solar panel included in the solar panel group 300 by flying based on the ID of each solar panel. Specifically, the central server 100 may transmit the ID of the solar panel to be photographed by the flying object 200 to the flying object 200 so that the flying object 200 can fly to the corresponding solar panel. Alternatively, the image acquired while the flying object 200 periodically inspects the solar panel group 300 may be transmitted to the central server 100 together with the ID of the solar panel. Alternatively, when the flying object 200 fails to complete the inspection of the solar panel group 300 and returns to the charging device or the flying object base for battery charging or battery replacement, the central server 100 displays the solar panel group Of the photovoltaic panels included in (300), except for the photovoltaic panel in which the inspection (or shooting) of the flying object 200 is completed, the ID of the photovoltaic panel to be inspected again is completed or the battery is replaced. It may be transmitted to the flying object 200, or another flying object 200.
도 4를 참조하면, 중앙 서버(100)는 태양광 패널 그룹(300)에 대해 촬영된 영상(40)으로부터 태양광 패널 그룹(300)의 모서리들(P1 내지 P14)을 식별한다. 중앙 서버(100)는 이미지 분석 알고리즘을 통해 영상(40) 내 태양광 패널 그룹(300)의 모서리들(P1 내지 P14)을 식별할 수 있다. 모서리를 식별하는 기술로서, C. Harris and M. Stephens, 'A combined corner and edge detector', Alvey Vision Conference를 참조할 수 있다. 상기 영상(40)은 관리자 등에 의해 촬영되어 중앙 서버(100)로 전송된 것일 수도 있고, 비행 물체(200)에 의해 촬영되어 중앙 서버(100)로 전송된 것일 수도 있다.Referring to FIG. 4, the central server 100 identifies the edges P1 to P14 of the solar panel group 300 from the image 40 photographed for the solar panel group 300. The central server 100 may identify the corners P1 to P14 of the solar panel group 300 in the image 40 through an image analysis algorithm. As a technique for identifying corners, C. Harris and M. Stephens, 'A combined corner and edge detector', may refer to Alvey Vision Conference. The image 40 may be taken by an administrator or the like and transmitted to the central server 100, or may be taken by a flying object 200 and transmitted to the central server 100.
그리고, 중앙 서버(100)는 식별된 각 모서리(P1 내지 P14)의 GPS 좌표를 획득한다. 일 예로, 영상(40)이 드론에 의해 촬영된 경우, 드론의 카메라를 기준점으로 하였을 때의 각 모서리(P1 내지 P14)의 좌표 정보와, 드론의 GPS 좌표를 이용하여 각 모서리(P1 내지 P14)별 GPS 좌표를 획득할 수 있다. 예를 들어, 드론의 GPS 좌표가 (1,1)이고, 드론의 카메라를 기준점으로 하였을 때의 어느 하나의 모서리의 좌표가 (1,1)이라면, 어느 하나의 모서리의 좌표는 (2,2)가 될 것이다. 드론의 GPS 좌표를 획득하기 위해 드론에는 GPS 모듈이 설치될 수 있다.Then, the central server 100 acquires the GPS coordinates of each of the identified corners P1 to P14. For example, when the image 40 is photographed by the drone, the coordinate information of each corner P1 to P14 when the drone's camera is used as a reference point, and each corner P1 to P14 using the drone's GPS coordinates Star GPS coordinates can be obtained. For example, if the drone's GPS coordinates are (1,1), and the coordinates of any one corner when the drone's camera is the reference point, (1,1), the coordinates of either corner is (2,2). ). In order to obtain the GPS coordinates of the drone, a GPS module may be installed in the drone.
다음으로, 도 5(a)에 도시된 바와 같이, 중앙 서버(100)는 영상(40)에서 식별된 모서리들(P1 내지 P14)을 연결하는 경계선(E)을 검출하고, 검출된 경계선(E)들의 실제 거리를 산출한다. 각 모서리(P1 내지 P14)의 GPS 좌표가 식별된 상태이므로, 두 모서리 사이를 잇는 경계선(E)의 실제 거리는 두 모서리의 GPS 좌표에 기초하여 산출될 수 있다. 중앙 서버(100)는 경계선(E)의 실제 거리를 통해 태양광 패널 그룹(300)의 전체 면적을 산출한다.Next, as shown in FIG. 5 (a), the central server 100 detects the boundary line E connecting the edges P1 to P14 identified in the image 40, and the detected boundary line E ) To calculate the actual distance. Since the GPS coordinates of each corner P1 to P14 are identified, the actual distance of the boundary line E connecting the two corners can be calculated based on the GPS coordinates of the two corners. The central server 100 calculates the total area of the solar panel group 300 through the actual distance of the boundary line E.
다음으로, 도 5(b)에 도시된 바와 같이, 중앙 서버(100)는 비행 물체(200)의 비행 가능 시간 내 검사가 가능한 면적에 대응하는 영역들(R1 내지 R4)로 태양광 패널 그룹(300)을 구분할 수 있다. 예를 들어, 비행 물체(200)의 배터리 용량으로 10분의 비행이 가능하다면, 10분 이내로 검사가 가능한 면적에 해당하는 영역들(R1 내지 R4)로 태양광 패널 그룹(300)을 구분할 수 있다.Next, as shown in Figure 5 (b), the central server 100 is a group of solar panels (R1 to R4) corresponding to the area that can be inspected within the flight time of the flight object 200 (R1 to R4) 300). For example, if 10 minutes of flight is possible with the battery capacity of the flying object 200, the solar panel group 300 may be divided into regions R1 to R4 corresponding to an area that can be inspected within 10 minutes. .
중앙 서버(100)는 복수의 영역(R1 내지 R4) 각각의 모서리의 GPS 좌표를 저장할 수 있다. 예를 들어, R1 영역에 대응하여 5개의 모서리의 GPS 좌표들을 저장하고, R2 영역에 대응하여 4개의 모서리의 GPS 좌표들을 저장할 수 있다.The central server 100 may store GPS coordinates of each corner of the plurality of regions R1 to R4. For example, GPS coordinates of five corners may be stored corresponding to the R1 area, and GPS coordinates of four corners may be stored corresponding to the R2 area.
중앙 서버(100)는 태양광 패널 그룹(300)을 복수의 영역들(R1 내지 R4)로 구분하는데 있어, 태양광 패널 그룹(300)에 복수의 웨이 포인트(waypoint)를 설정하고, 복수의 영역들이 태양광 패널 그룹(300) 전체를 커버할 수 있도록, 상기 설정된 웨이 포인트들을 중심으로 영역을 점차적으로 증가시킬 수 있다. 복수의 웨이 포인트 각각에 대응하는 영역들 중 어느 하나의 영역의 넓이가, 비행 물체(200)의 비행 가능 시간 내 검사가 가능한 면적보다 크다면, 중앙 서버(100)는 해당 영역을 분할할 수도 있다.The central server 100 divides the solar panel group 300 into a plurality of regions R1 to R4, sets a plurality of waypoints in the solar panel group 300, and multiple regions. In order to cover the entire solar panel group 300, the area may be gradually increased around the set waypoints. If the area of any one of the areas corresponding to each of the plurality of waypoints is larger than the area that can be inspected within the flight time of the flying object 200, the central server 100 may divide the area. .
또한, 중앙 서버(100)는 어느 하나의 영역의 웨이 포인트를 시작점으로 하였을 때, 상기 어느 하나의 영역을 검사하는데 소요되는 시간과, 검사 종료 후 다른 영역의 웨이 포인트로 비행하는데 소요되는 시간이 비행 물체(200)의 비행 가능 시간 이내가 되도록 복수의 영역들을 설정할 수도 있다.In addition, when the waypoint of any one area is used as the starting point, the central server 100 flies the time required to inspect the one area and the time taken to fly to the waypoint of another area after the inspection ends. A plurality of regions may be set to be within a flight time of the object 200.
또는, 중앙 서버(100)는 태양광 패널 그룹(300)의 인근에 위치한 충전 기기의 위치를 고려하여 태양광 패널 그룹(300)을 복수의 영역들로 구분할 수도 있다. 일 예로, 도 7에 도시된 바와 같이, 태양광 패널 그룹(300)의 인근에 3개의 충전 기기가 위치할 때, 각 영역(R1 내지 R4)을 검사(또는 촬영)한 후, 최단 시간으로 충전 기기로 비행하여 배터리를 충전할 수 있도록 태양광 패널 그룹(300)을 복수의 영역들로 구분할 수 있다. 상기 충전 기기는 급속 충전 기기일 수 있다. 또는 상기 충전 기기는 무선의 급속 충전 기기일 수 있다.Alternatively, the central server 100 may divide the solar panel group 300 into a plurality of regions in consideration of the location of the charging device located near the solar panel group 300. As an example, as shown in FIG. 7, when three charging devices are located in the vicinity of the solar panel group 300, after inspecting (or photographing) each region R1 to R4, charging is performed in the shortest time. The solar panel group 300 may be divided into a plurality of regions so that the battery can be charged by flying with the device. The charging device may be a rapid charging device. Alternatively, the charging device may be a wireless quick charging device.
또한, 중앙 서버(100)는 태양광 패널 그룹(300)의 인근에 위치한 충전 기기로부터 가까이 위치한 웨이 포인트에 대응하는 영역의 넓이를, 충전 기기로부터 멀리 위치한 웨이 포인트에 대응하는 영역의 넓이보다 크게 설정할 수도 있다. 이는, 충전 기기와 웨이 포인트 사이의 비행 시간을 고려한 것으로서, 충전 기기로부터 멀리 위치하는 웨이 포인트에서 검사를 진행하는 경우, 검사를 위한 비행 유지 시간이 더 짧아질 것이기 때문이다. 다시 말하면, 충전 기기에서 배터리를 충전한 비행 물체(200)는 충전 기기와 인접한 영역에서 오랜 시간 비행하면서 검사가 가능하지만, 충전 기기와 멀리 떨어진 영역에서는 짧은 시간 동안만 비행하면서 검사할 수 있기 때문이다.In addition, the central server 100 sets the area of the area corresponding to the waypoint located near the charging device located near the solar panel group 300 to be larger than the area of the area corresponding to the waypoint located away from the charging device. It might be. This is because the flight time between the charging device and the waypoint is considered, and if the inspection is performed at a waypoint located far from the charging device, the flight holding time for the inspection will be shorter. In other words, the flying object 200 charging the battery in the charging device can be inspected while flying for a long time in an area adjacent to the charging device, but can be inspected while flying only for a short time in an area far from the charging device. .
또는, 중앙 서버(100)는 태양광 패널 그룹(300)의 인근에 위치한 비행 물체 기지의 위치를 고려하여 태양광 패널 그룹(300)을 복수의 영역들로 구분할 수도 있다. 비행 물체(200)는 배터리 교체를 위해 비행 물체 기지로 복귀할 수 있다. 태양광 패널 그룹(300)의 인근에 적어도 하나의 비행 물체 기지가 위치할 때, 각 영역(R1 내지 R4)을 검사(또는 촬영)한 후, 최단 시간으로 적어도 하나의 비행 물체 기지로 비행하여 배터리를 교체할 수 있도록 태양광 패널 그룹(300)을 복수의 영역들로 구분할 수 있다.Alternatively, the central server 100 may divide the solar panel group 300 into a plurality of regions in consideration of the location of the flying object base located near the solar panel group 300. The flying object 200 may return to the flying object base for battery replacement. When at least one flying object base is located in the vicinity of the solar panel group 300, after inspecting (or photographing) each area R1 to R4, the battery is flew to the at least one flying object base in the shortest time. The solar panel group 300 may be divided into a plurality of regions to replace.
또한, 중앙 서버(100)는 태양광 패널 그룹(300)의 인근에 위치한 비행 물체 기지로부터 가까이 위치한 웨이 포인트에 대응하는 영역의 넓이를, 비행 물체 기지로부터 멀리 위치한 웨이 포인트에 대응하는 영역의 넓이보다 크게 설정할 수도 있다.In addition, the central server 100 is greater than the area of the area corresponding to the waypoint located far from the flying object base, and the area of the area corresponding to the waypoint located near the flying object base located near the solar panel group 300. You can also set it large.
태양광 패널 그룹(300)이 복수의 영역(R1 내지 R4)들로 구분되면, 중앙 서버(100)는 복수의 영역(R1 내지 R4) 각각에 포함된 태양광 패널에 ID를 할당할 수 있다. 도 6은 어느 하나의 영역(350)에 대응하는 영상을 도시하고 있는데, 중앙 서버(100)는 비행 물체(200) 또는 관리자에 의해 촬영된 영역(350)의 영상을 수신한 후, 수신된 영상에서 각각의 태양광 패널(310)을 식별할 수 있다. 일 실시예서, 비행 물체(200)는 각 영역의 웨이 포인트들을 비행하여 각 영역에 대응하는 영상을 촬영하고, 촬영된 영상을 중앙 서버(100)로 전송할 수 있다.When the solar panel group 300 is divided into a plurality of regions R1 to R4, the central server 100 may assign IDs to the solar panels included in each of the plurality of regions R1 to R4. 6 illustrates an image corresponding to any one region 350, the central server 100 receives the image of the flying object 200 or the region 350 photographed by the administrator, and then receives the image Each solar panel 310 can be identified. In one embodiment, the flying object 200 may fly the waypoints of each area to capture an image corresponding to each area, and transmit the captured image to the central server 100.
도 6에 도시된 영상에서 영역(350)은 각 태양광 패널(310) 사이의 경계선(320)을 포함할 수 있는데, 중앙 서버(100)는 경계선(320)을 이미지 처리 기술을 통해 식별한 후, 경계선(320)에 인접하여 위치한 태양광 패널(310)들을 검출할 수 있다. 그리고, 중앙 서버(100)는 태양광 패널(310) 각각에 ID를 할당할 수 있다. 예를 들어, ID는 영역(350)에 포함된 태양광 패널(310)의 행과 열을 나타낼 수 있다. 도 6의 영역(350)이 A 영역이라 할때, 태양광 패널(310a)은 A 영역의 3번째 행 및 1번째 열에 위치하므로 ID로서 A(3, 1)이 할당될 수 있고, 태양광 패널(310b)은 A 영역의 5번째 행 및 3번째 열에 위치하므로 ID로서 A(5, 3)이 할당될 수 있다.In the image illustrated in FIG. 6, the region 350 may include a boundary line 320 between each photovoltaic panel 310, and the central server 100 identifies the boundary line 320 through image processing technology , The solar panels 310 located adjacent to the boundary line 320 may be detected. Then, the central server 100 may assign an ID to each of the solar panels 310. For example, the ID may indicate the row and column of the solar panel 310 included in the region 350. When the region 350 of FIG. 6 is an A region, since the solar panel 310a is located in the third row and the first column of the A region, A (3, 1) can be assigned as an ID, and the solar panel Since 310b is located in the fifth row and third column of the A area, A (5, 3) may be assigned as an ID.
즉, 어느 하나의 태양광 패널이 K 영역에 속하고, K 영역 중 m 번째 행 및 n 번째 열에 위치하는 경우, 해당 태양광 패널의 ID는 K(m, n)으로 할당될 수 있다. 상기 K는 영역의 식별 정보일 수 있다.That is, when any one solar panel belongs to the K region and is located in the m-th row and the n-th column of the K region, the ID of the solar panel may be assigned as K (m, n). The K may be identification information of a region.
앞서 설명한 바와 같이, 중앙 서버(100)는 검사가 필요한 태양광 패널의 ID 정보를 비행 물체(200)로 전송하고, 비행 물체(200)는 수신된 ID 정보에 따라 태양광 패널로 비행할 수 있다. 비행 물체(200)는 ID 정보에 포함된 영역의 식별 정보에 기초하여, 영역의 모서리의 GPS 좌표 값을 확인할 수 있다. 그리고, 비행 물체(200)는 GPS 좌표 값으로 특정된 영역 내에서 ID 정보에 포함된 행 값과 열 값에 기초하여 영역 내에서 검사가 필요한 태양광 패널을 식별할 수 있다. 이를 위해, 비행 물체(200)는 영역을 특정한 후, 특정된 영역을 촬영하고, 촬영된 영상을 분석하여 ID 정보에 포함된 행 값과 열 값에 대응하는 태양광 패널을 식별할 수 있다. 일 실시예에서, 중앙 서버(100)는 영역의 식별 정보 대신 영역의 각 모서리의 GPS 좌표를 비행 물체(200)로 전송하고, 추가적으로, 해당 영역 내 태양광 패널의 행 값과 열 값을 비행 물체(200)로 전송할 수도 있다.As described above, the central server 100 transmits ID information of the solar panel requiring inspection to the flying object 200, and the flying object 200 can fly to the solar panel according to the received ID information. . The flying object 200 may check the GPS coordinate values of the corners of the area based on the identification information of the area included in the ID information. Then, the flying object 200 may identify a solar panel requiring inspection within the area based on the row values and column values included in the ID information in the area specified by the GPS coordinate values. To this end, the flying object 200 may identify the solar panel corresponding to the row value and column value included in the ID information by specifying the area, photographing the specified area, and analyzing the captured image. In one embodiment, the central server 100 transmits the GPS coordinates of each corner of the area to the flying object 200 instead of the identification information of the area, and additionally, the row and column values of the solar panel in the area are flying objects. It can also be transmitted to (200).
일 실시예에서, 중앙 서버(100)는 태양광 패널 그룹(300)의 위치 정보(예를 들어, GPS 좌표), 태양광 패널 그룹(300)의 면적, 태양광 패널 그룹(300)의 모서리들의 GPS 좌표, 태양광 패널 그룹(300)에 포함된 영역들의 모서리들의 GPS 좌표, 각 영역에 포함된 태양광 패널의 행 값 및 각 영역에 포함된 태양광 패널의 열 값 중 적어도 하나를 클라우드 방식으로 저장할 수 있다.In one embodiment, the central server 100 is the location information (eg, GPS coordinates) of the solar panel group 300, the area of the solar panel group 300, the corners of the solar panel group 300 At least one of the GPS coordinates, the GPS coordinates of the corners of the regions included in the solar panel group 300, the row values of the solar panels included in each region, and the column values of the solar panels included in each region in a cloud manner Can be saved.
전술한 바와 같이, 중앙 서버(100)는 불량 가능 태양광 패널을 검출하고, 이의 ID 정보를 비행 물체(200)로 전송하여 비행 물체(200)를 불량 가능 태양광 패널로 비행시킬 수 있지만, 일 실시예에서, 비행 물체(200)는 주기적 또는 비주기적으로 태양광 패널 그룹(300) 전체를 검사할 수도 있다. 이 경우, 중앙 서버(100)는 비행 물체(200)로 비행 코스 정보를 전송하여, 비행 물체(200)가 비행 코스에 따라 비행하면서 태양광 패널 그룹(300)을 검사하게 할 수도 있다. 일 실시예에서, 중앙 서버(100)는 비행 코스를 결정하는데 있어, 비행 물체의 충전을 위해 소비되는 시간(예를 들어, 충전 기기를 왕복하는데 소요되는 비행 시간)이 최소화되도록 비행 코스를 결정할 수도 있다.As described above, the central server 100 may detect a defective solar panel and transmit its ID information to the flying object 200 to allow the flying object 200 to fly to the defective solar panel. In an embodiment, the flying object 200 may inspect the entire solar panel group 300 periodically or aperiodically. In this case, the central server 100 may transmit flight course information to the flying object 200, so that the flying object 200 may inspect the solar panel group 300 while flying along the flying course. In one embodiment, the central server 100 may determine the flight course so that the time spent for charging the flying object (eg, the flight time required to reciprocate the charging device) is minimized in determining the flight course. have.
도 7에 도시된 바와 같이, 태양광 패널 그룹(300)이 제 1 영역(R1), 제 2 영역(R2), 제 3 영역(R3) 및 제 4 영역(R4)으로 구분되고, 태양광 패널 그룹(300)의 인근에 충전 기기 1, 충전 기기 2 및 충전 기기 3이 위치하는 경우를 가정한다. 비행 물체(200)가 충전 기기 1에서 대기하고 있으면, 첫 번째 경로(f1)는, 충전 기기 1로부터 제 1 영역(R1)의 제 1 웨이 포인트(w1)로의 비행 경로이다. 그리고, 두 번째 경로(f2)는, 제 1 영역(R1)의 검사(또는 촬영)가 완료된 후, 제 1 웨이 포인트(w1) 또는 검사 종료 지점으로부터 충전 기기 1로의 비행 경로이다. 충전 기기 1에서 충전이 완료된 후, 세 번째 경로(f3)는, 충전 기기 1에서 제 2 영역(R2)의 제 2 웨이 포인트(w2)로의 비행 경로이다. 제 2 영역(R2)의 검사(또는 촬영)이 완료된 후, 네 번째 경로(f4)는, 제 2 웨이 포인트(w2) 또는 검사 종료 지점으로부터 충전 기기 2로의 비행 경로이다. 충전 기기 2에서 충전이 완료된 후, 다섯 번째 경로(f5)는, 충전 기기 2로부터 제 3 영역(R3)의 제 3 웨이 포인트(w3)로의 비행 경로이다. 제 3 영역(R3)의 검사(또는 촬영)이 완료된 후, 여섯 번째 경로(f6)는, 제 3 웨이 포인트(w3) 또는 검사 종료 지점으로부터 충전 기기 3으로의 비행 경로이다. 충전 기기 3에서 충전이 완료되면, 일곱번 째 경로(f7)는, 충전 기기 3으로부터 제 4 영역(R4)의 제 4 웨이 포인트(w4)로의 비행 경로이다. 여기서, 충전 기기 3으로부터 가까운 제 4 영역(R4)의 넓이가 충전 기기 3으로부터 먼 제 3 영역(R3)의 넓이보다 크다는 것에 주목할 수 있다. 제 4 영역(R4)의 검사(또는 촬영)이 완료되면, 여덟 번째 경로(f8)는 제 4 웨이 포인트(w4) 또는 검사 종료 지점으로부터 충전 기기 3으로의 비행 경로이다.As shown in FIG. 7, the solar panel group 300 is divided into a first region R1, a second region R2, a third region R3, and a fourth region R4, and the solar panel It is assumed that the charging device 1, the charging device 2 and the charging device 3 are located in the vicinity of the group 300. When the flying object 200 is waiting on the charging device 1, the first path f1 is a flight path from the charging device 1 to the first way point w1 of the first area R1. The second path f2 is a flight path from the first way point w1 or the inspection end point to the charging device 1 after the inspection (or imaging) of the first area R1 is completed. After charging in the charging device 1 is completed, the third route f3 is a flight route from the charging device 1 to the second way point w2 of the second area R2. After the inspection (or imaging) of the second area R2 is completed, the fourth route f4 is a flight route from the second way point w2 or the inspection end point to the charging device 2. After charging is completed in the charging device 2, the fifth route f5 is a flight route from the charging device 2 to the third way point w3 of the third area R3. After the inspection (or shooting) of the third area R3 is completed, the sixth route f6 is a flight route from the third way point w3 or the inspection end point to the charging device 3. When charging is completed in the charging device 3, the seventh route f7 is a flight route from the charging device 3 to the fourth way point w4 of the fourth area R4. Here, it can be noted that the area of the fourth area R4 close to the charging device 3 is larger than the area of the third area R3 far from the charging device 3. When the inspection (or imaging) of the fourth area R4 is completed, the eighth route f8 is a flight route from the fourth way point w4 or the inspection end point to the charging device 3.
이후, 비행 물체(200)는 충전 기기 3에서 대기하게 되고, 중앙 서버(100)는 도 7에 도시된 것과 반대의 비행 경로 정보를 비행 물체(200)로 전송하여 비행 물체(200)가 반대의 비행 경로를 따라 비행하게 할 수 있다.Thereafter, the flying object 200 waits on the charging device 3, and the central server 100 transmits the flight path information opposite to that shown in FIG. 7 to the flying object 200 so that the flying object 200 is the opposite You can have them fly along the flight path.
일 실시예에서, 태양광 패널 그룹(300)의 인근에 충전 기기가 위치하지 않고, 대신 비행 물체(200)의 배터리 교체를 위한 적어도 하나의 비행 물체 기지가 위치할 수도 있다. 이 경우, 중앙 서버(100)는 태양광 패널 그룹(300) 내 복수의 영역과 적어도 하나의 비행 물체 기지의 위치를 고려하여 비행 코스를 결정할 수도 있다.In one embodiment, a charging device is not located in the vicinity of the solar panel group 300, but instead, at least one flying object base for battery replacement of the flying object 200 may be located. In this case, the central server 100 may determine a flight course in consideration of a plurality of areas in the solar panel group 300 and the location of at least one flying object base.
일 실시예에서, 비행 물체(200)의 배터리의 방전 속도는 외부 온도 등에 따라 가변적이므로, 비행 물체(200)는 비행 코스에 따라 비행하면서 검사를 하던 중 자신의 배터리의 전력 잔여량이 기준 값 미만인 경우, 가장 가까이 위치하는 충전 기기로 이동하면서 중앙 서버(100)로 복귀 메시지를 전송할 수 있다. 중앙 서버(100)는 복귀한 비행 물체(200)가 마지막에 촬영하였던 영상에 대응하는 태양광 패널의 ID를 확인하고, 연속하여 검사가 필요한 태양광 패널의 ID를 다른 비행 물체(200)로 전송하여, 다른 비행 물체(200)가 릴레이 방식으로 태양광 패널을 검사하게 할 수도 있다.In one embodiment, since the discharge rate of the battery of the flying object 200 is variable according to external temperature, etc., the flying object 200 is flying while inspecting according to the flight course, and when the remaining power of its battery is less than the reference value , It may transmit a return message to the central server 100 while moving to the nearest charging device. The central server 100 checks the ID of the solar panel corresponding to the image that the returned flying object 200 last photographed, and continuously transmits the ID of the solar panel requiring inspection to another flying object 200 By doing so, other flying objects 200 may be inspected by a solar panel in a relay manner.
또한, 일 실시예에서, 복수의 비행 물체(200)의 동시 운용이 가능한 경우, 중앙 서버(100)는 복수의 비행 물체(200) 각각으로 서로 다른 영역의 정보를 전송할 수도 있다. 이 경우, 복수의 비행 물체(200) 각각이 자신에게 할당된 영역으로 비행하여 해당 영역의 태양광 패널을 검사할 수 있다. 예를 들어, 제 1 비행 물체(200)에게는 제 1 영역으로의 비행 명령을 전송하고, 제 2 비행 물체(200)에게는 제 2 영역으로의 비행 명령을 전송할 수 있다. 제 1 비행 물체(200)는 제 1 영역으로 비행하여 영상을 촬영하여 중앙 서버(100)로 전송하고, 제 2 비행 물체(200)는 제 2 영역으로 비행하여 영상을 촬영하여 중앙 서버(100)로 전송할 수 있다.In addition, in one embodiment, when simultaneous operation of a plurality of flying objects 200 is possible, the central server 100 may transmit information of different areas to each of the plurality of flying objects 200. In this case, each of the plurality of flying objects 200 may fly to an area allocated to it to inspect the solar panel of the corresponding area. For example, the first flight object 200 may transmit a flight command to the first area, and the second flight object 200 may transmit a flight command to the second area. The first flying object 200 flies to the first area to take an image and transmits it to the central server 100, and the second flying object 200 flies to the second area to take an image to shoot the central server 100 Can be transferred to.
도 8은 비행 물체(200)가 불량 가능 태양광 패널을 포함하는 태양광 패널 그룹으로 비행하는 과정을 설명하기 위한 도면이다.FIG. 8 is a view for explaining a process in which the flying object 200 flies to a solar panel group including a defective solar panel.
도 8을 참조하면, 제 1 태양광 패널 그룹(300a), 제 2 태양광 그룹(300b) 및 제 3 태양광 패널 그룹(300c)이 위치하고, 불량 가능 태양광 패널이 제 3 태양광 패널 그룹(300c)에 포함된 경우, 비행 물체(200)는 중앙 서버(100)로부터 수신되는 정보에 기초하여 제 3 태양광 패널 그룹(300c)으로 비행할 수 있다. 비행 물체(200)는 불량 가능 태양광 패널의 ID 정보와 함께 불량 가능 태양광 패널을 포함하는 태양광 패널 그룹의 식별 정보 및/또는 위치 정보를 더 수신할 수 있다.Referring to FIG. 8, the first solar panel group 300a, the second solar group 300b, and the third solar panel group 300c are located, and the defective solar panel is the third solar panel group ( 300c), the flying object 200 may fly to the third solar panel group 300c based on the information received from the central server 100. The flying object 200 may further receive identification information and / or location information of a photovoltaic panel group including the defective photovoltaic panel together with the ID information of the defective photovoltaic panel.
앞서 설명한 바와 같이, 비행 물체(200)는 배터리에 저장된 전력에 기초하여 비행을 하므로 비행 물체(200)의 배터리 전력량을 효율적으로 관리하는 것이 매우 중요하다. As described above, since the flying object 200 flies based on the power stored in the battery, it is very important to efficiently manage the battery power amount of the flying object 200.
일 실시예에서, 비행 물체(200)는 제 3 태양광 패널 그룹(300c)에 도착하여 불량 가능 태양광 패널의 사진 촬영을 완료한 후 또는 사진 촬영을 하기 전에 제 3 태양광 패널 그룹(300c)과 연결된 충전 설비를 통해 배터리를 충전할 수 있다. 이후, 사진 촬영 및 충전이 완료되면 비행 물체(200)는 제 3 태양광 패널 그룹(300c)이 설치된 위치에서 대기하면서 다음 목적지로의 비행 명령을 기다리거나, 또는 비행 물체(200)의 출발지로 복귀하여 대기할 수 있다.In one embodiment, the flying object 200 arrives at the third photovoltaic panel group 300c and then completes photographing of the defective photovoltaic panel, or before taking the photo, the third photovoltaic panel group 300c The battery may be charged through a charging facility connected to. Thereafter, when the photographing and charging is completed, the flying object 200 waits for a flight command to the next destination while waiting at a position where the third solar panel group 300c is installed, or returns to the origin of the flying object 200 You can wait.
또한, 일 실시예에서, 비행 물체(200)는 제 3 태양광 패널 그룹(300c)으로 비행하는 중에 배터리에 저장된 전력량이 소정 기준량 미만이 되거나 배터리에 저장된 전력량으로 제 3 태양광 패널 그룹(300c)에 도달할 수 없는 경우, 인접 태양광 패널 그룹(300), 예를 들어, 제 2 태양광 패널 그룹(300b)으로 비행하여 제 2 태양광 패널 그룹(300b)에 설치된 충전 설비로부터 전력을 공급받아 배터리를 충전한 후, 제 3 태양광 패널 그룹(300c)으로 비행할 수 있다.In addition, in one embodiment, the flying object 200 is less than a predetermined reference amount of power stored in the battery while flying to the third solar panel group 300c or the third solar panel group 300c as the amount of power stored in the battery If it is not possible to reach the adjacent solar panel group 300, for example, fly to the second solar panel group 300b and receive power from a charging facility installed in the second solar panel group 300b. After charging the battery, it can fly to the third solar panel group 300c.
도 10은 본 발명의 일 실시예에 따른 중앙 서버(100)의 구성을 도시하는 블록도이다.10 is a block diagram showing the configuration of a central server 100 according to an embodiment of the present invention.
도 10을 참조하면, 본 발명의 일 실시예에 따른 중앙 서버(100)는 메모리(710), 통신부(730), ID 지정부(750) 및 제어부(770)를 포함할 수 있다.Referring to FIG. 10, the central server 100 according to an embodiment of the present invention may include a memory 710, a communication unit 730, an ID designation unit 750, and a control unit 770.
메모리(710)는 태양광 패널 그룹(300)의 면적, 태양광 패널 그룹(300)의 모서리들의 GPS 좌표 정보, 태양광 패널 그룹(300)에 포함된 영역들의 식별 정보, 영역들의 모서리의 GPS 좌표 정보 및 각 영역에 포함된 태양광 패널들의 ID 정보 중 적어도 하나를 저장할 수 있다. 또한, 메모리(710)는 불량 가능 태양광 패널의 결정 내지 최종 불량 판정을 위해 미리 수집된 태양광 패널 관련 데이터를 저장할 수도 있다. 또한, 메모리(710)는 비행 물체(200)의 비행 코스를 설정하기 위한 비행 코스 정보를 미리 저장할 수도 있다.The memory 710 includes an area of the solar panel group 300, GPS coordinate information of corners of the solar panel group 300, identification information of areas included in the solar panel group 300, GPS coordinates of corners of the areas At least one of information and ID information of the solar panels included in each region may be stored. Also, the memory 710 may store data related to the solar panel collected in advance for determination of the defective solar panel or final defect determination. Also, the memory 710 may store flight course information for setting a flight course of the flight object 200 in advance.
통신부(730)는 복수의 태양광 패널과 관련되어 설치된 센서(500), 비행 물체(200) 및 관리자 단말(400)과 네트워크를 통해 데이터를 송수신할 수 있다.The communication unit 730 may transmit and receive data through a network with a sensor 500, a flying object 200, and a manager terminal 400 installed in connection with a plurality of solar panels.
ID 지정부(750)는 태양광 패널 그룹(300)의 영상에 기초하여, 태양광 패널 그룹(300)을 복수의 영역으로 구분하고, 각 영역에 포함된 태양광 패널에 ID를 할당할 수 있다.The ID designator 750 may divide the photovoltaic panel group 300 into a plurality of regions based on the image of the photovoltaic panel group 300, and allocate an ID to the photovoltaic panel included in each region. .
제어부(770)는 센서(500)로부터 수신된 복수의 태양광 패널의 센싱 데이터에 기초하여 불량 가능 태양광 패널을 결정하고, 비행 물체(200)로부터 불량 가능 태양광 패널의 영상이 수신되면, 수신된 영상에 기초하여 불량 가능 태양광 패널의 불량 여부를 판정할 수 있다. 이를 위해, 제어부(770)는 통신부(730)를 통해 검사가 필요한 불량 가능 태양광 패널의 ID 정보를 비행 물체(200)로 전송할 수 있다.The control unit 770 determines a defective solar panel based on the sensing data of a plurality of solar panels received from the sensor 500, and when an image of the defective solar panel is received from the flying object 200, receives A defective solar panel may be determined based on the image. To this end, the control unit 770 may transmit the ID information of the defective solar panel requiring inspection to the flying object 200 through the communication unit 730.
또한, 제어부(750)는 비행 물체(200) 또는 관리자에 의해 촬영된 태양광 패널의 영상이 수신되면, 수신된 영상에 기초하여 태양광 패널의 불량 여부를 판단할 수도 있다.In addition, when the image of the solar panel photographed by the flying object 200 or the manager is received, the control unit 750 may determine whether the solar panel is defective based on the received image.
한편, 상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 작성된 프로그램은 매체에 저장될 수 있다.Meanwhile, the above-described embodiments of the present invention can be written as a program that can be executed on a computer, and the created program can be stored in a medium.
매체는 컴퓨터로 실행 가능한 프로그램을 계속 저장하거나, 실행 또는 다운로드를 위해 임시 저장하는 것일 수도 있다. 또한, 매체는 단일 또는 수개 하드웨어가 결합된 형태의 다양한 기록수단 또는 저장수단일 수 있는데, 어떤 컴퓨터 시스템에 직접 접속되는 매체에 한정되지 않고, 네트워크 상에 분산 존재하는 것일 수도 있다. 매체의 예시로는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등을 포함하여 프로그램 명령어가 저장되도록 구성된 것이 있을 수 있다. 또한, 다른 매체의 예시로, 애플리케이션을 유통하는 앱 스토어나 기타 다양한 소프트웨어를 공급 내지 유통하는 사이트, 서버 등에서 관리하는 기록매체 내지 저장매체도 들 수 있다.The medium may be a computer that continuously stores executable programs or may be temporarily stored for execution or download. In addition, the medium may be various recording means or storage means in the form of a single or several hardware combinations, and is not limited to a medium directly connected to a computer system, but may be distributed on a network. Examples of the medium include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical recording media such as CD-ROMs and DVDs, and magneto-optical media such as floptical disks, And program instructions including ROM, RAM, flash memory, and the like. In addition, examples of other media include an application store for distributing applications, a site for distributing or distributing various software, and a recording medium or storage medium managed by a server.
이상, 본 발명의 기술적 사상을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명의 기술적 사상은 상기 실시예들에 한정되지 않고, 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형 및 변경이 가능하다.As mentioned above, although the technical idea of the present invention has been described in detail with reference to a preferred embodiment, the technical idea of the present invention is not limited to the above embodiments, and having ordinary skill in the art within the scope of the technical idea of the present invention. Many modifications and variations are possible.
[부호의 설명][Description of codes]
100: 중앙 서버100: central server
200: 비행 물체200: flying object
300: 태양광 패널 그룹300: solar panel group
400: 관리자 단말400: administrator terminal
710: 메모리710: memory
730: 통신부730: communication department
750: ID 지정부750: ID designation unit
770: 제어부770: control unit

Claims (11)

  1. 카메라를 통해 촬영된 태양광 패널 그룹에 대한 영상에 기초하여, 상기 태양광 패널 그룹을 복수의 영역으로 구분하고, 각 영역별로 각 영역에 포함된 태양광 패널에 ID(identification)를 할당하는 중앙 서버; 및A central server that divides the photovoltaic panel group into a plurality of regions and allocates identification (ID) to the photovoltaic panel included in each region for each region, based on the image of the photovoltaic panel group photographed through the camera. ; And
    상기 중앙 서버로부터 검사가 필요한 태양광 패널의 ID 정보를 수신하고, 수신된 ID 정보에 대응하는 태양광 패널로 비행하여, 상기 ID 정보에 대응하는 태양광 패널을 촬영한 영상을 상기 중앙 서버로 전송하는 비행 물체를 포함하는 것을 특징으로 하는 태양광 패널의 불량 검출 시스템.Receiving the ID information of the solar panel that needs inspection from the central server, flying to the solar panel corresponding to the received ID information, and transmitting an image of the solar panel corresponding to the ID information to the central server A defect detection system of a solar panel comprising a flying object.
  2. 제1항에 있어서,The method of claim 1,
    상기 중앙 서버는,The central server,
    상기 태양광 패널 그룹에 대한 영상에서 상기 태양광 패널 그룹의 모서리들을 식별하고, 식별된 모서리들에 기초하여 상기 태양광 패널 그룹의 전체 면적을 산출하고, 상기 비행 물체의 비행 가능 시간 내 검사가 가능한 면적에 각각 대응하는 복수의 영역들로 상기 태양광 패널 그룹을 구분하는 것을 특징으로 하는 태양광 패널의 불량 검출 시스템.The edges of the photovoltaic panel group are identified in the image of the photovoltaic panel group, the total area of the photovoltaic panel group is calculated based on the identified edges, and inspection of the flying object within flight time is possible. A defect detection system for a solar panel, characterized in that the solar panel group is divided into a plurality of areas corresponding to each area.
  3. 제2항에 있어서,According to claim 2,
    상기 중앙 서버는,The central server,
    상기 식별된 모서리들에 대응하는 GPS 좌표에 기초하여, 상기 식별된 모서리들을 연결한 윤곽선들의 실제 거리를 산출하고, 산출된 실제 거리에 기초하여 상기 태양광 패널 그룹의 전체 면적을 산출하는 것을 특징으로 하는 태양광 패널의 불량 검출 시스템.Characterized in that, based on the GPS coordinates corresponding to the identified edges, the actual distance of the contours connecting the identified edges is calculated, and the total area of the solar panel group is calculated based on the calculated actual distance. Defect detection system of solar panel.
  4. 제2항에 있어서,According to claim 2,
    상기 중앙 서버는,The central server,
    복수의 웨이 포인트 각각과 충전 기기 사이의 비행 시간을 고려하여 상기 복수의 웨이 포인트 각각에 대응하는 복수의 영역으로 상기 태양광 패널 그룹을 구분하는 것을 특징으로 하는 태양광 패널의 불량 검출 시스템.A failure detection system for a solar panel, characterized in that the solar panel group is divided into a plurality of regions corresponding to each of the plurality of way points in consideration of a flight time between each of the plurality of way points and a charging device.
  5. 제2항에 있어서,According to claim 2,
    상기 중앙 서버는,The central server,
    상기 복수의 영역의 영상에 기초하여, 상기 복수의 영역 각각에 포함된 태양광 패널을 식별하고, 식별된 태양광 패널에 ID를 할당하는 것을 특징으로 하는 태양광 패널의 불량 검출 시스템.Based on the image of the plurality of regions, the solar panel included in each of the plurality of regions to identify, and assigns an ID to the identified photovoltaic panel, the defect detection system of the solar panel.
  6. 제1항에 있어서,The method of claim 1,
    상기 중앙 서버는,The central server,
    상기 복수의 영역들에 대한 비행 코스 정보를 상기 비행 물체로 전송하고,Transmit flight course information for the plurality of areas to the flying object,
    상기 비행 물체는,The flying object,
    상기 비행 코스 정보에 따라 상기 복수의 영역들 각각에 포함된 태양광 패널의 영상을 순차적으로 촬영하는 것을 특징으로 하는 태양광 패널의 불량 검출 시스템.Defect detection system of a solar panel, characterized in that sequentially photographing the image of the solar panel included in each of the plurality of areas according to the flight course information.
  7. 제6항에 있어서,The method of claim 6,
    상기 중앙 서버는,The central server,
    상기 비행 물체의 충전을 위해 소비되는 시간이 최소화되도록 상기 비행 코스 정보를 결정하는 것을 특징으로 하는 태양광 패널의 불량 검출 방법.Defect detection method of the solar panel, characterized in that to determine the flight course information so that the time spent for charging the flying object is minimized.
  8. 제1항에 있어서,The method of claim 1,
    상기 비행 물체는 복수 개이되,There are a plurality of flying objects,
    상기 중앙 서버는,The central server,
    상기 복수의 영역 중 서로 다른 영역에 대한 검사 명령을 상기 복수 개의 비행 물체 각각으로 전송하고,The inspection command for different areas among the plurality of areas is transmitted to each of the plurality of flying objects,
    상기 복수 개의 비행 물체 각각은, 자신에게 수신된 검사 명령에 대응하는 영역으로 비행하여 태양광 패널의 영상을 촬영하는 것을 특징으로 하는 태양광 패널의 불량 검출 방법.Each of the plurality of flying objects, flying to the area corresponding to the inspection command received by the self, the solar panel defective detection method, characterized in that for taking an image of the solar panel.
  9. 제1항에 있어서,The method of claim 1,
    상기 중앙 서버는,The central server,
    상기 태양광 패널 그룹과 관련되어 설치된 센서로부터 태양광 패널의 센싱 데이터를 수신하고, 상기 수신된 센싱 데이터에 기초하여 불량 가능 태양광 패널을 결정하고,Receiving sensing data of a solar panel from a sensor installed in association with the solar panel group, and determining a defective solar panel based on the received sensing data,
    상기 비행 물체는, 상기 중앙 서버로부터 상기 불량 가능 태양광 패널의 ID 정보를 수신하고, 상기 불량 가 태양광 패널로 비행하여 서로 다른 종류의 복수의 카메라로 상기 불량 가능 태양광 패널을 촬영하는 것을 특징으로 하는 태양광 패널의 불량 검출 시스템.The flying object receives the ID information of the defective solar panel from the central server, and the defective flies to the solar panel to shoot the defective solar panel with a plurality of cameras of different types. Defect detection system of solar panel to be made.
  10. 제9항에 있어서,The method of claim 9,
    상기 비행 물체는,The flying object,
    상기 복수의 카메라 중 제 1 카메라로 상기 불량 가능 태양광 패널을 촬영한 영상을 상기 중앙 서버로 전송하고, 상가 중앙 서버의 요청이 수신되면 상기 복수의 카메라 중 제 2 카메라로 상기 불량 가능 태양광 패널을 촬영한 영상을 상기 중앙 서버로 전송하는 것을 특징으로 하는 태양광 패널의 불량 검출 시스템.An image of the defective solar panel taken by the first camera among the plurality of cameras is transmitted to the central server, and when a request of the central server is received, the defective solar panel may be transmitted to the second camera of the multiple cameras. Defect detection system of the solar panel, characterized in that for transmitting the image taken to the central server.
  11. 카메라를 통해 촬영된 태양광 패널 그룹에 대한 영상을 수신하는 통신부;A communication unit that receives an image of a group of solar panels photographed through a camera;
    상기 수신된 영상에 기초하여, 상기 태양광 패널 그룹을 복수의 영역으로 구분하고, 각 영역별로 각 영역에 포함된 태양광 패널에 ID를 할당하는 ID 지정부; 및An ID designating unit dividing the photovoltaic panel group into a plurality of regions based on the received image, and assigning IDs to photovoltaic panels included in each region for each region; And
    태양광 패널을 촬영한 영상을 비행 물체로부터 수신하여 상기 태양광 패널의 불량 여부를 판단하는 제어부를 포함하되,It includes a control unit for determining whether the solar panel is defective by receiving an image of the solar panel from the flying object,
    상기 통신부는, 검사가 필요한 태양광 패널의 ID 정보를 비행 물체로 전송하여 상기 비행 물체가 상기 ID 정보에 대응하는 태양광 패널의 영상을 촬영하게 하는 것을 특징으로 하는 중앙 서버 장치.The communication unit, the central server device, characterized in that by transmitting the ID information of the solar panel that needs to be inspected to the flying object to shoot the image of the solar panel corresponding to the flying object ID information.
PCT/KR2019/000361 2018-09-04 2019-01-10 Method and system for inspecting solar panel using drone WO2020050461A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180105112A KR102032722B1 (en) 2018-09-04 2018-09-04 Method and system for examining solar panel by using drone
KR10-2018-0105112 2018-09-04

Publications (1)

Publication Number Publication Date
WO2020050461A1 true WO2020050461A1 (en) 2020-03-12

Family

ID=68421309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000361 WO2020050461A1 (en) 2018-09-04 2019-01-10 Method and system for inspecting solar panel using drone

Country Status (2)

Country Link
KR (1) KR102032722B1 (en)
WO (1) WO2020050461A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113837115A (en) * 2021-09-28 2021-12-24 上海翼枭航空科技有限公司 Roof solar energy identification method and system based on unmanned aerial vehicle
CN113867400A (en) * 2021-10-28 2021-12-31 中电(沈阳)能源投资有限公司 Unmanned aerial vehicle-based photovoltaic power generation equipment patrol processing method and system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220416717A1 (en) 2019-11-29 2022-12-29 Hyundai Solartec Photovoltaic module structure
KR102347238B1 (en) 2020-03-13 2022-01-04 태웅이엔에스 주식회사 Operation and management system of photovoltaic power plant and method thereof
KR102162342B1 (en) 2020-06-17 2020-10-06 주식회사 아이온커뮤니케이션즈 Drone for obtaining high quality image to inspect solar panel and flight control method thereof
KR102560261B1 (en) * 2021-04-26 2023-07-27 태웅이엔에스 주식회사 a condition checking system for renewable energy plant using a drone equipted with thermal imaging camera and the condition checking method
KR102574002B1 (en) * 2021-04-26 2023-09-04 태웅이엔에스 주식회사 Solar power plant inspection system and method using drone
KR102441465B1 (en) 2021-08-11 2022-09-07 한국남동발전 주식회사 Systems and methods for inspection and management of solar power generation facilities based on drone
KR102377859B1 (en) * 2021-10-28 2022-03-23 극동에너지 주식회사 Photovoltaic panel management system.
KR20230079919A (en) 2021-11-29 2023-06-07 (주)탑인프라 A methods of area-setting of the automatic-flighting and direction- setting of the flighting-pattern for drone
KR102454726B1 (en) * 2021-12-21 2022-10-14 주식회사 에스테코 Method and System for checking of Solar Photovoltaic Power Station Using Unmanned Flying Object
KR102525249B1 (en) 2023-01-06 2023-04-25 (주)스카이런 Method, device and system for monitoring and analyzing anomalies in photovoltaic power plants through artificial intelligence-based image processing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037009A (en) * 2012-10-05 2013-02-21 Horon:Kk Contour line extraction method, contour line extraction program and area measuring method
KR101660456B1 (en) * 2016-06-08 2016-09-28 (주)대연씨앤아이 Monitoring apparatus for photovoltaic generating system
KR101664909B1 (en) * 2014-10-22 2016-10-13 한국생산기술연구원 Unmanned air vehicle for monitoring solar cell panel using shape of solar cell panel and posture control method of the same
KR20180032075A (en) * 2016-09-21 2018-03-29 한국전력공사 Wireless charging device and control method for unmanned aerial vehicle
JP6337226B1 (en) * 2018-03-02 2018-06-06 株式会社エネルギア・コミュニケーションズ Abnormal point detection system
KR20180082258A (en) * 2017-01-10 2018-07-18 한화에어로스페이스 주식회사 The System For Inspecting Solar Panel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101832454B1 (en) * 2017-01-24 2018-04-13 전주비전대학교산학협력단 Solar cell exothermic position analysis method using drone based thermal infrared sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037009A (en) * 2012-10-05 2013-02-21 Horon:Kk Contour line extraction method, contour line extraction program and area measuring method
KR101664909B1 (en) * 2014-10-22 2016-10-13 한국생산기술연구원 Unmanned air vehicle for monitoring solar cell panel using shape of solar cell panel and posture control method of the same
KR101660456B1 (en) * 2016-06-08 2016-09-28 (주)대연씨앤아이 Monitoring apparatus for photovoltaic generating system
KR20180032075A (en) * 2016-09-21 2018-03-29 한국전력공사 Wireless charging device and control method for unmanned aerial vehicle
KR20180082258A (en) * 2017-01-10 2018-07-18 한화에어로스페이스 주식회사 The System For Inspecting Solar Panel
JP6337226B1 (en) * 2018-03-02 2018-06-06 株式会社エネルギア・コミュニケーションズ Abnormal point detection system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113837115A (en) * 2021-09-28 2021-12-24 上海翼枭航空科技有限公司 Roof solar energy identification method and system based on unmanned aerial vehicle
CN113867400A (en) * 2021-10-28 2021-12-31 中电(沈阳)能源投资有限公司 Unmanned aerial vehicle-based photovoltaic power generation equipment patrol processing method and system
CN113867400B (en) * 2021-10-28 2024-05-03 中电(沈阳)能源投资有限公司 Unmanned aerial vehicle-based photovoltaic power generation equipment inspection processing method and system

Also Published As

Publication number Publication date
KR102032722B1 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
WO2020050461A1 (en) Method and system for inspecting solar panel using drone
WO2020145488A1 (en) System for detecting defects of solar panel by using big data
CN111311597B (en) Unmanned aerial vehicle inspection method and system for defective insulator
WO2016125941A1 (en) System and method for predicting environmental pollution
JP7045030B2 (en) Inspection system, inspection method, server equipment, and program
KR101943342B1 (en) Management system and method for solar panel using drone
CN109187558A (en) A kind of photovoltaic plant automatic tour inspection system based on unmanned plane
WO2014163375A1 (en) Method for inspecting for foreign substance on substrate
WO2022025366A1 (en) Integrated system and method for measuring water quality on basis of iot network
WO2015080480A1 (en) Wafer image inspection apparatus
CN111626139A (en) Accurate detection method for fault information of IT equipment in machine room
WO2020004749A1 (en) Apparatus and method for allowing equipment to learn by using video file
CN115933746A (en) Automatic inspection method and device for power distribution network
KR20220055082A (en) System and method for defect detection based on deep learning through machine-learning of solar module data of thermal image
WO2017135671A1 (en) Broadcasting system using mobile device and control method therefor
CN211979511U (en) Unmanned aerial vehicle inspection system capable of automatically identifying defective insulator strings
CN115220479A (en) Dynamic and static cooperative power transmission line refined inspection method and system
CN115441832A (en) Intelligent photovoltaic operation and maintenance management and control system
WO2023120977A1 (en) Method and system for examining solar photovoltaic power station using unmanned aerial vehicle
TW202116622A (en) Method of patrolling airport runways and the surrounding area by using drone swarming has efficient operation mode and fast and accurate patrol, saves manpower, and achieves safety benefits
CN112260402B (en) Monitoring method for state of intelligent substation inspection robot based on video monitoring
CN115617080B (en) Unmanned aerial vehicle inspection system and method for transformer substation
CN104219233A (en) Aviation maintenance inspection method and electric torch used in aviation maintenance inspection
WO2022231318A1 (en) Vehicle access management system and vehicle access management method
WO2023054813A1 (en) Fire detection and early response system using rechargeable mobile robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858395

Country of ref document: EP

Kind code of ref document: A1